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FOREWORD

“There are already several treatises on mechanics, but the plan of this one is entirely
new. I propose to reduce the theory of that science and the art of solving the problems that
pertain to it to some general formulas whose simple development will give all of the
equations that are necessary for the solution of each problem.”

“This book will be useful in another way, moreover: It will unite the various principles
that were found up to now in order to facilitate the solution of the questions of mechanics
and present them from a common viewpoint, while showing the links between them and
their mutual dependency, and to make it more possible to judge their exactitude and their
scope.”

“I have divided it into two parts: Statics, or the theory of equilibrium, and dynamics,
or the theory of motion, and in each of those two parts, I have treated solid bodies and
fluids separately.”

“One will find no figures at all in this book. The methods that are presented here
demand neither constructions nor geometric or mechanical arguments, but only algebraic
operations that are subject to a regular and uniform progression. Those who love analysis
will behold with pleasure the fact that mechanics will become a new branch of it, and it
would be gratifying to me to know that I have thus extended that domain.”

J. L. LAGRANGE
Meécanique Analytique, 1811







INTRODUCTION

The lectures of Elie Cartan on integral invariants, which continue to be strikingly topical today,
marked the beginning of what one can call “modern analytical mechanics”: Indeed, the intrinsic
formulation of the equations of dynamics, and not the variational one, appeared in them for the first
time. More recently, the work of A. Lichnerowicz, F. Gallisot, and J. Klein have clearly exhibited
the fact that differential geometry is the natural context in which to base the foundations of
analytical mechanics.

The first contribution that this geometric formalism makes is very neat distinction between the
Hamiltonian aspect of mechanics and its Lagrangian aspect. Certainly, it has been known for some
time that Hamilton’s equations are “covariant,” while the Lagrange equations are “contravariant.”
Today, one interprets the former as a dynamical system on the cotangent space to the configuration
manifold and the latter as a dynamical system on the tangent bundle to that manifold.

The Hamiltonian aspect is linked with the existence of a canonical symplectic structure on any
cotangent bundle that is determined by the Liouville form. The techniques of differential calculus
on manifolds then permit one to pursue the ideas of Elie Cartan in order to obtain an intrinsic
formulation of Hamilton’s equations. As F. Gallisot has shown, one can then interpret the classical
results on first integrals and the cases of integrability geometrically.

The Lagrangian aspect is more complex. According to J. Klein, it is linked with the existence
of a differential calculus on a tangent bundle that is much richer than the one on an arbitrary
differentiable manifold. Upon utilizing the geometric structure of that space, one can indeed define
some differential operators that will lead to the Lagrange equations of a mechanical system, and
always by means of the techniques of symplectic geometry.

The link between those two aspects is finally assured by the Legendre transformations, which
exhibits a duality between them, in some sense.

The first part of this book is a presentation of differential geometry that covers one part of the
Certificate Program C.3: exterior calculus, vector bundles, differentiable manifolds, differential and
integral calculus on manifolds. One is assumed to know only the elements of linear algebra, general
topology, and local differential calculus (such as, for example, what is taught in the first year of
proficiency).

The second part is dedicated to analytical mechanics. Furthermore, it includes a study of the
classes of differential forms, as well as a presentation of the geometry of tangent spaces and their
differential calculus.

This book has its origin in a series of presentations that were made in 1967 in Strasbourg in the
context of a seminar on trajectories. The interest that was shown by P. Cartier then proved to be
decisive in their publication. Moreover, the author had numerous conversations with G. Reeb and
J. Martinet that were quite useful in the preparation of the manuscript.

Strasbourg, February 1968.



CHAPTER1

THE ALGEBRA OF EXTERIOR FORMS

In sections 1, 2, and 3, 4 will denote a unitary commutative ring. In sections 4, 5, and

6, one supposes, moreover, that 4 is a unitary algebra over the field Q of rationals. Finally,

in sections 7 and 8, 4 will denote a commutative field with characteristic zero.
All modules will be unitary modules over 4.

§ 1. — Duality and orthogonality.

1.1. Definition. — Let (Ei)1<i<p and F be p + 1 modules. Amap o : E1 x ... x E, >F is
a multilinear map if the map:
x> alel,...,e-1,X, e, ..., €)

is a linear map of E; into F for every index i and every element e; € E; , j # i.

One also says a bilinear map when p =2 and a multilinear form when F = A.

IfE1=... =E,=F and F = A4 then one says that « is a multilinear form of degree p on
E.

The set L (E) of multilinear forms of degree p on E is canonically endowed with the
structure of a module over 4.

1.2. — Let 4 be a linear map from a module £ into a module F and let & be an element
of LA(F):

hWa:(el,....,ep) > aher, ..., hep)

is a multilinear form of degree p on E : h*a is the reciprocal image form to a under h.

The map h® is a linear map of L” (F) into L” (E). If k is a linear map of F' into a module
G then one will have (koh)" = h"ok". If 4 is the identity map of E then h* will be the
identity map of L”(E). Consequently, if / is an isomorphism of E to F then h* will be an
isomorphism of L” (E) to L” (F), and one will have (h")™ = (h™)".

1.3. Definition. — Let E be a module. The module E* = L' (E) is called the dual of E.

If e is an element of £ and « is an element of E* then one lets < e, a > denote the value
a(e) of aone. (e, a) — <e, a> is the canonical bilinear form on £ x E”.
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1.4. — If (ei)1<i<n is a basis for E then one can define elements & of E™ by <e;, §>=

0jj . Those elements form a basis for E”. (&)1<i< is the dual basis to the basis (e;).
In particular, if 4 is a field and £ is a finite-dimensional vector space over 4 then £ and
E® will have the same dimension.

h k
1.5. Proposition. — Let G be a free module. If the sequence 0 > E — F — G — 0 is

k* h*
exact then the same thing will be true for the sequence 0 - G* - F* > E" —> 0.

h k
Proof: Recall, first of all, that the exactness of the sequence 0 > E > F - G —> 0

corresponds to the following hypotheses:

— h is an injective linear map.
— k 1s a surjective linear map.
— The image of / equal to the kernel of & (Im 4 = Ker k).

One easily shows (with no other hypothesis on G) that k™ is injective, h* is surjective,
and Im k™ =Ker h".

Let (g)ie1 be a basis for G and let (f)ic; be a basis for F such that & (f;) = g; for any i. The
module F is the direct sum of the image of /4 and the sub-module G’ that is generated by

the family (f)ies.
An element  of E* determines a linear form on % (E), and that form prolongs (for
example, by giving the value of 0 to G’) to a linear form 8 on F. One will then have h*f

= o, which shows that h* is surjective.
Q.E.D.

1.6. Definition. — Let E be a module. The dual E™ of E” is called the bidual of E.

For any element e of E, the map & +> <e, o> is a linear form € on E" and e > €
is a linear map of E into E™.

1.7. Proposition. — If E possesses a finite basis then the map e > € is an isomorphism
of E onto E™.

Proof: Let (ei)1 <i<n be a basis for £ and let (&)1 <i<» be the dual basis for E”.
Ife= Zai €, is an element of £ such that € = 0 then one will have <e, &>=a;=0

for every i, and consequently, &€ = 0.
If wis a linear form on E* then the element e = Z:a)(gi )e, of E will verify <e, &> =

o (e;) for any i. One will then have w = &.
Q.E.D.
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Under the hypotheses of Proposition 1.7., one can identify E and E™ by means of that
isomorphism.

1.8. Definition. — Let F' be a sub-module of a module E. The orthogonal complement
F* of F is the sub-module of forms on E that are zero on F.

1.9. Proposition. — Let F be a sub-module of a module E, and let q be the projection of
E onto E/IF. The map (" is an isomorphism of (E/F)" onto F*.

1.10. Corollary. — If A is a field and E is a finite-dimensional vector field onto A then
one will have that dim F* = codim F.

1.11. Corollary. — With the hypotheses of corollary 1.10 (and the convention of 1.7),

one will have F*- =F.

Indeed, F contains F, and dim F*" = codim F* =dim F, moreover.
One can generalize Proposition 1.9 in the following way:

1.12. Proposition. — Let F be a sub-module of a module E, and let q be the projection
of E onto E/F. The map Q" is an isomorphism of L? (E/F) onto the sub-module L of forms

ain LP (E) such that a (e, ..., ep) =0 if one of the e; is in F.
In what follows, L? (E/F) will be identified with the sub-module L of L/ (E) .
1.13. Proposition. — Let F'1 and F> be two sub-modules of a module E. One has:

L? (E/ (F\ + F2)) = L7 (EIF)) N L (EIF3) .

§ 2. — Exterior forms.

Let G, be the group of permutations of the set {1, ..., p}. Let denote ¢ the identity permutation,

and let ¢ (s) be the signature of a permutation s of S, .
2.1. — Let a be a multilinear form of degree p on a module £, and let s be an element of G, :
sa: (e, ....,e) > al(e e, )

s TsH(p)

is a multilinear form of degree p on E.



§ 2. — Exterior forms. 5

One has 1 = aand (st) a=s (t) forany sand t in &,. & > s a is therefore an automorphism
of LY (E) forany s € G,,.

2.2. Definition. — Let a be a multilinear form of degree p over a module E. o is an
antisymmetric multilinear form if sa= e (s) o for any s € S,.

One also says that « is an exterior form of degree p over E, or even that a is an exterior p-form
over E.
The set A? (E) of exterior p-forms over E is a sub-module of L” (E), and one will have A! (E)

=L' (F)= E".
If 4 is a linear map of E into a module F then h"(A"(F)) will be contained in A? (E).

Consequently, if F'is a sub-module of a module £ then one can identify (Prop. 1.12) A? (E/F) with
a sub-module of forms « in A? (E) such that « (e, ..., e,) = 0 if one of the ¢; is in F.

Exercise. — If 2 is invertible in 4 then a form «a € A? (E) will be antisymmetric if and only if
a (e, ..., ep) = 0 when two of the e; are equal.

2.3. Proposition. — Let F'1 and F> be two sub-modules of a module E. One has:
AP (E/ (F1+ F2)=A? (E/F1) N A? (E/F?) .
2.4. Corollary. — If F'y is contained in F> then AP (E/F>) will be contained in AP (E/F).

2.5. Theorem. — If the module E has a basis of n elements then AP (E) will have a basis of

n
( j elements.
p

Proof: Let (ei)1 <i<x be a basis for £. An element of A? (E) is determined by its values on the
sequences (g, ,..,€ ) such that:

1Si]<...<ipgn.

One associates every increasing sequence (i, ..., ip), 1 <i1<... <ip <n, with the element &, _

of A? (E) that is defined by:

.|p

& (&,--8) =1,

b dp P

&, (ejl""'ejp) =
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if the increasing sequence (ji, ..., jp) is different from the sequence (i1, ..., i). Those elements,
n

which are ( J in number, are independent in A” (£), and any exterior p-form « can be written:
Y

a= Z a(eil,...,eip)g

_ _ iy
I<i < <ip<n

Q.E.D.

2.6. Corollary. — If the module E has a basis of n elements then A" (E) will have basis of 1
element, and AP (E) =0 for p > n.

Exercise. — Let E be a free module that has an infinite basis. For any p > 0, A” (E) will be a
non-zero free module.

2.7. Corollary. — If the module E has a basis of n elements then all of its bases will have n
elements.

2.8. Definition. — Let E be a module that has a basis of n elements. A volume form on E is an
element v € A" (E) that defines a basis for A" (E).

Exercises:

i) Any volume form on E can be written w = a v, where a is an invertible element of 4.

ii) If i is an endomorphism of £ then one will have h*v = (det &) v.

2.9. Proposition. — Let a be a multilinear form of degree p over a module E. The form a (a) =

Z £(S)sa is antisymmetric.

se6,

Proof: Let t be a permutation of G, . One has:

ta(a)= Z e(d)t(sa)

se6,

= ¢g(t) Z g(ts)(ts)
= g(t)zg(r)ra= e(Ha(a).

Q.E.D.

The map a is therefore a linear map of L7 (E) into A? (E). a is the antisymmetrization operator,

and a (@) 1s the antisymmetrization of the form «. One has:
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[a ()] (e, ..., ep) = Z 8(S)a(es,1(l),...,es,l(p))
= Zs(s)a(es(l),...,es(p)).

2.10. Proposition. — If a is an exterior p-form on a module E then a (@) =p! o .

2.11. Proposition. — Let h be a linear map of a module E into a module F and let o be a form
in L? (E). One will have h"(a ()= a(h’a) .

§ 3. — Tensor Product.

Let o be a multilinear form of degree p and let  be a multilinear form of degree g over a
module E.

(61, ey ep+q) e 0!(61, ooy ep) ﬁ(ep+l, ey ep+q)

is a multilinear form of degree p + g on E.

3.1. Definition. — The tensor product of the forms a € 17 (E) and f € LI (E) is the form af
e L7 (E) that is defined by:

afi(el, ..., eprg) = (e, ..., ep) Pep+l, ..., €p+q) .

3.2. Proposition. — The tensor product is a bilinear map of I/ (E) x LI (E) into 17" (E).

Moreover, one has a () = (af) yfor a € L (E), f € L’ (E), and y € L' (E). (Associativity of
the tensor product)

3.3. Proposition. — Let h be a linear map of a module E into a module F and let a € 17 (F)
and f € L? (F). One has h*(af) = h"(a)h*(p).

3.4. Proposition. — Let a be a multilinear form of degree p and let  be multilinear form of
degree q on a module E. One has a (a (a) f)=p! a (af) and a (a a (P))=p! a(af).

Proof: Indeed:
a@@pP= 2 2 e()e)s((ta)p)

56y, q te6,

= > D e(st)(st)(@p),

NECAISCH
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(after identifying ¢ € &, with the permutation of {1, ..., p + ¢} such that 7 (i) =i for i > p), and
that:

= Z e()r(ap) =p'a(ap.

reGp,q

One likewise proves the second equality.
Q.E.D.

3.5. Proposition. — Let a be a multilinear form of degree p and let b be a multilinear form of
degree q over a module E. One has a (aff) = (— 1) a (fa).

Proof: Let t be the permutation of &,+, that is defined by:

t(i)y=q+i for 1<i<p,
tp+i)=i for 1<i<gqg

The signature of 7 is (— 1)"?, and one has:

(@ (ap) (er, ..., epg) @a= D () (Bgqyre--r€ipy) BCsprrys-- -+ Ctpey)

56,4

= (_1) > z & (S) 124 (es(q+1) 100 es(p+q)) ﬂ (es(l) 1o es(q))

s€6,q

=(= 1Y (a (Pa)) (e, ..., ep+q) .
Q.E.D.

§ 4. — Exterior product.

From now on, suppose that A is a commutative unitary algebra over the field Q of rationals.
One identifies Q) with the sub-algebra of A that is generated by unity.

4.1. Definition. — Let « be an exterior p-form and let [} be an exterior g-form on a module E.
The exterior product of o and [ is the exterior (p + q)-form:

anp= ﬁa(aﬁ) )
One then has:
1
(anP) (e, ..epg)=—— D () (B 18p) BEypinyr - Eoipay)

plq!

U ses,,,



§ 4. — Exterior product.

Exercise. — When p = 1, one can write:

(anp e, ...epmd= D (D7 a(@) B8 1,80, C) -

5€6y,

4.2. Proposition. — The exterior product is a bilinear map of A? (E) x A1 (E) into AP™ (E).

4.3. Proposition (anti-commutativity of the exterior product). — Let  be an exterior p-form

and let B be an exterior q-form over a module E. One has:
anfP=-1VIpAa.
That result is an immediate consequence of Proposition 3.5
4. 4. Corollary. — If a is an exterior form of odd degree then one will have:
ana=0.

4.5. Proposition (associativity of the exterior product). — Let « be an exterior p-form, let
be an exterior q-form, and let y be an exterior r-form on a module E. One will then have:

an(Barp=(anpPAy.
Proof: Indeed:

Gn(BAD = ————— a(a(fA D)

p!(g+r)!
- e t@ )
gt @6 Prop 34
One likewise has:
@nPAr= e (@),

Q.E.D.

4.6. Proposition. — Let (ai)1 <i<p be linear p-forms over a module E and let (ei)1<i<p be p

elements in E. One has:
(a1~ ...onp) ety ..., ep)=det (<ej, i >).

Indeed, one deduces from the preceding proof that:
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an..Ap=ala,..., o).

4.7. Definition. — An exterior form a of degree p on a module E is decomposable if there exist
linear p-forms (o)1 <i<p such that a=ca1 A ... A 0.

4.8. Proposition. — Let (e))1 <i<n be a basis for a module E and let (&)1 <i<n be the dual basis
for E”. The decomposable forms:
E N NG I<ii<...<ip<n

constitute a basis for A? (E).
Proof: One has, in fact, that:

1 ifi =j, foreveryr

ANTVNS [CRVNRUN-RD
(6 An 8 )8 neeoney) { 0 otherwise

for any pair (i1, ..., ip) and (ji1, ..., jp) of increasing sequences in {1, ..., n}. Consequently,
& N...n& = &, (with the same notations as in the proof of Theorem 2.5).

Q.E.D.

4.9. Corollary. — The exterior n-form &1 A ... A & is a volume form on E, and any element of
A" (E) is decomposable.

4.10. Proposition. — Any exterior p-form is the sum of decomposable p-forms.
However, it should be pointed out (see § 8) that not every exterior p-form is decomposable.

4.11. Proposition. — Let h be a linear map of a module E into a module F and let a € AP (E)
and € A? (E). One has:

h(arP= (K a)a(h ).

That result is a direct consequence of Propositions 2.11 and 3.3.

§ 5. — The algebra of exterior forms.

5.1. — One agrees to set A® (E) = 4 for any module E and to extend the exterior product to
forms of degree 0 by:

anpPB=pra=af if a € A=A"(E) and fBeAl(E), ¢=0.

The exterior product, thus-extended, once more verifies Propositions 4.2, 4.3, and 4.5.
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If 7 is a linear map of a module E into a module F then one also agrees to take h*: A® (E) —
A’ (E) to be the identity map on 4. Proposition 4.11 will then be once more verified.

52.-Let A (F)= Z AP (E) be the direct sum of the modules A? (E). The elements of A (E)

F>0
are called exterior forms on E. One can extend the exterior product to the module A (E) by
bilinearity in such a manner as to endow it with the structure of an algebra.

If / is a linear map of a module E into a module F then the maps h™: A? (F) — A? (E), p > 0,
will determine a linear map h*: A (F) — A (E).

5.3. Definition. — The algebra of exterior forms on a module E is the direct sum A (E) =

Z AP (E), endowed with the structure of an algebra that is defined by the exterior product.
F>0

If E is the zero module (0) then one will have A (E) = A (E) = 4.
The various propositions of section 4 then allow us to state:

5.4. Theorem. — The algebra of exterior forms on a module E is an associative, unitary,
graded, and anti-commutative algebra (see Chap. IV, § 1).

5.5. Theorem. — If the module E possesses a finite basis then its algebra of exterior forms will
be generated by its elements of degree 0 and 1.

Exercise. — If E possesses a finite basis that has m elements then A (£) will possess a finite
basis with 2" elements.

5.6. Theorem. — Let h be a linear map of a module E into a module F. The map h™ : A (F) —>
A (E) will then be a homomorphism of algebras.

Consequently, if F'is a sub-module £ then A (E/F) will be identified with a sub-module of
A(E). (See2.2.)

5.7. Proposition. — Let Fi and F» be two sub-modules of a module E. One has A (E / (F\ + F2))
—A(E/F)NAE/IF)).

5.8. Corollary. — If F'i is contained in F> then A (E | F2)) is a sub-algebra of A (E | F1)).
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§ 6. — Interior product.
Let o be an exterior p-form, p > 0, on a module £, and let x be an element of E.

ix)a:(el,....,ep1) > a(x, el ..., ep1)
is an exterior (p — 1)-form on E and the map i (x) : a +> i (x) & will be a linear map of A?

(E) into A7 (E).
One can extend that map to an endomorphism of A (E) by agreeing to set i (x) =0
when a € A° (E) = A.

6.1. Definition. — The endomorphism i (x) of A (E) is called the interior product by an
element x of E.

6.2. Proposition. — Let x and y be two elements of E. The following properties can be
verified:

D ixty)=ix)+i().
iiy i(ax)=ai(x),aeA.
) ix) i) =—i@)ik).
v)i(x)i(x)=0.

6.3. Proposition. — Let a be an exterior p-form on a module E, let 3 be an exterior g-
form on E, and let x be an element of E. One has:

i)(a@ap)=((x)a)ApB+(1Y ani(x) ().
Proof: One can suppose that p > 1 and ¢ > 1.

If one agrees to set x = e1 then one will have:

G x)(anp) (e, ..., eprqg) =an P(el, ..., eprq)

1
= —— D e(s)a(Byyr- 1) BCypuayrrEprqy) -

p 'q ! NSCHM
Let &' ={s € Gpig| (1) < pland &" = {s € Gpiq | S'(1) >p}. Spiyq is the union of &’
and &". One identifies G,+,-1 with the set of permutations » of G+, such that » (1) = 1.
Forany s € S+, let £, (., resp.) denote the transposition of S+, that exchanges 1 and

s7(1) (p+1and s (1), resp.). One can write:
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1
2 2.8 (S) (&g 8)) BBy 1Eypig))

p!q!SGG’
1
= 2 e(S) a (X 8y -1 84,(0) BBt pryr- 1 Bt (pea))
p'q'seG’
_ b
= D e a (X8 18p) BCrpays- s Eripray)
p q - I’EG‘H,H

(because for each r € G,+4-1there exist p permutations s € &' such that sz, = r):
g pp

=) ) Ap) (e ..., eptq) -

Let u be the permutation of &,+, that is defined by u (1)=p+ L,u (@) =i—1for2<i<p

+ landu (i)=ifori>p+1.One has (1) = (- 1).
One can write:

1
plql — g(s)a(es(l)"'"es(p))ﬂ(es(p+l)’""es(p+q))
Y-sed”
j— 1 !
= i e(ts)a (ests’(Z)"'"ests’(p))ﬂ(x7ests’(p+l)’""est;(p+q))
pq se&”
_ (_1)p ’
" oigt 2 £ (ULS) & By Burugpy) B (X, puy -+ Bupay)
Y- se®”

-1 p
- (p!‘)ll q GZ () a8 zyr---18py) BXE(piayre- 1€ (pagy)

=1 (an (i@ P) (e, ..., eprg) -

Q.E.D.

6.4. Remark. — 1f F is a sub-module of a module £ then A (E/F) will be the set of
exterior forms o € A (E) such that i (x) =0 for all x € F. Furthermore, if 4 is a field of
characteristic zero and E is a finite-dimensional vector space over 4 then F will be equal
to a subspace G of x € E such that i (x) & =0 for any €A (E/F). Indeed, one has FF c G
and A (E/G) = A (E/F). Now, if H is a subspace of codimension m on E then A (E/H) will
have dimension 2”. Consequently, dim G = dim F and F = G.

§ 7. — Associated system and rank of an exterior form.

One now supposes that 4 is a commutative field with characteristic zero. Let £ denote
a vector space of finite dimension # over 4.



14 Chapter I — The Algebra of Exterior Forms

7.1. Proposition. — Let (ai)1 <i<p be linear p-forms on E. In order for the forms () to
be independent in E, it is necessary and sufficient that:

aA...ANp#x0.

Proof: 1f the forms () are dependent then one can write one of them as a function of
the others, and as a result (Prop. 4.4), one will have a1 A ... A @ =0.

If the forms (&) are independent then one can find a basis (e;)1 <<, for E such that if
(&)1<i<n is the dual basis for E” then one will have &= a; fori <p. &1 A ... A & will then

be a volume form on E, and consequently a1 A ... A @ %0 .
Q.E.D.

7.2. Proposition. — Let F be a subspace of E. The sub-algebra A (E/F) of A (E) is
generated by A +F*.

Indeed (Theorem 5.5), A (E/F) is generated by the set 4 of its elements of degree 0 and
the set F* (Prop. 1.9.) of its elements of degree 1.

7.3. Proposition. — Let o be an exterior form on E. There exists one and only one
subspace F of E that has the following properties:

i) ae A(EIF).
ii) If G is a subspace of E such that a € A (E/F) then G will be contained in F.

Proof. — Let F be the family of subspaces H of E such that a € A (E/F). F is not
vacuous (viz., it contains (0)). Since the dimension of E is finite, the family F, when

ordered by inclusion, will contain maximal elements, i.e., subspaces H such that G € F

and G © H will imply that G = H.
However, F can contain only one maximal element, because (Prop. 5.7) if F1 and F>

are two subspaces of F then F1 + F> will also be in F.
Q.E.D.

The remark 6.4. leads to the following characterization of the associated subspace:

7.5. Definition. — The associated subspace A () to a form o € A (E) is the set of all x
€ Esuch thati (x) a=0.

7.6. Corollary. — If a is a non-zero linear form on E then the associated subspace to o
will be the hyperplane that is defined by «.
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7.7. Definition. — Let a be an exterior form on E. The associated system to « is the
subspace A*(a) = (4 (a))* of E.

If o is an exterior form of degree 0 then one will have 4*(«) = (0). If «is a linear form
then 4*(a) will be the subspace of E that is generated by .

7.8. Proposition. — The associated system to a form o € A (E) is the smallest of the
subspaces F of E* such that a belongs to the sub-algebra of A (E) that is generated by A
+ F".

That proposition is an immediate consequence of Propositions 7.2. and 7.3.

7.9. Proposition. — Let a be a non-zero exterior p-form on E, p > 2, and let h be the
multilinear map of E*™ into E" that is defined by:

h(Xt, ..o, Xp-1) =1 (x1) ... 1 (Xp-1) .
The associated system to « is the subspace of E" that is generated by the image of h.
Proof: Since:
GEx) i) @)@ ==1F"i@) ... i (p1)i(x)a=0

for any x €4 () and any (x1, ..., x,-1) € EP™, the subspace / of E* that is generated by
the image of # is contained in A* () .

One can then find a basis (e)1 <i<» for E such that the dual basis (&)1 <i<, for E* will
have the following properties:

i) &, ..., &1s abasis for 1.
ii) &, ..., &,s>r,is as basis for A’(«).

If & does not belong to 7 then one can write @ = &' A&, + S, where o' is a non-zero (p —

1)-form that belongs to the sub-algebra of A (E) that is generated by &, ..., &-1, along with
p.

Let (x1, ..., X,-1) be an element of EP™ such that &' (xy-1, ..., x1) =a # 0. Since i (X) '
=1i(x— & (x) es) a', one can suppose that x; verifies & (x;)) =0,i=1, ..., p — 1. One will
then have:

i(x1)...0i(xp-1) a=aeg, +Zai g,

i<s
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which is impossible since & is not in /.
Q.E.D.

7.10. Corollary. — Let « be an exterior form of degree 2 on E, and let (ei)1<i<n be a
basis for E. The associated system A'(a) to ais generated by the forms i (ex) a, k=1, ...,
n.

The equations of the associated subspace A(«) are then equal to i (ex) «=0,k=1, ..., n.

7.11. Definition. — Let o be an exterior form on E. The rank of o is the dimension of
the associated system A’ () .

The rank of « is the “the smallest number of independent linear forms that are necessary
for one to express a.”
The rank of the form « is also equal to the codimension of the associated subspace 4

(@)
7.12. Examples:
i) An exterior form of degree has rank 0.

ii) A non-zero exterior form of degree 1 has rank 1.

7.13. Proposition. — Let a be a non-zero exterior p-form on E. The rank of a is greater
than p (and less than n). It is equal to p if and only if a is decomposable.

Proof: For any subspace F' of E, A? (E/F) will be zero as soon as p becomes greater
than the codimension of F. The rank of « will then be greater than p. If « is decomposable
then there will exist independent linear p-forms ¢, ..., &, on Esuchthat a= &1 A ... A & .
The associated system A"(a) will then be the subspace of E” that is generated by &, ...,
&, and consequently, o will have rank p.

If o has rank p then A"(a) will possess a basis &, ..., & that has p elements. One will

then have a=a & A ... A &, which shows that « is decomposable.
Q.E.D.

7.14. Corollary. — A non-zero exterior form of degree n on E has rank n.

7.15. Proposition. — Any non-zero exterior form of degree n — 1 on E is decomposable.

Proof: Let abe an exterior (n — 1)-form on E and let / be the linear map of E* into A”
(E) that is defined by 2 (&) = e A .
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Since A" (E) has dimension 1 over 4, the kernel K of 4 will have dimension n or n— 1,
and one can find a basis (&)1 <i<, for E* such that (&)1 <i<»1 will be a basis for K if & if
non-zero.

One can write a = Z A ENAELNE
1<i<n

h(g)=(=1)"a;& A ... A &.Consequently:

A...A&,. The map A is then determined by

i+1

— If & is zero then o will be zero.
— If & 1s non-zero then one will have a; =0 for i <n, a, # 0, and « can be written in the

formofa, si A ... A & .
Q.E.D.

7.16. Corollary. — A non-zero exterior form of degree n — 1 on E has rank n — 1.
7.17. Corollary. — A non-zero exterior form of degree n —2 on E has rank n — 2.

Proof: A non-zero exterior form of degree n — 2 on E can have rank n —2, n — 1, or n.

A decomposable form has rank » — 2. On the other hand, if £ is a four-dimensional
space and (&)1 <i<n is a basis for E"then = &1 A & + & A & will have rank 4 (Prop. 8.4).
It will then remain to be shown that the rank of a form of degree n — 2 cannot be n — 1.

Let a be an exterior form of degree n — 2 and rank n — 1, and let F = A (&) be the
associated subspace to «. E/F will be a space of dimension n — 1. Since « is a form of
degree n — 2 in A (E/F) c A (E), it will be decomposable, so its rank will be n — 2, which
is a contradiction.

Q.E.D.

§ 8. — Exterior forms of degree 2.

8.1. Theorem. — Let o be an exterior form of degree 2 on E. There exists a basis (ei)1 <
i<nfor E and an even integer 2s < n such that:

i) al(exi1,ex)=—alenei1)=1fori<s.
ii) All of the other values of « (e, ej) are zero.

Proof: One uses recurrence on the dimension n of £ when the result is trivial for n = 1.
One then supposes that o # 0.

Let e1 and e> be two vectors in E such that « (e1, e2) = 1. e1 and e» generate a subspace
F of dimension 2 in E.

Let G be the set of all x € E such that « (e1, x) = & (e2, x) = 0. G is the intersection of
the two hyperplanes H; and H> whose equations are i (e1) @ = 0 and i (e2) a = 0,
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respectively. One has H,NF = (e1) and H,"F = (e2). Consequently, G will be a

supplement to F.
One can find a basis (e;)1 <i<» for G and an even number 2s < n such that:

i) al(ex-1,en)=—al(en,e-1)=1for2<i<s.
ii) All other values of « (e;, €)), i, j > 2 are zero.

The basis (e;)1 <<, then possesses the desired properties.
Q.E.D.

8.2. Corollary. — Let a be an exterior form of degree 2 on E. There exists an even
integer 2s < n and 2s independent linear forms (&)1 <i<2s on E such that:

A=EINET ... T 51 N Es.

One can choose & arbitrarily in A" (), moreover.

Proof: Let ybe a form on A"(«) . There exist two vectors e; and e in E such that i (e2)
a=—yand a(e1, e2) = 1.

The preceding proof permits one to obtain a basis (e;)1 <;<, for £ that has the properties
that were stated in 8.1. In particular, <ej, y>=1 and < e;, y>=0 for i > 1. The form ywill
then be the element e; of the dual basis (&)1 <i<» for E*, and one will have:

a=anat..téas-1Aeéxs
in that basis.
Q.E.D.
8.3. Corollary. — An exterior form of degree 2 on E has even rank.
Indeed, with the preceding notations, if & is a non-zero form then the associated system
to a will be the subspace of E” that is generated by the forms &1, ..., &; . a then has rank
2s. (That shows, in particular, that the integer 2s that enters into 8.1. and 8.2 depends upon

only )

8/4/ Proposition. — Let « be an exterior form of degree 2 on E. In order for a to have
rank 2s, it is necessary and sufficient that one should have a® # 0 and o**= 0.

Indeed (always with the preceding notations), if & has class 2s then one will have:

a’=slarnat..+ta-1Aesz0,
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aS+1= 0.

8.5. Proposition. — Let a be an exterior form of degree 2 on E. If o has rank 2s then

the forms a, a?, ..., a® will all have the same associated system.

Indeed, for » < s, one has:

"= rl
a =r! Z Eg A NEgy Nev i NEy 4 NEy

1<i <---<ip <s

Consequently (Prop. 7.9), the forms &, ..., &; belong to the associated system to o' .

8.6. Definition. — 4 symplectic structure on E is defined when one is given an exterior
form o of degree 2 and maximum rank n on E.

One then says that (£, &) is a symplectic vector space. The dimension of E is necessarily
even (Corollary 8.3).

8.7. Proposition. — Let E be a vector space of even dimension n = 2m, and let o be an
exterior form of degree 2 on E. The following properties are equivalent:

i) (E, @) is a symplectic vector space.
il a" is a volume form on E.
iii) x > i (x) ais an isomorphism of E onto E”.

That equivalence is an immediate consequence of the Propositions 8.4 and 7.9.
One says that « is a symplectic form on E.

8.8. Lemma. — Let (E, @) and (F, p) be two symplectic vector spaces with the same
dimension. A linear map h : E — F such that W' = a is an isomorphism.

In particular, if /4 is an endomorphism of E such that h*a = « then & will be an
automorphism with determinant 1 on E.

8.9. Definition. — Let (E, a) and (F, ) be two symplectic vector spaces. A symplectic
isomorphism of E to F is a linear isomorphism h : E — F such that ' = «.



20 Chapter I — The Algebra of Exterior Forms

8.10. Proposition. — Let (E, a) be a symplectic vector space. The set Sp (E, «) of
symplectic automorphisms of (E, &) is a subgroup of the group SGI (E) of automorphisms
of determinant 1 on E.

Exercise. — If E has dimension two then any automorphism of determinant 1 on £ will

be a symplectic automorphism. (This result is not true when E has dimension greater than
two.)

8.11. Remark. — Let (&)1 <i<2m be a basis for E* such that:
a=anat..tamniNam,
and let (e;)1 <i <2 be the dual basis on E. [One says that (e;) is a symplectic basis for (E,
)]

The matrix J = (& (e;, €;)) for « in the basis (e;) will then have the form:

01
-1 0

01
-1 0

Let / be an endomorphism of £ and let M be the matrix of / in the basis (e;). In order for /
to be a symplectic automorphism of (£, @), it is necessary and sufficient that one should
have:

MJIM=J.

Appendix: Orientations on real vector spaces.

Let £ be a real vector space of finite dimension n. The space A" (E) of exterior n-forms
on E is one-dimensional, and the relation w = Av, 1> 0, is an equivalent relation on A" (E)
— {0} that two equivalence classes.

A.1. Definition. — An orientation of E is an equivalence class of A" (E) — {0} under
the relation w = Av, 1> 0.

A space E then possesses two distinct orientations. When one has made a choice of one
orientation, one says that £ is an oriented vector space.
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A volume form von E determined an orientation of £ by its equivalence class. One also
says that v is an orientation on E.
A basis for E determines an orientation on £ (Prop. 4.10). In particular, the vector space

R" will always be oriented by its canonical basis.

A.2. Definition. — An automorphism h of E preserves the orientation if v and h'v
define the same orientation on E for any volume for v € A" (E).

A.3. Proposition. — Let E be an oriented vector space. In order for an automorphism
h of E to preserve the orientation on E, it is necessary and sufficient that the determinant
of h should be positive.

A.4. Proposition. — Let E be an oriented vector space. The set GlI" (E) of
automorphisms of E that preserve the orientation is a subgroup of index 2 of the group Gl
(E) of all automorphisms of E.

Let (E, ) be a symplectic vector space of dimension 2m. The volume form o™ defines an

orientation on E, namely, the canonical orientation of the symplectic vector space (E, @).
One always endows E with that orientation.

A.5. Proposition. — 4 symplectic automorphism preserves the orientation.



CHAPTER II

VECTOR BUNDLES

All of the vector spaces considered are real. All of the vector bundles are real and finite-
dimensional.

§ 1. — Locally-trivial fiber bundles.

1.1. Definition. Let F be a topological space. A locally-trivial fiber bundle with fiber
Fis a triplet n=(E, p, B), in which:

— E and B are topological spaces,
—p : E — B is a continuous, surjective map,

and they satisfy the following condition:

(L.-T.) for any point b in B, there exists an open neighborhood U of b and a
homeomorphism ®:p*(U) — U x F such that pio® = p (in which p; denotes the

projection of U x F onto U).
One says that:

E is the total space of 1,

B is the base,

p s the projection,

Fy»=p'(b) is the fiber over the point b in B.

