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FOREWORD

This treatise defines a continuation of my book on Wlks theory of electricity,
which appeared almost three ago with the same publisiA¢rthe time, | had promised
to publish a second volume, but later on, | had to renothatecomprehensive plan,
since the intervening change of my official position mddedemands on my time and
efforts too compelling in other directions. On those gdsuth have confined myself to
working out that section of the planned second volumewlas to treat the theory of
vector functions, which | assume to be a more nepegsa@ension of my previous book
than the other one.

| was led to that appraisal by various circumstanceseha by the discussions of my
Maxw. Theoriein the trade journals. Except for some individual exoas that are not
worth going into, | can, with some satisfaction, astgat my work generally found the
recognition that | had hoped for. Meanwhile, complaihtt tvere directed against my
presentation of vector analysis were repeated rathien.ofOn those grounds alone, |
must assume that they were not unjustified. Howeveainlalso reassure myself of that
fact as a result of a lecture that | gave on therthebelectricity in the previous summer
semester that was essentially based upon my book. d finah my previous work had
left me with a sense of incompleteness, since many aenasions that one would have
expected along the way were deferred to the second voluhuge to be able to remedy
that inconvenience with the publication of the presenkboo

Other reasons that have further compelled me to glaeeial weight on just that part
of the discussion are discussed in more detail In &ere, | would only like to remark
that | was unavoidably induced to consider the advantageathatailed study of the
purely-geometric properties of physical fields might imgarta mistake that | myself
had previously made and which then pointed to an even brepbere of ideas. On pp.
214 of my previous book, | said, in regard to the shieldinghefmagnetic field of a
rectilinear electrical current by surrounding it withtaed tube: *“In contrast to that, an
absolutely magnetically-hard sheath would allow no fdies to cross through it into
the atmosphere.” Meanwhile, that conclusion wasfjadtionly under the assumption
that was made there that the sheath separated tmeadgegace from the current-carrying
conductor completely (i.e., with no gaps, no matter sowall). By contrast, it would
lose all validity for a tube that surrounded only a ¢erength of the wire. Namely, one
can imagine two circular paths of integration, one bicl links the tube, while the other
links the free wire at some distance from the endbhefube. The line integral &f must

be just as large for both paths on geometric grounds, attermwhat material the tube
might be made of. In order to see that, one imagihat each circle is cut at some
location and the four endpoints are pair-wise coupledwly ihtegration paths that lie
next to each other in the air. In that way, one gét a new closed integration path for
which the line integral must necessarily be equal to,z@nce air can be regarded as a
magnetically-soft body, and the integration path v#n link small vortex filaments in
the field. The contributions of the aforementionedaeelnt connecting segments then
cancel each other in the line integral, so the conidbatof the two circles must be
equally large. That is, the field must be just as lakgeysvhere immediately outside of
the tube as it would be if the tube were not presentl,aevaen if it were absolutely
magnetically-hard in the sense that | used. In othedsyahat result can be expressed by
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saying that the magnetization wave must propagate frenends of the tube over the
sheath of the tube in precisely the same way that utldvib the steel had been replaced
with air, even though it cannot penetrate magnetidadigd materials.

At this point, | would like to mention a misgiving thaiedk raised against my
developments in his treatise on magnetic hardnessd[V#ien. 59 (1896), pp. 89]. That
misgiving was based upon a misunderstanding about the teamshad used. When |
speak of the “propagation” that must take place on geonggtrinds, as | did just now, |
am not thinking of a process that plays out in timeth&a | am using the expression
“propagate” here only in the same sense that one speak®e gfropagation of the
hydraulic pressure in a system of connected tubes. Thatais, imagining that the
instantaneous state of the field is given, and thag¢n giroceed, step-by-step, throughout
the entire region and then deduce what | expect to ditet from what | had previously
discovered at a certain point along the way. Thedéathe temporal change in the total
field that Beck would have liked to have seen in placemgf considerations was
expressed by the two main equations. Of course, the angjumeame much more
encompassing with their introduction. Had | known a metifa/oiding the difficulties
in integration that arose in that way, | would have garefd such a procedure from the
outset. However, as long as | have not succeedediungrat a useful result in that
way, any summary consideration whose logical justifica might prove to be just as
incisive as any mathematical formula could also perfomarg useful service.

At this point, | would not like to leave it unmentiondtt A. Kohn found a result in
his study of the shielding effect of a steel tube [Wiadn. 58 (1896), pp. 527] that
contradicts that of Beck, as well as the foregoing donsto some extent. From what |
have heard about the absolutely trustworthy level ¢f wath which that experiment was
carried out, | can have no doubt that he was dealingawtiell-observed fact in it. This
is not the place for discussing the various possible whggplaining that contradiction.
At the moment, the study of magnetism is in such amishied state that it will probably
require an even greater effort before clarity can babéshed in all directions. The best
support for investigations of that kind, however, would bénéd by a geometry of the
field that is free from all physical hypotheses, in augnt.

In recent times, some weight has been placed upoprtitdem of distinguishing
between directed quantities that possess a polar chiaatd the ones that possess an
axial character. Wiechert has even introduced a speark for those quantities: He
called the former “vectors” and the latter “rotorg\s long as one can be certain that the
field quantities possess that character in realityhingtwill prevent such a classification.
No one would dispute that there exists a distinctiowéenh a translation and a rotation
in kinematics or between a single force and a foregsleoin mechanics or between
velocity and vorticity in hydraulics (a distinction tha similar to the one between real
and imaginary numbers, moreover) that can be felidyoagpressed by the known
terminology. One will also concede that a distmetof the same or similar kind must be
assumed to exist between electric and magnetic fiddyscontrast, for the time being, |
consider it to be entirely hypothetical for one toigsdoth of those roles to the field
guantities in any way, even to this day. It might veryl e the case that their meanings
will be inverted later. However, even when one ovdgothat fact, making a more
precise convention in regard to the physical meaning ofestdul quantity has no place
in the general geometric theory of fields, and allitiee so because the same laws are
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true for the “rotor fields” as for the usual vectord&l On that basis | shall not go into
that classification (which would seem to be getting qouiatpular now) in this book.

| have borrowed completely from my previous book inwmiing of this book in its
style of presentation,. As for its paradigm, | haabpve all, appealed to Maxwell's
treatise “Ueber Faraday’s Kraftlinien” (German tratisla by Boltzmann in Ostwald’s
Klassikerausgabe, 1895)).( As much as possible, | have also endeavored to remain
understandable to the reader who is not familiar with previous book. Many
repetitions will then be unavoidable, but | hope thay tél not be to the detriment of
this presentation.

A mathematician, in the strict sense of the wordytd/perhaps be better qualified to
present such a “geometry” or “function theory” thanselyin many respects. Without a
doubt, he would, at least, be better inclined to addressurrently-customary demands
on the rigor of the presentation, and he would als@ maany occasions to link up with
relevant mathematical investigations that have alrdmdiyn worked out, but which still
have not found their way into the community of people vane interested in only the
applications of mathematics, in which | count myself t@e other hand, history teaches
us that the most fruitful suggestions of mathematics leways pointed to concrete
physical problems that necessarily required a mathemdtioaulation that would be
suited to them. Obviously, that adaptation of mathewrlafarm to the questions that
prove to be necessary or convenient in physics hasehaesched its conclusion. Until
that happens, the mathematician can hardly do withoeitassistance of occasional
collaborators in the neighboring disciplines.

Munich, in December 1896.
A. Foppl.

(") Translator: “On Faraday’s lines of force,” Tra@amb. Phil. Socl0 (1864), 27-83.
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CHAPTER ONE

DEPICTING VECTOR FUNCTIONS.
VORTEX-FREE FIELDS.

§ 1. — Defining the fields.

The most important concept in the Faraday-Maxwelbmpeof electricity is the
concept of a physical field. One understands that to meagion inside of which each
point is assigned a uniquely-determined physical staternégype. One can distinguish
various types of field according to the type of physstate that one actually has in mind.
In this book, | shall nonetheless leave the questidheo$pecific type of field completely
open and concern myself with only the general geometoperties that all physical
fields of certain classes have in common, which médga be their special origin.

I will generally organize fields into classes. Howethe bases for the classification
will be of a purely geometric kind and will have nothingaditto do with the physical
meaning that one ascribes to the field in a special @aapplication. For that reason, |
have given this volume the title dhe Geometry of Vortex Fieldahich is, of course,
somewhat narrower in scope than the fields of othesses. However, | feel that it is
important to strongly emphasize that the lectures thdtave compiled here are
independent of all physical hypotheses and can thereforecl&@yn to rigorous
mathematical validity. On the other hand, | wouldbdike to refer to the fact that the
treatment of vortex fields plays the principal rolehis work.

At this point, |1 would like to mention what induced metéde up this endeavor.
Maxwell's theory of electricity is no more distinghed than any other physical theory in
the absence of any special hypotheses whose justifisatine can meanwhile still argue
about. Only further experimentation will show which i hypotheses must be
ultimately retained and which ones must be dropped aedlteHowever, in the course
of the further developments that Maxwell's theory engnced since the time of its
foundation, the mathematical methods for investigatindy sroblems have gradually
experienced a not-unappreciable degree of completion disahdd nothing at all to do
with the hypotheses of the physical theory. Thereforeould be worthwhile to separate
those components of the theory and discuss themth#figrhave been liberated from the
others. Even the opponents of Maxwell's theory wdlvér to agree that they need to
understand these lectures so that they might not makégicgl error in the derivation
of the theorems that they must prove.

In the absence of any further conditions, | will danfly assume that the fields that |
shall treat here do not extend to infinity, and | shallyad into detail about what one
understands that assumption to mean at suitable gieteeon. Meanwhile, | will first
point out that gravitation will be excluded from the sghef fields under investigation
by that restricting assumption. Moreover, | shaluass that the fields are continuous
everywhere and do not become infinite; | shall allagcdntinuities and infinitely-large
field values as only limiting cases at best.

Naturally, one is also free to drop those assumptiods@ see how the conclusions
can then be generalized. However, | shall not addnessere, since | would not like to
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go further in the presentation than would be necedeaitye applications that one could
propose for the lectures that are professed. Thetliattone can also get along in the
theory of electricity without considering discontinest with the help of the principle of

continuity in the transitions is probably unknown aggant, in general.

The simplifications that one achieves by those assangpare so significant that one
cannot avoid them merely to attain a state of corapésts that has almost no value in
practice, except that one might perhaps object to tbhkiggn of gravitational fields.
However, the study of gravitational fields seems taankee still so far removed from the
ultimate formulation that it will probably take onéathat for the time being it would not
be worthwhile to include those fields in the generailstderations. All the same, one can
probably still question whether gravitational fields atijuextend to infinity. Indeed, in
recent times, many strong objections have been madgandréo whether Newton’s law
of attraction is strictly valid at infinite distanctdsat can hardly be ignored out of hand.
In any event, the next problem in theoretical phydiesitconsists of the study of electric
and magnetic fields, which are accessible to experimiegiter on, the deeper insight that
would be gained by that will also have value in its owhtrig the theory of gravitation.

In many cases, it is possible to describe completeyphysical state that actually
exists at each location in the field by giving a singlanher. Such fields shall be
referred to ascalar fields In other cases, directed quantities are requiredderdo
characterize the state of a field. Those fieldscaléed vector fields and they will be
discussed predominantly in this book. There are alsdsfi@r which one directed
qguantity will still not suffice to describe the stateeath location completely. In the most
general case, one will describe, e.g., the “stresg”stata medium (perhaps an elastic
body) completely by either three directed quantities oe mambers. In ordinary
elasticity theory, those nine state numbers can be eddiocsix, since no external forces
can act in such a way as to rotate each volume elenkémivever, one must generally
keep all nine state components for the stress statdvidnatell has devised in order to
explain the ponderomotive forces in magnetic fields.

It seems that the case in which the field statebsaadequately described by only
three directed quantities (in which one naturally ignatsncidental facts that have
nothing to do with the fields that are actually congdgris the most general one that
occurs in nature at all. Such a field probably relatesnt@rdinary vector field in the
same way that a vector field relates to a scal&.fi©ne can aptly refer to it ashgper-
vector field

Finally, 1 shall point out that one occasionally hasléal with quantities that possess
a double direction, and therefore a directed quantity natldefinite sense of direction.
The simplest example of that is the tension in@wr the longitudinal stress in a rod. In
order to make it clearer whether one is dealing witlelangation or a compression, it
does not suffice to affix a single arrow to the lineaofion of the stress. It is necessary
for one to give two directions, one of which can reédere.g., the side of the cross-section
on which lies the part of the rod upon which the forcenftbe other side acts, which
carries the second arrow. Instead of that, it visib asuffice to provide the line of action
with a sign by which one can distinguish tension ficmmpression.

The torsion in a rod also belongs to that categdirgan result in such a way that the
lines that are parallel to the axis of the rod appedretaleformed into right-handed or
left-handed screws. One cannot distinguish betweenwvtbetypes of screws by the
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addition of a single arrow either, since a right-hahderew looks the same from each
direction. However, adding a sign will also lead toghme objective here.

However, in all of those cases, one is basicalglidg with only a hyper-vector field
of an especially simple composition. | suspect that @nll have to include the
gravitational field in that class some time later.

§ 2. — Vector functions.

Analytically speaking, the theory of fields is nothing big¢ theory of functions of
directed quantities. In a certain sense, it definesxeansion of the ordinary theory of
functions to the case in which the independent varialalashave an arbitrary direction
and magnitude in not only the plane, but also in tripkeeaed spaces.

If one chooses an arbitrary origin in a vector fietm which the radius vectarcan

be defined, and one letsdenote the directed quantity that gives the state ofi¢lteat
the location: then the vector function:

v =f(v) (1)

will define the analytical representation of the fiel@f course, only special types of
vector functions will come under consideration for ugmaly, the ones that are
everywhere single-valued, continuous, and finite and vanistfiraity.

A scalar field can also be represented by a functianexcept that the function must

only be of the kind that leads to a scalar value. Bgtrast, a hyper-vector field
corresponds to a vector function of two independentisés. In addition to the radius
vector, a unit normdlt appears in it that points to the surface for whichwaeld like to

assign, e.g., the magnitude of the pressure when onelisgdeéh the stress state in a
medium. The function that represents a hyper-vectdd fs always linear relatives,

moreover. The concept of linear dependency will benddfimore precisely in what
follows.

If one would like to appeal to the coordinate method thencould also replace eq.
(1) with the component equations:

vi=f1 (XY, 2, vo = (XY, 2), vs=f3(Xy, 2. (2)

In many cases, one will achieve one’s goal most sinmptpat way. However, in any
case, one might always consider equations (2) to beaosifpstitute for eq. (1), which is
all that matters. Namely, one must never lose sigithe fact that we will always be
dealing with just the properties of the functiocollectively, and not with the properties
of the functionsfy, f,, f3, which are introduced into equations (2) as mere auxiliary
concepts.

Things are different for a scalar field. It is lwadly irrelevant whether the scalar field
guantityV is represented by the vector equation:

V=4 () )
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or by the coordinate equation:
V=9V, 2, (3)

sincet can always be regarded as the geometric sum of itpamants along three axis

directions.

For that reason, the geometry of scalar fields alas developed long before the
geometry of vector fields. Namely, at its basis,imad/ potential theory is nothing but
the geometry of scalar fields. Of course, it alsahea into the realm of vector fields,
and originally it was even invented expressly for the pwpdsbeing able to treat the
properties of certain vector fields analytically ire teimplest-possible way. Ordinary
potential theory reduces vector fields to scalar fields owete those vector fields from
the scalar fields. Of course, one must then grapple thithcomplication that this
reduction is not always possible, and one does not therstariceed in embracing the
problem of vector field in its fill scope. In the ambitito get by with ordinary potential
theory in all cases that might pertain to, e.g. the®ry of electricity, one will often need
to appeal to the most peculiar devices. In that waywendd probably be forced by the
demands of the moment to be content with a partiquialolem, but only touch upon the
subsequent definition of the field concept that is requoea fruitful development of the
ideas.

8 3. — Depicting vector functions.

We now know that our main problem consists of examgithe general properties of
the vector functions obne independent variable that are introduced by eq. (1), and we
would now like to look for the most suitable means byoclwhwe can achieve that goal.
The study of functions of one real scalar variablenfsoio a direction for doing that. We
recall the way that one can clarify the sense efAnsatzy = f (x) by which one first
introduces the concept of a function into mathematiosorder to do that, one draws an
abscissa axis that will carry the valuexpputs they directly above it as the ordinate, and
infers the properties of the function that it defirfiesm the form of the curve that is
obtained. It takes little effort to see that, edy./ dx = O can correspond to either its
maximum or minimum value or also to an inflection powitthe curve, and that
conversely the evolution of the curve can be inferreddigulation, even by a beginner.
It might be that many mathematicians today pursue ardiit path when they would like
to introduce their audience to the concept of a fundbonhe first time. However, | do
not believe that they have succeeded, and | assumepéagple will almost never
correctly visualize the concept of a function who did first understand the geometric
picture that the curve provides.

A function of two variablez = f (x, y) will likewise be depicted by a surface on
which we can easily study the properties of the functi®f course, once the concept of
a function is established that broadly, one can do witpatures for a larger number of
variables. Meanwhile, it is possible to envision anylascheld for three independent
variables if one wishes to appeal to one’s intuiti®erhaps one imagines that each point
in space with the coordinatesy, z is assigned a temperature, which will then give the
value of the functioffi (X, y, 2). Naturally, that picture is only purely formal, and meast
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beware of confusing any experimental law that is perkapsvn to the theory of heat
with the picture and the conclusions that we wouldd to infer with its help. Perhaps we
can also raise the objection to those conclusions ttieat depend upon whether we
possess a physically precise representation that woulty apptemperature. For

example, we can construct surfaces of equal temperaturecalculate the curvature
ratios, the temperature gradient along various diregte&tas, without the results to which
we arrive in that way depending in any way upon the spegel 6f chosen geometric
depiction of the function. In fact, with those seda, we deal with only the visible
organization in our pictures and thoughts and not at afi actual physical bodies that
we would like to construct a thermometer from in orderobserve the temperature
distributions in them. Indeed, it is in precisely thaay that we must carefully

distinguish between the curve that corresponds to thetidury = f () and the physical

trace by which we draw it in order to stimulate our imagon.

We must also pursue precisely the same path in orderrity thee sense of eq. (1) —
i.e., the concept of a vector function. | have thorougildcalled the means of
visualization that is employed as the starting poimhathematics in order to arouse the
desire in the reader to test the applicability that ivguidhere to the general case that we
are dealing with here. In fact, we would have to grope ta@oliously in the dark if we
wished to study the general properties of vector functaatigut some kind of intuition,
while the use of that expedient would cast a bright endighh upon our path that we
could find our way around with no difficulty.

