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FOREWORD 
 

 “There are already several treatises on mechanics, but the plan of this one is entirely 

new.  I propose to reduce the theory of that science and the art of solving the problems that 

pertain to it to some general formulas whose simple development will give all of the 

equations that are necessary for the solution of each problem.” 

 “This book will be useful in another way, moreover: It will unite the various principles 

that were found up to now in order to facilitate the solution of the questions of mechanics 

and present them from a common viewpoint, while showing the links between them and 

their mutual dependency, and to make it more possible to judge their exactitude and their 

scope.” 

 “I have divided it into two parts: Statics, or the theory of equilibrium, and dynamics, 

or the theory of motion, and in each of those two parts, I have treated solid bodies and 

fluids separately.” 

 “One will find no figures at all in this book. The methods that are presented here 

demand neither constructions nor geometric or mechanical arguments, but only algebraic 

operations that are subject to a regular and uniform progression.  Those who love analysis 

will behold with pleasure the fact that mechanics will become a new branch of it, and it 

would be gratifying to me to know that I have thus extended that domain.” 

 

 

  J. L. LAGRANGE 

  Mécanique Analytique, 1811 

 

_____________ 





INTRODUCTION 
 

 

 The lectures of Élie Cartan on integral invariants, which continue to be strikingly topical today, 

marked the beginning of what one can call “modern analytical mechanics”: Indeed, the intrinsic 

formulation of the equations of dynamics, and not the variational one, appeared in them for the first 

time.  More recently, the work of A. Lichnerowicz, F. Gallisot, and J. Klein have clearly exhibited 

the fact that differential geometry is the natural context in which to base the foundations of 

analytical mechanics. 

 The first contribution that this geometric formalism makes is very neat distinction between the 

Hamiltonian aspect of mechanics and its Lagrangian aspect.  Certainly, it has been known for some 

time that Hamilton’s equations are “covariant,” while the Lagrange equations are “contravariant.”  

Today, one interprets the former as a dynamical system on the cotangent space to the configuration 

manifold and the latter as a dynamical system on the tangent bundle to that manifold. 

 The Hamiltonian aspect is linked with the existence of a canonical symplectic structure on any 

cotangent bundle that is determined by the Liouville form.  The techniques of differential calculus 

on manifolds then permit one to pursue the ideas of Élie Cartan in order to obtain an intrinsic 

formulation of Hamilton’s equations.  As F. Gallisot has shown, one can then interpret the classical 

results on first integrals and the cases of integrability geometrically. 

 The Lagrangian aspect is more complex.  According to J. Klein, it is linked with the existence 

of a differential calculus on a tangent bundle that is much richer than the one on an arbitrary 

differentiable manifold.  Upon utilizing the geometric structure of that space, one can indeed define 

some differential operators that will lead to the Lagrange equations of a mechanical system, and 

always by means of the techniques of symplectic geometry. 

 The link between those two aspects is finally assured by the Legendre transformations, which 

exhibits a duality between them, in some sense. 

 The first part of this book is a presentation of differential geometry that covers one part of the 

Certificate Program C.3: exterior calculus, vector bundles, differentiable manifolds, differential and 

integral calculus on manifolds. One is assumed to know only the elements of linear algebra, general 

topology, and local differential calculus (such as, for example, what is taught in the first year of 

proficiency). 

 The second part is dedicated to analytical mechanics.  Furthermore, it includes a study of the 

classes of differential forms, as well as a presentation of the geometry of tangent spaces and their 

differential calculus. 

 

 This book has its origin in a series of presentations that were made in 1967 in Strasbourg in the 

context of a seminar on trajectories.  The interest that was shown by P. Cartier then proved to be 

decisive in their publication.  Moreover, the author had numerous conversations with G. Reeb and 

J. Martinet that were quite useful in the preparation of the manuscript. 

 

Strasbourg, February 1968. 

 

___________ 



CHAPTER I 

 

THE ALGEBRA OF EXTERIOR FORMS 
 

 

 In sections 1, 2, and 3, A will denote a unitary commutative ring. In sections 4, 5, and 

6, one supposes, moreover, that A is a unitary algebra over the field  of rationals. Finally, 

in sections 7 and 8, A will denote a commutative field with characteristic zero. 

 All modules will be unitary modules over A. 

 

 

§ 1. – Duality and orthogonality. 

 

 1.1. Definition. – Let (Ei)1  i  p and F be p + 1 modules. A map  : E1  …  Ep →F is 

a multilinear map if the map: 

x   (e1, …, ei−1, x, ei+1, …, ep) 

 

is a linear map of Ei into F for every index i and every element ej  Ej , j  i. 

 

 One also says a bilinear map when p = 2 and a multilinear form when F = A. 

 If E1 = … = Ep = E and F = A then one says that  is a multilinear form of degree p on 

E. 

 The set Lp (E) of multilinear forms of degree p on E is canonically endowed with the 

structure of a module over A. 

 

 1.2. – Let h be a linear map from a module E into a module F and let  be an element 

of Lp(F): 

 

h  : (e1, …, ep)  (h e1, …, h ep) 

 

is a multilinear form of degree p on E : h   is the reciprocal image form to  under h. 

 The map h
 is a linear map of Lp (F) into Lp (E). If k is a linear map of F into a module 

G then one will have ( )k h 
 = h k 

. If h is the identity map of E then h
 will be the 

identity map of Lp(E). Consequently, if h is an isomorphism of E to F then h
 will be an 

isomorphism of Lp (E) to Lp (F), and one will have 
1( )h −
 = 

1( )h− 
. 

 

 1.3. Definition. – Let E be a module. The module E  = L1 (E) is called the dual of E. 

 

 If e is an element of E and  is an element of E  then one lets < e,  > denote the value 

 (e) of  on e. (e, a)  < e,  > is the canonical bilinear form on E  E . 
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 1.4. –  If (ei)1  i  n is a basis for E then one can define elements j of E  by < ei , j > = 

ij . Those elements form a basis for E . (i)1  i  n is the dual basis to the basis (ei). 

 In particular, if A is a field and E is a finite-dimensional vector space over A then E and 

E  will have the same dimension. 

 

 1.5. Proposition. – Let G be a free module. If the sequence 0 → E 
h

→  F 
k

→  G → 0 is 

exact then the same thing will be true for the sequence 0 → G  
k

→  F   
h

→  E  → 0 . 

 

 Proof: Recall, first of all, that the exactness of the sequence 0 → E 
h

→  F 
k

→  G → 0 

corresponds to the following hypotheses: 

 

 − h is an injective linear map. 

 − k is a surjective linear map. 

 − The image of h equal to the kernel of k (Im h = Ker k). 

 

 One easily shows (with no other hypothesis on G) that k   is injective, h  is surjective, 

and Im k   = Ker h
. 

