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Introduction. 

 

 Today, we know that classical mechanics does not include natural laws of general validity, but 

only a mathematical paradigm with the help of which certain groups of phenomena can be 

described to an approximation that is more or less adequate. For phenomena for which the 

paradigm does not suffice, one always seeks to find a new one by “generalizing” the Ansätze of 

classical mechanics. However, “generalization” is an infinitely-multivalued process. It comes 

down to knowing which components of the old paradigm should be preserved as essential and 

which ones are not, and one will get different “generalizations” according to the choice of those 

components. We would perhaps like to enumerate three types of them. 

 First, one regards the paradigm of the force law: force = mass  acceleration as essential to 

mechanics and seeks the generalization in the form of ever more complicated functions for the 

dependency of the force on position and velocity and ever more complicated assumptions about 

the distribution of mass. That standpoint corresponds to what was previously referred to as the 

“mechanistic picture of nature,” and which one held to be the only satisfactory theory in the quest 

for knowledge out of custom and increasingly under the conscious and unconscious influence of 

more archaic metaphysical theories and motivations. Those attempts have actually already failed 

due to the impossibility of including the electromagnetic field equations in that paradigm in a 

natural way. The assumptions about forces and mass distributions soon became so complicated 

that the quest was abandoned. It is often overlooked that this complexity is required, not only on 

the grounds of the “convenience” of abandoning that path, but also due to the fact that it is only 

under simple assumptions about the forces that Newtonian mechanics will say anything at all about 

nature. When one interprets it as a mere mathematical formalism that everything is ultimately 

subject to, the Newtonian Ansatz reads: “Motions can be represented according to the paradigm 

‘force = mass  acceleration’ under simple assumptions about the forces.” 

 The second type of generalization is relativistic mechanics. There, one always abandons the 

representation of the electromagnetic field by generalizing Newton’s laws, but still wishes to 

understand at least the motions of masses in the field by analogy with classical mechanics. One 

gives up the Newtonian paradigm and no longer tries to represent accelerations of the masses in a 

simple way as functions of the relative positions of the bodies, but rather one keeps Newtonian 

mechanics as the essential part of Hamilton’s variational principle, and puts a more general 

quantity that is invariant under the group of Lorentz transformations under the integral sign in 

place of the classical Hamiltonian function since the known Maxwell-Lorentz field equations 

will also be invariant under that group. In that way, the space and time coordinates will play a 

similar role in the integrand, and one will obtain new equations of motion by setting its first 

variation equal to zero by the same formalism as in classical mechanics. I shall pass over the 

entirely-similar generalization that exists in the general theory of relativity and start from the fact 

that relativistic mechanics is also not in a position to the represent the processes in the atom that 

lead to the appearance of line spectra. 

 After several groping attempts, one arrives at a third generalization of the Newtonian 

paradigm, namely quantum mechanics, as it was developed in the work of Heisenberg, Born, 

Jordan, Schrödinger, Dirac, et al., in recent years. One now regards something in classical 

mechanics to be essential that most physicists had actually considered to be only a mathematical 
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gimmick, namely, the representation of mechanics by the Poisson bracket expressions and the 

theory of contact transformations. The concepts of mass and force have lost their meanings, and 

only the abstract form of classical mechanics in which everything is expressed in terms of abstract 

group-theoretic concepts is suitable for generalization. When we then consider classical mechanics 

from standpoint of quantum mechanics looking backwards, that will give an entirely different 

emphasis in regard to what the important and unimportant parts of physics are. Just as we suddenly 

notice new insights into classical mechanics from the standpoint of relativistic mechanics, such as 

the fact that space and time coordinates can be considered to have the same status in it and the fact 

that by defining the equations of motion by using Hamilton’s principle, one will get the laws of 

impulse and energy as components of one and the same vector equation, just as is true in relativistic 

mechanics, so also will one see that when one looks back from the standpoint of quantum 

mechanics, many of its theorems had already been formally modeled in classical mechanics 

without anyone having ascribed any importance to that form. 

 In what follows, we would now like to give a presentation of classical mechanics from that 

standpoint such that the conceptual structures and theorems that have proved to be essential for 

the purpose of making the transition to quantum mechanics will emerge in it most rigorously. To 

that end, we will make much use of a mathematical theory that has still been employed explicitly 

in the presentations very little up to now, namely, the theory of function groups that was developed 

by S. Lie (1). 

 

 

2. – Introduction of the bracket expressions. 

 

 According to classical mechanics, every mechanical system is characterized by the fact that 

one is given the dependency of its Hamiltonian function H on the state of the system. When we 

have a system with n degrees of freedom before us, that state is determined by giving the n 

generalized coordinates q1, q2, …, qn and the n generalized impulse components p1, p2, …, pn . Any 

function of the 2n quantities q1, q2, …, qn, p1, p2, …, pn is called a state function of the system. The 

temporal change in the state quantities under the motion is the system is defined by Hamilton’s 

canonical equations of motion, so by: 

 

jdq

dt
 = 

j

H

p




, 

jdp

dt
 = −

j

H

q




   (j = 1, 2, …, n). (1) 

 

It will then follow that the temporal change in an arbitrary state function f is: 

 

df

dt
= 

1

n
j j

j j j

dq dpf f

q dt p dt=

  
+    

  .    (2) 

 

 
 (1) Sophus Lie, Gesammelte Abhandlungen, Bd. III, Christiania and Leipzig, 1922. pp. 32, et seq. (illegible)  
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When we substitute (1) in that and define the Poisson bracket expression of two state functions f 

and g by: 

(f, g) = 
1

n

j j j j j

f g f g

p q q p=

    
−      

  ,     (3) 

that will give the simple formula: 

df

dt
 = (H, f) .      (4) 

 

When we choose the state function f to be the state quantities qj, pj themselves, it will include the 

equations of motion (1) as special cases, which can then be written in the form: 

 

jdq

dt
 = (H, qj) ,   

jdp

dt
 = (H, pj)  (j = 1, 2, …, n).  (5) 

 

 When the bracket expression of two state functions f and g vanish, one says that they are 

“involutory” or “in involution with each other.” If their bracket expression is equal to 1 then one 

says that they are “canonical conjugate” to each other, so: 

 

( , ) 0 :  and  are in involution,

( , ) 1:  and  are canonical conjugate.

f g f g

f g f g

=

=
  (6) 

 

 

3. – Integrals and clock readings. 

 

 When a state function f does not change its value in time during the entire motion of the system, 

we call it an integral (1) of the system. It follows from (4) that f is an integral of the system if and 

only if: 

(H, f) = 0 ,      (7) 

 

so f is in involution with the Hamiltonian function. Since H is involutory with itself, from the 

definition (3), H will itself be an integral that one calls the energy integral in mechanics. When a 

state function changes in time in such a way that its change gives us the elapsed time itself, 

knowing f can be employed in the definition of a clock. We then call f a “clock reading” 

(Uhrenausdruck). We must then have df / dt = 1, and therefore, from (4): 

 

(H, f) = 1 .      (8) 

 

The clock readings are then canonically conjugate to H. 

 
 (1) One often employs the term “integral” in the more general sense and then refers to the state functions that are 

called integrals here, more precisely, as time-independent integrals.  
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 One can easily gain an overview of the number of differential integrals of the system in the 

usual way. The general integral of the 2n first-order differential equations in (1) will give the 2n 

state quantities qj, pj as functions of t, and the 2n arbitrary constants c1, c2, …, c2n . However, in so 

doing, one should notice that one of those constants can only be added to t since t does not enter 

into the equations explicitly, but only dt. We can then calculate the general solutions in such a way 

that we regard the state quantities as functions of t – t0 and the 2n – 1 arbitrary constants c1, c2, …, 

c2n−1, in which t0 is also an arbitrary constant. If we solve the 2n equations that were thus obtained 

for the 2n quantities constants c1, c2, …, c2n−1, t – t0 then we will get relations of the form: 

 

2 2

2 2 2 0

( , , , , , ) ( 1,2, ,2 1),

( , , , , , ) .

j n n j

n n n

f q q p p c j n

f q q p p t t

= = −

= −
   (9) 

 

In the f2, …, f2n−1, we will then have 2n – 1 independent integrals before us, and indeed all such 

things. Each of the other ones can be expressed in terms of them. At the same time, we have arrived 

at a clock reading in the form of f2n . 

 From (7), the question of how many independent integrals there are can also be posed as: How 

many state functions are there that are in involution with a given one? We would like to answer 

that question by regarding it as a special case of a more general question that S. Lie had answered. 

 

 

4. – Complete systems of linear first-order partial differential equations. 

 

 One can first generalize the last question that was posed by saying that in place of the one state 

function H, one has r of them, and then posing the problem: How many state functions f are there 

that are in involution with r given ones g1, g2, …, gr ? Obviously, the desired f must satisfy the 

following equations: 

(g1, f) = 0 , (g2, f) = 0 , …, (gr, f) = 0 .   (10) 

 

They are r linear homogeneous first-order partial differential equations for f as a function of the 

2n state quantities q1, …, qn , p1, …, pn . We next consider an arbitrary system of that sort. When 

we define the operator Aj by: 

Aj (f) = 
1

n

kj kj

k k k

f f
a a

q p=

  
+ 

  
  ,    (11) 

 

in which akj, kja  are arbitrary state functions, the aforementioned general system will have the 

form: 

Aj (f) = 0  (j = 1, 2, …, r).  (12) 

 

In so doing, we assume that the r equations (12) are linearly independent, i.e., that not all of them 

can be obtained from the other ones as a linear combination, and even when we allow coefficients 

that are themselves state functions. It is clear that equations (12) will have just as many fewer 



Frank - The fundamental concepts of analytical mechanics as the foundations of quantum and wave mechanics. 6 
 

common solutions as their number gets larger. When r = 2n, one easily sees that they have no 

common solution at all besides the trivial one f = const. That is because in that case, we have 2n 

ordinary linear homogeneous equations with non-vanishing determinant in the 2n unknown 

quantities ,
k

f

q



 k

f

p




before us, from which, the vanishing of those quantities will follow, and 

therefore the constancy of f. However, if r < 2n then it can be shown that the number of common 

solutions can never be larger than 2n – r. 