The geometric picture that is best suited to the sgotation of the function of the
function v = f (vr) is the hydrodynamical one. It accomplishes as muachvéctor

functions as curves do for scalar functions. lwé&,once more replace the function itself
with a field, but it is a field that our imagination pides with no further discussion. To
that end, we imagine that all of space is filled watt incompressible fluid, but not
perhaps with water or any other fluid bodies, but wittua that has entirely arbitrary
properties and is contrived especially for the purposetheeding to be subject to the
laws of mechanics, of which we will demand only that itsmbe fluid, moreover; i.e.,
that the velocity at neighboring locations can vary inaaitrary way. It is only a
consequence of the restriction that we have imposed opo investigation from the
outset that this variability of the velocity is alvgagssumed to be continuous here, but
otherwise entirely arbitrary. We think of the magnitude dinelction of the velocity at
each location in space as being chosen in such a \aayhd dependent variabtein

equation (1) will represent that velocity when we essabla suitable unit of
measurement, while the independent varialmall naturally refer to the radius vector by

which the location in the field is given, as before.

Obviously, any vector function of one independent variable lmamrepresented
geometrically by that hydrodynamical construction of thesthgeneral type. On the
other hand, the current in a volume of water would ndficeufor that purpose. The
continuity condition for it would stand in the way oft, while we can easily skip over
that obstacle for our fictitious fluid.

If one considers a volume elemeixt dy dzand one calculates how much more flows
into its six sides than flows out when the veloeitis given by eq. (1) or the components

of v are given by equations (2) then one will get:
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Ny, OV, N | gy dy dz
ox o0y o0z

We shall employ the notation div which is completely independent of the choice of

coordinate system for the expression in parentheseshughiikewise free of that choice
of reference. For an ordinary incompressible fluidyould be physically impossible for
more to flow out of a given spatial region that istoarally filled with fluid than into it,
or conversely; i.e., div must necessarily be equal to zero. We can then depycvery

special functions by means of a stream of water or aokdydamical construction in the
strict sense, namely, the ones for which i zero in all of space. However, the ideal

fluid that we imagine is not subject to any such restnst Nothing prevents us from
assuming that fluid is always created at certain platepace, but fluid is continually
annihilated at others. We would like to refer to locatiohshe first kind assources
while those of the second kind asi@ks or alsonegative sourcesAt the same time, we
shall also reserve the word “source” for the more gdrense that can simultaneously
encompass positive sources, properly speaking, as welgasveeones. We shall call
the totality of all sources that belong to a given @edtinctionv = f (t) its system of

sources

If one thinks of a source of finite productivity as beimgnaentrated at a point then
infinitely large velocities will appear in the immediateighborhood of that point, which
is easy to see. Such a velocity distribution can oatye under consideration for us as a
limiting case. We must then think of the sources asgbdistributed in space in such a
way that a source falls within the aforementioned ve@luslementdx dy dzwhen its
productivity is defined by the excess of the outflow ower inflow. The productivity of
that source will therefore be infinitely small of ordkree, like the volume element itself,
and will be proportional to it. When expressed per uolime, the productivity, which
might be expressed lay will be:

_0v, 0V, 0V,

= divv. (5)
ox 0y 0z

8 4. — General properties of a system of sources.

We think of the field as being bounded within any closedoreg Due to the
incompressibility condition, we can find how much moradflfiows out through the
surface of the region than into it from the producyiwf all sources that are included in
that region. The equation that expresses that is kriywthe name oGauss’s theorem

for the special case in whiech=f (r) represents a force field that is subject to Nevgon’

law of gravity. Meanwhile, as we see, it is true mgeeerally, since it gives a property
of all vector functions. If we letif denote the boundary surface, % the outward-

pointing unit normal, leb 91, denote the scalar or inner product of those two quantities
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i.e., the product of their absolute values and the cadirtbe angle that their directions
subtend — and letr denote a volume element of the region then we wileha

jnmadf:jdivndr:jqdr. (6)

That equation can also be applied to all of ibdirspace. We would like to deal with
only those fields that do not extend to infinitpydawe can now determine the meaning of
that assumption more precisely. To that end, wegirme a ball whose radius increases
continually, while its center remains at any looatin the field at whichv has a finite

value. When the radius of the ball becomes setffity large,o must be only infinitely

small outside of the ball, and the error that weicat when we neglect the field outside
the ball completely must converge to zero when rdtius of the ball increases to
infinity. Naturally, that is due to the fact th&ile amount of fluid that flows through the
surface of the ball will itself go to zero in thenit. The vectoro must then become

infinitely small of order three for infinitely ineasinge, in general.

With regard to that restricting assumption that Wwave imposed upon our
investigation, we will get from eq. (6) that:

["adr=o, (7)

if the symboko indicates an integration over all of infinite spaclhe sum of all positive
sources must then be just as large as the suml ginkk. In the older theory of
electricity, one always assumed that the algebsaim of the electric and magnetic
masses over the entire field would have to be z810,we have now convinced ourselves
that this is a necessary consequence of the pyopksrlectric and magnetic fields that
they do not extend to infinity, which is inferreiin observation.

Furthermore, we would like to establish the vadfiehe spatial integral:

S:rndr. (8)

It plays a role for vector functions that is simita the role that the integrajljmydx

plays for scalar functions; one can refer to itttesfield sum The summation that is
prescribed by the integral sign is a geometric one.
Initially, let us assume that the field has norses, so diw is zero everywhere. We

think of lines being drawn through all points oétheld that point in the direction of

everywhere. From the general assumption that tiseabasis for our investigation, those
streamlines cannot reach to infinity. Moreovegytltan have no end points, since no
sources should be present, and they also cannaot avound any finite point infinitely
many times, since that would contradict the assiompaf continuity, so they must be
lines that close on themselves.

If one extends the integration in eq. (8) overiswiated closed current wire whose
outer surface is composed of nothing but streamlthen one will get the value zero,
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sincev dr can then be set equal tor & when one understandso mean the cross-
section of the wirey to mean the absolute value wfandds to mean an element of
centerline of the wire. However, the prodbistis constant for all cross-sections, since
no sources are present, and no current flows throughutfeces of the wire, while the
geometric sum of all line elements is equal to zerafolosed curve.

However, all of space will be composed of such cumerds here, and we conclude
from this that the field sum for a source-free fiel@dgial to zero. We can then overlook
the currents that close upon themselves completeleindltulation of the field sum.

Furthermore, let it now be assumed that only two plddatsources ¥€Q and —Q are
present in the field. All of the streamlines that eatarfrom +Q must then terminate at
— Q. If the magnitude and direction of the distance thataiculated from the source to
the sink is denoted by and the integration is denoted in the same way aseeiud

initially extended over an isolated current wire thee wiill getf vu and therefore, since
the sum of alf v yields the productivityQ of the source, one will get:

g:j“ndr =Qu. (9)

That result can be easily adapted to the case aflatnary system of sources. One
chooses an origin in the field from which one definesrddius vector. For every
sourceq dr in the volume elemerdr, one assumes that there is a sourcgdz at the
origin with the opposite sign. One can apply eq. (Ihsosystem of sources that consists
of that pair. If one then sums the given systenoafces over allj dr then one will get:

S:—rqtdr. (10)

From eq. (7), the sum of the sources dr at the origin will, in fact, vanish, and one
will get the sum over the entire field by superposingalrse-pairsy dr and —q dr.

The choice of point from which one defines then that equation is irrelevant,
moreover, since if one were to choose another pattt that the radius vector from the
first origin to the new one wasg then one would get:

j“q(t+r0)dr= j“qrdr+t0j°°qdr = j‘”qtdr,

which is a result that is obvious from eq. (10).
In the derivation of eq. (10), | anticipated the theoref the admissibility of
superposition that will be established more rigoroughrlan.
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8 5. — Vortex-free fields.

We draw an arbitrary curve in the field, denote an efgroéthe curve byz, and
define the scalar produetd s (or inner product with Grassmann’s terminology), which

is therefore the product of the absolute values ahdd s with the cosine of the angle

that the two directions subtend. The algebraic suthade products for any given path
of integration will be called thiine integral of the vectow. If that line integral vanishes
for any arbitrary closed (i.e., returning to its starfpagnt) integration path then the field

will be calledvortex-free A vector function that represents the field anedqyty shall
also be calledortex-freein that case. If the equation:

fnds =0 (12)

A

is not fulfilled for every closed curve in the entiteld, but only for the closed curves
that lie inside of a simply-connected region with boundiaside of the field then it shall
be said that the field in that region, or the vectorction inside of that region for the
independent variables, is vortex-free. One sees hereh@concepts and methods of the
ordinary theory of functions can recur in an extenidechulation.

In a region for which eq. (11) is fulfilled, every igtation path between two given
points A andB will lead to the same value for the line integral;, vehend s andd s’

denote the elements of two different curves that go #«dmB, one will have:

A A
jnds = jnds', (12)
B B

since, from eq. (11), one has:

B A
jnds+'[nds'= 0.
A B
One chooses an arbitrary orignin such a region and sets:

0
vA:vo+jnds (13)
A

for a second poinA in the region.

The quantityVa is determined up to an arbitrary const¥ntin that way. When the
field is a force field, one call¥a the potential at the poinfA, and thereforéd/, is the
potential at the poirD. If the field under investigation is defined to be ety field in
the first place, as it would be in actual hydrodynamingéstigations, thew will be
called thevelocity potential In our case, the field or the vector functtors constructed

only hydrodynamically, while the true physical meaning oénd even that af can be

left open. In order to have a concise terminologyyéweer, we would also like to refer to
the quantity that is defined by eq. (13) in the most germarsg as theotential of the
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field, or also as the potential that belongs to thetarefunctionv = f (x) inside of the
given region.

The constanYy in eq. (13) is entirely arbitrary, in general. Howewenen the entire
field (and not just isolated regions in it, as has kEssumed up to now) is vortex-free,
we would like to think of the constait as always being determined by the condition
thatV must be equal to zero at infinity; i.e., we set:

V= Tnds (14)

in that case. It remains entirely irrelevant whereweaild like to place the end point at
infinity in that determination, since the function vanisbesrywhere there. Sincks =

dv, if we recall eq. (1) then eq. (14) can also be written
V= j f (v)de, (15)

and in that way, any vortex-free vector functionssaxiated with a unique function that
yields a scalar field and can be referred to astaegral of the given function, in some

sense. In fact, it has just the forj'rri (x) dx that one uses in ordinary analysis. However,

one must observe that vector functions will admitgraés of different kinds. One of
them already appeared in the context of the “field ,5uand we will address other
integrals in detail later on.

The scalar field/ is called thepotential fieldof the given vector field. Every vector
field — including ones that are not vortex-free — wasaalyeassociated with one scalar
field by eq. (5), namely, the source figldwhich was derived from the vector field by a
differential operation. Our next problem consists ofeeding the further connections
between the three fields V, g.

8 6. — Deriving the vector field from the potential field.

Let a scalar field or a single-valued scalar functibnbe given by eq. (3):
V=f(v).

We imagine that surfaces are constructed by assocjaings that have the same value
of V. If we proceed from any point in the field along thanitély-small segment ¢

thenV will change, in general. The change will be zero ortigmveitheV is constant in
the vicinity of the chosen point or when the directod ¢ falls in a tangent plane to one

of the aforementioned equipotential surfaces. Underagsumption tha¥ decreases
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when we proceed along v, we would like to refer to the changl/ that takes place
along the length od v as thegradientin V in that direction. The gradient takes its largest

value in the direction of a normal to the equipotersiisface. We denote the drop in that
direction byv, sov will be determined as a directed quantity, and we set:

b=-0V. (16)

The symbol of the] operator is defined completely in that way. The faet a minus
sign was chosen is explained by the fact that a diffialequotient (and we are obviously
dealing with a spatial differential here) is said to bsitp@ when the associated quantity
increases, whereas here we would like to determine the gradied therefore the
decrease in the quantity

In order to obtain the differentidV from the spatial differential quotieftV, it will
suffice to multiply the latter by the length @t, in the event thad ¢ falls in the direction

of a normal to an equipotential surface. In other gasesomes down to only that
component ofd ¢ that falls in the direction of the normal; i.e., waust multiply the
absolute value dflV by the projection ofl + onto the normal or the direction @i. In
any case, we then get the different® that belongs to a change: in the independent
variables by inner geometric multiplication(@¥ andd «, or:

dv=dr V. (17)

Any reference to a coordinate system would be entirelyerdluous in this
consideration; however, one does not need to rejeaigbeof such a thing completely.
One should then refer to the fact that the threanggetlar components of= - [IV give

the gradient in the three coordinate directions,J$acan be represented in the form of a
geometric sum:
av = ia—v+ja—v+éa—v. (18)
ox o9y 0z

One understandsj, ¢ in this to mean unit vectors in the three coordinatections.

If one substitutes that value oV in eq. (17) and also replacdst with its three
components dx, j dy, £ dzin that equation then one will get:

av= N ax+ Y ay+ Y g (19)
0x oy 0z

when one multiplies things out, which is then a selfl@xgtory result.

The gradient field (we call it that because of they waat it was created) that is
derived from any scalar field according to eq. (16) is always vortex-free. Namely, i
follows from eq. (17) that:
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2
dv=-vdrt and therefore Vo -V =- jndr : (20)
1

SinceV is supposed to be a single-valued function, the line ategtl always be
zero when we extend it over any closed curve.
Here, we have defined the connection betweandV in a different way than what

we did in the previous paragraph. There, we started é&roortex-free vector field and

arrived at the potential field by a certain type of integration. Here, we conversedrt
from the scalar field/ and derivev from it by means of the differential operator].
However, eq. (20) agrees with eq. (13) in the previous paragrépé one operation is
then the inverse of the other, and it is irrelevant tivre we define the connection
betweerv andV in one way or the other.

8 7. — Deriving a vector field from a source field.

Any vector field can be determined from the source fie&t it is associated with
using eqg. (5). We invert that problem and look for theorefield that belongs to a given
system of sources. Meanwhile, the problem is stilldeermined uniquely in that form.
We will see that directly when we imagine that thstegn of sources for a vector field is
found by a differential operation, so we have to penfan integration here, in which a
certain arbitrariness will always remain that can di@yeliminated by introducing special
conditions.

I will next prove that the problem will be determinedqualy when we subject the
vector field that we seek to the condition that itidbdoe vortex-free in all of space. To
that end, | consider two vortex-free vector field Yector functionsp; andv,, which |

assume to belong to the same system of sources. Wéhsnahave:
A A
div vy = divv,, [v,ds =0, [u,ds =0 (21)
A A

in all of space, and in addition both functions shouldiradiy fulfill the condition that we
are assuming of all functions that we deal with here.

| can derive a new field from both fields by setting equal to either the geometric
sum or the geometric difference of andv, at each location. Both cases come under

consideration for the further developments, and | wolsgefore like to address them
together by setting:
0 =p1t0y, (22)

in which the upper or lower sign can be taken at will. folibws directly from the
definition of div in eq. (5) that:
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div (b1 £v2) =divoy £ divo,.
It likewise follows from the concept of the scalanmmer product that:
(Ulibz) ds=v;ds+v,ds.

If one chooses the lower sign everywhere then dheei:
A
dive=0 and jnds =0 (23)
A

for the difference fieldb = v; — v,, from eq. (21).

The difference fieldb is then likewise vortex-free and source-free inddlispace.
However, such a field must necessarily vanish everyyh&nce if it were not zero
everywhere then we could lay streamlines through alltpahthe field that would point
in the direction ob everywhere. In those sub-regions whemmight be zero, we could
extend those lines arbitrarily, except that they shooldbe continued to infinity in that
way. If we now pursue such a streamline then it mukeettlose on itself or it must
have an endpoint at a finite point, since it cannot extendfinity, because we have
assumed that none of the fields that we deal withogmftnity. Endpoints would be
possible only at places with sources, and they are edtlimtre. However, closed
streamlines also cannot occur, since the field likewise vortex-free.v must then be

zero everywhere; i.en; andv, must be identical to each other. There is, in fagcly o

one solution to the problem of determining a vortex-freetar function for a given
system of sources. We shall prove that a solutionysheaists by actually constructing
it.

If one chooses the upper sign in eq. (22) then equa@@ys\ll go to:

A
g=q1+g2 and jnds:O, (24)
A

in which one employs the abbreviatiqtior the intensity of the source div

The field that results fromy + v, is also vortex-free then, and its sources are adxfain
from an algebraic summation over the sources ottimponent fields. | shall therefore
divide the given system of souragito two or more parts, then look for the vortexefre
fields vy, vy, etc. that belong to those parts, and then constiectesultant fieldb by
geometric summation. It will then be first of abirtex-free, and secondly it will belong
to the system of sourceghat was given originally. | will therefore find oselution to
the problem of determining the vortex-free fieldhat belongs ta@, and it will likewise
be the only solution, which would follow from the foreggiconsiderations.

With that, we have foreseen the precise path thahave embarked upon. | shall
next separate from the system of sourcgesly the triply infinitely-small sourcq dr that
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belongs to a volume elemedtr and determine what it contributes to the fieldvhen

taken by itself. An amount of fluid dr goes through the spherical surface of radius
whose center lies a7, and since the geometric space that is the only oing beated
here behaves the same in all directions, the cumerdll locations on the spherical
surface must point in the direction of the radiusnd have the same magnitude. Instead
of appealing to that symmetry property of space, | cao pteve that it would be
impossible for the current to be vortex-free in any ottese. The flow velocity is
therefore equal t@ dr / 47 & at a distance o&, and in order to also represent its
direction, | set:

_qdra

dov =
4ad

. (25)

That contributiond v to the total vector field is infinitely-small of ondéhree at a

finite distance fromdr . However, it is also infinitely-small of order ope the surface
of dr, and we therefore do not need to investigate how threrduis distributed over the
that surface itself, since the contributi@h v, even at that location, vanishes in
comparison to the one that arises from the sources$idta a finite distance.

We now get the solution for the total system of safoem eq. (25) by performing
an integration over all of space, so:

0 :irﬂdr. (26)

In that derivation, | shall, for the moment, drop #issumption that the field should
not extend to infinity, since the field that belongshe isolated sourag dr actually does
extend to infinity. However, since there is only a singdéution to the problem, it is
irrelevant how | derive it. The fact that the valuattis given in eq. (26) fulfills all
conditions emerges from the derivation with no furuealysis.

8 8. — Deriving a potential field from a source field.

Ordinary potential theory seeks to avoid the use \wcor function like the one that
occurs in eq. (26). It prefers to solve such problemstiéthelp of scalar fields. That is

easy for vortex-free fields. It would then be only reseey to calculate from the

potential fieldV in the same way as before. In that way, one wit &lsow the vector
field v indirectly, since it emerges fromby performing the differential operater].

One next easily finds that:

V:I:ndt=I:nldt+I:nzdt:V1+V2 (27)

in a manner that is similar to what was done in the pusvparagraphs in regard to the
resulting fields. Therefore/ can also be found by summing over all contributions that
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arise from the isolated sourcggdr. The currentl v has the value that is given by eq.

(25) for the individual sourcg dr . One forms the line integral from that for a
integration path that goes to infinity in a radial diren and obtains:

_tqdr _gdr
dv = j4na2 da = e (28)

a
As before, tha in that means the distance to the reference poiwhi&h one would
like to calculateV from the volume elemerdr. One will get the potential that arises
from the total system of sources from the last equdtyoperforming an integration over
all volume elementdr in all of space, and therefore:

v:—j‘”—. (29)

V is calculated uniquely in that way when the system of cgsug is given.
Conversely,q could previously be calculated wh&hwas given. Of course, a detour
through the vector function that belongs to the two functions was necessarthan
Namely, one got fromV by way of the differential operatord; andq further emerged
from that by performing a second differential operat@amnely, the operator div. One
will then have:

v =-01V, g=dive =-div V.