A pair (U, @) of the type that intervenes in the condition (L.-T.) is called a chart on 7.
Let C denote the set of charts of 7, i.e., the set of pairs (U, @) that consist of an open set U

of B and a homeomorphism ®: p™(U) — U x F such that pjo® = p.

If (U, @) and (V, ¥) are two charts on 7 such that U N V # & then one writes ¥ @
(b, )= (b, g (b) (1), (b, f) € (UN V) x F, in which g is a map of U n V into the group of
homeomorphisms of F.

If 4 is a subset of B then 7|4 = (p~*(A), p, A) will be a locally-trivial bundle with fiber
F and base B. 17 |4 1s called the restriction of 1 to A.

If A’ is a subset of 4 then one will have 7], = (7],) | -
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1.2. — One immediately deduces the following properties from Definition 1.1:

i) Each fiber of 7 is isomorphic to F.

ii) The projection p is an open map.

iii) The base B is the quotient topological space of E by the equivalence relation whose
classes are the fibers of 7.

Exercise. — If B and F are separable (locally compact, locally connected, locally path-
connected, compact, paracompact, connected, path-connected, resp.) topological spaces
then the same thing will be true for E.

1.3. Definition. — Let n=(E, p, B) be a locally-trivial fiber bundle and let A be a subset
of B. A section of n over A is a continuous map s : A — E such that poS is the identity

map of A.
A section s : 4 — B is therefore a homeomorphism of 4 onto s (4).

1.4. Definition. — Let n = (E, p, B) and ' = (E', p', B') be two locally-trivial bundles
(with possibly distinct fibers). A homomorphism of 1 into n' is a pair (H, h) of continuous
maps H:E— E' and h: B— B’ such that p'oH = hop.

That is therefore equivalent to saying that H takes the fiber over b into the fiber over £
(b), or even that the diagram:

H
E E'

pl lp’

B —— K

h

commutes.

Ifthe map H : E — E’ takes fibers to fibers then it will determine the map 4 completely.
That is why one also writes that A is a homomorphism of 7 into 7' (and even of E into E’
) over h.

Let (U, ®),®: p'(U)—> Ux Fand (U',®"), ® :p*(U) - U'xF’ be charts on 7
and 7' . If h (U) N U’ # O then one can write:

DHD N0, f) =), IB) (), (b e
Unh™U))xF,

in which /is amap U nh™(U") into the set of continuous maps from Finto F'.
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If H is the identity map on E and / is the identity map on B then (H, /) will be the
identity homomorphism of 7.

Let 4 be a subset of B and let i (/, resp.) be the canonical injection of 4 into B ( p~*(A)
into p'(B), resp.). (Z, i) is the canonical homomorphism of 7 |4 into 7.

Let (H, h) be a homomorphism of 7 into 7' and let (K, k) be a homomorphism of 7’
into a bundle n". (KeH,koh) is a homomorphism of 7 into n", viz., the composite
homomorphism.

An isomorphism of 7 onto 7’ is therefore a homomorphism (#, /) for which H and &
are homeomorphisms. Moreover, in order for that to be true, it suffices that H should be a
homeomorphism. In that case, 77 and 7' are homeomorphic fibers.

1.5. Definition. — Let n=(E, p, B) and ' = (E', p',B") be two locally-trivial bundles
over the same base B (but with possibly distinct fibers). A homomorphism of 1 into 1’
over B is a homomorphism (H, h) : n—n' for which h is the identity map of B.

If 7 and 7' are isomorphic over B then one says that 77 and 7’ are equivalent. The

composition of two homomorphisms over B is once more a homomorphism over B.
1.6. Examples:

i) Trivial bundle. — The bundle = (B x F, p1, B) is a locally-trivial bundle with fiber
F, namely, @1s the trivial bundle with base B and fiber F.

For example, the cylinder S* x [— 1, + 1] is the total space of the trivial bundle that has
the circle S for its base and the line segment [— 1, + 1] for its fiber.

More generally, n=(E, p, B) is a trivial bundle with base B and fiber F then there exists
a homomorphism H of 77 onto & over B. One says that H is a trivialization of n.

A chart (U, @) on a locally-trivial bundle 7 is therefore a trivialization of 77 |v .

if) Mobius band. — Let D be the band R x [0, + 1] in the plane R?. The M&bius band is

the quotient space £ of D that is obtained by identifying the points (x, y) and (x + 1, 1 —y).
One denotes the projection of D onto £ by @.

The map (x, y) > €™ determines a continuous map p of E onto the circle S* and 7=
(E, p, S') locally-trivial bundle with fiber [0, + 1].

Indeed, let x = €™ be a point on S*. U= S'— (- x) is an open subset of x, and the
restriction of wto W=]&—-1/2, £+ 1/2 [ x [0, 1] is a homeomorphism of W onto the open
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subset @ (W)= p*(U). The map @ : @ (u, v) > (€*™*,v) then defines a chart (U, @) of

n.
One might point out that the bundle 7 is not trivial. Indeed, the set OF of points of £

that do not possess a neighborhood that is homeomorphic to an open subset of R? (see

Chap. 111, § 1) is connected, whereas that set has two components for the cylinder.

iii) Tangent bundle to the sphere S*.— Let E be the pairs (u, v) in R* x R3 = {(x, y, z;

& n, ¢} suchthat || u||=1and <u,v>=0,and letp : (u, v) > u be projection of £ onto
the unit sphere S°. n=(E, p, S?) is a locally-trivial bundle with fiber R?.

Indeed, let U (Ua, Us, resp.) be the open subset of S? that is defined by | x| <1 (| y|<
1,|z|<1). S* = Ui N U> " Us . The homeomorphisms:

D prU)-> Ui xR, (0,2 En,0) > (5,2 n2—¢v, &),
Oy pU,) > xR (x5, y,z;Em,8) > (Ly, 25 x—Ez, 1),

D3 prUy) > UsxRE (0, 3,2;E 1, ) B (6,025 Ey—1x, &)

permit one to define a chart (U;, @;) on a neighborhood of a point b of U; .

1.17 Theorem. — Let ' = (E', p', B") be a locally-trivial bundle with fiber F, and let h

be a continuous map from a space B into B'. There exists:

— a locally-trivial bundle with fiber F, n=(E, p, B)
— a continuous map H of E into E'

that has the following properties:

i) His a homomorphism of ninto n' over h .

ii) Ifz= (D, m, B) is a locally-trivial bundle with base B and K is a homomorphism of
ginto n' over h then there will exist one and only one homomorphism L of ¢ into 1 over B

such that poL =r7rand HoL=K.

Moreover, n (and the homomorphism H) is determined up to an equivalence by the
preceding properties.
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One can summarize the situation in Theorem 1.7. by the following commutative
diagram:

Proof: Let E be the set of pairs (b,e") in BxE' such that 2 (b) = p'(e'), and let p :
(b,e") > b be the projection of E onto B.

Let b be a point of B and let ® : p" (V) — V x F be a trivialization of the restriction
of 7' to an open neighborhood ¥ of & (b). Let U be the open subset h™ (V) of B. The map
®: (b,e) — (b, p,® (") is a homeomorphism of p~(U) onto U x F [its inverse is (b,
f = (b,® ' (h(b), f))}. The pair (U, ®) is therefore a chart of 7 over the open
neighborhood U of b, which shows that 7 is a locally-trivial bundle with fiber F.

The continuous map H : (b,e") > €' of E into E’ will then be a homomorphism of 7
into 7" over h.

Under the hypotheses of ii), the conditions that were imposed upon L will then lead one

to take L (d) = (7 (d), K (d)).
Finally, let # = (E, p,B) be a locally-trivial bundle with fiber F and let (H,h) be a

homomorphism of 7 into 7’ that verifies the properties 7) and ii). There will exist a unique
homomorphism L ( L, resp.) of # into 7 (of 77into 7, resp.) such that poL=p and H oL

=H (poL =pand HoL=H,resp.). One will then have po(LoL)=pand Ho(LoL)=
H. Consequently (from the uniqueness in ii), Lo L will be the identity isomorphism of 7.
Similarly, Lo L is the identity isomorphism of 7 . That shows that L is an isomorphism of

n onto 7 over B.
Q.E.D.

The bundle 7= (E, p, B), thus-constructed, is called the reciprocal image bundle of n'

by 4. One denotes it by = h"(n').

For any point b in B, H will be a homeomorphism of /% onto Fj () .
One deduces the following corollaries from the uniqueness of the reciprocal image
bundle:

1.8. Corollary. — If h is the identity map on B' then h™ (") and n' will be equivalent.
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1.9. Corollary. — If h is a continuous map of a space B' into B then the reciprocal
image bundles (hoh)' (1) and b (h* (")) will be equivalent.

1.10. Corollary. — If B is a subset of B' and if h is the canonical injection of B into W
then h*(n") and the restriction n'|; of ' to B will be equivalent.

§ 2. — Vector bundles.

One always endows real, finite-dimensional vector spaces with their (well-defined) topologies
as normed vector spaces.
If Fand F' are two real, finite-dimensional vector spaces then the set Hom (F, F') of linear

maps from F into F’ will also be a finite-dimensional vector space. In particular, End (F) =
Hom (F, F) is a real, finite-dimensional algebra, and the group Gl (F) of automorphisms of F is

an open subset of End (F). The canonical map Hom (F, F") x F — F' and Gl (F) x F — F are
continuous.

2.1. Definition. — Let F be a real vector space of finite-dimension n, and let n (E, p, B) be a
locally-trivial bundle with fiber F. A vector bundle structure on n is determined by the given of a

family A= {(Ua, ®a)} < C of charts on n that has the following properties:

(V. B) (Ua) is an open covering of B,
(V.B)1  For any pair (a, p) such that Ua " Up # OB, one will have:

D, D, b, f) =B, g (0)f)  (b,f) e UanUp xF,
in which gpe is a continuous map of Ua M Upinto Gl (F) (see 1.1).

(V.Bm IfB>o A is a family of charts on h that has the properties (V. B.)1 and (V. B.)u

A

then B= A .

Denote one such bundle = (E, p, B; .,21) , or even better, one often denotes it by n= (E, p, B).
One says that 77 is a (real) n-dimensional vector bundle.
The set A is the atlas of the vector bundle n, and the elements of A are the vector charts of

7. The continuous maps gg« : Ua N Up—> Gl (F) are the changes of charts in the atlas A

2.2. Lemma. — The changes of charts have the following property:
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g8 (D) gpa (D) = gya (b) forall be U NnUpn Us.
In particular:

— gaa (b) = tfor any b € Uq [in which 1 is the identity of Gl (F)],
— gap (b) = (gpa (b)) forany b € Uan Up.

More generally, an atlas on 7 is a subset A of A that has the properties (V. B.)rand (V. B.)ir . One

then says that A is the maximal atlas of n. That notion is, in fact, justified by the following
proposition:

2.3. Proposition. — Let F be a finite-dimensional vector space and let n=(E, p, B) be a locally-
trivial bundle with fiber F. If A= {(Ua, ®a)} is a family of local charts on n that has the properties
(V. B)1 and (V. B)u then there will exist one and only one subset A of C that contains A and

defines the structure of a vector bundle over 1.

Proof: Let A be the set of charts (U, @) on n that have the following property: For any chart
(Ua, ®a) of A such that Us n U # O, one has:

O O (x, = (x, 82 (X) f) , x,)eUanU)xF,

in which g« is a continuous map of Ux M U into Gl (F). The set A contains A. It therefore verifies
(F. Vor.

Let (U, @) and (7, V) be two charts on A suchthat Un V# & . For any pointxin U NV,
there exists a chart (Ux, @a) in A such that x € Us . One can then write:

CDO’CD_l (y’f):(y’ga()/)j)s ()/,f)G(UaﬁU)XF,
CDO’\P_I (y’f):(y’ }/a(y)f), ()/,f)G(UaﬁV)XF,

in which g« (74, resp.) is a continuous map of (Ua N U, resp.) into GI (F).
If one writes:

lP(D_l(y:f):(ysg(y)f): (y,f)E(UaﬁU)XF

then one will have:
gm= (. () g,y for any yeUnUsnUa.

Consequently, g is a continuous map of U n V into Gl (F), which shows that A verifies (F. Vou .

Finally, A satisfies (F. V), by the construction itself.
Q.E.D.
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One also denotes the vector bundle (E, p, B ; A) by n=(E, p, B ; A).

2.4. Corollary. — Let F be a finite-dimensional vector space and let n= (E, p, B) be a locally-
trivial bundle with fiber F. In order for two atlases A and A' on 1 to define the same vector bundle

Structure, it is necessary and sufficient that the following property should be verified:

If (Ua, @c) is a chart on A and (U], @) is a chart on A’ such that Ua " U, # O then one

will have:
(D;q);l(b,f)=(b,g}/a(b)f), (baf) € (U;m Ua)XF,

in which gye is a continuous map of U; N Uqinto Gl (F).

2.5. Examples.

i) Trivial vector bundle. — Let I be the identity map of the product B x F'to itself. The chart
(B, I) forms an atlas A on the trivial bundle 8= (B x F, p1, B) : 8= (B x F, p1, B ; A) is the trivial
vector bundle with base B and fiber F.

In particular, the trivial bundle with fiber (0) is the null vector bundle with base B.

it) Tangent bundle to the sphere S*.— With the notations of the example iii) in 1.6, let A be
the set of charts (U;, ®,),i=1, 2,3 ; n=(E, p, B; A) is a vector bundle with fiber R?.

Indeed, the changes of charts are represented by the following matrices:

-1 (xy z
g1 ()= —H5— ,
y2+z2\ -z xy

1 (yz x
g2WU)=—5—— ,
2 +x\-x yz
-1 (zx vy

g13(u) = —5——
x> +y’ -y zx

Let D be the set of pairs ((&, v), (U',V)) in E x E suchthatu = u"and <u,v>=<u, V'>=0. The
maps:

>:D>E, ((w, v), W V)= (u,v+ V),

U RxE—>E, 4 Wv)—>u Av)
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are continuous and induce the structure of a two-dimensional vector space on each fiber of 7.
Indeed, that situation is a general property of vector bundles, as the following theorem shows.

2.6. Theorem. — Let 1= (E, p, B) be a vector bundle with fiber F, and let D = U F,xF, be

beB

the set of pairs (e,€") in E x E such that p (e) = p(€"). There exists:

— a section so : b +— 0y of 1 over B,
— a continuous map X :(e,€") = e +e' of D into E,

—a continuous map p: (A, e) > Aeof RxEinE
that have the following properties for any point b of B:

i) Z(FpyxFp)Fp,

i) u(RxFp)cFp,

iii) £ and u define a vector space structure on Fy that is isomorphic to F and has Oy for its
zero.

One says that:

— 50 18 the zero section of 1 (one generally writes 0 for 05),
—e+e€' isthe sum of e and €' [whenp (e) = p(e')],

— A e is the product of e by the scalar A.

Proof: Let A = {(Ua, ®a)} be the maximal atlas on 7. For any chart (Ua, @o) in A, one
defines:

— A section (so0)a : Ua — E by (s0)a (b) = @.'(b,0).

— A continuous map X of the open subset Da = U F,xF, of D in into E by:

beU,

Sa(e, €)= @ (p(e), p, P, (€)+ P, D, (€).

— A continuous map s of R x p™(U,) into E by:

pa (A, €)= DH(p(e), Ap, @, (€)).
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One then has p Za (e, €)=p (e)= p(€') and p ua (4, €) =p (e) .
Let (Ua, @«) be a second chart in A such that Uy N Up# & . One will then have:
(s0)a (b) = @.'(b,0) = © /D, D, (b,0)
= @109, ()0) = ©,(b,0)
=(s0)p (b) for any be Uxn Up.

Za (e, €)= @ (p(e), p, @, (€)+ p, D, (e")
= ®,/D, D (p(e), p, P, (€)+ P, P, (€))
= @, (p(e). 9y, (P()[p, D, (€) + p, D, (e)])
= @ (p(e), p, D, (e)+ p, D,(€))
=Xp(e, €) for any pair (e, €") € DgN Da

Ha(4, ) = D (p(e), AP, D, (8))
= O D, 0. (p(e), gy, (PENIAP, D, (E)])
= @, (p(e),Ap, P,()
= up(4, e) for any pair (4, e) € Rx p(Ua Up)

There will then exist some continuous applications so: B— E, % : D — E, and g : R x E — E such

that s; |, = (s0)a, X[ = Zeand uf, = Uz . The verifications of the properties i), ii), and

P(U,)
iif) will then become immediate.
Q.E.D.

One easily shows that if one wishes to define the maps so, 2, and  then one can restrict oneself
to an arbitrary atlas on 7. Consequently, the operations that were constructed in the example i7)
will coincide with the ones in Theorem 2.6.

2.7. Corollary. — Let n=(E, p, B) be a vector bundle and let A be a subset of B. The maps so,
Y, and pinduce the structure of a vector space on the set of sections of 1 over A whose zero is the
zero section so |4 .

More generally, if 1: A — R is a continuous function and if s is a section of 77 over 4 then s :

b +— A (b) s (b) will be a section of 7 over 4.
Let s be a section of 77 over B and let A = {(U«, ®p)} be an atlas on 7. For any chart (Ua, ®«)

on 7, one will have s (b) = ®_'(b,s,(b)), b € Us, in which s« is a continuous map of Uy into F.
One will then have 55 (D) = gap (D) sa (D), b € UpM Ux.
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Conversely, when one is given a family of continuous maps s« : Ua — F that verify the
preceding relations, that will determine a section s of 77 over B.
For example, the zero section so is determined by the constant maps s« : b — 0 of Ux into F.

2.8. Definition. — Let n = (E, p, B) and n'= (E', p',B") be two vector bundles with fibers F

and F' that are defined by the maximal atlases A = {(Us , ®p)} and A' = {U.,®)}. 4
homomorphism (H, h) of h into n' is a vector bundle homomorphism if it satisfies the following

condition:

(H)  Forany chart (Ua, o) in A and any chart U, @) in A" such that h (Us) N U e

B, one will have:
) HOD, f) = (h (b), hya(B)f), (b.f) € (Uan U)X F,

in which hye is a continuous map of hfl(U;)) N Ua into Hom (F, F') (see 1.4).

Moreover, it would suffice that the condition (/) is verified by arbitrary atlases .4 and A that

define 7 and 7'.

The identity homomorphism is a vector bundle homomorphism. The composition of two vector
bundle homomorphisms is again a vector bundle homomorphism.

On what follows, one will write simply “homomorphism” for “vector bundle homomorphism,”
and one will say that a vector bundle is trivial if it is equivalent to the trivial bundle in Example
2.5.

Exercise. — Let n=(E, p, B) and ' = (E’, p’,B’) be two vector bundles and let (H, /) be a

homomorphism of 7 into 7'. If H is a homeomorphism of £ onto E' then (H™,h™") will be a
homomorphism (of vector bundles).

2.9. Lemma. — With the same notations as the ones in the definition 2.8, one has:

hyp (b) gpa () =hya (b), b e h*(U!) N UsA Ua,
g%, h (b) hye (b)) =hou (b)), b€ WU, AU) A U,

(in which gpe and g, denote the changes of charts n and ).

2.10. Theorem. — Let n = (E, p, B) and n'= (E', p',B") be two vector bundles with fibers F
and F' that are defined by the atlases A= (Ug, Do) and A = (U, @) . Let h be a continuous
map of B into B' and let hya h_l(U;) N Uqg— Hom (F, F') be a family of continuous maps that
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verify the relations of Lemma 2.9. There will then exist one and only one homomorphism H of n
into n' over h such that the condition (H) in 2.8. is satisfied.

Proof: For any chart (Ue, ®a) in A and any chart (U},d’) in A such that h U,)nu’ =,

one must set:
H(e)= @ *(h(b),h,(b) p, @, (e)), ec Ugand b=p (e).

That choice is possible because if e is in h™ (U, NU]) N Up N Ue then one will have:

H(e)= @ (h(b),h,, (b) p, @, (e))
= @5 '®,®, " (h(b),h,,(0) p, ®,P,P,(e))
= @;7(h(b), g5, h, (0)g,, P, Dy(€))

= @ (h(b),hy (b) p, D, (€))
Q.E.D.

For example, the constant maps 4ye : b — 0 of h‘l(U;) N Uq into Hom (F, F') determine a

homomorphism (0, /) of 77into 7" . One says that (0, 4) is a zero homomorphism (over h).
2.11. Proposition. — Let (H, h) : n— n' be a homomorphism of vector bundles. One has:

H(©0)=0,
H(e+e) =H(e)+ H(e),
H(le)=1H(e).

Conversely, if H: E — E' is a continuous map that takes fibers to fibers linearly then H will
be a vector bundle homomorphism.

2.12. Proposition. — Let n=(E, p, B) and ' = (E', p', B’) be two vector bundles, and let h be

a continuous map of B into B'. The sum and scalar product maps induce a vector space structure
on the set Homy, (1, 1) of homomorphisms of ninto n' over h that has the null homomorphism

for its zero.
The proofs of those two propositions present no difficulties.

2.13. Theorem.— Let ' = (E', p', B") be a vector bundle with fiber F and let h be a continuous
map of a space B into B'. Let n=(E, p, B) be the reciprocal image bundle h™(n") and let H be the
canonical homomorphism of 1 into 1n'. There exists a vector space structure on h that has the

following properties:
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i) (H, h)is a vector bundle homomorphism.

ii) If e=(D,p, B) is a vector bundle and ifK : e > n' is a vector bundle homomorphism over

h then the associated homomorphism L : e & 1 is a vector bundle homomorphism.

Moreover, that vector bundle structure on n is determined by the conditions i) and ii), up to an
equivalence.

Proof: Let A= {(U.,®’)} be the maximal atlas on 77" and let Us= h™(U!). For any a, ®«
: (b,e") = (b, p, @/, (€")) will be a homomorphism of p™(U,) onto Usx x F that defines a chart
(Ue, @) on 7. The set A = {(Ua, @)} will then be an atlas for 7. Indeed, if Us N Up # O then

one will have:
®, Db, f) = (b,gy,(0O)F), b./)eUanUp)xF

(in which g7, denotes the changes of charts in the atlas AN,

The homomorphism (H, /) is then a vector bundle homomorphism because:

@, HO (b, f) = @, @ (h(b), )
= (h(b),g),(h(d)f) .

Under the hypotheses on ii), one easily verifies that L is a vector bundle homomorphism.
Finally, the proof of uniqueness (up to equivalence) of the vector bundle structure on 7 is

analogous to the one that was given in 1.7.
Q.E.D.

Under the hypotheses of 2.13, let 7= h"(n") denote the vector bundle, thus-defined, in what

follows. Moreover, one can define 7 by starting from an arbitrary atlas on 7’.

2.14. Theorem. — Let U = (Ua) be an open covering on a space B and let F be a finite-

dimensional vector space. If Ua N Up# D then let gpa: UpN Ua—> Gl (F) be a family of continuous
maps such that:

278 (X) gpa (X) = gra () , for any xeUnUgn Us,.

There will then exist one and only one (up to equivalence) vector bundle with fiber F for which the

maps gpe are the changes of charts in the atlas A.
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One says that (Ua, gap) is a cocycle over B with values in Gl (F) (subordinate to the open
covering U).
An atlas A = (Ua, ®o) on a vector bundle 7 then determines a cocycle (Ua, gop) that

characterizes 7 up to equivalence.

Proof: Let Z be the topological sum of the products U x F and let p be the equivalence relation
on X that identifies the pairs (x, €) € Ua x F and (), f) € Up x F when x =y and f= gga (x) e (the
conditions imposed on gg. imply that pis indeed an equivalence relation). pis an open equivalence
relation.

Let 7 be the projection of ¥ onto the quotient space £ / p. The continuous map of X onto B that
is defined by the first projection Ux x F onto Ux is compatible with p. It will then determine a
continuous, surjective map p : E — B.

The triplet 7 = (E, p, B) is then a locally-trivial bundle with fiber F : The restriction 7« of 7to
Uea x F is indeed a homeomorphism onto p~™(U_) such that p o 7 (x, f) = x and (Us, 7,') is a
chart on 7.

The set A = {(Us, 7,')} is an atlas on 7 because when Up N Ue # &, one will have:

ﬂ/_glﬂa(b,f) = (b, gpa () ), (b, ) e (UpsnUa) x F.

Consequently, = (E, p, B ; A) is a vector bundle with fiber F' for which the maps gs~ are changes
of charts.

Now, let ' = (E', p’,B’; . A") be a vector bundle with fiber F that is defined by an atlas A’ =
{(Ua, D)} that also has the applications gs« for changes of charts.

The continuous map H of £ into E' that is equal to @' on U x F is compatible with p. It
will then determine a continuous map H of E into E’ such that p’eH = p. The homomorphism

(H, h) of pinto 1" over B will then be a vector bundle isomorphism. Indeed, one has:

Dp H 77 (b, ) = ©, D' (b, T)
=(b,gpa (b)), (b, f)e(Upn Ug)xF.

Q.E.D.

Under the hypotheses of Theorem 2.14, n = (E, p, B ; A) will denote the vector bundle that is

constructed in the preceding proof from now on.
One proves the following proposition in an analogous fashion.



36 Chapter II — Vector Bundles.

2.15. Proposition. — Let (U, gpa) and (U, Q5,) be two cocycles on a space B with values in

the same linear group Gl (F). In order for the bundles nand 1’ that are defined by those cocycles
to be equivalent, it is necessary and sufficient that when U; NU, # O, there should exist a family

of continuous maps hya: U ; MU, — Gl (F) that verify the following relations:

hyp (b) gpa (b) = hya (), b e U AU, AU,
25, (b) hya (b) = hoa (b) , beU;nU NU,.

2.16. Corollary. — Let (Ua, gpa) and (Ua, Qy,) be two cocycles on a space B with values in

the same linear group Gl (F) that are subordinate to the same open covering (Uq) of B. In order
for the bundles n and n' that are defined by those cocycles to be equivalent, it is necessary and

sufficient that there should exist a family of continuous maps he : Ua — Gl (F) such that:
9, 00, (0)=hps (D) gpa (b),  foranyb € Ua Up.

Indeed, with the same notations as in 2.15, it suffices to set o = hae [then hpa (b) = hp (D) gpa (b)].

§ 3. — Associated bundles. Orientation.

3.1. - Let n=(E, p, B) be a vector bundle with fiber F, and let (Uq, gp=) be the cocycle over B
that is associated with the maximal atlas on 7.

Let / be a continuous homomorphism of the group Gl (F) into the group GI(F') be
automorphism of a finite-dimensional vector space F'. The continuous maps g};a = A°0,, of Ua

N Upinto GI(F") verify the relations:
9,,(b) g5, (0) = g, () forany b € Uy Up N Uy
(U,,9y,) is then a cocycle over B with values in the group GI(F’).

3.2. Definition. — Let F and F' be two finite-dimensional vector space and let | be a continuous
homomorphism of Gl (F) into GI(F"). Let n be a vector bundle with base B and fiber F and for

which one lets (Ue, gpa) denote the cocycle that is associated with its maximal atlas. The bundle
nawith base B and fiber F' that is determined by the cocycle (Ua, Ao o) 18 called the associated

bundle to n for the homomorphism A.
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If A is an atlas on 7 that defines a cocycle (V,,g;,) over B then the bundle with base B and
fiber F' that is determined by the cocycle (V,,A0gy ) will be equivalent to 7; .

The associated bundles to a trivial vector bundle are also trivial then.

3.3. Examples: bundle of exterior p-forms.

Let A? (F) be the vector space of exterior p-forms on F. The map « > («”)™" is a continuous
homomorphism A, of Gl (F) into Gl (A? (F)). The associated bundle A? (77) = m, is called the

bundle of exterior p-forms over 1.
The bundle ° = A! (n) is also called the dual bundle to n.

3.4. Proposition. — Let n= (E, p, B) be a vector bundle with fiber F and let D™= U (R)" c

beB
E™ be the set of sequences (ei, ..., em) € E™ such that p (e1) = ... = p (em) . The vector space of

sections over B of the bundle A™ (1) is isomorphic to the set of continuous functions o: D™ — R

whose restrictions to (R))" are exterior p-forms on F for every b € B.

Proof: Let A= {(Ua, @)} be the maximal atlas of 77 and let (Uq, gap) be the cocycle that is

associated with A .
A section s of A” (77) over B is determined by a family of continuous maps s« : Ua —> A™ (F)
such that:
op(b) = (g;,) ()5, (0),  beUsn Ua.

As in the proof of Theorem 2.6, one then verifies that those maps ox determine a continuous
function o on such that for each point b € B, the restriction of oto (F5)" will be an exterior p-form
on Fp .

Conversely, by the preceding equality, such a continuous function will determine a section of

A" (7)) over B, and those two correspondences will be the inverse isomorphisms to each other.
Q.E.D.

3.5. Remark. — The preceding isomorphism is compatible with restrictions, in the following
sense: If 4 is a subset of B and s is a section of A” (77) over B that corresponds to a numerical
function s on D™ then the restriction of s to 4 corresponds to the restriction of o to the subset

J(R)™ of D".

beB

In particular, take A4 to be a point x in B, which will show that the fiber of A™ (77) over x is
isomorphic to the space of exterior p-forms on the fiber F of 77 over x.
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In what follows, one will denote a section of A™ (1) and the corresponding function on D" by
the same symbols.

3.6. Corollary. — Let 1 and n' be two vector spaces and let (H, h) be a homomorphism of n
into ' . If s is a section of A" (1) then the map (ex, ..., em) > s (Heu, ..., H em) will determine a
section (H, h)*s of A™ (7)) .

The map s — (H, h)*s is then a linear map of the vector space of sections of A™ (') into the

vector space of sections of A” (7). In particular, if (H, /) is the canonical homomorphism of the
restriction 77 |4 into 4 then (H, h)* will be the restriction homomorphism for sections (Remark 3.5).

3.7. Definition. — An n-dimensional vector bundle is orientable if the bundle A" (1) of exterior
n-forms over n is trivial.

3.8. Proposition. — Let 17 be an n-dimensional vector bundle. In order for 1 to be orientable,
it is necessary and sufficient that there should exist a non-zero section of the bundle A" (n).

Since A" () is a one-dimensional vector bundle, Proposition 3.8. is a consequence of the
following result:

3.9. Proposition. — In order for a one-dimensional vector bundle to be trivial, it is necessary
and sufficient that it should possess a non-zero section.

Proof: The necessary condition is obvious. Therefore, suppose conversely that = (E, p, B) is
a vector bundle whose fiber F' is one-dimensional, and for which there exists a non-zero section
S:B—>E.

Let A be an isomorphism of F onto R. The map H : B x F — E defined by H (b, f) = A (f) s (b)

is an isomorphism of the trivial bundle 8= (B x F, p1, B) onto 7 : Indeed, if {(Us, ®o)} is an atlas
on 77, and if the section s is determined by some maps s« : U« — F then one will have:

Do H (b, f) = D (A (f) 5 (b)) = (b, | (f) 50 (D)) .
Q.E.D.

3.10. Lemma. — Let = (E, p, B) be a one-dimensional trivial bundle and let s1 and s> be two

non-zero sections of 1. There exists a continuous function A : B — R — (0) such that s = A s1 .

The proof of that lemma presents no difficulty.

Let = (E, p, B) be an orientable n-dimensional vector bundle and let g be the set of non-zero
sections of A” (77). The relation s2 = A s1, in which A is a continuous, strictly-positive function on
B, is an equivalence relation on 'y .
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3.11. Definition. — Let n= (E, p, B) be an orientable, n-dimensional vector bundle and let Ty
be the set of non-zero sections of A" (n). An orientation on n is an equivalence class of T'o under
the relation s> = A s1, in which A is a continuous, strictly-positive function on B.

An orientation of 77 determines an orientation of each of its fibers.

When one makes a choice of orientation, one says that 7 is an oriented vector bundle.

A non-zero section s of A” (77) determines an orientation on 7 by its equivalence class. One
also says that s is an orientation on 7.

3.12. Proposition. — Let n = (E, p, B) be an orientable, n-dimensional vector bundle whose
base B is connected. The fiber n possesses two and only two distinct orientations.

Indeed, any continuous, non-zero function on B is either strictly positive or strictly negative.
If s is a section of A” (7) that defines an orientation on 7 then the second orientation on 7 will
be defined by the section — s .

3.13. Definition. — Let nand 1’ be two n-dimensional vector bundles that are oriented by non-
zero sections v and w of A" (n) and A" ("), resp. An isomorphism (H, h) of nand 1’ is compatible

with the orientations if v and (H, h)*w define the same orientation on 1.

If n=n' and v=w then one also says that (H, ) preserves the orientation on 1. (H, h) reverses

the orientation of h if v and — (H, h) *v define the same orientation.

3.14. Theorem. — Let B be a paracompact, locally-connected topological space, and let 1 be
a vector bundle with base B whose fiber F is an oriented, n-dimensional vector space. In order for

h to be orientable, it is necessary and sufficient that there should exist an atlas A on 1 that defines

a cocycle (Ua, gpa) on B such that for any pair (o, ) and any point b €Up N Uq, the
automorphisms gpa (b) preserve the orientation.

Proof: Let A = {(Ua, ®o)} be an atlas of 7 that defines a cocycle (Ue, gpo) on B. Since B is

locally connected, each connected component of Ux will be an open set in B. One can then suppose
that the open sets Uq are connected.
Let s be a non-zero section of A” (77) over B that is determined by a family of continuous maps

sa: Ua—> A" (F). For any chart (Ua, ®2) of A, one can write [(®,")"(s lu,)1(0) =sa(b)= 4,(b)V,
in which v is a volume form that defines the orientation on F and As : Us — R is a continuous

non-zero function.
One can then suppose (after having possibly composed @, with a symmetry with respect to a
hyperplane in F) that each function A« is strictly positive. Under those conditions, one has:
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sp(b) = A (b) v = det (gpa (D)) sa (b) = det (gpa (b)) Aa (D) v,

and consequently:
det (gpa (b)) = Ap(b) / Aa(b) > 0.

That shows that the condition is necessary.
Conversely, suppose that 4 = {(Ues, @x)} is an atlas on 7 for which the changes of charts g

have their values in the subgroup G1* (F). Since B is paracompact, one can suppose that the open
covering (Uq) of B is locally finite. There will then exist a partition of unity (¢«) that is subordinate

to the covering (Ua). [So (@) is a family of continuous maps ¢« : B — [0, 1] such that ¢_*(10,1[)
c Uq for any o, and Z(pa (b) =1 forany b € B] ().

For every chart (Ua, ®c) on 7, oo = (Pe)*v (in which v also denotes the section b +— (b, v) of
the trivial bundle (Ua x A" (F), p1, Ua) is a section of A" (77) over Ue and the section (¢, |, ) o,

prolongs to a section s« of A” (77) over B by way of the zero section over B — Uk .
Since the open covering (Uq) is locally-finite, the sum s = Zsa will be a section of A" (77)

over B, and that section will not go to zero over B. Indeed, let b be a point of B and let Ua1 s eees

U, be the open subsets of the covering (Ue) that include 5. One will have:

®, ((b)) = (b,[i% (b)det,, <b)jvj ,

and consequently s (b) will be non-zero.
That shows that the condition is also sufficient.
Q.E.D.

§ 4. —Sub-bundles. Quotient bundles. Whitney sums.

4.1. Proposition. — Let F be a finite-dimensional vector space and let F' be a subspace of F.
Let n=(E, p, B) be a vector bundle with fiber F and let n' = (E', p', B) be a vector bundle with

the same base B and fiber F'. Finally, let H be an injective homomorphism of n' into n over B.

One can find an atlas A = {(Uea, @a)} for n that has the following properties for any « :

i) There exists a homeomorphism ®',: p'*(U_)—>U_xF' such that (U,,®') is a vector
bundle chart on 1’ .

() A construction of a partition of unity when X is a differentiable manifold (Prop. 2.1.2) is given in Chapter III.
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iy ® HD b, )=, b,He U, ).
Moreover, under those conditions:

iii) The set of charts (U, ®') is an atlas A" on 1"

iv) The changes of charts gpa of in the atlas A leave F' invariant.

v) The changes of charts g'ﬁ(Z in the atlas A’ are the restrictions of gpato F'.
One says that 77’ is a sub-bundle of n (subordinate to H).

Proof: Let B = {(Ua, Wa)} be an atlas of 7 such that for any ¢, there exists a (vector)

trivialization @, of 7’|, . One will then have:
Y HO D, f) =B, ha(D))), (b)) e U, xF',

in which /4 is a continuous map of Ug into Hom (F',F).

For each ¢, one can find a continuous map g« of Us into Gl (F) such that ga (b) he (D) is the
canonical injection of F' into F for every point b € U,, even if it means refining the open covering
(Ua).

The map @x: e — (p (e), ga (p (e), p2 Ya (e)) determines a vector chart (Ua, @) on 7, and
the set of charts (Us, ®0) is an atlas A for 7 that verifies the conditions i), i7), and iii).