 It is initially clear that applying the operators Ak to one of eq. (12) will produce expressions of 

the form Ak (Aj (f)) that also contain the second partial derivatives of f with respect to the state 

quantities. However, if one forms combinations of the form Ak (Aj (f)) − Aj (Ak (f)) then one will 

easily see from the definition (11) that the second derivatives will cancel, and expressions will 

once more arise that are linear and homogeneous in the ,
k

f

q



 k

f

p




, so they will have precisely the 

same form as Ak (f) itself. It is also clear that the common solutions of the r equations (12) will 

also be solutions of the equations: 

Ak (Aj (f)) − Aj (Ak (f)) = 0          (k = 1, 2, …, r)       (13) 

 

which have entirely the same form as them. When the combinations of the form (13) are not 

linearly independent of the r expressions Ak (f), one can simply add the r equations in (12) to eq. 

(13) and obtain a system with precisely the same common solutions f, but which consists of more 

than r equations. Therefore, we shall assume that no relations of the form: 

 

Ak (Aj (f)) − Aj (Ak (f)) = 
1

( )
r

s s

s

C A f
=

     (14) 

 

exist. We can continue that process by defining more combinations of the form (13) with the left-

hand sides of the now-augmented equations (12). Ultimately, we will be led to a system of 

equations of the form: 

Aj (f) = 0  (j = 1, 2, …, r, r + 1, …, r + l) , (15) 

 

in which each combination (13) the left-hand sides can be represented as a linear combination of 

the r + l quantities Aj (f) themselves in the manner of (14). If that is first achieved for r + l = 2n 

then, from what was said before, there will be no common solutions f to eq. (15) at all, so none for 

eq. (12), either. We would then like to assume that this “saturation state” of the system (12) can 

already be achieved for r + l < 2n. We call the “saturated” system (15) a complete system of first-

order linear partial differential equations. We can then reduce the integration of each system (12) 

to that of a complete system since both of them will possess the same common solutions f. We 

would then like to assume, for simplicity, that (12) itself is already a complete system. 
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 It can now be shown (1) that every complete system possesses precisely 2n – r different 

solutions. That is, there are 2n – r state functions between which no identity exists, and which are 

all common solutions to (12). Furthermore, each common solution to (12) can be expressed 

identically in terms of the aforementioned 2n – r special solutions. In that way, one now 

understands identities to mean not only linear homogeneous ones, but also general ones. Since 

every incomplete system of r equations can be extended to a complete one with more than r 

equations, it will obviously have less than 2n common solutions. 

 

 

5. – Complete systems and function groups. 

 

 If we return once more to the question of the common solutions of (1) then we can formulate 

it as follows: When do the r equations (10) define a complete system? Sophus Lie has shown (2) 

that this comes down to the Poisson bracket expressions of the g1, …, gr . He proved the 

fundamental theorem: Eq. (10) will be a complete system when all of the bracket expressions of 

the gj can be expressed identically in terms of the function gj themselves, so it will have 2n – r 

different solutions. The assumptions about the gj can then be expressed as: They must be mutually 

independent (and not just linearly independent), and their bracket expressions should be identically 

representable in the following way: 

(gj, gk) = fjk (g1, g2, …, gr)  (j, k = 1, 2, …, r) . (16) 

 

 If we would like to prove Lie’s theorem then we would have to start from the identity: 

 

Aj (f) = (gj, f) ,      (17) 

 

which is true with the notation of the previous section. 

 By calculation and recalling (16), one will arrive at the identity: 

 

Ak (Aj (f)) − Aj (Ak (f)) = ((gj, gk), f) = (fjk , f) .    (18) 

 

If we then employ the property of the bracket expression eq. (21) that will be proved in the next 

section then that, along with (17), will yield: 

 

Ak (Aj (f)) − Aj (Ak (f)) = 
1 2

1 2

( ) ( ) ( )
jk jk jk

r

r

f f f
A f A f A f

g g g

  
+ + +

  
.  (19) 

 

Therefore, from the criterion that was summarized in eq, (14) and eq. (17), the system (10) will 

prove to be a complete system. According to S. Lie, one says that a system of r state functions g1, 

 
 (1) One can find the proof, which is not discussed here, in, e.g., E. Goursat, Vorlesungen über die Integration der 

partiellen Differentialgleichungen erster Ordnung, translated by H. Maser, Leipzig, 1893. That is by far the most 

recommendable textbook on this topic, which is now becoming important to physicists. 

 (2)  S. Lie, Gesammelte Abhandlungen, Bd. III, 1922. 
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…, gr that are different from each other, but the bracket expressions can be expressed in terms of 

the g1, …, gr themselves, define a function group. With that group, one can also calculate all state 

functions that can be expressed in terms of the g1, …, gr that define the group. One then has the 

theorem: 

 

 If r state functions define a function group then there will be 2n – r state functions f that are in 

involution with all of them. 

 

Before we go on, some rules of calculation for Poisson brackets shall be reviewed that will also 

be important in what follows. 

 

 

6. Rules of calculation for operating with bracket expressions. 

 

 It will follow immediately from the definition (3) of the bracket expression that for the two 

state functions f and g, one has: 

(f, g) = − (g, f) ,      (f, f) = 0 .     (20) 

 

When F is a function of the state functions f1, f2, …, and one replaces f in (3) with F (f1, f2, …) and 

performs the differentiations, that will give: 

 

(F, g) = ( , )k

k k

F
f g

f




 .          (21) 

 

The process of forming the bracket then has the character of an ordinary differential process. We 

will see that when we also understand G to mean a function of the state functions g1, g2, … and 

form (F, G). Analogous to (21), that will then give: 

 

(F, G) = 
,

( , )
( , )

( , )
j k

j k j k

F G
f g

f g




  .    (22) 

 

Each numerical combination j, k occurs only once in the sum, up to the order of the two. The 

coefficients in (22) are the functional determinants: 

 

( , )

( , )j k

F G

f g




  (illegible).    (23) 

 

We have a further analogy to differentiation in the bracket expression of a product f g with a third 

state function h. Namely, we have: 

 

(f g, h) = f (g, h) + g (f, h) .     (24) 
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Finally, when we form the bracket expression of a bracket expression (f, g) and a state function h 

and calculate according to (3), we will get the Jacobi identity: 

 

((f, g), h) + ((g, h), f) + ((h, f), g) = 0 .    (25) 

 

 

7. – Polar groups and distinguished functions. 

 

According to S. Lie, one can further show that the functions that are in involution with the r 

functions of the group according to no. (?), which we would like to call f1, f2, …, f2n−r , will 

themselves define a function group. One calls it the polar group to the original group. In that sense, 

since the 2n – 1 integrals of our mechanical system are all in involution with H, they will define a 

function group, namely, the polar group of H. The theorem that the bracket expression (fj, fk) of 

two integrals is itself an integral of the equations of motion (1) can now be regarded as a special 

case of that theorem. Namely, since the integrals define a group, the bracket expression (fj, fk) can 

be expressed in terms of the integrals f1, f2, …, f2n−1 themselves. so it must be itself an integral. 

 One can also raise the question now of when 2n – 1 state functions f1, f2, …, f2n−1 can be 

regarded as integrals of a mechanical system. From (7), one must then be able to find a state 

function H that is in involution with all fj, so it will satisfy the equations: 

 

(H, fj) = 0  (j = 1, 2, …, 2n – 1).  (26) 

 

In order for that to be true, eq. (26) must define a complete system. That will certainly be the case 

if and only if the f1, f2, …, f2n−1 define a function group. For 2n – 1 state functions, one can the find 

a Hamiltonian function that they belong to as integrals of the equations of motion when the 2n – 

1 state functions define a group. 

 When a function belongs to the polar group, as well as the original one, one calls it a 

distinguished function of the latter. It must then be in involution with all functions of the latter. 

The Hamiltonian function H is obviously the only distinguished function in the group of integrals 

of a mechanical system. In that way, the energy integral plays an essentially-different role 

mathematically than all other integrals. 

 

 

8. – Canonical form for a group and canonical transformations. 