However, it is preferable to combine the two differdntigerators into a single one
that leads fronV to q directly. That will be immediately possible when ingroduce an
operator? that is defined by the Ansatz:

div OV = 02, and therefore q=- 0. (30)

When one calculates with rectangular coordinatesydlhget the following prescription
for the direct action of the operataf:

YA YA LY
= + +

02v 31
x> oy> 07 (1)
when one combines equations (5) and (18). One can themd$or set:
2 2
62\/+6V+6V__q (32)

o> oy 97

in place of eq. (30). Up to a missing factor af that is the Laplace-Poisson differential
equation. Many formulas from ordinary potential thediffer by that factor that | have
derived here and which | have yet to derive. That i®dagpon the fact that in that
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theory, one examines, from the outset, force fidids dbey the law of the inverse-square
of the distance between masses, and one defines thd mass to be the one that makes
a unit mass exert a unit force on another unit massuattalistance. The sources play
the role of mass here, and the intrinsic measure efmhagnitude of a source is its
productivity. In the general theory of vector functionse dhas absolutely no right to
deviate from that measure arbitrarily. Meanwhile, one easily rewrite all formulas
later on in such a way that they coincide with thoSpotential theory by settingyequal

to 47rm everywhere, im means the specific mass.

We have now answered all of our main questions thabegmosed in regard to the
connection between the vortex-free vector functi@nd the two scalar functiodvsandq
that it is associated with. Meanwhile, we might fipabuch upon yet another question
that has less significance for the geometry of fietds, which nonetheless arouses some
interest due to the differing interpretations that onghtngive to it.

Let the fieldv be vortex-freeV will then be a uniquely-determined quantity. One
gives a boundary to a region in the field that can bisonultiply connected. ¥ is
equally large everywhere on the boundary surfAe@d no sources exist inside of it then
b must be equal to zero everywhere inside of the regimce closed streamlines are
impossible, by assumption, and streamlines cannot termimates iinterior since there
are no sources. However, no streamlines can entaegfien from the outside either,
since otherwis® would differ at the two intersection points with th@undary surface by
the amount of the line integral of which contradicts the assumption. In factnust

then be equal to zero everywhere in the interior.
One further concludes from this thatis determined uniquely inside the region as

long asV is given arbitrarily on the boundary surface, along wita sources in its
interior, since two fielde; and v, that correspond to those conditions would then be
possible, so the difference fiedd= v; — v, would have to lead to a constant potential on
the boundary surface (namely, the zero potential), andources would belong tw
inside the space. From what was proved before, one wertdneed to hawe = 0, and
thereforev; = vy, inside the space. In that style of proof, it is eBakthatv should be

vortex-free in all of space. However, that is aledact, the only case for which the use
of the auxiliary functiorV is important. There is therefore no point in coesity any
other cases.

The theorem that was just proved goes by the nam&iohlet’s principle.

§ 9. — Defining vorticity.

In 8 5, only a characterization of a vortex-free field vgmgen. In general, we can
then say only that a vortex exists in a field whenlithe integral ofo does not vanish for
any closed curve. However, we still have to addresptbblem of determining the
concept of a vortex itself more rigorously.

It would be simplest to write down a defining equatiod amoid any discussion of
why one refers to precisely that quantity as “vorticitf” why one employs it as a
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measure of the vorticity that is present in the fieldowever, the intuitive character of
our considerations would be damaged by such a processhand something that we
must strive for above all else if we are to arriva abrrect understanding of things.

On those grounds, | shall first give the word “vortextiourgeois meaning. Everyone
knows intuitively about the approximately circular mos that the water in a river
exhibits at many places, such as under a bridge abutmargimilar obstacle, and which
one refers to as “vorticity” in the original sensetbé word. Meanwhile, only the
motions that close upon themselves are essentialei's canception of the word, but not
the special form of the path, when we are accustomeeptesenting them as circular if
the first approximation, as well. It would not lead tty &hange in the concept if that
circular motion were joined to another one that pesHad the whole vortex downriver,
which is something that we usually observe.

As long as we are concerned with only pure vorticial omsti we can then refer to
them as motions along closed paths and be consistéimttm@ customary parlance.
However, since pure vorticial motions can also be mixgd other ones, we must look
for a more definitive way of characterizing whether a givelocity distribution does or
does not possess a vorticial component. For a purcigbrmotion, one imagines

selecting a closed streamline and forming the line intepmgds of the velocity for it,

which is denoted by; here. That integral will be composed of nothing but tp@si

contributions when the sense of traversal along theecisnchosen to agree with the
direction ofv; . In any event, it will then deviate from zero. Ktyanother field

componentv, appears that might originate from sources thends will be equal to
B

zero for every path of integration. The integfalds for the total motiorv = v + 02 IS
therefore just as large as it is for the vorticiattp; . That explains why a motion for
which j vds vanishes for every closed path of integration is reteto asvortex-free

The demand that one must consider every closed curveeta possible path of
integration is justified by the fact that every such euis conceivably a possible
streamline for a pure vortex line that might possiblyinmduded as a component of the
given velocity distribution.

Naturally, that demand cannot be met in practice. i©net in a position to actually

calculate the integrajn ds for all possible paths of integration. One thenaegs$ the

given condition with another one that is equivalent eind which can be easily derived
fromit. Init, one makes use of the theorem thatrgvortex-free motion can be derived
from a potential. Even if the motion is not vortegd in all of space, but only in
individual sub-regions, it will at least be possibledterive it from a potential inside of
those sub-regions, as we saw before. We can thinkcbfsub-regions as infinitely small
when we are only concerned with examining whether theomatn be considered to be
vortex-free at a certain location. It is precisbly that device that we will arrive at a
simplification of our way of characterizing a vortex.
If one denotes the potential from which one can ddireefunctionv inside of a

region that is perhaps thought of as infinitely srbglV, as before, in the event that the
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motion in the region is vortex-free then one walvie the following expressions for the
components of :

Vl:_a_v’ sz—a—v, V3:_6_V’ (33)
0x oy 0z
from which the condition equations for the differengjabtients of the will emerge:
%_%:o, %_%:o, N, _Mi_ g (34)
dy 0z 0z 0X ox ay

We are free to fuse these three condition equatiosa single one in such a way
that we can regard the differences on the left-hand sitleeasomponents of a directed
guantityro. We must then state that must be equal to zero everywhere that the motion
should be vortex-free, and conversely, since we knowetipaations (34) define not only
a necessary condition for the possibility of the &rq33), but also a sufficient one.

A quantity upon whose vanishing the nonexistence of a vattexcertain location
depends is obviously itself suitable to serve as a meaduhe vorticity at that location.
One can only doubt that there are no other quantitiestiarh the same thing is true and
which might be even better suited to measure vorticitgtber grounds. Obviously, one
can also employ any multiple af as a measure of vorticity, and in fact, Helmholtaseh

one-half ofro for that purpose in his own hydrodynamical investigatidnsthat way, he

came to compare the motion of water with the motiba dgid body. Meanwhile, one
cannot deny that this convention is undermined by a ceatditrariness. | therefore
think that in the general theory of vector functions tw@e supposed to encompass all
physical fields, it is better to skip the introduction otls an arbitrary factor and to
introduce the quantityp itself as a measure of the vorticity. Otherwise; mrmulas

would be pointlessly burdened with a basically irrelevacitior.

We then set:
=i M0 +{%_%j+g 9%, _9v) (35)
dy 0z dz O0X o0x 0y

or, since one can write that more clearly in thenfof a determinant:

i) ¢

o = i i i . (36)
ox 9y 0z
Vl V2 V3

In order to give a brief notation to the operatiortlma vector functiom =f (r) that is

thus written down precisely (which is entirely independ&nthe coordinate system, as
one easily convinces oneself), we further set:
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v = curly (37)

as an abbreviation for eq. (35) or (36), and when that equitigalid, we calko the
vorticity of the functiorv.

In order to avoid some misunderstandings that the bagaameeasily fall prey to, |
shall expressly point out the fact that even in, e.qoui@ vortex field, the motion at
individual places in the field can be vortex-free, etlmugh the velocity does not by
any means vanish there. Later on, we will see thasehe of the vortex is often found
only at isolated vortex filaments, while all remainparts of the field are vortex-free. In

contrast to that, e.g., the fluid that is found inogating vessel and is in a state of rest
relative to that vessel will be vorticial at alcktions.




CHAPTER TWO

LINEAR VECTOR FUNCTIONS.

8 10. — Defining linear vector functions.
In ordinary analysis, an expression of the form:
y=ax+Db (38)

is referred to as Bnear function in one independent variapénd in fact that is because
the geometric representation of it will be a straityme. If we wished to adapt the
concept of linear dependency to functions of directed giesthen we could not simply
keep the Ansatz (38), since we would not possess aisafficbroad knowledge of the
couplings that exist between quantities of that kind fromathiset. Rather, we would
merely have to make the term “linear function” mean simaplest possible law for
changingr into a variablen that corresponds to the one that is expressed by eq.n(38) i

that sense.

In order to clarify the meaning of that remark, | ret@t every continuous function
of x can be represented by eq. (38) for a sufficiently smadhml aroundk. If one lets
that equation be true for all valuesxathen the equation will represent the tangent to the
curve that depicts the original function. The coedintia in eq. (38) gives the law of the
change iny for increasingk at the location considered up to infinitely-small quaagiof
higher order.

In the same sense, one can also speak of the desgeet the law by which an
arbitrary continuous vector functian=f (r) changes at a well-defined locatierior an

infinitely-small neighborhood that needs to be precisg tinhigher-order infinitesimals.
If one temporarily lets that Ansatz be true for adrif values ot then one will obtain a

function that contacts the given functien= f (v) at that location, and indeed the

contacting field that is found in that way will conpesid precisely to the tangent to a
curve in the case of functions of one scalar quangiych a field is called Enear field,

and the associated function is calletin@ar function Above all, we say that any two
vector functiongontactat a locationr when they coincide with each other up to second-

order infinitesimals in a neighborhood of that locatidhis not necessary to go further
and say that two vector functions can also have secatet-aontact with each other,
etc., and that contact does not need to be restriot@adividual points. Rather, two
vector functions can also contact each other at@mntpin lines or surfaces. In that way,
the geometry of fields proves to be much more diveraa the ordinary geometry of
triply-extended space and in many regards suggests multidonahgeometry, while it
takes on an entirely realistic meaning, in contragtedatter.

Furthermore, for our purposes, linear vector functiotiscame under consideration,
first and foremost, only to the extent that they aohta given function to higher order,
since we will see, with no further discussion, théhear field always extends to infinity,
which is a case that has no interest for us. For rg@ton, | have also chosen the



§ 10. — Defining linear vector functions. 21

definition of a linear function to be the simplestadif other laws of change that follow

from contacting functions. In the second place, onestnadmit that linear vector

functions also occur for hyper-vector fields, and theiatment must not be omitted here,
on just those grounds.

It still remains for us to decide which law of chand®wdd be regarded as the
simplest one, in which we must always establish thatust be sufficiently general to
allow contact with any arbitrarily-given continuous ftioo at any location. There can
be no doubt as to which Ansatz we must choose: The charige same direction must
be proportional to the path that we have laid out, ana fhird direction of advance, the
change must be given by the geometric sum of the chdogéwo directions of advance
that lie in the same plane. In the form of an eguatihat says that:

fle+rerte)—f()=[f(v+r) —F @]+ [f(x+r2) —F ()]
or more briefly, that we have:
fle+trp+ry)=f(c+ry) +f(v+r) —f(v). (39)

The t; andr; in this are arbitrarily-chosen increments in the alalat. One can also
regard eq. (39) itself as the defining equation for the difiwactionf (xr). Of course, that
has the drawback that one cannot directly glimpses¢hse of that Ansatz and the basis
for choosing it in exactly that form. In any eveat. (39) must be chosen to be the
starting point for the derivation of all remaining proeriof the linear functions.

If one chooses; andr; to be infinitely small, and one denotes, e.g., the ghdhat
f (t) experiences when one proceedstbyy d; f (¢v) then it will also follow from eq.
(39) that:

di+2f (v) =dif (v) +dof (v). (40)

However, that equation is also fulfilled by anyigary continuous function up to
second-order infinitesimals, since we can alwaykutate the change that (v)
experiences when we advancethy+ v, in such a way that we augment the change that
belongs tor; by the one that arises when one proceeds fronenkdeoint oft; to the
endpoint of the line segment + r» . We replace the latter change wathf (t) in eq.
(40), and therefore the change that is drawn frtartisg point to the line segment that is
equal and parallel te,. However, the concept of continuity is associatéth the idea
that an infinitely-small shift; of the line segment to the change that belongstocan
vary only infinitely little in comparison to theasting amount. In other words: Whereas
we might also choose an infinitely-small line segimef given magnitude and direction
inside of a infinitely-small neighborhood of theaing point, the changé, f (t) that
belongs ta; must be the same up to second-order infinitesifoalsontinuous functions.

If a special definition of continuity of a functiomere required then it would be included
in that statement.
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With that, one has proved that the Ansatz eq. (3% &ct, sufficiently general that
a linear function can always be given that satistlee® Ansatz and which likewise
contacts any given vector function at a prescribed polite difference between linear
functions and all other continuous functions consistsndy the fact that eq. (40) is also

fulfilled for finite values ofr; andrt; for linear functions, but for arbitrary functions,ist
fulfilled for only infinitely-small values.

8 11. — Coordinate representation.

If the increments; andt; in t have the same directions then eq. (40) will say Hsat,

was desired all along, the increase in the functiorafgiven direction of increase in the
independent variabkewill be proportional to the absolute value of the iaseeint.

One can further infer from equations (39) and (40) thaheal function is given
completely as soon as one knows its value at anrampireference point and the
magnitudes of the increases for three directions tleahat contained in a plane. One
can then arrive at any other point of the field whem® @roceeds along paths that
correspond to the three reference directions one tteother. When one applies eq.
(40) (which must also be valid in a similar form for #hiecrements, , t», t3, moreover,

as one can easily verify), one will then get thaugadf the function for any arbitraryas

soon as the relevant defining data are given.
That situation intrinsically refers to the use afardinate system, and we therefore
choose a rectangular one. Let the value of therlifeectionv at the origin bev,, and

let the increases per unit length in the directionhethreex, y, zaxes be, t2, t3, resp.
The linear function will then be represented by the eqnati

p=pptuXtrytrsz (41)

and we have then found the desired generalization of eq. (B8)otal, the complete
description of a linear field then requires that we nlngsgiven four directed quantities,
or in other words, twelve numbers.

| shall say that two given fields, and v, intersectat a well-defined location when

one hasv; = v, at that location. Two linear fields cannot contathce when they

coincide up to higher-order infinitesimals in an infinitsipall neighborhood, that will
be true everywhere; i.e., the two fields will coincidé one writes out eq. (41) for two
linear fields and observes that each of those two emsatan be decomposed into
component equations then one will see that two line&dsf will generally intersect at a
point. However, for special choices of defining dataytban also intersect in a line or a
plane. If the point, line, or plane of intersectisrshifted to infinity then those fields will
be calledparallel. If one would like to distinguish between those thceases more
closely then one could say that they pagallel of first, second, or third orderesp.
| have cited those theorems precisely in order to bptstify the term “linear” for

those fields. One can make further use of the fieldceoin for purely-geometric
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investigations, which should be obvious, anyway. Howewehnall concern myself with
such questions here.

For the examination of the further properties of lmfeglds, we can omit the constant
termug in eq. (41). The equation that thus arises:

p=rX+ry+r3z (42)

when one thinks of assigning all possible values to thetduecoefficient represents a
sheaf of linear fields that all intersect at the cowt® origin. Any other field that does
not belong to that sheaf will correspond to a fielgldaves that is parallel of third order
to it in the aforementioned sense and differs fromniy by the constant quantity .
The two fields will agree completely in regard to aler properties that will come under
consideration, moreover, and we can then restrictetuas to the study of fields of the
sheaf. If one so desires, one can contract the sobtie fields that differ from each
other essentially somewhat by regarding as equal alkfiblat differ from each other by
only the unit of measurement or which can be made tdapveach other. However, |
will refrain from doing that here in order to go furtheto those relations.

Since reference to a coordinate system was alreadge mn eq. (42), it is
recommended that one should decompose the directed msathiat enter into it along
the coordinate directions. The equation will then dec@mpioto three component
equations, namely, with the notation for theX-component of;, etc., one will have:

Vl = C11X+ (‘\21 y+ Q’;l Z
Vo = CpX+ G Yt Gy 7 (43)
V3 = C13X+ (‘\23 y+ %3 Z

However, a more concise notation for that is desahlorder for one to not need to
write down the entire equation (43) whenever one wokklth represent a linear vector
function. Eq. (43) will then be equivalent to using tbeation:

b =C (v). (44)

We let C denote the linear operator by whiehis derived frome. We have only to

observe that the operatGris always composed of nine components that are linked with
the components afby the prescription in equations (43). The most generalrlvector

function can always be represented with the use afpleeator symbaoC in the form:

p=00+C(v). (45)
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8§ 12. — Linear function of a unit vector.

One thinks of the center of the sheaf of fields thatpresented by eq. (42) as the
center of a sphere whose radius is equal to a umtHemhich might be denoted lay
Any field will be known in all of space when the valuestlod field are given on the
sphere, because at any other distance from the orgirfietild quantity will point in the
same direction that it has at the point on the sptiateies along the ray that is likewise
drawn through the origin, and the ratio of the absolatees will be the ratio of distances
from the origin.

We would like to think of a line segment being drawn freach point of the unit
sphere whose magnitude, direction, and sense depictgeltheydiantity at that location
when one establishes an arbitrarily-chosen unit of measnt. One easily sees that the
endpoints of that line are contained in an ellipsoid atilwaitenter. Namely, if one lefs
n, { denote the coordinates of the endpoints of that line seghmbne will have:

$=X+q, X+ Gy Y+ G, 7
N=Y+Cy X+ Cy Y+ G, 7 (46)
{=Z+Gy X+ Gy Y Gy 7

and one will have the equation of a sphere:

X+ +Z =€, (47)
moreover.

If one solves equations (46) fery, zand substitutes the values that are found in (47)
then one will get an equation of degree twd,iry, {. The associated surface must be an
ellipsoid, since its points are all finite, and the eemtf the ellipsoid must coincide with
the origin, since the equation will always be fulfilllerhen one simultaneously changes
the signs of, 1, {.

One will see from this that any linear field will gerrahave three mutually-
perpendicular principal directions that are distinguishedheyr tsymmetry properties.
An exception to that is when the determinant of the foefts in equations (46)
vanishes. In that case, the given field will intetgbe fieldo = 0 along a line or a plane.

For a suitable choice of unit of measurement, witte\gersal of direction for the
whole field, if necessary, one can always arrange tha ellipsoid of the prior
representation goes to an ellipse, so one principalodtise ellipsoid will become zero.
Mohr has given a very elegant representation of tlesstate in a body with the help of
that device. | shall cite the reference héjesince the work is not very generally known
amongst the readers that this book is intended forewhWwould otherwise basically
refrain from citing it on the same grounds as in my boakMaxwell's theory of
electricity.

