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One and the same classical mechanical quantity – the velocity of the electron – corresponds to two different 
quantum-mechanical quantities in the Dirac theory, which one can refer to as the corpuscular and wave 
velocities of the electron. 
 
 
 1.  According to Dirac †, the wave equation for the electron reads: 
 

(P0 + α1P1 + α2P2 + α3P3 + α4 mc) ψ = 0,   (1) 
 
in which the abbreviations have been introduced: 
 

0 1 2 3

( 0,1,2,3),
2

, , , .

k k k k
k

e h e
P p A A k

c i x c

x ct x x x y x z

π
∂ = + = + = ∂ 

= = = = 

  (1*) 

 
The charge of the electron is denoted by – e here; A1, A2, A3 are the components of the 
vector potential, and A0 is the scalar potential. 
 Equation (1) can also be written in the form: 
 

Hψ + 
2

h

i t

ψ
π

∂
∂

 = 0,     (2) 

 
where H denotes the Hamiltonian operator: 
 

H = e A0 + c (α1P1 + α2P2 + α3P3 + α4 mc).   (3) 
 

We would like to assume that the four-rowed matrices α1, α2, α3, α4 are Hermitian; the 
operator H is then self-adjoint. 
 The so-called equations of motion for an operator F read: 
 

                                                
 †  P. A. M. Dirac, “The Quantum Theory of the Electron,” Proc. Roy. Soc. London (A) 117, 610, 1928; 
118, 351, 1928. 
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dF

dt
= 

2
( )

F i
HF FH

t h

π∂ + −
∂

.    (4) 

 
This equation expresses the following mathematical fact *: If one constructs the matrix 
||Fmn|| for an operator F with the aid of a complete system of solutions ψn then the 
derivative with respect to time of the matrix element: 
 

Fmn = m nF dx dy dzψ ψ∫     (5) 

 
is equal to the corresponding matrix element for the operator on the right-hand side of 
(4), i.e.: 

mndF

dt
 = 

2
( )mn

mn

F i
HF FH

t h

π∂ + − ∂ 
.   (6) 

 
 
 2. One can now ask: Why is it that time plays a privileged role in our formulas, 
while the coordinates and time appear in a formally symmetric way in relativity theory?  
However, this concern may be easily eliminated. 
 The symmetry in regard to coordinates and time that arises in relativity theory is 
purely formal and is valid only insofar as one does not need to distinguish between real 
and imaginary quantities.  However, in reality, time (more generally: the temporal 
variable) is distinguished by its sign from the spatial variables in the fundamental metric 
form, and plays an entirely special role. 
 We would like to discuss this state of affairs more closely by considering the 
eigenvalue problem for an operator F. 
 In formulas (2) to (6), we have chosen time to be the independent variable, and it 
correspondingly enters as only a parameter in all operators and their eigenfunctions.  The 
basic domain for the operators is then all of infinite space, i.e., a certain domain of 
variation for the spatial variables; one must integrate over the basic domain in formula 
(5), for example.  The eigenfunction must satisfy certain boundary conditions on the 
boundary of the basic domain.  On the other hand, if one chooses – say – the coordinate x 
to be the independent variable then all of the operators are expressed in terms of y, z, t, in 
which x only enters as a parameter.  A certain spacetime domain would then be regarded 
as the basic domain.  Now, the boundary conditions for a spacetime domain have an 
entirely different character from those of a spatial domain; for instance, they might not be 
given over the entire boundary.  One can no longer speak of an eigenvalue problem in 
this case.  The difference corresponds to the difference between elliptic and hyperbolic 
differential equations. 
 We then see that the time plays a special role in relativity theory, as well as in 
relativistic quantum theory, that is essentially different from that of the spatial variables. 

                                                
 * On this, cf. V. Fock, “Über die Beziehung zwischen den Integralen der quantenmechanischen 
Bewegunsgleichungen und der Schrödingerschen Wellengleichung,” ZS. f. Phys. 49, 323, 1928. The 
developments in the cited paper are applicable to the Dirac wave equation with no further assumptions, as 
long as the operator H is self-adjoint. 
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 Here, we would like to interject a brief remark on the classical concept of proper 
time.  Classically, the proper time is defined as the arc length of the world-line of a mass 
point.  However, the concept of the path of a mass point has no immediate sense in 
quantum theory, and a definition of proper time will thus be impossible *. 
 