 Let (g)iI be a basis for G and let (f)iI be a basis for F such that k (fi) = gi for any i. The 

module F is the direct sum of the image of h and the sub-module G  that is generated by 

the family (f)iI . 

 An element  of E  determines a linear form on h (E), and that form prolongs (for 

example, by giving the value of 0 to G ) to a linear form  on F. One will then have h 
 

= , which shows that h
 is surjective. 

Q. E. D.  
 

 1.6. Definition. – Let E be a module. The dual E  of E  is called the bidual of E. 
 

 For any element e of E, the map    < e,  > is a linear form e  on E  and e e  

is a linear map of E into E . 
 

 1.7. Proposition. – If E possesses a finite basis then the map e e  is an isomorphism 

of E onto E . 
 

 Proof: Let (ei)1  i  n be a basis for E and let (i)1  i  n be the dual basis for E . 

 If e = 
i ia e  is an element of E such that e  = 0 then one will have < e, i > = ai = 0 

for every i, and consequently, e  = 0. 

 If  is a linear form on E  then the element e = ( )i ie   of E will verify < e, i > = 

 (ei) for any i. One will then have  = e . 

Q. E. D.  
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 Under the hypotheses of Proposition 1.7., one can identify E and E  by means of that 

isomorphism. 

 

 1.8. Definition. – Let F be a sub-module of a module E. The orthogonal complement 

F⊥  of F is the sub-module of forms on E that are zero on F. 

 

 1.9. Proposition. – Let F be a sub-module of a module E, and let q be the projection of 

E onto E/F. The map q  is an isomorphism of (E/F)* onto F⊥ . 

 

 1.10. Corollary. – If A is a field and E is a finite-dimensional vector field onto A then 

one will have that dim F⊥  = codim F. 

 

 1.11. Corollary. – With the hypotheses of corollary 1.10 (and the convention of 1.7), 

one will have F⊥⊥  = F. 

 

 Indeed, F⊥⊥  contains F, and dim F⊥⊥  = codim F⊥  = dim F, moreover. 

 One can generalize Proposition 1.9 in the following way: 

 

 1.12. Proposition. – Let F be a sub-module of a module E, and let q be the projection 

of E onto E/F. The map q  is an isomorphism of Lp (E/F) onto the sub-module L of forms 

 in Lp (E) such that  (e1, …, ep) = 0 if one of the ei is in F. 

 

In what follows, Lp (E/F) will be identified with the sub-module L of Lp (E) . 

 

 1.13. Proposition. – Let F1 and F2 be two sub-modules of a module E. One has: 

 

Lp (E / (F1 + F2)) = Lp (E/F1)   Lp (E/F2) . 

  

 

§ 2. – Exterior forms. 

 

 Let Sp be the group of permutations of the set {1, …, p}. Let denote  the identity permutation, 

and let  (s) be the signature of a permutation s of Sp . 

 

 2.1. – Let  be a multilinear form of degree p on a module E, and let s be an element of Sp : 

 

s  : (e1, …, ep) 1 1(1) ( )
( , , )

s s p
e e − −  

 

is a multilinear form of degree p on E. 
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 One has   =  and (st)  = s (t) for any s and t in Sp .   s  is therefore an automorphism 

of Lp (E) for any s  Sp . 

 

 2.2. Definition. – Let  be a multilinear form of degree p over a module E.  is an 

antisymmetric multilinear form if s = e (s)  for any s  Sp . 

 

 One also says that  is an exterior form of degree p over E, or even that a is an exterior p-form 

over E. 

 The set Ap (E) of exterior p-forms over E is a sub-module of Lp (E), and one will have A1 (E) 

= L1 (E) = E . 

 If h is a linear map of E into a module F then ( ( ))ph F
A  will be contained in Ap (E). 

Consequently, if F is a sub-module of a module E then one can identify (Prop. 1.12) Ap (E/F) with 

a sub-module of forms  in Ap (E) such that  (e1, …, ep) = 0 if one of the ei is in F. 

 

 Exercise. – If 2 is invertible in A then a form   Ap (E) will be antisymmetric if and only if 

1( ,e …, ep) = 0 when two of the ei are equal. 

 

 2.3. Proposition. – Let F1 and F2 be two sub-modules of a module E. One has: 

 

Ap (E / (F1 + F2)) = Ap (E/F1)   Ap (E/F2) . 

 

 2.4. Corollary. – If F1 is contained in F2 then Ap (E/F2) will be contained in Ap (E/F1). 

 

 2.5. Theorem. – If the module E has a basis of n elements then Ap (E) will have a basis of  

n

p

 
 
 

 elements. 

 

 Proof: Let (ei)1  i  n be a basis for E. An element of Ap (E) is determined by its values on the 

sequences 
1

( , , )
pi ie e  such that: 

1  i1 < … < ip  n . 

 

One associates every increasing sequence (i1, …, ip), 1  i1 < … < ip  n, with the element 
1 pi i  

of Ap (E) that is defined by: 

  
1 1

( , , )
p pi i i ie e   = 1 , 

  
1 1

( , , )
p pi i j je e   = 0 
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if the increasing sequence (j1, …, jp) is different from the sequence (i1, …, ip). Those elements, 

which are 
n

p

 
 
 

 in number, are independent in Ap (E), and any exterior p-form  can be written: 

 = 
1 1

11

( , , )
p p

p

i i i i

i i n

e e 
   

  

Q. E. D.  

 

 2.6. Corollary. – If the module E has a basis of n elements then An (E) will have basis of 1 

element, and Ap (E) = 0 for p > n. 

 

 Exercise. – Let E be a free module that has an infinite basis. For any p > 0, Ap (E) will be a 

non-zero free module. 

 

 2.7. Corollary. – If the module E has a basis of n elements then all of its bases will have n 

elements. 

 

 2.8. Definition. – Let E be a module that has a basis of n elements. A volume form on E is an 

element v  An (E) that defines a basis for An (E). 

 

 Exercises: 

 

 i) Any volume form on E can be written w = a v, where a is an invertible element of A. 

 

 ii) If h is an endomorphism of E then one will have h v
 = (det h) v. 

 

 2.9. Proposition. – Let a be a multilinear form of degree p over a module E. The form a () = 

( )
ps

s s 



S

 is antisymmetric. 

 

 Proof: Let t be a permutation of Sp . One has: 

 

t a () = ( ) ( )
ps

s t s 



S

 

 = ( ) ( ) ( )
ps

t ts ts  



S

 

 = ( ) ( )
pr

t r r  



S

=  (t) a () . 

Q. E. D.  

 

The map a is therefore a linear map of Lp (E) into Ap (E). a is the antisymmetrization operator, 

and a () is the antisymmetrization of the form . One has: 
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[a ()] (e1, …, ep) = 1 1(1) ( )
( ) ( , , )

p

s s p
s

s e e  − −




S

 

  = 
(1) ( )( ) ( , , )

p

s s p

s

s e e 



S

. 