The properties iv) and v) are then immediate consequences of Lemma 2.9.
Q.E.D.

One easily proves the following converse:

4.2. Proposition. — Let (Ux, gpe) be a cocycle on B with values in Gl (F) such that the gpa leave
the subspace F' of F invariant. Let n= (E, p, B) be a vector bundle with fiber F and let n'=
(E', p',B) be a vector bundle with the same base B and fiber F'. Finally, let K be a surjective

homomorphism of n onto n' over B. One can find an atlas A = {(Ua, ®a)} on 1 that has the

following properties for any o :

i) There exists a homeomorphism @ :p'*(U,)—>U_ xF' such that U, @) is a vector

charton n'.
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iy ® Kb, f)=(0b,q9(), (b.f)eUsxF.
Moreover, under those conditions:

iii) The set of charts (U, ®')) will be an atlas A’ for n’.
iv) The changes of charts gpa of the atlas A are compatible with q .
v) The changes of charts g'ﬁ(Z of the atlas A’ are the quotients of the gpo .

One says that 7’ is a quotient bundle of 1 (subordinate to K).

4.4. Proposition. — Let (Ue, gpa) be a cocycle on B with values in Gl (F) such that the gpa are
compatible with the projectionq : F — F'. Let n=(E, p, B) and ' = (E', p’,B) be vector bundles
over B with fibers F and F', resp., that are associated with that cocycle. There exists one and only
one surjective homomorphism K of ninto ' over B that has the following property:

for any index a, haa (b, f)=(b,q (f)), be Ua and fe F.

4.5. Definition. — Let n,= (Ei, pi, B), i = 1, 2, 3, be three vector bundles with base B and fibers

F1, F», and F3, resp., and let H (K, resp.) be a homomorphism of m into mp (12 into 13, resp.) over
H K
B. The sequence 0 — 1, —n, —>n, — 0 is an exact sequence of vector bundles if the sequence:

0> (F), 5(F,), —>(F,), =0

is exact for every b in B.

Under those condition, the dimension of 7 will be the sum of the dimensions of 71 and 73,
and the composition K o H will be the zero homomorphism of 71 into 73 over B.

4.6. Proposition. — Under the hypotheses of Proposition 4.1, there exists a vector bundle n"
= (E", p",B) with B and fiber F" = F[F', and a surjective homomorphism of 1 into ' over B

H K
such that the sequence 0 > n'—>n—>n"— 0 is exact.

Moreover, n" (and the homomorphism K) is determined by that condition, up to equivalence.

One says that 1" is the quotient bundle of 1 by (the sub-bundle) n' .
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4.7. Proposition. — Under the hypotheses of Proposition 4.3, there exists a vector bundle n"
= (E", p",B) with B and fiber F"= q(0) < F, and an injective homomorphism H of n" in h over

B such that the sequence:
H K
0->n"->n->n"—0

is exact.
Moreover, n" (an homomorphism H) is determined by that condition, up to equivalence.

4.8. Proposition. — Let n=(E, p, B) and n' = (E', p’, B) be two vector bundles with the same
B, and let H be a homomorphism of ninto n' over B of constant rank (the rank of H : Fy —> F, is
independent of b). One will then have:

i) ker H= (H™s| (B), p,B) is a sub-bundle of n" .

ii) Im H=(H (E), p', B) is a sub-bundle of 1" .

H
iii) ker H and Im H are determined by the exact sequence 0 > kerH ->n—>ImH — 0, up to

equivalence.
One says that ker H is the kernel of H, and Im H is the image of H.
The proofs of those three propositions present no difficulties.

4.9.-Let n=(E,p,B)and ' = (E', p', B’) be two vector bundles with fibers F and F', resp.,

that are defined by their maximal atlases A= {(Ua, D)} and A= {(Vy, W)}, resp. The triplet
nxn' = (ExE', px p’,BxB’) is a locally-finite bundle with fiber FxF', and the set Ax. A’ =
{(Ua x Vy, ®a x ¥,)} defines a vector bundle structure on 7x7".

4.10. Definition. — Let n=(E, p, B ; .,Zl) and ' = (E', p', B';.,Zl') be two vector bundles. The
vector bundle nxn'= (ExE’, px p’,BxB’; ./le./zl') is called the product vector bundle of n and

!

n.
The dimension of 77x7" is therefore the sum of the dimensions of 7 and 7’.

Exercise. — Let A= {(Ua, @)} be an atlas on r7and A" = {(V}, ¥,)} is an atlas on ' A x A’
= {(Uax Vy, ®a x ¥;)} will be an atlas on nx7".
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4.11. — Let p1 (p2, resp.) be the projection of Bx B’ onto B (B’, resp.). The bundle p; () is a
bundle with fiber F' that whose base is the product Bx B’ and whose total space is the set D of
triplets (b, b’,e) € BxB' x E such that p (e) = b.

Let/i: D—> ExE"and P1 : ExE’'— D be continuous maps that are defined by 71 (b, b',e) =
(e,0,) and P (e,e’) = (p(e), p'(e'),e), resp. One verifies that /1 and P; are vector bundle

homomorphisms over Bx B’ such that P, ¢ |, is the identity automorphism on p; (77).
One similarly defines vector bundle homomorphisms L : p,(7") — nxn’ and P> : nxn'—

P,(77") such that P, o 1, will be the identity automorphism on p;, (') .
One then has:

4.12. Proposition. The sequences:

Il P2
0— p;(m)—>nxn'—p,(n')—>0,

I R
0— p; () —>nxn'—p (n) -0
are exact.

4.13. Definition. — Let n=(E, p, B) and n'= (E’, p’,B) be two vector bundles with the same
base B. The Whitney sum n®n' of nand n' is the inverse image bundle of the product bundle
nxn' under the diagonal map d : b + (b, b) of B into B x B.

One denotes the Whitney sum bundle 7® 7' by (E®@E', p® p’,B).
The dimension of 7@®7" is the sum of the dimensions of 7 and 7".
The total space E@E’ of n® 7' is the set of triplets:

(b, e, €) € BxExE' such that ple)=p'(e) =b.

It is therefore homeomorphic to the set D of pairs (e, €) € ExE’ such that p (e¢) =p’(e"). The
projection p@® p’ is transformed into the map 7: (e, €') > p (e)= p’(e) by that homeomorphism.

4.14. — As in 4.11, the maps:

Li: E—> E®FE', e (e0), Pi: E®E' 5 E, (e,e) e,
L:E 5> E®FE,e(0,€), P:EQE—>E . (ee)>¢

are vector bundle homomorphisms that have the following properties:

i) P ol is the identity automorphism of 7 .
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if) P,ol, is the identity automorphism of 7’.
Il PZ

iif) The sequence 0 >n—>n®n'—>n'—0 is exact.
I, R

iv) The sequence 0 > 7' —>n®n'—>n —0 is exact.

Exercises.

i) Thesummap X : (e, €') > e+ €' (Theorem 2.6) is a homomorphism of 7 ® 7 into 77 over

if) If 7 and 7' are two orientable vector bundles over B then n@®n' will be orientable.

Moreover, orientations on 77 and 7’ will determine an orientation on 7®7n’.

iii) Let nand 77" be two vector bundles. The fiber product is 7x7" is equivalent to the Whitney
sum p; (77) @ p, (77) -

4.15. Proposition. — Let n=(E, p, B) and n'= (E', p’, B) be two n-dimensional vector bundles

over a space B. In order for i’ to be equivalent to the dual " of n, it is necessary and sufficient
that there should exist a continuous map h : E@® E'— R such that the restriction of h to each fiber

of n®n' will be a non-degenerate bilinear form.

The proof of that proposition is left to the reader.




CHAPTER III

DIFFERENTIABLE MANIFOLDS

Let R™ denote the real numerical space of dimension m (and endow it with its Euclidian norm),
and let x1, ..., x» denote the canonical coordinates on R™. One identifies R” x R” with R”™", and

one identifies R”~! with the hyperplane in R” whose equation is x, = 0.
One writes “differentiable” to mean “indefinitely differentiable.”
Let H™ be the half-space in R™ that is defined by x,» > 0. A map % of an open subset of H™

into a space R" is differentiable if there exists an open set J in R" that contains U and a

differentiable map g : ¥ — R”, such that & = g|y . The restriction of 4 to U mn R™! is then a

differentiable map.
One assumes the following two fundamental results:

i) Invariance of the dimension: For m # n, an open subset in H™ will not be homeomorphic
to an open subset of H".

i) Invariance of the boundary: Let U and V be two open subsets of H™ and let / be a
homeomorphism of U onto V. One will then have h (U " R™ )=V A R™ .

§ 1. — Differential structures.

1.1. Definition. — 4 manifold (topological, with boundary) of dimension m is a non-vacuous
topological space that is separable and has a denumerable basis of open subsets, and every point

of it possesses an open neighborhood that is homeomorphic to an open subset of H™ .

A 0-dimensional manifold is a denumerable discrete space.
A non-vacuous open subset of an m-dimensional manifold is again an m-dimensional manifold.

Let M™ be an m-dimensional manifold. A chart in M™ is a pair (U, @) that consists of an

open set Uin M™ and a homeomorphism ¢ of U onto an open subset in R” or H™. One says that

the numerical functions y1 = X, c@, ..., ym = X, c@ form a system of local coordinates on the open
set U.
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1.2. Proposition. — The dimension of a manifold is a topological invariant: Two homeomorphic
manifolds will have the same dimension.

That proposition is an immediate generalization of the theorem of the invariant of dimension.

1.3. — Let M™ be an m-dimensional manifold. Let Int M™ denote the set of points of M™

that possess an open neighborhood that is homeomorphic to an open set in R”, and let oM™ =M™

— IntM™ be the complement to Int M™ (that distinction is justified by the theorem on the
invariance of the boundary). One will then have:

i) Int M™ is a non-vacuous open subset of M™.
if) Int M™ is an m-dimensional manifold such that 0 (Int M™) = &.
iii) OM™ is a closed subset that is nowhere-dense in M™ .

iv) If oM™ is non-vacuous then it will be an (m — 1)-dimensional manifold such that 6 (M ™)
=.

v) If m =0 then oM™= .

One says that Int M™ is the interior of M™ and that oM™ is the boundary of M™ . If OM "= &
then one also says that M™ is a manifold without boundary.

1.4. Proposition. — Let M™ and N" be two manifolds of dimensions m and n, respectively.
The product space M™ xN" is a manifold of dimension m + n whose boundary is 9(M™ xN") =

(OM™xN"UM"x3(N").

Indeed, the product H™ xH" is the homeomorphic (but not diffeomorphic) to H™".
One says that M™ x N" is the product manifold of the manifolds M™ and N".

1.5. Examples:

i) Vector spaces. — A real vector space of finite dimension m is an m-dimensional manifold
without boundary.

if) Circle. — The unit circle S* is a compact manifold without boundary of dimension 1.
Indeed, for any point x = €, 0 < & < 1, of S*, the map ¢ > " will determine a
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homeomorphism ¢ of the open neighborhood Uy = S' — {- x} of x onto the segment | £— 1/2, &
+1/2[.

iii) Mobius band. — The Mdbius band E is a compact, two-dimensional manifold with
boundary: Indeed, with the same notations as in Example 1.6 of Chapter I, any point x of £ can
be written x = @ (u, v), v < 1. The projection v will then determine a homeomorphism ¢, of an
open neighborhood U, of x onto an open subset V, =] u—1/2,u+ 1/2 [ x [0, 1] of H?.

The boundary 0E = @ (R x {0}) = @ (R x {1}) of E is homeomorphic to the circle S*.

iv) Sphere. — The unit sphere S® in R3 is a compact, two-dimensional manifold without

boundary: Indeed, let U;,i=1, 2, 3, and £= % 1 be the open sets in S? that are defined by x>
0. The maps:

s Une— R, (x1, x2, x3) = (x2, X3)
e Ure— R3, (x1, x2, x3) > (x1, X3) ,
3.5 Uss— R, (x1, x2, x3) > (x1, X2)

define charts in the neighborhood of each point of S°.

1.6. Definition. — Let M™ be an m-dimensional topological manifold. A differentiable

manifold structure on M" is defined when one is given a family A= {(Ui, @)} of charts on M™
that have the following properties:

(D. M) (U)) is an open covering of M™ .

(D.Mau  IfUin Uj# D then ¢, @ is a differentiable map of ¢; (U; N Uj) into @ (Ui N Uj).

(D.M)m IfB> A isa family of charts on M™ that has the properties (D. M.)i and (D.M.)i

~

then B= A .

One denotes such a manifold by (M™,.A), or even more often by M™, and one says that
(M m,.,zl) is an m-dimensional differentiable manifold.

The set A is the atlas of the differentiable manifold (Mm™, .,21) , and the elements of A are the
differentiable charts on M™ . The differentiable maps ¢, ot 0 (Ui 0 U) - ¢ (Ui " Uy are
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changes of charts of the atlas A . More generally, an atlas on (M m,fl) is a subset A of A that

has the properties (D. M.); and (D. M.)i . One then says that A is the maximal atlas of M™ . That
notion is, in fact, justified by the following proposition:

1.7. Proposition. — Let M™ be an m-dimensional topological manifold, and let A= {(U;, @)}
be a family of charts on M™ that have the properties (D. M.)i and (D. M.)u . There exists one and
only one family A of charts on M™ that contains A and defines the structure of a differentiable
manifold on M™ .

Proof. — Let A be the set of charts (U, ) on M™ that have the following property: For any
chart (Ui, ¢) of A such that Ui U= &, @ ¢ * and @ are differentiable maps. The set A

contains 4. It will then verify (D. M.);.

Let (U, ¢) and (V, y) be two charts of A such that Un V # @. For any point x of U N V, there
exists a chart (U;, ¢) of A such that x € U;. One will then have oy = (pp ) (py ™), and the

map @y will be differentiable at the point w (x) . That shows that A verifies (D. M.

Finally, A will satisfy (D. M.)u, by the construction itself.
Q.E.D.

One can also let (M™,.A) denote the differentiable manifold (M™, 4) then.

1.8. Corollary. — Let M™ be an m-dimensional topological manifold. In order for two
differentiable manifold structures on M™ that are defined by atlases A= {(Ui, @)} and A’ = {(Vx,

Wk} to be identical, it is necessary and sufficient that the following property should be verified:
For any chart (Ui, ) of A and any chart (Vi, wi) of A’ such that U; " U; # &, the maps vy, (oi’l

and @y are differentiable.

For example, the two charts (R, x — x) and (R, x — x°) define two distinct differentiable manifold

structures on the real line R.

1.9. Examples:

i) Vector spaces. — Let E be a vector space of finite dimension m, and let 4 be an isomorphism
of E onto R™. The chart (E, ) on E defines a differentiable manifold structure on E, and that

structure is independent of the choice of isomorphism #.
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The finite-dimensional real vector spaces will always be endowed with the differentiable manifold
structure, thus-defined.

ii) Let I be an interval in R and let j be the injection of / into R. The chart (/, j) defines a

differentiable manifold structure on /.

iif) Open submanifold. — Let M™ be a differentiable manifold that is defined by its maximal
atlas A = {(Ui, @)}, and let V be an open subset of M™. The set A |, of charts (Ui, @) of A

such that U; — V determines a differentiable manifold structure on V: That structure is the
differentiable manifold structure that is induced on V'by M™ .
As aresult, one can endow an open subset ¥ in a differentiable manifold M™ with the induced

differentiable manifold structure. One then says that ¥ is an open subset of M™.
In particular, if £ is a real, finite-dimensional vector space then the group Gl (£) is an open
submanifold of the vector space End (F).

iv) Circle. — The two charts (Ui, ¢1) and (U-1, ¢-1) [see 1.5, ii)] define a differentiable manifold
structure on the circle S'. Indeed, one has:

t+1 for —3<t<0,
t for  O<t<i.

P p(t) = {

v) Moébius band. — One similarly verifies that the four charts (U, @), u =0, 1/2, 1, 3/2 [see
1.5, iii)] define a differentiable manifold structure on the Mdbius band.

vi) Sphere. — The six charts (Ui, ¢ic) [see 1.5, iv)] define a differentiable manifold structure

(02,5 qﬂii(x, y) = (8 \/ 1_ X2 - y2 ’ y) s
¢3,€ (D;i_(X, y) = (X1‘9\] 1_X2_y2)5
O, 0%, Y) = (V.64 1-X = y?).

1.10. Proposition. — Let M™ be an m-dimensional differentiable manifold with a non-vacuous
boundary that is defined by its maximal atlas A= {(Ui, @)}. The set B of charts (V, w) on oM™

on the sphere S?. Indeed:

for which there exists a chart (U, @) in A such V=Un oM™ and v = @ |v define a differentiable
manifold structure of dimension m — 1 on the boundary oM™ of M™ .

In what follows, one will always endow that boundary of a differentiable manifold with the
differentiable manifold structure, thus-defined.
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Proof: Let (V;, y;) and (V, wk) be two charts in B such that V; N Vi # J and they are restrictions
of differentiable charts (U;, ¢) and (Ux, ¢x) on M™ | If:

O, goj’l(x1, v Xm) = (M1 (X1, ooy Xm)y oney B (X1, ..y X))
then one will have A, (x1, ..., xm-1, 0) = 0. Consequently:
WV, l//;l(X1, ceey xm—1) = (h] (X1, cees Xm—1, 0), ceesy N1 (Xl, cees Xm—1, O))

W, y/j‘l is therefore a differentiable map of w; (V; N Vi) into wi (V; N Vi) .
Q.E.D.

Exercise. — If A is an arbitrary atlas of (M m,,,zl) then A will induce an atlas on OM™ that

determines the structure of a differentiable manifold on oM ™.

1.11. Example. — One always endows the half-space H™ with the differentiable manifold
structure that is defined by the chart (H™, identity). The differentiable manifold structure that is

induced on the boundary 0H™ = R”"! is the canonical structure on R”! then.

§ 2. — Differentiable maps.

2.1. Definition. — Let M™ and N" be two differentiable manifolds. A continuous map h : M™
— N" is a differentiable map of M "™ into N" if the following condition is satisfied:

(D.M.)  For any differentiable chart (U, ¢) on M™ and any differentiable chart (V, y) on
N" such that h (U)y NV # &, wohop™ will be a differentiable map of

@ (U Nh™(V)) into y (V).

It would then suffice that the condition (D. M.) should be satisfied by the charts of arbitrary

atlases on M™and N".
The identity map of a differentiable manifold into itself is a differentiable map. The
composition of two differentiable maps will again be a differentiable map.

However, if h is a differentiable homeomorphism then h™ will not necessarily be

differentiable. For example, x > X° is a differentiable homeomorphism of R, but x E/? is not

a differentiable map.
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2.2. Definition. — A differentiable curve in a differentiable manifold M™ is a differentiable
map of an interval I into M™ .

2.3. Examples:

i) If VVis an open submanifold of a differentiable manifold M™ then the injection of ¥ into
M™ will be a differentiable map.

if) If M™ is a differentiable manifold with a non-vacuous boundary then the injection of oM™
into M™ will be a differentiable map.

iii) Let M™ and N" be two differentiable manifolds. A constant map of M™ into N" is a
differentiable map.

iv) The injection of S into R is a differentiable map (see 1.5 and 1.9).

2.4. Remarks:

i) In the case of open subsets of R”, this new notion of a differentiable map coincides with

the classical one.

i) The notion of differentiability for a map is a local one: A continuous map #: M™ — N" is

differentiable if and only if any point x of M™ possesses an open subset V' such that 4 |y is
differentiable.

iii) Let h: M™ — N" be a differentiable map and let (U, ¢) be a differentiable chart on M™,
while (V, w) is a differentiable chart on N" such that 4 (U) N V' # & . One can write:

who ™ (x1, ..., xm) = (h1 (X1, <oy Xm)s <oy B (X1, <.y X))

Ifty,i=1,...,m(z,j=1, ..., n, resp.) denote the local coordinates on (U, ¢) [(V, w), resp.] then
one often says that z; = h; (v1, ..., ym),j =1, ..., n, 1s the local expression for h [in the charts (U, ¢)

and (V, p)].
A differentiable map is therefore a map that is expressed locally by differentiable functions.

2.5. Definition. — Let M™ and N" be two differentiable manifolds. A diffeomorphism of M™
onto N" is a homeomorphism h : M™ — N"such that h and h™ are differentiable maps.
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The two manifolds M™ and N" will then have the same dimension, and h™ will be a
diffeomorphism of N"onto M™. One says that M™and N" are two diffeomorphic manifolds.

2.6. Examples:

i) Let (U, @) be a chart on a differentiable manifold M™. In order for (U, ¢) to be a
differentiable chart on M ™, it is necessary and sufficient that ¢ should be a diffeomorphism of U

onto ¢ (U)

if) Let F be a finite-dimensional vector space. The map 4 > h™ is a diffeomorphism of
Gl (F) onto itself.

iii) The map x 3/? of R into itself is a diffeomorphism of the two differential structure that

were defined in 1.8.

2.7. Proposition. — Let (U;) be an open covering of a topological manifold M™ , and let ¢; be
a homeomorphism of Ui onto a differentiable manifold N for every i. If ¢; o is a diffeomorphism

of @i (Ui N U)) < N; onto @ (Ui N Uj) < N then there will exist one and only one differentiable
manifold structure on M™ for which the homeomorphisms are diffeomorphisms.

Indeed, for one such structure, if (¥, w) is a differentiable chart on N; then (@ *(V), o) must

be a differentiable chart on M™, and one easily verifies that the set of charts on M™ that are
constructed in that way will define a differentiable manifold structure that has the desired property.

One then says that the differentiable manifold M™ is obtained by “gluing” the manifolds N;
together.

2.8. A differentiable function on a differentiable manifold M™ is a differentiable map of M ™

into R. The set D (M) of differentiable functions on M™ is a commutative algebra with unity over

R. One identifies R with the subalgebra of constant functions on M™ .

Let /' be a differentiable function on M™ . The support of f'is the adherence of the set of points
x € M™ such that f'(x) # 0. The support of f'is therefore a closed subset of M™ .
A family (&) of functions in D (M) in is a locally-finite family if any point x of M™ possesses

an open neighborhood Vx such that all of the restrictions 6 |, will be zero except for a finite

number of them.
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Under those conditions, one can define a function 6: X > Z 6.(X) , and that function will be
i

differentiable on M™: 6= Z 6, is the sum of the locally-finite family (&). That sum will then

possess all of the algebraic properties of finite sums.
If 4 is a differentiable map of M™ into a differentiable manifold N" then h*: f > ho f will

be a unitary homomorphism of the algebra D (N) into the algebra D (M) (that is compatible with

locally-finite sums). In particular, if 7 is an open set in M™ then the injection of Vinto M™ will
induce the restriction homomorphism of D (M) into D (N).

2.9. Proposition. — Let M™ and N" be two differentiable manifolds and let h be a continuous

map of M™ intoN" . In order for h to be a differentiable map, it is necessary and sufficient that
for every function f € D (N), ho T should belong to D (M).

It remains for us to prove that the condition is sufficient. In order to do that, we shall utilize the
following lemma:

2.10. Lemma. — There exists a positive, differentiable function 6 on R" such that:

O(x)=1 Jor [x[I=<T,
f(x)=0 for Ix|=2.

Proof of lemma: The function 4 : R — R that is defined by:

-1/t f
h(t) = e or t>0,
0 for t<0

is a differentiable function on R.

The function:

00— — N=lixD
h@=xD+h(IxlI-D

then possesses the desired properties.
Q.E.D.

Proof of Proposition 2.9: Let x be a point of M™ and let (U, ¢) be a local chart on M™ that
contains x. One can find a local chart (¥, w) on N" that contains % (x) and is such that the image

of wis R" or H", and w (& (x)) = 0.
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Letz;,i=1, ..., n be the system of local coordinates that is defined by y on the open set V. The
functions @ (y) z; €D (V) extend by zeroes to N" — V into functions & €D (V) such that & = z; on

an open neighborhood W < V of h (x).
The functions ¢ o h then belong to D (M), and one will have:

h@) =y (@zhW)...2,h@)) = ¥ (& OW))..... ()  foreveryu e Unh™W),

which shows that 4 is differentiable on a neighborhood of z.
Q.E.D.

One can remark that the first part of that proof is a justification for the following proposition:

2.11. Proposition. — Let M™ be a differentiable manifold, let U be an open neighborhood of
a point x of M™ , and let f be a differentiable function on U. There exists a differentiable function
gon M"™ such that g = f on a neighborhood of x.

2.12. Proposition. — Let U = (U;) be an open covering of a differentiable manifold M"™ . There
exists an open covering V= (Vx) of M" that is locally-finite and finer than U, and a partition of

unity (6) that is subordinate to the covering V such that each function 6, will be differentiable on
M™.

In other words, V = (V%) is an open covering of M™, and (&) is a locally-finite family of

differentiable functions on M™ that have the following properties:

i) Any point of M™ possesses a neighborhood that meets only a finite number of open sets
in V.

ii) Any open set of Vis contained in an open set of U.
i) > 6, =1.
iv) The support of & is contained in Vx .

Observe that such an open covering is V denumerable.

One then says that () is a differentiable partition of unity.
The proof of that proposition utilizes the following lemma:
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2.13. Lemma. — Let U = (U;) be an open covering of an m-dimensional differentiable manifold

M™. There exists an atlas {(Vi, wi)} of M™ that has the following properties:

i) V= (Vi) is an open covering of M™ that is locally-finite and finer than U.
ii) The image of wiis R" or H™.

iii) The open sets Wi={v € Vi ||| wk|| <1} define an open covering of M™ .

Proof: Since M™ is a locally-compact space that has a denumerable basis of open sets, there
exists a family (K,)-<n of compacta in M™ that has the following properties:

— K, is contained in the interior of K+ .

- M"= UK

re

— K, , there exists an open subset U; ) of ¢/ and a local chart (Vx, yx)

r+1

For any point x of L, = K

on such that:
—x € Vyand yi (x)=0.

- Vic (K2 = K1) N Ui).

— wr (Vy) is equal to R” or H™.

Let W be the open set of V; that is defined by || y« (v) || < 1. Since L, is compact, there exists a
finite family x1, ..., X5 (- such that le s ees W : will be an open covering of L,.

%5(

The set of all local charts, thus-chosen, will then be an atlas for M™ that has the desired
properties.
Q.E.D.

Proof of the proposition 2.12: With the same notations as in Lemmas 2.10 and 2.13., the
functions 8= oy, € D (Vi) will extend by zeroes to M™ — V% into positive functions ék e D(M)
that are equal to 1 on W} and have its support contained in V.

The family (ék) is a locally-finite family of functions then, and the sum Z ék is not annulled

k

on M™.
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The differentiable functions 6 = ék / Zék will then determine a partition of unity subordinate

to the open covering V.
Q.E.D.

§ 3. — Product manifolds. Differentiable vector bundles.

3.1.— Let M™ be an m-dimensional differentiable manifold without boundary, and let N" be
an n-dimensional differentiable manifold, possibly with a boundary, that are defined by maximal

atlases A = {(Us, @)} and B = {(Vk, w)}. Since R” x H™ = H™", the pairs (Ui x Vi, @i X W)

are local charts on the product manifold M™ xN", and the set AxB = {(Ui x Vi, @i x i)} of
local charts will be an atlas of a differentiable structure on M™xN".

3.2. Definition. — Ler (M™, A) and (N",B) be two differentiable manifolds such that oM™
= . The differentiable manifold (M™ xN", Ax B) is called the (differentiable) product manifold
of the manifolds (M™, A) and (N",B).

3.3. Remarks:

i) If A= {(U, @)} is an atlas on M™ and B = {(Vi, w)} is an atlas on N" then A x B =
{(Ui x Vi, @i x yr)} will be an atlas for M™ xN".

ii) The canonical isomorphism of R” x R" onto R™" is a diffeomorphism. (That

diffeomorphism will then justify the identification of R” x R” with R"™.)

The verifications of the following proposition, which are stated under the same hypotheses as in
3.1, are immediate.

3.4. Proposition. — The boundary of M™ x N" is the product manifold M™ xoN".

3.5. Proposition. — The projections p1 : M"xN" — M™ and p» : M"xN"— N" are
differentiable maps.

3.6. Proposition. — For any point u (v, resp.) of M™ (N", resp.), the map i : y — (u,y) (jv
x > (x, v), resp.) is a differentiable map of N" (M™, resp.) into M™ xN".
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3.7. Proposition. — In order for a continuous map h of a differentiable manifold V'* into
M™xN" to be differentiable, it is necessary and sufficient that the maps p,oh and p,oh should
be differentiable.

By contrast, it is well-known that if k: M™xN" — V" is a continuous map then the hypothesis
of the differentiability of all maps koi,: N — VP and ko j,: M™ — V" will not suffice for one

to assert that k is a differentiable map.

3.8. Proposition. — Let M1, M>, and M3 be three differentiable maps such that oM, = oM, =
. The canonical homeomorphism of (M1 x M>) x M3 onto My x (M> x M) is a diffeomorphism.

That proposition therefore justifies the suppression of the parentheses in the products of differential
manifolds.

3.9 Proposition. — Let F, F', and F" be three finite-dimensional vector spaces. The maps:

(f, Y>> f+f’ of FxFintoF,

A4, ) > Af of R x Finto F,
(h, f) > h(f) of Hom (F,F") x Finto F',
orof GIl(F)xFintoF,
(h,k)—> kh of Hom (F,F") x Hom(F',F") into Hom (F,F")

orof Gl (F)x Gl (F) into GL (F)
are differentiable.

3.10. Definition. — Let F' be a real, n-dimensional vector space, and let B be an m-dimensional
differentiable manifold. A vector bundle n = (E, p, B) with fiber F and base B is a differentiable

vector bundle if it possesses an atlas A = {(U;, ®;)} for which the changes of charts g;; : Uy N U;
— Gl (F) are differentiable maps.

One says that A is a differentiable atlas on 7.

3.11. Lemma. — Let n is a differentiable vector bundle. There exists one and only one
differentiable atlas B of 1 and that contains all of the differentiable atlas of 7.

The proof of that lemma is analogous to the proof of Proposition 2.3 of Chapter II.
The atlas B is the maximal (differentiable) atlas of the differentiable vector bundle 7. A chart

(U, @) on B is a differentiable vector chart on 7.
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3.12. Proposition. — Let n=(E, p, B) be an n-dimensional differentiable vector bundle whose
base B is an m-dimensional differentiable manifold. The total space E of n is a topological
manifold of dimension m + n, and there exists one and only one differentiable manifold structure
on E such that for any differentiable chart (U, @) of h, ® is a diffeomorphism of the open set

p‘l(Ui) onto the product manifold U; x F. For that differentiable manifold structure, the

projection p is a differentiable map.

Proof: Let B= {(U;, ®;)} be the maximal differentiable atlas of 7. For any pair (i, j) such that
Uin Uj# <, the map @, O (x, /) > (x, gii (x) f) will be a diffeomorphism of @; (U; N Uj) onto

; (Ui 1 Ujp.
The existence and uniqueness of the differentiable manifold structure on E is therefore a
consequence of Proposition 2.7.

Since p= p,o®, on p~(U,), the projection p will be differentiable.
Q.E.D.

As a result, one will always endow the total space of a differentiable vector bundle with the
structure of a differentiable manifold, thus-defined. (That structure is, in fact, independent of the
choice of differentiable atlas on 7.)

3.13. Corollary. — Let n=(E, p, B) and n' = (E', p’,B’) be two differentiable vector bundles
with fibers F and F', and let (H, h) be a homomorphism of ninto n' such that n is a differentiable

map. In order for H to be a differentiable map of E into E', it is necessary and sufficient that the
following condition should be verified:

For any chart (U, ®) of a differentiable atlas for n and any chart (V, Y) of a differentiable
atlas for n' such that h (U) NV # @, one will have ¥ H @' (x, /) = (h (x), g (x) /), (x, f) €

(W' (V)NU)xF, in which g is a differentiable map of h™(V)NU) into Hom (F,F")
One then says that (H, &) is a differentiable homomorphism.

As a result, one says that a differentiable vector bundle is trivial if it is differentiably
isomorphic to the trivial bundle 8= (B x F, p1, B). Indeed, one can show that a (continuously)
trivial bundle is differentiably trivial by differentiable approximations.

3.14. Proposition. — I 7 and n' are two differentiable vector bundles then nxn' will be a
differentiable vector bundle. Moreover, if nand 1’ have the same base then n®n' will also be a
differentiable vector bundle.
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3.15. Proposition. — Let n= (E, p, B) be a differentiable vector bundle. The zero section so : B
— E, the sum map X : E ® E — E, and the scalar product i : R x E — E are differentiable maps.

3.16. Proposition. — Let n'= (E', p',B’) be a differentiable vector bundle, and let h be a
differentiable map of a differentiable manifold B into B'. The inverse image bundle n= h"(n') is

a differentiable vector bundle, and the canonical homomorphism (H, h) of n into n' will be a
differentiable homomorphism.

Furthermore, if (K, h) is a differentiable homomorphism of a differentiable vector bundle &
with base B into 1’ then the associated homomorphism of ¢ into n will be differentiable.

The verification of those results will present no difficulties.

§ 4. — Tangent bundle.

4.1.—Let M™ be an m-dimensional differentiable manifold that is defined by its maximal atlas
A= {(Ui, ¢)}. The maps gji : x > D(g; o) a0o LViZ., the Jacobian matrix of ¢; ¢ ! at the point
@i (x)] have the following properties:

— gji 1s a differentiable map from U; n U; into the group Gl (m, R) = G1 (R™).

— g (x) gii (¥) = gu (x) forany x € Ur " Uy N U;.

They therefore define a differentiable cocycle (Uj, gji)) on M™ with values in the group Gl (m, R).

4.2. Definition. — Let M™ be an m-dimensional differentiable manifold that is defined by its
maximal atlas A= {(Ui, @)}. The tangent bundle to M" is the differentiable vector bundle with
base M™ and fiber R"™ that is determined by the cocycle (U;, D (gp; o).

The tangent bundle to M™ can also be defined analogously by starting from an arbitrary atlas on
M™ (Prop. 2.15, Chap. II).
One denotes the tangent fiber bundle to M™ by 7 (M) = (T (M), pu, M™) . The total space T

(M) is the tangent bundle to M™ , and the fiber T\ (M) over x is the set of tangent vectors to M™
at the point x.

The associated bundle A? (7 (M)) of exterior p-forms on 7 (M) are also differentiable vector
bundles. In particular, one denotes the dual bundle to (M) by (M) = (T*(M),q,,,M™): (M)

is the cotangent fiber bundle to M™ , and T"(M) is the cotangent bundle to M™ .
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4.3. Definition. — A4 differentiable manifold is parallelizable if its tangent bundle is trivial.
In that case, all of the bundles A? (7 (M)) will also be trivial.

4.4. Examples:

i) The tangent bundle to R” is trivial. One always chooses the trivialization of 7 (R"™) that is

determined by the chart (R", identity).

More generally, an isomorphism 4 of a vector space E onto R determines a trivialization @ :
T(E) > ExR"of (E). If k: E— R is a second isomorphism, and if ¥ : T (E) — E x R is

the corresponding trivialization of 7 (E) then one will have W @' = identity x kh™.
Consequently, (identity x h™)o® will determine an isomorphism of 7 (E) onto the trivial

bundle (£ x E, p1, E) that is independent of the choice of isomorphism 4. That is why one will
identify T (E) with E x E in what follows.

if) The tangent bundle to the sphere S? is differentiably isomorphic to the vector bundle in
Example 1.6 of Chapter I1.

iif) If U is an open set in a differentiable manifold M™ then the tangent bundle 7 (U) will be
the restriction to U of the tangent bundle 7 (M).

iv) Let M™ and N" be two differentiable manifolds. The tangent bundle 7 (M x N) is
differentiably isomorphic to the product bundle 7 (M) x 7 (N).

4.5.—Let M™ and N" be two differentiable manifolds of dimensions m and n, resp., and let
h be a differentiable map of M™ into N". For any differentiable chart (U, ¢) of M™ and any
differentiable chart (¥, w) on N" such that » (U) NV = O, g D(l//OhO(D_l)(p(x) is a

differentiable map of h™(V)xU in Hom (R™, R"). Those maps verify the relations in Theorem

2.10 of Chapter II. They will then determine a differentiable homomorphism (h',h) of 7 (M) into
7(N) : (h7,h) is the tangent homomorphism to /4, and h': T (M) — T(N) is the tangent map to h.
If & is the identity map on M™ then (h",h) will be the identity automorphism of 7 (M).
Ifh: M™ - N" andk: N"— V" are differentiable maps then (koh)" = kT oh'.
Consequently, if / is a diffeomorphism of M™ onto N" then (h',h) will be a differentiable
isomorphism of 7 (M) onto 7 (N).
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Ifc: 71— M" is a differentiable curve then ¢’(t) = ¢"(t,1) e T. (M) is called the tangent

vector to the curve c at the point c (7).