 3. We now turn to the equations of motion.  Using formula (4), we compute the 
operator that corresponds to the derivative of the coordinate xk with respect to time − i.e., 
the velocity dxk / dt – and obtain: 

kdx

dt
= cαk (k = 1, 2, 3).    (7) 

 
 It is well-known that according to the Dirac theory, the current density vector has the 
components: 

jk = kecψ α ψ .      (8) 

 
This formula is in complete accord with the interpretation of the operator cαk as the 
representative of the three-dimensional (but not four-dimensional!) velocity.  On the 
other hand, this interpretation is linked with an essential difficulty: The eigenvalues of 
this operator are ± c.  One thus arrives at the paradoxical conclusion that the 
measurement of any component of the velocity of an electron can yield only the values ± 
c.  Breit **  sought to make this result physically understandable, which he had obtained in 
a different way *** ; however, his argument does not seem very convincing to the author. 
 
 4. We now consider the four-dimensional velocity, which classically has the 
components: 

1 2 3 02 2 2 2

2 2 2 2

1
, , , .

1 1 1 1

x y z
v v v v

v v v v

c c c c

= = = =
− − − −

ɺ ɺ ɺ
  (9) 

 
In relativistic classical mechanics these quantities can be expressed by the components of 
the impulse pk and the four-potential Ak: 
 

vk = 
1

k k

e
p A

m c
 + 
 

 (k = 1, 2, 3),   (10) 

 

v0 = 0 0

1 e
p A

m c
 + 
 

.      (11) 

 
                                                
 * The assertion of Eddington [“The Charge of an Electron,” Proc. Roy. Soc. London (A) 122, 358, 
1929] that one takes the derivative with respect to proper time in his formula (11) must obviously be based 
upon an error. 
 **  G. Breit, “An Interpretation of Dirac’s Theory of the Electron,” Proc. Nat. Acad. Amer. 14, 553, 
1928. 

 ***  Breit interpreted α4 as 2 21 /v c− , which can scarcely be justified; on this, cf., our formula (16). 
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One further has the equations of motion (charge = − e): 
 

1

2

3

( ) ,

( ) ,

( ) ,

z y x

x z y

y x z

dv e
m y z e

dt c
dv e

m z x e
dt c
dv e

m x y e
dt c

= − − − 

= − − − 

= − − − 


ɺ ɺ

ɺɺ

ɺ ɺ

H H E

H H E

H H E

    (12) 

 

2 0dv
mc

dt
 = ( )x y ze x y z+ +ɺ ɺ ɺE E E .    (13) 

 
 The question now arises of whether we can regard the right-hand sides of (10) and 
(11) as the correct operator for the four-velocity when we understand pk to mean the 

ordinary operator 
2 k

h

i xπ
∂

∂
 in them.  It seems that one can give an affirmative response to 

this question.  Firstly, the operators (10) have continuous spectra in the interval from −∞ 
to +∞, and the operator for v0 

* has an absolute value that is greater than 1 ** .  This range 
of values coincides with that of the classical velocity.  Secondly, however, equation (4), 
when one sets F in it equal to P1 = mv1, P2 = mv2, P3 = mv3 and introduces the field 
quantities: 

01

1

3 2

1
,etc.,

,etc.,

x

x

AA

c t x

A A

y z

∂∂ = − + ∂ ∂ 
∂ ∂ = −
∂ ∂ 

E

H

    (14)  

yields: 

1
2 3

2
3 1

3
1 2

( ) ,

( ) ,

( ) .

z y x

x z y

y x z

dP
e e

dt
dP

e e
dt
dP

e e
dt

α α

α α

α α

= − − − 

= − − − 

= − − − 


H H E

H H E

H H E

   (15) 

 
We obtain the operator for the time-component of the four-velocity when we eliminate P0 
from (11) with the help of the wave equation.  We obtain: 
 

Operator v0 = G = α4 + 
1

mc
(α1P1 + α2 P2 + α3 P3).  (16) 

 

                                                
 * See formula (16) below.  
 **  The proof is given in the appendix.  
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The introduction of (16) into (4) yields, after a brief computation: 
 

2 dG
mc

dt
 = − ec (α1 Ex + α2 Ey + α3 Ez).    (17) 

 
The quantum-mechanical formulas (15) and (17) define a complete analogy with the 
classical formulas (12) and (13).  The one goes into the other when one sets Pk = m vk , c 
αk = xɺ , G = v0 . 
 The results that were obtained up to now seem to ultimately confirm that the correct 
quantum-mechanical operators are found for the three-dimensional, as well as the four-
dimensional velocity. 
 