 

 The totality of all state functions obviously defines a group as well. One can choose 2n 

mutually independent state functions to be its “basis.” One then says that every function that can 

be expressed in terms of the functions of the basis belongs to the group. An obvious choice for the 

basis for the group of all state functions would be the 2n state quantities q1, …, qn, p1, …, pn . From 

the definition (3) of the bracket expression, every qj is canonically conjugate to the corresponding 

pj and any two other state quantities are in involution with each other. One then has: 
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(pj, pk) = 0 , (qj, qk) = 0 , (pj, qk) = 
0 for ,

1 for .

j k

j k




=
    (27) 

 

If we can arrange the basis functions of a group into two rows in such a way that the functions in 

the same row are in involution with each other, but the ones in different rows, but the same column, 

are canonically conjugate then we will say that the basis in question is a canonical form for the 

group. The group of all (or what amounts to the same thing, 2n) state functions can then admit the 

following canonical representation: 

1 2

1 2

, ,

, , .

n

n

p p p

q q q
      (28) 

 

If we introduce 2n new variables Q1, …, Qn, P1, …, Pn by means of the 2n independent equations: 

 

1 1

1 1

( , , , , , ) ,

( , , , , , )

j j n n

j j n n

Q Q q q p p

P P q q p p

=

=
       (j = 1, 2, …, n)        (29) 

 

then in order for the new functions to also define a canonical representation of the group of all 

state functions of the form: 

1 2

1 2

, ,

, ,

n

n

P P P

Q Q Q
      (30) 

 

obviously the relations must exist: 

 

(Pj, Pk) = 0 , (Qj, Qk) = 0 , (Pj, Qk) = 
0 for ,

1 for .

j k

j k




=
    (31) 

 

One calls the transformation that is represented by (29) a canonical transformation or a contact 

transformation. The canonical form of the group (28) will be preserved by it. That raises the 

question now of the extent to which one can put arbitrary function groups into a canonical form. 

S. Lie has also given an exhaustive answer to that question (1). 

 If, say, the r state functions f1, f2, …, fr define the basis of an r-term function group then, 

according to Lie, one can find r mutually-independent functions of the f1, …, fr , so a new basis for 

the same group, such that those new functions, which are expressed in terms of the state functions 

themselves that one would like to denote by P1, P2, …, P ; Q1, Q2, …, Q  ( +  = r), will satisfy 

the relations (31). If, say  =  + s, then one can also write them with the outward appearance of 

a canonical group, namely: 

 

 
 (1) S. Lie, loc. cit., pp. 42, et seq.  
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1 2

1 2 1

, , ,

, , , , , , ( ).

n

s

P P P

Q Q Q Q Q s    + + + =
   (32) 

 

According to Lie, one can further extend the functions P1…, P , Q1, …, Q+s to a 2n-parameter 

group by adding 2n – r = 2n –  –  more functions such that the Pj, Qj satisfy the relations (31). 

That is: One can convert any group f1, f2, …, fr into its canonical form (32), and indeed by way of 

a contact transformation (29), (31) that takes the q1, …, qn, p1, …, pn to f1, …, fr . It is clear with 

no further analysis from the representation (32) that our group includes precisely s =  –  

distinguished functions Qn+1, …, Qn+s, i.e., the ones that are in involution with all of the group 

parameters. Lie could show that this number remains the same for any form of the group that 

emerges from the canonical one by a contact transformation. He inferred the important theorem 

(which we will only briefly mention here) that two function groups with the same number r of 

parameters and the same number s of distinguished functions can also be taken to each other by a 

contact transformation, since the two will assume the same canonical form (32). 

 

 

9. – Systems in involution. 

 

 When any two of r state functions f1, …, fr are in involution with each other, we call the fj an 

r-parameter system in involution. If we define r independent function of the fj, say F1, F2, …, Fr, 

then we can easily show that they will also be a system in involution. We merely need to express 

the bracket expressions (Fj, Fk) in terms of the (fj, fk) using (22). If we wish to know the number of 

functions in a group that are in involution with each other then we will need only to consider the 

group in its canonical form (32). Since only functions in the same row or ones in different rows 

that are not in the same column are in involution here, a system in involution can consist of at most 

 + s =  parameters. A group with r parameters and s distinguished functions will then include 

systems in involution with up to  + s = (r + s) / 2 parameters. However, since obviously we always 

have  + s  n, the only systems in involution will have at most n parameters. More than n state 

functions can never be in involution with each other. A function group that consists of an n-

parameter system in involution will then have n distinguished functions. It will then be identical 

to its polar group, because there can be no further (n +1)th function that is in involution with all n 

of them. 

 The n state functions f1, f2, …, fr might perhaps define as “complete” system in involution, as 

we would now like to call such an n-parameter system. By setting the fj equal to zero, we will get 

n equations between the 2n state quantities q1, …, qn, p1, …, pn . If we assume that they are soluble 

then we can solve the relations fj = 0 for the n quantities p1, …, pn and n relations of the form: 

 

pj = j (q1, q2, …, qn) = 0  (j = 1, 2, …, n). (33) 

 

One can easily show that their left-hand sides also define a system in involution, just as in the 

original form. By calculating the bracket expression using the definition (3), we will get: 
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(pj − j , pk − k) = 
j k

k jq q

  
−

 
 .    (34) 

 

Since the expressions in (33) define a system in involution, it will follow from (34) that the linear 

differential expression 1 dq1 + 2 dq2 + … + n dqn defines a complete differential, such that a 

function S of the q1, …, qn will exist, such that: 

pj = j (q1, q2, …, qn) = 
j

S

q




  (j = 1, 2, …, n). (35) 

 

 

10. – Canonical form of the group of integrals of a mechanical system. 

 

 Since this group consists of 2n – 1 parameters, according to (32) its canonical form can take a 

form in which a single function has no counterpart in the other row. Since the energy H is the 

single distinguished function of the group, it must be the single function that stands along. (At 

most a function of H alone can replace it.) The table for the group of integrals that corresponds to 

(32) must then take the following form: 

 

2

2

n

n

H P P

Q Q
     (36) 

 

If we would like to extend the group (36) to the group of all state functions then only one more 

function must be added on the left, but it must be in involution with all of the other integrals. From 

no. 3, the missing quantity Q1 is, however, obviously a clock reading, or if one prefers, time itself. 

One can then obtain the group of integrals of a mechanical system in a certain sense by leaving all 

functions of a clock reading out of the group. 

 

 

11. – The integration problem from the standpoint of the group picture. 

 

 Integrating the equations of motion amounts to nothing but finding the 2n – 1 integrals in (36). 

However, the problem can be expressed as follows: Take the group of all state functions in the 

simple form (28) and put it into a form (30) such that the canonical form will remain preserved, so 

eq. (31) will be true, and one will have: 

 

H (q1, …, qn, p1, …, pn) = P1 ,     (37) 

 

which is why the group will assume the form (36). Otherwise stated: Find a contact transformation 

(29), (31) such that when it is solved for the state quantities q1, …, qn, p1, …, pn and replaced in 

1( , , )nH q q , the identity (37) will be fulfilled. Namely, we will then have collectively 2n – 1 
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integrals in the P2, …, Pn , Q2, …, Q2, which are all in involution with H, together with H, and a 

clock reading in Q1. If we set: 

 

1 1

1 0

, , , ( 2,3, , ),j j j n jH c P c Q c j n

Q t t

+ −= = = =

= −
   (38) 

 

then when we solve those equations for the 2n state quantities q1, …, pn, we will get the latter as 

functions of time t and the 2n arbitrary constants t0, c1, c2, …, c2n−1 . 

 However, one easily sees that the integration can also be performed already when the contact 

transformation (29), (31) satisfies, not the identity (37), but the much less demanding identity: 

 

H (q1, …, qn, p1, …, pn) = E (P1, P2, …, Pn) ,    (39) 

 

in which E is an arbitrary function of the P1, …, Pn . We shall next show that under the assumption 

(39), the P1, …, Pn in the group with the form (38) will become integrals of our mechanical system. 

 Namely, from (21), (39), and (31), one will have: 

 

(H, Pj) = (E, Pj) = 
1

( , )
n

k j

k k

E
P P

P=




  = 0 .         (40) 

 

From (7), the Pj are integrals then, so they will be constant during the motion. Therefore, that will 

also be true for the: 

j = 
j

E

P




.              (41) 

 

By contrast, if we define (H, Qj) then (21), (37), (31) will likewise imply that: 

 

(H, Qj) = (E, Qj) = 
1

( , )
n

k j

k k

E
P Q

P=




  = 

j

E

P




 = j .   (42) 

From (4), we will then have: 

jdQ

dt
 = j , Qj = j t + j ,     (43) 

 

in which the j, together with the Pj, are 2n arbitrary integration constants. By making the 

replacements: 

Pj = j , Qj = j t + j    (j = 1, 2, …, n)  (44) 

 

in (29) and solving for the 2n state quantities q1, …, qn, p1, …, pn , we will get them as functions 

of t and the 2n constants 1, …, n, 1, …, n . We shall call a system of canonical variables Qj, Pj 

that behave as in (39) in such a way that the H can be expressed in terms of the Pj alone the 

canonical variables that are “adapted” to the mechanical problem. 
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12. – Representing the equations of motion in terms of only bracket expressions. 

 

 We now think of the equations of transformation by which the Qj, Pj were introduced as having 

the solved form: 

1 1

1 1

( , , , , , ) ,

( , , , , , )

j j n n

j j n n

q q Q Q P P

p p Q Q P P

=

=
  (j = 1, 2, …, n). (45) 

 

Since we have a contact transformation before us, the relations: 

 

(qj, qk) = (pj, pk) = 0 ,  (pj, qk) = 
1 for

0 for

j k

j k

=



  (46) 

 

will be satisfied. It is self-explanatory that one understands the bracket expressions (qj, qk), etc., in 

that to mean: 

(qj, qk) = 
1

n
j jk k

l l l l l

q qq q

P Q Q P=

   
− 

    
 , etc.   (47) 

 

In order to carry out the integration as in no. 11, the Qj, Pj that were introduced in eq. (45) must be 

adapted variables, so the identity would have to follow from (45). However, if we were to define 

the bracket expressions of both sides of that with qj (pj, resp.), in which those expressions are 

understood to be as in (47), then it would follow that: 

 

(H, qj) = (E, qj),  (H, pj) = (E, pj) (j = 1, 2, …, n). (48) 

 

Those equations, together with (46), define a system of partial differential equations for the 2n 

functions qj, pj that were introduced in (45) in terms of the 2n variables Qj, Pj . We easily see that 

any solution of that system will already lead us to the general solution of the system of equations. 