4.6. Examples:
i) If his alinear map of E into F then h" will be the product map 2 x h : Ex E — F x F.

if) If h is a bilinear map of E1 x E> into F then h" will be the map ((x, u), (v, v)) — (h (x, y),
h (u,y) + h (x, v)).

iii) If h : M™ — N" is a differentiable map and U is an open set of M™ then one will have
(h |U)T: h' |T(U)'

4.7.—Let M™ be a differentiable manifold. For any differentiable function fon M™, one lets
df € D (T (M)) be the second component of the tangent map f': 7 (M) - T (R) =R x R [see

Example 7) in 4.4]. The following properties will then be verified:
Q) df =0 if f'is a constant function.
ii)  d(f+g)=df+ dg [Example i) of 4.6].
iii) d(fg)=(df) g +f(dg) [Example ii) of 4.6],

and consequently:

iv) d(af)y=a(df) fora e R.

One has, moreover:
v) df(utv)y=df(w)+df(v).
vi) df(Au)=Adf(u).
vii) If Uis an open set of M™ then d (f |v) = (df) |v [Example iii) in 4.6].
viii) If h: M™ — N" is a differentiable map then d (f oh) = (df )oh'.

One says that df is the differential of the function f.
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If f'is a differentiable function on an open set U in R” then one will have df (x, u) = D(f),u,

(x,u) e UxR™

4.8. Local expressions. — For each differential chart (U, @) on a manifold M™, (U,¢")
[(p,;(U), "), resp.] is the differentiable vector chart that corresponds to the tangent bundle 7 (M)
[the differentiable chart that corresponds to the manifold 7" (M), resp.].

Consequently, if (y1, ..., ym) is the system of local coordinates that is defined by ¢ on the open
set Uthen (Y, © Pys--s Yoy © Py dY;,-..,dy,,) will be the system of local coordinates that is defined
by @' on the open set p,, (U).

The local expression for the projection py in those systems of local coordinates will then be y;
=VY.opy,l<i<m.

Leth: M™ — N" be a differentiable map, and let (z1, ..., z») be a local coordinate system on
an open set V in such that 2 (U) N V= . If zi = hi (z1, ..., zn), i = 1, ..., n is the local expression
for A then the local expression for h' will be:

ZioPy =M (YioPyseoes Yo Pu)
oh
dz; = Zﬁ(y” Pa e Y © Py ) Y -

i 9
In particular:

If N" =R then dh = Zgy—hidyj,
~ 3y,

]

If M™ is an interval in R then h’(t) = (h/(t),...,h (t)).

Exercise. — For any vector v € Ty (M), there exists a differentiable curve c: ]— &, + &[> M"
such that ¢ (0) =x and ¢'(0) =v.

4.9. Definition. — An m-dimensional differentiable manifold M™ is orientable if the bundle
A" (7 (M)) is (differentiably) trivial.

A parallelizable manifold is therefore orientable.

An orientation on M is an orientation on its tangent bundle 7 (M ™) (Chap. II, Def. 3.11).

When one has made a choice of orientation, one says that M™ is an oriented manifold.

Let M™ and N" be two oriented differentiable manifolds. A diffeomorphism #: M™ — N"
is compatible with the orientations if that is true for the isomorphism (h',h): 7 (M) —» 7 (N).
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(Chap. II, Def. 3.13). One similarly defines the notations of diffeomorphism that preserve or
reverse the orientation.

4.10. Theorem. — Let M™ be an m-dimensional differentiable manifold. The following
propositions are equivalent:

i) M" is orientable.
ii) There exists a differential section with no zero of the bundle A™ (7 (M)) over M™ .

iii) There exists an atlas A= {(Ui, @)} on M" such that for any change of chart ?, ot and
for any point x € U; N U,, the Jacobian det[D (qojgofl)%(x)] will be positive.

The proof of that theorem is identical (up to the qualifier “differentiable”) to the proofs of the
analogous results in Chapter I1, § 3.

4.11. Examples:

i) The vector space R" is an orientable differentiable manifold. One always orients it by the

choice of canonical orientation on each fiber {x} x R” of T (R") =R" x R™.

One proceeds similarly for the half-space H".

A diffeomorphism 4 of R” (H™, resp.) preserves the orientation if its Jacobian is positive;

otherwise, it will reverse it.
if) The sphere S° is an orientable differentiable manifold.
iif) An open set U of a orientable differentiable manifold M™ is orientable.

If M™ is oriented then an orientation on M™ will determine an orientation on U. One always
endows U with that induced orientation.

iv) The tangent bundle 7 (M) to a differentiable manifold M™ is orientable. Indeed, if A =

{(Ui, @)} is an atlas for M™ then B = {(p,;(U), '} (see 4.8) will be an atlas for the manifold
T (M), and one will have:

det[D((DjT O((”iT)_l)%T(X)] = (det[D(¢j(Pi_1),,>, Pu (x)])2 .
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4.12. Proposition. — If M™ is an orientable differentiable manifold then its boundary oM™
will also be orientable. Furthermore, an orientation on M™ will determine an orientation on
oM™,

Proof: An orientation on M™ will permit one to choose an atlas A = {(U;, ¢)} that has the
property #ii) in Theorem 4.10 (Chap. II, Th. 3.14). Therefore, let B be the set of charts (V, ¢) on
oM™ for which there exists a chart (U, ¢) of A such that V=U N oM™ and w= ¢ |y (Prop. 1.10).

Let (Ui, @) and (U, @) be two charts on A such U; N U " oM™ = . If one writes:

q)jgoifl(xh vy Xm) = (h1 (x1, ooy Xm), oony B (X1, ooy X))

then one will have:
oh,
OX

oh

m

OX

m

(x1y ooy Xm-1,0)=0 for 1<i<m-1,

(x1, .oy Xm-1, 0) =a (x1, ..., Xm-1) > 0.

Consequently, at a pointx € V; N Vi=U; N Ui OM™, one will have:

det' D(le//iil)wi(x) = det[D (¢j<0i_1)(pl(x)] > 0 .

I
a (g (x))
The atlas B of oM™ will also possess the property iii) of Theorem 4.9 then, and it will determine

(Chapter II, Th. 3.14) an orientation of oM™ .
Q.E.D.

4.13. Convention. — If M™ has even (odd, resp.) dimension then one endows oM™ with the
orientation that was determined in the proof of Theorem 4.11 (the opposite orientation to that
orientation, resp.).

One finds the justification for that choice in Stokes’s formula (Chap. IV, Th. 4.6).

§ 5. — Rank of a map. Submanifolds.

5.1. Definition. — Let M™ and N" be two differentiable manifolds, and let h be a differentiable
map from M™ into N". The rank of h at a point x of M™ is the rank of the linear map hXT : Te (M)

— Th ) (M) that is the restriction of W' to Ty (M).
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The rank of % at a point x is therefore less than the dimensions of M™ and N". One says that
has maximum rank at x if its rank if equal to the smaller of those dimensions.
One also says that /4 is:

— an immersion if m is less than n and % has rank m at each point of M™,
— a submersion if m is greater than n and /4 has rank » at each point of M™ .

5.2. Lemma. — Let (U, @) be a differentiable chart on M™ and let (V, w) be a differentiable
chart on N" such that h (U) NV # D. The rank of h at a point x € W™ (V) " U is the rank of the

Jacobian matrix D (who™) at ¢ (x).

5.3. Corollary. — The rank of a differentiable map is a lower-semicontinuous positive function
with integer values.

In other words, if 4 has rank p at a point x then it will have rank at least p at any point that is
sufficiently-close to x.
We assume the following classical theorem (J. Dieudonné, [5]):

5.4. Theorem. (the rank theorem). — Let M™ and N" be two differentiable manifolds without
boundary, and let h : M™ — N" be a differentiable map of constant rank p. For any point x of

M™, there exists a local system (y1, ..., ym) of differentiable coordinates on an open neighborhood
of x, and a local system (z\, ..., zn) of differentiable coordinates on an open neighborhood of h (x)
such that the local expression for h is:

Zi =i for 1<i<p,
zi=0 for p<i<m

5.5 Definition. — Let f1, ..., f, be p differentiable functions on a differentiable manifold M™ .
Those functions are independent at a point y of M"™ if the map z v (fi (2), ..., f» (2)) of M ™ into
R? has rank p at y.

The functions f1, ..., f, are then independent of the neighborhood of y and one will have p < m.

If p = m then the functions f1, ..., f, will form a local system of differentiable coordinates on a
neighborhood of y.

5.6. Proposition. — Let fi, ..., f, be p differentiable functions on a differentiable manifold M™
that are independent at a point y of M™ . There exist m — p differentiable functions fp+1, ..., fm on
M™ such that (fi, ..., fn) is a local system of differentiable coordinates on a neighborhood of y.

That proposition is an immediate consequence of the rank theorem (5.4) and proposition 2.11.
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5.7. Corollary. — In order for the functions fi, ..., f, to be independent at a point y of M™ , it
is necessary and sufficient that the differentials dfi, ..., df, should induce independent linear forms

on T,(M™).

5.8. Definition. — If M™ is an m-dimensional differentiable manifold without boundary. An n-
dimensional submanifold, n < m, (or codimension m —n) of M" is a subspace N of M " that has
the following property:

For any point x of N, there exists a local system (y1, ..., ym) of differentiable coordinates on an
open neighborhood U of x in M" such that U N N is the subspace that is defined by y,+1= ... =
Ym=00rbyyu1= ...=ym=0and y, > 0.

5.9. Proposition. — Let N be an n-dimensional submanifold of a differentiable manifold without
boundary M™ . There exists one and only one structure of an n-dimensional differentiable manifold
for which the injection i : N — M is an immersion.

In what follows, one will always endow a submanifold of a differentiable manifold with that
structure of a differentiable manifold.

Proof: With the notations of 5.8, the local coordinates y1, ..., y, define a chart on the open set
U N N of N (which is therefore a topological manifold of dimension #), and the set of charts, thus-
defined, will determine a differentiable manifold structure on N for which the injection i: N - M
will be an immersion.

If there exists a second differentiable structure on N for which i is also an immersion then one
can deduce from the rank theorem that the identity map on N is a diffeomorphism, so those two
structures are identical.

Q.E.D.

5.10. Corollary. — Let M™ be an m-dimensional differentiable manifold without boundary,
and let N" be an n-dimensional differentiable manifold, n < m, and let h be an injective immersion
of N" into M" such that the image h(N") is an (n-dimensional) submanifold of M™ . Therefore,

h is a diffeomorphism of N" into the submanifold h(N").

Under those conditions, one says that 4 is an embedding of N" into M™ .

Exercise. — A proper injective immersion is an embedding. (In particular, an injective
immersion of a compact manifold is an embedding.)

5.11. Examples:

i) Aninterval in R is a submanifold of R.
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if) The injection of H™ into R™ is an embedding.

iif) If U is an open subset of a differentiable manifold without boundary M™ then the injection
of Uinto M™ will be an embedding.

iv) The injection of the sphere into R? is an embedding (Example 1.9).

5.12. Definition. — Letr M™ and N" be two differentiable manifolds of dimensions m and n,
resp. If h is a differentiable map of M™ into N" then a regular value of h is a point ¢ in N" such
that h has rank n at each point h™(c).

In particular, if h™(c) is vacuous then ¢ will be a regular value of A.

One immediately deduces the following two propositions from the rank theorem:

5.13. Proposition. — Let M™ and N" be two differentiable manifolds without boundary of
dimensions m and n, resp., with m > n. Let h : M™ — N" be a differentiable map, and let c be a

regular value of h, The subspace W™(C) (if it is non-vacuous) is an n-codimensional submanifold

of M™.

5.14. Proposition. — Let M™ be a differentiable manifold without boundary and let h be a
differentiable function on M™ . For any regular value ¢ of h(M™) , h™(]—o,c]) is a submanifold

M™ that has the submanifold h™(c) for its boundary.

5.15. Examples:

i) If n=(FE, p, B) 1s a differentiable vector bundle then the projection p : E — B is a
submersion. Consequently, every fiber p™(x), x € B, is a submanifold of E.

ii) The function & = Z x? is a differentiable function on R” with maximum rank at every

1<i<m

point x # 0. The set D™ = h™*([0,1]) is therefore a compact submanifold of R” : D™ is the unit

ball of dimension m, and its boundary S™* is the unit sphere of dimension m — 1.
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§ 6. — Vector fields.

6.1. Definition. — Let M ™ be a differentiable manifold. A vector field on M™ is a differentiable
section of that tangent bundle 7 (M) over M™ .

Let A= {(U;, @)} be an atlas for M™ . A vector field X on M™ is determined (Chap. II, § 2.7)

by a family of differentiable maps X; : U; — R™ such that:

X (y)= [D(¢j ¢i71)(pl(y)] Xi(y) for any yeUnl.

The set 7 (M) of vector fields on M™ is a module over the algebra D (M) of differentiable
functions on M™ (Cor. 2.7, Chap. II). One also has the notion of a locally-finite family in 7 (M).
If M™ is parallelizable then 7 (M) will be a free module that has a basis of m elements.

If U is an open subset of M™ then the restriction to U of a vector field on M™ will be a vector
field on U. The map X — X|vis then a homomorphism of the D (M)-module 7 (M) into the D (U)

-module 7 (V). [It verifies (f X)|v=(f|v) (X | v).]

Exercise. — Let M™ and N" be two differentiable manifolds such that OM™ = . A vector
field on M™xN" is written X + ¥, in which X (¥, resp.) is a differentiable map from M™x N"
into T(M™) [T(N"), resp.] such that p,, o X (y,z) =y [py°Y (Y,2), resp.].

6.2. Proposition. — Let M™ and N" be two differentiable manifolds, and let h be a
diffeomorphism of M™ onto N" . If X is a vector field on M™ then Y= h"X h™ will be a vector

fieldon N™.

Indeed, Y is a differentiable map of N™ into 7 (N) such that:
pvY ()= pyh'Xh™(y) = hp,Xh™(y) = hh™(y) =y foranyyeN".

6.3. — Let X be a vector field on a differentiable manifold M™ . For any function f € D (M),

X-f:y >df(X(y))is a differentiable function on M™: X - f is the derivative of f with respect

fo X.
The following properties are then verified:

i) If fis constant function on an open subset of M™ then X - f(y) =0 forany y € U.
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i) X-(f+g)=X-f+X-g.
i) X-(fg)=(X-f)g+f(X-9),
and consequently:
iv) X-(ag)=a(X-f),aeR.
One has, moreover:
v)  (X+Y)-f=X-f+Y-f.
vi) (gX)-f =g(X-f).

vii) If Uis an opensetin M™ then (X'f)|U =(X[,)-(f1,)-

viii) Leth: M™ — N" be a differentiable map, let X be a vector field on M™, and let Y be
a vector field on N" such that h" X =Y 4. One will then have:

X-(foh)y=(Y-f)oh
for any '€ D (N). (Indeed:

X-(foh) =d(foh)X =df(Yh)=(d f(Y))oh = (Y-f)oh.)

6.4. Definition. — Let M™ be a differentiable manifold. A derivation of the algebra D (M) is
amap D : D (M) — D (M) that has the following properties:

) D(f+g=D()+D(g).

i) D(fg)=D(Ng+fD ().

iii) D (f) = 0, if fis a constant function on M™ .
Moreover, a derivation will then verify:

iv) D(af)=aD(f),a € R. As aresult, it will be an endomorphism of the vector space D (M).
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The set of derivations of the algebra D (M) is a module over D (M). A vector field Xon M™ will

determine a derivation /' + X - f of D (M). That correspondence is linear and compatible (in a
sense that is easy to explain) with diffeomorphisms [see 6.3 iii)].
Indeed, one has:

6.5. Theorem. — The correspondence that associates a vector field X on M™ with the
derivation f +— X - T of D (M) is an isomorphism.

The proof of that theorem utilizes the following lemma:

6.6. Lemma. — Let f be a differentiable function on R™. There exist m differentiable functions

g1, ..., gmon R that have the following properties:

D S@=£0)+ Y X g

mg@=%@-

Proof: One can write:

S@ =1+ % dt =)+ x [; af;)t(.x) dt .

1

The functions g; (x) = _[

t X
. % dt will then have the desired properties.

Q.E.D.

6.7. Lemma. — The correspondence of Theorem 6.5 is an isomorphism for M™ =R™,

Proof: Since 7 (R™) 1s a trivial vector bundle, a vector field X on R” will be determined by a

differentiable map x > (a1 (x), ..., an (x)) of R” to itself. One will then have a; = X -X, 1 <i <
m,and X - f = aiﬂ.
T OX;

Now, let D be a derivation of the algebra D (R"™), and let X be the vector field on R” whose

components are a; = D (x;).



72 Chapter III — Differentiable Manifolds.

For a differentiable function f on R” and any point y of R", there exist m differentiable

functions gi, ..., gn on R” such that:

f@O=f»+ 2 x@-xMg ),

it
gy = ox (y).

Consequently:

D@ 6)= X D) Gy) = (X F)Y).

The derivation that is associated with the vector field X is therefore D. That proves that the
correspondence is bijective.
Q.E.D.
One likewise proves that:

6.8. Lemma. — The correspondence in Theorem 6.5 is an isomorphism for M™= H™ .

6.9. Lemma. — If' D be a derivation of D (M). If f and g are two differential functions on M™

that are equal to each other on an open subset of M™ then the functions D (f) and D (g) will also
be equal on U.

Proof: Let y be a point of U and let € be a differentiable function on M™ that is equal to 0
outside of U and to 1 on a neighborhood of y (Lemma 2.10). One will then have:

f-g=(-g1-0
and:

D(f-g (=D=M A-00M+(0)-g0ND1A-6(»=0.

Q.E.D.

6.10. Lemma. — Let D be a derivation of D (M), and let U be an open set of M™ . There exists
one and only one derivation Dy of D (U) such that Dy (f |U) = D (f) |u for any f € D (M).

Proof: Let f be a differentiable function on U, and let y be a point of U. There exists a

differentiable function g on M™ such that g = f'on a neighborhood of y (Prop. 2.11).
One then sets Du (f) (y) = D (g) (v). That definition is independent of the choice of g and

determines a derivation Dy of D (U) that has the desired properties.
Q.E.D.



§ 6. — Vector fields. 73

Proof of Theorem 6.5.: Let D be a derivation of D (M) and let V = (V) be a locally-finite open

covering of M™ that has the properties required in Lemma 2.13. Let () be a differentiable
partition of unity subordinate to V. The derivation 6; D determines a derivation D of D (V).

Let Xk be the vector field on V% that corresponds to the derivation Dy : X is zero outside of the
support of & . It will then extend by zeroes from a vector field on M™— ¥ to a vector field on
M™, which is again denoted by X .

The (locally-finite) sum X = ZXk is therefore a vector field on M™ such that X-f =

k

ZXk-f= ZDk(f) = D (f) for any function / € D (M).
k

k
That field X is perfectly determined by the derivation D, which shows that the correspondence
in Theorem 6.5 is an isomorphism.
Q.E.D.

In what follows, one will identify 7 (1/) with the module of derivations of D (}/) by means

of that isomorphism.
The composition of two derivations is not generally a derivation. Meanwhile:

6.11. Lemma. — Let X and Y be two vector fields on a differentiable manifold M™ . The map f
— X-(Y-f)=Y-(X-T) is a derivation of the algebra D (M).

That lemma (whose verification is a simple exercise) justifies the following definition:

6.12. Definition. — Let X and Y be two vector fields on a differentiable manifold M™ . The Lie
bracket of X and Y is the vector field [ X, Y] = XY — YX.

If Uis an open set of M™ then one will have [X, Y] |v=[X|u, Y |u] [see 6.3, iii)].

6.13. Proposition. — The Lie brackets have the following properties:

) [XNY+Z]=[X Y]+ [X Z].

i)y [XfY]= (X-F)Y +f[X,Y].fe D(M™).
ii) [X, Y]=-[Y, X].

w) [X[YZ]]+[Y, [Z, X]]+[Z [X, Y]] =0.

The latter equality is called the Jacobi identity.
The proof of Proposition 6.13 presents no difficulty.
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6.14. Proposition. — Let h : M™ — N" be a differentiable map, and let X1, X> be two vector
fields on M™ , while Y1, Y are two vector fields on N" such that hTXi =Yih,i=1,2. One will

then have h'[X,, X,] = [Y1, Y2] h.
Proof: 1t suffices to show that for any f'e D(N"), one will have:

df o (h'[X,, X,])= df o ([Y1, Y2] ) .
Now:
df o(h'[X,, X,])= (df oh") ([X1, X2]
= d(foh) ([X1, X2]
= X+ (X (foh)) =X, -(X,-(f oh))
X, -((Y,- F)oh)y =X, -((Y,- f)oh)  [6.3., viii)]
= (Y- ((Y,- f)oh=(Y,-((Y,- f))oh
= ([Y,,Y.]- f)oh
= (df [Y,,Y,])oh = df o ([Y,,Y,]h).
Q.E.D.

6.15. Local expressions. — Let (y1, ..., ym) be a local system of differentiable coordinates on an
open subset U of M™, and let X be a vector field on M™ .

If ai = dy: (X | v) then one says that Z a, 2 is the local expression for X (in the local

coordinates y1, ..., ym). Under those conditions, for any function /'€ D (M), one will have:

of
X-)], =Y a—.
( )|U - alayi

. 0 :
Let Y be a second vector field on M™ whose local expression is Z b, — . The local expression
i i

for the Lie bracket [ X, Y] will then be:

In particular, i,i =0.
oy, oy,
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6.16. Definition. — Let N be a submanifold of a differentiable manifold without boundary M ™,
and let i be the injection of N into M" . A vector field X on M" is tangent to the submanifold N

ifX (@) e iT(Ty(N)) for any point y € N.

6.17. Proposition. — Let Y be a vector field on a differentiable manifold M™ that is tangent to
a submanifold N of M™ . There exists one and only one vector field X on N such that i' X = Y i.

Proof- Since i' is injective, for any point x of N, there exists one and only one tangent vector
X (x) € Tx (N) such that i"X (x)=Y (x). It remains to be verified that the map x — X (x) is

differentiable.
Let x be a point of N. There exists a local system (y1, ..., vn) of differentiable coordinates on

an open neighborhood U of x in M™ such that U m N is the subspace that is defined by yu+1 =
=ym=0 (and possibly y, > 0).

IfY= Z a, 9 is the local expression for Y in U then one will have:
i=1 i

aiO, ey Ymy 0, ...,0)=0 for i>n.

Consequently, X |v~nv= Z a(y,--Y,,0,. O)E is differentiable.

i=1 i

Q.E.D.

More generally, one further proves the following result analogously (by using the rank theorem):

6.18. Proposition. — Let M™and N" be two differentiable manifolds, let h be an injective
immersion of N" into M™, and let X be a vector field on M"™ such that for any point y € N", one
has X (h (y)) € h' (T,(N)) . There will then exist one and only one vector field Y on N " such that

h'Y =Xh.

6.19. Corollary. — Let N be a submanifold of a differentiable manifold without boundary M".

If X and Y are two vector fields on M™ that are tangent to N then their Lie bracket [X, Y] will also
be tangent to N.

6.20. Proposition. — Let M ™ be a differentiable manifold without boundary, and let h = (hi,
., hy) be a differentiable map of M™ into R", while c is a regular value of h such that N= h™(c)

# . In order for a vector field X on M"™ to be tangent to N, it is necessary and sufficient that one
should have X -h, =...= X-h, =0onN.

Indeed, for any point x of N, Tx(N) is identified with the kernel of h, .
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§ 7. — Differential forms.

7.1. Definition. — A4 differential form of degree p on a differentiable manifold M™ is a
differentiable section of bundle AP (7 (M)) of exterior p-forms on t (M).

One also says that a differential form of degree 1 is a Pfaff form on M™ .
Any differential form of degree p > m is zero.

The set A? (M) of differential forms of degree p on M™ is a module over the algebra D (M) of
differentiable functions on M™ . One has the notion of a locally-finite family in A? (M), just as one

does in D (M) and T (M),

If U is an open subset of M™ then the restriction to U of a differential form of degree p on
M™ will be a differential form of degree p on U. The map & — « v is then a homomorphism of
the D (M)-module A? (M) into the D (U)-module A? (U).

7.2. Proposition. — Let M™ be a differentiable manifold and let & = (D°,7,M™) be the
Whitney sum of p exemplars of the tangent bundle t (M). The module A’ (M) of differential forms
of degree p on M" is isomorphic to the module of differentiable functions o : D? — R whose

restriction to each fiber (T, (M)Y',y € M™ is an exterior p-form on T, (M).

[The structure of D (M)-module on D (D) is induced by the homomorphism z°: D (M) —
D(D) .]

The proof of that proposition is analogous to that of Proposition 3.4 in Chapter II, up to the
qualification that everything must be differentiable.

As in the continuous case (Chap. II, Remark 3.5), that isomorphism is compatible with
restrictions.

In what follows, one denotes a differential form of degree p on M™ and the corresponding
differentiable function on D’ by the same symbol.

7.3. Corollary. — The differential df of a differentiable function f € D (M) is a Pfaff form on
M™.

Indeed, the Proposition 7.2 permits one to identify the module A' (M) with the module of
differentiable functions on 7" (M) whose restriction to each fiber 7, (M) is linear.

7.4. Local expression. — Let (U, @) be a differentiable chart on a manifold M™, and let (31, ...,
vm) be the system of local coordinates that is defined by ¢ on the open set U.

Proposition 7.2 then permits one to interpret the functions:
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ottt )

as a local system of coordinates on an open set g, (U) of T*(M). The local expression for the
projection gy is then:
yi= Yoy, i=1,....m.

7.5. — Let « be a differential form of degree p on a manifold M™ . If X, ..., X, are p vector
fieldon M™ then:
aXi, ..., X)) x > a X (%), ..., Xp (x))

will be a differentiable function on M™.
One then associates « with an exterior p-form on D (M)-module 7 (M), and that

correspondence is compatible with the restrictions.
Indeed, one has:

7.6. Theorem. — The correspondence that associates a differential form a of degree p on M"™
with the exterior p-form (X, ..., Xp) — a (X1, ..., Xp) on the module T (M) is an isomorphism.

The proof of that theorem utilizes the following Lemma:

7.7. Lemma. — The correspondence in Theorem 7.6 is an isomorphism when M™ =R"” or M "

= H".

Proof: The proofs in both cases are analogous, so one will suppose that M™ = R”,

The vector fields 0/0x,, ..., 0/0x,, form a basis for 7(R") over D (R™). The Pfaff forms dxi,

X;

..., dx form a basis of A' (R”™) over D (R™), and one has dx, (ai] = ¢ . The correspondence in

]

7.6. thus identifies the basis (dx;) for A' (R™) with the dual basis to the basis (aij on 7 (R™). As

a result, it will be an isomorphism when p = 1.

More generally, a differential form « of degree p on R™ is determined by its values &_; =

.|p

a[@i,...,aij e D (R™), in which 1 < i < ... < i, < m (see 7.2). Consequently, the
X, X,

o
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correspondence of 7.6 that associates o with the exterior p-form Z a..; dx A---Ady [here, one
identifies A' (R™) with 7 (R™)*] is an isomorphism.
Q.E.D.

7.8. Lemma. — Let a be an exterior p-form on T (M) and let U be an open subset of M™ . There

exists one and only one exterior p-form oy on T (U) such that:

aU(Xl | Us ~--9‘va|U)= a(Xla 7‘X;7)
forall Xy, ..., X, € T(M).

The proof of that Lemma, and that of Theorem 7.6, are now the same in appearance as those
of Lemma 6.10 and Theorem 6.5.

In what follows, one will identify A” (M) with the module of exterior p-forms on 7 (M),
and A (M) = ZAp(M) [A° (M) = D (M)], with the algebra of exterior forms on 7 (M) : A (M)

p>0

is the algebra differential forms on M" .

7.9. Proposition. — Let fi, ..., f, be p differentiable functions on a differentiable manifold M ™,
In order for fi, ..., f, to be independent at a point y of M™ , it is necessary and sufficient that the
form a=dfi A ... Adf, should not be zero at y.

The result is an immediate consequence of Corollary 5.7.

7.10.—Leth: M™— N" be a differentiable map and let « be a differential form of degree p,
with p>0on N". The map:

ha:(i,....,v) Pahv,.. .hv), w1, ..., vp) €DP

determines a differential form of degree p on M™ (Prop. 7.2). That differential form is
characterized by:

(Ma (X, ... %) ) B a( X (X),...h"X (X)), Xi,..,X, e T(M).

One says that is h*« is the reciprocal image form of ¢ under h.
For a differential form of degree 0, i.e., for a function '€ D (M), one sets h"f = f oh (see

2.8).
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7.11. Proposition. — Let h : M™ — N" be a differentiable map, and let f be a differentiable
function on N". One has h*(df) = d (h*f).

Indeed [see 4.7, viii)]:
h*(df) = (df )oh™ = d (h*f) .

7.12. Proposition. — Let i: M™ — N" be a differentiable map. The map h™: A (N) - A (M)
is a homomorphism of algebras.

The verification is immediate.
If & is the identity map of M™ then h* will be the identity isomorphism of A (M). If 4 : M™
— N" and k: N" — V" are differentiable maps then one will have (koh)" = h*ok”".

7.13. Local expression. — Let h: M™ — N" be a differentiable map whose local expression in
the systems of differentiable coordinates (y1, ..., ym) and (z1, ..., zx) 18 z; = hi (V1, ..., Ym). If:

z ai1-~-ip(21"--’Zn)dzi1 /\"'/\dzip

1< <-+<ip<n

is the local expression for a differential form « of degree p on N" then the local expression for
h*a will be:

2 ., (@) h(z)dh A adh

1<i <+ <ip<n

7.14. Definition. — Let M™ be a differentiable manifold of dimension m. A volume form on
M™ is a differential form w of degree m on M™ such that @ (x) # 0 for anyx € M™ .

7.15. Proposition. — In order for a differentiable manifold M™ to be orientable, it is necessary

and sufficient that there should exist a volume form on M™ .

That proposition is, in fact, only a partial reformulation of Theorem 4.10.

A volume form won M™ determines an orientation on 7 (M) (Chap. 11, 3.11). In that case, one
also says that @ is an orientation on 7 (M), and even more often, an orientation on M™ . In order
for a diffeomorphism # of M™ to preserve (reverse, resp.) the orientation, it is necessary and
sufficient that @ and h'w (- h*@, resp.) should define the same orientation.
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Appendix: Riemannian structures.

A.1. Definition. — Let 1= (E, r, B) be a vector bundle with fiber F. A Riemannian structure
on n is defined by a continuous function Q : E — R such that the restriction of Q to each fiber F

is a positive-definite quadratic form.
If 7 is a differentiable vector bundle then one imposes the further condition on Q that it must be a

differentiable function on E.
The given of Q is equivalent to that of a continuous (or differentiable) function g : £ ® £ —

R, such that for any point b € B, the restriction of g to the fiber F x F} is the polar form of the

restriction of Q to the fiber F of 7. One says that g is a Riemannian metric of 7.
When 7 is the tangent bundle to a differentiable manifold M™, one also says that Q is a
Riemannian structure on M™ and that M™ is a Riemannian manifold.

A.2. Theorem. — If the space B is paracompact then there will exist a Riemannian structure
on any vector bundle n = (E, p, B) with base B.

Proof: Let U = (Ua) be a locally-finite open covering of B such that for any index ¢, there

exists a trivialization @4 of 7 |U , and let (6x) be a partition of unity that is subordinate to the
covering U.
Let ¢ : FF— R, be a Riemannian structure on the fiber of 7. For any ¢, (':)a =g p2 Do will be a

Riemannian structure on 77

u, ’
The function #, Q, then extends to a continuous function O : E — R, and one easily verifies

that O = Z Q, 1s a Riemannian structure on 7.

Q.E.D.

When 7 is a differentiable vector bundle, one can similarly obtain a differentiable function Q:

E—->R.



CHAPTER IV

DIFFERENTIAL AND INTEGRAL CALCULUS
ON MANIFOLDS

From now on, all manifolds, charts, ..., will be supposed to be differentiable. That qualification
will be omitted in what follows when no possible confusion would arise.

§ 1. — Derivations and anti-derivations.

1.1. Definition. — Let A be a unitary algebra over a commutative field K. A gradation of A is a
denumerable family (Ap)pe, of subspaces of A that has the following properties:

i) Ais the direct sum of Ap .
ll) Ap Aq S Ap+q .

In particular, K is contained in Ao (viz., it is identified with K - 1).
One says that A4 is a graded algebra and that A4, is the set of (homogeneous) elements of degree
pinA.

Let (Bp)pe,, be a gradation of an algebra B. Amap 4 : A — B is compatible with the gradations
if /1 (4p) is contained in B, for every p.

Exercise. — The sub-modules 4o and Z A, are sub-algebras of 4. Each 4, is a module over 4o.
p

1.2. Definition. — A graded algebra A = Z A, is anti-commutative if one has:
peZ

Xp Xg = (= 1Y x4 Xp
for every element x, € Ap and every element x4 € Ay .

In this case, if 4 is an algebra with characteristic 2 then 4 will be commutative. If 4 is an
algebra with characteristic not equal to 2 then any element of odd degree in 4 will have square
Zero.

The sub-algebra Z A,, is contained in the center of 4. It is then commutative.
p
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1.3. Example. — For any manifold M", the algebra A (M) of differential forms on M" will be
a (real) graded anti-commutative algebra if one sets A?(M) = (0) for p = 0.

The homomorphism h* : A (N) - A (M) that is associated with a differentiable map 7 : M ™
— N" is compatible with the gradations.

If M™ is a parallelizable manifold then the algebra A (M) will be generated by its elements of
degree 0 and 1 (Chap. I, Th. 5.5). More generally:

1.4. Proposition. — Any differential form on a manifold M™ is the sum of a locally-finite family
of decomposable differential forms.

Proof: Let V= (V) be a locally-finite open covering of M™ by parallelizable open sets.
Let « be differential form on M™ . Using a partition of unity subordinate to V), one can find a

locally-finite family (ex) of differential forms that have the following properties:

i) The support Fi of i is contained in V.
i) a=2 ox.

Each o |u 1s a finite sum of decomposable forms that are zero outside of Vi . Consequently, ax
will be a finite sum of decomposable forms, which proves the proposition.

1.5. Corollary. — If M" is a compact manifold then the algebra A (M) will be generated by
its elements of degree 0 and 1.

In what follows, 4 will denote a graded anti-commutative algebra over a (commutative) field
K.

1.6. Definition. — Let p be an even integer. A derivation of degree q of A is an endomorphism
d of the vector space A that has the properties:

l) dAp (- Ap+q .
ii) If x € Ap thend (xy)=(dx) y+ (— 1YV x (dy) .

Convention. — When 4 is the algebra of differential forms on a manifold M™, one imposes the
following additional condition upon a derivation (anti-derivation, resp.):

If () is a locally-finite family of differential forms on M™ then (doy) will also be a locally-
finite family, and d (Zakj = Zdak .
k k
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Exercises:
i) A derivation (anti-derivation, resp.) is zero on the base field.

ii) The set of derivations (anti-derivations, resp.) of 4 admits the structure of a module over
the algebra Ao.

1.8. Example. — Let X be a vector field on a manifold M™ . Let iy : A (M) — A (M) denote the
interior product with X . ix is an anti-derivation of degree — 1 on A (M) (Chap. I, Prop. 6.3) that
has the following properties:

) ixry=ix+tiy.

ii) ipr=flix.

iii) Leth: M™ — N" be a differentiable map, and let X € 7 (M) and Y € T (N) be two vector
fields such that h" X = Y & . For any form a € A (N), one will have:

h'(i,e) =i, (ha) .
In particular, if U is an open set on M™ then (ix @) v= (ix|v) a|v.

1.9. Proposition. — Let di (d>, resp.) be a derivation of degree p1 (p2, resp.) of A, and let a1 (a2,
resp.) be an anti-derivation of degree qi1 (q2, resp.) of A. One will then have:

i) a1 a1 is a derivation of degree 2q1 of A.

ii) a1 ax+ az a1 is a derivation of degree q1 + q2 of A.

iii) [d1, d2] = d\ d> — d> d is a derivation of degree p1 + p2 of A.
iv) a1, di] = a1 d\ — di a1 is a derivation of degree p1 + q1 of A.

1.10. Proposition. — If 4 is generated by its elements of degree 0 and 1 then two derivations
(anti-derivations, resp.) of A will be equal if and only if they coincide on Ao ® A .

The verification of those two propositions presents no difficulties.