 5. Up to now, we have consistently assumed that the operators (7), on the one hand, 
and (10) and (11), on the other, correspond to three- (four-, resp.) dimensional 
representations of one and the same physical quantity, namely, the “velocity of the 
electron.”  However, it now appears that this assumption is in no way pertinent, and that 
one is dealing with different physical quantities here. 
 From classical mechanics, the three-dimensional velocity may be expressed in terms 
of the four-dimensional one, and vice versa.  In particular, one has the relation: 
 

2 2 2
2

1
1 ( )x y z

c
− + +ɺ ɺ ɺ = 

2
0

1

v
.    (18) 

 
On the other hand, one has the following rules for the association of operators with 
physical quantities: 
 a) The square of a quantity corresponds to the double application of the operator to 
this quantity. 
 b) The reciprocal value of a quantity corresponds to the inverse operator. 
 c) In case the operators of two quantities commute, the sum of the quantities 
corresponds to the sum of their operators. 
 Now, we have convinced ourselves that the quantity v0 corresponds to the operator G.  
Correspondingly, from the rules a) and b), the right-hand side of (18) corresponds to the 
operator G−2: 

2
0

1

v
 → G−2.     (19) 

 
We assume that the quantities correspond to the operators cαk (k = 1, 2, 3), so their 
squares are all equal to c2, and therefore obviously commute.  From our rules of 
computation, it would then follow that the left-hand side of (18) corresponds to the 
operator – 2 (i.e., multiplication by – 2): 
 

1 − 
2 2 2

2

x y z

c

+ +ɺ ɺ ɺ
→ − 2,    (20) 

 
which is obviously absurd, and contradicts the relation (18). 
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 We have thus proved that the operators cαk and vk correspond to different concepts.  
Which concepts can they be, in fact?  There is hardly any doubt about the physical sense 
of the operator vk : The associated physical quantity is the mechanical four-velocity of the 
electron as a “point charge,” which we would like to refer to in the sequel as the 
corpuscular velocity.  As far as the operators cαk are concerned, they must be associated 
with a triple of quantities for which there is no sense in taking the sum of the squares of 
the components.  Such a triple of quantities now forms the mutually perpendicular 
velocity components of a wave that spreads out in all directions with the light velocity c.  
Due to the close relationship between the operators cαk and the ordinary velocity of the 
electron (e.g., the ones that enter into the equations of motion), it can only be the de 
Broglie wave that is associated with the electron, which, as is known from the relativistic 
Dirac equations, propagates with the velocity c and not with a superluminal velocity c2 / 
v2. 
 We have thus arrived at the conclusion that the difference between the operators for 
the velocity of an electron manifests the dual nature of the electron as a corpuscle and a 
wave. 
 
 6. From what we said, one should expect that one can also find an operator for the 
ordinary mechanical three-dimensional (corpuscular) velocity.  From the classical 
analogy, this operator must have a continuous spectrum in the interval from – c to + c, 
and satisfy equation (18) in the event that the squares of its components commute. 
 We would now like show that an operator with these properties is easy to give in the 
electrostatic case (absence of a magnetic field). 
 In classical mechanics, the three-dimensional velocity kxɺ  can be expressed in terms 

of the four-dimensional one vk as follows: 
 

kxɺ  = 
0

kv

v
 (k = 1, 2, 3).    (21) 

 
In the electrostatic case, the operators vk and v0 commute, and we can carry over relation 
(21) to quantum theory with no further assumptions.  If we denote the operator for kxɺ  by 

Vk then we obtain: 

Vk = 11
kp G

m
− .     (22) 

 
In order to obtain the eigenvalues of the operators Vk, we obtain the equation for its 
eigenfunctions: 

11
kp G f

m
− = λf.    (23) 

From (23), it follows that: 

           
1

kp f
m

= λ G f, 

 
and after a repeated application of the operator G: 
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2 2
kc p f  = λ2 2 2 2 2 2

1 2 3( )p p p m c+ + + f. 

