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 In a note (*) that was published in 1890, Volterra showed that there is some interest to the 

problem of extending the beautiful work of JACOBI and HAMILTON on the equations that 

express the idea that first variation of a simple integral is zero to the case of a multiple integral. He 

accomplished that generalization in the case of the integral: 
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in which U is a function of x1 , x2 , x3 , x4 , x5 , and the functional determinants: 
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(However, that function is not homogeneous with respect the last three quantities.) I propose to 

treat the more general case, i.e., the case of the integral: 
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(in which xr+1, …, xn are certain functions of x1, …, xr), which includes that of JACOBI as a special 

case for r = 1. I shall appeal to what Volterra said in a previous note (**) for those of the definitions 

and theorems that relate to n-dimensional space. 

 

 

 I. – First of all, let us put the integral I into a more convenient form. Set: 

 

 
 (*) “Sopra una estensione della teoria JACOBI-HAMILTON der calcolo della variazione,” Accademia dei Lincei, 

Rendiconti, vol. VI, pp. 127. 

 (**) “Delle variabili complesse negli iperspazi,” loc. cit., vol. V, pp. 159. 
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while supposing that x1, …, xr are expressed as functions of the r parameters 1, …, r . One sees 

that one can write: 

I = 1 2 rF d d d     ,     (3) 

 

in which F denotes a homogeneous function of degree one in the functional determinants, 
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 Conversely, the integral (3) can always be reduced to the form (1), no matter what form the 

function F of x1, …, xn takes, which is homogeneous of degree one with respect to the quantities: 
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because the equality (2) defines f as a function of x1, …, xn and the functional determinants: 
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which are certain functions of the quantities: 
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It suffices to choose from among the variables x1, …, xn, the letters x1, …, xr with respect to which 

the equations of the multiplicity Sr considered are soluble. 

 By definition, the form (1) is equivalent to the form (*): 

 

 
 (*) The form (3) is the analogue of the parametric form that was employed by WEIERSTRASS in the case of a 

simple integral. The extension to the case of a multiple integral was realized for the first time in a practical form by 

HADAMARD in his course at the Collège de France. 
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in which I have employed the notation of MÉRAY for multiple integrals and set: 
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 II. First variation. – Let us calculate the first variation of I. We will have: 
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in which the 
ixF  and 

, ,1i ir

F  are the partial derivatives of F with respect to xi and 
1, , ri i , resp., when 

they are considered to be independent variables, whereas 1/F   , for example, denotes the 

derivative that is taken while considering the x and the  to be functions of 1, …, r . 

 Hence, upon integrating the terms in  by parts: 
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and lets Sr−1 denote the at-most-(r – 1)-dimensional multiplicity that forms the boundary of Sr . 

One sees that if Sr−1 remains fixed then one will have: 
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 Conforming to the terminology that is employed in the calculus of variations, we shall call any 

multiplicity that verifies the equation I = 0 when the limits are fixed an extremal. For that to be 

the case, it is necessary and sufficient that Sr must be an integral multiplicity of the equations: 
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Q1 = 0 , … , Qn = 0 .     (6) 

 

 

 III. Canonical equations of the extremals. – In order to arrive at the canonical form of 

equations (6), we set: 
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and place ourselves in the general case, where we consider the  to be independent variables (*), 

and the Hessian of F (which is null and of order r

nC ) to have at least one minor of order r

nC  – 1 

that is non-zero. Under that condition, the relations (7) will show that upon further considering the 

 to be independent variables, there will be one and only one relation between the q : 
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then one can fund a function F that is homogeneous of degree one with respect to the independent 
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if 
1,2, ,rqH , for example, is not identically zero, and one will then know that one has: 
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 That results from a change of variables, without one having to be preoccupied with equations 

(6). In particular, one will see that one will have: 
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when one sets: 
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and in this case the quantities 
1, , ri iq  are not only coupled by the relation (8), but also by the 

equations: 
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which result from the identities (9), (11). 

 If we now introduce the new variables into equations (6) then we will see that we can regard 

the extremals as being defined by the following canonical system, which is analogous to that of 

HAMILTON (to which it will reduce for r = 1): 
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One can further write that in the form: 
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 Furthermore, observe that one can replace the condition (8) with another one that is simpler. 