1.11. Proposition. — Let M™ be a manifold, and let d be a derivation (anti-derivation, resp.)

of A (M). For any open U of M™, there exists one and only one derivation (anti-derivation, resp.)
du of A (U) such that (da)|u = du (alv) for any a € A (M).
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One says that dy is the restriction of d to the open set U.

The proof of that proposition is analogous to the proofs of Lemmas 6.9 and 6.10 in Chapter
1.

1.12. Corollary. — Two derivations (anti-derivations, resp.) of A (M) are equal if and only if
they give the same values to f and df for any function f € D (M).

1.13. Example. — Let X be a vector field on M™ . The interior product iy is characterized by the
following relations:

i) ixf=0.
i) ixdf=X-f,feDM).
§ 2. — Exterior differentiation.
2.1. Lemma. — Let a be a differential form of degree p > 1 on a manifold M™ :

da: (X1, ..., Xp+1)

p+1

DX @ (Xpyoooy Xiyeo X))+ 2 (Do (X X T Kooy X X )

i<j
(in which the terms with “hats” are omitted) is a differential form of degreep +1 on M™.
In particular, if « is a Pfaff form then:
da(X,V)=X-a)-Y - aX)-a(X,T]).
2.2. Lemma. — Let [ be a differentiable function on M" : d (df)=0 .
2.3. Lemma. — Let fi, ..., f, be differentiable functions on M™ :

d(gdfin...ndfp)=dgndin...Adfy.

The verification of those three lemmas is a simple exercise in calculation.
Upon setting d = d on D (M), the maps d in Lemma permit one to define an endomorphism d

of the vector space A (M) that has following properties:
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i) dAP (M) < AT (M)

ii) If (o) 1s a locally-finite family of differential forms then (dax) will also be a locally-finite

family, and d [ZakJ = Zda’k .
k k

iii) For any open subset U of M and any form a € A (M):
(do)|v =d(alv).
2.4. Proposition. — The endomorphism d is an anti-derivation of degree + 1 on A (M).

Proof: Since d is compatible with the restrictions, it will suffice to prove that proposition when

"=R"and M™"= H".

In those cases, any differential form will be a finite sum of decomposable forms f dXi1 A A
dxip . One can then restrict oneself to verifying the condition ii) of Definition 1.7 when o= f dXi1

Al A dXip and f= ¢ dXjl Al A dqu . One will then have (Lemma 2.3):

do= df /\dXil/\ A dxip

dp=dgndx; A ... A dx,

q

d(anp)=(gdf+fdg) n dX A ... A dxip/\ dx; A ... A dX

Jg

da) A f=gdf A dX A ... A dxip/\ dx; A ... A dX

Iq

an(df)=(-1Y gdgn dx A ... A dxip/\ dx; A ... A dx, .

q

Q.E.D.
2.5. Corollary. — The anti-derivation d of A (M) is characterized by the following relations:
i) df=df.
ii) d(df)=0,fe DM).

2.6. Definition. — Exterior differentiation on a manifold M" is the anti-derivation d of degree
+ 1 of algebra A (M) that is characterized by the following relations:
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i) df=df.
ii) d(df)=0,feDM).
One says that da is the exterior derivative of the form c.
2.7. Proposition. — Let h : M™ — N" be a differentiable map. One has h*od = doh".

Proof: If h'de,= dh” «;, i = 1, 2, then one will also have:
h'd(eq Ae,) = dh* (g A e,).

Consequently, since /4 and d are compatible with locally-finite sums, it will suffice to verify the
relation h'da = dh’a when o= fand a=df, f € D (N). Now:

h*df = h'df = dh"f =dh"f,

h*d(df)=0 and  dh*(df) =ddh'f =0.
Q.E.D.

2.8. Proposition. — The exterior derivative is an anti-derivation of square zero.

Proof: Since d? is a derivation of degree 2, it would suffice to verify that d’a =0 when o =
fand a=df, f € D (M) . Now:

d’f =ddf=0, d?df =0.
Q.E.D.

2.9. Definition. — 4 differential form a € A (M) is a closed form if da= 0.
Any differential form of degree m on a manifold of dimension m is therefore closed.

2.10. Definition. — 4 differential form a € A (M) is an exact form if there exists a differential
form B e A (M) such that a=dp .

xdy —ydx

X°+y°

An exact differentiable form is a closed form. The converse is false: o= is a closed

Pfaff form on R? — {0}, but it is not exact.

Meanwhile, the Poincaré lemma is a local converse:
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2.11. Theorem (Poincaré lemma). — 4 closed differential form of degree p > 1 on R (H",

resp.) is exact.
The proof, which we will write out in the case of R, utilizes the following lemma.

2.12. Lemma. — Let J; , i =0, 1, be injections of R™ x R that are defined by J; (x) = (x, i). There

will then exist a map (on R) K : A (R™ x R) — A (R™) that has the following properties:
i) K(AP*(R™x R)) c A (R™).
i) dK+Kd=J;-1; .
Proof: Let 1 denote the canonical coordinate of the factor R in R” x R and define a linear map

K:A[R"xR) > A (R™) by:

Kf=0 if feD®R"xR),

Ka=0 if a=adx A---ndx

Kp=([oct)dx, nondx, if  f=bdtady, aeady, .
It remains to verify the condition i7). Now:
dKf=0,
l 6f * ¥
K df= jo P CESHLE
dKa=0,

Kda= [} Sat ax n-nd, = (073

0 ot
WB=3p8=0,
dK = lz (Es_)?dtjdxil AOX AendX

Q.E.D.
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Proof of Theorem 2.11. — Let a be a closed differential form of degree p > 1 on R™.

Let H denote the differential map from R” x R into R” that is defined by H (x1, ..., xXm, t) =

(tX,, ..., txm). H o Ji is the identity map on R” and H o Jo is the constant map R” on 0. One will

then have:
a= (- )H «
=dK(H'a)+KdH '«
=dK (H o).

Consequently, « will be an exact form.
Q.E.D.

Exercises:
i) Carry out the preceding calculation when « has degree 1.

if) One can generalize Theorem 2.11 in the following way: Let M™ be a manifold (a manifold

without boundary, resp.), and let H : (x, #) — &, (x) be differentiable map of M™ x R (M™ x [0, 1],

resp.) into M™ . If s a closed form on M™ then (h' —hy) ¢ will be an exact form.

§ 3. — The Lie derivative.

Let X be a vector field on a manifold M™. Lx=ixd + d ix is a derivation of degree 0 on the
algebra A (M) (Prop. 1.9). That derivation is characterized by the following relations:

) Lxf=X-f,
ii) Lydf=d(X-f),feDM).

3.1. Definition. — Let X be a field of vectors on a manifold M"™ . The Lie derivative with respect
to the vector field X is the derivation of degree 0 of A (M) that is defined by Lx=ixd +d ix.

Exercise. — If ais a differential form of degree p > 1 then one will have:

Lxa)(Y1,...Y)=X-a(Y,..., ) —Za(Yl,...,[X,Yi],...,Yp) .

In particular, if « is a Pfaff form then (Lx @) (Y)=X- a(Y)- a ([X, Y]) .
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3.2. Proposition. — The Lie derivative commutes with exterior derivation.
Indeed, Lyd=dixd=d Lx.

3.3. Proposition. — Let X and Y be two vector fields on a manifold M™ , and let f € D (M) and
a e A (M). One has:

i) Lxy=Lx+Ly.
i) Lyxya=fLx+df nixa.
The proof of that proposition is immediate.
3.4. Proposition. — Let X and Y be two vector fields on a manifold M™ . One has:
i) [Lx, iv] =i .
i) [Lx, Ly]=Lx v .

Proof. — Since [Ly, iy] and ifx, v ([Lx, Ly] and Lx, v, resp.) are two anti-derivations of degree
— 1 (two derivations of degree 0, resp.), it will suffice to verify that they take the same values on

the forms = fand a=df, f € D (M). Now:

[Lyx, iv] f=Lxivf—iyLx f=0,
ix,nf=0,

[Lx, iv] df=Lx (Y- f)—ivd (X-)=X- (Y- )= Y- (X-))=[X, Y] -/,
ixndf=[X Y] f,

Lo Ldf=X- (Y-~ Y- (X-N=[X1]-f,
Ly n/=[X Y] f,

[Lx, Ly] df= Lx Lydf— Ly Lxdf=d ([Lx, Ly] /) =d ([X, Y] - f)

Ly ndf=d (X, Y]-/)
Q.E.D.

Exercise. —Let h : M™ — N" be a differentiable map, and let X € 7 (M), Y € T (N) be two
vector fields such that h" X = Y / . For any form a € A (N):

h(L,e) = L,(Wa).
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In particular, if U is an open subset of M™ then (Lx a)|v= (Lx{v) (alv) .

3.5. Local expression. — Let (x1, ..., xm) be a system of local coordinates on an open subset U
of a manifold M™, and let:

Z 8. dx A-adx

1< < <ip<m

be the local expression for a form & € A (M). One has, for example:

6ai...i
——dx, Aeady

o

Lo = Z

1<icrsio<m  OX|

p

§ 4. — Integration of differential forms.

For any manifold M™, let A?(M) denote the sub-module (over the algebra D (M)) of

differential forms of degree p on M™ that have compact support. One has:

d(AZ(M)) = AZH(M).
If M™ is compact then A”(M) = A? (M).

4.1.—Let a=fdxi A ... A dxnbe a differential form with compact support of degree m on an

open subset U of R” (H™, resp.). The number IU o= IU f du (in which g is the Lebesgue measure

dx1...dx, on U) is called the integral of the form « on U. One thus defines a linear form on the

vector space A (U).
Let V = (V)) one a locally-finite open covering of U and let (&) be a partition of unity that is

subordinate to V. The support of a differential form o meets only a finite number of open subsets

Joo = 2], 60

Vi, and one will have:

Let V be an open subset of R” (H™, resp.) and let 2 = (A1, ..., hw) : V — U be a diffeomorphism

h.

that is compatible with the orientation. One will then have det[g—'] > 0. In that case:
X .
]
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_ oh
[ fdu= jv(f oh)det{&]du,

J

and consequently, IU a = '[V ha .

4.2. Theorem. — Let M™ be an oriented manifold. There exists one and only one linear form

a- I yn & on the vector space Ag (U) that has the following property:

(I) If h is a diffeomorphism of an open subset U of R™ (H™, resp.) onto an open subset V of

M™ that is compatible with the orientations, and if a € A, (U) has its support contained in V

IMma = Jl) h'a .

then one will have:

One says that IM _«a is the integral of the form acon M™ .

Proof- Let V = (V;) be a locally-finite open covering of M™ such that for any i, there exists a
diffeomorphism 4; of an open subset U of R” (H™, resp.) onto V; (Chap. III, Th. 4.10) that is

compatible with the orientations, and let (&) be a partition of unity that is subordinate to V.

The support of a differential form & € A7 (M) meets only a finite number of open subsets V; .

One must then have:

Jun = M{Z@Ja =X [ b= NGO,

That shows the uniqueness of the integral.
Conversely, the preceding equality determines a linear form on the vector space A;(M). It

remains for us to verify that condition (I) is satisfied.

Let / be a diffeomorphism of an open subset U of R” (H™, resp.) onto an open subset V" of

M™ that is compatible with the orientations. The diffeomorphisms h™* oh are compatible with the

orientations, and one has:

J.Mma - Z Iuimhl*(v)hi*(ei @)
B Z .[uimrrl(vi)(h‘_l oh)"h' (6 a)
N z .[Umh-lo/l)(ei ° h) h™a
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= I h'e.
u
Q.E.D.

4.3. Corollary. — Let M™ and N be two oriented manifold, and let h : M™ — N" be a
diffeomorphism that is compatible with the orientations. One has:

.[Nma - IMmh*a for any @ € AT (N).

That corollary is an immediate consequence of the uniqueness of the integral. In particular, if /4 is
a diffeomorphism of M™ that preserves the orientation then:

Imh*a :.[M’"a forany o € A7 (M).

4.4. Corollary. — If M" is a compact manifold that is oriented by a volume form « then the
integral of a over M™ will be strictly positive.

Exercise. — 1f one changes the orientation of a connected manifold then the integral will change
sign.

Consequently, if 4 is a diffeomorphism of M™ that reverses the orientation then:

J.Mmh*a z—JMma forany @ € AT (M).

4.5. Remark. — Let M™ be an oriented manifold and let D«(M) be the ideal of D (M) that

consists of differentiable functions with compact support. For any differential form o € A™ (M),
Mot f > IMm fa is a linear form on the vector space D.(M) that determines a Radon measure on

M™ in a unique manner.

4.6. — Let a = Zai dxi A ... Adxi-1 A dxivl A ... A dxn be a differential form with compact

support of degree m — 1 on an open subset U of H™. If U dH™ = & then one will have:
_ i-1 aa'I _
J‘Uda—Z(—l) J.Ua—XIdIU—O

Now suppose that '=U N 0H™ # &, and let j be the canonical injection of ¥ into U. In that case:
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— i-1 aai
Joder = X0 Zdu
= —(-D)"" [, & (%1 % 1,0 d gt
= J.V ja (convention 4.13 of Chapter III).

4.7. Theorem (Stokes’s formula): Let M™ be an oriented manifold, and let j be the canonical
injection of the oriented manifold OH™ (convention 4.13 of Chapter IIl) into M™. For any

differential form a € AT*(M), one will have:
J. da =1 ja.
M oM

Proof: With the same notations as in the proof of Theorem, 4.2., one will have:
J-Mmda = IMmd [Z@, aj = .z IUi h'd(6«).

Let j be the canonical injection of OH™ into R” and let k; denote the restriction of A;to U oH™.

When one takes 4.5 into account, one will have:

Va(Ga)=0 ifUA H" = 2,
y;
while:
J,hd@a) =], .i"N(Ga)
| K@ Dia)  UAHT D
Consequently:
.[Mmda - -[aMm j*Ol.
Q.E.D.

4.8. Corollary. — Let M™ be a manifold without boundary. For any differential form a €

AT (M), one will have:
,da =0.
M



CHAPTER V

DIFFERENTIAL EQUATIONS AND
DIFFERENTIAL SYSTEMS ON MANIFOLDS

Unless stated to the contrary, the manifolds that will be considered in the rest of this book will
be manifolds without boundary.

§ 1. Integrating vector fields.

1.1. Definition. — Let X be a vector field on a manifold M™ . An integral curve of X is a
differentiable curve ¢ : I - M™ such that for any t €I, ¢’(t) = X (¢ (t)) (Chap. III, § 4.5).

If y is a singular point of X [viz., X (v) = 0] then the constant map ¢ > y of R into M™ will be

an integral curve of X.

Let (y1, ..., ym) be a local coordinate system on an open set U of M™. If Z a, % is the local

expression for X then the integral curves of X in U will be the solutions of the differential equation

X' =ai(x),i=1, ..., m. Thatis why one says that X is a differential equation or a dynamical

system on M™ . The integral curves of X are also called the solutions or trajectories of X.
If one reformulates the local existence and uniqueness theorem for solutions of a differential
equation (H. Cartan [4], J. Dieudonné [5]) then one will get:

1.2 Theorem. — Let X be a vector field on a manifold M™ . For any point y € M™ and any

e R, there will exist:

— An open neighborhood U of y,
— A number > 0,

— A differentiable map @ : (¢, z) > @ (z) of (t — & t + &) x U into M" that has the following
properties for any z € U:

i) t+> @ (2)is an integral curve of X.
ll) Pr (Z) =Z.

Furthermore:
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i) If Vi, ni, Vi, i=1, 2 are analogous givens that have properties i) and ii), and if = inf.
(11, m2) then Y1 and Y2 will coincide on (t—  t+ §) x (Vi 12).

In particular, two integral curves that are defined on the same interval / in R will be equal if

they take the same value at a point of /.

1.3 Corollary. — Let X be a vector field on a manifold M™ . There exists an open neighborhood
Uof {0} x M™ in R x M" and a differentiable map ® : (t,y) = ¢ (y) of Uinto M™ that has the

following properties for any y e M™ :

i) Rx{y} nUis connected.

ii) t = @ (y)is an integral curve of X.
ii) oo (y) = .
w) If (¢, y), (¢ + 1, y), and (¢, o (v)) are in U then gi+(v) = ¢ (¢ () -

Furthermore:

v) If Vi, Wi, i=1, 2 are analogous givens that have the properties i), ii), and iii) then they
will also have property iv), and Y1 =Y2 on Vi V3.

Proof. — One can find an open covering (U;) of M™, a family (&) of strictly-positive numbers,
and a family (®;) of differentiable maps ®; : (—& , + &) x U; — M ™ that has properties i) and if) of
Theorem 1.2.

Let U= U (—&,+ &) x Uic R xM™and let ® be the differentiable map of Uinto M™ that

is equal to ®@; on (—¢&i, + &) x U; . [That choice is justified by property iii) of 1.2.] The open set U
and the map @ will then have properties i), ii), and iii) of the statement.

Under the hypotheses of property iv), 7 — @+ (y) and 7 — @ (@ (v)), 0 < 7< ¢ are two
integral curves of X that take the same value ¢, (y) for 7= 0 ; consequently, @+ (v) =@, (@, (Y)) .

Property v) is proved in an analogous fashion.
Q.E.D.

1.4 — Let W be an open set of M™ such that {¢}x W are contained in U, as well as {~t}x ¢
(W). Themapy — ¢ () is a diffeomorphism of W onto ¢ (y) that has z — ¢ (z) for its inverse;
in particular, ¢ (W) is an open subset of M ™.

Moreover, if {t"}x o (W), {—t"}x o (@ (), {t’+t} x Wand {—t—1t"}x @+, (y) are in U
then @+: (v) = ¢’ (¢ (v)) for any y € W; one will then have ¢+, = @ o ¢ on W.

Those remarks justify the following terminology:
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1.5 Definition. — A local one-parameter group of diffeomorphisms of a manifold M"™ is a
pair (U, @) in which:

— U is an open neighborhood of {0}xM™in R xM™,

—®:(t,y) > ¢ (p)is adifferentiable map of Uinto M™ that has the following properties:

i) Foranyye M™,R x {y} n Uis connected.

if) y = ¢ (p) is the identity map of M™ .
iii) If (27 y), (¢ + 17 p), and (7, @ (v)) are in U then @r+./(v) = @ (@ () -

One also denotes that local one-parameter group of diffeomorphisms by ¢ (without specifying
the domain of definition).

A vector field X on a manifold M™ permits one to construct a local group (U, @) of
diffeomorphisms of M™ : One says that (U, @) is generated by X. In that case [property v) of 1.3],
the germ of @ at {0} x M™ will be determined by X.

1.6. — When U=R x M™, one says that (U, ®@) (or ¢) is a (global) one-parameter group of

diffeomorphisms on M™ . The following properties will then be satisfied:

i) Foranyze R, ¢ :y > ¢ (p)isadiffeomorphism of M™.

i) ¢ is the identity map of M™ .
i) g+ =@ o Q.
v) o= ().

Example. — For any manifold M™, h; : (¢, v) = €' v is a one-parameter group of
diffeomorphisms of 7' (M) : h; is the one-parameter group of homotheties of T (M).

1.7. Lemma. — Let X be a vector field on a manifold M™ . The set of local one-parameter

group of diffeomorphisms of M™ that is generated by X will possess one and only one maximal
element when it is ordered by inclusion.

That lemma is a direct consequence (thanks to Zorn’s lemma) of property v) of 1.3.
In general, that maximal local group is not a global one-parameter group of diffeomorphisms

of M™.

Example. — The maximal local group (U, ®) that is generated by the vector field x° § on R
X

is given by:
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U={(t,x)e RxR|1-¢tx>0},
X

(D(t,X): m

1.8. Definition. — A4 vector field on a manifold M™ is complete if it is generated by a global
one-parameter group of diffeomorphisms of M™ .

1.9. Theorem. — A vector field on a compact manifold is complete.

That theorem is a consequence of the following proposition:

1.10. Proposition. — Let X be a vector field on a manifold M™ and let (U, ®) be the largest
local one-parameter group of diffeomorphisms of M™ that is generated by X. For anyy € M™,

let (a, wy) denote the interval of R that is defined by R x {y} " U= (o, @) x {y} and let C:
[0, @) >M™[c,: (o, 0] > M™ , resp.] denote the integral curve t — ¢.(y) of X. If the image

of ¢; (c,, resp.) is relatively compact then one will have @, =+ (e, = — o, resp.).

Proof. — Suppose that the image of ¢, is relatively compact and that @y is finite (the second

case can be deduced by changing X into — X).
Let z be an accumulation point for the curve ¢, for  — wy, let I be an open subset of z, let &

be a strictly-positive number, and let ¥ : (— & + &) x W — M" be a differentiable map that has
properties 7) and ii) of Theorem 1.2.
Let zbe in the interval (@, — &, @) such that ¢, (y) € W. One can find an open neighborhood
V of y such that {7} x V'is contained in U and ¢ (V) is contained in W.
Thenlet U'=U U (@, — & @y + ¢) x V. One can prolong @ into a local group (U’, ') by
setting:
Ot x)=Y(t-7,DP(r,x), xeV,and |t—w|<cg,

which is absurd, since (U, @) is maximal.
Q.E.D.

1.11 Corollary. — 4 vector field with compact support is complete.

1.12. With the same notations as in 1.10, let y be a point of M™ such that (¢, @) =R, and let

y=® (R x {y}). For any point z € y, one will have (¢, @) =R.
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The set G = {t € R | ¢ (v) =y} is a closed subgroup of R that independent of the choice of

point y on . Three cases must then be considered according whether G = {0}, G=R, or G = Zw,

oz0:

—1If G= {0} then t > ¢ (y) is an injective immersion of R in M™ .
— If G =R then y is a singular point of X (and conversely).

—If G=Zw, o+ 0 then one says that 1 > ¢, (y) is a periodic solution of X of period @ . In that

case, ywill be compact and a submanifold of M™ that is diffeomorphic to the circle S*.

Exercise. — A trajectory ¢ : R - M™ is periodic iff its image is compact.

1.13. Proposition. — Let X be a vector field on a manifold M™ . There exists a strictly-positive
differentiable function fon M™ such that the vector field Y = f X is complete.

The maximal solutions (in the sense of 1.7) of X and Y that pass through a point y of M™ have
the same images then.
The proof of this proposition uses the following lemma:

1.14. Lemma. — There exists a proper differentiable function on any manifold.
Proof:

Let U = (U))i < N be a locally-finite open covering of a manifold M™ that is indexed by the set

of strictly-positive integers (any local-finite open covering of a manifold is denumerable) and let
(&) be a partition of unity that is subordinate to 4.

The family (i &); < N 1s locally finite, and g = Zi 6. is a proper differentiable function on M"™

ieN

. (If K is compact in R then g~! (K) will be compactin M™ ]. Q.E.D.

Proof of proposition 1.13 (*): Let g : M™ — R be a proper differentiable function on M™ and

let f= e 9" If Y=/X then one will have dg (¥) = (X- g)e * ¥ <1on M™.
Let ¢ : (a, b) - M be a solution of Y that is defined on a bounded interval of R. One has:

(® 1 must thank A. Dold for the idea behind this proof.
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dg oC —(X-g)?
S— X. e 9 o]
pranl (G loc

and

‘M‘ <1, te(a,b).
dt

The set gc (a, b) is then bounded, and consequently the image of ¢ will be relatively-compact in
M™.
One then deduces from Proposition 1.10 that Y is complete.
Q.E.D.

1.15. Proposition. — Let X be a vector field on a manifold M™ and let y be a point of M" such
that X (y) # 0. There exists a local coordinate system (x1, ..., Xm) on an open neighborhood of y in
which the local expression for X is 0/ 0Ox: .

Proof:

Since the property has a local character, one can suppose that X is a vector field on R” such

that X (0)=0/ 0Ox1 .
Let (U, @) be a local one-parameter group of diffeomorphisms of R” that is generated by X :

D, x1, ooy Xm) = (h1 (&, X1, ooy Xm)y vy B (8, X1, ...y Xm)). Let k= (ki, ..., kn) be the differentiable
map that is defined in a neighborhood of 0 by:

ki (x1, ..., Xm) = ki (x1, 0, x2, ..., Xm), i=1,....m.

Since X (0) = 0/ 0x1, the Jacobian matrix (;—K (O, O)J will be the identity matrix. The map & will

]

then possess an inverse map [ = (/1, ..., ) on a neighborhood of 0 that defines local coordinates
vi =1l (x1, ..., xm) on that neighborhood.
In that local coordinate system, the trajectories of X are curves ¢ — (¢ + y1, 2, ..., ¥m), and

consequently the local expression for X'is 0/ 0y .
Q.E.D.

1.16. Proposition. — Let i : M™ — N" be a differentiable map and let X € T(M), Y € T (N)

be two vector fields such that h* X =Y h. If ¢ and w: are local one-parameter groups that are
generated by X and Y then one will have w; ch=h o ¢ .

The proof of that property is immediate.
Similarly:
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1.17. Proposition. — Let X be a vector field on a manifold M™ that is tangent to a submanifold
Nof M™ . Any integral curve of X that passes through a point y € N will be contained in N.

§ 2. One-parameter groups and derivations

2.1 Theorem. — Let ¢ be a local one-parameter group of diffeomorphisms on a
manifold M™ . There exists one and only one vector field X on M " such that ¢ is a local
one-parameter group that is generated by X. That vector field is characterized by the
relations:

X-H )= lim

t—0

fla(y)—f(y)
n , feDWM).

The proof of that theorem uses the following lemma:

2.2. Lemma. — Let U be an open neighborhood of {0} x R™ in R x R™ such that for
any x € R", R x {x} n U is connected, and let f (¢, x) be a differentiable function on U

such that (0, x) = 0 for any x € R™. There exists a differentiable function g (¢, x) on U
such that f(t,x) =t g (¢, x).

Indeed, one has f (¢, x) = J-:t%(ts,x) ds. It will then suffice to take g (¢, x) =

10f . of
IOE(tS, X)ds. £ (0,.x) will then be equal to —(0, ).

Proof of theorem 2.1:

Suppose that there exists a vector field Xon M™ that generates the local one-parameter
group ¢ . For any pointy € M™, X (y) is the vector tangent to the curve ¢ > ¢ (y) aty =
o (v) . Such a vector field is then unique.

We shall now show that for any function /' € D(M) and any point y e M",

Fla())-T)
t

has a limit (Df) (v) when ¢ tends to 0 and that Df is a differentiable

functionon M™ .

Since that result has a local character, one can suppose that M™=R". There will then

exist a differentiable function g (z, y) such that:



§ 2. — One-parameter groups and derivations 101

o) -fn=tgy).

One then verifies, in a classical fashion, that f +— Df is a derivation of the algebra
D (M). Tt then determines a vector field Xon M™ .

Finally (Chap. I1I, § 4.8), for any pointy € M™, X (y) is the tangent vector to the curve
t = ¢ (y)aty= g (). If one recalls condition iii) of Definition 1.5 then X ((y)) will also
be the tangent vector to the curve ¢ > ¢ (y) at ¢ (y), which shows (Corollary 1.3) that ¢
is a local one-parameter group that is generated by X.
Q.E.D.

2.3 Definition. — Let X be a vector field on a manifold M™ . A first integral of X is a
differentiable function fon M" such that X - f= 0.

Proposition 1.15 then ensures the existence of m — 1 independent first integrals in the
neighborhood of a point y of M ™ such that X (y) = 0.
If fis a first integral of X then one will have ix (df) = X - f=0. That is why one says,

more generally, that a first integral of X is a closed Pfaffian form & on M ™ such that ix
= 0. (When one takes the Poincaré lemma into account, those two notions will be locally
equivalent.)

2.4 Proposition. — Let X be a vector field on a manifold M™. In order for a
differentiable function on M" to be a first integral of X, it is necessary and sufficient that

it should be constant on the trajectories of M™ .
Proof:

That proposition (briefly) expresses the following property: Let ¢ be a local one-
parameter group of diffeomorphisms of M™ that is generated by X. In order for /'€ D(M)
to be a first integral of X, it is necessary and sufficient that forany y € M", ¢t — f (@ ()

should be constant.
Now, if one lets f, denote the function ¢ > f(¢r (y)) then one will have (Th. 2.1):

OO i F@ec D= F@W) _ v 1 0 0.
&

dt &0
QED.

2.3 Proposition. — Let X be a vector field on a manifold M™ and let ¢ be a local one-

parameter group of diffeomorphisms of M " that is generated by X. For any differential
form a € A (M), one will have:
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. Qa-a
Lya= I|m¢‘—
t—0 t

. a-¢.a
= ||mA
t—0 t

Proof:

Since this proposition has a local character, one can suppose that M™= R”. In that

case, it will suffice to verify it for « =fand a=df, f € D ( R™). Now:

Lyf= Iting(”tft—_f (Th. 2.1),

Lydf=d(X-f)=d [Iting(p‘ft—_fj
fjm & df =t

t—0 t

One deduces the second relation from the first one by switching X with — X and ¢ with — z.
Q.E.D.

2.6 Proposition. — Let X and Y be two vector fields on a manifold M™ and let ¢ be a
local one-parameter group of diffeomorphisms of M " that is generated by X. One has:

T
T . Yo Y
[X, Y] [Igg—t
Y-p'Y
— I|m ¢t (D—t
t—0 t )

Proof:

Since A! (M) and 7 (M) are locally dual to each other, it will suffice to show that for

any Pfaffian form o :
T J—
a (X, Y]) = ltingo{wl .
Now:

nma[m+ﬂ i (ol e)(V)- 1 (V)]

t—0
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a(Y)op —a(Y)

(pla—a)(Y)
t

-1y i
=—(Lra)Y)+X- a(Y) (Prop. 2.5 and Th. 2.1)
=a ([X, Y]) (Chap. IV, § 3.1) .

The second relations are obtained as before by changing X into — X and ¢ into — ¢.
Q.E.D.

2.7. Corollary. — Let X and Y be two vector fields on a manifold M™ and let ¢r and v

be local one-parameter groups of diffeomorphisms of M " that are generated by X and Y.
The following properties are equivalent:

i [X, ¥Y]=0.

ii) ¢ and y, commute.

Under those conditions, one says that the vector fields X and ¥ commute.
That corollary is a direct consequence of Propositions 1.16 and 2.6.

2.8 Remark. — When y is a point of M ™ such that X (y) # 0, one can verify Propositions

2.5 and 2.6 more simply by using a local coordinate system (y1, ..., ym) in the neighborhood
of y such that the local expression for X is 0/ dy1 (Prop. 1.15).

§ 3. — Differential systems

3.1 Definition: 4 p-dimensional differential system on a manifold M" is a sub-module
X of T (M) that has the following properties:

i) A 1is stable under locally-finite sums.

if) For any pointy of M™, X, = {X (y), X € X} is a p-dimensional subspace of T(M).
A vector field with no singularity on a manifold M™ will then generate a one-

dimensional differential system on M™ .
If U is an open subset of M™then let Xy denote the sub-module of 7 (U) that is

generated by the restrictions of the vector fields on X'to U. One will then have:

3.2 Lemma. — The sub-module Xy is a p-dimensional differential system on U.

The proof of this lemma presents no difficulties.
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3.3. Definition. — Let X be a p-dimensional differential system on a manifold M™ . An
integral manifold of X is a pair (V" , h) in which V' * is a p-dimensional manifold and h is

an injective immersion of V * in M "™ such that form any point y € V' *, one will have h™ (T,

(") = Xap) -

3.4 Definition. — 4 differential system X on a manifold is integrable if there exists an

integral manifold of X for every point y of M™ whose image contains y.

3.5 Theorem. — Let X be a p-dimensional differential system on a manifold M™ . In

order for X to be integrable, it is necessary and sufficient that it should be stable under the
Lie bracket. (That is, if X and Y are in X then [ X, Y] will also be in X.)

The necessity of that condition is a consequence of Proposition 6.18 of Chapter III. The
proof of the converse uses the following two lemmas:

3.6 Lemma. — Let X be a differential system on M" that is stable for the Lie bracket.

For any open subset U of M™, Xu will also be stable under Lie bracket.
Proof:

Let X and Y be in Xy. One can find:

— Two locally-finite families (f;) and (g;) of differentiable functions on M™ .
— Two locally-finite families (X;) and (Y)) of vector fields in A&, such that X =

2 (X)), and Y= Z(gjvj)\u .

If one writes out [X, Y] explicitly then one will find that the bracket belongs to A .
Q.E.D.

3.7. Lemma (Frobenius’s theorem). — Let X be a p-dimensional differential system
on a manifold M"™ . If Xis stable under Lie brackets then there will exist a local coordinate

system (z1, ..., zm) on a neighborhood U of any point y in M" such that Xu is generated by
0/0z1,...,0/ 0z .

Proof:
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Let X1, ..., X, be p vector fields in X such that X1 (), ..., X, (y) generate &), . One can

find an open neighborhood ¥ of y and a local coordinate system (y1 , ..., ym) on V that has
the following properties:

i) Xi, ..., X, generate Ay .

ii) y1(y)=0.
iii) The local expression for Xi in V'is 0/ 0 z1 (Prop. 1.15).

If p = 1 then the lemma will be proved. If p > 1 then one will proceed by recurrence. Let
Y1, ..., Y, be the vector fields on X that are defined Y1 = Xi and ¥Vi=X; — (Xi - y1) X1, i =2,

ces D
Those vector fields have the following properties:

i) 1,...,Y,generate Xy .
i) [Yi, Y] e Xy
iii) Yi-y1=0fori>2.

Let N ™! be the submanifold of ¥ that is defined by y; = 0. The vector fields Y2, ...,
Y, are tangent to N ™!, They generate a (p — 1)-dimensional differential system on N ™!
that is stable under Lie bracket. One can then find a local coordinate system (&2, ..., &m)
on a neighborhood W of y in N ! such that X, is generated by 0/0¢ , ...,0/0&, .
Let zi, ..., z be differentiable functions on a neighborhood of y in M ™ that are defined
by:
Z1=y1,
Zi =G0, e Vm)y,  I=2,...,m.

Those functions, which are independent of y, for a local coordinate system in the
neighborhood of y, and one will have:

vi= 2

0z,
0 Yi-z)=[", Y]z
— (Yi-z)=[Y1, Y] -
o, J P

= Zai‘;(Yk-Zj) for j>2.
k
For each j > p, the functions Y;, z;, i = 1, ..., m are then the solutions to a linear,

homogeneous differential system. Now, they are annulled for z; = 0. As a result, they will
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be identically zero on a neighborhood U of y. Consequently, Y; = Zbu — on U, which

0
i=p oz j

will show that the vector fields 6/ 0z1 , ..., 0/ 0z, generate Xy .
Q.E.D.

Proof of Theorem 3.5: The proof is now immediate, because with the notations of
Lemma 3.7, the submanifolds of U that are defined by z; = const., i=p + 1, ..., m will be

integral manifolds of X.

3.8. Corollary. — A one-dimensional differential system is integrable.

§ 4. — Pfaffian systems.

4.1 Definition: 4 Pfaffian system of rank p on a manifold M" is a sub-module P of
AY(M) that has the following properties:

i) ‘Pis stable under locally-finite sums.

ii) Foranypointyof M"™, P,={a(y), @ € P} is a p-dimensional subspace of T,(M)

If U is an open subspace of M™ then let Py denote the sub-module of A! (U) that is

generated by the restrictions of Pfaffian forms in P to U. As in the case of differential

systems (Lemma 3.2), one has:

4.2 Lemma. — The sub-module Py is a Pfaffian system of rank p on U.

4.3 Proposition. — Let X be a p-dimensional differential system on a manifold M"™.
The orthogonal complement X" to X is a Pfaffian system of rank m —p on M " such that
X={XeTM)|aX)=0 Vae X*}.

Proof:

One can use a partition of unity argument to reduce to the case in which there exist m
vector fields Xi, ..., X, on M™ that define a basis for 7 (M) and are such that Xi, ..., Xy

generate .
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If (¢r) denotes the basis that is dual to the basis (X;) then the Pfaffian forms ap+1, ...,
am will generate X, and one will have X={Xe T(M) | a(X)=0Va e X" }.

Q.ED.

One likewise proves that:

4.4. Proposition. — Let P be a Pfaffian system of rank p on a manifold M™ . The sub-
module P* = {X € T(M) | a (X) =0 Va € P} will be an (m — p)-dimensional differential
system on M™ such that (P°)- = P.

Propositions 3.5 and 3.6 then show that X > X" is a bijective correspondence between

p-dimensional differential systems on M™ and Pfaffian systems of rank m — p . (Of course,
that is not true for the set of all sub-modules of 7 (M) and A'(M)}.

4.5 Definition: Let P be a Pfaffian system of rank p on a manifold M"™ . An integral
manifold of P is a pair (N"'*, h), in which N"? is an (m — p)—dimensional manifold and h
is an injective immersion of N"? in M™ such that for any Pfaffian form a € P, one will

have h"a= 0.