 
For k = 1, this equation reads, when it is written out in more detail: 
 

2 2 2 2 2 2 2

2 2 2 2 2

4
1

c f f f m c
f

x y z h

π
λ

  ∂ ∂ ∂− + + −  ∂ ∂ ∂ 
 = 0.   (24) 

 
This differential equation has a solution that is finite and continuous in all of space when 
the coefficient of ∂2f / ∂x2 is negative.  It follows from this that: 
 

− c < λ < c,     (25) 
 

i.e., the eigenvalues of the operator Vk define a continuous spectrum in the interval (–c, 
+c). 
 One further effortlessly convinces oneself that the operators V1, V2, V3 fulfill the 
relation: 

2 2 2 2
1 2 32

1
1 ( )G V V V

c
 − + + 
 

= 1,    (26) 

 
which corresponds to the classical equation (18). 
 We thus see that in the electrostatic case the operators Vk have the desired properties 
and can be considered to be representatives of the three-dimensional corpuscular velocity 
of the electron.  In the general case, the translation of formula (21) into the language of 
quantum theory is not entirely single-valued, but perhaps also not necessary, since the 
operators Vk find no immediate utility is quantum theory; our objective was only to show 
that the corpuscular and wave velocities of the electron have different quantum-
mechanical operators. 
 
 7.  However, there exists an analogy between the two operators cαk and Vk that we 
would like to pursue. 
 The most important analogy consists in the behavior of the two operators under the 
correspondence principle.  We assume that the energy operator H does not include the 
time, and we define a complete system of solutions: 
 

ψk(x, y, z, t; En) (k = 1, 2, 3, 4) 
 
of the Dirac equations (2), which are then likewise eigenfunctions of the energy operator.  
When we now construct the matrix for an operator with the help of these functions – e.g., 
for the coordinate x: 

xmn = 
4

1

( ) ( )k m k n
k

E x E dx dy dzψ ψ
=
∑∫ ,    (27) 

 
the matrix element xmn must go to the corresponding term in the classical Fourier 
development of the coordinate x with respect to time after a certain passage to the limit as 
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a result of the correspondence principle.  The passage to the limit consists in the 
following: The two quantum numbers m * and n must grow unbounded, and the Planck 
constant h goes to zero, and indeed, in such a way that the difference: 
 

n – m = s 
and the quantity: 

n h = J 
remain finite ** . 
 From equation (6), it now follows that: 
 

mndx

dt
 = 

4

1
, 1

( )( ) ( )k m kl l n
k l

c E E dx dy dzψ α ψ
=
∑ ∫ .   (28) 

 
 If we carry out the same passage to the limit here then the matrix element of the 
operator cα1 must agree in the limit with the derivative of the corresponding term of the 
Fourier development of the coordinate x; i.e., with the term in the development of the 
classical velocity. 
 We would now like to show that the matrix element of the operator V1 tends to the 
same limiting value.  To that end, we consider the difference: 
 

Bk = Vk – c αk .    (29) 
We have: 

Bk = 
1

m
G−1(pk – mc G αk) = 

1

2mc
 G−1(αk H – H αk), 

or: 

Bk = 1

4 k

ih
G

mc
α

π
−
ɺ ,    (30) 

where we have set: 

kαɺ  = 
2 i

h

π
(H αk  –αk H).   (31) 

 
The matrix elements of the operator kaɺ  are derivatives of those of αk and remain finite 

under passage to the limit.  Since the operator G−1 is uniformly restricted (i.e., for all h) 
the matrix elements of the operator G−1

kαɺ  also remain finite.  However, the matrix 

elements of Bk include the quantity h as a factor, which tends to zero and thus itself tends 
to zero. 
 We have thus proved that the matrix elements of Vk coincide with those of cαk in the 
limit; from this, it follows that the operator Vk likewise satisfies the correspondence 
principle. 

                                                
 * For the sake of simplicity, it is assumed here that the energy depends upon only one quantum 
number.  
 **   Cf., on this Carl Eckhart, “Die correspondenzmäßige Beziehung zwischen den Matrizen und den 
Fourierkoeffizienten des Wasserstoffproblem,” ZS. f. Phys. 48, 295, 1928. 
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 A further analogy between cαk and Vk consists in the fact that the four-velocity vk will 
be expressed in terms of these operators in precisely the same way.  Namely, we have, on 
the one hand: 

vk = 1
2 (G Vk + Vk G),     (32) 

and, on the other hand: 

vk = 
2

c
(G αk + αk G).     (33) 

Furthermore, we have the relation: 
 

2
kV = 

2

c
(Vk αk + αk Vk).    (34) 

 
such that the twice-applied operator Vk is equal to the “symmetrized” product of the 
operators Vk and cαk . 
 