Above all, the interest in functions of a unit vedies mainly in the realm of hyper-
vector fields, so it will not be necessary to go ithte topic here in more detail.

() Mohr, Civil-Ingenieur, 1882, pp. 126.
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8§ 13. — Sources and vortices for a linear vector function.

The linear field defines the simplest case of a vefisdd when one ignores the
special cases that are already included in the conceptliokar field. It is therefore
important to establish the distribution of sources antioes in them, and all the more so
since one will likewise find what type that distributioan have in an infinitely-small
neighborhood of an arbitrary field. From equations (8)) @3), we find that:

g= divo =Cq1+ Co +Ca3 (48)

for the linear field, which is therefore a uniform distition of sources over the entire
field. The vortices are also distributed uniformly iotree entire field, since it will follow
from eq. (35) that:

10 =1 (Ca3—Cz2) +j (Ca1—C13) + € (Ci12—C21) . (49)

The source intensity therefore depends upon only the canoofC that have equal
indices, while the vortex intensity depends upon the angsunequal indices. At the
same time, we see the conditions that must be @dfiih order for a linear vector
function to be either source-free or vortex-fred. can also be both source-free and
vortex-free in all of space, moreover, since the ftalat is associated with it extends to
infinity; it can even be infinitely large at infinity.The theorem that was proved i/ 8§
that a field cannot be simultaneously source-free amtex-free in all of space will be
true now under the assumption that was made there tbatield cannot extend to
infinity.

From equations (43), the geometric sum of two linearoveftinctions is again a
linear vector function. Conversely, every linear fumetcan be decomposed into two
components, one of which is source-free and the othesah is vortex-free. Such a
decomposition is of great interest in regard to the e@idins of the theory. Later on, we
shall see that it is always possible uniquely for fieltg do not extend to infinity. By
contrast, the decomposition can be performed in infinikehny ways here. However,
one of them is especially significant.

Namely, one can map the given function to a secomrdbyntransposing all of the
indices in equations (43), such that, e.g., the valueathsifpreviously denoted lay, will
enter in place o€ for the new function. The function that is thusirid is said to be
conjugateto the first one. The first one will then be conjegtd the second one, in its
own right, so the relationship is reciprocal. cl$ = ¢;1, etc., from the outset then the
function will calledself-conjugate From eq. (49), such a function will always be vortex
free. We would like to denote the operator that take<C (r) to its conjugate function

by Ci , such thaby = Cy (r) will denote the conjugate function.

By definition, the geometric sui@ (r) + Ci (v) is always a self-conjugate function,
and is therefore vortex-free. Its source-intensitywice as large as it is fa€ (x) or
Ck(v), since one generally has:

div C (r) = div Ci (v) (50)
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from eq. (48). By contrast, the geometric differe@cg) — Ck (v) is source-free, and its
vortex intensity amounts to twice the vortex intensit C (t), as one could infer directly

from eq. (49). If we set:
b =C(r) = 3{[C () + G ()] + [C () - C ()]} (51)

then the decomposition of into a vortex-free part and a source-free one can be

performed immediately, and indeed in such a way that bots passess an especially
simple structure.

8 14. — Another representation of a linear vector function.

The two components into whiehis decomposed by eq. (51) can also be expressed in

such a way that any reference to a coordinate systérhenavoided. We next consider
the first componentl[C (r) + Ck (v)], about which we know that it defines a self-

conjugate function, so it will be vortex-free. We knthvat any vortex-free field can be
derived from a potential. Of course, the integrationstant cannot be determined here
in such a way that the potential vanishes at infinitgalse the field extends to infinity
and will itself be infinite there. It is simplestrfas to choose that constant in such a way
that the potential is zero at the origin, since itsi@atill does not matter.

If we denote the first component ofoy vy then we will get the associated potential
from eq. (13):

V== [o,ds. (52)
0

We can think of the path of integration as being chasdye rectilinear from O te.
The integration can then be performed immediately, sigeecreases uniformly from O
to the final value, which will also be denotedty, along the path of integration, while
keeping the same direction. One then needs only tpigitthe mean valuel vq by the
lengtht of the entire path of integration to get:

V=-Ipgr. (53)
If we once more go from the potential to the figddthen we will also have:
bg=+50oqr. (54)

One can also easily eventually convince oneself ofviliity of this Ansatz by
performing the operations that are suggested here accowlitigetrules that were
established before.

We now go on to the second component,afhich shall be denoted by, so:
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bw = 1[C (t) - Cc (1)] -

A function with that structure has the peculiaritgttthe components of its operator
will change sign when one transposes the two indites, etc., while the components
that belong to equal indices will be zero. The conjugéate,ds the negative ob,, .

Namely, when one writes out the components,@fs they are given in eq. (32):

C — —
Voo = 212012 y_+_C3,12013Z

v _Clz_czlX_+_C3,2_023Z (55)

w2 2 2

Vv :C13_031X+ Cp3~ Cszy

w3 2 2

If one compares the operator components in thisitgan with eq. (49) then one will
see that their absolute values are one-half as &sghe vorticity components in eq. (49),
while the signs alternate between equal and oppoHithe components af are denoted

by wi, w>, W, as usual, then one can replace equations (58)that following vector
equation:

200 =i(WeZz—WaY) +j (W X—W1 2 +E (W y—Wo X). (56)

In this expression, one recognizes the static nmbmkv relative to the origin. The
values in parentheses represent the static monfentrelative to the three coordinate

axes. However, a static moment relative to a poant be written down most simply as
the vector product, or — to use Grassmann’s teragy— theexterior product of the
vector in question and the lever arm. We therefeptace eq. (56) with the notation:

UW:%th. (57)

For the reader who is not yet familiar with vecataiculus, that equation defines only an
easily-understood abbreviation for the combinatadncomponents in eq. (56), which
occurs frequently in mechanics, and the symbol ggtefinition from that.

A static moment relative to a point is always ieeclied quantity that is perpendicular
to the lever arm, so,, will also be perpendicular ta For that reason, we can alter
equations (53) and (54) in such a way that they el simplified greatly. Instead of
projecting the componeniy of v onto t, as was prescribed there, we can, in fact, also
project all ofv, since the other componesyi, as we just saw, is perpendicular t@o the

projection will contribute nothing. In that waphase equations will go to:

V=-Ilvt and vq=+0vr, (58)
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resp.
A linear vector function that intersects the field= 0 at the origin can always be

represented in the form:
v=21(0vt+Vw ) (59)
then.
In order to adapt that representation to the genassd & which a constant temwy

also appears, one must observe that the vorticityill not be affected by that at all, but

only possibly the potentil, and therefore the first term in the parentheses.ii5®), as
well. One easily finds that:
oot =10, (60)

and when one observes that, one will get the remarkigvielopment:
b =2(vg+ 0o ¢t +Vio t) (61)

for an arbitrary linear vector function.
The first term is constant, the second one originatagpotential, so it will be vortex-
free, and the third one is source-free.

8§ 15. — The inversion of linear functions.

Whenv = C (t), t can also be regarded conversely as a linear function dlamely,
that equation can be solved fgrin general, and one will then obtain an equation of the

form:
t=K (v). (62)

One can write down the nine components of the linearatqreK directly when one
recalls equations (43), which define the oper&orlIf one sets the determinant of the
nine components @@ in equations (43) equal to:

Cll C21 C31
C12 C22 C32 = A’ (63)
Cl3 C23 C33

to abbreviate, then one will get the componenys z of r by solving those equations:

Vl CZl %l Cll Vl %l
X=|V, G, GCyl:A, Yy=|(C, V, Gyl A4, etc. (64)
V3 (\23 %3 Cl3 V3 %3
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Therefore, one has, e.g.:
ki1 = (Co2C3z3—Co3C32) 1 A and  kp; = (C31Ca3—Cr1C33) 1 A (65)

i.e., except for the constant divisor, each componeht isfequal to the subdeterminant
that belongs to oppositely-denoted componen(s iofA.

A deeper discussion of that situation is interestinghany aspects. Namely, one can
derive some benefit from it for the investigation afations that a rigid body can perform
about a point. Here, | will only point out the falsat the functiorv = C () will admit no

inverse when the determinahtvanishes. The field will then cut the fieldb = 0 along a

line that goes through the origin (and also a plane, iresexaeptional cases), and it is
precisely that case that is significant in the themfryotations. The line of intersection
will then correspond to the axis around which the rotdides place.

Many interesting theorems can also be proved in regafietoomposition of several
linear operators with each other, so e.g., linear fanstof the form:

v=A(B () =C()

in which C is now derived from the composition of the linear oA andB in
succession. On the one hand, | have, however, addressh questions only slightly,
and on the other hand, they are also not sufficiesiggificant for the purposes of the
present book that | should go into them in more detail.

8 16. — Stokes’s theorem for a linear field.

Let an arbitrary closed curve be drawn in a lineadfieWWe determine the value of
the line integraf v ds for that path of integration that plays such an irtamatrrole in the
geometry of the field. In order to calculate thategmal, we base it upon the
representation of an arbitrary vector function that graen in eq. (61). The line integral
will then be decomposed into three parts in that way,vesawill get:

>—>

A A A
vds =4 [v,ds+4[dsOor+3[ds Vioe. (66)
A A A

However, the first term on the right-hand side vaniskiese the factow, is constant,
and the geometric sum of alé will be zero for a closed curve. The second term will
also vanish, since from eq. (1d¥ Uv ¢ will given the change that v experiences under
a displacement througths, and the sum of those changes will be zero when one onc
more returns to the starting point, since is necessarily a single-valued quantity. Only
the third term will remains then, and that can be pasihverted somewhat. Namely,

one generally hagVVBe = 8V 2l . In order to convince oneself of that fact, one
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needs only to examine that equation in coordinates,bg.guriting down the components
of Ve by comparing eq. (57) with eq. (56), and multiplying Ho®mponent withA,,
the j-component withA;, etc. | mention that the theorem about the commiitialoif

factors in a product of that kind (the proof of which evi# achieve along the way) is
one of the most important in vector calculus. @mMmments of that kind are unnecessary
for the readers of my book on Maxwell’s theory ofcéleity.) Furthermore, since the
vorticity o is a constant quantity for a linear field, from3 we can movev outside the

integral sign and ultimately obtain:

>—>

A
vds =1 [Veds, (67)
2
A

in place of eq. (66).

However, the expression that now appears on the-mgid side has a simple
geometric meaning: namer;V v ds is a directed quantity whose absolute value is
equal to the area of a triangle whose vertex ligthetrigin, while the opposite side is
the line elementls of the path of integration. Finally, the directisnperpendicular to

that triangular surface.
If one also imagines as being constructed hydrodynamically in such a way that i

gives a velocity (which is indeed constant here) te@sd illustrative fluid then the

scalar product wV t ds will be the amount of fluid that flows through the yaoaisly-
described triangle per unit time in this picture, sincedineent through a cross-section
will always be found when one multiplies the crosst®nal area by the velocity
component that is perpendicular to it.

The sign of the expression depends upon how the ainecfi traversal ofls was
chosen: It will be positive when the sequedsetv, v defines a right-handed system in
space.

In performing the integration, we have to take thedfleurrent through all triangles
that correspond to the line elemelatthat belongs to the path of integration. However, in
total, that will give the current through the surfacehaf cone whose vertex is the origin
and whose base is the path of integration.

The line integral ob is therefore equal to the amount of fluid that flolmotgh the

indicated surface of the cone for constant veloweityln place of the surface of the cone,

one can also use the base of the cone or any otlacessegment that is bounded by the
integration curve. One can draw very many surfacebaifkind, to which the conical
surface that was just considered will itself belong.wkleer, the same amount of fluid

must flow through each of those surfaces in the field Namely, if one considers any
two of those surfaces then they will collectivelyubd a volume that contains no sources,
since v is constant, and therefore div = 0. Hence, from the incompressibility

condition, just as much must flow out of the one s@rfas flows into the other. It is also
unnecessary for us to refer to just the conical surfdwesevvertex lies at the origin in the
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statement of the theorem that we found in eq. (67): We add@ose any arbitrary
connected surface whose boundary curve is the path gfatien. The amount of fluid
that goes through that surface in the fields then just as large as the line integral over

the boundary in the field. If we recall the representation that we used befoes]. (6)
for the flux through a surface then eq. (67) can alseplaced with:

fuds = [rtdf = [curloMdf . (68)
A

The value ofw in eq. (37) has been substituted in the last fotmthat form, the
theorem also shows us clearly how preferable tloécelof the quantityy or curlv is as

a measure of vorticity. Whereas we originally §i8) only found thatv must vanish if
the current is to have no component that traveasdased path at each location inside of
an infinitely-small region, we are now in a pogitioo give the precise connection
between the fieldv and the value of the line integral that was oatjincrucial for the
definition of the vorticial motion.

Finally, it should be remarked that if both siddshe equations must also agree in
sign then the direction of the unit normilin eq. (68) must be chosen in such a way that

ds, O, v defines a right-hand system in space, since veadyr saw that the line integral
[ v ds will be positive wherds, 91, ¢ follow in the manner of a right-handed system, and
that the surface integrhtv 91 df will be likewise positive when one replageswith 91 in
that sequence.

§ 17. — Adapting Stokes’s theorem to arbitrary fields.

Eqg. (68) can be applied with no further discussman infinitely-small region in any
arbitrary continuous field when one thinks of tiddf at that location as being replaced
with the linear field that contacts it. Howevegq, €68) will also remain valid unaltered
for any arbitrary field for an integration path fofite measure. In order to see that, one
lays an arbitrary surface through the path of irgegn such that path of integration
defines the boundary curve of the surface segm@ne then draws two systems of lines
on the surface that subdivide the surface intoitgfiy many sections in such a way that
each section lies inside of an infinitely-smalliceg One can the apply eq. (68) to each
section, and once that has been done, one wowdddikadd together all equations that
one can write out according to the model of eq).(6Bhe sense of traversal df must

then be taken to be equal for the boundaries afeglions. The normaf8 will then also

go through the same side of the surface automigtical

One now sees immediately that the sum of the iimegrals| v ds over the
boundaries of all sections is just as large aditigeintegral over the boundary curve of
the entire surface segment, and thus, over thenafigpath of integration, since the
boundary lines between neighboring sections w#ldyitwo contributions with equal
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values and opposite signs, which will mutually cancel th&lhthat remains then will be
the contributions that originate on the boundary cuw@ch remain untouched by that
mutual cancellation.

On the other side of the equation, in order to extéedsurface integral over the
entire surface, it is only necessary to sum. Onedhben that one can, in fact, set:

fuds = [r9tdf = [curlo D df (69)
A

for an arbitrary field and an arbitrary path okigtation.

It already emerges from the proof that it is adswirely irrelevant here what surface
spans the path of integration that will serve aslbundary curve. That also follows
easily in a different way, and we will then pointt@n important property of the fietal.

Namely, if one performs the operation div thatvigten down in eq. (5) on the value
of o that is defined by eq. (35) then one will get:

div ro = div curlv = 0. (70)

The fieldr, which emerges from an arbitrary fieldwhen one takes its vorticity, is

always considered to be intrinsically source-figent In fact, the same amount of fluid
must therefore flow through any surface that sghassame boundary curve in the field
10.

The theorem that is expressed by eq. (70) hag gigaificance in the study of
electricity. It says nothing less than the fa@ttalectric currents must necessarily (and
indeed on purely geometric grounds) traverse clpsgls, assuming that one defines the
electric current by its magnetic effects, as hagagd actually been done, namely —
speaking more precisely —the vorticity of the magneld that it generates.

By contrast, Stokes’s theorem, as it is expressedq. (69), is the most important
tool for the further research into the propertiésvector functions and the associated
fields; it corresponds to a known theorem from tiseal theory of functions that goes
back to Cauchy. One first sees that this is thee cqaost clearly with the notation of
vector calculus, while the connection can easilyai® unobserved when one knows
Stokes’s theorem only in its coordinate represemtat




CHAPTER THREE

THE SOURCE-FREE FIELD WITH ONE VORTEX
FILAMENT.

§ 18. — Statement of the problem.

In Chapter One, we restricted ourselves to the irgegstn of fields in which no
vortices were present, while an arbitrary distributadfnsources could exist. Now we
would like to examine precisely those vortex fields mdneroughly, so we can
conversely bring about a simplification by assumirg the field is source-free. Later,
we will see that we can consider an arbitrary fielthéadhe sum of a vortex-free field that
is created by a source and a source-free field thaéaed by a vortex. In fact, our task
then comes down to that of discussing those two spessals in more detail.

In this chapter, we will then consider only those fuors that satisfy the condition
equation:

dive=0 (71)

in all of space. All streamlines must then define cldsess. The line integrdl v ds

assumes a non-zero value for any streamline, and indgeusiave one, when we
measurels in the direction ob.

However, in order to be able to pursue the investigatoist conclusion by the
simplest means, we must temporarily introduce yet ana@ig®rmption that we can drop
in the next chapter. Namely, here, we would like tamgsthat the field is of a type that
is simple enough fof v ds to always vanish for any closed line as long as that path
integration is a curve that is not chosen once andlfobut entirely arbitrarily. We shall
refer to that curve aswrtex ling on grounds that will emerge directly.

If we bound a simply-connected region in that field thatot pierced by the assumed
vortex lines then, by assumptidm ds will be equal to zero for every closed integration
path that lies inside of that regiom can therefore be derived from a potential that is
determined completely up to an arbitrary constant in tgion. In that way, we will
make it possible to carry out our examination with thdsted Chapter One; i.e., with
ordinary potential theory. At the same time, it falothatio = curlv is equal to zero
inside of the region. The fluid is not by any meansie@itthen at all locations that lie
outside the vortex line; i.e., the vorticity is rasied to only the line itself, which justifies
the terminology that was chosen for the line.

Let| v ds = W for an integration path that encircles the vortex timee. We will
soon see thatV must necessarily have the same value for all such attegrpaths. We
will likewise show that there are, in fact, functsoaf an increasingly diverse kind that
fulfill all of the conditions that were imposed here.
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We lay a surface through the path of integration, wisctihnen its boundary curve,
and that surface meets the vortex line at one poineicdése where the two curves are of
singly linked. From Stokes’s theorem, we will thendtav

W=[ro9df . (72)

Everywhere outside of the vortex line, we will hawe= 0. In order forv to not itself be

infinitely large on the vortex line (which is a casettphysically meaningful only as a
limiting case), we must then replace the vortex With a vortex filament whose cross-
section is assumed to be infinitely-small, while tbetex line itself will serve as the axis.
Of course W will still be infinitely small (and therefore, as well) when we allow only

finite values fornv in the vortex filament. That will be true feritself when we choose

the path of integration to be small enough that it tisas the surface of the filament
directly, since the cross-section of the vortexnfigant [and with it, from eq. (72), the
value ofW, as well] is small of second order for finite whereas the initial cross-section

was small of order only one. For a finitg an isolated vortex filament can therefore

generate only a field that is infinitely-small of ordere in the immediate neighborhood
of the filament and infinitely-small of order two atite distances from it.