In other words, in order for (N, h) to be an integral manifold of the Pfaffian system P, it

is necessary and sufficient that it should be an integral manifold of the differential system

P

4.6. Definition: A Pfaffian system P on a manifold M" is integrable if there exists an

integral manifold of P for any point y of M"™ whose image contains y.
4.7. Proposition. — In order for a differential system X on M" to be integrable, it is
necessary and sufficient that X* should also be so.

The proof is immediate.

4.8. Theorem. — Let P be a Pfaffian system on a manifold M™ . In order for P to be
integrable, it is necessary and sufficient that dP should be contained in the ideal of A (M)

that is generated by P.
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Proof:

Let X be the differential system on M™ such that X~ =P . For any a in P and X, Y

in X, one will have:

da(X,Y) =X-a(N)-Y-a()-a (X, Y)
——a(x Y).

First suppose that P is integrable. One will then have that da (X, Y) =0 for any & € P and
any X, Y € X. That will put one into a situation that is analogous to the one in the proof of
Proposition 4.3, so one will deduce that dP is contained in the ideal in A (M) that is

generated by P.

Conversely, if that property is verified then one will have « ([X, Y])=-da (X, ¥) =0
for all X, Yin X' and all « in P. Consequently, the bracket [ X, Y] will be in X, and X will

then be integrable.
Q.E.D.

4.9. Corollary. — Let P be a Pfaffian system that is generated by a Pfaffian form o with

no singularities. In order for P to be integrable, it is necessary and sufficient that there
should exist a Pfaffian form [ such that da= a A .

When one translates Lemma 3.7 into the language of Pfaffian systems, one will get:

4.10. Lemma (Frobenius’s theorem). — Let P be a Pfaffian system of rank p on a
manifold M™ . In order for P to be integrable, it is necessary and sufficient that for any

point y of M™ there should exist a local coordinate system (zi, ..., zm) Oon an open

neighborhood U of y such that ‘Pu is generated by dzi, ..., dz .

Exercise. — In Lemma 4.10, one can choose the system (z1, ..., z») in such a way that
z1=fu, in which fis a differentiable function on M™ that have the following properties:

i dfeP.
ii) df (x) # 0.

4.11. Proposition. — Let P be a Pfaffian system of rank p on a manifold M™ . In order
for P to be integrable, it is necessary and sufficient that for any forms a, au, ..., o in P,

one should have da n a1 A ...~ ap =0.
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If one takes 4.8 into account then this proposition will be a consequence of the following
result:

4.12. Proposition. — Let i, ..., ap be p independent Pfaffian forms on a manifold M™
. In order for a differential form a € A (M) to be in the ideal that is generated by au, ...,
oy , it is necessary and sufficient that one should have a n oy A ...A = 0.

Proof:

One can suppose that M™ is parallelizable and that there exist m — p Pfaffian forms
Op+1, ..., Oy Such that a1, ..., am generate A (M).

Since the ideal / that is generated by a1, ..., o is the direct sum of sub-modules of 7 N
AY(M), one can restrict oneself to the case in which « is homogeneous of degree g :

a= Z 8., 0 A A

1<iy <+ <ig<m

In that case, in order for « to be in /, it is necessary and sufficient that a5~ 0 for i1 > p.

Now, since:
AN A ...A Q= Z B O A NG N O LA O,

p<iy <+ <ig<m

s

that condition is equivalent a A a1 A ...A 0 = 0.
Q.E.D.




CHAPTER VI

CHARACTERISTIC SYSTEM AND CLASS
OF A DIFFERENTIAL FORM

§ 1. — Characteristic system and class.
Let a be a differential form of degree p > 1 on a manifold M™ .

1.1. Definition. — The characteristic subspace of « at a point y of M" is the subspace
Cy(a) of Ty (M) that is the intersection of the associated subspaces A (a (y)) and A (de (y))
. (Chap. I, Def. 7.4)

1.2. Definition. — The characteristic system of o at a point y of M™ is the subspace
C, (@) of T/(M) that is orthogonal to the characteristic subspace Cy ().

The characteristic system of ¢ at y is then the sum of the associated systems A" (a (»))
and A"(da (»)) . (Chap. I, Def. 7.7)

1.3. Definition. — The class of « at a point y of M"™ is the dimension of the
characteristic system Cy* (a) [or the codimension of the characteristic subspace C,(a)].

The class of « at y is therefore greater than the rank of « (x), and as a result, it will be
greater than the degree p of @ when « (x) # 0.

Example. The form a= (X’ +X.) dx* on R? has:

— Class 2 if x1 # 0.
—Class 1 ifx;=0and x; # 0.
—Class 0 ifx; =x2=0.

If a has degree p and class p at y then da () = 0.
If a1s a closed form [in which de (y) = 0] then the class « of y will be equal to the rank
of o (y). Consequently, (Chap. I, Prop. 8.3, 8.4, and 8.5).

1.4. Proposition. — A closed form of degree 2 has even class at each point.
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1.5. Proposition. — Let a be a closed form of degree 2 on M™ . In order for a to have

class 2s at a point y of M™ | it is necessary and sufficient that one should have a* (y) # 0
and a*! () =0.
Furthermore, under those conditions, one will have:

Cl(@) =C/(a%) =..=Cl(a°) =4" (@ ().

1.6. Proposition. — Let « be a Pfaffian form on M™ . In order for a to be have class

2s+ 1 atapointy of M™, it is necessary and sufficient that one should have (a A (da)*)(y)
# 0 and (day*! (y) = 0.
Moreover, under those conditions, one will have:

C,/(a) = C/(anda) = C/(an(da))=(a()+4" [da(y)).

Proof. — In order for « to have class 25 + 1 at y, it is necessary and sufficient that d«
should have class 2s at y and that C_(c) should be the direct sum of:

C;(de) = 4" (da ()

and the subspace that is generated by « (), or rather that there should exist a basis (&)
for T'(M) such that:

a()=a,
da()=anat..+TasA s+ .
Q.E.D.

1.7. Proposition. — Let a be a Pfaff form on M™ . In order for a to have class 2s at a
point y of M™, it is necessary and sufficient that one should have:

da)y) »)#0 and (an(da)’) ()= (a’oz)s+1 (»)=0.
Moreover, one has:
C,/ (@) =C,/(da) = C j(anrda) =...= C;/(da’) =4 (da(y))
under those conditions.

Indeed, in order for & to have class 2s at y, it is necessary and sufficient that d« should
have class 2s at y and that & (y) should belong to the characteristic system C/(da), or

rather that da should have class 2s at y and that (a A (de)’) (v) = 0.
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When y is not a singularity of « [so « (y) # 0], one can make Proposition 1.7 more
precise in the following way:

1.8. Proposition. — Let a be a Pfaffian form on M™ and let y be a point of M" such
that a (y) # 0. In order for a to have class 2s at y, it is necessary and sufficient that one
should have:

(day (v) %0 and (@A (da)) () =0,

Proof: One first points out that if o has class 2s at y then one will have (a A (da)*1)(y)
# 0. Indeed, one can find a basis (&)1 <i<m for T (M) such that:

a@)= e,
da)=anrat...tanrna (Chap. I, Cor. 8.2) .
Now suppose that one has:
day»)#20 and (an(da))(y)=0.

The class of « at y is then greater than s. Now, « cannot have class s”> s because one
would then have (Prop. 1.6, or the preceding remark):

(a A (da)) (v) # 0.
Q.E.D.

1.9. Rules: Let « be a Pfaffian formon M™, and let o1 = o, an =da, w3 = anda,
o= (da), ...

The class of a at a point y of M" such that a (y) # 0 is the smallest integer r such that:

or+1 () = o2 () =0,

The class of a at a point y of M" such that a (y) # 0 is the smallest integer r such that
Wr+1 ()/) =0.

1.10. Local study. — Let (31, ..., ym) be a local coordinate system on an open subset U

of M™. The characteristic system of & € A? (M) at a point y of U is generated (Chap. I,
Prop. 7.9) by the linear forms:
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i 2 sy o a(y), 1< i1 <...<ip1<m,
%Y, ¥,
and
.| 0 | 0
i—, ... i|— |da(), 1< ji1<...<jp-1<m.
&, ayip] ) J1 Jr-1
Consequently:

1.11. Proposition. — The class of a differential form a € A’ (M) is a positive lower-
semi-continuous function with integer values.

In other words, if a has class g at a point y of M™ then it will have a class that is greater
than ¢ at any point that is sufficient close to y.
§ 2. Characteristic vector fields and forms.
Let a be a differential form of degree p > 1 on a manifold M™ .

2.1. Definition. — A characteristic vector field for o is a vector field X on M such
that X (y) € Cy (@) for anyy e M™.

The set C (@) of characteristic vector fields of « is a sub-module of 7 (M) that is stable

under locally-finite sums.

2.2. Theorem. — In order for a vector field X on M" to be a characteristic vector field
of &, it is necessary and sufficient that one should have ix o= ix (da) = 0.

That theorem is a direct consequence of Proposition 7.5 in Chapter I.

2.3. Corollary. — In order for X to be characteristic vector field of a, it is necessary
and sufficient that one should have ixa=Lxa = 0.

Indeed, Lxa=ixda+dixa.

2.4. Corollary. — If X and Y are characteristic vector fields of o then their Lie bracket
[X, Y] will also be a characteristic vector field of « .

Indeed (Chap. IV, Prop. 3.4):
ixno=Lyiva—irLxa=0,
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Lxna=LxLyra—-LyLxa=0.

2.5. Definition. — A characteristic Pfaffian form of « is a Pfaffian form @ on M"
such that w (y) € C () foranyy e M".

The set C “(a) of characteristic Pfaffian forms of « is a sub-module of A' (M) that is

stable under locally-finite sums.

2.6. Proposition. — For any point y of M™ , the set of covectors o (y) € T/ (M™), w €

C (@) is equal to the characteristic system C,(a) of aaty.

Proof: Let & be element of C(«). With the notations of 1.10, there exists a Pfaffian

form gon U that has the following properties:

) ¢()=g.
ii) €(y) € C/(a) foranyz e U.

Let @ be a differentiable function on U that is equal to 1 at y and zero outside of a
neighborhood of y. The Pfaffian form e extends by zeroes on M™ — U to a Pfaffian form
o that belongs to C “(«) and is such that @ (y) = &, . Q.E.D.

Exercises:

i) There is no analogue of Proposition 2.6 for the module of characteristic vector
fields of .

i) The sub-module C () is contained in the orthogonal complement to C (), but it

will generally be distinct from it.

iii) If w is a characteristic Pfaffian form for « then dw will not necessarily belong to
the ideal of A (M) that is generated by C *(a).

iv) The form a does not necessarily belong to the sub-algebra of A (M) that is generated
by C *(@) (contrary to the linear case: Chap. I, Prop. 7.8).
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§ 3. — Differential forms with constant classes.

In this section, suppose that « is a differential form on a manifold M™ of degree p and
constant class g > p.

The sub-module C () of characteristic Pfaffian forms of o is a Pfaffian system of rank
gon M™ in this case (Prop. 2.6).
The sub-module C (@) of characteristic vector fields of & is then equal to the differential

system X on M ™ such that X* = C "() (Chap. V, Prop. 4.5 and 4.6).

Consequently, C («) will be an (m — ¢g)-dimensional differential system on M™, and

one will deduce the following theorem from Corollary 2.4:

3.1. Theorem. — Let « be a differential form of constant class q on a manifold M™ .
The sub-module C (a) of characteristic vector fields of « is an integrable (m — q)-

dimensional differential system on M™ . The sub-module C*(a) of characteristic Pfaffian
forms of ais the orthogonal system to C ().

3.2. Proposition. — Let a be a differential form of degree p and constant class q on a
manifold M™ . For any point y of M™, there exists a local coordinate system (y1, ..., Ym)
on an open neighborhood U of y such that local expression for o is:

D A (Voo Vo) dy, Ao ady,

I<ij<- -<ip§q

Proof: For any point y of M™ , Frobenius’s theorem (Chap. V, Lemma 4.10) insures the
existence of a local coordinate system (y1, ..., ym) on an open neighborhood U of y such

that the Pfaffian system C"(«|,) = C («)|, is generated by the forms dy1, ..., dy, .

One will then have:

a= D 8. (Yo V) Oy, Ao ady,

1< <+ <ip<q

oa,

da: Z Z iy dyJ /\dyil /\.../\dyi
1<y <<ip<q 6yi p

on U. Consequently, 8a1.1._ip /oy; =0 forj>gq.
One can then suppose, after possibly restricting U, that the functions a.; are

independent of y; for j > ¢.
Q.E.D.
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3.3. Remark: If o admits a local expression that is analogous to the one in Proposition
3.2 then a will have a class that is less than gq. Consequently, if « has class ¢ then that

expression will include each of the functions yi, ..., y, explicitly. One can then say (E.
Cartan [3]) that:

“The class of a form « (of constant class) is the minimal number of
independent functions that are necessary for expressing a.”

3.4. Corollary. — Let a be a differential form of degree p and constant class p on a
manifold M™. For any point y of M™ , there exists a local coordinate system (y1, ..., Ym)
on an open neighborhood U of y such that local expression for acon Uis dy1 A ...A dyy.

Proof: One can find a local coordinate system (zi, ..., z») on a neighborhood V of y
such that:
a=a(zi,...,zp)dzi A ...Ad2zp a#0
on V.

LetA=A4(z1, ..., zp) be a differentiable function on ¥ such that 64 / 0z1 = a, and let y1,
..., ym be functions that are defined by:

v =A4(z1, ..., Zp),
Vi =zi for i>2.

Those functions define a local coordinate system on a neighborhood U of x and one will
have a=dy1 A ...A dyq .
Q.E.D.

§ 4. — Local models for differential forms of degrees 1 and 2.

When « is a differential form of constant class and degree 1, or of degree 2 and closed,
one can make Proposition 3.2 more precise:

4.1 Theorem (Darboux). — Let a be a Pfaffian form with no singularities on a manifold
M ™ of constant class 2s + 1 (2s, resp.). For any point y of M™, there exist 2s + 1 (2s,
resp.) differentiable functions y1, ..., yas+1 (V1, ..., V25, resp.) on a neighborhood U of y that
are zero at y and are such that:

alu=dyi +y2dys +...+ yas dyast

[a|u=(1+y)dys+y3dys+...+ ya—1 dyas , resp.].
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The proof of that theorem uses the following two lemmas (}):

4.2. Lemma. — Let a be a Pfaffian form without singularities and constant class 2s +
1>00n M™. For any point y of M" there exists a differentiable function f on an open

neighborhood V of y that is zero at y and such that c = & |v — df has no singularity for s >
0 and constant class 2s on V.

4.3. Lemma. — Let a be a Pfaffian form without singularities and constant class 2s >
0 on M™. For any point y of M" there exists a differentiable function g on an open

neighborhood W of y that is zero at y and such that co = (1 + ) (a |w) has constant class
2s—1on W.

Proof of Lemma 4.2. — The sub-module of characteristic forms C*(a A (da)’) = C* («)

[C"((da)') = C"(dw), resp.] is an integrable Pfaffian system of rank 2s + 1 (2s, resp.) on
M™, and one has C*(da) < C*(a).
One can then find a local coordinate system (zi, ..., z») on an open neighborhood V" of
y that is zero for y and such that:

i) (da) lr=dya A ..A dyosir

ii) an(da)|lyv=dyi A ...Ady+1 (Corollary 3.4),
2s5+1
iif) a|V=a’y1+Z:ai dy, with Zai(Z)Z;éOforanyze V.
i=2
The form a1 = a | — df has no singularities on V' then and possesses the following
properties:
Q) (da)’=(da)’ #0,
ii) a1 A (dar)’ = 0.

It then has class 25 on V. Q.E.D.

Proof of Lemma 4.3. — The sub-module of characteristic forms C*((da)®) = C"(d) is
an integrable Pfaffian system of rank 2s on M™. Let A" be the set of Pfaffian forms @ on

M™ such that @ (y) € A" (e A (da)* ") (p) for any y e M™. A" is then a sub-module of

A (M) that is stable for locally-finite sums. Since a A (da)*! is a form of constant rank

() The principle of this proof is due to J. Martinet.
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2s — 1 (proof of Proposition 1.8), one shows, as in 2.6, that A" is a Pfaffian system of rank
2s—1on M™. One has, moreover, A" < C*((da)") .
The Pfaffian system A" is integrable. Indeed, it is the orthogonal complement to the

differential system:
X=1{X e T(M)|ix(an(de)y™)=0},

and if X and Y are in &X' then one will have:
ixy (a A (da) ™) =Lyir(an (da)™) —irLx (a A (da))
=—iydix(anrda)™") —iyix(da)

=~ ivix(de) =0 [C ((da)) < A].

One can then find a local coordinate system (z1, ..., z») on an open neighborhood W of y
that is zero at y and such that:

) (do)|\w=dzi A ... Adzag,
iily (an(da)y™)lw=bdz A ... Adzs, with b (z) 20 forany z € W.
If 4 1s a differentiable function on W and if a» = & o |w then one will have:
o A (da) ™ =k (anda) ™) |w,

(dan) =h" [sdh A (an (da)™)+h (da) W] .

Consequently, if g = ¢/ — 1, in which B = J?% then the form a» = (1 + g) (a [w) will

have class 2s — 1 on W. Q.E.D.

Proof of Theorem 4.1. — One achieves that proof by recurrence on the class of ¢, while
noting that a form of constant class zero is identically zero.

First of all, suppose that « has constant class 2s + 1. There will then exist a
differentiable function f'on an open neighborhood V of y that is zero at y and such that «;
= a |y — df has no singularity for s > 0 and has constant class 2s on V. One can then find 2s
differentiable functions g1, ..., g25 on an open neighborhood U — V of y that are zero at y
and such that:

arlu=(+g1)dg+gsdga+ ...+ g1 dgs.
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Setyi=f+g (01 =fifs=0),yi=g-1fori=2, ..., 2s + 1. Those functions are annulled
at y, and one will have:
aluv=dy+yrdys+ ...+ y2 dyos .

Now suppose that  has no singularity and constant class 2s + 2. There will then exist a

differentiable function g on an open neighborhood W of y that is zero at y and is such that

oo = (1 + g) (a |w) has constant class 2s + 1 on . One can then find 2s + 1 differentiable

functions fi, ..., fos+1 on an open neighborhood U — W of y that are zero at y and such that:
a|lv=dfi+LdB+ ...+ fas dfas .

f
Set y1 =— 9 yi=—=L fori=3,5,...,2s+1andy;=fi-1 fori=2,4, ..., 25 + 2. Those

1+9 = 1+g
functions are zero at y, and one will have:

alv=((1+y)dy+tysdys+ ... +yr-1dys.
4.4. Remarks:

i) The functions (y;) that enter into the statement of Theorem 4.1 are independent at y
(Remark 3.3).

i) If aris a Pfaffian form of constant odd class then « will have no singularity on M "™

By contrast, if « has constant even class then it can have singularities. In that case (as in
the one where « does not have constant class), one cannot exhibit a general local model.

4.5. Theorem. — Let w be a closed differential form of degree 2 and constant class 2s

on a manifold M"™ . For any point y of M™ , there exist 2s differentiable functions y, ...,
Vason an open neighborhood U of y that are zero at y and such that:

olv=dn Adyn+ ...+ dys1 Adys.

Proof. — The Poincaré¢ Lemma (Chap. IV, Th. 2.11) insures the existence of a Pfaffian
form « on an open neighborhood ¥ of y such that da = @ |y. The class of « at y is either
2s or 2s + 1 then.

First suppose that 2s <m. After possibly adding the differential of a function fin D (M),
one can suppose that o has class 2s + 1 at y. Hence, it will have constant class 2s + 1 on

an open neighborhood W < V of y. One can then find 2s + 1 differentiable functions y1,
..., V2s+1 on an open neighborhood U — W of y that are zero at y and such that:
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alv=y1dyr+ ...+ ya1 dyas + dyss .
One will then have:
(do) lu=dynndy2+ ... +dyr—1 Adys .

When 25 = m, one can likewise suppose that « has no singularity on a neighborhood W’'c
V of y. One can then find 2s differentiable functions on an open neighborhood U’c W’ of
y that are zero at y and such that:

alv =(1+z1)dz2+z3dza+ ... + 2251 dzas ,

(do) |lv=dzi Adzy + ... + dzas1 A dzos .
Q.E.D.

4.6. Remark: In Theorem 4.5, one can take y; to be the restriction to U of a
differentiable function fon M™ such that dfis a characteristic Pfaffian form of @ that is

not zero at y.

The verification of that assertion is left as an exercise.



CHAPTER VII

HAMILTONIAN SYSTEMS AND
CONTACT STRUCTURES

§ 1. Symplectic manifolds.

1.1. Definition — Let M*" be a manifold of even dimension 2n. A symplectic structure

on M is defined when one is given a closed differential form o € A*> (M) of degree 2 and
constant class 2n .

One also says that (M?", @) (or M?") is a symplectic manifold, and that ® is a
symplectic form on M*"

If U is an open subset of M?" then (U, @ |v) will be a symplectic manifold.

For any point y of M?", (T, (M), o (»)) is a symplectic vector space (Chap. I, § 8).

1.2. Proposition. — Let w be a closed differential form of degree 2 on a manifold M*"

. In order for @ to be a symplectic form, it is necessary and sufficient that @" should be a
volume form (Chap. 111, Def 7.14).

This assertion is a direct consequence of Proposition 1.5 in Chapter VI.

1.3. Corollary. — 4 symplectic manifold (M?*", ®) is orientable.

n(n-1)/2

One can then orient M?" by the form volume (1) ®" (see example 1.4).

Conversely, any orientable manifold of dimension 2 is symplectic; however, that result will
no longer be true in even dimensions that are greater than 2.

1.4. Example. — The differential form:

o =dx1 A dxpr1 T dxo Adxpo+ ..+ dxn A dxon

is a symplectic form on R?" ; indeed:
o= (=)""2nl dxi A ... A dxan.

The orientation that is associated with @ is the canonical orientation on R?".
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The following theorem will permit us to construct some symplectic structures that are
fundamental in analytical mechanics.

Let 7" (M) = (T (M), g, M™) be the cotangent bundle to a manifold M™ . For a point
y € M™ and any cotangent vector & € T, (M), the tangent map qy, sends T_(T*(M)) to

Ty (M) . One can then define a linear form on T (T*(M)) by:
u - <qy, (u),a>=<u,(q,) (@) >.

1.5. Theorem. — The correspondence o v (Qy,) (t) defines a Pfaffian form A of

constant class 2m on T “(M).

Proof. — Let (y1, ..., ym) be a coordinate system on an open subset U of M™. The
functions ¢; =y; c gy and p; =0/ 0yi,i =1, ..., m, define a local coordinate system on an
open subset V' = q;(U) of T"(M).

Ifu= z (ai ; +b, ij is a tangent vector on ¥ then one will have gy, (U) = Z a; %
. Consequently, if o= Zci dy; then <u, A(a)> = Zci a, . The local expression for A in
Visthen ) p, dg; , which shows that A is a Pfaffian form on 7" (M) .

One also deduces that A has constant class 2m on T (M) from this local expression.
Q.E.D.

1.6. Definition. — The Liouville form on T " (M) is the Pfaff form A that is defined by A
(@)= (ay)" ().

1.7. Corollary. — The exterior differential A = dA of the Liouville form determines a
symplectic structure on the cotangent space T (M) .

1.8. Corollary. — The cotangent space T “(M) to a manifold M™ is an orientable
manifold.

1.9. Definition. — Let (M?", @) and (N*", ®’) be two symplectic manifolds. A
differentiable map 4 : M*"— N 2" is symplectic if one has h" 0’= .

In that case, for any point y of M?", hT will be a symplectic isomorphism of (7, (M),
@ (¥)) onto (77 ) (N), @’ (h (y)) . Consequently, # will have constant rank 2 (% is then a
local diffeomorphism).

If 4 1s a symplectic diffeomorphism then it will be compatible with the orientation.
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1.10. Proposition. — Let (M?", w) be a symplectic manifold. For any pointy of M*",
there exists an open neighborhood U of y and a symplectic diffeomorphism h of (U, @ |v)

onto an open subset of R*" (that is endowed with the symplectic structure of 1.4).

Indeed (Chap. VI, Th. 4.5), one can find a local coordinate system (y1, ..., y2,) on an
open neighborhood U of y such that:

o|lv=dy1 Adype1 + ...+ dya A dyon .

Exercise. — Let M?" be a manifold of even dimension 27 . In order for M?" to admit a
symplectic structure, it is necessary and sufficient that there should exist an atlas {(U, ¢)}
on M?" such that the changes of charts ®; @' are symplectic diffeomorphisms (for the

structure of 1.4).

1.11. Proposition. — Let (M?", w) be a symplectic manifold. The map Q, : u i (1)
o (y) of Ty (M) to T/ (M) determines a differentiable homomorphism Q (over M ) of the

tangent bundle t (M) to the cotangent bundle t~ (M).
The rank of Q, is equal to the rank of @ (y) .

Proof. —Let (y1, ..., ym) be a local coordinate system on an open subset U of M?". The
functions 7, =y; o pyand ¥, =dyi (qi=yi o pyand p; =0/ Oyi, resp.),i =1, ..., m, define

a local coordinate system on the open subset p;, (U) of 7 (M) [q,,(U) of T (M), resp.].
Let Zaij dy, Ady;, with ;i = — a;; , be the local expression for @ in U. The map Q is
i

then determined on p;,(U) by:

qi=ri,
pi=2> a1, i=1,..,m;
i

it is then differentiable.
Since €, is a linear map of 7, (M) to T,/ (M), Q will be a homomorphism of 7 (M) with

7"(M) (Chap. II, Prop. 2.11). Finally (Chap. I, Prop. 7.9), the rank of Q, is equal to the
rank of @ (y) .
Q.E.D.

1.13. Corollary. — Under the hypotheses of the proposition 1.11, X > ixw will be an
isomorphism of T (M) with A'(M).
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§ 2. Poisson brackets.

Let (M?", ) be a symplectic manifold. For a Pfaffian form azon M*", one lets X be

the vector field on M?" such that o= iy @ (Cor. 1.13).

2.1. Definition. — The Poisson bracket (relative to the symplectic structure of M*") of

two Pfaffian forms o and fon M®" is the Pfaffian form (a, ) = i(xa,xﬁ)a’-

The Poisson bracket is then obtained by transporting the Lie bracket on 7 (M) to A'(M)

by means of the isomorphism X — ix@ . Consequently:

2.2. Proposition:
i) (o, f+n=(a, P+ (a, ).

iy (AP =A(a ), AeR.

i)  (fa)=—(a p).

V) (o (BB () + (% (a f)=0 (Jacobi identity) .
V) (a.fp)=Xaf) p+f(a. ), feDM).

2.3. Proposition. — If a and [ are two closed Pfaffian forms on M*" then one will have

(o, p=-d (o Xa,Xp)) .

Indeed:
(o, P) = i(xavxﬂ)a)
=Ly iy o-iy Ly o
= waﬂ—ixﬂdixaa)—ixﬂixada)
=Ly iy da
- dxaﬂ‘”xﬂdﬂ

= d(iy, iy dew) =—d (& (Xa, Xp) .

2.4. Definition. — Let f'and g be two differentiable functions on M, and let o and 3

be the differentials of f and g. The Poisson bracket (relative to the symplectic structure on
M?") of the functions f and g is the differentiable function:
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(fig)=—oXe,Xp)=Xa-g=—-Xp-f.

One will then have (Prop. 2.3) d (f, g) = (df, dg).

2.5. Proposition. — The Poisson bracket in D (M) has the following properties:

i) (gt =0hg+(hh).

ii) HAg9=A(hg, AeR.

i)  @NH=-02.

vy (@Mt hN+ ¢ (g)=0 (Jacobi identity).

V) (figh=h(f,g)+g(f,h).

Proof. — Let «, f, and ybe the differentials of £, g, and 4, resp. One has:

i) (Lgth=—oXe, Xp+X)=(,2)+ (1 h).
i) (. Ag)=-wXa, AXp)=A(f,2).

fif) @N=—olXp, Xo)=~(/8).

iv) (. (g 1) =Xa- (g, h) = Xa-(Xp-h),

(& (hf) =Xp-(h,f) =—Xp-(Xa-h),
(h, (f,8)) =—[Xa, Xp] -1 [becaused (f, g) = (&, P)],
o

(. (g, M)+ (g, (h, ) + (h, (£,)=0.
v) (fLgh)=—oXa,h Xp+gX)=h(f,2)+g (/. h)
[because d (gh) = h (dg) + g (dh) ]
Q.E.D.

2.6. Local expression. — Let (g1, ..., g, p1, ..., pn) be alocal coordinate system on an
open subset U of such that o |v = Z:dpi ~dg; .
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Ifa= Z (a; dg, +b. dp;) then one will have X = Z[— b, % +8,; %} . Consequently,

(ﬂﬁ_g . i@_GJ
One will then recover the classical expression for the Poisson bracket, up to sign.

Exercise. — In order for a diffeomorphism on a symplectic manifold to be symplectic,
it is necessary and sufficient that it must be compatible with the Poisson bracket.

2.7. Definition. — Two Pfaffian forms o and [ on a symplectic manifold (M?", o) are
in involution when one has o (Xa , Xp) = 0.

Two differentiable functions are in involution if their differentials df and dg are.
Consequently, if o and S are two closed Pfaftian forms in involution then their Poisson
bracket (¢, f) will be zero. Conversely:

2.8. Proposition. — In order for two differentiable functions f and g to be in involution,
it is necessary and sufficient that their Poisson bracket (f, g) should be zero.

2.9. Proposition. — In order for two closed Pfaffian forms « and f to be in involution,
it is necessary and sufficient that o (f, resp.) should be a first integral of Xp (Xa, resp.) .
Indeed:
0 (Xa, Xp) == B(Xa) = & (Xp) .

2.10 Proposition. — Let o, S, and y be three closed Pfaffian forms. If a is in involution
with [ and y then it will also be in involution with the Poisson bracket (f, y) .

Indeed, X5, » = [Xz, X/], and:
w (Xa ’ ‘Xv(ﬂ, 7)) = ([Xﬂ s X?’])
=aXp-fXe) (da=0)
=0.

§ 3. Hamiltonian systems (E. Cartan [3]).

3.1. Definition. — 4 Hamiltonian (dynamical) system on a symplectic manifold (M*",
w) is a vector field X on M?" such that ixw is a closed Pfaffian form.
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If ixw is an exact form then a Hamiltonian for X is a differentiable function H on M*"
such that ixw = — a (ixw = — dH, resp.). One says that X is the Hamiltonian system that is
associated with a (H, resp.).

3.2. Proposition. — In order for a vector field X on a symplectic manifold (M*", o) to
be a Hamiltonian system, it is necessary and sufficient that one must have Lxw = 0.

Indeed, Lxow = dixw .
Let X be the Hamiltonian system that is associated with a closed Pfaffian form ¢ on a

symplectic manifold (M*", @). One immediately has:

3.3. Proposition. — In order for a point y of M*" to be a zero of X, it is necessary and
sufficient that it should be a singular point of o .

3.4. Proposition. — The Pfaffian form ais a first integral of X .

In particular, if o = dH then H will be a first integral of X : H is the energy integral.

Let U be the set of points y of M*" such that ¢ () # 0; U is an open subset of M?",
and the Pfaffian form « generates a Pfaff system (&) on U that is integrable of rank 1.

3.5. Proposition. — Let (N>, h) be an integral manifold of (a). Hence:

i) The vector field X is tangent to h (N*"™) .

ity h*wis a closed differential form of degree 2 and constant class 2n—2 on N*"™*.

iit) The differential system C (h” ) is generated by the vector field Y that is induced by
Xon N*"*,

Proof. — The first property is immediate, since « (X) = 0.
Let x be a point of N*"™ and let (ey, ..., e2,) be a basis for Tj, ) (M) such that if (&1, ...,
&) is the dual basis on T, ,,(M) then one will have (Chap. I, Cor. 8.2):

a(h(x))=&n,
ohX))=arat..tewmiAén,
X (h (x)) = &n-1.

The linear forms 7= (h,)"¢,, 1 <i <2n— 1 form a basis for T"(N), and one will have:

Wo)xX)=mAm+ ...+ T3 A .
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That shows that /4" @ has constant class 2z —2 on N*"" and that the characteristic subspace
of " (x) is generated by Y (x).
Q.E.D.

In particular, if @ = dH, and if ¢ is a regular value of H then one can take N> to be
the submanifold H! (c) .

3.6. Proposition. — There exists a differential form r of degree 2n — 1 on U such that
(@|v) = an x. Onewill then have Lxt=a A p, p € A*2 (V).

If is a second differential form on U such that (o |v)" = a A " then one can write &’
=r+an o, oec A¥? ().

Proof. — Since a A @" = 0, there exists a differential form 7 € A?"~2 (U) such that (@
lv)" = a A m (Chap. V, Prop. 4.12) . One will then have:

0=Lx(@|v)'=Lx(an n)=an (Lxn),

and consequently Lxz=a A p, p € A*"2 (V).
Finally, if 7’is a second differential form on U such that:

(@lv)'=anr’ then one will have  a A (z—7z")=0.

Hence, 7— n’=a A o, o€ A2 (U).
Q.ED.

3.7. Corollary. — Let (N*"™, h) be an integral manifold of o, and let = € A*% (U) be
a differential form such that (o |v)" = a A . The form T1 = h” @ will then possess the
following properties:

i) Tlis independent of the choice of the differential form = € A*"-* (U) such that (e |U )

=aQAT.
.. . 2n-1
ii) Tlis a volume form on N=".

iii) If Y is the vector field on N*"* that is induced by X then LAT=0 .

3.8. Local expression. — Let (g1, ..., gn, p1, ..., pn) be a local coordinate system on an
open subset U of M*" such that |y = Z:dpi Adg, . If a=dH is a closed Pfaftian form

on U then the local expression for the Hamiltonian system X that is associated with o will
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be Z[G—Hi—a—Hij . The integral curves of X will then be the solutions to the

Hamiltonian equations:
do _oH ~ dp _ oH
dt op,~ dt og

3.9. Examples. — Let A be the canonical symplectic form (Corollary 1.7) on the
cotangent bundle 7 “(M) to a manifold M ™.

i) Finsler structure. — That is defined when one is given a differentiable function H
on T “(M) that has the following properties:

— H is positively homogeneous of degree p > 0.
— H'(0) is the image of the zero section of 7 *(M).
— Any number A > 0 is a regular value of H.

The Hamiltonian system X that is associated with H is called the geodesic field of the

Finsler structure, and the projections of the integral curves of X onto M?" are the geodesics
of that structure.

ii) Riemannian structure. — That is determined by a Riemannian metric 7 on the
cotangent bundle 7 (M) .

One can verify that T is a Finsler structure on T (M) (with p = 2).

iii) Classical Hamiltonian structure. — That is determined by a differentiable function
H on T *(M) that has the form T— U oqu , where:

— T'is a Riemannian metric on 7" (M) .
— U is a differentiable functionon M™ .

One can generalize the Hamiltonian systems in the following fashion:

3.10. Proposition (E. Cartan [3]). — Let (M?", ®) be a symplectic manifold, and let H

be a differential function on M* x R . There exists one and only one vector field Y on

M?" x R that has the following properties:

i) Y(x,t)ZX;(x)Jrg inTe.np(M? xR)=T: (M) ® T: (R) .
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i) iy(pjw —dHAd)=0.
Proof. — Let H, be the restriction of H to M*" x{¢}. Equation ii) becomes:

i @ — (X, H) dt + dH, =0,
or
iX[C() =—dHt and AXYz'Hz=0.

One must then take X; to be a Hamiltonian on M?" x R that is associated with H; .
The local expressions for X; (§ 3.8) then show that:

x> Y )=X(x)+ %

is a vector fieldon M x R .

Q.E.D.

Remark. — When H is independent of #, X; will also be independent of ¢, and it will be
equal to the Hamiltonian system X that is associated with H.

3.11. Corollary. — One has Y - H= % .

The function H is not generally a first integral of Y then.

§ 4. First integrals of Hamiltonian systems.

Let X be a Hamiltonian system on a symplectic system (M?*", @), and let o = — ixw .
When one reformulates Propositions 2.9 and 2.10, one will get:

4.1. Proposition. — In order for a closed Pfaffian form fon M to be a first integral
of X, it is necessary and sufficient that o and [ should be in involution.

Consequently, if Y'is a Hamiltonian system on M*", in order for ixeto be a first integral
of X, it is necessary and sufficient that [ X, Y] = 0.

4.2. Proposition. — If S and y are two first integrals of X then their Poisson bracket (f,
y) will also be a first integral.
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4.3. Proposition (Gallisot [7]). — Let fi, ..., B-1 be n — 1 first integrals of X that have
the following properties:

i) The forms o, P, ..., Bi1 are independent on an open subset U of M*" .
ity The forms [; are pair-wise in involution.

