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One and the same classical mechanical quantity — thetyedé¢he electron — corresponds to two different
guantum-mechanical quantities in the Dirac theory, wioitd can refer to as the corpuscular and wave
velocities of the electron.

1. According to Dirac, the wave equation for the electron reads:
(Po + a1P1 + aoPo + asP3 + au mc) 4[/: 0, (l)

in which the abbreviations have been introduced:

h 0
+—A=—--—+— k=0,1,2,3
~ R Ak 2/ 0%, ¢ Ak ( ) 1)

=C X=X %=¥% %X=2Z
The charge of the electron is denoted by here;A;, A, As are the components of the

vector potential, andy is the scalar potential.
Equation (1) can also be written in the form:

h oy _
+ — =0, 2
Hy ot (2)
whereH denotes the Hamiltonian operator:
H :eA)+C(O'1P1+O'2P2+0’3P3+0'4mC). (3

We would like to assume that the four-rowed matriggsa,, as, a, are Hermitian; the
operatoH is then self-adjoint.
The so-called equations of motion for an opertogad:

" P. A. M. Dirac, “The Quantum Theory of the ElectfoProc. Roy. Soc. London (A)7, 610, 1928;
118, 351, 1928.
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dF _oF 2m
Z = 4+

—(HF = FH). 4
dt dt h ( ) @
This equation expresses the following mathematical fakftone constructs the matrix
[IFmdl| for an operatoF with the aid of a complete system of solutiogs then the
derivative with respect to time of the matrix element:

Fan= [@,F, dxdy dz (5)
is equal to the corresponding matrix element for theatpeion the right-hand side of
4),ie.

Ao = J9Fm 270 eyl (6)

dt ot h o

2. One can now ask: Why is it that time plays a peged role in our formulas,
while the coordinates and time appear in a formsjijnmetric way in relativity theory?
However, this concern may be easily eliminated.

The symmetry in regard to coordinates and time #nses in relativity theory is
purely formal and is valid only insofar as one daes need to distinguish between real
and imaginary quantities. However, in reality, ¢ginfimore generally: the temporal
variable) is distinguished by its sign from thetsdavariables in the fundamental metric
form, and plays an entirely special role.

We would like to discuss this state of affairs enarlosely by considering the
eigenvalue problem for an operatar

In formulas (2) to (6), we have chosen time totle independent variable, and it
correspondingly enters as only a parameter ingatators and their eigenfunctions. The
basic domain for the operators is then all of dinspace, i.e., a certain domain of
variation for the spatial variables; one must inig over the basic domain in formula
(5), for example. The eigenfunction must satiséyt@in boundary conditions on the
boundary of the basic domain. On the other hdr@he chooses — say — the coordinate
to be the independent variable then all of the ajoes are expressed in termgy/pg, t, in
which x only enters as a parameter. A certain spacetongadh would then be regarded
as the basic domain. Now, the boundary conditionsa spacetime domain have an
entirely different character from those of a spat@main; for instance, they might not be
given over the entire boundary. One can no losgeak of an eigenvalue problem in
this case. The difference corresponds to therdifiee between elliptic and hyperbolic
differential equations.

We then see that the time plays a special roleeiativity theory, as well as in
relativistic quantum theory, that is essentiallffedient from that of the spatial variables.

" On this, cf. V. Fock, “Uber die Beziehung zwischen dategralen der quantenmechanischen
Bewegunsgleichungen und der Schrddingerschen Wellengleichung,t. Zhys. 49, 323, 1928. The
developments in the cited paper are applicable to the dmae equation with no further assumptions, as
long as the operatdt is self-adjoint.
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Here, we would like to interject a brief remark oe ttlassical concept of proper
time. Classically, the proper time is defined as thdeargth of the world-line of a mass
point. However, the concept of the path of a masstgms no immediate sense in
quantum theory, and a definition of proper time will thesmpossible.

3. We now turn to the equations of motion. Using formidla we compute the
operator that corresponds to the derivative of thedioatex, with respect to time i.e.,
the velocitydx, / dt — and obtain:

%: ca (k=12 3). @)

It is well-known that according to the Dirac theattye current density vector has the
components:

jk: eqz;akl/l- (8)

This formula is in complete accord with the interptieta of the operatocax as the
representative of the three-dimensional (but not fooredsional!) velocity. On the
other hand, this interpretation is linked with an esaéuwlifficulty: The eigenvalues of
this operator aret c. One thus arrives at the paradoxical conclusion that t
measurement of any component of the velocity of actrele can yield only the values

c. Breit” sought to make this result physically understandable, witidad obtained in
a different way " ; however, his argument does not seem very convincing t@utther.