 Indeed, H is a constant such that the x and q verify equations (16) and (17). That is because 

one will have: 
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in this case because the brackets are identically zero. 

 As a result, H / 1 will be zero, and similarly for the other derivatives. Moreover, H is a 

constant, and in place of equation (8), one can be content to write that the initial value of H is zero. 

If one does not impose that condition then, after the change of variables: 
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in which the q are determined by the system (18) as a function of the  . One will no longer have 

quite the same problem anymore, because the value of the integral will not only depend upon the 

multiplicity Sr , but also upon its parametric representation as a function of 1, …, r . 

 

 

 IV. Functions of hyperspaces. – Let us return to the expression (4) for  I . When Sr is an 

extremal,  I will reduce to the integral that is taken around the contour Sr−1 of Sr . That integral 

can be written in the following way: 
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in which  Sr is the r-dimensional multiplicity that is generated by the infinitely-small displacement 

of Sr−1, which is a multiplicity whose coordinates can be represented as functions of the r 

parameters 1, …, r . One sees that  I will be zero if one has: 
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at every point of Sr−1 . 
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 In that case, we say that Sr is an extremal that is transverse to  Sr along Sr−1 . 

 We shall now suppose, by extension of a known theory in the case of r = 1, that we can 

determine an extremal Sr by the following conditions: 
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 As a result, 
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 is one of the functions that VOLTERRA studied under the name of functions 

of hyperspace, and which I will call VOLTERRA functions or functions (V) of the multiplicity 
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then one will see that this amounts to making the change of variables (7), and one can consequently 

state the following theorem: 
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 We then prove the following theorem: 
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 (*) VOLTERRA, loc. cit., pp. 160. 
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 Conversely, suppose that there exist functions 
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 (*) See the note that was cited before, vol. V, pp. 162. 
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 Now, since equation (8) is verified for any a, one will have: 
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1 , ,1

1 1

, ,

, , , ,
r j jr

r r

j j q

j j i i

q H
a




  = 0 .    (26) 

 

 However, from the definition of a complete integral, one easily sees that one of the functional 

determinants of order r

nC  − 1 that are formed from the: 

 

1

1

, ,

, ,
r

r

j j

i i

q
a




 

 

must be non-zero, whereas the determinant of order r

nC  is zero. Consequently, equations (25) and 

(26) determine the same series of ratios for the 
, ,1j jr

qH  and the 
1

( , , )
rj jd x x  . As a result, one can 

write: 

1

1

( , , )

( , , )

rj j

r

D x x

D  
 = 

, ,1j jr
qH , 

 

and then from the theorem that was proved on pp. 9, one will also have: 

 

1 2

1

, ,

, , 1

( , , , )

( , , )

r r

r

j j j j

j j r

D q x x

D  
  = − 

1j

H

x





, 

which proves the theorem. 

 Let us give an example. The equations: 

 
2 2 2

2 2 2

P Q R

y z x
+ +  = 1 , 

 

2

3

( , ) ( , )d y R d z Q

R

x

−
 = 

2

3

( , ) ( , )d z P d x R

P

y

−
 = 

2

3

( , ) ( , )d x Q d y P

Q

z

−
 = 

2

( , )d y z

P

y

 = 

2

( , )d z x

Q

z

 = 

2

( , )d x y

R

x

 

 

are verified upon setting: 

P = 
( , )

U

y z




, Q = 

( , )

U

z x




, R = 

( , )

U

x y




, 

with 

U = 2 2 2 2 2 2[ 2 ] 1
L

z ac x ybc dx y a c b c dz− + − −  

 

on any surface that is generated by the line L such that one has: 
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U

a




 = const.,  

U

b




 = const.,  

U

c




 = const. 

 

 We see that the difference between the case of r = 1 that JACOBI considered and the general 

case is manifested in the solution of the canonical equations (E). Indeed, the complete integral that 

JACOBI employed in order to solve them is no longer a function of n variables, but a function of 

hyperspace. That is one of the many situations in which the consideration of those functions is 

imposed by the nature of the problem. 

 

 October 1904. 

 

__________ 