 

 2.10. Proposition. – If  is an exterior p-form on a module E then a () = p!  . 

 

 2.11. Proposition. – Let h be a linear map of a module E into a module F and let  be a form 

in Lp (E). One will have h (a ()) = ( )h a . 

 

 

§ 3. – Tensor Product. 

 

 Let  be a multilinear form of degree p and let  be a multilinear form of degree q over a 

module E. 

(e1, …, ep+q)  (e1, …, ep)  (ep+1, …, ep+q) 

 

is a multilinear form of degree p + q on E. 

 

 3.1. Definition. – The tensor product of the forms   Lp (E) and   Lq (E) is the form  

 Lp+q (E) that is defined by: 

 

 (e1, …, ep+q) =  (e1, …, ep)  (ep+1, …, ep+q) . 

 

 3.2. Proposition. – The tensor product is a bilinear map of Lp (E)  Lq (E) into Lp+q (E). 

Moreover, one has  ( ) = ()  for   Lr (E),   Ls (E), and   Lt (E). (Associativity of 

the tensor product) 

 

 3.3. Proposition. – Let h be a linear map of a module E into a module F and let   Lp (F) 

and   Lq (F). One has ( )h 
 = ( ) ( )h h  

. 

 

 3.4. Proposition. – Let  be a multilinear form of degree p and let  be multilinear form of 

degree q on a module E. One has a (a () ) = p! a () and a (a  ()) = p! a () . 

 

 Proof: Indeed: 

a (a () ) = ( ) ( ) (( ) )
p q ps t

s t s t   
+ 

 
S S

 

  = ( )( )( )
p q ps t

st st 
+ 

 
S S

, 
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(after identifying t  Sp with the permutation of {1, …, p + q} such that t (i) = i for i > p), and 

that: 

  = ( ) ( )
p qr

r r 
+


S

 = p! a () . 

One likewise proves the second equality. 

Q. E. D.  

 

 3.5. Proposition. – Let a be a multilinear form of degree p and let b be a multilinear form of 

degree q over a module E. One has a () = (− 1)pq a (). 

 

 Proof: Let t be the permutation of Sp+q that is defined by: 

 

t (i) = q + i for 1  i  p , 

t (p + i) = i for 1  i  q . 

 

The signature of t is (− 1)pq, and one has: 

 

(a ()) (e1, …, ep+q)  = 
(1) ( ) ( 1) ( )( ) ( , , ) ( , , )

p q

st st p st p st p q

s

st e e e e  
+

+ +




S

 

  = 
( 1) ( ) (1) ( )( 1) ( ) ( , , ) ( , , )

p q

pq

s q s p q s s q

s

s e e e e  
+

+ +



− 
S

 

  = (− 1)pq (a ()) (e1, …, ep+q) . 

Q. E. D.  

 

 

§ 4. – Exterior product. 

 

 From now on, suppose that A is a commutative unitary algebra over the field  of rationals. 

One identifies  with the sub-algebra of A that is generated by unity. 

 

 4.1. Definition. – Let  be an exterior p-form and let  be an exterior q-form on a module E. 

The exterior product of  and  is the exterior (p + q)-form: 

 

   = 
1

( )
! !p q

a  . 

One then has: 

 

(  ) (e1, …, ep+q) = 
(1) ( ) ( 1) ( )

1
( ) ( , , ) ( , , )

! !
p q

s s p s p s p q

s

s e e e e
p q

  
+

+ +




S

. 
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 Exercise. – When p = 1, one can write: 

 

(  ) (e1, …, ep+q) = 
1

1

1 1 1 1( 1) ( ) ( , , , , , )
q

i

i i i q

s

e e e e e 
+

−

− + +



−
S

. 

 

 4.2. Proposition. – The exterior product is a bilinear map of Ap (E)  Aq (E) into Ap+q (E). 

 

 4.3. Proposition (anti-commutativity of the exterior product). – Let  be an exterior p-form 

and let  be an exterior q-form over a module E. One has: 

 

   = (− 1)pq    . 

 

That result is an immediate consequence of Proposition 3.5 

 

 4. 4. Corollary. – If  is an exterior form of odd degree then one will have: 

 

   = 0. 

 

 4.5. Proposition (associativity of the exterior product). – Let  be an exterior p-form, let  

be an exterior q-form, and let  be an exterior r-form on a module E. One will then have: 

 

  (  ) = (  )   . 

 Proof: Indeed: 

  (  ) = 
1

!( )!p q r+
 a ( (  )) 

  = 
1 1

!( )! ! !p q r q r+
 a (a  ()) 

  = 
1

! ! !p q r
 a ( ()) (Prop. 3.4). 

One likewise has: 

  (  )   = 
1

! ! !p q r
 a ( ()) . 

Q. E. D.  

 

 4.6. Proposition. – Let (i)1  i  p be linear p-forms over a module E and let (ei)1  i  p be p 

elements in E. One has: 

(1  …  p) (e1, …, ep) = det (< ej, i >) . 

 

Indeed, one deduces from the preceding proof that: 
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1  …  p = a (1, …, p) . 

 

 4.7. Definition. – An exterior form  of degree p on a module E is decomposable if there exist 

linear p-forms (i)1  i  p such that  = 1  …  p . 

 

 4.8. Proposition. – Let (ei)1  i  n be a basis for a module E and let (i)1  i  n be the dual basis 

for E . The decomposable forms: 

  
1 pi i    1  i1 < … < ip  n 

constitute a basis for Ap (E). 

 

 Proof: One has, in fact, that: 

 

1 1
( )( )

p pi i j je e      = 
1 if  for every 

0 otherwise

r ri j r=



 

  

for any pair (i1, …, ip) and (j1, …, jp) of increasing sequences in {1, …, n}. Consequently, 

1 pi i    = 
1 pi i  (with the same notations as in the proof of Theorem 2.5). 

Q. E. D.  

 

 4.9. Corollary. – The exterior n-form 1  …  n is a volume form on E, and any element of 

An (E) is decomposable. 

 

 4.10. Proposition. – Any exterior p-form is the sum of decomposable p-forms. 

 

However, it should be pointed out (see § 8) that not every exterior p-form is decomposable. 

 

 4.11. Proposition. – Let h be a linear map of a module E into a module F and let   Ap (E) 

and   Aq (E). One has: 

h
(  ) =  ( h )  ( h ) . 

 

That result is a direct consequence of Propositions 2.11 and 3.3. 

 

 

§ 5. – The algebra of exterior forms. 

 

 5.1. – One agrees to set A0 (E) = A for any module E and to extend the exterior product to 

forms of degree 0 by: 

 

   =    =    if    A = A0 (E) and   Aq (E), q  0. 

 

The exterior product, thus-extended, once more verifies Propositions 4.2, 4.3, and 4.5. 
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 If h is a linear map of a module E into a module F then one also agrees to take h : A0 (E) → 

A0 (E) to be the identity map on A. Proposition 4.11 will then be once more verified. 