There will then exist n Pfaffian forms y, n, ..., ya-1 on U that have the following
property:

) olu=any+ D B Ay

ii) The differentials dy and dy; belong to the ideal of A (U) that is generated by a, [,
N ﬂn—l .

Proof. — Let Y1, ..., Y1 be the vector fields on M?" that are defined by iYi ® = L. One
has:

pi(X) = p: (Y) =0,

aX)=a(Y)=0, ij=1,...,n—1.
Consequently:
Iy iYH o @'=tq@-D ... @-nt DA ABAan0i™.
If one takes g = n + 1 then one will get i A ... A Bu-1 A @ A @ =0, which shows (Chap. V,
Prop 4.12) that @ belongs to the ideal of A (U) that is generated by «, fi, ..., fi-1. There
will then exist n Pfaffian forms y, 1, ..., -1 on U such that:

olu=any+ Zﬂ, AV

The forms o, i, ..., -1, 7, ..., Y1 are, in turn, independent on U.
One has (do)lu=—- an d}/—z,ﬁi Ady, . If one multiplies that by:

a/\ﬂ1 AN /\ﬂi—l /\ﬂi+] AN /\ﬂn—l (ﬂ], ...,ﬁ'n_1,resp.)
then one will get:
LA AfiAan dy,=0, i=1,..,n-1
BiA.c.Afranan dy=0, resp.)
That proves property ii).

Q.E.D.
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The Pfaffian forms «, £, ..., Bi-1 generate a Pfaff system P on U that is integrable of
rank n . If (N", ) is an integral manifold of PP then X will be tangent to 2 (N"), and it

will induce a vector field Zon N".
Therefore, let 7=h"(») and 7=h"(y:),i=1, ..., n—1. One has:

4.4. Theorem (Liouville-Cartan integrability theorem). — Under the hypotheses
above, the following properties will be verified.:

i) 7T, 7T, ..., M1 are independent on N" .
ii) 7, ..., m-1aren—1 first integrals of Z : d7 =0 and m (Z) = 0.
iiiy dr=0and n(Z2)=1.

That theorem then expresses the idea that the vector field Z on N" admits n — 1
independent first integrals; Z is therefore “integrable by quadratures.”

Proof. — One deduces from Proposition 4.3 that 7, 71, ..., m-1 are independent and that
dr=dm=0,i=1,...,n— 1. On the other hand, one has 7 (Z) = y(X) and 7 (Z) =y,(X).
Now, ixo=—-y(X) a— Z:)/i(X),Bi =— . Consequently, y(X)=1and 5 (X)=0,i=1,

coon—1.
Q.E.D.

In the case where X is a Hamiltonian system on the cotangent bundle to a manifold M™
(that is endowed with its canonical symplectic structure), the “symmetry groups” determine
the first integrals of X :

4.3. Proposition. — Let ¢, be a one-parameter group of diffeomorphisms of M™ . There
exists a one-parameter group y; of diffeomorphisms of T"(M) that has the following
properties:

) gquoyi=@ioqu.

ity (w) A= A[Ais the Liouville form on T*(M)].

Proof. — Let {(U;, @)} be an atlason M™ ; (U;, [D((pi(pj‘l)]*) is a cocycle that defines
" (M).

If ¢, is the one-parameter group of diffeomorphisms of M™ that is generated by X then
1 -1

the maps (1) = [D(¢, ¢ ¢;")]" will determine (Chap. II, Th. 2.10) a one-parameter group
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w; of diffeomorphisms of T *(M) such that ga o wr = @ o gu . That one-parameter group is
characterized by the relations:

<@'u,pa>=<u, a>, uely(M) ad «aeT (M).

Ifae T°(M)and u € To (T “(M)) then one will have that:

<u, WA)e>=<ylu, A(yia)>=< g4y U, yia>

=<q/quu,ma>=<q,U,a>=<u, A(a)>.

Consequently, ;A = A for any ¢.
Q.E.D.

Exercises:

i) Proposition 4.5 will remain valid when ¢ is a local one-parameter group.

ii) Let h be a diffeomorphism of M™. The map a > [(n])'] (&) of T"(M) to
T (M) determines a diffeomorphism h of T*(M), and (h, &) is an automorphism of
(M) .

4.6. Proposition. — Let Y be a vector field on a manifold M™ . There exists one and
only one vector field Z on the cotangent bundle T" (M) that has the following properties:

i) q,Z=Yoqu.
ii) LxA=0 [Ais the Liouville form on T"(M)].

Proof. — Let ¢ be a local one-parameter group of diffeomorphisms of M™ that is
generated by X and let y; be the correspond local group on T*(M) (Prop. 4.5). The vector
field Z that generates y; will then have the desired properties.

The proof of the uniqueness of Z is carried out locally.

Let (y1, ..., ym) be a local coordinate system on an open subset U of M™, and let

Z a; 2 be the local expression for X on U.
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The functions g; = y; o gu and p; = 0 / dy; define a local coordinate system on ¢, (U).

Writing Z = Z( 88 +C GiJ , one must then have:
q| pi

R e NCRLNP

, namely, bi=aio qu,

and
LzA=izdA+diz A

= izci dg; _Zb. dp, +izbi dp; "‘Z p; db,
= Zc dg, +Z p,(

OqM]dql =0,

0a,
when one lets ¢; = — Z p; oy |-
o, J

Q.E.D.

For example, if Y =0/ 0yi , Z= 0/ 0q: in the preceding local coordinate system then
one will have:

4.7. Corollary. — The vector field Z is a Hamiltonian system on (T (M), A = d2).

Indeed, iz A = — d (1 (2)).

4.8. Theorem. — Let X be a Hamiltonian system on a cotangent space T" (M), and let

a=—ixA . If Zis a vector field on M" such that a (Z) = 0 (with the notations of 4.5) then
A (Z) will be a first integral of X .

Indeed:
dA(X,2) =-a(2)
=X-2D)-Z-2(X)-A(X Z])
=X-2(2)-LzH) X)) =X-1(2).

In this case, when Z generates a one-parameter group ¢ of diffeomorphisms of M™, one
says that ¢ is a symmetry group of X .

4.9. Examples:
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i) Classical Hamiltonian systems. — Let Y be a vector field on M™, let Z be the
corresponding vector field on 7 (M), and let H=T— U o pu be a differentiable function
on T “(M) that defines a classical Hamiltonian structure [Example iii) of 3.9.].

IfY-U=Z-T=0 then A4 (Z) will be a first integral of X.

The following example is an explicit case of that situation:
i) Motion of a body. — Let M™" be the set of points:
(Xl, V1, Z1y ooy Xny Vny Zn)

of R*" such that (x;, yi, z)) # (x;, yj, z) fori #j ; M® is an open subset of R*", and the

maps:
(i, yi,zi) > (it 1, pi,zi),
(i, yi, zi) &> (i, yit t,zi)
(i, yi, zi) &> (i, i, zit o),
(xi, yi,zi) > (xicost—y; sint, x;sint+y; cos t, zj),
(xi,yi,zi) > (xi,yicost—z sint, y;sint+z cost,z),
(xi,yi,zi) > (xicost+z sint,y;,—Xx;sint+z; cos t, z;)

define six one-parameter groups of diffeomorphisms of M*" .
The function:

1(aY (oY (oY kmm,
H=5 || <% g < i ) .
Zzi:mi Hax.j j{ayij +(6ZJ ]+ ;\/(Xi_Xj)2+(yi_yj)2+(zi_zj)2 e

is a differentiable function on the cotangent bundle 7 “(M) = M®" x R*" that determines a

classical Hamiltonian system X on 7" (M) .
Each of the six preceding one-parameter groups is then a group of symmetries of X,
and the corresponding first integrals are the kinetic resultant and kinetic moment.

§ 5. Contact structures (G. Reeb [13]).

5.1. Definition. — Let M?" be a manifold of odd dimension 2n + 1. A contact

structure on M " is defined when one is given a Pfaffian form a € A' (M) of constant
class 2n + 1.
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In particular, «is a Pfaffian form without singularities. One also says that «is a contact
form on M*™.

If U is an open subset M>"** then « | will be a contact form on U.
5.2. Proposition. — Let o be a Pfaffian form on a manifold M. In order for a to be

a contact form, it is necessary and sufficient that o A (da)" should be a volume form.
That assertion is a direct consequence of Proposition 1.6 of Chapter VI.

5.3. Corollary. — If a manifold admits a contact structure then it will be orientable.

In that case, one can orient M " by way of the volume form a A (da)".
5.4. Example. — The Pfaffian form:

a=dx1 +xydxs+ ...+ x dxon1

is a contact form on R*"*! ; indeed:

an(da)'=nldxi A ... Adxos .

The orientation that is associated with « is the canonical orientation on R***!,

5.5. Theorem (G. Reeb [13]). — Let a be a contact form on a manifold M*"** . There
exists one and only one vector field Y € T (M) such that:

a(Y)=1 and iy (da)=0.

One says that Y is a dynamical system on M*"* that is associated with the contact form o

Proof. — For any point y of (y1, ..., y2u+1), there exists a local coordinate system on an
open neighborhood U of y such that:

alu=dn+ty2dys+ ...+ yamdymn .
One will then have:

(o lU)(ayiJZI and iy, (da)=0.
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Since the associated system to (da)|u is generated by 0/ 0y1 , that will show the existence
and uniqueness of the vector field Y.

Q.ED.

5.6. Corollary. — The vector field Y that is associated with the contact form o has no
singularities.

5.7. Corollary. — One has Ly (a) = Ly (da) = 0.
Indeed:

Ly(a) =diva+tirda=0,
Ly(do)=dLy(a)=0.
More generally:

5.8. Corollary. — Let f be a differentiable function on M*™**. One has Lyy (da) = 0
and Lyy () = 0.

Indeed:
Lry(@)=fLy(a) tdf niva=df,
Lry(da)=d (Lrya)=0.

5.9. Theorem. — Let a be a Pfaffian form on a manifold M?" such that o = da is a
symplectic form, and let X be a Hamiltonian system with no singularities on (M*", @) . If
(N*", h) is an integral manifold of the Pfaff system that is generated by ixw, and if o (X)

is not annulled on h(N*"™) then the following properties will be verified:

i) hais a contact form on N*"™*.
it) If' Y is the vector field that is induced by X on N*" then the associated dynamical

Y Y
hNa(Y) a(X)oh

system to h" a will be

Proof. — Let x be a point of N*"* and let (e, ..., e2,) be a basis for Tj (M) such that
(&1, ..., &n) is the dual basis for T, ,,(M). One will have:

ixo (h (x)) = e,
oth@x) =arat..+aw1Aén,
X(h(x) =&,

2n
o) = Zai &, with a1 #0.
i=1
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The linear forms 7;= (n])*¢,, 1 <i<2n— 1 define a basis for T*(M), and one will have:

Ro@)=mAam+...+ ma1 A o,
2n-1

Ra@)=> amn, with au1#0.
i=1

Those expressions show that 4"« has class 2n — 1 at x.
Finally, since #"a (Y) = a (Y) o h is not annulled on N>"*, the dynamical system that

is associated with the contact form A" aris Y/ h"a (Y) .
Q.E.D.

5.10. Examples:

If the notations are the ones in 3.9 then consider a local coordinate system (y1, ..., ym)
on an open subset ¥ of M ™, and the corresponding local coordinate system on ¢, (V) that

is defined by ¢; =yi o gquand p;i=0/ 0yi .

i) Finsler structure. — Let h > 0 and let N°"" be the submanifold of 7 *(M) that is
defined by H = h. One locally writes:

A :Zpiina

Consequently, if N*" is the complement in N*" to the image of the zero section of 7" (M)
(N*"" is an open submanifold of N*"") then the Liouville form A will induce a contact
structure on N"™ that has X'/ 2T for its associated dynamical system.

Let W be open subset of M™ that is defined by U=—h . g, (W) is an open subset of
T *(M) that contains N>"*, and 7’= ﬁ is a Riemannian metric on the cotangent

°Uwm

bundle 7 *(W) . The submanifold N*"* is then characterized by 7’= 1.

Let Y be geodesic field of 77. Y is defined by the relation iydA = —dT’; it will then be
tangent to N°"". Furthermore, one has A (Y) = 2T’ [Example 7)].

Consequently, since A induces a contact structure on N>, one will have X/ T =Y/
T’ orrather X=(Uoqu+h)Y=TY.
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5.11. Proposition (Maupertuis’s principle). — On the constant-energy submanifold that
is defined by H=h and T # 0, the Hamiltonian system X is equal to T Y, where Y is the

geodesic field of the Riemannian structure ———— .
Ueoq, +h
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INVARIANT FORMS. INTEGRAL INVARIANTS.

§ 1. — Invariant forms.

1.1 Definition. — Let X be a vector field on a manifold M™ . A differential form a e
A (M) is invariant under X if one has Lxa = 0.

A function f € D (M) that is invariant under X is therefore a first integral for X.

1.2 Proposition. The set of differential forms that are invariant under X is a
subalgebra of A (M) that is stable under d.

Indeed:
Lx(a” p)=(Lx )" p+ a” (Lx p),
Lx(da)=d (Lx ).

1.3 Local expression. — If the point y is not a zero of X then one can find a system (y1,
..., ym) of local coordinates on an open neighborhood U of y such that X | y=0/ 0y1 .
If:

a= Z ail---ipdyil /\"'/\inp

I<iy < <ip<m

is a form of degree p on U then one will have:

0,
Lxa= Z ﬂdyil/\---/\dyip.

1§i1<~--<ip§m 1

Consequently, in order for any « to be invariant under X it is necessary and sufficient that

each of the functions a, ; must be independent of y1 in a neighborhood of y.
p

1.4 Examples:

i) Hamiltonian systems. If X is a Hamiltonian on a symplectic manifold (M?", )
then @ will be a form that is invariant under X (Chap. VII, prop 3.2).

Consequently, " will be a volume form that is invariant under X; this result is the
expression for Liouville’s theorem (see prop 2.2) in terms of differentials. If (N*"™", k) is
an integral manifold of the Pfaff system that is generated by ix®, and if Y is the vector field
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that is induced by X on N then there exists a volume form on N?"* that is invariant
under Y (Chap. VII, Cor. 3.7).

Finally, under the hypotheses of Proposition 3.10 of Chapter VII, p;w— dH " dt will

be a form that is invariant under Y.

ii) Contact structures. 1If Y is the dynamical system that is associated with a contact

form o on a manifold M*"** then « and da will be forms that are invariant under Y (Chap.
VI, Cor. 5.7)

Consequently, a " (da)" is a volume form that is invariant under Y.
Let N" be a compact, orientable manifold (possibly with boundary) of dimension », and

let 4 be a differentiable map from N" to a manifold M™ Since % () is compact, a local
one-parameter group ¢ of diffeomorphisms of M™ [which is generated by the vector field

X € T (M)] will be defined on a neighborhood U x I of & (N) x {0} in M™ x R.

Under those conditions:

1.5. Theorem. — If ais a differential form of degree n on M™ that is invariant under
X then the integral:

1= (#°hya
will be independent of t.

That theorem is a consequence of the following proposition:

1.6. Proposition. — Let « be a differential form of degree n on M™ and let I (f) =
-[N” (@, oh)"a. One has:

(1G]

o = [ (@0 La.

Proof. — One has:
1t+e-10) = | [, ) a-(p-h)al
= [ (@eh) (ga-a).

Since N" is compact, one can then write:

di) _ lim [(t+&)—1(t)
dt &0 & ’

R
= [ (@ oh)lim=(gla-a),
&0 ¢
= INH (p.oh)'Lya (Chap. V, Prop. 2.5)
Q.E.D.
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Conversely, one has, moreover:

1.7. Proposition. — If the integral I (f) = JN" (@, oh)’ « is independent of t for any

compact manifold N" and any differentiable map h: N" — M" then the form o will be
invariant under X.

Proof. — 1f X (y) # 0 then one can find a system (y1, ..., ym) of local coordinates on an
open neighborhood U of y such that X | y=0/ 0y .
If one writes:

alv= Z ‘fimindyh/\"'/\(jyin

h
1< <---<ip<m

then one will have:

oa. .
Lxa = Z —=dy, A Ady,

1<y <+ <ip<m 1

The integral '[ o 62;”” dy, A---Ady, will be zero (Prop 1.6) for any closed ball D" in the

1

subspace whose equations are:
yn+] = ... :ym = 0,

oa,
=L (y)=0.
oy,

consequently,

One thus proves that Ly ais zero at y, and consequently, that Ly « is zero on the support
of X.

However, if X is zero on an open subset U of M™ then Ly = ixda + dix a is zero on

U. One thus obtains Lya=0on M™.
Q.E.D.

§ 2. — Invariant volume forms.

In this paragraph, suppose that X is a vector field on a manifold M™ that generates a
global one-parameter group ¢, of diffeomorphisms on M™ (which is the case when M"™

is compact, in particular). One also supposes that there exists a volume form @ on M"™
that is invariant under X.

2.1. Lemma. — One has ¢, @ = o for any t.
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Indeed, since Lxw = |th (¢ @ — w) for each point y of M, (¢, @ )(y) will be the solution

of the differential equation z' = 0 in T/ (M) that takes the value @ (y) for £ = 0.

2.2 Proposition. — The Radon measure po that is associated with @ on M™ is invariant

for ¢ For any Borel set Ain M™ and for any t € R, one will have:

Uo (prA) = po (4) .

Proof. — One can find a locally-finite open covering U = (U;) of M™ such that for any
i there exists a diffeomorphism /; of U; onto an open subset of R” that verifies h'(dx1 * ...

N dxn) = |, (Chap. VI, Cor. 3.4).

If 44 is the Radon measure on U, that is obtained by transporting the Lebesgue measure
pon h (Uj) by way of 4; then one will have y; = u; on U; n U; . The Radon measure po
will then be the measure on M™ such that g, |U_ =i

One can suppose that the Borel set 4 is contained in an open subset U; and that ¢ (4)
is contained in an open subset U;, moreover; in this case, one will have o (¢ A) = 1 (hj ¢

A) = pu(hj A) = po (4) (i-e., pis invariant under #; g:h™).
Q.E.D.

This proposition has some important consequences in regard to the geometric nature of
the dynamical system.

2.3. Definition. — The dynamical system X is recurrent if for any open subset U of M"
and any T > 0 there exists a t > T such that U N ¢, (U) # <.

Under those conditions, for any open subset U of M™ and for any 7 < 0 there exists a
t<Tsuchthat Un ¢ (U)# Q.

2.4. Theorem. (Poincaré recurrence theorem). — If X is a vector field that leaves a
volume form @ on a compact manifold M™ invariant then X will be a recurrent dynamical
System.

Proof. — Let U be an open subset of M™, and let 1 (U) be a finite number m > 0 such
that one has uo (¢ : U) = o (U) for any t € R.
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Let 7> 0. If the open subsets ¢ ir(U), i =1, ..., k are pair-wise disjoint then one will

have u, (ngiT v )] = km.

Consequently, if k is greater than M = iJ.Mm @ then there will exist two integers
m m
iandj, 1 <i<j<k,such that gir(U) N @r(U) # D thus, U g U) = D.

Q.E.D.

2.5. Definition. A pointy of M™ is stable in the Poisson sense for the dynamical system
X if for any neighborhood U of x and for any 7" > 0 there exist #1 > 7' and #> < — T such that

¢, (y) and ¢, (y) are in U.

In this case, any point of the trajectory of X that passes through y is also stable in the
Poisson sense.

2.6. Theorem. If X is a vector field that leaves a form @ on a compact M™ invariant
then almost all points of M™ will be stable in the Poisson sense.

In other words, the set of points that are unstable in the Poisson sense has measure zero for
Ho .

2.7. Definition. — 4 point y of M™ is a wandering point for the dynamical system X if
for any compact subset K in M™ there exists a T > 0 such that ¢ (y) ¢ K for |t| > T.

In that case, any point of the trajectory of X that passes through y will also be
wandering.

2.8. Theorem. (E. Hopf). — If X'is a vector field on a non-compact manifold M™ that

leaves a volume form  invariant then almost all points of M™ will be either wandering
or stable in the Poisson sense.

One will find proofs of Theorems 2.6 and 2.8 in the treatise of V. Nemitskii and V.
Stepanov [12].
§ 3. — Absolute integral invariants (E. Cartan [3]).

3.1. Definition. — Let X be a vector field on a manifold M"™ . A differentiable form «
€ A (M) is an absolute integral invariant of X if one has ixa=ixda = 0.
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This is equivalent to saying that « is an absolute integral invariant of X if X is a
characteristic vector field for « (Chap. VI, Th. 2.2)

In particular, in order for a closed differential form o € A (M) to be an absolute integral
invariant for X, it is necessary and sufficient that ix o = 0.

3.2. Proposition. — In order for a differential form a € A (M) to be an absolute integral
invariant for X, it is necessary and sufficient that one must have ixa = Lxa = 0.

Indeed, Lyaa=ixda + dixax .

3.3. Corollary. — If ais an absolute integral invariant for X then a will be an invariant
form for X.

3.4. Proposition. — The set of absolute integral invariants for X is a subalgebra of
A (M) that is stable under d.

The verification of that proposition is a simple exercise in calculation.

3.5. Proposition. — If a differential form « is an absolute integral invariant for X then
it will also be an absolute integral invariant for f X for any function f € D (M).
Indeed:
irxa=fixa=0,
irxda=fixda=0.

3.6. Corollary. — Let « be an absolute integral invariant for X. There exists a strictly
positive function f € D (M) that has the following properties.

i) «ais an absolute integral invariant for f X.

ii) fX generates a global one-parameter group of diffeomorphisms of M™ .

This corollary is a direct consequence of Proposition 1.13 of Chapter V.

When « is a volume form on M™, moreover, one can apply the conclusions of the
preceding paragraph to the dynamical system /X (whose trajectories have the same images
as the trajectories of X).

3.7. Local expression. — If the point y is not a zero of X then one can find a system (y1,

..., ym) of local coordinates on an open neighborhood U of y such that X | y=0/0y1 .
If:

a= Z 8. dy, A= Ady,

1<y < <ip<m
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is a form of degree p on U then one will have:

o= Y ay . dy, A-oady,

2<iy <o+ <ip<m

0a; .
Lxa= Z &dyil/\---/\dyin.

1<y <<y <m 1

Consequently, in order for « to be an absolute integral invariant of X, it is necessary and

oa, .,

sufficient that a,; ; = b =0;i.c., that the local expression for a should contain neither
p

1
y1 nor dyr in a neighborhood of y.

3.8. Examples:

i) Hamiltonian systems. Let X be a Hamiltonian system on a symplectic manifold (
M?", ), and let (N*"", &) be an integral manifold of the Pfaff system that is generated by
ix @ . The differential form 4" @ is an absolute integral invariant of the vector field Y that is
induced by X on N?"* (Chap. VII, Prop. 3.5).

Under the hypotheses of Proposition 3.10 in Chap. VII, the vector field Y : (x, 1) — X;
(x) + 0/ 0t on M* x R is characterized by the property that it must admit the differential

form p/w — dH " dt as an absolute integral invariant (E. Cartan [3]).

ii) Contact structures. If Y is the dynamical system that is associated with a contact

form o on a manifold M*"*" then da will be an absolute integral invariant for ¥ (Chap.
VII, Th. 5.5).

When « is an absolute integral invariant of degree n of X, one can generalize Theorem
1.5 in the following fashion:

There exists a differentiable function f € D (R € N) such that:

H(Tt,y) [%j =f(ty)X(H(1,Y)).

[Geometrically, one can say that 4 is a deformation of Ao (N") “along the tube of

trajectories of X that issue from /o (N").”] The situation in Theorem 1.5 then corresponds
to the case in which f'(z, y) = 1.
Under these conditions:
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3.9. Theorem. — If « is an absolute integral invariant of degree n for X then the
integral:

1(H)= .[N“ h'e
will be independent of t.

Proof. — One has:
iojaH a=is/adH o =0  (Prop. 3.5)

inR x N". Consequently, H ¢ is an invariant form for the vector field 8/t on R x N",

which is the vector field that is associated with the one-parameter group 6, : (¢, y) > (¢ +

7, y) of diffeomorphisms of R x N".

Let j be the canonical diffeomorphism of N" onto {0}x N"; one has:

= Wa=[ (Hegei)a,
=[G Ha.

One then deduces from Theorem 1.5 that / (¢) independent of ¢.
Q.E.D.

Conversely, one proves the following property in an analogous fashion to 1.7:

3.10. Proposition. — If the integral:
1= Wa

is independent of t for any pair (N", H) that has the foregoing properties then awill be an
absolute integral invariant for X.

§ 4. — Relative integral invariants (E. Cartan [3]).

4.1. Definition. — Let X be a vector field on a manifold M"™ . A differential a € A(M)
is a relative integral invariant of X if one has ixda = 0.

It is then equivalent to say that de is an absolute integral invariant of X, or even that X'is a

characteristic vector field of da.
An absolute integral invariant is also a relative integral invariant.
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4.2. Examples:

i) Contact structure. If Y is a dynamical system that is associated with a contact form
o on a manifold M?""then o will be a relative integral invariant of Y [example ii) of 3.8].

ii) Finsler structure. With the notations of example 7) of 5.10, Chapter VII, the Liouville
form A induces a relative integral invariant of the geodesic field on N*"™.

iii) Classical Hamiltonian structure. [example i7) of 5.10, Chap. VII]. One has an
analogous result.

With the same hypotheses as in Theorem 3.9, suppose, moreover, that ON" is non-

vacuous, and let k; denote the restriction of 4, to ON".
Under these conditions, one will deduce the following result from 3.9 and Stokes’s
theorem:

4.3. Theorem. — If « is a relative integral invariant of degree n — 1 of X then the
integral:

10= [, Ka
will be independent of t.

Conversely, just as one has for absolute integral invariants:

4.4. Proposition. — If the integral:
=] Ka

is independent of t for any pair (N" , H) that has the preceding properties then a will be a
relative integral invariant of X.

4.5. Definition. — Let X be a vector field on a manifold M™ . A transversal to X is a
submanifold N™" (possibly with boundary) of codimension 1 of M™ such that for any
point y of N™ the tangent vector X (y) does not belong to the subspace Ty, (N) of T, (M).

In particular, X is not annulled on N™*.

As H. Poincaré and G. Birkhoff have shown, knowing a transversal of X can be very
interesting in the geometrical study of the dynamical system X.

Meanwhile:
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4.6. Theorem. (G. Reeb [13]). — If the vector field X possesses a relative integral
invariant o of degree m — 2 such that da has no singularity then X will possess no compact
transversal without boundary.

Proof. — Suppose the N™* is a compact transversal without boundary of X. The
exterior differential d« is a differential form of degree m — 1 and constant class m — 1 whose
characteristic system at each point y € N is generated by X (y). Consequently
(transversality hypothesis), i"da will be a volume form on N™'. One thus has that

j i (d@) #0 (Chap. IV, Cor. 4.4).

Now, one deduces that this integral is zero from Stokes’s theorem (Chap. IV, Cor. 4.8).
That is a contradiction.
Q.E.D.

4.7. Corollary. — The dynamical system Y that is associated with a contact form o on
a manifold M*™" does not possess a compact transversal without boundary.

Indeed, a ” (da)"! is a relative integral invariant of Y of degree 2n — 1, and d (a *
(da)"") = (da)" has no singularity.

This corollary applies, in particular, to the cases of Finsler structures and classical
Hamiltonian structures that were studied in examples 5.10 of Chapter VII (see example
4.2).

§ 5. — Integral invariance relations (A. Lichnérowicz [11]).

5.1. Definition. — Let X be a vector field on a manifold M™ . A differential form o €
A (M) is an integral invariance relation for X if one has ix o = 0.

Consequently:
i) The set of integral invariance relations for X is a subalgebra of A (M).

ii) If ais an integral invariance relation for X then the same thing will be true for f X,

feDM).

iii) In order for @ € A (M) to be a relative integral invariant of X, it is necessary and
sufficient that da must also be an integral invariance relation for X.

iv) In order for a € A (M) to be an absolute integral invariant of X, it is necessary and
sufficient that o and da must both be integral invariance relations for X.
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5.2. Example: Time-dependent Hamiltonian system. With the notations of proposition
3.10 of Chapter VII, the vector field Y: (x, ) + X«x) + 0 / Ot is characterized by the
property that it admits the form p/@ — dH " dt as an integral invariance relation.

5.3. Theorem. — Under the hypotheses of Theorem 3.9, if a is an integral invariance
relation of degree n + 1 for X then one will have H o= 0.

Indeed, H ¢ is a form of degree n + 1 on R x N " such that ia/ & (H ) = 0.

Conversely:

5.4. Proposition. — If one has H o= 0 for any pair (N", H) that has the properties in
3.9 then one will have an integral invariance relation for X.
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SECOND TANGENT BUNDLE

§ 1. — Tangent bundle to a vector bundle.

Let n=(E, p, M™) be an n-dimensional differentiable vector bundle whose base M™
is an m-dimensional manifold. The space E is then an (m + n)-dimensional manifold, and
the diagram:

ot
T'(E) —T M)

3 |

E M m

commutes.

One supposes (and this is no restriction) that the fiber of 7 is R". If (U, ®) is a
differentiable chart on the bundle / then ®' will be a diffeomorphism of pgl ptU) =
(p") " py (U) onto:

T(U xR") =T (U) x R x R"=p(U) x R" x R".

Consequently, 7 () = (T (E), p', T (M)) is a locally-trivial bundle whose fiber is R>".
Indeed:

1.1. Proposition. — If {(Ui, ®;)} is a differentiable atlas on the vector bundle n= (E, p,
M™) then the set {(p™(U,),®)} will be an atlas that defines a structure of a 2n-

dimensional differentiable vector bundle on t(n) = (T (E), p', T (M)).

One then says that 7(7) is the tangent vector bundle to the bundle 7.
The proof of that proposition utilizes the following two lemmas, whose verifications
present no difficulties:

1.2. Lemma. — Let G be the linear group Gl (n, R). The tangent maps to the maps (g,

h) v~ ghand g — Q" definition a group structure on the tangent space T (G) = G x R" .
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1.3. Lemma. — The tangent map to the canonical map (g, f) — g (f) of G x R" into R"

permits one to identify T (G) with the subgroup of Gl (2n, R) of matrices of the form

A
(B Aj , in which A and B are square matrices of order n and A is invertible.

Proof of Proposition 1.1: Let (U, ®) and (V, ) be two differentiable charts of 7 such
that U NV # . One can write:

YOl N=0g®), NHeUnxR,

in which g is a differentiable map from U n Vinto G = Gl (n, R).

One will then have:
YT (@) (u,v)= (u,g" (U)v), (u,v) € pyUNV)xR™,

in which g" is the tangent map to the change of chart g.
Q.E.D.

1.4. Corollary. — The pair (pe, pu) is a differentiable homomorphism of t(n) into n.

Indeed (Chap. I, Prop. 2.11), since:

P (O (u, (v, ) = D (par (), w) ,
(u, (v, W) € T(Ux R") = pA(U)xR" xR",

pe will be linear on each fiber of 7 (7).

1.5. Definition. — The tangent bundle to the fibers of 1 is the bundle p'n over E that
is the reciprocal image of n by the projectionp : E— M" .

The tangent bundle to the fibers of 7 is therefore an n-dimensional differentiable vector
bundle over E. One denotes it by p'n= (p'E,x,E).
The total space to p°E to p*# is identified with the subspace U pH(y)x pi(y) of
yeM™
E x E, and the map 7 is the restriction of the first projection of £ x E onto E. If 7' denotes
the restriction of p’E to the second projection of £ x E onto E then one will have the
following commutative diagram:
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pP'E E
o I
E Mm

The term “tangent bundle to the fibers of 7" is justified by the following construction:
For any point y of M ™, the fiber p~'(y) is an n-dimensional vector space. The tangent

map to the canonical injection p~(y) — E then determines an injective map H of p'E =
U p(y)x p(y) into T (E) such that 7= p o H . Indeed:

yeM™

1.6. Proposition. — The map H: p'E — T (E) is a differentiable homomorphism (over
E) of p'n into the tangent bundle 7 (E).

Proof: It suffices to verify that proposition locally.

Therefore, let (U, @) be a chart on M™ for which there exists a differentiable
trivialization @ of 77|y, and let (1, ..., ym) be the local coordinate system that is determined
by pon U.

The functions z; = y,ep,i=1,...,m,and g = X, o p,oD,j=1, ..., n, form a local

coordinate system on the open subset p~(U) of E. Consequently, the functions u; = Z, o pg

, Vi = & © Pg , dzi, doj will form a local coordinate system on the open subset P p ()

of T (E).
Finally, let (w1, ..., Wm, B, ..., Bu, %, ..., Ju) denote the local coordinate system on the

open subset 7 'p'(U) of p'E that is obtained by starting from the trivialization:
(e,e) > (p(e), p, @ (e), p, P (e") of (P 1y

The local expressions for the maps 7 and H in those local coordinate systems will then be:

zi = Wi, %=/,
Ui=wi, vi=[, dzi=0, dej=1y,

respectively. Those expressions then show that A is differentiable and linear over each fiber

of pn.
Q.E.D.
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1.7. Definition. — The transverse bundle to the fibers of 1 is the bundle p* v (M) over
E that is the reciprocal image of the tangent bundle © (M) by the projection p: E — M™ .

The transverse bundle to the fibers of 7 is therefore an m-dimensional differentiable
vector bundle over E. One denotes itby p*z(M) = (p'T (M), ,E).

The total space p'T(M) of p'z(M) is identified with the subspace

U p(y) xT, (M) of E x T (M), and the map @ is identified with the restriction of the

yeM™
projection of E x T (M) onto E. If @' denotes the restriction of the projection of £ x T (M)
onto T (M) to p"T (M) then one will have the following commutative diagram:

¢

pTM) —2— T (M)
@ l lPM

E Mm

p
One also has this commutative diagram:

pT

T(E) T (M)

PE l l y27%
E M?ﬂ
p

Consequently (Chap. II, Th. 1.7):

1.8. Proposition. — There exists a differentiable homomorphism K (over E) of 7 (E) into
p* (M) such that the following diagram commutes:

T(E) )
K P
p'T(M) —2—> T (M)

PE

E M"

p

H E
1.9. Theorem. — The sequence 0 — p'n—>1(E)—> p't(M) — 0 is exact.
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Proof: With the same notations as in the proof of Proposition 1.6, let (/1, ..., ln, o1, ...,
O, &1, ..., &) denote the local coordinate system on the open subset @ p*(U) of

p*T(M) that is obtained by starting from the trivialization (g, v) — (p (&), p» © (&),
D, @' (V) of (P T(M))], ..o,

The local expressions for the maps @ and K will then be:

Zl'zli, Olj':é},
zZi= Ui, 9=V, &=dzi,

respectively. That shows the exactness of the sequence in 1.9.
Q.E.D.
§ 2. — Second tangent bundle.

2.1. — We now specialize the preceding situation to the case in which 7 is the tangent bundle
7(M) to M™. We will then get the following commutative diagram:

0\
pT(M)
N
p' T(M)
T (T (M) /T(M)
T
T\ prom \:u*T(M) oy
7\
0
T (M) M"
)20

2.2. — Let U be an open subset of M™ on which there exists a system (g1, ..., gm) of local

coordinates. By abuse of notation, one lets qi, ..., gn (instead of J; © Py ), ql =dqi, ..., Uy =dgnm
denote the corresponding system of local coordinates on the open subset p,Iﬂl(U) of T (M). One
also lets g1, ..., gm (instead of G © Py © Prowy)s i, ..., Gy (instead of G © Pry)), dqt, .., dgm, U0,
oo dqm denote the local coordinate system on the open subset pT_zM) p,(,ll(U) = (p; )71 p,(Al(U) of
(T (M)).
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Furthermore, let g1, ..., gm (instead of ;o Py, °7), 0, ..., U, (instead of G;°7 ), dqu, ..., dgnm
(instead of G, o7 ') denote the local coordinate system on the open subset 7 N p,;,,l (U) of p;‘,,T(M ).

With those systems of local coordinates, the expressions for pas, pra, p,\TA ,m, 7, H, K will
be:

pu: (G,6) G,
pron : (0;,6;,d;,d6) B (q;,6;)
p|\T/| : (95,6, dg;, dg;) = (g, dg;) |
72 (6,6,dd) - (0, G)
7' (9,6, dd;) = (g;,dg;),
H: (9,4,d4) > (g;,6,0,dq;)
K : (g;,4;,dg;, dg;) - (g, 6;, dg) .

Exercise. — Verify that those local expressions are actually compatible with the changes of
charts.