 8. We can summarize the results of this investigation as follows: 
 One and the same classical mechanical quantity – viz., the velocity of the electron – 
corresponds to two different quantum-mechanical quantities in the Dirac theory that one 
can refer to as the corpuscular and wave velocities of the electron.  The operators for the 
three-dimensional components of the wave velocity are cαk (k = 1, 2, 3), where αk are the 
four-rowed Dirac matrices.  They have the point spectrum ± c.  The corpuscular velocity 
may be best described by its four-dimensional components.  The operators for these 
components are linked with the operators for the impulse components by the same 
equations as the corresponding quantities in the classical theory.  These operators have 
continuous spectra that fall within the range of values for the components of the classical 
four-dimensional velocity.  In the electrostatic case, the corpuscular velocity may also be 
described in a three-dimensional way; the operators for the three-dimensional 
components have continuous spectra from – c to + c, and satisfy the correspondence 
principle, just like those of the wave velocity.  In the quantum-mechanical equations of 
motion for the electron, the corpuscular velocity enters into the expression for the 
acceleration, and thus has a mechanical interpretation; on the other hand, the components 
of the wave velocity enter as factors in the electromagnetic field quantities, and thus 
serve to describe the influence of the electromagnetic field on the electron. 
 

Appendix. 
 

The eigenvalue spectrum of the four-velocity. 
 

 1. We first consider one of the spatial components of the four-velocity – e.g., v1 .  
The differential equation for the eigenfunction of the associated operator is: 
 

1

2 x

h e
A

m i x c

ψ ψ
π

∂ + ⋅ ∂ 
 = λ ψ.    (1a) 
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As is known, we can now normalize the vector potential by the addition of a gradient in 
such a way that precisely its x-component vanishes.  (1a) then goes over to a differential 
equation with constant coefficients that has all real values λ for its spectrum.  With that, it 
is proved that the operators for the three spatial components of the four-velocity have 
continuous spectra − ∞ to + ∞, which we would also like to show. 
 
 2. We now consider the temporal component v0 of the four-velocity, and indeed, first 
in the case where no magnetic field is present, such that one can assume that the spatial 
components of the four-potential vanish.  The associated operator is: 
 

G = α4 + 
1

mc
(α1 p1 + α2 p2 + α3 p3).    (2a) 

 
 The equation for its eigenfunctions reads: 
 

Gψ  = λ ψ.      (3a) 
 

 However, the eigenfunctions also satisfy the differential equation: 
 

G2ψ = λ2 ψ,      (4a) 
which can be written in the form: 

ψ = 
2

1

k
∆ψ = λ2 ψ,     (5a) 

 
where ∆ refers to the ordinary Laplace operator and, to abbreviate, we have set: 
 

k = 
2 mc

h

π
.      (6a) 

 
As is known, equation (5a) has only one solution for λ2 ≥ 1 that is everywhere finite and 
continuous.  From this, it follows that in the electrostatic case the operator for the 
temporal components of the four-velocity has a continuous spectrum, and its eigenvalues 
have a magnitude that is greater than or equal to 1. 
 It likewise follows from this that the inverse operators G−1 and G−2 are restricted. 
 Let it be remarked here that these inverse operators have (actual) kernels that are easy 
to give. 
 The kernel of G−2 delivers the solution formula for the equation: 
 

F −
2

1

k
∆F = f,      (7a) 

namely: 

F(x, y, z) =
2

( , , )
4

krk e
f d d d

r
ξ η ζ ξ η ζ

π

−

∫ ,    (8a) 

where we have set: 
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r = 2 2 2( ) ( ) ( )x y zξ η ζ− + − + − . 
 
 G−2 thus has the kernel: 

K(x, y, z; ξ, η, ζ) = 
2

4

krk e

rπ

−

,    (9a) 

and G−1 has the kernel: 
2

4

krk e
G

rπ

−

,     (10a) 

 
where the differentiations in G are taken with respect to the variables x, y, z. 
 