 5.2. – Let A (E) = 
0

( )p

F

E


 A  be the direct sum of the modules Ap (E). The elements of A (E) 

are called exterior forms on E. One can extend the exterior product to the module A (E) by 

bilinearity in such a manner as to endow it with the structure of an algebra. 

 If h is a linear map of a module E into a module F then the maps h : Ap (F) → Ap (E), p  0, 

will determine a linear map h : A (F) → A (E). 

 

 5.3. Definition. – The algebra of exterior forms on a module E is the direct sum A (E) = 

0

( )p

F

E


 A , endowed with the structure of an algebra that is defined by the exterior product. 

 

 If E is the zero module (0) then one will have A (E) = A0 (E) = A. 

 The various propositions of section 4 then allow us to state: 

 

 5.4. Theorem. – The algebra of exterior forms on a module E is an associative, unitary, 

graded, and anti-commutative algebra (see Chap. IV, § 1). 

 

 5.5. Theorem. – If the module E possesses a finite basis then its algebra of exterior forms will 

be generated by its elements of degree 0 and 1. 

 

 Exercise. – If E possesses a finite basis that has m elements then A (E) will possess a finite 

basis with 2m elements. 

 

 5.6. Theorem. – Let h be a linear map of a module E into a module F. The map h
 : A (F) → 

A (E) will then be a homomorphism of algebras. 

 

 Consequently, if F is a sub-module E then A (E/F) will be identified with a sub-module of 

A(E). (See 2.2.) 

 

 5.7. Proposition. – Let F1 and F2 be two sub-modules of a module E. One has A (E / (F1 + F2)) 

= A (E / F1)  A (E / F2)) . 

 

 5.8. Corollary. – If F1 is contained in F2 then A (E / F2)) is a sub-algebra of A (E / F1)). 
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§ 6. – Interior product. 

 

 Let  be an exterior p-form, p  0, on a module E, and let x be an element of E. 

 

i (x)  : (e1, …, ep−1)   (x, e1, …, ep−1) 

is an exterior (p – 1)-form on E and the map i (x) :  i (x)  will be a linear map of Ap 

(E) into Ap−1 (E). 

 One can extend that map to an endomorphism of A (E) by agreeing to set i (x)  = 0 

when   A0 (E) = A. 

 

 6.1. Definition. – The endomorphism i (x) of A (E) is called the interior product by an 

element x of E. 

 

 6.2. Proposition. – Let x and y be two elements of E. The following properties can be 

verified: 

 

 i) i (x + y) = i (x) + i (y) . 

 ii) i (a x) = a i (x), a  A . 

 iii) i (x) i (y) = − i (y) i (x) . 

 iv) i (x) i (x) = 0 . 

 

 6.3. Proposition. – Let  be an exterior p-form on a module E, let  be an exterior q-

form on E, and let x be an element of E. One has: 

 

i (x) (  ) = (i (x) )   + (− 1)p   i (x) () . 

 

 Proof: One can suppose that p  1 and q  1. 

 

 If one agrees to set x = e1 then one will have: 

 

 (i (x) (  )) (e2, …, ep+q) =    (e1, …, ep+q) 

 

= 
(1) ( ) ( 1) ( )

1
( ) ( , , ) ( , , )

! !
p q

s s p s p s p q

s

s e e e e
p q

  
+

+ +




S

. 

 

Let S = {s  Sp+q | 
1(1)s−

   p} and S = {s  Sp+q | 
1(1)s−

 > p}. Sp+q is the union of S 

and S. One identifies Sp+q−1 with the set of permutations r of Sp+q such that r (1) = 1. 

 For any s  Sp+q , let ts ( st  , resp.) denote the transposition of Sp+q that exchanges 1 and 

1(1)s−
 (p + 1 and 

1(1)s−
, resp.). One can write: 
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 (1) ( ) ( 1) ( )

1
( ) ( , , ) ( , , )

! !
s s p s p s p q

s

s e e e e
p q

   + +



S

 

= (2) ( ) ( 1) ( )

1
( ) ( , , , ) ( , , )

! ! s s s ss st st p st p st p q

s

t s x e e e e
p q

   + +



S

 

= 
1

(2) ( ) ( 1) ( )( ) ( , , , ) ( , , )
! !

p q

r r p r p r p q

r

p
r x e e e e

p q
  

+ −

+ +




S

 

 

(because for each r  Sp+q−1 there exist p permutations s  S such that sts = r): 

 

 = (i (x) )  ) (e2, …, ep+q) . 

 

Let u be the permutation of Sp+q that is defined by u (1) = p + 1, u (i) = i – 1 for 2  i  p 

+ 1 and u (i) = i for i > p + 1. One has  (u) = (− 1)p. 

 One can write: 

 

 (1) ( ) ( 1) ( )

1
( ) ( , , ) ( , , )

! !
s s p s p s p q

s

s e e e e
p q

   + +



S

 

 = (2) ( ) ( 1) ( )

1
( ) ( , , ) ( , , , )

! ! s s s ss st st p st p st p q

s

t s e e x e e
p q

     + +



S

 

 = 
(2) ( ) ( 1) ( )

( 1)
( ) ( , , ) ( , , , )

! ! s s s s

p

s st u st u p st u p st u p q

s

ut s e e x e e
p q

     + +


−


S

 

 = 
1

(2) ( ) ( 1) ( )

( 1)
( ) ( , , ) ( , , , )

! !
p q

p

r r p r p r p q

s

q r e e x e e
p q

  
+ −

+ +


−

S

 

 = (− 1)p (  (i (x) )) (e2, …, ep+q) . 

Q. E. D.  

 

 6.4. Remark. – If F is a sub-module of a module E then A (E/F) will be the set of 

exterior forms   A (E) such that i (x)  = 0 for all x  F. Furthermore, if A is a field of 

characteristic zero and E is a finite-dimensional vector space over A then F will be equal 

to a subspace G of x  E such that i (x)  = 0 for any  A (E/F). Indeed, one has F  G 

and A (E/G) = A (E/F). Now, if H is a subspace of codimension m on E then A (E/H) will 

have dimension 2m. Consequently, dim G = dim F and F = G. 

 

 

§ 7. – Associated system and rank of an exterior form. 

 

 One now supposes that A is a commutative field with characteristic zero. Let E denote 

a vector space of finite dimension n over A. 
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 7.1. Proposition. – Let (i)1  i  p be linear p-forms on E. In order for the forms (i) to 

be independent in E, it is necessary and sufficient that: 

 

1  …  p  0 . 

 

 Proof: If the forms (i) are dependent then one can write one of them as a function of 

the others, and as a result (Prop. 4.4), one will have 1  …  p = 0 . 

