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On page 14 of the present volume, we expressed the view that we could provide our 
readers with a proof of the fundamental principle of the theory of surface caustics for 
refraction that is just as simple as the one that was given by Dupin for caustic surfaces 
under reflection.  An article by Timmermans, a professor of mathematics at the royal 
college of Ghent, that was inserted into the Correspondance mathématique et physique of 
the kingdom of the Netherlands (tome I, no. 6, page 336), which is a collection that is not 
widely distributed in France, put me into a position of achieving that goal beyond my 
hopes.  It is true that the author falls a little short, and his proof relates to only plane 
curves.  However, there is little to be done in order to extend it to curved surfaces, and, at 
the same time, to give it all of the development that is seems to lack.  That is then the 
objective of what we propose to do here. 
 
 Let two arbitrary curved surfaces be situated in whatever way that one desires with 
respect to each other, but absolutely fixed in space.  Imagine two concentric spheres that 
are moving and have variable radii, but in such a manner that their radii always preserve 
a constant ratio between them.  Furthermore, suppose that these spheres move and vary in 
size in space in such a manner that they are constantly tangent to the two surfaces in 
question, respectively.  Their common center will generate a third surface that one must 
relate to the other two. 
 Suppose, to begin with, that the two given surfaces are planar surfaces that we 
represent by p and p′, respectively.  It is easy to see that the third one P will also be a 
planar surface that passes through the intersection of the first two.  Indeed, let there be 
two spheres of arbitrary locations and sizes, let M be their common center, and let m and 
m′ be the points of contact with the two planes p and p′, respectively, in such a way that 
Mm and Mm′ are radii of these two spheres, radii whose ratio is assumed to be constant.  
Let a third plane P be laid through that center M and the common section of the two 
planes p and p′, and choose the point M1 on it arbitrarily.  Drop perpendiculars M1m1 and 

1 1M m′  from that point onto the planes p and p′, resp.; these perpendiculars will be parallel 
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to Mm and Mm′, respectively.  Upon then letting I denote the point where the line MM1 
meets the common section of the three planes, one will have: 
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Therefore, one describes two concentric spheres at the point M1, which is taken to be the 
common center, that have the radii M1m1 and 1 1M m′ .  These spheres will be tangent to the 

two planes p and p′, respectively, and their radii will have a given constant ratio.  That 
will be one of the locations of our two spheres whose locations and sizes vary in space.  
One thus sees that all of the points M1 of the plane P will be centers of such systems of 
spheres, and it is, moreover, easy to see that they will be the only ones in space. 
 
 Now, suppose that the two given fixed surfaces are arbitrary; denote them by s and s′, 
and let S be the unknown surface that is the locus of the centers of the spheres.  Let M be 
one of the locations of the common center on that surface.  For that location, let m and m′ 
be the points of contact of these two spheres with the surfaces s and s′, respectively.  For 
an infinitely small change in the position of the common center, and as a result, in the 
size of the spheres, one can replace the two surfaces s and s′ with their tangent planes p 
and p′ at m and m′, resp., and then, from what was proved above, the common center M 
can be assumed to move on a plane P that passes through the intersection of the other 
two.  That plane P is then the tangent plane at M to the surface S that is described by the 
common center.  Therefore, in all of the positions of the common center of the two 
spheres, the planes P, p, p′ that are tangent to the surfaces S, s, s′ at the points M, m, m′ 
will intersect along the same line, which varies in position like the point M. 
 
 Imagine a plane Π through the point M that is perpendicular to that line, so the line 
will be reciprocally perpendicular to it.  The planes P, p, p′, in which that line is likewise 
found to be contained, will thus also be perpendicular to the plane Π.  It will then result 
from this that the radii Mm and Mm′, which are perpendicular to the planes p and p′, 
respectively, and consequently normal to the surfaces s and s′, resp., will be in that plane, 
and that the same thing will be true for the perpendicular that is drawn through the point 
M to the plane P that is normal to the surface S at that point. 
 Let I be the point where the intersection of the three planes P, p, p′ is cut by the plane 
Π, and consider what happens in the latter plane.  One has: 
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Due to the fact that the right-hand side of this equation is assumed to be constant for all 
sizes and locations of the system of two spheres, the left-hand side must be constant, as 
well.  The characteristic property of the surface that it is the locus of the centers of two 
spheres can thus be stated as follows: 
 
 If two concentric spheres move in space with variable radii (although the radii still 
have a constant ratio, moreover) in such a manner that that they are constantly tangent 
to two arbitrary, but given, fixed surfaces, respectively, then the locus of their common 
center will be a third surface such that if one draws normals to the other surfaces from 
any of its points then these normals will be in the same plane as the normal that is drawn 
from the same point to the surface that is the locus of the centers.  In addition, the sines 
of the angles that are defined by the first two normals with it will have a constant ratio 
that is equal to that of the radii of the two spheres (*). 
 