In order to do that, one must only show that the identity (30) will again follow from (48) and (46). 

That is because in this case, from no. 11, we have in eqs. (45) and (44) a solution to the equations 

of motion with 2n arbitrary constants before us. 

 Therefore, we must only show that the vanishing of the partial derivatives of H with respect to 

all Qj follows from eqs. (48) and (46), because that is the gist of the identity (39). However, we 

have: 

l

H

Q




 = 

1

n
j j

j j l j l

q pH H

q Q p Q=

   
+      

  (j = 1, 2, …, n) . (49) 

 

Eq. (21) gives the following formulas for the bracket expressions in (48): 

 

(H, qj) = 
1

( , ) ( , )
n

k j k j

k k j

H H
q q p q

q p=

  
+ 

   
  , 
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(50) 

(H, pj) = 
1

( , ) ( , )
n

k j k j

k k j

H H
q p p p

q p=

  
+ 

   
  , 

so from (46): 

(H, qj) = 
j

H

p




,  (H, pj) = − 

j

H

q




 (j = 1, 2, …, n).      (51) 

 

 By contrast, one will get the following expressions for the left-hand sides of (48) and (47): 

 

(E, qj) = 
1

n
j

k k k

qE

P Q=



 
 ,      (E, pj) = 

1

n
j

k k k

pE

P Q=



 
  (j = 1, 2, …, n).      (52) 

 

When one substitutes from (48), (51), (52) in (49), that will give: 

 

l

H

Q




 = 

,

j j j j

k j k l k k l

p q p qE

P Q Q Q Q

    
− 

     
  (l = 1, 2, …, n) .      (53) 

If we introduce the symbols: 

[Ql, Qk] = 
1

n
j j j j

j l k k l

p q p q

Q Q Q Q=

    
− 

    
 , 

(54) 

  [Pl, Qk] = 
1

n
j j j j

j l k k l

p q p q

P Q Q P=

    
− 

    
 ,  etc., 

then it will follow from (53) that: 

l

H

Q




 = 

,

[ , ]
n

l k

k j k

E
Q Q

P




   (l = 1, 2, …, n) .      (55) 

 

Whereas the Poisson bracket expressions are defined from every pair of functions of the 2n state 

quantities Q1, Q2, …, P1, P2, …, Pn according to (47), the bracket expressions (54) arise from the 

2n state functions q1, q2, …, p1, p2, …, pn, and a pair of state quantities. One often calls them the 

Lagrange bracket expressions. Certain relations exist between the two types of bracket 

expressions that we will state here without proof, which we can, however, easily verify by 

calculation using the rules in no. 6. Namely, when we appeal to eq. (45) in the solved form (29) 

for the Poisson expressions, so we define the parentheses by (3), we will have: 

 

1

( , )[ , ]
n

j k j l

j

Q Q Q Q
=

  = 
1 for

0 for .

k l

k l

=



   (56) 

 

Therefore, any of the quantities Q1, …, Qn, P1, …, Pn can replace the Qj, Qk in that. If the functions 

Q1, …, Pn of the q1, …, pn define a contact transformation, so eq. (31) will be true for the Poisson 
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bracket expressions, then due to (56), the same relations will be true for the Lagrange brackets, 

so: 

[ , ] [ , ] 0,

1 for
[ , ]

0 for .

j k j k

j k

Q Q P P

j k
P Q

j k

= = 


= 
=   

    (57) 

However, it will then follow from (55) that: 

 

l

H

Q




 = 0  (l = 1, 2, …, n).  (58) 

 

However, the identity (39) will follow from that, and it is therefore shown that the integration of 

the equations of motion of classical mechanics can be reduced to the integration of the partial 

differential equations (48), (46). 

 

 

13. – Analogy to quantum mechanics. 

 

 Let us write eqs. (46), (48) for a mechanical system with one degree of freedom that can be 

established by the canonical coordinates q, p. We then give a function H (q, p) of the state q, p, 

and we must look for three unknown functions of the two variables Q, P, namely, q (Q, P), p (Q, 

P), E (Q, P), of which the last one can depend upon only P (as we knew from the outset). In order 

to calculate those three functions, three partial differential equations: 

 

(H, q) = (E, q),  (H, p) = (E, p),  (p, q) = 1  (59) 

are available. 

 Here, the complete analogy to the basic equations of quantum mechanics, as they were posed 

by Heisenberg, is clarified. We also have three differential equations for the system of one degree 

of freedom before us, not two as in the usual form of the equations of motion. The last one 

corresponds to the quantum condition. It is not the two coordinates q and p as functions of time 

that are regarded as the unknowns, but q, p, and W as functions of the two variables Q and P. That 

comes down to the fact that it is not an individual trajectory that appears as the solution, but the 

entire system of trajectories. According to (44), the dependency of Q corresponds to the various 

points of a trajectory that differs by only P when one goes from one trajectory to another. The 

functions q, p, and E correspond to matrices in quantum mechanics. The fact that E depends upon 

only P is again found in quantum mechanics in the fact that the matrix that corresponds to E is a 

diagonal matrix. 

 

 

14. – Complete systems in involution and wave functions. 

 

 We have shown that we can find a system of n integrals P1, P2, …, Pn, so a “complete” system 

in involution with the help of a contact transformation (45), (46), from which the identity (39) will 



Frank - The fundamental concepts of analytical mechanics as the foundations of quantum and wave mechanics. 17 
 

follow, which introduces the “adapted” canonical variables. Now, we can also easily show that 

conversely, if we know a complete system in involution then that will suffice for us to introduce 

adapted canonical variables by a contact transformation, and thus to be able to solve the integration 

problem. Let, say: 

fj (q1, …, qn, p1, …, pn) = Pj  (j = 1, 2, …, n) (60) 

 

be n integrals of the equations of motion that are in involution. The Pj in that are integration 

constants. If we solve eq. (60) for the p1, …, pn then we will get the pj in eq. (33) as functions of 

the qj and the integration constants Pj . According to eq. (35), there will then be a function S of the 

qj and Pj such that: 

1 1

1 1

( , , , , , )

( , , , , , )
( 1,2, , ).

j j n n

n n

j

p q q P P

S q q P P
j n

q

=


= =



  (61) 

 

If we introduce the n quantities Q1, …, Qn by way of the equations: 

 

Qj = 1 1( , , , , , )n n

j

S q q P P

P




  (j = 1, 2, …, n) (62) 

then the 2n eqs. (61), (62) will define a contact transformation between qj, pj and the Qj , Pj . 

Namely, one can show (which will be only stated without proof here) that the relations (31) [(46), 

resp.] will follow from eq. (61), (62) for an S of arbitrary form. One further easily sees that the Qj, 

pj that were introduced by eqs. (61), (62) are adapted variables. Namely, since (60) says that the 

Pj will be integrals of the equations of motion when they are considered to be functions of the qj, 

pj , from (7), one will have the n equations: 

 

(H, Pj) = 0    (j = 1, 2, …, n), (63) 

 

in which the bracket expressions are understood to mean what they did in (3). Due to (21), one 

then has: 

(H, Pj) = 
1

( , ) ( , )
n

k j k j

k k k

H H
Q P P P

Q P=

  
+ 

  
  (j = 1, 2, …, n), (64) 

 

from which it will follow from (31) that: 

(H, Pj) = − 
j

H

Q




  (j = 1, 2, …, n). (65) 

 

However, from (63), H cannot include the Qj then, so the identity (39) will be true, and the Qj, Pj 

will be adapted variables. One can then reduce the integration problem to the search for the 

function S (q1, …, qn, P1, …, Pn). One calls it the action function, or with an interpretation that we 

shall soon speak of, the “wave function.” 
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15. – The Hamilton-Jacobi integration method. 

 

 From what has been done up to now, one can immediately give a partial differential equation 

that the wave function S must satisfy as a function of the q1, …, qn . Namely, by substituting (61) 

in the identity (39), one can obtain the condition that S must satisfy in order for the Qj, Pj that were 

introduced by the contact transformation (61), (62) to be adapted variables: 

 

1 2

1 2

, , , , , , ,n

n

S S S
H q q q

q q q

   
 

   
 = E (P1, P2, …, Pn) .   (66) 

 

E is an unknown function in that, of which we know only that it depends upon only the Pj . Eq. 

(66) is called the Hamilton-Jacobi partial differential equation. If S (q1, …, qn, P1, …, Pn) is any 

solution that includes the n independent integration constants P1, …, Pn (one calls such a solution 

complete) then one will obtain the general of solution of the equations from (61), (61), in 

conjunction with (44) and (41), namely, the 2n quantities q1, …, qn, p1, …, pn as functions of time 

t and the 2n arbitrary constants 1, …, n, 1, …, n . One can easily obtain the n − 1 separate 

equations that determine the geometric form of the “trajectories” in the n-dimensional space of the 

q1, …, qn in that solution. To that end, one chooses one of the n constants P1, …, Pn to be energy 

itself, so one sets, perhaps, Pn = E. The Hamilton-Jacobi eq. (66) will then read simply: 

 

1

1

, , , , ,n

n

S S
H q q

q q

  
 

  
 = Pn = E ,     (67) 

 

and the wave function S will depend upon the n constants P1, …, Pn−1, E. Eqs. (42), (44) will then 

read: 

j = 0 (j = 1, 2, …, n – 1), n = 1 , 

Qj = j          (j = 1, 2, …, n – 1),      (68) 

 Qn = t + n = t – t0 , 

and as a result of eq. (62): 

1 1 1( , , , , , , )n n

j

S q q P P E

P

−


 = j   (j = 1, 2, …, n – 1),     (69) 

S

E




 = t – t0 .      (70) 

 

In eq. (69), we then have the desired n – 1 relations between the n quantities q1, …, qn before us 

that defines a curve in n-dimensional q-space. Eq. (70) then gives us a clock reading, so the time 

evolution of the motion. In the solution to the Hamilton-Jacobi equation (66), we then have a 

means before us of finding n integrals of the equations of motion that are in involution, so a 

complete system in involution of the type (60). We will get it from (61) by calculating the Pj and 

functions of the qj, pj . 
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16. – Separation of variables. 