 If the forms (i) are independent then one can find a basis (ei)1  i  n for E such that if 

(i)1 i  n is the dual basis for E then one will have i = i for i  p. 1  …  n will then 

be a volume form on E, and consequently 1  …  p  0 . 

Q. E. D.  

 

 7.2. Proposition. – Let F be a subspace of E. The sub-algebra A (E/F) of A (E) is 

generated by A + F⊥ .  

 

 Indeed (Theorem 5.5), A (E/F) is generated by the set A of its elements of degree 0 and 

the set F⊥  (Prop. 1.9.) of its elements of degree 1. 

 

 7.3. Proposition. – Let  be an exterior form on E. There exists one and only one 

subspace F of E that has the following properties: 

 

 i)   A (E/F) . 

 

 ii) If G is a subspace of E such that   A (E/F) then G will be contained in F. 

 

 Proof. – Let  be the family of subspaces H of E such that   A (E/F).  is not 

vacuous (viz., it contains (0)). Since the dimension of E is finite, the family , when 

ordered by inclusion, will contain maximal elements, i.e., subspaces H such that G   

and G  H will imply that G = H. 

 However,  can contain only one maximal element, because (Prop. 5.7) if F1 and F2 

are two subspaces of  then F1 + F2 will also be in . 

Q. E. D.  

 

 The remark 6.4. leads to the following characterization of the associated subspace: 

 

 7.5. Definition. – The associated subspace A () to a form   A (E) is the set of all x 

 E such that i (x)  = 0 . 

 

 7.6. Corollary. – If  is a non-zero linear form on E then the associated subspace to  

will be the hyperplane that is defined by . 
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 7.7. Definition. – Let  be an exterior form on E. The associated system to  is the 

subspace A() = (A ())⊥ of E. 

 

 If  is an exterior form of degree 0 then one will have A() = (0). If  is a linear form 

then A() will be the subspace of E that is generated by . 

 

 7.8. Proposition. – The associated system to a form   A (E) is the smallest of the 

subspaces F of E  such that  belongs to the sub-algebra of A (E) that is generated by A 

+ F  . 

 

 That proposition is an immediate consequence of Propositions 7.2. and 7.3. 

 

 7.9. Proposition. – Let a be a non-zero exterior p-form on E, p  2, and let h be the 

multilinear map of 1pE −  into E  that is defined by: 

 

h (x1, …, xp−1) = i (x1) … i (xp−1)  . 

 

The associated system to  is the subspace of E  that is generated by the image of h. 

 

 Proof: Since: 

 

(i (x1) … i (xp−1) ) (x) = (− 1)p−1 i (x1) … i (xp−1) i (x)  = 0 

 

for any x A () and any (x1, …, xp−1) 
1pE − , the subspace I of E  that is generated by 

the image of h is contained in ( )A 
. 

 One can then find a basis (ei)1  i  n for E such that the dual basis (i)1  i  n for E  will 

have the following properties: 

 

 i) 1, …, r is a basis for I. 

 

 ii) 1, …, s , s  r, is as basis for ( )A 
. 

 

If s does not belong to I then one can write  = s    + , where   is a non-zero (p – 

1)-form that belongs to the sub-algebra of A (E) that is generated by 1, …, s−1, along with 

. 

 Let (x1, …, xp−1) be an element of 1pE −  such that (xp−1, …, x1) = a  0. Since ( )i x 

= i (x – s (x) es)  , one can suppose that xi verifies s (xi) = 0, i = 1, …, p – 1. One will 

then have: 

i (x1) … i (xp−1)  = s i i

i s

a a 


+  , 
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which is impossible since s is not in I. 

Q. E. D.  

 

 7.10. Corollary. – Let  be an exterior form of degree 2 on E, and let (ei)1  i  n be a 

basis for E. The associated system ( )A   to  is generated by the forms i (ek) , k = 1, …, 

n. 

 

The equations of the associated subspace A() are then equal to i (ek)  = 0, k = 1, …, n. 

 

 7.11. Definition. – Let  be an exterior form on E. The rank of  is the dimension of 

the associated system ( )A  . 

 

The rank of  is the “the smallest number of independent linear forms that are necessary 

for one to express .” 

 The rank of the form  is also equal to the codimension of the associated subspace A 

(). 

 

 7.12. Examples: 

 

 i) An exterior form of degree has rank 0. 

 

 ii) A non-zero exterior form of degree 1 has rank 1. 

 

 7.13. Proposition. – Let  be a non-zero exterior p-form on E. The rank of  is greater 

than p (and less than n). It is equal to p if and only if  is decomposable. 

 

 Proof: For any subspace F of E, Ap (E/F) will be zero as soon as p becomes greater 

than the codimension of F. The rank of  will then be greater than p. If  is decomposable 

then there will exist independent linear p-forms 1, …, p on E such that  = 1  …  p . 

The associated system ( )A 
 will then be the subspace of E  that is generated by 1, …, 

p, and consequently,  will have rank p. 

 If  has rank p then ( )A 
 will possess a basis 1, …, p that has p elements. One will 

then have  = a 1  …  p , which shows that  is decomposable. 

Q. E. D.  

 

 7.14. Corollary. – A non-zero exterior form of degree n on E has rank n. 

 

 7.15. Proposition. – Any non-zero exterior form of degree n – 1 on E is decomposable. 

 

 Proof: Let  be an exterior (n – 1)-form on E and let h be the linear map of E  into An 

(E) that is defined by h () =   . 
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 Since An (E) has dimension 1 over A, the kernel K of h will have dimension n or n – 1, 

and one can find a basis (i)1  i  n for E  such that (i)1  i  n−1 will be a basis for K if h if 

non-zero. 

 One can write  = 1 1 1

1

i i i n

i n

a    − +

 

     . The map h is then determined by 

h (i) = (− 1)i−1 ai 1  …  n . Consequently: 

 

 − If h is zero then  will be zero. 

 − If h is non-zero then one will have ai = 0 for i < n, an  0, and  can be written in the 

form of an 1  …  n . 

Q. E. D.  

 

 7.16. Corollary. – A non-zero exterior form of degree n – 1 on E has rank n – 1. 

 

 7.17. Corollary. – A non-zero exterior form of degree n – 2 on E has rank n – 2. 

 

 Proof: A non-zero exterior form of degree n – 2 on E can have rank n – 2, n – 1, or n. 

 A decomposable form has rank n – 2. On the other hand, if E is a four-dimensional 

space and (i)1  i  n is a basis for E then  = 1  2 + 3  4 will have rank 4 (Prop. 8.4). 

It will then remain to be shown that the rank of a form of degree n – 2 cannot be n – 1. 

 Let  be an exterior form of degree n – 2 and rank n – 1, and let F = A () be the 

associated subspace to . E/F will be a space of dimension n – 1. Since  is a form of 

degree n – 2 in A (E/F)  A (E), it will be decomposable, so its rank will be n – 2, which 

is a contradiction. 