The fact that we cannot assume thdthas finite values for an isolated vortex
filament also follows, moreover, from the fact tlmherwise the velocity would be

infinitely large in the immediate neighborhood of tlwetex line. It therefore behaves in
a manner that is entirely similar to the way that antplike source behaves. For
locations in the field that lie sufficiently far frothe source or the vortex filament, one
can always think of the source as being concentrategh@intior the vortex filament as
being concentrated into a line. However, as long asnoxe into the neighborhood of
the source or the vortex, we must think of both ofithees being spatially-distributed.
Hence, the field that is created by the sougcdr in the volume elemendz in their
immediate neighborhood will be infinitely-small of ordene, just as it is in the
neighborhood of an isolated vortex filament with &ni.

Above all, one must regard it as a fact of greatepbrtance to the pure theory of
functions, as well as the physical applications thatbased upon the latter, that sources
and vortices have such a close relationship to each oliéhis book, | will refer to that
fact quite often and at this point, | shall be contenpdint out the connection between

the fieldv and the vortex or system of vortices that belongs $gstem of sources. In the

theory of electrical action-at-a-distance, the sesi@f the electrostatic fields are regarded
as the causes of those fields. In our purely-geomiteinry of fields, there is no basis
for such a viewpoint; we can just as well consider itlel to be the cause of its source.
In fact, both the vortex-free vector field and itsteys of sources mutually imply each
other without allowing we to decide which of the two isrenfundamental or important.
Things are exactly the same for vortex filaments. date probably consider the electrical
current that flows in a linear conductor to be the caisde magnetic field. For the
geometric theory of fields, however, both of them eamnder consideration only in the
form of vortex filaments and vortex fields, and thas,things that are associated with
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each other. In fact, we have, in many aspects, alréagun to invert the causal
relationship by regarding the magnetic field as the cafiseghat we call the electrical
current, which is then a consequence of it. That istduke fact that the vortex field is
regarded as the cause of its system of vortices. keranust stay clear of all such
conjectures. However, for the sake of a more commseenclature, it will occasionally
be permissible to say that the field is generated given vortex filament or (with the
same significance) that the vortex filament is browdiadut by the field.

If one lays several surfaces through the aforementipadd of integration that link
the vortex filament once then from Stokes’s theoreire., eq. (72)- | w 91 df will

possess the same value for all of those surfacesntgtt the cross-section of the vortex
filament. Furthermore, that will also follow frorhd theorem that was expressed in eq.

(70) that the fieldv is always source-free.

At the same time, it emerges from the fact thatrwadield that is generated by a
single vortex filament, the line integrhtv 91 df must assume the same value for any

integration path that encircles the vortex filamemtey since that integral is, in any case,
equal to the flux of the fieleb through the cross-section of the vortex filamenhe Tlux

or quantityW in eq. (72) can then, in turn, be referred to addtad intensityor strength

of the entire filament. In order to determine a woftament completely, it will suffice
to give its centerline and its strendth except that when one would like to assign it, say,
the value that is determined more precisely by the firetde immediate neighborhood of
the vortex filament, one would then have to introdueeanother given that says how the
total intensityW is distributed over the cross-section of the filameRor the physical
applications, one always deals with vortices of finit®ss-sectional area and finite
strength. At greater distances, one can frequentiyt tleem like isolated vortex
filaments with sufficient accuracy. When one is elts it, or in the space that the vortex
itself occupies, one can decompose the vortex intadldwf vortex filaments, such that
the intensity of every vortex filament is infinitetynall. The contribution that an isolated
vortex filament itself makes to the total field at atpcation in its immediate
neighborhood or on its surface or in its interiorlalvays vanish then in comparison to
the total effect. In fact, it will then suffice talculate the field at a finite distance from

the conducting line of an isolated vortex filament.

We must now solve the same problem for a vortex filathanhtvas already solved in
the first chapter for an elementary souqeceér, namely, the calculation of the field that is
generated by the vortex filament at a finite distance from the dilawhen the
conducting line and the strength of the vortex are giv@h.course, the solution of the
problem will be more complicated here that it was é¢hdrowever, we think it is
important to emphasize the close relationship betweetwth@roblems.

8 19. — Reducing the field to a vortex-free one.

One must address the study of vortex fields veryearlin the theory of electricity.
Naturally, one seeks to resolve problems of that kind manner that is similar to the
way that one calculates with the vortex-free fdrekls that appear in laws of attraction,
for which very useful methods have been found alreade already saw how closely
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such a process applies to a field that is otherwiseyetere vortex-free and possesses a
singularity, in a sense, at an isolated vortex filamemn fact, it is only necessary to
replace the vorticity field with a vortex-free oneathis generated by sources and
coincides with it up to a slight difference, or equalatileast to the extent that one will
have the right to regard it as a substitute for théexefree field. It is self-explanatory
that this wide open route can be used directly withouth@awng to be careful, for the
moment, to develop other methods that might be bettezdsto the spirit of the new
problem. The celebrated theory of double layers arod®ainway, which is perhaps the
most shining example of how much one can attain by usasically unsuitable and
inadequate tools.

In order to prepare our problem for solution in that washall next show that the
vorticity field is determined uniquely by its vortex filameand the conditions that it is
source-free and must vanish at infinity. In order toicvepetition, |1 would like to
assume that the vortex system of the field is cotaplarbitrary, such that one does not
need to restrict oneself to a single vortex filament.

Assume that it is possible for two source-freedBal; andv, to belong to the same
system of vorticeso. One will then form the difference field= v; — v, in exactly the

same way as was done in78y a similar argument. One concludes from the defining
equation (35) by which the concept of vortiaitywas introduced that:

curlv = curlvy — curl vy

is equal to zero in the present case. One will likevaiso have div = 0, as was shown

before on that previous occasion. Since the fieldilshoot extend to infinity, it follows,
as before, that must be zero everywhere, and therefare v, .

We shall now return to the field with a single vorféament and imagine drawing
two infinitely-close surfaces in that field that haveen that is otherwise arbitrary, but
with finite curvature, such that the contour of eachhein reaches the vortex filament.
Since the vortex filament must have an infinitely-Brosss-section, we can think of the
distance between two surfaces as being perhaps large ehattje vortex filament just
completes the space between the two surfaces. Weatsgn a positive source to the
one surface and a negative one to the other and combeldield that belongs to that
source distribution to be vortex-free. Indeed, we dajead to that construction on the
grounds that a finite source productivity that is concestrain a surface will contradict
the basic rule that the spatial density of a source neusain finite. Meanwhile, we are
not by any means dealing with an actual physical field ferevhich we would have to
abide by that requirement, but with an artifice for degvthe correct results, such that
we can always consider a distribution of this kindeaah acceptable limiting case. Later
on, we might establish the fact that the result h&und in that way is actually correct
in a way that is entirely independent of the way thagas derived.

For the time being, there is nothing more to be sanditatihe vorticity itself. Rather,
it shall be replaced with a double-layer field. One alyesees with no calculation that
the main part of the flux that flows from the positigseurce along the closed path
(through the infinitely-thin intermediate space betwé®nttvo surfaces) goes over to the
neighboring sink. Meanwhile, a small fraction of it (wWhis infinitely small compared
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to the first part, as we will see) must also necdgsdow through external space, since
the field now arises from only sources. In other woitdg vortex-free, and the line

integral jnds must then yield zero for any closed curve. We imaginaraecbeing

drawn such that it crosses a line element in thenatapace between two surfaces, while
the curve otherwise remains in external space evergwhed closes beyond the
boundary of the surface. The vortex filament that teasporarily forfeited its actual
meaning will be linked by that curve once. The line elenmemte interior will make a

contribution to the integrajn ds for that path of integration that will be negative e t

event that we choose the sense of traversad of such a way that it opposes the current

that exists in the internal space when it is in thatspdn order for the entire integral to
vanish, the rest of the path of integration must yieldoaitive contribution of equal

absolute value. In that way, it is proved that a patheftotal current must also, in fact,
flow through the external space around the boundary oftihiace from the positive

source to the negative one.

At the same time, we recognize that the velocitythe external space must be
infinitely small in comparison to the velocity in th@ernal space, since the integration
over a finite path in the external space will yield otilg same absolute value as the
integration over the infinitely-small path in the intal space. We can also calculate the
flow velocity in the internal space then. In ordedtothat, | shall bound both surfaces
with two juxtaposed elements whose dimensions miglthiesen to be small compared
to the radii of curvature of the surface, but largeamparison to the distantebetween
the two surfaces. Let the areas of those two sudereents be denoted df; while the
source productivity per unit area at those two placesnetdd by +q and —q, resp. Up
to the vanishing fraction that goes through the extepeades the amourg df will flow
through the internal space from the positive to the thegaurface element per unit time.
We can then set the flow velocity in the interrzdce equal tg and the contribution that
the internal space makes to the line intefratls equal to -gh, which will be precise up

to infinitely-small quantities.

We further infer from this that the part of the otation path that lies in the external
space will yield the contribution ¢h to the line integral. If we further agree that the
source distribution on both sides is chosen such thairddctgh has the same value at
each location then the line integral will always hdélve same magnitude ¢h for any
arbitrary integration path that is not closed that @e draw around the boundary of the
positive surface to the point on the negative surface.

Of course, once we have constructed a vortex-fré@ ifrethis somewhat artificial
way, we compare it to the vorticity field that origilyainterested us. It differs quite
considerably from the field that the vortex filamemnerates without the aid of sources
in the internal space, but is equal to it in all of éxéernal space.

In both cases, the streamlines go around the boundarpond the vortex filament.
For the double-layer field, the integratibn ds will give the constant valugh, with the

exception of the infinitely-small piece in the interspace. For the vorticity field, one
generally first obtains such a constant value when orladies the line element in the
internal space in the path of integration. Here howetee contribution of that line

element will be infinitely small in comparison to thalue of the total integral, such that
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both fields will coincide in the external space up tanitély-small quantities in that
regard as well.

Once one has exhibited the desired field in the extespade with the help of the
double layer, one will then need only to once more exteadiouble layer, preserve the
field in external space, and close the streamlines anirtternal space by continuous
extension in order to immediately obtain a field thahcides with the field of the vortex
filament in all of its essential aspects.

In order for the strengths of both fields to be equalige, one must set:

W=gh. (73)

One easily concludes that the field that is foundhet way is identical to that of the
vortex filament from the theorem that was provedhia introduction to this paragraph
that only a single current distribution is possible th#tli&iall conditions of the problem
that might be concerned with the solution that is ébhere.

At the same time, that remark resolves a resenvahiat one might voice against the
foregoing derivation. Namely, it might seem doubtfuletiter a streamline that starts
from the positive surface of the double layer can rehehsurface element on the
negative surface that lies precisely opposite to thdirgjapoint by going through
external space. One cannot, from the outset, ruleheytossibility that the starting point
and endpoint of an external streamline might be semhfeden each other by a finite
distance. However, even when it is given that thisassible, once the streamline has
been closed in the internal space, one must obtainlcatRat is source-free, and for
which [ v ds = W for the integration path that links the vortex filamemhile [ v ds = 0

for any other closed integration path. That field mbsn be the desired vorticity field,
and one concludes conversely from this that even irfigfe of the double layer, the
starting point and endpoint of an external streamline limiepposite to each other.

Perhaps it would be useful for me to add a commehtavé spoken repeatedly about
an external space and an internal space that are sepém@te each other by two
boundary surfaces. One should not understand that to timetathose boundary surfaces
can have any influence on the current such as actiagniRermeable walls. For us, they
serve as only geometric loci through which the double sayeyuld be assigned their
locations in space and not as separation surfacesveAdh in the general geometry of
fields or in the theory of vector functions, one caver speak of actual separation
surfaces by which, say, the flux of a field could be eserlp even though such a picture
might probably be quite permissible and useful for otheestigations. Here, all of
infinite space is available for our purpose of depigtmithout limit, just as, e.g., the
boundary of the graph paper is never meaningful in thectiepiof the function of a
scalar variable by a curve.

§ 20. — Solving the problem.

With those preliminaries, the field quantity easily can be calculated when the

associated vortex filament is given. In order to dd,tbae needs only to apply the
method that was presented in the first chapter todbece system of the double layer.
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From eq. (28), a surface elemelhbf the positive layer will yield a contribution ofgrdf

/ 4rrato the potential/. Apart from its sign, the associated element efribgative layer
will differ by only the distancea to the reference point at which we would like to
calculateV, as opposed to the previously-given value. The charngean be denoted by
h Oda / dh, if h is the distance between both surfaces, as beforenel sums the
contributions of the associated elements of both satyen one will get:

fdf h%‘ (74)
77a

dv=

for the total contribution odlf to the potentiaV. In order to geW, one needs only to
integrate that expression over the entire surface. niiede, first let a minor conversion
be made by which one will arrive at the most elegahit®n that Gauss contributed to
the problem.

Let daw denote the spatial angle that the surfdicet is irrelevant whether one thinks
of the positive or negative layer in this) subtendshatreference point. Hence, when
multiplied by the square of the radius of a bdly is understood to mean an absolute
number that will give the area of the section ofspéerical surface that will define the
solid angle when then vertex coincides with the ceoitéhe ball. All of space will then
correspond to the solid angte = 4/7; in short, the solid angle shall be employed to
measure surface areas in precisely the same way timatr plagles are used to measure
arc length.

If df happens to be perpendicular to the distanfrem the reference point wf then,
by definition, the associated solid angle will be deired simply from the equation
a’dw =df. In other cases, one must replaeatself with the projection ofif onto the
spherical surface that is drawn from the reference pdilawever,dh is perpendicular to
df, andda is perpendicular to the spherical surface, sdewas the projection ath onto
the radiusa. The angle betweadf and the spherical surface can be set equal to the ang
between the two normals. One will then géftla/ dh for the projection oflf onto the
sphere, and therefore:

df da
dw= 75
a2 dh’ (75)
Eq. (74) can then be written:
dv= L gh dw (76)
ar

with the use of the anglédw, and that equation can be integrated over the entirerap
with no further discussion. If one then observeq(€8) and one understandsto mean
the solid angle that the entire vortex filament satds at the reference point then one will
get simply:

V=—Wa (77)

That is the solution that Gauss gave. One will sespexial advantage that it
possesses when one thinks of the reference point asrheiwrey along a curve that links
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the vortex filament. In order to simplify the picturone might think of the vortex
filament as perhaps circular. One then starts fraefexence point that lies in the plane
of the circle, but outside of the interior of thec@r For that reference point, one must
then setaw = 0, and one will therefore also have to ¥et 0. One then displaces the
reference point to the side of the plane of the eitbht one might refer to as its “front”
side. The vortex filament will now be projected througttonical surface from the
reference point, and the conical angle will @@ The conical angle will increase
gradually when one goes further, and when the reference lpmantraversed the half of
the path that links the vortex filament that liestba front side, such that it will once
more lie in the plane of the circle, and in fact ie thterior of the circular surface, the
solid angle will grow to 27 while the potential will grow toV / 2. One moves the
reference point further along its path until it entbesback side of the plane of the circle.
If one now looks back then one will see the vortéanient subtend a solid angle that
gradually decreases, just as it previously increased. Howewe cannot change the
direction that one is looking suddenly; as before, onstrfook in the direction of the
reference point. Physiologically speaking, one will @& anything at all now, since the
vortex filament will lie behind one. Geometricallyesiking, however, one can always
speak of the viewing angle that the vortex filament suddelong that line of sight. That
viewing angle encompasses all of space with the exceptitime angle that the vortex
filament subtends when one reverses the line of sigtthat sense, the angée will
grow ever broader when one proceeds forwards, and adtdrawe traversed the entire
path back to its starting point, it will grow ta4- i.e., all of space — while it was
originally equal to zero at the same place.

One sees that by this construction, the calculaticeady takes into account the fact
that/ v ds will be non-zero for a vortex filament that linksetpath of integration, and in

fact, it will be equal taV, soV will also change by just as much. The potential that
represented by eq. (77) will be characterized as multiechin that way, and we would
like to stress that fact more strongly by setting:

V:W(ﬂi nj, (78)
4

instead of eq. (77), it means an arbitranyhole number

We started with the double layer and calculatddr external space. However, later
on, the double layer vanished from our formulas getely. We have then found more
than we could have originally expected for suckeatiag point, namely, a representation
of the potential of the field that is generatedty vortex filament that is valid for all of
space, but with the exclusion of the vortex filatigself and including the internal space
of the double layer that was considered before.fatm, the introduction of the double
layer has only a heuristic value. It came aboubby ambition to reduce the vorticity
field to a vortex-free one, but it is entirely desysable for the proof that the solution that
was found in eq. (78) is valid. In fact, one candontent to exhibit eq. (78) without
introducing the double layer in any way, and on# then show, with little effort, that
the vector fieldv that emerges from that potentilpossesses a vortex filament that

coincides in form and strength with the one thas w&en originally. Due to the single-
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valuedness of our solution, it will then follow immatély that it is given correctly by eq.
(78).

Of course, an infinitely multi-valued quantity likéin eq. (78) cannot lay claim to
any obvious physical meaning. It defines only an aid toutaion, from which the
velocity v of the field will be obtained by performing the operation. One has:

b= S WUOw (79)
ar

for v, and the problem that was posed has been solved \aith th

8§ 21. — Another form of the solution that was found.

The last equation shall now be converted further i suway that we will actually
calculate the change in the viewing angidor a displacement of the reference point.
Let an infinitely-small displacement of the referenaoint in an arbitrary direction be
denoted bydr, while the associated changeanwill be denoted byl In order to find
da;, we can also leave the reference point in place ssigraa translational displacement
— dr to the vortex filament. That is due to the fact thea vertices of the two solid angles

that are being compared to each other can be made tapvén the main, both conical
angles will also overlap, such that we need only torebste small deviations that the
circumferences experience.

When the line elemernds is given the displacement dg, the vortex filament will

describe a parallelogram surface whose area can be séteth@absolute value of the
exterior productVds dr . It belongs to a pyramid whose vertex lies at tliereace

point, and whose volume is equal §<ans dx, if a denotes the radius vector from the
reference point tals. The sign of that expression depends upon the diregtiovhich
one has chosen the sense of traversalsof However, in any event, once a sense of

traversal has been fixed once and for all, the sidinalternate according to whether the
pyramid represents an increase of the original conaaine or a decrease.

One finds the change in the solid angle that corresptndse pyramid from the
volume of the pyramid upon dividing k& / 3. Therefore, except for the sign that has yet
to be established, one will have, in all:

dw= J.éans dr = d;jV%ds | (80)

In the last conversion, use was made of a theoratuted before in 86 in regard to
calculating with the geometric product, and the congjaantitydr was moved in front

of the integral sign. Eq. (80) is true any arbitrargpticementl, as long as it is only
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infinitely small. The factor that multipliedy is then the quantity that defined the

negative gradient irw in our previous terminology, and was found by means of the
operator] [cf., eq. (17)]. We then have:

Dm:IV%ds , (81)

in which the integration is naturally extended over tmére length of the vortex
filament, as before. If we substitute that valuegn(&9) then we will get:

w a
U:ZTJ.VEds, (82)

except for the sign, whose ultimate definition waeady omitted in the foregoing
formulas.