 

 The simplest case of a system in involution of the form (60) is the one in which the fj include 

only one of the qj and the pj that belongs to it, so one of the form: 

 

fj (qj, pj) = Pj  (j = 1, 2, …, n) .  (71) 

 

One easily sees that, from (3), the bracket expressions (fj, fk) always vanish for functions of that 

form. If eq. (61) is supposed to represent that system in involution then pj can depend upon only 

qj , so S must be a sum of terms only one of which includes qj , so: 

 

S = 
1

( )
n

j j

j

S q
=

  .     (72) 

 

Initially, one can always try to see if it would be possible to find a solution of eq. (67) that has the 

special form (72) then. In that case, it is possible to find a complete system in involution of the 

simple form (71). One then says that: The problem is integrable by “separation of the variables.” 

The significance of that method consists of the fact that in the cases where it is applicable, there 

will be integrals of the simple form (71) such that one can see the property that they define a system 

in involution immediately from them. 

 

 

17. – Waves and trajectories. 

 

 If we consider the action function S of a mechanical system that has a given energy value E 

then that S, which occurs in eqs, (69), (70), depends upon n – 1 arbitrary constants P1, …, Pn−1 . 

We then have n−1 functions of the coordinates q1, …, qn before us, or if we set: 

 

S (q1, …, qn, P1, …, Pn−1) =  – 0 ,    (73) 

 

when  – 0 is constant, we will have a family of n−1 surfaces in n-dimensional q-space. We call 

them the “wave surfaces” that belong to our mechanical problem. 

 We next imagine that the constant 0 has been chosen such that for t = 0, the surface of the 

family that corresponds to the parameter values P1, …, Pn−1 will go through the point (0)

1q , …, 

(0).nq  It will then follow from (73) that 0 = − (0) (0)

1 1 1( , , , , , )n nS q q P P −
, and the family (73) can 

be written in the form: 

 

S (q1, …, qn, P1, …, Pn−1) − (0) (0)

1 1 1( , , , , , )n nS q q P P −
 =  .        (74) 

 

We can now demand that  should change continuously, while the P1, …, Pn−1 remain constants. 

The individual surfaces of the family (74) will then change continuously, as well. When we regard, 
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say , as a fictitious time, we can see a sort of wave propagation in the continuous change in the 

wave surfaces with . If we then consider a wave surface that goes through a certain spatial point 
(0)

1q , …, (0)

nq  at a certain time , e.g., it goes through (0)

1q , …, (0)

nq  at time  = 0, then we can 

choose the parameters P1, …, Pn−1 such that the wave normal has a well-defined direction at that 

point in time. A direction in n-dimensional space is, in fact, given by the ratios of n quantities, say, 

1 : 2 : … : n . We must only choose the P1, …, Pn−1 such that the proportion: 

 

1 2

: : :
n

S S S

q q q

  

  
 = 1 : 2 : … : n             (75) 

 

will exist for q1 = (0)

1q , q1 = (0)

1q , …, q1 = (0)

1q . The desired direction for the surface normal is then 

fixed. However, the proportion (75) corresponds to precisely n – 1 equations for the n – 1 quantities 

P1, …, Pn−1 . When the direction of the wave normal at the point (0)

1q , …, (0)

nq  is also prescribed, 

the family (74) will then read: 

 
(0) (0) (0) (0) (0) (0)

1 1 1 1 1 1( , , , , , ) ( , , , , , )n n n nS q q P P S q q P P− −−  =  ,       (76) 

 

when (0)

1P , …, (0)

1nP −
 are the solutions of eq. (73). Therefore, when  varies continuously through 

all real values, there will be only one surface that exists at each , viz., a “wave train.” We shall 

also consider the wave trains now that simultaneously go through the point (0)

1q , …, (0)

nq  that is 

described in (76), but whose wave normals do not coincide precisely with the one at that point. 

We will then obtain a family of waves whose directions of propagation at the point will fill up a 

thin spatial cone with its vertex at that point. One will get its analytical representation by simply 

replacing (0)

1P , …, (0)

1nP −
  in (76) with somewhat-different values (0)

1P  + P1, …, (0)

1nP −
 + Pn−1 : 

 
(0) (0) (0) (0) (0) (0)

1 1 1 1 1 1 1 1 1 1( , , , , , ) ( , , , , , )n n n n n nS q q P P P P S q q P P P P− = − −+  +  − +  +   =  . (77) 

 

We can now pose the questions of whether all of those waves that go through the point (0)

1q , …, 

(0)

nq  at  = 0 will once more all come together at a point in q-space at any other time point , and 

where all of those points will be found at each time point . To that end, we develop the left-hand 

side of (77) in a Taylor series and truncate it after the first term. We will then get: 

 

1
(0) (0) (0) (0) (0) (0)

1 1 1 1 1 1 (0) (0)
1

0

( , , , , , ) ( , , , , , )
n

n n n n j

j j j

S S
S q q P P S q q P P P

P P

−

− −

=

   
− + −        

  =  ,   (78) 

in which: 

 
(0)

j

S

P




 = 

(0) (0)

1 1 1

(0)

( , , , , , )n n

j

S q q P P

P

−


 , 
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(j = 1, 2, …, n − 1)  (79) 

 
(0)

0j

S

P

 
   

 = 
(0) (0) (0) (0)

1 1 1

(0)

( , , , , , )n n

j

S q q P P

P

−


. 

 

Should eq. (78) be fulfilled for the entire family of waves (77), so for all values of P1, …, Pn−1, 

and certain common values of the q1, …, qn, and , then those q1, q2, …, qn, and  would have to 

satisfy the equations: 

(0)

j

S

P




 = 

(0)

0j

S

P

 
   

  (j = 1, 2, …, n – 1),  (80) 

 
(0) (0) (0) (0) (0) (0)

1 1 1 1 1 1( , , , , , ) ( , , , , , )n n n nS q q P P S q q P P− −−  =  .       (81) 

 

If we compare eq. (80) with eq. (69) then we will see that they are the n − 1 equations of the 

trajectories of our mechanical problem. [We must only denote the constants on the right-hand side 

of eq. (80) by j and the parameters of the action function by Pj , instead of (0)

jP , again.] Since (81) 

further coincides with (76), we can say: If we assign rays to the wave propagation in such a way 

that we pursue the motion of the points at which neighboring wave trains intersect at equal times 

then the propagation of the wave along the ray will be simply the motion along the trajectory of 

the mechanical problem, but the velocity will be given by the law (76) of wave propagation, not 

by the velocity of the mechanical system, which is indeed also defined only for the individual 

mass-points. However, that definition of ray corresponds entirely to the way that one finds it in the 

optics of rays, when based upon the undulatory theory. That is because we have not, in fact, done 

anything but pursue the points at which neighboring waves with equal phase (for us that means: 

equal values of ) will intersect. 

 With that analogy between mechanical systems and the study of waves, there are two things to 

be observed: First of all, the wave function S that appears in all of our equations depends upon not 

only the parameters Pj, but also upon the energy E, as is clear from eqs. (67), (69), (70). We can 

then actually write S (q1, q2, …, qn, E, P1, …, Pn) everywhere. That is, every value of energy for 

the mechanical system is assigned a different family of waves (74). Secondly (and this is much 

more important), the time  that we have introduced into (73) is identical to the time t by which 

we follow the motion of our mechanical system, but we have introduced  only to give a simplest-

possible wave-theoretic interpretation of the action function S. 

 If we now look for a different wave-theoretic interpretation in which an action function appears 

that will be independent of energy E and in which the wave propagation is described in the time t 

of the mechanical system then we will arrive at the wave that Schrödinger associated with each 

mechanical system in his wave mechanics. 
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18. – Schrödinger waves. 