Q. E. D.  

 

 

§ 8. – Exterior forms of degree 2. 

 

 8.1. Theorem. – Let  be an exterior form of degree 2 on E. There exists a basis (ei)1  

i  n for E and an even integer 2s  n such that: 

 

 i)  (e2i−1, e2i) = −  (e2i, e2i−1) = 1 for i  s . 

 

 ii) All of the other values of  (ei, ej) are zero. 

 

 Proof: One uses recurrence on the dimension n of E when the result is trivial for n = 1. 

One then supposes that   0. 

 Let e1 and e2 be two vectors in E such that  (e1, e2) = 1. e1 and e2 generate a subspace 

F of dimension 2 in E. 

 Let G be the set of all x  E such that  (e1, x) =  (e2, x) = 0. G is the intersection of 

the two hyperplanes H1 and H2 whose equations are i (e1)  = 0 and i (e2)  = 0, 
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respectively. One has 1H F  = (e1) and 2H F  = (e2). Consequently, G will be a 

supplement to F. 

 One can find a basis (ei)1  i  n for G and an even number 2s  n such that: 

 

 i)  (e2i−1, e2i) = −  (e2i, e2i−1) = 1 for 2  i  s . 

 

 ii) All other values of  (ei, ej), i, j > 2 are zero. 

 

The basis (ei)1  i  n then possesses the desired properties. 

Q. E. D.  

 

 8.2. Corollary. – Let  be an exterior form of degree 2 on E. There exists an even 

integer 2s  n and 2s independent linear forms (i)1  i  2s on E such that: 

 

 = 1  2 + … + 2s−1  2s . 

 

One can choose 1 arbitrarily in ( )A  , moreover. 

 

 Proof: Let  be a form on ( )A 
. There exist two vectors e1 and e2 in E such that i (e2) 

 = −  and  (e1, e2) = 1. 

 The preceding proof permits one to obtain a basis (ei)1  i  n for E that has the properties 

that were stated in 8.1. In particular, < e1,  > = 1 and < ei,  > = 0 for i > 1. The form  will 

then be the element e1 of the dual basis (i)1  i  n for E , and one will have: 

 

 = 1  2 + … + 2s−1  2s 

in that basis. 

Q. E. D.  

 

 8.3. Corollary. – An exterior form of degree 2 on E has even rank. 

 

 Indeed, with the preceding notations, if  is a non-zero form then the associated system 

to  will be the subspace of E  that is generated by the forms 1, …, 2s .  then has rank 

2s. (That shows, in particular, that the integer 2s that enters into 8.1. and 8.2 depends upon 

only .) 

 

 8/4/ Proposition. – Let  be an exterior form of degree 2 on E. In order for  to have 

rank 2s, it is necessary and sufficient that one should have 
s   0 and 

1s +
= 0. 

 

Indeed (always with the preceding notations), if  has class 2s then one will have: 

 
s = s! 1  2 + … + 2s−1  2s  0 , 
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 1s + = 0. 

 

 8.5. Proposition. – Let  be an exterior form of degree 2 on E. If  has rank 2s then 

the forms , 2 , …, s  will all have the same associated system. 

 

Indeed, for r  s, one has: 

 
r = 

1 1

1

2 1 2 2 1 2

1

!
r r

r

i i i i

i i s

r    − −

   

    . 

 

Consequently (Prop. 7.9), the forms 1, …, 2s belong to the associated system to r . 

 

 8.6. Definition. – A symplectic structure on E is defined when one is given an exterior 

form  of degree 2 and maximum rank n on E. 

 

 One then says that (E, ) is a symplectic vector space. The dimension of E is necessarily 

even (Corollary 8.3). 

 

 8.7. Proposition. – Let E be a vector space of even dimension n = 2m, and let  be an 

exterior form of degree 2 on E. The following properties are equivalent: 

 

 i) (E, ) is a symplectic vector space. 

 

 ii) m  is a volume form on E. 

 

 iii) x  i (x)  is an isomorphism of E onto E . 

 

That equivalence is an immediate consequence of the Propositions 8.4 and 7.9. 

 One says that  is a symplectic form on E. 

 

 8.8. Lemma. – Let (E, ) and (F, ) be two symplectic vector spaces with the same 

dimension. A linear map h : E → F such that h 
 =  is an isomorphism. 

 

In particular, if h is an endomorphism of E such that h   =  then h will be an 

automorphism with determinant 1 on E. 

 

 8.9. Definition. – Let (E, ) and (F, ) be two symplectic vector spaces. A symplectic 

isomorphism of E to F is a linear isomorphism h : E → F such that h 
 =  . 
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 8.10. Proposition. – Let (E, ) be a symplectic vector space. The set Sp (E, ) of 

symplectic automorphisms of (E, ) is a subgroup of the group SGl (E) of automorphisms 

of determinant 1 on E. 

 

 Exercise. – If E has dimension two then any automorphism of determinant 1 on E will 

be a symplectic automorphism. (This result is not true when E has dimension greater than 

two.) 

 

 8.11. Remark. – Let (i)1  i  2m be a basis for E  such that: 

 

 = 1  2 + … + 2m−1  2m , 

 

and let (ei)1  i  2m be the dual basis on E. [One says that (ei) is a symplectic basis for (E, 

).] 

 The matrix J = ( (ei, ej)) for  in the basis (ei) will then have the form: 

 

0 1

1 0

0 1

1 0

 
 

− 
 
 
 
 − 

 . 

 

Let h be an endomorphism of E and let M be the matrix of h in the basis (ei). In order for h 

to be a symplectic automorphism of (E, ), it is necessary and sufficient that one should 

have: 

 
tM J M = J . 

 

 

Appendix: Orientations on real vector spaces. 

 

 Let E be a real vector space of finite dimension n. The space An (E) of exterior n-forms 

on E is one-dimensional, and the relation w = v,  > 0, is an equivalent relation on An (E) 

– {0} that two equivalence classes. 

 

 A.1. Definition. – An orientation of E is an equivalence class of An (E) – {0} under 

the relation w = v,  > 0. 

 

 A space E then possesses two distinct orientations. When one has made a choice of one 

orientation, one says that E is an oriented vector space. 
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 A volume form von E determined an orientation of E by its equivalence class. One also 

says that v is an orientation on E. 

 A basis for E determines an orientation on E (Prop. 4.10). In particular, the vector space 

n will always be oriented by its canonical basis. 

 

 A.2. Definition. – An automorphism h of E preserves the orientation if v and h v
 

define the same orientation on E for any volume for v  An (E). 

 

 A.3. Proposition. – Let E be an oriented vector space. In order for an automorphism 

h of E to preserve the orientation on E, it is necessary and sufficient that the determinant 

of h should be positive. 

 

 A.4. Proposition. – Let E be an oriented vector space. The set Gl+ (E) of 

automorphisms of E that preserve the orientation is a subgroup of index 2 of the group Gl 

(E) of all automorphisms of E. 