 Therefore, if one supposes that the surface S is the separating surface between two 
media for which the sines of incidence and refraction have the same constant ratio as the 
radii of the two spheres and that the incident rays are all normal to the surface s then the 
refracted rays will all be normal to the surface s′.  One then has this theorem: 
 
 Imagine two homogeneous media with unequal refringent powers that are separated 
from each other by a surface of an arbitrary nature, and rays of light that penetrate from 
one of these media into the other.  If the incident rays are directed in space in such a 
manner that they can traverse the same surface orthogonally then the refracted rays will 
also be directed in space in such a manner that they will traverse a common surface 
orthogonally, and conversely.  In addition, each orthogonal trajectory surface of incident 

                                                
 (*) The editors of the Correspondence advised us in a note that Timmermans was in possession of this 
theorem before he was made aware of the article on page 345 of our volume XV. 
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rays will always provoke an orthogonal trajectory surface of refracted rays such that at 
any point of the separating surface between the two media where one draws normals to 
these other two surfaces the lengths of these respective normals will have a constant ratio 
that is equal to that of the sine of incidence to the sine of refraction. 
 
 It has already been observed several times before, and notably on page 14 of the 
present volume, that reflection is only a special case of refraction, namely, the one in 
which the sines of incidence and refraction differ only by their signs.  Therefore, the 
foregoing will implicitly contain the entire theory of caustic surfaces for reflection. 
 It was observed on page 15 that the theory of planar caustics, either by refraction or 
by reflection, is only a special case of that of caustic surface.  Therefore, what little that 
we have just said implicitly contains the entire theory of planar caustics and caustic 
surfaces, whether by refraction or by reflection. 
 
 Let us take a look back at this point.  We shall refer our thinking to the point of 
departure of the geometers in the theory that we will consider and rapidly survey the 
space that one traverses.  In 1682, Tschirnhausen was the first to comment on the planar 
caustic that is formed by parallel rays that are reflected in the circle and propose to look 
for the equation.  This problem, which is only a diversion today, was quite difficult back 
then.  He gave a solution that was falsely attributed to Cassini, Mariotte, and de la Hire, 
who were commissioners of the royal academy of science in Paris.  That effort was 
unsuccessful in attracting geometers to that sort of curves, which one soon perceives 
might give the true key to all of the mysteries of optics.  Bernoulli, l’Hôpital, Carré, and 
some others have, in due course, made it the special object of their research and gave 
general methods for obtaining the equation of an arbitrary planar caustic, either by 
reflection or by refraction. 
 In 1810, Malus was the first to consider the general theory of caustic surfaces and 
found some beautiful theorems.  However, some errors in the calculations, which is an 
almost inevitable result of a very complicated analysis, led him to deny these theorems 
the generality that they actually deserve.  In 1822, Dupin recalled Malus’s theory, gave it 
the complement that it was lacking, and in 1823, in an analysis that is likewise quite 
complicated (Annales, t. XIV, page. 129), we deduce the possibility of replacing the 
effect of an arbitrary number of refractions and reflections on the rays that are originally 
normal to the same, arbitrary surface with either one refraction or one reflection. 
 Some research that related to some special cases of reflection and refraction (Annales, 
t. V, page 283, t. XI, page 229, and t. XIV, page 1) led us in 1815 to suspect that most 
often the especially complicated caustics might very well be only developments of other 
curves that are really quite simple.  In 1825, Sturm, by characterizing the curve whose 
caustic relative to a circle is a developable (Annales, t. XV, page 205), gave new weight 
to that conjecture.  Almost at the same time, Quetelet published some elegant theorems in 
planar caustics, in general (Mémoires de l’Académie royale des Sciences de Bruxelles, t. 
III, page 89), where those of Sturm related to only special cases, moreover.  After having 
proved these theorems by analysis (t. XV, page 345), we extended them to caustic 
surfaces on the first page of the present volume, along with Sarrus, almost at the same 
time as us, or rather, we gave a simple and general theorem that contains all of the theory 
of caustics and surface caustics, whether by refraction or by reflection.  All that remains 
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to be desired is a simple proof of that theorem, and now Timmermans has produced one 
that has reached such a stage that it can be introduced into one’s education at even the 
most elementary level, and one can only be surprised that in the interval of nearly a 
century and a half so many geometers have worked so hard and made so many 
calculations in order to finally arrive at a result that was, so to speak, right under their 
noses.  Except for the applications, which always offer practical difficulties, that theory 
can presently be regarded as complete.  However, one must pass through various detours 
in order to reach that point, because in all situations in which there are both more general 
and simpler things at the same time, it is the ordinary that last presents itself to one’s 
thinking.  Many other theories are also associated with an apparent perfection of the 
collective efforts of geometers, and they have proved useful to science only by directing 
one’s meditations towards a very important objective.  At the point to which we have 
arrived today, we have, indeed, much less of a need to create new theories as a need to 
reduce the theories that are already known to their simplest forms, if one might be 
permitted to say that. 
 

_____________ 
 

 