The sign determination that still remains to be deneasily obtained from the
remarks in 816 afterwards. With the assumption that is always reckoned to be

positive and the sense of traversal of the vortisitgxpressed by the direction dx, the
sequencels, v, a must lead to a right-handed system in space in ordeqfqi82) to also
have the correct sign. The arrow fowill be determined from a given arrow fds, and

conversely. One can also express that by saying thatlithction around which the
vortex line flows, in conjunction with the directiala of the vortex filament itself, will
lead to a right-handed screw.

Eq. (82) representsin the form of an integral over the closed conducting bf the
vortex filament. It is tempting to resolve this int@ginto its individual elements, and

therefore to establish that each element of lengtbthefvortex filament will yield a
contribution of:

do =V s (83)

to the total field. Thelv that originates from an element of an isolated wofitament is

then perpendicular to the plane that goes through feeeree point ands, which points
in the direction that is indicated by the outstretchétdhiend of the Amperian swimmer,
is proportional to the vortex strengi, the length ofds, and the sine of the angle

betweena andds, and is inversely proportional to the square of theadcsta between

the reference point and the element of the vortemélat. We then have thgiot-Savart
law, which plays such a significant role in the studlglectromagnetism. However, at
the same time, we see that its validity is not iestl to that special case, but that it is
based upon a general property of vector functions.

That raises the question of whether we have actuathgen the simplest-possible
case, as we did when we examined the field that wasrgjedeby a single vortex
filament. It is tempting to think that the simplesseavould be defined by the field of a
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single element of the vortex filament. Howevert tvauld be a mistake. If we wished
to consider the field that is defined by eq. (83) themwald soon find that the vortex in

it cannot be shrunk to the elemelatat all. Rather, as soon as one performs the operatio

curl on the value oflo that was given by eq. (83), one will convince oneself dfiabf

space will be filled with a system of vortices in thatyw#@ne should not have expected
things to be otherwise from the outset, since we héready found previously that diwy

is always zero, so an isolated element of a vortaxfint with a beginning and an end
would be a geometric impossibility.

The use of eq. (83) is then allowable only to the exteat one agrees to later
integrate the expression over the entire extent ofvtneex filament. Eq. (83) should
always be considered to be only a preliminary form of{&2), whose validity is all that
must be proved. There is absolutely no reason fort@rspeak of, e.g., the magnetic
field that is generated by a current element (or of amehtary potential between two
current elements, as in Helmholtz’'s older theoryletteodynamics). One will then fall
victim to a fallacy that is rife in the history ofetlstudy of electricity.

8 22. — Directed sources and Ampére’s vortices.

The ambition to reduce the vortex filament to evenpter elements from which the
latter can be thought of as being composed is compl@istified in its own right.
However, from the foregoing discussion, that procems ltsappen only when each
element again defines a closed vortex filament whenntdke itself. The only
simplification that our problem can admit will themstst of shrinking the vortex line to
an infinitely-small region.

In fact, a vortex filament of finite extent wilhahys be composed of a doubly-infinite
number of vortex filaments, each of which extend @rdy an infinitely-small region, in
a different way. A decomposition of that kind was adhe carried out in 87, and here |
will be content to refer back to that discussion.

The decomposition into elementary vortices likewibeves a new aspect of the
relationship that exists between sources and vorticeshasdalso been emphasized
repeatedly here. An elementary vortex — and thus, sedlovortex filament with
everywhere infinitesimal dimensions — requires thaémain flux must flow through its
opening, while a source requires that a certain flux ewnstnate from it in all directions.
As the cause of a field, the source does not possessl-alefined direction, but the
vortex probably does. One can regard the elementaryxvasta directed source, where
one naturally has in mind that the elementary vortex doésllow newly-created fluid
to stream into the field, as the source would, but ordyqites a current in the fluid that
is present already.

The complete exposition of the comparison encounkerslifficulty that one cannot
say how large the flux through the elementary vortexois in other words, the
productivity of the directed source) without first makingnare detailed analysis of the
cross-section of the vortex filament and the distidn of vorticity over that cross-
section.

We cannot therefore give too much significance to tt@mnparison. | have
mentioned it mainly because what one refers to aspafied force in the study of
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electricity has completely the character of a dedcource. We can conclude from our
discussion that we would do better to replace applieddartehat kind with the vortices
that correspond to them.

Here, | would like to recall one of the most celebraeamples of an application of
what | am trying to teach here. One is first complelte study vortex fields in the study
of magnetic phenomena. One initially assumes tlenhtagnetic field of a steel magnet
is vortex-free, but then finds that an electric currenatates a magnetic vorticity field,
which is how Ampere showed that one can best explaiplienomena in steel magnets
when one regards their fields as vorticity fields. Thelecular currents that that flow
around an iron molecule, according to Ampere, areagt basically only elementary
vortices that explain the field.

In my book on Maxwell's theory, | have listed a esrof reasons that contradict
Ampere’s hypothesis of molecular currents, and | am d¢etely convinced that this
hypothesis is false and untenable in its original forfime fact that the hypothesis has
been preserved for so long and the fact that it migtg giquite satisfactory account of
many phenomena stems from the fact that, on the b#et, it also comes quite close to
reality. It was a fortunate inspiration to liberabe study of magnetism from the idea
that physical fields must always be regarded as voresx-#ind derived from sources,
which has been customary since the time of Newton. ylax#e might be more certain
that the magnetic fields in the interiors of hard magnabdies are not vortex-free and
that any concept that avoids the use of magnetic masgksallows vortices must pave
the way for a giant step forward in the understandingagnetic fields.

None of the objections that have been raised agAmgere’s theory since the time
of its creation have been directed against the notioalerhentary vortices, but only
against the identification of the vortices with electurrents, since in order to explain
the phenomena, one needs a vortex for the f&Jdand not for the field), as in
Ampere’s theory.

| have briefly touched upon that, in part, still not gdetely explained physical
problem in order to point out the close relationship &hasts between the questions at
issue and the general theory of vector functions. héery of magnetism will first attain
its definitive form once the entire scope has been meahthoroughly and consistently
with the tools that are given by the geometry of vorfeelds. Experimental
arrangements of the kind that are familiar to thé keewn researchers in the theory of
vortex-free fields cannot lead to any definitive restilere, since experiments only allow
one to resolve the admissibility of intuitions thatrevalready considered to be possible
up to now. They do not teach one about any new contiegitare probably still lacking
(at least, for the moment). Those concepts mudebeed in a different way.




CHAPTER FOUR

THE VORTEX INTEGRATION OF SOURCE-FREE
VECTOR FUNCTIONS.

§ 23. — The vector potential.

The problem of determining the field that is created lgyvan vortex filament was,
in fact, solved already in the foregoing chapter. Howeter solution was not entirely
satisfactory, due to the detour that was taken in lite feduction of the field to a vortex-
free one that one introduced for the sake of examiniaghtorems that would be valid
in that case by means of a double layer represented aakrtirat would ultimately drop
out of the final result and that indeed showed us howntbthie correct result, but by its
application, we overlooked a method that would be bsttiged to the type of problem.

Instead of ordinary potential theory, which has a stnmpéaning only for vortex-free
fields that is so rightly established that it can désal to a solution here, in the case of
vortex fields, one would, in fact, do better to aband@nauxiliary quantity completely
and look for a replacement for it. Due to the alyeaf-emphasized kinship between the
two classes of fields, one might expect from the dutsd one can also give a function
for the vortex fields that relates to them in the samay that the potenti® relates to the
vortex-free fields that are due to sources.

We then seek a quantity from which the source-fred fiedan be derived by means

of a differential operator in just the same way that tbrtex-field field was previously
derived by the operator(]. In other words, that also says that we would liklvdd for
a different kind of geometric integration for a given sediree vector function =f (v).

The source quantity that we seek cannot be a scalag, wed&now of only one kind of
spatial differentiation for scalar fields (namely), and, as we saw before, it will not lead
to the desired result. We must then seek to determinetar faaction?l = F (r) such
that it can be regarded as an integral of the givectifump =f (¢) ; i.e., such thab will
emerge fron®l by spatial differentiation. | therefore place sovaéie upon emphasizing
this relationship between the quantit##sandv and the connection with the integration

problem of the ordinary theory of functions.

We know of two kinds of spatial differentiation foector functions: viz., the div and
curl operators. Only the second one can come underdepason here, since the first
one would lead to a scalar quantity. Only one possibifityeniving the desired integral
remains open then, namely, determinh@ such a way that it satisfies the equation:

v = curll. (84)

Naturally, 2l is still not determined completely by that equationwAth any integration,
an arbitrary quantity can appear that plays the roleaftegration constant. Namely, a
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term®(, can be added to any solution of eq. (84), which might be aervate totally
arbitrary function ot that only has to satisfy the condition:

curl2p = 0. (85)

The function?ly is thus characterized as vortex-free, but it can b@gmed an arbitrary
system of sources d¥.

Among all of the solutions of eq. (84) that are posdibldat way, we would like to
choose the simplest of them, namely, the valug diat is likewise source-free in all of

space. In order to determine the integration problem uniguadywould then like to
arbitrarily establish that the source quaritghould fulfill the auxiliary condition:

divel = 0. (86)

One obtains the fact that is determined uniquely by equations (84) and (86) and the

obvious condition that it should vanish at infinity inufregely from the theorem that was
proved in 819 that a source-free vector function that does not exteimdingy is defined
uniquely by a system of vortices.

In the theory of electricity, the teraector potentialis introduced for the integral of
the functionv that is determined in that way. It does not emergarlglenough from that
terminology that one is dealing with a simple integmati It might also be permissible
then to refer to the vector potential as tlmetex integralof the functiono. In fact, a

more precise terminology that shows directly that mndealing with the inversion of the
differential operator curl is also desirable because egeires a symbol for the operator
that cannot be abbreviated by pot, since that was usstiglwith a different meaning. |
shall therefore employ the abbreviation VWVirpelintegra) for the vortex integral and
set:

A= WJo (87)

as the inversion or solution of eq. (84) with the afeehoned auxiliary conditions.

§ 24. — Obtaining the integral.

We shall next perform a spatial differentiation of €&1). When we recall eq. (70),
the operator div will yield diw = 0. We see from this that the vector potentialiised

only to the investigation of source-free fields, justtesscalar potentidl was suited to
only the investigation of vortex-free ones. By corfrdse operator curl yields:

curf A = curlv = . (88)
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The vorticityro of the fieldv is thus introduced here once more. Another converdion o

this formula can be made that only comes down to a diffearrangement of the
individual terms on the left-hand side when one thinksheft as being developed into

coordinate expressions. Namelygifdenotes an entirely-arbitrary continuous field then

one will always have:
curPF=0divgi-0°F . (89)

One will find a proof of that theorem in my previous boef.[(72), pp. 59], but it
can also be easily proved by itself when one exprabsesymbols that appear in it in
coordinates using the prescription that was given befdken applied to the vector
potential, and when one recalls eq. (86), eq. (89) will give:

curP L = -2 . (90)

With that conversion, which already plays an impdrtate in the older theory of
electricity, although it does not appear as clearly thsré does in eq. (90), due to the
details of the calculations that are linked with itréheeq. (88) will go to:

0% A = - 1. (91)

That equation has just the form of the Laplace-Poissquation for the scalar
potential. The only difference between the two casesists of the fact that eq. (32)
refers to scalar quantities, while directed quantitiggremto eq. (91). However, that
difference does not prevent one from adapting the saliatiche Laplace equation that
was found before to the case that is now under scrutiny.

Namely, if one decomposes eq. (91) into its comporedotsy the directions of the
three coordinate axes then one will get:

A =—wy A, =— W, , 1 Ag=—w, (92)

when one denotes the components in the usual way.

The componentA; of the vector potential therefore likewise defines Hualar
potential for a source-distribution of intensity, and naturally the same remark is true
for not only the other two coordinate axes, but alsoafoy arbitrary direction in space

onto which we project the vectaisandtv.

The unique solution to the Laplace equation with the itondthat is also valid here
that the potential should vanish at infinity was given by(2§), and we will then also
have:

1 =wdr

Al=—| —. 93
! 4T a ©3)

A, andA; can also be calculated in the same way, and theXatah be composed by

geometrically summing its components. One will onceenfimd all of the components
of v in that way and obtain:
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A=—| ——. 94
4 a o4

It does not emerge from this derivation whether the tionc( that was found
likewise satisfies the condition that div= 0. We shall convince ourselves that this is
the case later. If we differentiate eq. (93) withpezs tox and observe that onby will
change under a shift of reference point then once wé@&dtdy andoAs / 0z to the other
two terms, we will get:

div et = - [“wm=dr. (95)
4T a

In order to calculate that integral, | start frora tbllowing equation:

div(imojzldivm oMl (96)
a a a

which is merely an identity, as one can convinceself by developing the individual
terms [seeMaxw. Theorieeq. (78), pp. 61]. However, the first term oe tight-hand
side will vanish from eq. (70) and from the meanihgtto has in the present case. The

value that was found for di% before can also be replaced with:

divﬁlzijmdiv(—lﬁbjdr. (97)
4 a

1 o .
However, the function-t does not extend to infinity, singe does not extend to
a

infinity to begin with. When the integral is extid over all of infinite space, it will
yield the value zero, as was found already in 8g. The required proof is complete with
that, and eq. (94) will then, in fact, define theique solution of eq. (84) with the
auxiliary conditions that were imposed upon thaftgmn.

Finally, 1 would like to point out that the agreemh between the Laplace equations
for the scalar and vector potentials once moreicosfthe close connection between
sources and vortices. One has the reciprocalsmorelence:

In vortex-free fields In source-free fields
Sourceq Vortex o
Scalar potentiaV/ Vector potentiafl
Operator] or div Operator curl
Operator- [J? Operator cufl
eg. (32) eg. (91)
eq. (29) eq. (94)
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§ 25. — Connections between the functio®§, v, tv.

It is useful to once more clarify the reciprocal cartioa that exists between the three
functions?, v, to. To that end, | shall give the following summary:
Any quantity in the sequence:
2, 0,10

will be the vortex integral of the one that follovisand conversely, it will be derived
from the one that precedes it by the spatial differgatiacurl, so:

p=curl2A, w=curlo= curf,
(98)
p=WJlt, 2=WJ= Wih.
Once might also write the last formula as:
2 = potiv, (99)

such that operator symbol pot will be identical to®WJ

Naturally, one can also think of the sequence of fans®!, v, v as being continued
arbitrarily in the same way to the right or left. elrelations that are expressed by
equations (98) will then exist between each of group of thueeessive terms in that
entire sequence. That is a result of eq. (94), by wdnehwill be in a position to actually
perform the operator \¥dr pot.

In order to the find, e.g., the term that immediafeigcedes the ter®i in the total

sequence, which might be denoted¥yyone sets:

wpdr

1
%—potn—ﬁj. e (100)
and one will then have:
A=curlX, v=curlA=curfx, w=curlo=curfx, (101)
and likewise:
b=WJw, 2=WJv=WZFw = potr,
(102)

X =WJIA =WJF o = poto = WF ro = WJ potrw = pot Wtv.

An important relationship between the terms in the ssmpiemerges from this
summary. Namely, whemn is given, one can derive the associated vortex int@gial
two different ways: One might first take the curlvond look for the potentiab that is

found from it using eq. (94). However, in place of thaicess (which is the only one
that was discussed up to now), one can conversely atsaléifine the potentiat of v
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and then derive the desired functi®inwith the help of the curl operator. One will then

have:
2L = WJv = pot curlo = curl poto . (103)

The operator symbols curl and pot can then be transpodbd sequence, as if one
were dealing with only source-free fields, and when bdtthem are composed with
each other, that will give the vortex integral WJ.

All of those considerations can also be adapted t®¢htar potentiaV, the vector
field v that belongs to it, and the source systenWe can also extend the sequeYice,

g by arbitrarily many terms to the left and right sot i@y term can be obtained from the
foregoing one by a spatial differentiation, and indeeghit be derived by alternating div

and- [J. That kind of differentiation brings with it thadt that the terms in the sequence
will be alternately directed and undirected quantiti€sr example, if one assumes that
the terms before and after any term, which must betkdztors then, as well as being
assumed to be vortex-free, then the sequence will ppsednd like:

M, V, v, q,p.
One will then have:

V=divil, ov=-0V=-0divo=-0%9M. (104)

In the last conversion, one must observe the ideatjty(89) and the condition that
one should have cu?it = 0. However, it follows from the last equation tHa concept

of the vector potential (or more precisely, the conoédat directed potential, in general)
can also be adapted to the treatment of vortex-fieddsti Namely, one gets from eq.
(104) that:

M=— —. (105)
4 a
We already know that we can set:

q=dive = - divOV =- 0.

By contrast, we will arrive at a new relation when ¥eus on the ternp in our
sequence. We will then have:
p=-0g=-0dive =— v, (105)

in which the condition that should be vortex-free was essential. We get the saluti

b :—j”p—dr (107)
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from the last equation, and with that, we have, in fadecond method for calculating
the field quantityp when the sourcq is given, along with the one that is usually given.
In order to do that, we need only to construct the gradieldp = — [Iq of the source

intensityq and define the potential from that using the usual rulealotilation.
These discussions can also be summarized in one @uuttat defines the
counterpart to eq. (103), namely:

pot[Jq =0 potq, (108)

which is fulfilled for any scalar functioq of a radius vector.

8 26. — Solving the main problem with the help of the vector pential.

Previously, we proposed that the fundamental problemh@fgeometry of vortex
fields was to find the fiela that belongs to a given vorticity distribution However,
the functionio is necessarily source-free, so the solution to tha prablem will already

be included in the foregoing discussion. In fact, it aadynes down to performing the
vortex integration:
v =WIw (109)

on the given source-free functiom From eq. (103), that can always be done in two

different ways that both lead to the same objective.
Ordinarily, one will first define the vector potenti by the rules of calculation that

were given in eq. (94) and one will then find that curl 2, However, one can also
conversely first derive an auxiliary quantityy setting:

3 =curlw (110)

and then ged from that in the form of a vector potential:
o= »3dr. (111)

Naturally, that not only solves the problem for the cafsa single vortex filament, but
also for any system of vortices, with full generalignd that will show directly how
much this method overlaps with the one that was disdusg@e precious chapter.

Meanwhile, the equations also simplify considerably dosingle vortex filament.
When the vortex strength is denotedWyand an element of length of the centerline of
the vortex filament is denoted by, as before, one will get:
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g{:_j_ (112)

for the vector potentiall.

The formulas of the previous chapter also emerge frbim Wwith no further
discussion. The operation curl, which must be appbethé latter expression in order to

obtainv, relates to only the variability of the position betreference point. However,

only the distanca depends upon the position of the reference point in eq.,(ata&)any
element of the integral contributes to crindependently of any other one. Now since

one has:

curl (ldsj = 1curl ds + V(Dijds (113)
a a a

identically and in general, as one easily assumssalf by calculation [se&axw.
Theorie eq. (80)], whileds is constant here (so cald will be zero), one will have:

b :curlm:ﬂjV(DEst, (114)
4T a

which will once more imply eq. (82) directly upoppying the operatolr] to 1 /a.