 

Let (E, ) be a symplectic vector space of dimension 2m. The volume form m  defines an 

orientation on E, namely, the canonical orientation of the symplectic vector space (E, ). 

One always endows E with that orientation. 

 

 A.5. Proposition. – A symplectic automorphism preserves the orientation. 

 

___________ 

 



 

CHAPTER II 

 

VECTOR BUNDLES 
 

 

 All of the vector spaces considered are real. All of the vector bundles are real and finite-

dimensional. 

 

 

§ 1. – Locally-trivial fiber bundles. 

 

 1.1. Definition. Let F be a topological space. A locally-trivial fiber bundle with fiber 

F is a triplet  = (E, p, B), in which: 

 

 − E and B are topological spaces, 

 − p : E → B is a continuous, surjective map, 

 

and they satisfy the following condition: 

 

(L.-T.) for any point b in B, there exists an open neighborhood U of b and a 

homeomorphism 
1: ( )p U−  → U  F such that p1  = p (in which p1 denotes the 

projection of U  F onto U). 

 

 One says that: 

 

 E is the total space of , 

 B is the base, 

 p is the projection, 

 Fb =
1( )p b−  is the fiber over the point b in B. 

 

 A pair (U, ) of the type that intervenes in the condition (L.-T.) is called a chart on . 

Let  denote the set of charts of , i.e., the set of pairs (U, ) that consist of an open set U 

of B and a homeomorphism 
1: ( )p U−  → U  F such that p1  = p. 

 If (U, ) and (V, ) are two charts on  such that U  V   then one writes  −1 

(b, f) = (b, g (b) (f)), (b, f)  (U  V)  F, in which g is a map of U  V into the group of 

homeomorphisms of F. 

 If A is a subset of B then  |A = 
1( ( ), , )p A p A−

 will be a locally-trivial bundle with fiber 

F and base B.  |A is called the restriction of  to A. 

 If A  is a subset of A then one will have |A   = ( | ) |A A  . 
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 1.2. – One immediately deduces the following properties from Definition 1.1: 

 i) Each fiber of  is isomorphic to F. 

 ii) The projection p is an open map. 

 iii) The base B is the quotient topological space of E by the equivalence relation whose 

classes are the fibers of . 

 

 Exercise. – If B and F are separable (locally compact, locally connected, locally path-

connected, compact, paracompact, connected, path-connected, resp.) topological spaces 

then the same thing will be true for E. 

 

 1.3. Definition. – Let  = (E, p, B) be a locally-trivial fiber bundle and let A be a subset 

of B. A section of  over A is a continuous map s : A → E such that p s  is the identity 

map of A. 

 

A section s : A → B is therefore a homeomorphism of A onto s (A). 

 

 1.4. Definition. – Let   = (E, p, B) and   = ( , , )E p B    be two locally-trivial bundles 

(with possibly distinct fibers). A homomorphism of  into   is a pair (H, h) of continuous 

maps H : E → E   and h : B → B   such that p H  = h p . 

 

 That is therefore equivalent to saying that H takes the fiber over b into the fiber over h 

(b), or even that the diagram: 

 
commutes. 

 If the map H : E → E   takes fibers to fibers then it will determine the map h completely. 

That is why one also writes that H is a homomorphism of  into   (and even of E into E 

) over h. 

 Let (U, ),  : 1( )p U− → U  F and ( , )U   ,  : 1( )p U−  → U F   be charts on  

and  . If h (U)  U    then one can write: 

 

  
1( , )H b f−   = (h (b), l (b) (f)),      (b, f)  

1( ( ))U h U F−   , 

 

in which l is a map 
1( )U h U−   into the set of continuous maps from F into F  . 

E 
H 

p 

B 
h 
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 If H is the identity map on E and h is the identity map on B then (H, h) will be the 

identity homomorphism of . 

 Let A be a subset of B and let i (I, resp.) be the canonical injection of A into B (
1( )p A−

 

into 1( )p B− , resp.). (I, i) is the canonical homomorphism of  |A into . 

 Let (H, h) be a homomorphism of  into   and let (K, k) be a homomorphism of   

into a bundle  . ( , )K H k h  is a homomorphism of  into  , viz., the composite 

homomorphism. 

 An isomorphism of  onto   is therefore a homomorphism (H, h) for which H and h 

are homeomorphisms. Moreover, in order for that to be true, it suffices that H should be a 

homeomorphism. In that case,  and   are homeomorphic fibers. 

 

 1.5. Definition. – Let  = (E, p, B) and   = ( , , )E p B    be two locally-trivial bundles 

over the same base B (but with possibly distinct fibers). A homomorphism of  into 

over B is a homomorphism (H, h) :  → for which h is the identity map of B. 

 

 If  and   are isomorphic over B then one says that  and   are equivalent. The 

composition of two homomorphisms over B is once more a homomorphism over B. 

 

 1.6. Examples: 

 

 i) Trivial bundle. – The bundle  = (B  F, p1, B) is a locally-trivial bundle with fiber 

F, namely,  is the trivial bundle with base B and fiber F. 

 

 For example, the cylinder 
1S   [− 1, + 1] is the total space of the trivial bundle that has 

the circle 
1S  for its base and the line segment [− 1, + 1] for its fiber. 

 More generally,  = (E, p, B) is a trivial bundle with base B and fiber F then there exists 

a homomorphism H of  onto  over B. One says that H is a trivialization of . 

 A chart (U, ) on a locally-trivial bundle  is therefore a trivialization of  |U . 

 

 ii) Möbius band. – Let D be the band   [, + 1] in the plane 2. The Möbius band is 

the quotient space E of D that is obtained by identifying the points (x, y) and (x + 1, 1 – y). 

One denotes the projection of D onto E by . 

 

 The map (x, y) 
2 ixe 

 determines a continuous map p of E onto the circle 
1S  and  = 

(E, p, 
1)S  locally-trivial bundle with fiber [0, + 1]. 

 Indeed, let x = 
2 ixe 

 be a point on 
1S . U = 

1S − (− x) is an open subset of x, and the 

restriction of  to W = ]  – 1/2,  + 1/2 [  [0, 1] is a homeomorphism of W onto the open 
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subset  (W) = 1( )p U− . The map  :  (u, v) 2( , )ixe v  then defines a chart (U, ) of 

. 

 One might point out that the bundle  is not trivial. Indeed, the set E of points of E 

that do not possess a neighborhood that is homeomorphic to an open subset of 2 (see 

Chap. III, § 1) is connected, whereas that set has two components for the cylinder. 

 

 iii) Tangent bundle to the sphere 2S . – Let E be the pairs (u, v) in 3  3 = {(x, y, z ; 

, , )} such that || u || = 1 and < u, v > = 0, and let p : (u, v) u be projection of E onto 

the unit sphere 
2S .  = (E, p, 2 )S  is a locally-trivial bundle with fiber 2. 