 

 If we define a function W of the arguments q1, …, qn, P1, … Pn−1 , E, t by: 

 

W = S (q1, …, qn, P1, … Pn−1) – E t ,    (82) 

 

then it will follow immediate with the help of (70) that the derivative of W with respect to E will 

vanish, so E will not appear in W as an argument. When W0 means a constant, the equation: 

 

W = S – E t = W0      (83) 

 

will define a surface in n-dimensional q-space for every value of t, so a wave train, together with 

its law of propagation in the time t that describes out mechanical system. The waves that are 

represented by eq. (83) are the waves that are associated with our mechanical system according to 

Schrödinger’s wave mechanics. Their speed of propagation u at any spatial point is obviously: 

 

u = 
dn

dt
,          (84) 

 

if n is the normal to the wave surface at the point in question. However: 

 

dn

dt
 = 

dn dW

dW dt
.     (85) 

Nonetheless, since: 

dW

dn
 = | grad W | ,     (86) 

 

in which the two vertical lines mean the absolute value of the vector that they enclose, (84), (85), 

(86), (83) will give: 

u = 
| grad |

E

W
 = 

| grad |

E

S
.         (87) 

 

By the way, it should be remarked that from (74), the wave picture in no. 17 for the speed of 

propagation at the time value  will imply that: 

 

dn

d
 = 

dn dS

dS d
 = 

1

| grad |S
.        (88) 

 

However, the absolute value of grad S at a point in q-space can be calculated from the Hamilton-

Jacobi differential equation (67). Namely, when the kinetic energy of our system is expressed in 

terms of the generalized coordinates qj and impulse components pj in the form: 
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K = 1
2

,

jk j k

j k

a p p ,     (89) 

 

in which the ajk depend upon only the q1, …, qn, but the potential energy reads  (q1, …, qn), then 

H = K + , and eq. (67) will assume the form: 

 

1
2

,

jk

j k j k

S S
a

q q

 

 
 +  (q1, …, qn) = E ,   (90) 

 

when we once more replace the pj with the derivatives of S with respect to qj . On the other hand, 

the gradient of S in our generalized coordinate system has the components 
1

S

q




, …, 

n

S

q




. From 

the rules of calculation for vector-analytic covariants in curvilinear coordinates, its absolute value 

will then read: 

| grad S |2 = 
,

jk

j k j k

S S
a

q q

 

 
 ,        (90.a) 

 

analogous to (89). However, it will then follow from eq. (90) that: 

 

| grad S | = 2( )E −  ,         (91) 

 

and for the speed of propagation u, eq. (87) will yield: 

 

u = 
2( )

E

E − 
 .     (92) 

 

If we now consider those of the wave that are represent by (83) that go through the point (0)

1q , …, 

(0)

nq  in q-space at time t = 0 then we must set the constant W0 = (0) (0)

1 1 1( , , , , , , )n nS q q P P E−
 for 

any system of values of the P1, … Pn−1, E, and eq. (83) will read: 

 

S (q1, …, qn, P1, …, Pn−1, E) − (0) (0)

1 1 1( , , , , , , )n nS q q P P E−
 = E t ,  (93) 

 

analogous to (74). If we now also prescribe the direction of the wave normal at that point then 

when the energy value E is prescribed, in analogy to (75), we can determine the P1, … Pn−1, and 

we will get a completely-determined wave that is given by: 

 
(0) (0) (0) (0)

1 1 1 1 1 1( , , , , , , ) ( , , , , , , )n n n nS q q P P E S q q P P E− −−  = E t ,  (94) 
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analogous to (76), when the (0)

1P , …, (0)

1nP −
 are just the values that correspond to the chosen 

direction for the wave normal. If we once more consider a family of waves whose directions of 

propagation fill up a small cone at (0)

1q , …, (0)

nq  then we will have to replace the (0)

jP  in (94) with 

the values (0)

j jP P+  , and we will get: 

 
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

1 1 1 1 1 1 1 1 1 1( , , , , , , ) ( , , , , , , )n n n n n nS q q P P P P E S q q P P P P E− − − −+  + − +  +   

= E t ,       (95) 

 

analogous to (77). It will then follow, exactly as with (77), that eqs. (78) to (81) will yield: 

 

(0)

j

S

P




 = 

(0)

0j

S

P

 
   

 = j (j = 1, 2, …., n – 1),  (96) 

 
(0) (0) (0) (0)

1 1 1 1 1 1( , , , , , ) ( , , , , , )n n n nS q q P P S q q P P− −−  = E t .  (97) 

 

The points at which neighboring waves of the same phase meet, so whether the waves reinforce 

each other by interference, in the sense of the undulatory theory, will move along the trajectories 

of the mechanical problem that are given by eq. (69). However, due to (97), the speed at which 

those points move forward is given by the speed of propagation of the Schrödinger waves (83), 

so by eq. (92). The result will be somewhat different when we consider a family of waves in which 

the individual waves differ, not only by their directions of propagation, but by their energy values 

E for the corresponding mechanical problem. We will also have to replace E with the value E0 + 

E then, in which E0 is a fixed value and E is small compared to E0 . The “wave group” that is 

thus described will then be represented by: 

 

 (0) (0) (0) (0)

1 1 1 1 1 0( , , , , , , )n n nS q q P P P P E E− −+  + +   

− (0) (0) (0) (0) (0) (0)

1 1 1 1 1 0( , , , , , , )n n nS q q P P P P E E− −+  +  +   = (E0 + E) t .  (98) 

 

We can also write eq. (98) as a Taylor development in the form: 

 

 (0) (0) (0) (0) (0) (0)

1 1 1 0 1 1 1 0( , , , , , , ) ( , , , , , , )n n n nS q q P P E S q q P P E− −−  

+ 
1

(0) (0)
1 0 0 00

n

j

j j j

S S S S
P E

P P E E

−

=

         
−  + −                  

  = E0 t + t E .  (99) 

 

If we once more ask what the time point might be at which all waves in the group (99) that meet 

at the point (0)

1q , …, (0)

nq  at time t = 0 will meet again at any point then, analogous to (80), upon 

comparing the coefficients of Pj, E, we will get the equation: 
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(0)

j

S

P




 = 

(0)

0j

S

P

 
   

 = j (j = 1, 2, …., n – 1),  (100) 

0

S

E




= t + 

0 0

S

E

 
 

 
= t – t0 .     (101) 

 

We will then get not only eq. (69), but also eq. (70), and the see that: The points at which the waves 

of the group (99) reinforce by interference due to the agreement in phase wander not only along 

the trajectories of the mechanical problem, but also with the velocity with which the point with the 

coordinates q1, …, qn moves, which is the one that can represent the entire motion of the 

mechanical system. 

 However, one easily sees that the validity of (99) still does not follow from eqs. (100), (101). 

Rather, in order for that to be true, it is also necessary that (94) must be fulfilled with E = E0. 

However, since q1, …, qn can already be calculated as functions of t from (100) and (101) alone, 

that equation will not generally be fulfilled by substituting those values in (94). One will not have: 

 
(0) (0)

1 1 1 0( , , , , , , )n nS q q P P E−
− E0 t = (0) (0) (0) (0)

1 1 1 0( , , , , , , )n nS q q P P E−
, 

 

but something that deviates from it somewhat: 

 
(0) (0)

1 1 1 0( , , , , , , )n nS q q P P E−
− E0 t = (0) (0) (0) (0)

1 1 1 0( , , , , , , )n nS q q P P E−
 + S0 . (102) 

 

Instead of (98), we will then consider the wave group: 

 

 (0) (0) (0) (0)

1 1 1 1 1 0( , , , , , , )n n nS q q P P P P E E− −+  + +   

− (0) (0) (0) (0) (0) (0)

1 1 1 1 1 0( , , , , , , )n n nS q q P P P P E E− −+  +  +  − S0 = (E0 + E) t , (103) 

 

in which S0 is a quantity that does not depend upon the parameters of the wave group (0)

1P , …, 

(0)

1nP −
, E (1). The wave group (103) differs from the original one (98) by only the fact that the 

waves no longer go through the point (0)

1q , …, (0)

nq  at the time t = 0, but at a different time. 

However, since that is the same moment for all intermediate terms of the wave group, the phase 

difference at any time-point t will not vary, and all of the calculations that led from (98) to (100), 

(101) can be repeated precisely with eq. (103), but with the difference that the quantity S0 will be 

added to the constant (0) (0) (0) (0)

1 1 1 0( , , , , , )nS q q P P E E+  +   everywhere, but E0 will not affect 

the differentiations with respect to the parameters (0)

jP  that appear. The representative point of 

 
 (1) It should be noted that S0 will probably have a different value for every time-point t in the motion of the 

representative point. However, that means only that every such position will arise by the interference of another wave 

group. In the consideration of the propagation of the waves (102), (103) themselves, e.g., the calculation of the speed 

of propagation, S0 can be regarded as a constant. 
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the mechanical system whose motion is given by (100), (101) can no longer be regarded as a result 

of the combined effect of the wave group (98) whose intermediate terms all go through a point 
(0)

1q , …, (0)

nq  at time t = 0, but the position of the representative point will arise at each time-point 

t by the combined effect (interference) of a wave group (103) that goes through the point (0)

1q , …, 

(0)

nq  at a moment that depends upon t. 

 

 

19. – The complete figure of wave surfaces and trajectories. 

 

 When we are given a complete system in involution of the form (60), according to no. 14, a 

wave function S (q1, …, qn, P1, …, Pn) will be determined by it. When we assign constant values 

Pj = j to the Pj according to (44), S will be a function of the q1, …, qn that is defined in all of q-

space and depends upon n parameters 1, …, n . A family of surfaces in q-space will then be 

determined by: 

S (q1, …, qn, P1, …, Pn) =       (104) 

 

when  varies continuously, and that will then be a family of wave surfaces for our problem 

according to our interpretation in no. 17. If we once more choose the energy integral to be the 

integral that we start from, and set, say n = E, then a family of n−1 trajectories can be derived 

from the wave function S according to (69) that can be represented in the form: 

 

j

S






 = j   (j = 1, 2, …, n – 1)  (105) 

 

with our current notation. When we have an arbitrary complete system in involution, the n−1 

trajectories that can be derived from S can no longer be written in the form (105), but from (62), 

(44), in the somewhat-more-complicated form: 

 

1

1

1

S







−


 = 

2

2

2

S







−


 = … = 

n

n

n

S







−


    (106) 

 

when the energy can be expressed in terms of the 1, …, n in the form E (1, …, n), and from 

(41): 

j = 
j

S






  (j = 1, 2, …, n).  (107) 
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In any event, the wave function S can also be associated with n−1 trajectories here by using eq. 