That formula can also be derived by the secontheftwo methods that were just
discussed. Of course, the second process isuéesd $0 being applied to isolated vortex
filaments, since it would require somewhat cumbeescalculations here. | shall thus be
content to give a general outline of the solution.

One first focuses on the fiejd- i.e., the vorticity that is produced by the giwertex
filament. The field; is contained entirely in the space that the vofilarment occupies.
The streamlines gf encircle the centerline of that filameptis zero everywhere outside
of the filament, likew itself. It would be simplest for one to imagimat the vorticityWw

is distributed uniformly over the cross-sectiontl¢ filament up to the vicinity of the
boundary, since one can distribute that vorticityitearily. 3 will then be concentrated

on the surface of the filament, and it will be pErgicular to the longitudinal direction
there. | draw a half-plane through the elentnof the centerline of the vortex filament

in an arbitrary direction and calculate how larige tlux ofj that flows through the half-
plane that belongs tds will be. With those preliminaries, | perform thegration that

is prescribed by eq. (111) over the space of tleeneht of the vortex filament that
belongs tads . If an element (that is a second-order infinited) of the boundary of the

cross-section is denoted @y then one will get:

rods d_s
4’ a
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for that integral, where the integration is extendeer dkie entire boundary of the cross-
section.

However, with an extension of Stokes’s theorem {fdnich | must refer to my
previous book, 81), the line integral of a scalar over a closed curve @avays be
replaced with a surface integral over the surface tthatcurve encloses. From that
theorem, one will always have:

J%ds’ - jV‘ﬁDédf. (115)

The unit normabt to the cross-section of the vortex filament thaeeninto this,

whose element is denoted 8y points in the direction of the centerline so, exdepits
sign (the discussion of which can be skipped here), ittpamthe direction ofds.

1 . "
Furthermore, 910 — can be regarded as constant over the entire crosergesitice the
a

surfacef is itself infinitely small andt is constant. If one considers that the contribution

to the integral (111) that is due to the element of théex filament can also be set equal
to:

ot f VdsD1 or ﬂVdle
4TT a 4TT a

then that will once more lead one to eq. (114) wivem performs the integration owekr
(except for the sign that was left undetermined).

8§ 27. — Flux between two vortex filaments.

For the time being, let only one vortex filamemptdiven in a field, and | will denote
that filament by the index 1. In addition, a cld$me shall be given that will be denoted
by the index 2. One must then calculate the fiyx that the vortex filament 1
communicates to the line 2, or as one can alsotBayflux that is linked by the line 2.
That flux will be represented by a surface integreér an otherwise-arbitrary surface
whose boundary curve is the line 2, and the terlmgyooriginates in the fact that for the
hydrodynamical construction of the vector functiathe surface integral will measure the
fluid volume that flows through the surface pertdinne. One then has:

Fio= [0t df (116)

for the defining equation for the fluk;, , when one expressly agrees thaneans the
field that is created by the vortex filament 1 dhdt the integration is extended over a
surface that is bounded by 2.

If one observes that one can set curl2( then one will also get from eq. (116) that:
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Fio= [2ds, (117)

by an application of Stokes’s theorem, in whitth means a line element of curve 2 over

which the integration is extended.
Finally, the value oR( that was established in eq. (112) can be substituted above,

from which it will follow that:
W ¢ ds, ds
Fio= — || —2—2. 118
0= [ (118)

The double integral that appears in this equation depends apothe form and mutual

positions of the two lines 1 and 2. It already playedhgortant role in the older theory
of electricity, and in that context, it was refertedas thecoefficient of mutual induction

of the two lines 1 and 2. If we set:

Liz= [[ ds, ds, (119)

to abbreviate, then since the sequence of both integsatian be inverted, it will follow
that:
Lo =L12; (120)

i.e., when the line 2 carries a vortex filament & #ame strength that line 1 did before,
line 1 will now be linked with a flux that is just asdaras the flux that linked line 2 in
the previous case.

One can also let the two lines 1 and 2 coalesce ireo dine double integral (119)
will then become logarithmically infinite, like the flux that links the vortex filament
itself, in the event thatV has an infinite value. The basis for that is ¢asgee: For a
finite value of the vorticityV that is concentrated on a linewill be infinitely large in

the immediate neighborhood of the line. One can tmy calculate theoefficient of
self-inductionof a vortex filament when the distribution wf over the cross-section of

the filament is given. The flux that is generated lwp#ex filament, and is at the same
time, linked by it, is carried at most by the closeghborhood of the filament, and
therefore it is not permissible in such cases to thinkhefentire vorticity as being

concentrated on the centerline.

§ 28. — Coefficient of induction between two coaxial circles

Up to now in this book, which is mostly devoted to thscussion of fundamental
guestions, | have avoided performing the peripheral calonor going into the details
very thoroughly. However, due to the considerable practsiguificance of the
coefficient of induction between two coaxial circléshall make an exception for that
topic.

When one refers to the figure below for the notationg will have:
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ds; ds; =ds, ds cosé .

| next extend the integral (119) over the upper circlee Ras:

a= \/e2+(rzsin¢)2+(r2 cogp-r, § = \/02—2r1r2005¢,

when one set&® = € + r2 +r2, to abbreviate. Since one further bas=r, dg , one will
get:

cospds, _ 5 T cospdg |
I a rz'([\/cz—Zrlrzcosyﬁ

That integral is an elliptic one. In order toued it to its Legendre normal form, one
sets:

The quantitys that is determined by that is always a propertiivac since when one
subtracts the numerator from the denominator, alelways get a positive result. The
totalL,2 can now be written on the form:

, (121)
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since the integration oveds, can be performed by simply multiplying by the
circumference of the circle 1. From the symmetry ablo@itcommon axis, one sees that
each elemerds, will make the same contribution La- .
With the substitution:
p=m-2y, (122)
eg. (121) will go to:
amrr, "¢ Asirfg - 2

cy1+€2 I

0 1-

dy (123)

L=

2% .
n2
1+ &2 sin ¢

and that expression can be further decomposedhatsum of a complete elliptic integral
of the first kind and one of the second kind, stiat one will ultimately get:

Lip= ﬂ{F(%,kj—(ﬂez)E(l—;kﬂ, (124)

ce?y1+¢€?

2
k=,| 2 _=p|_ Bl (125)
1+¢ e +(+r)

to abbreviate k is also always a proper fraction then, &ngican then be found from eq.
(124) with no further analysis with the help of leegire’s tables.

That development also allows one to calculatectiefficient of self-induction of a
circular vortex filament to a suitable degree oprmximation. Let the cross-section of
the vortex filament over which the vorticity/ is assumed to be distributed uniformly be
a circle of radiug, which might be regarded as being very small caagp# the radius
of the centerline of the vortex filament. One wilen wish to calculate the total fli
that is created by the vortex filament and linkes ¢enterline of the filament.

To that end, | draw a circle that is concentrithte centerline whose radius is smaller
thanr by 0. Therefored shall be small compared {0 and large compared tQ but
otherwise chosen arbitrarily. We first calculdte flux that goes through the surface of
that auxiliary circle. To that end, we set:

in which one sets:

52 k_ 1 52

e=0, ry=r, ro=r—2, E=1-—,
! ? 2r? 4r?

in the foregoing development, in which small quiegi of higher order are neglected.
The modulusk in the elliptic integral that occurs in eq. (121jﬂ)‘ers from unity by only a
second-order infinitesimal. From known series dgwaents (), one can set:

2 2
F(’—T,kj: In§+(—1j [Ing—l}%+
2 o \2 o |4

() Cf., SchlémilchCompendium der héheren Analysis2, 3° ed., pp. 322, Braunschweig, 1879.
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2
E(I—T, kj: 1+£[Ing——l}i2+
2 2 o0 12| 4

Meanwhile, due to assumption that was made abeutidgnitude of the ratid/ r, the
second term in this development can be droppeca v@lihthen find that:

8r
Lio=4mr | In—-21,
y ( A j

and the flux that goes through the surface of thaliary circle will then be:
8r
Fio=Wr|In—-2|.
w=wr(n% 2|

Another flux flows through the annular surfacewofith o — p that lies between the
auxiliary circle and the boundary of the vortexafilent that is easy to determine. The
absolute value of the velocity at a distancefrom the centerline can then be set to:

w
V= —
27T X

in the strip that is currently of interest to usddrom that, the flux through the strip is
found to be:

A o
2mjvdx:WrIn—.
» P

All that remains is the flux that flows through timéerior of the vortex filament. We get:

W x
V= 5
2mp

here in a similar way, and the flux will then bauattto:

P
2m.[vdx:m.
5 2

If we now combine all three terms together thenmilkeget:

F=Wr (mg—éj (126)
o 2

for the total fluxF that links the centerline.
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The quantityd that was previously chosen arbitrarily will vanish fréine ultimate
formula. The coefficient of self-induction will folv from that equation when one
divides byW/ 47z so:

L =4rmr (Ing—gj : (127)
p 2

8 29. — Different interpretations for the vector potential.

The scalar potential was introduced in § as a line integral of the field quantity
and the deep significance that the concept of potentiayenp physics is based, in
particular, upon the fact that this line integral wilpresent an amount of work done
when the fieldv is a force field. Meanwhile, once we have recognizes ¢lose
relationship between the vector potenfiabnd the scalar potentigl we cannot avoid
the question of whether we can also find a similargretation for2(. However, since
not much seems to have come to light from that inyatson, | will touch upon it only
quite briefly.

The origin of the entire splitting of the theoryadctor functions into two closely-
parallel parts, so the juxtaposition of sources anticas;, of scalar and vector potentials,
lies in the two types of geometric products that one oam.f SinceV is obtained from
the field quantity and the element of the integratiorh paith the help of the inner
productv ds, we must suspect from the outset that a correspondpgesentation that

might be possible fo2 can be obtained with only the help of the exteriodpct.
The next thing to do is to form a vector line integralhef form:

A= jVnds (128)

and examine whethé&X, or the difference between tRés at the endpoints of the path of
integration, can be represented in that way. Howeweoyrder for that to be true, the
integral must be independent of the path of integratien,; it must vanish for every
closed curve. | already proved i38 of my Maxw. Theoriethat this can never happen
(except in the trivial case of a constant field). Oae therefore arrive at a unique value
of 2 with the help of an integral of the form (128) only whare makes a particular
choice of the path of integration.

In fact, one can also come rather close to ongsctive in that way. Namely, one
selects an arbitrary constant direction in a field andigli@straight line to infinity in that
direction from each point in the field. The vectoegral | for that path of integration

(which extends from the given point to infinity) wilhén have the entirely-remarkable
property that the field quantity can be derived by means of the operator curl. The proof

of that is easy to carry out, but it shall be omittede.
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Nevertheless, the value &fthat is defined in that way will not be identical to the
vector potential. Indeed, both of them belong to timessystem of vortices, b is not
source-free. For another choice of integration patle, might succeed in making d&
equal to zero, such th&twill then coincide with( completely.

The concept of work that is represented by an inner ptadands in opposition to
the concept of static moment. In fact, the vectoteptial of a force field has the
meaning and dimension of a static moment. If one shaflassigning a well-defined unit
of force to the field quantity at each point of the aforementioned integration pagi t
all of those segments will fill up a certain surfalattwill give the value of the integral
as the area of that moment surface. If one succeedsanging that diR vanishes
every point of a path of integration then the magnituae drection of2l can also be
represented quite intuitively by the area of that mdmsarface.

Naturally, I do not give very much weight to those coesations. They serve only to
make more intuitive the concept of vector potential, wioicl cannot properly represent
as long as it is introduced only as the source of thd, fence one knows that it
represents a static moment, in contradiction tosttedar potential, which represents an

amount of work done. | do not remember having ever readstimle, but entirely
relevant, remark anywhere.

8 30. — Another derivation of Gauss'’s expression for the scalaotential
of a vortex filament.

There might possibly be some interest in a smallrkrthat | would like add here.
In eq. (120), we found thdt;> = Ly, . The fieldv that is created by an isolated vortex

filament can then be calculated from that as follevith the use of the analysis inl§:
We place the reference point at whicls to be determined at an arbitrary location in

an infinitely-small planar surface of aréa Obviously, we will knoww when we are

given the amount of flux that flows througlfor each location on the surface. However,
from the theorem that was just stated, the fluxug ps large as the flux that a vortex
filament of the same strengtl communicates to the given vortex filament itself when
the centerline of the new filament coincides with toatour off. In order to calculate
the flux, we replace the new vortex filament with allole layer+ Wf/ h. The positive
part of that layer communicates the flux:

Wfw

h 4

through the given vortex filament, whemonce more denotes the spatial angle that the

given vortex filament subtends at the reference poidfe also have the flux that
originates from the negative layer. If we combinetthe then we will get:
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—_— r

h 47 dh dh

Wf 1l do _fd(Mj
ar )

The component af that falls along the direction fis therefore equal to the minus
the differential quotient dNw/ 4/roverh ; i.e.,v can be derived from the potential:

V:M
4

everywhere outside of the given vortex filamentjohhwas to be proved. One might
perhaps consider it to be an advantage of thivatéwin that the introduction of the solid
anglewinto it is entirely natural.




CHAPTER FIVE

ARBITRARY FUNCTIONS. SPATIAL SUMS.

8 31. — Arbitrary vector functions.

Up to now, we have always spoken of vector functioas Were either only vortex-
free or only source-free. It now remains for us tonstizat any arbitrary vector function
that is assumed to be only continuous and to not extemafibity can be reduced to
those two forms.

Whenv =f () is given, one next defines the functiaps div v andw = curlv, the

first of which gives the associated system of souraed,the second of which gives the
system of vortices. [§f andw are given then conversety will also be determined

uniquely in that way, because the geometric differendeofsolutions that can perhaps
be given in all of space will be both vortex-free aswlrce-free and must therefore
necessarily vanish, from an argument that has alrbeely used frequently.

All that is necessary then is for one to define theexefree fieldv; that belongs taqj

and the source-free field, that belongs tav, using the prescription of the previous

chapter. One will then hve that:
b =b1+0o

is necessarily equal to the function that was givegirmally, and in that way, it is proved
that any function can be decomposed into a vortexefo@gponent and a source-free in a
unique way. One now has the two components in hand,rsndam then apply the rules
that were developed before to them. One does not ndedkdor a link between the
two, since both of them can generally be completelgpedident of each other. If a
relationship exists between the two in some specis¢ ¢hen the functions will be
determined more precisely in that way; they will ceasee completely arbitrary.

One can, e.g., investigate the properties of functiong/hich both components are
either equally-directed or perpendicular to each otheryedere or for which one
component is a linear vector function of the other, d&tenight be that one can arrive at
many interesting results in that way. However, thgsgcal applications of the theory
would hardly take on a special sense in that way.

Of greater interest is the study of functions thataona scalar independent variable
in addition to the vector. One then sets, say:

b =f(t1). (129)

If the variablet means, e.g., time then that equation will represesdrginuously-
varying field, while the simpler equatien=f (r) will refer to a stationary field. The total

differential dv that one obtains when one increasesidt by ot anddt can then be set
to [cf., eq. (59)]:
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Jv =100 ot +1Vr dc + %m. (130)

In general, the increases and dt in that equation are completely independent of

each other. In special cases (nhamely, in hydrodynanmeaistigations), it is often
necessary to determide more closely, such that one sets:

ot =y Ot. (131)

That is due to the fact that one follows the evolutbma particular material particle that
has been singled out. One then refers to the quotiehi ahddt as theotal differential

guotientof v with respect td, and eq. (30) will go to:

% =100’+1Vwo +%. (132)

In hydrodynamics, that equation is employed for the pu@rpafsexpressing the
dependency of the field quantiiyont, so expressing the partial differential quoti@nt

ot (which is basically the only thing that it comes dowhih terms of the forces that act
upon the fluid. Ifp denotes the pressuff, denotes the external force per unit volume

(usually the weight), which we would like to assume lsarmerived from a potential, and
M denotes the specific mass then from the basic lawslyoamics (so from an
experimental law that gets mixed with the function-tleéio investigation here), one will
have:

do

pr==0p+P=-0(p+P)

for a frictionless fluid, and one gets from eq. (132) that:

g B E-ILELEL IS ) VN (133)

in whichL denotes theis vivaper unit volume.

The process of investigating the evolution of a phygoatess is similar in all cases.
One always seeks to present a differential equatidheotype of eq. (133) that is based
upon experimental facts or some hypothesis by which th@lpdifferential quotient of
the field quantityp with respect to time is made to depend upon the instantanatues
of the field.

Often (and also in hydrodynamics, in particular), om@s at some simple and quite
remarkable results by such considerations when one examaotee variation of, but

that of the vorticityw, as Helmholtz did. It follows from eq. (133):
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a_m: ~1curVw v, (134)
t 2

and that expression can be converted even further usniprimulas of vector analysis.
However, in order to derive Helmholtz’s celebratedthen, it is simpler to calculate the
change that the surface integral:

jm‘ﬁdf,

which is extended over a variable surface that always fweugh the same material
particles in the fluid, experiences in time. Fromkes’s theorem, one will have:

%jnds - j%dﬁjnmdsm)n - I%ds+%j(dsﬂ)nz,

since the variation thads experiences during the time elemelttis equal to the path
difference at the two endpoints @f, which is therefore equal tal{ [J) v dt . However,
the last integral above will vanish when we extendviéraa closed curve, and one will

have:

d _rdo
ajmmolf _jads, (135)

which is, for the time being, not even based upon any gdiyisypothesis.

When one appeals to the basic equation of dynamicshendssumption that the
external forcel is vortex-free, it will then follow that the vorestrength of a filament
that is composed of the same fluid particles is cohgtaime.

Of course, those discussions can lead quite fardafiem the realm of actual field
geometry. In fact, the geometry of fields alwayseast into field kinematics or field
mechanics as soon as one makes a definite assumpticegand to the connection
between the scalar differentiationwvith respect td and the spatial differentiations that

can be performed with respectito However, in the absence of such a connection, the
rules by which the function depends upoandt are already included in the previous

ones. It then seem preferable to me to exhibit a stami example of the type of
experimental facts or physical hypotheses that one roahbtto link with the rigorously-
valid theorems on the general properties of vector fanstin order to derive physical
theories from them.

§ 32. — The field as a system of segments.

We shall now go on to the definition of spatial surhgawious kinds. We understand
a “spatial sum” to mean the result of any summatieer @ll of infinite space. In 8, |
already discussed the simplest kind of spatial surh dha can define from a given
function v, namely, the integrdlv d7, which is extended over all of infinite space, and
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which | referred to there as the “field sum,” in pargecu There, we found that the field
sum is equal to zero for a source-free field, and thabther fields, it can be easily
calculated from the distribution of sources. It wllen follow that, among other things,
one always has:

j“mdrz 0, (136)

since the functionv is always source-free. That equation defines a remarkabl

counterpart to the ong@qurz 0 that was found before, and we see once more how
sources and vortices agree in one important property.