 3. We would now like to examine the spectrum of the operator G for the case of a 
constant magnetic field that is parallel to the z-axis.  The vector potential in this case is: 
 

Ax = − 1
2 H y, Ay = 1

2 H x, Az = 0.    (11a) 

 
The operator G has the form: 
 

G = α4 + 1 2 3

1

2 2x y z

e e
p Hy p Hx p

mc c c
α α α    − + + +    
    

.  (12a) 

 
We must now choose the matrices α1, α2, α3, α4 in a particular way.  We set: 
 

α1 = σ1, α2 = ρ3σ2, α3 = σ3, α4 = ρ2σ2,  (13a) 
 
in which ρk and σk are Dirac matrices, which deviates from the Dirac Ansatz *. 
 We remark that the operator: 

L = ρ1σ1 – zp

mc
ρ3      (14a) 

 
commutes with G.  The eigenfunctions of G, which satisfy the equation: 
 
                                                
 * This choice suggests itself by the particularly simple and intuitive transformation properties of the 
associated ψ-functions.  Under an arbitrary Lorentz transformation, the functions ψk transform by the 
formulas: 

     
1

ψ ′  = α ψ1 + β ψ2 ,  
3

ψ ′ = α ψ3 + β ψ4 , 

     
2

ψ ′ = γ ψ1 + δ ψ2 ,   
4

ψ ′ = γ ψ3 + δ ψ4 , 
 
where α, β, γ, δ are complex parameters that satisfy the condition: 
 

αδ – βγ = 1. 
 

In the special case of a rotation of the spatial coordinate system, these are the ordinary Cayley-Klein 
parameters. 
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G ψ = λ ψ,     (15a) 
 
can then be subjected to the further condition: 
 

Lψ ≡ 1 1 3
zp

mc
ρ σ ρ ψ − 
 

 = l ψ.   (16a) 

 
If we apply the operator L once more then we find: 
 

L2ψ = 
2

2 21 zp

m c
ψ 

+ 
 

 = l2ψ.    (17a) 

 

If we understand pz to mean the eigenvalue of the operator 
2

h

i zπ
∂
∂

 then the relation: 

 

l2 = 1 + 
2

2 2
zp

m c
      (18a) 

follows from (17a). 

 The expression α4 + zp

mc
α3 that appears in G may be written in the form: 

 

α4 + zp

mc
α3 = ρ2σ2 + zp

mc
σ3 = − ρ3σ3 L.   (19a) 

 
If we introduce this expression into G and consider (16a) then we obtain the following 
equation from (15a): 

3 3 1 3 2

1
( )x yl P P

mc
ρ σ σ ρ σ ψ − + +  

 = λ ψ,   (20a) 

where we have set: 

Px = px – 
2

e

c
H ⋅ y, Py = py + 

2

e

c
H ⋅ x   (21a) 

 
to abbreviate.  The first two equations of the system of equations (20a) contain only the 
functions ψ1 and ψ2, and read: 

1 2 1

2 1 2

1
( ) ,

1
( ) .

x y

x y

l P iP
mc

l P iP
mc

ψ ψ λψ

ψ ψ λψ

− + − = 

− + + =


   (22a) 

 
If we eliminate the function ψ1 from these equations then we find the differential 
equation for ψ2: 
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2 2
2

1
( )

2 x yP P
m

ψ+  = Eψ2,    (23a) 

where we have set: 

E = 
2

2 2( )
2 4

mc eh
l H

mc
λ

π
− + ,    (24a) 

 
to abbreviate.  However, (23a) is the ordinary Schrödinger equation for a constant 
magnetic field; its eigenvalues are known, namely: 
 

En = (2n + 1) hν, ν = 
2

eH

mc
,   (25a) 

 
where n is a non-negative whole number.  From (25a), (24a), and (18a), we ultimately 
find the expression for the eigenvalues of G2: 
 

λ2 = 1 + 
2

2 2 2

4zp nh

m c mc

ν+  (n = 0, 1, 2, …). (26a) 

 
Since the latter two summands are positive or zero in λ2, and pz can assume all values, it 
is thus proved that the eigenvalues of the operator G define a continuous spectrum, and 
their magnitudes are greater than or equal to 1. 
 In the general case*, it is easy to show that the eigenvalues of the operator have 
absolute magnitudes that are greater than or equal to 1.  Namely, if we let P denote the 
self-adjoint operator: 

P = α1P1 + α2P2 + α3P3    (27a) 
 
with real eigenvalues p then the operator G2 can be written in the form: 
 

G2 = 1 + 2
2 2

1
P

m c
.     (28a) 

Its eigenvalues are equal to: 

λ2 = 1 + 
2

2 2

p

m c
 ≥ 1.     (29a) 

 
Q.E.D. 
 
 Presumably, the operators G and P also have continuous spectra in the general case; 
however, the proof of this fact might be somewhat complicated. 
 

                                                
 *  This passage has been added by the editor. 