4. We now consider the four-dimensional velocity, whiclassically has the
components:

Vo= s %= : (9)

In relativistic classical mechanics these quartitien be expressed by the components of
the impulsgx and the four-potentially:

Vi = %[p +%A<j (k=1,2,3) (10)
" :ﬂw% A)j- (11)

The assertion of Eddington [“The Charge of an ElectrBnoc. Roy. Soc. London (A)22, 358,
1929] that one takes the derivative with respect to priiperin his formula (11) must obviously be based
upon an error.

” G. Breit, “An Interpretation of Dirac’s Theory ofatElectron,” Proc. Nat. Acad. Amet4, 553,
1928.

Breit interpretedz; as+/1-Vv* / ¢, which can scarcely be justified; on this, cf., our forn{g).
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One further has the equations of motion (chargeey

==y, m,)- €,

e =-E(m,-30)- €, (12)
L--L0m,- 1) €,

mcz% = g(XE, + Y& + ). (13)

The question now arises of whether we can redagdight-hand sides of (10) and
(11) as the correct operator for the four-veloaitlgen we understangc to mean the

ordinary operatorz%axi in them. It seems that one can give an affirneatésponse to
k

this question. Firstly, the operators (10) havetiomous spectra in the interval frotw

to +oo, and the operator fok ~ has an absolute value that is greater than This range

of values coincides with that of the classical e¢lp Secondly, however, equation (4),

when one set§ in it equal toP; = mw, P, = mw, P; = mwy and introduces the field

guantities:

C

on on % (14)

ﬁx :a—y_g,etc.,
yields:

dP
d_tl = _e(azﬁz _0'353 y) - eQEX,
dP,
d_tz = _e(a:%ﬁx _alﬁz) - &y’ (15)
dR,
d_t3 =-e(@,9, -a,9,)- €&,

We obtain the operator for the time-component efftur-velocity when we eliminate,
from (11) with the help of the wave equation. Wiamn:

Operaton, =G = ay + i(alpl + @ P2 + a3 Ps). (16)

See formula (16) below.
The proof is given in the appendix.
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The introduction of (16) into (4) yields, after a briehgautation:
dG _
mcza =—ec(m G+ m E + s &). (17)

The quantum-mechanical formulas (15) and (17) define a edenginalogy with the
classical formulas (12) and (13). The one goes intother when one seB& =m \, c
a=x,G=vy.

The results that were obtained up to now seem to wé#lynaonfirm that the correct
guantum-mechanical operators are found for the three-diomahsas well as the four-
dimensional velocity.

5. Up to now, we have consistently assumed that the mper&), on the one hand,
and (10) and (11), on the other, correspond to three- -(foesp.) dimensional
representations of one and the same physical quangtyely, the “velocity of the
electron.” However, it now appears that this assumpdn no way pertinent, and that
one is dealing with different physical quantities here.

From classical mechanics, the three-dimensionalcitgl may be expressed in terms
of the four-dimensional one, and vice versa. In padic one has the relation:

1—C—12 X+ + 7)== (18)

O<N| =

On the other hand, one has the following rules for @bsociation of operators with
physical quantities:

a) The square of a quantity corresponds to the double afpmticof the operator to
this quantity.

b) The reciprocal value of a quantity corresponds tonterse operator.

c) In case the operators of two quantities commute,stimm of the quantities
corresponds to the sum of their operators.