(106) (1). One now calls the 1 wave surfaces (104), together with the n−1 trajectories that are 

associated with them by eq. (105) or (106), a “complete figure” of wave surfaces and trajectories. 

That concept was coined by C. Carathéodory for a general variational problem. Since S depends 

upon n parameters 1, …, n , there will be n complete figures, and as a result, n−1  n = 2n−1  

trajectories in total. The set of all trajectories can then be arranged into complete figures that each 

have n−1 trajectories with the help of a complete system in involution, or what amounts to the 

same thing, the solution to the Hamilton-Jacobi partial differential equation (66). We now ask 

what the relationship might be that exists between the direction of the trajectory and the wave 

surface. The direction of the trajectory is given by the velocity vector with the components 1q , …,

nq . However, it can also be derived when we are given the impulse vector with the components 

p1, …, pn, because it would follow from (1), (89), and H = K +  that the 
jq  can be calculated 

from the pj according to the rule: 

 

jq  = 
j

K

p




 = 

1

n

jl l

l

a p
=

   (j = 1, 2, …, n).  (108) 

 

One often calls the pj the “canonical” direction coordinates. Now, the direction of a trajectory at 

the point q1, …, qn is given by eq. (61). When we denote a line element on the wave surface by 

dq1, …, dqn, we will have: 

1

n

j

j j

S
dq

q=




  = 0 .     (109) 

 

since S = const. Therefore, according to (61), the relation: 

 

1

n

j j

j

p dq
=

  = 0      (110) 

 

will exist between a line element on the wave surface that is represented by the ordinary direction 

components dq1, …, dqn and an element of the trajectory that is defined by the canonical direction 

quantities p1, …, pn . In the terminology of the calculus of variations, one then says: The trajectory 

is “transverse” to the wave surface. If the q1, …, qn are coordinates such that the vis viva can be 

written in the form: 

K = 2

1

1

2

n

j

j

p
m =

 .     (111) 

 

 
 (1) That is because the curves that are represented by (106) depend upon only the n – 1 differences of the n 

parameters j / j .  
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then from (108), the 
jq  = (1 / m) pj , so the ordinary direction quantities will then be proportional 

to the canonical pj . The “transversality condition” (110) then goes over to the “orthogonality 

condition,” which says that the trajectory is perpendicular to the wave surface. In the simplest case 

where the qj are Cartesian coordinates of the three-dimensional space, the “complete figure” will 

then consist of 1 wave surfaces that cover space simply and whose 2 orthogonal trajectories are 

the trajectories. 

 In general, a certain system of values for the 1, …, n will define a certain complete figure. 

Every system of values for the 1, …, n−1 will define a trajectory that belongs to that figure. 

 

 

20. – Conception of the complete figure as a “point-cloud.” 

 

 A velocity with the components 1q , …, nq  is defined at every point in q-space by eqs. (108), 

(61) when one has a complete figure, so analytically speaking, when one is given the wave function 

S (q1, …, qn, 1, …, n). Namely, one has: 

 

jq  = 
1

n

jl

l l

S
a

q=




   (j = 1, 2, …, n) .        (112) 

 

We now suppose that all of q-space is filled with representative points of mechanical systems. 

When we have ordinary three-dimensional space before us, that will mean simply that it is filled 

with material points, or as L. de Broglie said it, we have a “cloud of material points.” A motion 

of that point-cloud is then defined by eq. (112). If we regard it as the motion of a space-filling 

continuous mass then eq. (112) will represent a stationary flow since the velocity depends upon 

only the position q1, …, qn . One also speaks of the flow of an “incoherent” medium since the 

individual points of the “cloud” do not interact with each other. 

 In order for us to be dealing with an actual flow, the number of particles in a volume element 

cannot change under the motion that (112) represents, i.e., the continuity equation of 

hydrodynamics must be satisfied. When one denotes the number of particles per unit volume, so 

the spatial density, by 1( , , )nq q , the continuity condition will read: 

 

1

( )n
j

l l

q

q



=




  = 0 ,     (113) 

so from (112): 

1 1

n n

jl

l l l l

S
a

q q


= =

  
 

  
  = 0 .          (114) 

 

If the complete figure, so S, is given then the particle density  must satisfy the first-order partial 

differential equation (114). Only entirely special densities  (q1, …, qn) will belong to each 

complete figure if it is to be interpreted as a flow. In that sense, a complete figure (a point-cloud 
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flow, resp.) is determined by the two functions S and  that satisfy the two partial differential 

equations (90), (114). 

 

 

21. – Point-clouds and the undulatory theory. 

 

 Up to now, we have used the word “wave” only in the sense of geometrical optics, i.e., only as 

a geometric representation for the set of light rays. The wave surface determines the light rays as 

its orthogonal (“transverse,” resp.) trajectories. In that way, nothing was said about any periodicity, 

so of frequency. However, in Schrödinger’s wave mechanics, those waves are regarded as actual 

waves in the sense of the theory of undulatory theory. Based upon what de Broglie said, the phase 

of the wave is defined by the quantity W in eq. (83). The quantity  that propagates in the form of 

a wave will then be represented by the formula: 

 

 = 
/i H tAe  = 1( , , ) / /

1( , , ) niS q q i Et

nA q q e e− .            (115) 

 

The  is a constant that must be introduced in order to make the exponent of the exponential 

function into a dimensionless quantity. It will be identified with Planck’s constant of action. A is 

the amplitude, and the frequency  is coupled with E by the relation: 

 

E =  .         (116) 

 

Since the speed of propagation u is given by eqs. (87), (92), we will get: 

 

 = 
2 u


 = 

2

| grad |S


 = 

2

2( )E



− 
    (117) 

 

for the wavelength . If a wave train, in the sense of geometrical optics, is actually represented by 

(115) then it must go to a plane wave in the small. Stated more precisely: A and grad S will vary 

only slightly in a spatial region with the same order of magnitude as the wavelength. We shall now 

assume that  satisfies the ordinary wave equation with the speed of propagation u, so: 

 

div grad  = 
2

2 2

1

u t




 .    (118) 

 

We then ask what relations slowly-varying A and S must satisfy in order for A and S to be a solution 

of (118): De Broglie, and more generally A. Sommerfeld (1), have shown that S must then be the 

wave function, and  = 2A  is the density of a point-cloud, in the sense of no. 20. We next write 

(115) in the form: 

 
 (1) In his contribution to Ph. Frank and R. Mises, Die Differential und Integralgleichungen der Mechanik und 

Physik, Bd. II, pp. 484, et seq.  
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 = 
1( , , ) i t

nq q e  − ,     (119) 

such that: 

 = /i SAe .         (120) 

 

Upon substituting (119) in (118), one will then get the following differential equation for  : 

 

div grad  + 
2

2u


  = 0 ,        (121) 

 

which one often calls the “abbreviated” wave equation or the differential equation for the 

“temporal amplitude” . One understands the “spatial” amplitude to then mean the function of 

position A, which can obviously be interpreted as the wave amplitude for slowly-varying A and 

grad S. Since the vector-analytic covariant of grad  is expressed in terms of the generalized 

coordinates q1, …, qn by: 

div grad  = 
,

jk

j k j k

a
q q

  
 

  
  ,    (122) 

 

when one substitutes (120) in (121), one will get the following differential equation for  : 

 
2

2
,

jk

j k j k

a
q q u

 


  
+ 

  
  = 0 .    (123) 

 

If we replace  in (123) with its value in (120) and employ the expressions (90.a) and (122), as 

well as the analogous one: 

(grad A, grad S) = 
,

jk

j k j k

S S
a

q q

 

 
        (124) 

 

for the vector-analytic covariant in general coordinates, then we will get the following differential 

equation for A and S : 

 
2 2

2

2 2
| grad | 2(grad ,grad ) div grad div grad 

i i
A S A A S A S A

u

 
+ + + + 

 
 = 0 . (125) 

 

The terms in the first square bracket are large compared to all other terms for short wavelengths 

(so for large frequencies ), due to the slow variation of A and grad S. They must then nearly 

vanish in their own right. Due to (116) and (117), it will then follow that one has, approximately: 

 

2grad S  = 
2

2

E

u
 = 2 (E – ) ,     (126) 
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so the Hamilton-Jacobi partial differential equation (90). Due to the slow variation of A and 

grad S  over the span of a wavelength,  grad A and  div grad S must be small compared to A and 

grad S, respectively. However, due to (117), it will follow that the terms in the second square 

bracket in eq. (123) are small compared to the first one, but large compared to the last term 

div grad A . Therefore, one must also have: 

 
22 (grad ,grad ) divgradA A S A S+  = 0       (127) 

then. However, when we set: 

 = 2A ,      (128) 

 

that equation will be identical to eq. (114), due to (122) and (124). Nonetheless, for wavelengths 

that are short enough, many wavelengths will fit inside of a domain in which A and grad S can be 

regarded as constant, so the wave train (115) will be nothing but the representation of a bundle of 

rays (or more precisely, a congruence of rays) in the sense of geometrical optics, so it is also an 

approximate solution to the wave equation (118) of undulatory optics. A “point-cloud,” as it was 

represented by (90), (114), can also be represented by (115) then when A is the amplitude and S is 

the wave phase of an actual solution to the basic equation (118) of the undulatory theory in the 

limiting case of waves that are short compared to the inhomogeneity of the medium, which will be 

the case in which wave optics can be replaced by geometrical optics. In spirit of de Broglie and 

Schrödinger, classical mechanics, as “geometrical mechanics,” then seems to be a limiting case 

of “wave mechanics.” In the limiting case of short wavelengths, the waves go to a point-cloud 

whose density is proportional to the square of the amplitude, according to (128). 