2.3. Theorem. — There exists a diffeomorphism s of T (T (M)) onto itself that has just one of
the following properties:

i) s is an involution of T (T (M)) (viz., s*® = identity).

ii) s is a differentiable isomorphism (over T (M)) of the bundle t (T (M)) onto the bundle
(z(M)).

iii) For any differentiable function fon M™ , one will have (d (df ))-s = d (df).

The condition ii) expresses the idea that the diagram:

S

(T (M) (T (M)

PV pl
(M)

commutes.
One says that s is the canonical involution of the second tangent space T (T (M)).
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Proof: If s 1s such an involution of 7 (T (M)) then one will have:
$(Prony Pu ) = (Pu) " PuU) = priyy P V)

for any open subset Uin M™ .
Moreover, if U is an open subset of M™ of type 2.2 then the conditions i7) and ii7) will imply

[since dqi = d (dq;)] that the local expression for s will necessarily be:
(G, ;. daj, dg;) > (q;, dgy, G, dG;)
Conversely, that local expression determines a diffeomorphism sy of pT(M) p, (U) onto itself that

verifies the conditions 7) and ii).
If f'is a differentiable function on U then one will have:

of .
q; do, +Z—dqj.

d(d
= Za 8q 7 04

Consequently (Schwarz’s theorem), sy also verifies the condition ii7).
The existence and uniqueness of those diffeomorphisms sy for any open subset U of M™ of
type 2.2 will then permit one to obtain a unique diffeomorphism 7 of 7 (7(M)) that verifies the

Properties of 2.3 by gluing them together.
Q.E.D.

Exercises:

i) The involution s exchanges the image of H and the restriction of s (7' (M)) to the zero
section of 7 (M).

ii) Let Xbeavector fieldon M™ and let ¢; be a local one-parameter group of diffeomorphisms
of M™ that is generated by X.

a) (DiT is a local one-parameter group of diffeomorphisms of 7' (M).
b) X T isasection of the bundle 7 (7 (M)) = (T (T (M)), p,\T,I , T (M)).

c) (DiT is generated by s € X .

Recall (Chap. V, § 1.6) that the map (¢, u) & h; (u) = e'u is a one-parameter group of
diffeomorphisms of 7' (M). h; is the one-parameter group of homotheties of 7' (M). One can set:
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2.4. Definition. — The Liouville field on T (M) is the vector field V that is generated by the
one-parameter group of homotheties of T (M).

2.5. Local expression. — Let U be an open subset of M™ of type 2.2. The local expression for

hein Py W) is (0, G) (0, €'d;)

. 0
Consequently, the local expression for V' is Z q; a

That local expression justifies the following construction of the Liouville field (see 2.2):

2.6. Proposition. — Let o section of the bundle p*T (M) over T (M) that is defined o (u) = (u,
v). One has V=H o s.

A(pyu)

Exercise. — Let A be a differentiable function on M™. The map (¢, u) H ¢ U is a one-

parameter group of diffeomorphisms of 7 (M) that is generated by the vector field (4 - pm) V.

§ 3. — Second-order differential equations.

3.1. Definition. — 4 second-order differential equation on a manifold M" is a differentiable
map X : T(M) — T (T (M)) that is simultaneously a section of the tangent bundle 7 (T (M)) and a
section of the bundle t (7 (M)).

In other words, Pry © X and p; o X must be equal to the identity map on T (M). In particular,
X must be a vector field on 7' (M).

A solution to the second-order differential equation X on M™ is a differentiable curve ¢ : I —
M™ such that C": I — T (M) is an integral curve of X.

3.2. Local expression. — With the same notations as in 2.2, the local expression for a second-
order differential equation on M™ has the form:

. 0 .\ O
z[qia_q+ai(qj’qj)£] .

The integral curves of X in are then the solutions to the differential system:

dg; - a. %: (d..q4.
E qla dt a'l(q]’q])5
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or rather, the second-order differential system:

dzqi dg; .
e = i=1,..,m

dt

One can deduce the following proposition from that local expression (see the proof of 2.3):

3.3. Proposition. — In order for a vector field X on T (M) to be second-order differential
equation on M™ , it is necessary and sufficient that one should have s - X = X.

One now introduces a type of second-order differential equation that is very important in
differential geometry and analytical mechanics. (One can consult the treatise by S. Lang [10] for

a more detailed study of this.)

3.4. Definition. — 4 spray on a manifold M™ is a second-order differential equation X on M"
such that [V, X| = X (in which V denotes the Liouville field on T(M)).

3.5. Local expression. — With the notations of 2.2, one can write:
V= i
s
0
X=
Z (q. T "o }
0= gL Z[q % a Ji
I aq| ij I aql aql

Consequently, in order for X to be a spray on M™, it is necessary and sufficient that one should
have:

. 08, .
Zqi—=2aj, j=1,...,m,
oY,

or rather that the functions a; should be homogeneous of degree 2 in the G .

Exercises:

i) Let X be a second-order differential equation on a manifold M™, and let (U, ®) be the
maximal local one-parameter group of diffeomorphisms of 7' (M) that is generated by X. The
following properties are equivalent:

a) Xis a spray.
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b) The point (¢, u) is in U if and only if the point (1, 7u) is in U, and then ¢ ¢ (1) = ¢ (tu).

¢) X (h(u) =€ (u).

ii) The constructions that were made in this chapter are “functorial,” i.e., they are compatible
with differentiable homomorphisms (in a sense that one must specify).




CHAPTER X

DIFFERENTIAL CALCULUS ON TANGENT BUNDLES

When a manifold is a tangent bundle, its differential calculus is enriched by certain operators
that play a fundamental role in Lagrangian mechanics. Those operators have been studied by J.
Klein [9] and, in a more general context, by A. Frohlicher and A. Nijenhuis [6].

In this chapter, we will consider an m-dimensional manifold M™ . As before (Chap. IX, § 2.2),

if (q1, ..., gm) is a local coordinate system on an open subset U of M™ then we will let (qi ) q,)
[(qi i dqi ) dqi) , resp.] denote the local coordinate system on the open subset p,:,ll(U) of T (M)
[Prowy P (U) of T (T (M), resp.].

Recall the exact sequence in Chapter IX:

0> pi, (M) —>7 (T(M))—> p;y z(M) —>0

§ 1. — Vertical endomorphism.

1.1. Definition. — The endomorphism v = HoK of = (T (M)) is called the vertical
endomorphism of the second tangent bundle.

One will then have:

1.2. Proposition. — The vertical endomorphism of v (T (M)) is a differentiable endomorphism
of constant rank m and square zero.

1.3. Local expression. — The vertical endomorphism is given locally by (Chap. IX, Prop. 1.6
and Th. 1.9):

v: (0,6, dg;,dg;) - (¢, 0,dg;) .
Since v is an endomorphism of the tangent bundle 7 (7 (M)), it determines an endomorphism

(which is once more denoted by v) of the module 7 (T (M)) of vector fields on T (M). That

endomorphism is compatible with the restrictions, and one can write:

(Haznl])-zat
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locally. Consequently (Chap. IX, § 2.4):
1.4. Proposition. — If V denotes the Liouville field of T(M) then one will have v V = 0.

The endomorphism v of 7 (7' (M)) is not compatible with the Lie bracket. Indeed:
1.3. Proposition. — If X and Y are two vector fields on T (M) then one will have:
X, vY]=v[vX Y]+v[X vY].

Proof: Locally one can write:

_ 0 0
X— Z(aia_qi_'_bi a—qu s

Y= cii+dii_ ,
i oa; oq;

0
X: ai_->
' Z o,
0
Y: Ci_->
' Z o,
oc oa; ) o
v X v Y] = (ai | .—.J]—
Z,: oq, aG; ) oq;
oc. o
[V)(,Y] = ai_.J_’
ZJ: aql aqj
oa. o
[XVY] == |_,J_:
; aq| aqj
pX Y= Ya Ll
VI[VA, = )
(] aq| aqj
oa;. o
viX,vY] == ) ¢ ——
IZJ: aql 6qj

Q.E.D.
1.6. Proposition. — Let X be a vector field on T (M), and let V be the Liouville field. One has:

vX=v[V,X]+[vX V].
Proof: Locally one can write:

_ 0 0
X— Z(aiﬁ_qi_'_bi a—qu s
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8
V= Zqia—l,
vX= Zaia—ql,
. 0a; o
v[V,)(]Z;qia—(qja—%+
UEIED) ‘2%%

Q.E.D.

1.7. Definition. — The vertical operator in A (T (M)) is the endomorphism v* of the exterior
algebra A (T (M)) that is determined by the endomorphism v of T (T (M)).

1.8. Proposition. — The vertical operator is an endomorphism with square zero of the algebra
A (T (M)) that is compatible with locally-finite sums.

1.9. Proposition. — If X is a vector field on T (M) then one will have i,V = V' i .
In particular:
1.10. Corollary. — One has \,V' =0

1.11. Local expression. — The endomorphism v* is determined locally by:

Vif =f, fe DT M),
V*(dqi) =0,
V*(dqi) =dqi .

Those local expressions show, in particular, that v* does not commute with the exterior derivative
d.

§ 2. — Vertical differentiation.

If w1s a differential form of degree p, p > 1, on T (M) then:
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o (X, LX) P Y o(X, VX X))
i

will also be a differential form of degree p on T (M).
If one agrees to set i, f =0 for f € D (T (M)) then one will get an endomorphism of the vector

space (over R) A (T (M)) that is compatible with locally-finite sums. Indeed, one verifies the

following result with no difficulty:
2.1 Proposition. — The map o - i, @ is a derivation of degree 0 of the algebra A (T (M)).

That derivation is characterized (Chap. IV, Cor. 1.12) by the relations:

if=0,
i @d)=V(df), feD(T M.

2.2. Definition. — The vertical derivative of A (T (M)) is the derivation i, of degree O on the
algebra A (T (M)) that is characterized by the relations:

i) if=0,
it) iy (dfy= V' (df), fe D(TM)).

2.3. Local expression. — The derivation i, is determined locally by:

ihf=0,
iv(dg) =0,
Iv(dq|) = dql .

2.4. Proposition. — Let @ be a form of degree p on T (M). One has:
i (W o=pVo,
ii) (iv)qa) =0forq>p.
The verification of that property is immediate.
2.5. Corollary. — One has i,V = Vi, =0.

2.6. Proposition. — Let X be a vector field on T (M), and let V be the Liouville field. One has:
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i) lix, ] =ixiv—ivix=iwx.
i) [iv, Lr]=ivLy—Lyiv=iy.

Proof: It suffices to verify that those expressions take the same values for o =fand a=df, f
€ D (T (M)). Now:

lix,iy] f=0, iLxf=0,
lix, iv] df = i vdf =iwxdf,
[iv, Lv] f=0, i, f=0,
([iv, L] df) (V) = (i d (V- ) = LV (df))(Y),
=vY - (V- H=V-@Y- H+v[V,Y]-f
=Y, V1+v[V, YD) f
=(vY)-f (Prop. 1.6),
(@ df) (V) =df(v)=(1)-f.
Q.E.D.
Hence, by recurrence:

2.7. Corollary. — One has [(i,), Lv] =p @Y.

§ 3. — Vertical differentiation.

The bracket d, = [iy, d] = i, d — d i, is an antiderivation of degree 1 on the algebra A (T (M))
(Chap. IV, Prop. 1.9):

3.1. Definition. — The vertical derivative on A (T (M)) is the antiderivation of degree 1 on the
algebra A (T(M)) that is defined by d, = [i,, d] .

One then has:

3.2. Proposition. — The vertical derivative d, is the antiderivation of degree 1 on A (T (M))
that is characterized by the relations:

i) dyf=V(df),

ii) dy (df) =— d (v'(df)), f e D(TM)).

3.3. Local expression. — The antiderivation d, is determined locally by:
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of
dvf: z adql )

dy (dgi) = d,(dg) =0.
3.4. Proposition. — The exterior derivative commutes with the vertical derivative on A (T (M)).
Indeed, dd,=di,d=—-d, d.
3.5. Proposition. — The vertical derivative is an antiderivation of square zero.

The proof of that proposition uses the following lemma:
3.6. Lemma. — One has i, V'df =0 for any f € D (T (M)).
Proof: Let X and Y be two vector fields on T (M).

(i, dv'df) (X,Y)
_ (dv'df)(v X,Y)+(dv'df )(X,vY)
=vX- Y- N-(ODXY) f-vY - 0X- )= [X,v]Y]-f
=( X, vY]-vI X Y]-v[X,vY]) - f
=0 (Prop. 1.5).
Q.E.D.

Proof of Proposition 3.5: 1t suffices to verify that d, d, =0 for o = fand a = df, f € D (T (M)).

Now:

d,d,f=d\vdf

=i, dv'df (Cor. 2.5)
=0,
dvdydf =dd,d,f=0 (Prop. 3.4)
Q.E.D.

3.7. Proposition. — Let V be the Liouville field on T (M). One has:
l) [iv, dv]:ivdv_dvivzo,
ll) iv dv+dv iv:iv,

iii) [dv, L] = dy Ly — Ly dy = d, .
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Proof: 1t suffices to verify that those expressions take the same values for o = fand a = df, f €

D(T (M)). Now:
[iv, d] f=ivd, f=iVdf =0 (Cor. 2.5)
[iv, dy] df =—ivd iy df —ivd i, df + d (iv)* df

=0 (Lemma 3.6 and Prop. 2.4)

(ivdy+dy i) f=iVdf =0 (Cor. 1.10),

Godo+dviv)df =—ivdi,df+Vd(V-f)
=—Lyi,df+i,Lvdf (Cor. 1.10),
= [iv, Ly] df =i, df (Prop. 2.6)

[dv, Lyl f =ivLydf—-Lyivdf
=iy, Lyl df =i, df=d. f,
dv, Lyl df =dvd (V- f)—Lyd, df
=—dd,(V-f)+dLyd,f
=—d ([dv, Lv] /)
=—dd, f=d, (df).
Q. E. D.

3.8. Corollary. — One has V'd,=0 .

Proof: If  is a differential form of degree p on T (M) then one can write (Prop. 2.4):

1 . 1
Vdva) (p+1)'(v) v (p+1)| v(v) 0.

3.9. Corollary. — One has d, Vi=vid.

Proof: One first verifies the relation:

@y d=pd, @iy +dv (i)

by recurrence. Now, if @ is a differential form of degree p on 7 (M) then one can write:

vdo = ()" do = —d,,) o+

d s\ p+l _ *
(p+1)! ol oyt e -dve.

Q.E.D.
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§ 4. — Semi-basic differential forms.

4.1. Definition. — A semi-basic differential form on T (M) is a differential form on T (M)
belongs to the image of the vertical operator v* .

Consequently:
4.2. Proposition. — The set B of semi-basic forms on T (M) is a graded sub-algebra of
A(T(M)) [B=ZBmAi(T(M))j that is stable under locally-finite sums and contains the

algebra D (T (M)) of differentiable functions on T (M).

4.3. Proposition. — The algebra of semi-basic differential forms on T (M) is stable under
vertical differentiation.

Indeed (Cor. 3.9), dVV* =v'd.

4.4. Corollary. — If f is a differentiable function on T (M) then d, f will be a semi-basic Pfaff
form on T (M).

4.5. Proposition. — The endomorphisms iy (V is the Liouville field) and i, are zero on the
algebra B of semi-basic differential forms on T (M).

4.6. Local expression. — Since V'(dg,) = 0 and V'(dG;) = dg;, the algebra B will be generated

locally by differentiable functions and the differentials dg; . A semi-basic differential form of
degree p can then be written locally as:

Z ail...im(qll-~-'qm|q1,---,qm)dqil/\"'/\dqip'

]si1<»--<ipsm
One immediately deduces the following results from those local expressions:

4.7. Proposition. — If « is a differential form on M"™ then [ = pKA a will be a semi-basic
differential form on T (M) such that d, p= 0.

This proposition justifies the terms “semi-basic differential form on 7' (M),” in particular.

4.8. Proposition. — In order for a Pfaff form on T (M) to be a semi-basic differential form, it is
necessary and sufficient that it should be zero on the image of v.
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4.9. Corollary. — In order for a Pfaff form o on T (M) to be a semi-basic differential form, it is
necessary and sufficient that there should exist a differentiable function o on p;‘,l T(M) that has
the following properties:

i) ois linear on each fiber of p;‘,l (M).
ii) a=oc°K.

Indeed, the image of v is equal to the image of H and p;‘,, 7(M) is the quotient bundle of 7 (T (M))

that is associated with H.
One can also express Corollary 4.9 in the following fashion (Chap. II, Prop. 3.4):

4.10. Corollary. — In order for a Pfaff form aon T (M) to be a semi-basic differential form, it
is necessary and sufficient that there should exist a differentiable section o of the dual bundle

(p*M 7(M))" over T (M) such that o (u) = <K (u), o (pron(u) >, u € T (T (M)).

Conversely, if o is a differentiable section of (p*M 7(M))" over Tt (M), moreover, then =<K,

0 ° Pry> will be a semi-basic Pfaff form over 7' (M).

4.11. Definition. — The bundle of semi-basic forms over T(M) is the bundle p;‘,l T *(M) that is
the reciprocal image of the cotangent bundle to M™ by the projection py .

The bundle of semi-basic forms is therefore an m-dimensional differentiable vector bundle
over T'(M). One denotes it by:

Py 7" (M) = <py T"(M), 2, T(M) >

The total space Py, T (M) of Py, 7 (M) is identified with the subspace | ] P, (y)x 0y (y) of

yeM™
T (M ) xT" (M ) , and the map y is identified with the restriction of the projection of T (M ) xT" (M )
onto 7 (M). If »' denotes the restriction of the projection of T (M ) XT*(M ) onto 1. (M ) to

p;‘,l T°(M) then one will have the commutative diagram:
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pT(M) (M)

X qm

T(M) Mm
Pm

Let & be the map of Py T (M)@ p,, T"(M) to R that is defined by ((u, v), (, @)) 2 <v, a>. The

restriction of 4 to each fiber of Py 7(M)®p, 7' (M) is a non-degenerate bilinear form.
Consequently (Chap. II, Prop. 4.15):

4.12. Proposition. — The bundle p:,' (M) of semi-basic forms on T (M) is equivalent to the
dual of p:,l (M).

One can then state Corollary 4.9 in the following form:

4.13. Theorem. — The relation o (u) = < py, (U), D(pT(M)(U) >, u e T (T (M)), establishes a
bijective correspondence between the semi-basic Pfaff forms o on T (M) and the differentiable
maps D : T(M) — T (M) such that Gy D =py.

0
4.14. Local expression. — By abuse of notation, let g1, ..., g (instead of §; ©Qy, ) and p1 = a,
1

0 ~ "
cees P = o denote the local coordinate system on the open subset qu U) of T (M).

m

If o= Zai dg; is a semi-basic Pfaff form on 7 (U) and of u = Z(xi 8i+ Y, iJ then one
i Qi

will have o (u) = Z a8, X; . Consequently, the local expression for the corresponding map D will be:

qi = qi, pi=dai.
One then deduces that:

4.15. Proposition. — I A is the Liouville form on T°(M) then D2 = «.

Exercise. — There exists one and only one antiderivation j of degree — 1 of the algebra BB of

semi-basic differential forms on 7 (M) that has the following properties:
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n jf=0.

i) jdvf=V-ffeD(TM).
One will then have:

i) joj=0.

i) Gdv+df)oV =vL,.

§ 5. — Homogeneous differential forms.
Let 4 : u > e'u be the one-parameter group of homotheties of 7 (M) (Chap. IX, § 2.4).

5.1. Definition. — A4 differential form w on T (M) is homogeneous of degree k if one has:

5.2. Proposition. — Let V be the Liouville field on T (M). In order for a differential form @ on
T (M) to be homogeneous of degree k, it is necessary and sufficient that one must have:

Lro=fkw.

Proof: Let @ be a homogeneous differential form of degree k£ on T (M). Since #4; is the one-
parameter of diffeomorphisms of 7' (M) that is generated by V, one will have:

kt

— lim 2 (y — lim~——o -
Lyw llig;(hw—w) o 1 kw.
Conversely, if Ly o = k o for every point u of T (M) then A; @ (u) will be the solution to the
differential equation [on Ty (T (M)]: dz / dt = k z that makes z (0) = @ (u). Consequently, h[*a) =
e‘w.
Q.E.D.

5.3. Corollary. — Let @ be a semi-basic form on T (M). In order for @ to be homogeneous of
degree k, it is necessary and sufficient that one should have iy dw = k o.

Indeed (Prop. 4.5), iv o= 0.
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5.4. Proposition. — Let w be a differential form of degree p on T (M) that is homogeneous of
degree k. The differential forms dw, iy w, i, @, d, @ are homogeneous of degree k, k, k— 1, and k —
1, respectively.

5.5. Local expressions.

. of
i) Functions. — One has Ly f= z g; a . Consequently, in order for f'to be homogeneous of
i .

degree £, it is necessary and sufficient that it should be homogeneous of degree k in the 0; .
ii) Pfaff forms. — Let o= z (a,dg; +b dg;). One has:

. Oa . ob . .
Lya= quﬁdqﬁqugdquer. dg; .
ij i ] i !

Consequently, in order for & to be homogeneous of degree £, it is necessary and sufficient that a;

and b;, i =1, ..., m should be homogeneous of degree k and £ — 1 in the qi , respectively.

Exercise. — Let @ be a differential form on 7 (M) of degree p that is semi-basic and
homogeneous of degree k such that d, @ = 0. Then (see the exercise in § 4):

djo=p+ho.




CHAPTER XI

ANALYTICAL MECHANICS

§ 1. Mechanical systems (J. Klein [6]).

1.1. Definition. — A mechanical system 9 is a triplet (M™ , T, 7) in which:

M™ is an m-dimensional manifold
T is a differentiable function on 7 (M)
Vs is a semi-basic form on 7' (M).

One says that:

M™ is the configuration manifold
m is the number of degrees of freedom

T (M) [or T (M)] is the phase space
T is the kinetic energy
V4 is the force field.

The closed form of degree two w=dd, T on T (M) is called the fundamental form of the mechanical
system 9.

1.2. Definition. — A mechanical system (M™ , T, 7) is regular if its fundamental form o= dd,T
is a symplectic form on T (M).

1.3. Local expression. — With the notations of Chapter X, one can write, locally:

oT
dVT: _.dqa
zﬁqj :

ot ot
;[aqi aq, ' ag; 09, '
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@" ==+ m! det [6(:'] X ]dql/\.../\dqm Adg, A...Adg, .

i “Mj

Consequently, in order for 91 to be a regular mechanical system, it is necessary and sufficient that

oT
one must have det| ——— | #0.
L aq; oq, J

Only regular mechanical systems will be considered in what follows; hence, that fact will not

be specified.

1.4. Proposition. — Let Mt = (M"™, T, n) be a mechanical system. There exists one and only
one vector field X on T (M) such that:

ixo=d(T-V-T)+rx
[where V is the Liouville field on T (M)].

Indeed, such a vector field X is the dynamical system on the symplectic manifold (T(M), @)

that is associated with the Pfaff form d (T'— V- T) + = (Chap. VII, Cor. 1.13). One says that X is
the dynamical system that is associated with the mechanical system 9.

One will then have d (T— V- T) + x, and as a result:

1.5. Corollary (Vis viva theorem). — Let c: [ — T (M) be an integral curve of X, and let a and
b be two numbers in I. One has:

b
o c(b)
[[ca=v-T-TI .

1.6. Theorem. — The dynamical system associated with a mechanical system M =(M", T, r)

is a second-order differential equation on M™ .

Proof: With the notations of Chapter X, one can write, locally:

0 0
X = a—+hb —|,
Z{'aq“aqij

T :ijdqj’
j
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2 2 2 2
ixo = Y1 adg -y adg+Y L o, -Y -0 adg,

iy O0; 04; iy 00; 04 7 0G; 04 iy O00; 04

T T aT
d- d 2 dg. .
V-1 = Za . ¢ da, + anaq q; dg; + an,. q;

The equation ix w=d (T — V- T) + p then leads to the following two equations:

o°T o°T
a) ——a; = —q;.
Z,-:@qiéqj ’ zéqiaqj ‘
o°T o°T oT
b) ——b, =- —q, +— T X.
Z,-:aqiaq,- : Zjlaqiéq,- ' o,

When one takes the regularity hypothesis for the system 91 into account, equations @) will then

give a; = qj J=1,..,m.
Q.E.D.

One also deduces the following results from these local expressions:

1.7. Proposition. — Let s : M™ — T (M) be the zero section of T(M). The singular points of X
are the points y = s (x) in the image of s for which s* () (x) =—s" (dT) (x).

. oT
Indeed, those points are characterized in local coordinates (;=0and —— =-X;.

aq

1.8. Proposition. — The integral curves of X are locally solutions of the “Lagrange equations”:

TN T oy, i=1,..m.
dt aQ| aql

Indeed, the integral curves of X verify:
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() £+X
aq, oq,

>l g+ Z

J aql aqj

1.9. Theorem. — The dynamical system X that is associated with the mechanical system M =
(M™, T, n) is characterized by the following property:
The differential form Q = pfa) +[d(T-V-T)+ z] Adt € A> (T (M) x R) is an integral

invariance relation for the vector field X + 0/ ot .

Proof: Since the form Q has constant class 2m on T (M) x R, there exists one and only one

: 0
tangent vector u € T, (T (M)) such that I (U +aj Q@,t)=0.

Now, one has:
ixt+0/60 Q=lxo+[X-(T-V-T)+x(X)]dt—[d(T-V-T)+ n]=0.
Q.E.D.

1.10. Remark. — That theorem shows how one can generalize (in a fashion that is analogous
to the argument in Proposition 3.10 of Chapter VII) the notion of a mechanical system to the case
in which the force field 7 depends differentiably on a parameter ¢ .

1.11. Proposition. — Let M = (M"™, T, n) be a mechanical system for which the kinetic energy

T is a homogeneous function of degree k. Hence:

i) The dynamical system X associated with 9 is characterized by the relation ixw = (1 — k)
dT' + r.

ii) If k is non-zero then the zeroes of X will be the points of T (M) that belong to the image of
the zero section and annul 7 .

Proof: The first property is immediate. Indeed, if 7' is homogeneous of degree k then V- T=k
T.

As for the second one, one already knows that the singular points of X are characterized locally
by:

g =0 d X = a Prop. 1.7
i = an i = 20, (Prop. 1.7).
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Now, if 7 is homogeneous of degree k then 07T / 0g; will also be homogeneous of degree £, so it
will be zero on the image of the zero section of 7 (M) in the case of k£ # 0.
Q.E.D.

In particular:

1.12. Corollary (A. Lichnerowicz [11]). — If T is homogeneous of degree two then the
dynamical system X will be characterized by the following property: The differential form Q =

pl* @ —(dT— ) ~dt € N> (T (M) x R) will be an integral invariance relation for the vector field X
+0/ot.

In this corollary, one can possibly suppose that 7 depends upon a parameter ¢ (Remark 1.10).

1.13. Proposition. — Let 9t = (M™, T, 7) be a mechanical system for which the kinetic energy

T and the force field m are homogeneous of degree k. The dynamical system X that is associated
to I will then be a spray on M™ .

Proof: One already knows (Th. 1.6) that X is a second-order differential equation, so it then
remains to verify the equality [V, X] = X. Now:

imxo =Lrixo—ixLyo,
Lyixw =Ly ((1-k)dT+ n),
—k(1-k)dT+k x,
Ly o =Lydd,T=dLydT,
=d((k—1)d,T)  (Chap. X, Prop 5.4),
=tk-1) o,
ixLyw =(k-1)(1-k)dT+ (k- 1) .

Consequently:
ivxo=1-kdlT+r=ixw,

which shows (Prop. 1.11) that [V, X] = X.
Q.E.D.

1.14 Examples:
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i) Riemannian structure. — A Riemannian structure on M™ is defined when one is given a

Riemannian metric 7 : 7 (M) — R on the tangent bundle 7 (M). One also says that 7 is a

Riemannian metric on M™ (the relationship between that notion and example 3.9 in Chap. VII
will be pointed out in § 3).
Such a structure defines a regular mechanical system 9t =(M™, 7, 0). Indeed, the regularity

of 9 is a consequence of the non-degeneracy hypothesis on the quadratic form that is induced by

T on the fibers T (M).
The dynamical system X that is associated with 901 is called the geodesic field of T. That

dynamical system is the spray on M™ that is defined by ix@w = — dT (Prop. 1.11 and 1.13).
The projections of the integral curves of Xonto M™ are called the geodesics of the Riemannian
structure.

ii) Motion of a material point. That mechanical system is defined by:
- M=R’

- T= %mg : T(R*»)=R x R — R, in which m is a positive number, and g is the canonical

constant Riemannian metric on R>.

3
- Pzzxiin-

i=1

The associated dynamical system X is then:

i(q o, X aj

~"ag, m ag,

Its integral curves are then the solutions to the second-order differential equation:

= % i=1,2,3.

Here, one recovers the fundamental equation of point mechanics: F'=m y.

iii) Harmonic oscillator. The mechanical system of m independent harmonic oscillators is
defined by:
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_ M m _— Rm
— T =g, where g is the canonical constant Riemannian metric on R”,

- 7z=-d (Z wquj , where the ; are positive numbers called the pulsations (*) of the
i=1

oscillator.
The associated dynamical system X is then:

i(q 2 g ij
=\ g g

Its integral curves are therefore solutions to the second-order differential equation:

m
The functions 4; = q,2 + 0),2in ,i=1,...,m,and H= Z h; are first integrals of X. Consequently,
i-1
the submanifolds of 7(M™) that are defined by 4 =a; > 0,i=1, ..., m will be invariant under X
(X is tangent to those submanifolds). Those submanifolds are diffeomorphic to the torus T" =
(Ss"m.

If the pulsations @ are rationally-independent then X will induce an ergodic dynamical system
on each of those tori (V. Arnold and A. Avez [2]). Conversely, V. Arnold shows ([1]) showed that
this is the generic geometric situation for Hamiltonian systems that satisfy the hypotheses of the
Liouville-Cartan integrability theorem (Chap. VII, Th. 4.4).

By contrast, if all of the pulsations are equal (to 1, for example) then all of the integral curves

of X will be periodic with period 1. The sphere $*"-!' = R?*" = T (R™) whose equation in H =

Z(qf + qf ) =1 will then be an invariant submanifold of X, and the trajectories of X define the

Hopf fibration of S*"~! over the complex projective space Pu-1(C).

() Translator: Also called the fiequencies.
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§ 2. — Lagrangian systems.

2.1. Definition. — 4 mechanical system O = (M" , T, 7) is conservative if the force field ris a
closed semi-basic Pfaff form.

2.2. Proposition. — [f0t=(M", T, n) is a conservative mechanical system then the dynamical system
X that is associated with I will be the Hamiltonian system on the symplectic manifold (T (M), ®) that is
associated with the closed Pfaff system e=d (V-T—-T)—x.

One can then apply all of the results of Chapters VII and VIII that are concerned with first integrals,

integral invariants, etc., ... of Hamiltonian systems to the dynamical systems that are associated with
conservative mechanical systems. In particular:

2.3. Proposition (vis viva integral). — Let 991 = (M", T, ) be a conservative mechanical system. The

Ptaff form e=d (V- T—T)— nis a first integral of the dynamical system that is associated with .

2.4. Definition. — A mechanical system M = (M", T, n) is a Lagrangian system if there exists a

differentiable function U on M™ such that:
7= Py =d (U o pu).

Under those conditions, one denotes 9T by (M™, 7, U) and says that the force field 7 is derived from the

force function U.
A Lagrangian system is then a conservative system (Chap. X, Prop. 4.7).

2.5. Definition. — Let M = (M", T, U) be a Lagrangian mechanical system. The function H=V - T
—T—U o puis called the Hamiltonian of the system 9 .

In particular, if 7 is a homogeneous function of degree £ then:
H=(k-1)T-Uo pu, (H=T-U o pyfork=2).

2.6. Local expression. — With the notations of Chapter X, one will have:

0T
H= Zqia—T—U.

When one reformulates 2.2, one will get:
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2.7. Proposition. — Let M = (M™, T, U) be a Lagrangian system. The dynamical system X that is

associated with M is characterized by the relations:

ixw=-dH .
2.8. Corollary (Painlevé integral). — The Hamiltonian:

H=V-T-T-U opu
is a first integral of X.

2.9. Corollary (E. Cartan [3]). — The dynamical system X is characterized by the following property:
The differential form Q= w—dH A dt € A* € (T (M)) is an absolute integral invariant for the vector field
X+o/ot.

2.10. Corollary (E. Cartan [3]). — The dynamical system X is characterized by the following property:
The Pfaff form o= d,T— Hdt € A' € (T (M)) is an relative integral invariant for the vector field X + 0 /
ot.

2.11. Definition. — Let 9 = (M", T, U) be a Lagrangian mechanical system. The function L=T+ U
opm is called the Lagrangian of the system IN.

One will then have H=V-L—L.
In the case of Lagrangian mechanical systems, Proposition 1.8 will become:

2.12. Proposition. — The integral curves of the dynamical system X that is associated with a
Lagrangian system M = (M™, T, U) are locally solutions to the “Lagrange equation”:

dfaLj oL _y, 1<i<m.
at\ o, ) g

§ 3. Legendre transformation.

Let M = (M™, T, n) be a (regular) mechanical system. The Pfaff form d,7 is a semi-basic

form on the tangent space 7T (M). Consequently, when one reformulates Theorem 4.13 and
Proposition 4.13 of Chapter X, one will get:

3.1. Theorem. — There exists a differentiable map D : T (M) — T°(M) that has the following
properties.:
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i) qgu - D=pum.
ii) D has constant rank 2m .
iii) D' 2 =d,T [where A is the Liouville form on T*(M )].

That differentiable map D : T (M) —> T"(M) is called the Legendre transformation of the
mechanical system 901 .
Recall (§ 4.13 in Chap. X) that the local expression for D is:

oT

qi= (i, pi= .
oq;

D is then the classical transformation that permits one to pass from the Lagrange equations to the
Hamiltonian ones.

3.2 Remark. — Although the Legendre transformation verifies g» - D = pu, it is not generally
a homomorphism of 7 (M) into 7 (M) ; indeed, it is not (generally) linear on the fibers.

3.3. Definition. — If the Legendre transformation D : T (M) — T°(M) is a diffeomorphism
then the mechanical system 9t =(M™, T, r) satisfies the Lagrange-Hamilton duality hypothesis.

3.4. Lemma. — In order for D to be a diffeomorphism, it is necessary and sufficient that it
should be a bijection of T, (M) onto Ty*(l\/l) for any point y in M™ .

Indeed (cf., the rank theorem), in order for D to be a diffeomorphism, it is necessary and
sufficient that D should be a bijection. Now, since gi - D = pu, the latter condition is equivalent
to the one that D should be a bijection on each fiber of 7 (M).

3.5. Theorem. — Let 91 = (M™, T, n) be a mechanical system that satisfies the Lagrange-
Hamilton duality hypothesis, and let X be the dynamical system that is associated with 9.

Therefore, Y = D'XD™ will be the vector field on T (M ) that is characterized by the relation:
ivdl=OD"Y [d(T-V-T)+ 7.
Proof: Indeed, one has (Chap. III, Prop. 6.2):

ivdl=iy(DY o,
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=D ixo,
=D [d(T-V-D+7
Q.E.D.

3.6. Corollary. — If ¢ : [ > T (M) is an integral curve of X then y=D o ¢ will be an integral
curve of Y, and one will have py o ¢ = qu -y .

Moreover, if 91 is a Lagrangian system with the Hamiltonian:

H=V-T-T-Uo pu
then one will have:

3.7. Proposition. — The vector field Y on T *(M ) is the Hamiltonian system on the symplectic
manifold (T (M) , dA) that is characterized by the relation:

ivdi=—d(H - DV).

Under those conditions, one further says that H o D! : T*(M) — R is the Hamiltonian of the

Lagrangian system.
In fact, a good number of mechanical systems that classically show up in differential geometry
or analytical mechanics satisfy the Lagrange-Hamilton duality hypothesis. Indeed:

3.2. Theorem. — Let M = (M™, T, n) be a mechanical system for which the kinetic energy T

is a Riemannian metric on M"™ . The following properties will then be verified:

i) M satisfies the Lagrange-Hamilton duality hypothesis.

ii) D is an isomorphism (in the vector bundle sense) of the tangent bundle t (M) onto the
cotangent bundle t* (M).

iity T o D" is a Riemannian metric on t~ (M).
Indeed, if one writes 7= %Zaﬁ 0, 4; locally, with a; = a;i , then the expression of D will be g;

=dqi,pi = Zaij qj .
J

3.9. Corollary. — Under the hypotheses of Proposition 3.7, and if T is a Riemannian metric on

M™, moreover, then the dynamical system Y will be the Hamiltonian system on T (M) that is
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associated with the classical Hamiltonian structure (in the sense of Chap. VII) that is defined by
theH:ToDil—Uo qm .
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