Now, we have convinced ourselves that the quawitprresponds to the operatdr
Correspondingly, from the rules a) and b), thetrigdnd side of (18) corresponds to the
operatoiG

- G2 (19)

O<N| =

We assume that the quantities correspond to theatmpecai (k = 1, 2, 3), so their
squares are all equal tf, and therefore obviously commute. From our rués
computation, it would then follow that the left-lsaiside of (18) corresponds to the
operator — 2 (i.e., multiplication by — 2):

X+ Y+ 7
1-—=%—--2 (20)

which is obviously absurd, and contradicts thetiata(18).
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We have thus proved that the operatarg andvik correspond to different concepts.
Which concepts can they be, in fact? There is hardlydampt about the physical sense
of the operatov: The associated physical quantity is the mechanicalvelocity of the
electron as a “point charge,” which we would like toerefo in the sequel as the
corpuscular velocity.As far as the operatocsx are concerned, they must be associated
with a triple of quantities for which there is no sems taking the sum of the squares of
the components. Such a triple of quantities now formsntii¢ually perpendicular
velocity components of a wave that spreads out in attions with the light velocitg.
Due to the close relationship between the operatar&nd the ordinary velocity of the
electron (e.g., the ones that enter into the equabbmaotion), it can only be the de
Broglie wave that is associated with the electrongcivhas is known from the relativistic
Dirac equations, propagates with the velocind not with a superluminal velocic§ /

We have thus arrived at the conclusion that the diffsxrebetween the operators for
the velocity of an electron manifests the dual natdithe electron as a corpuscle and a
wave.

6. From what we said, one should expect that one carfiatb@n operator for the
ordinary mechanical three-dimensional (corpuscular) wgloc From the classical
analogy, this operator must have a continuous spectraheimterval from € to +c,
and satisfy equation (18) in the event that the squanés @dmponents commute.

We would now like show that an operator with thesgerties is easy to give in the
electrostatic case (absence of a magnetic field).

In classical mechanics, the three-dimensional visloxj can be expressed in terms
of the four-dimensional on& as follows:

Vk

Y k=12, 3). (21)
VO

)'(k:

In the electrostatic case, the operatQrandvy commute, and we can carry over relation
(21) to quantum theory with no further assumptions. Ifdemrote the operator fog, by
Vi then we obtain:

Vi = e p.G™*. (22)
m
In order to obtain the eigenvalues of the operat@rswe obtain the equation for its
eigenfunctions:
e p .G f=Af (23)
m
From (23), it follows that:
e pf=AGH
m

and after a repeated application of the oper@tor
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R f = (pl+p+ pE+nfdf.

Fork =1, this equation reads, when it is written out inenbetail:

2 2 2 2 2an2 A2
(1_c_j6f 0*f L 0*f _am'mic’, _ (24)

+— +
A% Jox?  oy* 07 P

This differential equation has a solution that is @raind continuous in all of space when
the coefficient 0B% / 9x° is negative. It follows from this that:

-c<A<gc, (25)

i.e., the eigenvalues of the operatqrdefine a continuous spectrum in the interval (—
+C).

One further effortlessly convinces oneself that theratpes Vi, V,, Vs fulfill the
relation:

Gz{l—% 2+ V2 + v;)} =1, (26)
C

which corresponds to the classical equation (18).

We thus see that in the electrostatic case theatipsVy have the desired properties
and can be considered to be representatives dfitbe-dimensional corpuscular velocity
of the electron. In the general case, the trapslaif formula (21) into the language of
guantum theory is not entirely single-valued, bathaps also not necessary, since the
operatorsVi find no immediate utility is quantum theory; oljective was only to show
that the corpuscular and wave velocities of thectede have different quantum-
mechanical operators.

7. However, there exists an analogy between thedperatorscak and Vi that we
would like to pursue.

The most important analogy consists in the belmavidhe two operators under the
correspondence principle. We assume that the progrgratorH does not include the
time, and we define a complete system of solutions:

(%Y, 2t En) k=1,2 3,4
of the Dirac equations (2), which are then likewésgenfunctions of the energy operator.

When we now construct the matrix for an operatahthe help of these functions — e.g.,
for the coordinate:

Xmn = 3 [ (En) xi,( E)) dxdy (27)

the matrix elementx,, must go to the corresponding term in the classkalrier
development of the coordinatavith respect to time after a certain passageddithit as
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a result of the correspondence prlnC|pIe The passaghet limit consists in the
following: The two quantum numbers andn must grow unbounded, and the Planck
constant goes to zero, and indeed, in such a way that the etiiter.

n-m=s
and the quantity:
nh=J
remain finite” .
From equation (6), it now follows that:

s = 3" of @ (EN@) 0 (E) dxdlyd (28)

k,I=1

If we carry out the same passage to the limit hkesm the matrix element of the
operatorcan must agree in the limit with the derivative of tt@responding term of the
Fourier development of the coordinatei.e., with the term in the development of the
classical velocity.