 

 

22. – When does an individual trajectory define a complete figure? 

 

 For a certain choice of 1, …, n , a wave-function S (q1, …, qn, 1, …, n) will define a certain 

complete figure in the sense of no. 19, and when one varies the 1, …, n, that will define the 

totality of all complete figures that subsume the totality of all trajectories. For that reason, one can 

find a complete figure that belongs to any trajectory, and indeed it will generally be infinite. 

Namely, for a given choice of the wave function S, the constants 1, …, n, 1, …, n in eqs. (61), 

(105) can be determined such that those equations will represent a certain trajectory. However, 

there are infinitely-many solutions S to the Hamilton-Jacobi differential equation (67), one can 

regard every trajectory as belonging to a complete figure in infinitely-many ways. That figure will 

be established when one fixes the function S and the values of the j . The values of j will 

determine only the individual trajectories inside of that figure then. Knowing the complete figure 

alone will already make it possible to determine the impulse components p1, …, pn for the 

trajectory that goes through any point q1, …, qn of a figure without having to know the j . Namely, 

from eq. (61), they are simply: 

pj = 1 1( , , , , , )n n

j

S q q

q

 


  (j = 1, 2, …, n) . (129) 
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Conversely, when the pj are given as functions of the q1, …, qn, i.e., the impulses of the trajectories 

of our figure that go through each point in q-space, S (so the complete figure) can be established 

only when the pj are functions of position such that p1 dq1 + … + pn dqn is a complete differential. 

That is because in that case, there will always be a function S that satisfies eq. (129). 

 Now, it is obvious that the case can occur in which the pj are determined as functions of q1, …, 

qn in all of q-space. Namely, let n integrals of the system be given, so n relations of the form: 

 

fj (q1, …, qn, p1, …, pn) = j  (j = 1, 2, …, n) (130) 

 

that all states qj , pj must satisfy along trajectories. Those integrals should be arranged such that all 

trajectories that satisfy the relations (130) for given values of the j must run inside of a finite 

region in q-space for fixed values of the integration constants 1, …, n . Moreover, every 

trajectory shall have the property that it comes arbitrarily close to each point in q-space that is 

inside of the aforementioned region in the course of time. That means: Any further integral that 

gets added to the n integrals (130) shall be only a “quantitative” one, not a “qualitative” one, as 

Levi-Civita phrased it. Namely, one understands the latter type to mean that even with a small 

indeterminacy in the integration constants [so when the quantities n+1 in fn+1 (q1, …, pn) = n+1 

fluctuate between two close limits n+1 − n+1 and n+1 + n+1], one selects a smaller region 

from the n-dimensional region in q-space that is determined by the n integrals (130) in which the 

trajectories must run if they are to also satisfy the relations fn+1 (q1, …, pn) = n+1 for an ill-defined 

n+1 . It is clear that in order for such a “qualitative” integral to exist, the assumption that the 

trajectory will come arbitrarily close to the point of the region that is bounded by eq. (130) cannot 

be fulfilled. 

 By contrast, should the n integrals (130) be “qualitative” ones, i.e., when one solves them for 

the p1, …, pn, the latter must be functions of the q1, …, qn that are single-valued or finitely-

multivalued at every point in q-space. Every trajectory that comes close to a point in q-space will 

always have impulse components there that assume values that differ only slightly from the ones 

that they had already assumed at a previous visit to that neighborhood. We shall now follow a 

trajectory that the integrals (130) satisfy along its entire evolution in the subset of q-space that it 

fills up. At each point q1, …, qn along the curve, a certain system of values for the impulse com-

ponents p1, …, pn will be determined by it, and indeed the one that is given by solving eq. (130) 

for the p1, …, pn . Let it be given by: 

pj = j (q1, …, qn) .     (131) 

 

On the other hand, we can consider the trajectory in question to be like any other one that belongs 

to a complete figure. A wave function S will then belong to it from which the impulse components 

pj can be calculated by eq. (129). Those pj are then, on the one hand, given in the entire subregion 

of q-space by the solutions (131) to eq. (130), and on the other hand, by eq. (129) at the places 

where out trajectory runs through. The relations: 

 

pj = j (q1, …, qn) = 
j

S

q




    (132) 
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must then be true at all of those places. However, since our assumption that (130) are qualitative 

(or as one often says, single-valued) integrals implies that the pj can be only finitely-multivalued 

functions of the q1, …, qn  (so they must also assume neighboring values at neighboring points),  if 

eq. (132) is true for all points along the trajectory then it cannot break down at any other point of 

our n-dimensional region, either, since indeed the trajectory comes arbitrarily close to all of its 

points. However, it will then follow that 1 dq1 + … + n dqn is a complete differential. Therefore, 

the function S, and therefore a complete figure, will be established by the 1, …, n, so also along 

our individual trajectory. At the same time, it will follow from no. 9 that the integrals (130) must 

be a complete system in involution. 

 We can then summarize: If the n integrals (130) are the only qualitative integrals, and every 

trajectory that satisfies them fills up a finite region of the n-dimensional q-space that is determined 

by (130) in the sense that it comes arbitrarily close to every point then a complete figure will be 

determined by every trajectory, and indeed in a finitely-multivalued way, since the pj are given in 

a finitely-multivalued way by solving eq. (130). Since every such figure also corresponds to a 

wave-train, every trajectory of the type that was described is also associated with a wave-train in 

the sense of no. 17 in a finitely-multivalued way. The n integrals (130) themselves will always 

define a complete system involution then. It is only such a thing that can define an n-dimensional 

region that can be filled up with trajectories in the given way (1). 

 

 

23. – The multidimensional harmonic oscillator as an example of no. 22. 

 

 As a simple example of the case that was treated in no. 22, one ordinarily considers the 

multidimensional linear oscillator whose periods in the different directions have irrational ratios. 

We restrict shall ourselves to the oscillations of a mass-point of unit mass in three-dimensional 

space about the coordinate origin as the equilibrium point. Let q1, q2, q3 Cartesian coordinates, and 

let p1, p2, p3 be the corresponding impulse components. The Hamiltonian function then reads: 

 

H = 2 2 2 2 2 2 2 2 21
1 2 3 1 1 2 2 3 32

( )p p p q q q  + + + + +  ,   (133) 

 

in which 1, 2, 3 are the frequencies of oscillation in each of the three axis directions. If we 

denote the energy by 3 then, according to (67), the Hamilton-Jacobi partial differential equation 

will read: 
3

2 2 21
2

1

( )j j j

j

p q
−

+  = 3     (134) 

 

here, and three integrals of our mechanical system will read: 

 

 
 (1) A. Einstein, Verh. d. D. Phys. Ges.10 (1917), pp. 82-92.  
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2 2

2 2

3 3 1 2 3 3

2 ( 1,2),

2( ) ,

j j j jp q j

p q

 

   

= − =

= − − −

    (135) 

 

which is already solved for pj in the form of (131). Due to the double-valuedness of the square 

root, every point in q-space will belong to eight systems of value for the p1, p2, p3 . Since every pj 

depends upon only one qj, we are dealing with the case of separation of variables in no. 16, so the 

expression p1 dq1 + … + pn dqn will obviously be a complete differential, and the wavefunction 

will be given by a mere quadrature as: 
 

S (q1, q2, q3, 1, 2, 3) = 
3

2 2 2 2

3 1 2 3 3 3

1

2 2( )j j j j

j

q dq q dq     
−

− + − − −   .  (136) 

 

Due to the eight possible systems of values for the pj, there are also eight expressions the wave 

function. Nonetheless, since the quantity S itself will only change sign upon inverting the signs of 

all pj, which means that there can be no other complete figure, only four complete figures will be 

defined by the three integrals (135), which obviously define a complete system in involution. 

However, our system possesses no other “qualitative” integral in addition to the integrals (135). 

Namely, since the expression under the square root in (135) must be positive for every possible 

state of the system, the qj must lie between fixed limits, namely: 
 

q1 must lie between − 1

2

1

2


 and + 1

2

1

2


, etc. 

 

However, all trajectories run inside of a cuboid subregion of q-space that is defined by the three 

constants 1, 2, 3 . When we assume that the oscillation frequencies have irrational ratios, every 

trajectory will come arbitrarily close to each point of the aforementioned cube, so they will fill it 

up in a certain sense. From what was said up to now, every individual trajectory will define such 

a cube, and therefore well-defined systems of values for the pj at each point in that region, so the 

integrals (135), as well. Due to the multivaluedness that was spoken of before, every trajectory 

will belong to precisely four figures, or as one can also say, four wave-trains that it can be 

associated with in the spirit of wave mechanics. Such systems, whose trajectory can then be 

associated with only a finite number of wave-trains, have played a significant role in the 

development of quantum theory as a nondegenerate multiply-periodic system. We see that they 

also assume an especially-distinguished position from the standpoint the association of trajectories 

and wave-trains that is required by wave mechanics (1). 

(Received on 5 February 1929) 

 

_____________ 

 
 (1) One can find a thorough presentation of the parts of classical mechanics that are most important in quantum 

mechanics in Handbuch der Physik (ed. by Geiger and Scheel) in Bd. V (contribution by L. Nordheim and E. Fues), 

and Bd. XX (contribution by A. Landé on optics, mechanics, and wave mechanics), and furthermore, in M. Born, 

Lehrbuch der Atommechanik, and in the new edition of Riemann-Weber, Differentialgleichungenen der Physik (ed. 

by Ph. Frank and R. von Mises) in Bd. II. (Contribution by Ph. Frank on Analytical Mechanics) 