Instead of simply summing the vectarsdz, one can also pose the problem of
combining thev d7 in that same way that one combines forces that@pied to a rigid
body. If we, in turn, think of dr as a force that acts upon a volume element theof all

the forces that were obtained can be replaced withsaltant that goes through an
arbitrarily-chosen point of application and a forcexgle. The resultant corresponds to
the field sum that was calculated before, while the nmhraéthe force-couple is yet-to-
be-determined. If we letdenote the radius vector that points from the esfes point of
the resultant talz, which is likewise the lever arm of the foreealz, then the moment of

the result force-couple will be:
m=["Vordr. (137)

That expression will be independent of the choice ahemt point from which the radius
vectort is drawn for the case of source-free fields. Nam#lpne next extends the

summation over a closed current tube then one will get

jvadsr or Fdesr,

whenf means the cross-sectials, means an element that points in the directiarf the
centerline, and v = F means the flux that goes through the current tube.

The integral extends over the centerline of the ctirtebe, and it has a simple
geometric meaning: Nameles v will be given by twice the area of the triangle that
hasds for its base and the moment point for its opposeigex. All of those triangles

will collectively define the surface of a cone by whtble centerline of the current tube
will be projected from the moment point. However, taihngular surfaces must be
summed geometrically in the integration; i.e., one tmgise consideration to the
directions of their normals. If we imagine that wface has been laid through the
centerline in such a way that centerline defines the boyrafathat surface and the
surface itself, together with the aforementioned corscalace, bounds a conical space

then| V ds ¢ can also be set equal to twice the area of that syrtgcto sign, since one
knows that the geometric sum of all surfaces thaectllely define the surface of a body
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of arbitrary form is equal to zero. However, the afogationed surface is completely
independent of the position of the moment point, and dheeshing will also be true for
the momenDii.

The result that one gets for a current tube cantssadapted to the total field with no
further assumptions by summing over all current tubeseindtal field.

The field sum and field momeftt are suitable quantities for measuring the strength

of the excitations of an entire physical field. Oppeals to the field sum for source-free
fields and the field moment for vortex-free fields. sfstem of vorticesv is always

source-free, and one can then regard the moment:
W= [ Vwrdr, (138)

which is independent of the choice of moment point, ggaatity that characterizes the
total strength of the system of vortices. How oneidines it for an individual vortex
filament will emerge from the foregoing discussiorheTmomen) is equal to twice the
product of the vortex strength and the area of the sutfaat encloses the filament in the
event that it is planar. In the other case, the gédorsim of those surfaces must first be
derived.

Naturally, all of those considerations are basicallyy special applications of the
theory of the system of segments to the systemgrhsatsv dr that are present here.
Therefore, |1 would not like to stop to prove some thew that the reader has already
known for some time. Obviously, in vortex-free fieldsie can, in fact, always give a
degree to which the mome®t will vanish at all points from eq. (137). The source-free
field corresponds to the case of a force-system that e replaced with a single
resultant. For a field that simultaneously includeshbvortices and sources, one can
always give acentral axisthat points in the same direction as the field-sum aad
coincides with the direction of the momepit for all points that lie on it.

§ 33. — The sum of the squares.

In many cases, another spatial sum proves to be mutdr baited to the task of
characterizing the total content of a field by a singliei® or comparing the intensities of
different fields on the whole, namely, the sum &f $iquares:

Q=%jmnzdr. (139)

That kind of appraisal has the advantage over the ieidF = I “vdr that every

volume element will yield a positive contribution andtt@awill vanish only when the
field itself vanishes everywhere. One will then hawethat expression, a well-defined
measure of the total excitation that is present in aipalfieldv under all circumstances.
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However, the value d also has yet another advantage, namely, that it definesasure

of the energy in the field in many applications that tesam experiments. Of course,
that situation will not come under further considerati@re, since we would not like to
concern ourselves any further with applications. Howelatoes justify the fact that

there is an otherwise-meaningless factorzofn front of the integral that we would

naturally do better to drop under other circumstancesnettheless, we are free to
introduce it arbitrarily into the defining equation fQrin any event.

One can give some very remarkable theorems for theo$uhe squared that lend
great significance to that expression, even when doissidered in a purely-analytical
context. In order to derive the first theorem, | gime that the field quantity has been

decomposed into its vortex-free componentnd its source-free component, as was
discussed in 81, sinceQ will go to:

Q—EI nldr+5.f nzdr+j v,0,dr.

However, the last integral, which is extended ovkeofinfinite space, must always
vanish. In order to prove that, | set= - [0V, whereV means the scalar potential that

belongs taw; . One will then have:
div (b2 V) =V divo, —v1 02,

of which one convinces oneself immediately upon performnegaperator div [cf., eq.
(78) in Maxw. Theorig¢ Sincev, was source-free, the first term on the right-hane sid

will drop out, and one will have:
rnlnzdr =- rdiv (o,V)dr.

The functionv,V does not extend to infinity, since that would followeallly from the
assumption that is always made abegthere, and since multiplication By, which

likewise vanishes at infinity, will diminish the ordermfgnitude of the product at great
distances even further. Therefore, the spatial suail gsburces o6,V will vanish, from

8 4, and we will, in fact, get:
rnlnzdr =0. (140)
We then find:
Q:%rnfdr+—§rn§dr=Q1+Qz (141)

for the sum of the squarés where the sum of the squares of the vortex-freethad
source-free components are denote@bwandQ, in their own right. 11Q then means the
energy of a physical field then it will be equal to the sum of the total energines are
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assigned to the two field components when one consaeis of them by themselves.
That shows us once more how useful the distributiora ofector function over the
sources and vortices that it includes is.

Under the assumption thét is, in fact, the correct expression for the enerfya
certain physical field and that the energy distribtis further determined by physical
phenomena — i.edp / 0t — eq. (121) will make it highly probable in such a case thdt ea

of the two components, independently of the other, ledltl to physical phenomena that
play out in parallel to each other without influencingreather. Naturally, that remark is

true only approximately here. The phenomena also lidose ¢o each other that one
cannot draw any definite conclusions from them, sinee glocesses in nature are
independent of the way that we temporarily regard therhtla only thing that we can

do in order to study their laws consists of continuingeshape the pictures that have
been previously justified, while groping carefully and afe/aeing ready to replace them
with others when their consequences do not overlapexpleriments. Only the laws of

field geometry will then define the fixed foundation from @rhiwe can depart with no

reservations in that way.

8 34. — Green’s theorem and its extensions.

The sum of the squaré€} for the vortex-free components can also be set equal to
another spatial sum, which | shall now derive. To &mat, | shall start from the identity:

div (b1 V) =V div by — v7,

which has already been used before in a similar forncanl setq for vi . After
multiplying bydr and integrating over all of space, it will then follomat:

leérnfdr:%rqur, (142)

since the spatial sum of diwy(V) will vanish, on grounds that were already discussed

before. Eq. (142) (or really a somewhat more generadegion of that equation that is
of no interest to us here) corresponds to Green'’s theofidm sum of the squares for a
vortex-free field or for the vortex-free part of arbitnary field can therefore be found
already when one knows only the associated systesowtes and the potential. At the
same time, we see that whér gives the contribution to the field energy, two ayir
different distributions of that energy over the indual volume elements will be
geometrically possible in a legitimate way. Thereas lihe root of the conflict between
the two opposing views of the theories of action-distance and local action in physics,
and especially in the theory of electricity.

The sum of the squaré3, for the source-free field componenis also admits a

similar conversion. IR denotes the vector potential from whighcan be derived then
one will have:
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divV2A v,= 02 - A 1o (143)

identically, from the best-known theorem of vector gsial[eq. (81) oMaxw. Theori¢
Meanwhile, one also easily convinces oneself of thetityenf both sides of that
equation with no further discussion by decomposing @ samponents and performing
the prescribed operations.

The functionV 2A v, cannot extend to infinity, on the same grounds that appdie
the corresponding/v, in the vortex-free case, and therefore, the spatial that is
defined by it will be equal to zero. We then get from eq. (%8)

Qz=%rn§dr :%rmmdr. (144)

Remarks are also true for the meaning of that converthat are completely
analogous to the ones that were linked with Green’s ¢neor

The sum of the squares of an arbitrary functiocan always be represented in the
form:

Q=4[ (Va+2Ar) dr (145)

then.

It might be remarked belatedly at this point that cene use the last equation to prove
that a function is defined uniquely by its source and itsexan a different way from the
proof that was described before in this book on the basmestly imagining the
streamlines. Namely, ¢ = 0 andw = 0 in all of space then it will follow from eq. (145)

thatQ = 0, and therefore one will also have 0, from a remark that was made before in
the beginning of the previous paragraph. If one now corssittés functionsov that

belong to the same sources and vortices then thérefice must, at the same time, be
source-free and vortex-free, and therefore equal to zerywehere. Both functions will
then agree completely; i.e., there is only one functimt simultaneously belongs to a
given distribution of sources and vortices.

Finally, let me point out that the conversion thetl lto eq. (145) can also be
generalized somewhat when one also directs one’stiatieio the terms that one can

place before and after the two sequences of funcbns, g and(, v,, to, as was
discussed in 85. If one considers, e.g., the sequence:

ma Va Ull q, p
in the sense that was discussed &58hen one will have:

dv@qg=Vg-IMyp,
and therefore also:
leéri)ﬁpdr. (146)
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Likewise, let the sequence of functions for the soinee field components be extended
to:
X, 2, 00,10, 1.

From the theorem that was proved before in eq. (143), areh wame recalls the
connection that exists between the successive terthatisequence, one will then have:

divV Xmw=2Amw-Xy,

and when one defines the spatial sum, one will also: have

Q=4[ xndr (147)

then.
Therefore, in total, the sum of the squares of artrariifunction will also be given
by the expression:

Q=4[ (Mp+xy)dr, (148)

which admits some conversions in its own right. Namehe can (cf., 5) replacent
+ X with potv andp + y with —0%v. In addition, the spatial sums 9t y andX p are

equal to zero. Namely, one factor in each product iitexdree and the other is source-
free, and from eq. (140), the spatial sum of such a prodlicilways be zero. That is
because in the derivation of eq. (140), it was entirslyertial forv; and v, to be

introduced as components of an originally-given functignbut v; and v, can be

otherwise-arbitrary functions when only the one is exitee and the other one is
source-free. When one considers those remarks, liaisd follow from eq. (148) that
one has:

Q:—%rpotn M*odr (149)

for the sum of the squares of an arbitrary function

§ 35. — Spatial sum of a potential function.

Once more, we understaitto mean a scalar potential that belongs to a voresx-fr
field that does not extend to infinity. We will then alyg have:

| “Vdr = 0. (150)
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In order to prove that, one can start from a fielat ik defined by two point-like
sourcest g. If the distances from the spatial elemdntto the two points are; andr;
then it will follow from 88 that:

V= i 1—_1 .
am\r, 1,

If one now imagines a plane that bisects the distdoetween the two source points
perpendicularly then for any two spatial elements éinatmirror images to that plane the
contributionsV dr to the spatial sum will be just as large and of oppasdn. Eq. (150)
is proved for the source-patrq with that remark. However, as was shown already in
4, any other system of sources can be constructed frarpeapsition of such source-
pairs, and sinc& can be found for the entire system of sources by sumovag the
individual constituents, it will follow that eq. (150) walso remain valid for that case.

One can further conclude from this that the functiin= potv; will not extend to

infinity either whenv; already satisfies that assumption, sincgives the system of
sources fof, and eq. (150) will then embody the required condition.
The fact that one also has that:

j“mdr:o (151)

already follows from the simple remark that the tioxe 2l is source-free, by its very
definition. The field sum is always equal to zerod@ource-free field.

§ 36. — The potential function as a spatial sum.

The spatial sums that were discussed before wergardrvalues that characterized
the total field. Nothing prevents us from increasing thember, and thus investigating,

e.g., the properties of the sur]cngv2 dr, '[mn"'dr, etc. However, | shall skip over that,

since such an investigation does not seem to promigéuio very much.

However, we can also include a variable quantity in theent of a spatial sum that
makes the sum itself become a function of that béiguantity. If we also still know
nothing about the potential function then we will be ledake that step naturally. In
fact, the simple path for generating a new functiormfra given one in that way
obviously consists of defining a spatial sum that refeisly a well-defined point in the
field — viz., the reference point — and which is therefofenction of the radius vector of
that reference point. To that end, we will have tduide the distance from the reference
point to the volume elemeadt in the element of summation in some way. That uas,
fact, also done before at one point, namely, wherfield moment for the reference point
was derived in 82. However, it was shown there that this moment wdspendent of
the position of the reference point for a source-freld, so it would define a constant
spatial sum. Indeed, it will be a function of the posiof the reference point in a source
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field. However, it extends to infinity, and therefosdl not come under consideration
here.

We must then look around for other couplings, and indeedyilv@ave to look for
the simplest function that might lead to functionst ttha not reach infinity that comes
into question in that way. Now, we indeed always haemympossibilities to choose
between. Among all of them, however, we must alviagas upon the one that is closest
to the spatial sums:

»pdr ©qdr
a a

and with that, we will, in fact, be once more ledhe potential. Perhaps there also other
spatial sums of a similar kind whose closer exanomatvould represent a fortuitous
accoutrementginen gltcklichen Grijffor us.

8 37. — Measuring the curvature of a field.

As we saw in the Chapter Two, inside of an infinitatyall neighborhood, we can
represent an arbitrary continuous field by a linear vedtorction in the first
approximation or replace it with the linear field thabtaats it.

The fact that we referred to the type of agreemembivden both fields in that
neighborhood as “contact” overlaps with the use ithahade of that word elsewhere in
geometry in that regard.

Just as one does not stop with looking for the tangentsngent planes in the
investigation of curves and surfaces, but must also cortsidefeviation of one tangent
object from another inside of an infinitely-small @gi one can also pose the same
problem in the geometry of fields. What one calls “cukeit for curves and surfaces
depends upon the type and magnitude of that deviation. Tlam, justified in also
adapting the concept of curvature to the case that occres dred in full generality |
understand that to mean that property of the field thagsgrise to the second-order
infinitesimal deviation between the given field and tinedir field that contacts it inside
of an infinitely-small neighborhood.

Once the theory of the curvature of fields has beemldpgd completely, it will
naturally take on a much more multifaceted aspect thainaf surfaces. Here, one can
only make a first attempt at that. Namely, it wouldseesirable to look for a value that
could be employed as a measure of the total curvatuhe dietid at a given location that
would be similar to, say, the Gaussian curvature of acerfOf course, | do not believe
that one can lean upon that to any advantage here,vaodld like to say that it seems
entirely doubtful that one can say what quantity wouwdd best suited to serve as a
measure of the curvature of a field. In that regardskl that one should consider the
following discussion to be only tentative.

One lays the origin of a rectangular coordinate sysaé the point of the field for
which one would like to study the curvature behavior. Fi@ylor's development, one
will then have that th&-componentv; of dv is, precise to second-order infinitesimals:
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dydz

in the interior of a ball whose radiugs infinitely small of order one, and similarly for
the other two components. The first-order terms at ttevelopment are of no further
interest to us here; they overlap with the componentieotontacting linear field. By
contrast, the curvature of the field depends upon thendemaler terms. If we denote the

deviation between the field and the contacting linear field l@yv then we will get from
eq. (152) upon combining the three components that:

ST LR AT
= "2 o7

0 9% % (153)
Y dxdy+—22 dxdz -2 dydz
axay 0x0z 0y z

The second differential quotientswtan be regarded as constant quantities inside of the

infinitely-small ball for which the development isliea If we imagine drawing any
diameter through it and associating it with the devmmtlo that exists at that point then
we will see that all of those segments are paradlelach other and that their magnitudes
relate to each other like the squares of the distaincesthe center. The endpoints of
those segments then lie along a parabolic arc tracts the diameter. The curvature of
the field along the diameter that was drawn is destrdmenpletely by the magnitude of
the radius of curvature of that arc and the directiodwf In order to know the curvature
of the field completely, one must be able to give ¢hiveo data for every diameter of the
ball.

Now, it seems to me that one will best summarieettial curvature when one takes

the field sum ofdv over the volume of the infinitely-small ball. Imder to arrive at a
finite value, | then set:

_ 4
E—ajéndr, (154)

in which ©® means the moment of inertia of the infinitely-smadll of radiusr with
respect to a diameter. The factor 4 in the numenats introduced at will in order to
simplify the following formulas. | consider the vectoto be a measure of the curvature

of the field. | substitute the valu®v in eq. (153) and observe that the integral over the
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spherical volume of the forr!ﬁdx dy dz will drop out because the ball can be split into

two halves — e.qg., by théZplane — such that any two volume elematit®f them that
are mirror images of each other will contribute equdlies of opposite sign to the
integral. By contrast, e.g.:

j'dx2 dr =30

is, by definition, the moment of inertia. One wilethget:

_ 0% 0% 0%
= +-

b=t
x> oy’ 07

=2 (155)

forg.

We have thus, in fact, arrived at a very simple ahdgeems to me, remarkable
expression for the field curvature. If one expre&ses in terms of the sourcesand the

vorticity ro then one will also have:
t = [q - curlm. (156)

The total curvaturé will equal zero at every location in the field thaintains neither a

source nor a vortex (or where they are constant).codfse, that does not say that the
field is not curved at all and is therefore linear.e Thrvatures along different diameters
will then result only along directions that are palyialpposed to each other such that the
geometric sum of all curvatures would vanish.

If one would like to have a measure of curvature thatstees only when the field is
linear, so it would no longer be curved at all, then onstrform the sum of the squares

for dv for the interior of the ball. That can be done lgagith the help of the expression
for ov in eq. (153). However, one will come to a rather longed expression in that

way, into which | meanwhile do not know how to go any furthe

Finally, | shall remark that one can also make eq. (Ifb@) for finite values of the
coordinateglx dy dz In that way, one will come to a second-order ftelat osculates the
given one. Before one can discuss the theory ofuneéature of fields in detail, one must
naturally discuss the properties of second-order fieldsotlghly, perhaps in a manner
that is similar to what was done with linear fieldsGhapter Two of this book.

Meanwhile, | shall omit such an investigation. | cdesithe grand prize in this
overview of the curvature properties to be the intuigeemetric interpretation that the
operator]?, which occurs so frequently in potential theory, acauirem eq. (155).

Any vector function can also be represented by a spatiaforamation. One needs
only to assign the vector=f () to the point: with a suitable unit of measurement and to

associate the endpoint of the segment in the transfbspace to the starting point of the
segment in the original space. The study of transfboma@roups has now become so
much better developed and in so much depth that presumaldy thie properties of

vector functions that were discussed here have alieaely worked out for some time in
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a much more general form. However, in order to make tteasure trove useful for
physical theories, one must call upon an extended mativa&nowledge that a
theoretical physicist would probably possess only quitelyarOn the other hand, the
mathematician for whom that assumption is applicable avdinarily be less inclined to
emphasize the topics from among the extensive arrayhihahas mastered that are
suitable for practical applications in a correspondingitgpter form. He is almost
exclusively interested in the applications of the advamoathematical topics to other
purely-mathematical problems. The practitioner (as fidoeicalled here, for the sake of
comparison) will then need to rely upon himself. Suditep in the direction of self-
reliance was what led to the writing of this volumemake no claim at all to being a
mathematician nor am | trying to introduce myself ashsa thing with this book, but I
wish only that by my work, | have been of service to hieat might find themselves in
the same position.