We would now like to show that the matrix elemehthe operato¥; tends to the
same limiting value. To that end, we considerdifierence:

Bk:Vk—C Qx . (29)
We have:
Bk—_G (pk—mC Gak) ? G (akH Hak)
or:
B = ih Glg (30)
““amme ¢
where we have set:
. 27
a, = Y (H ax —ax H). (31)

The matrix elements of the operatay are derivatives of those @k and remain finite

under passage to the limit. Since the oper@ris uniformly restricted (i.e., for al)
the matrix elements of the operat6f'd, also remain finite. However, the matrix
elements oBy include the quantiti as a factor, which tends to zero and thus iteelii$
to zero.

We have thus proved that the matrix elementg.ajoincide with those afai in the
limit; from this, it follows that the operatovi likewise satisfies the correspondence
principle.

For the sake of simplicity, it is assumed here thatehergy depends upon only one quantum
number.
“ Cf., on this Carl Eckhart, “Die correspondenzmaRigeiedeing zwischen den Matrizen und den
Fourierkoeffizienten des Wasserstoffproblem,” ZS. P48, 295, 1928.
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A further analogy betweett, andVy consists in the fact that the four-veloo#ywill
be expressed in terms of these operators in preclselyatme way. Namely, we have, on
the one hand:
Vk = %(G W + Vi G), (32)
and, on the other hand:

Vi = g(e ai + ok G). (33)

Furthermore, we have the relation:
sz = g (Vk ax + ag Vk). (34)

such that the twice-applied operatdr is equal to the “symmetrized” product of the
operators/k andcak.

8. We can summarize the results of this investigat®folows:

One and the same classical mechanical quantity — vizyvetlocity of the electron —
corresponds to two different quantum-mechanical quantitiésel Dirac theory that one
can refer to as the corpuscular and wave velocitieseoétdctron. The operators for the
three-dimensional components of the wave velocitycaxgk = 1, 2, 3), wherex are the
four-rowed Dirac matrices. They have the point specttian The corpuscular velocity
may be best described by its four-dimensional componefitse operators for these
components are linked with the operators for the impulsapooents by the same
equations as the corresponding quantities in the clasb®aty. These operators have
continuous spectra that fall within the range of valuesHercomponents of the classical
four-dimensional velocity. In the electrostatic gabe corpuscular velocity may also be
described in a three-dimensional way; the operators Fa& three-dimensional
components have continuous spectra from te + ¢, and satisfy the correspondence
principle, just like those of the wave velocity. In tpgantum-mechanical equations of
motion for the electron, the corpuscular velocityeesitinto the expression for the
acceleration, and thus has a mechanical interpretatiothe other hand, the components
of the wave velocity enter as factors in the elenagnetic field quantities, and thus
serve to describe the influence of the electromagfiettton the electron.

Appendix.
The eilgenvalue spectrum of the four-velocity.

1. We first consider one of the spatial components efftlur-velocity — e.g.y; .
The differential equation for the eigenfunction of #ssociated operator is:

i(ia_‘/’.kfp& Qy/j =y (1a)

m\ 277i 0X C
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As is known, we can now normalize the vector poteblyaihe addition of a gradient in
such a way that precisely kscomponent vanishes. (1a) then goes over to a diffetentia
equation with constant coefficients that has all vadlesA for its spectrum. With that, it
is proved that the operators for the three spatial coegs of the four-velocity have
continuous spectra o to + oo, which we would also like to show.

2. We now consider the temporal componeyraf the four-velocity, and indeed, first
in the case where no magnetic field is present, swathotte can assume that the spatial
components of the four-potential vanish. The assoc@tedator is:

1
G:a4+mz(alp1+azp2+agp3). (2a)

The equation for its eigenfunctions reads:

Gy =A . (3a)
However, the eigenfunctions also satisfy the difiaed equation:
Gy=1y, (42)
which can be written in the form:
W= by=Ay (52)

whereA refers to the ordinary Laplace operator and, to abbrewvietdave set:

:2nmc
h

k (6a)

As is known, equation (5a) has only one solutionifor 1 that is everywhere finite and
continuous. From this, it follows that in the elestatic case the operator for the
temporal components of the four-velocity has a contingpestrum, and its eigenvalues
have a magnitude that is greater than or equal to 1.

It likewise follows from this that the inverse operaté ™ andG 2 are restricted.

Let it be remarked here that these inverse operatoes(hatual) kernels that are easy
to give.

The kernel of57 delivers the solution formula for the equation:

F —k—leF =1, (7a)

namely:
2

Fx %2 =[S

r

HEnO)dEd A, (8a)

where we have set:
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r=(x=&+(y-n)’+(z-0).

G thus has the kernel:

k2 e—kr
andG™ has the kernel:
k2 e—kr
e, (10a)
4T r

where the differentiations i@ are taken with respect to the variableyg, z

3. We would now like to examine the spectrum of theratorG for the case of a
constant magnetic field that is parallel to #rexis. The vector potential in this case is:

Ac=-1iHy, Aj=iHx A, =0. (11a)

The operato6 has the form:
G=a +i a(p —EHyj+a( + £ ij+a (12a)
el U 2¢ 2| BT % 2t

We must now choose the matrieas a», as, as in a particular way. We set:
o = ai, BR=;0G, 0=, Qs = 203, (13a)

in which o, and g are Dirac matrices, which deviates from the Dikasatz .
We remark that the operator:

L=p0 — P, O3 (14a)
mc

commutes withG. The eigenfunctions @, which satisfy the equation:

" This choice suggests itself by the particularly simpld @muitive transformation properties of the
associated~functions. Under an arbitrary Lorentz transformatithe functionsyk transform by the
formulas:

Y =ap+ B, Yi=ays+ By,
Y,=yyp+oys, W=V yst o,
wherea, S, y; oare complex parameters that satisfy the condition:
ad-pPy=1.

In the special case of a rotation of the spatial coatdi system, these are the ordinary Cayley-Klein
parameters.
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Gy=y (15a)

can then be subjected to the further condition:

Ly = (,0101‘&,03}// =1y (16a)

mc

If we apply the operatdr once more then we find:

L2y= [1+m%5czj¢/ = 12y, (17a)

. h :
If we understangb, to mean the eigenvalue of the operaﬁe{tai then the relation:
71 0z

P=1+_Pe 18a
—r (182)
follows from (17a).
The expressiony + :]ZC as that appears i may be written in the form:
as + P, P oG=— 03 L. (19a)

B=0p0+
C mc

If we introduce this expression inte and consider (16a) then we obtain the following
equation from (15a):

1
[_|p303+ﬂ:(alpx+pﬁzpy)}w =AY, (20a)
where we have set:
e e
Pi=pi——HDO, P,=p,+—HIX 21a
Px % Ly vy = Py % (21a)

to abbreviate. The first two equations of the sysbf equations (20a) contain only the
functions¢s and ¢, and read:

S+ (P~ P ), = A,
mlc (22a)
_Iwz +— (Px + IPy)wl = AwZ
mcC

If we eliminate the functionys from these equations then we find the differential
equation fory:
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L eryy, zEp, (232)
2m- * Y
where we have set:
E:m_CZ(AZ—|2)+ eh H, (24a)
2 4rmce

to abbreviate. However, (23a) is the ordinary 8dimger equation for a constant
magnetic field; its eigenvalues are known, namely:

En=(2n+1)hy, V= e_HC" (25a)

2m

wheren is a non-negative whole number. From (25a), (24a)l (18a), we ultimately
find the expression for the eigenvalue<Gof

> 4dnhv
R=1+L s
m’¢  mdé

(n=0,1,2 ..). (26a)

Since the latter two summands are positive or irei5, andp, can assume all values, it
is thus proved that the eigenvalues of the opefatdefine a continuous spectrum, and
their magnitudes are greater than or equal to 1.

In the general caseit is easy to show that the eigenvalues of therator have
absolute magnitudes that are greater than or eéquial Namely, if we leP denote the
self-adjoint operator:

P =P + a:P> + a3P3 (27a)

with real eigenvaluep then the operatd®? can be written in the form:

1

G*=1+ P2, 28a
o (282)
Its eigenvalues are equal to:
2
P=1+L_>1 29a
—r (292)

Q.E.D.

Presumably, the operatd&andP also have continuous spectra in the general case;
however, the proof of this fact might be somewlmahglicated.

" This passage has been added by the editor.