 Indeed, let U1 (U2, U3, resp.) be the open subset of 
2S  that is defined by | x | < 1 (| y | < 

1, | z | < 1). 
2S  = U1  U2  U3 . The homeomorphisms: 

 

1 : 
1

1( )p U− → U1  2, (x, y, z ; , , )  (x, y, z ;  z –  y, ) , 

 

2 : 
1

2( )p U− → U2  2, (x, y, z ; , , )  (x, y, z ;  x –  z, ) , 

 

3 : 
1

3( )p U− → U3  2, (x, y, z ; , , )  (x, y, z ;  y –  x, ) 

 

permit one to define a chart (Ui, i) on a neighborhood of a point b of Ui . 

 

 1.17 Theorem. – Let   = ( , , )E p B    be a locally-trivial bundle with fiber F, and let h 

be a continuous map from a space B into B  . There exists: 

 

 − a locally-trivial bundle with fiber F,  = (E, p, B) , 

 − a continuous map H of E into E   

 

that has the following properties: 

 

 i) H is a homomorphism of  into   over h . 

 

 ii) If z = (D, , B) is a locally-trivial bundle with base B and K is a homomorphism of 

 into  over h then there will exist one and only one homomorphism L of  into  over B 

such that p L  =  and H L = K . 

 

 Moreover,  (and the homomorphism H) is determined up to an equivalence by the 

preceding properties. 
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 One can summarize the situation in Theorem 1.7. by the following commutative 

diagram: 

 
 Proof: Let E be the set of pairs ( , )b e  in B E  such that h (b) = ( )p e  , and let p :

( , )b e   b be the projection of E onto B. 

 Let b be a point of B and let  : 1( )p V−  → V  F be a trivialization of the restriction 

of   to an open neighborhood V of h (b). Let U be the open subset 1( )h V−  of B. The map 

 : ( , )b e   2( , ( ))b p e   is a homeomorphism of 1( )p U− onto U  F [its inverse is (b, 

f) 
1( , ( ( ), ))}.b h b f−  The pair (U, ) is therefore a chart of  over the open 

neighborhood U of b, which shows that  is a locally-trivial bundle with fiber F. 

 The continuous map H : ( , )b e e of E into E   will then be a homomorphism of  

into   over h. 

 Under the hypotheses of ii), the conditions that were imposed upon L will then lead one 

to take L (d) = ( (d), K (d)). 

 Finally, let ̂  = ˆ ˆ( , , )E p B  be a locally-trivial bundle with fiber F and let ˆ( , )H h  be a 

homomorphism of ̂  into   that verifies the properties i) and ii). There will exist a unique 

homomorphism L ( L̂ , resp.) of ̂  into  (of  into ̂ , resp.) such that p L = p̂  and H L

= Ĥ  ˆˆ( p L  = p and ˆ ˆH L = H, resp.). One will then have ˆ( )p L L = p and ˆ( )H L L = 

H. Consequently (from the uniqueness in ii), ˆL L  will be the identity isomorphism of . 

Similarly, ˆL L  is the identity isomorphism of ̂ . That shows that L is an isomorphism of 

̂  onto  over B. 

Q. E. D.  

 

 The bundle  = (E, p, B), thus-constructed, is called the reciprocal image bundle of   

by h. One denotes it by  = ( )h   . 

 For any point b in B, H will be a homeomorphism of Fb onto Fh (b) . 

 One deduces the following corollaries from the uniqueness of the reciprocal image 

bundle: 

 

 1.8. Corollary. – If h is the identity map on B   then ( )h    and   will be equivalent. 

 

E 
H 

p 

B 
h 

 

 

 

D 

 

K 
L 
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 1.9. Corollary. – If ĥ  is a continuous map of a space B   into B then the reciprocal 

image bundles ˆ( ) ( )h h    and ˆ ( ( ))h h     will be equivalent. 

 

 1.10. Corollary. – If B is a subset of B   and if h is the canonical injection of B into W 

then ( )h    and the restriction |B  of   to B will be equivalent. 

 

 

§ 2. – Vector bundles. 

 

 One always endows real, finite-dimensional vector spaces with their (well-defined) topologies 

as normed vector spaces. 

 If F and F   are two real, finite-dimensional vector spaces then the set Hom (F, )F   of linear 

maps from F into F   will also be a finite-dimensional vector space. In particular, End (F) = 

Hom ( , )F F  is a real, finite-dimensional algebra, and the group Gl (F) of automorphisms of F is 

an open subset of End (F). The canonical map Hom (F, )F    F → F   and Gl (F)  F → F are 

continuous. 

 

 2.1. Definition. – Let F be a real vector space of finite-dimension n, and let  (E, p, B) be a 

locally-trivial bundle with fiber F. A vector bundle structure on  is determined by the given of a 

family ˆ  = {(U, )}   of charts on  that has the following properties: 

 

 (V. B)I (U) is an open covering of B, 

 

 (V. B)II For any pair (, ) such that U  U   , one will have: 

 

  1( , )b f 

−   = (b, g (b) f) (b, f)  (U  U)  F , 

 

  in which g is a continuous map of U  U into Gl (F) (see 1.1). 

 

 (V. B)III If   ˆ  is a family of charts on h that has the properties (V. B.)I and (V. B.)II 

then  = ˆ . 

 

Denote one such bundle  = (E, p, B; ˆ ) , or even better, one often denotes it by  = (E, p, B). 

One says that  is a (real) n-dimensional vector bundle. 

 The set ˆ  is the atlas of the vector bundle , and the elements of ˆ  are the vector charts of 

. The continuous maps g : U  U → Gl (F) are the changes of charts in the atlas ˆ . 

 

 2.2. Lemma. – The changes of charts have the following property: 
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g (b) g (b) = g (b)  for all b  U  U  U  

In particular: 

 

 − g (b) =  for any b  U [in which  is the identity of Gl (F)], 

 − g (b) = (g (b))−1 for any b  U  U . 

 

More generally, an atlas on  is a subset  of ˆ  that has the properties (V. B.)I and (V. B.)II . One 

then says that ˆ  is the maximal atlas of . That notion is, in fact, justified by the following 

proposition: 

 

 2.3. Proposition. – Let F be a finite-dimensional vector space and let  = (E, p, B) be a locally-

trivial bundle with fiber F. If  = {(U, )} is a family of local charts on  that has the properties 

(V. B.)I and (V. B.)II then there will exist one and only one subset ˆ  of  that contains  and 

defines the structure of a vector bundle over . 

 

 Proof: Let ˆ  be the set of charts (U, ) on  that have the following property: For any chart 

(U, ) of  such that U  U   , one has: 

 

 −1 (x, f) = (x, g (x) f) , (x, f)  (U  U )  F , 

 

in which g is a continuous map of U  U into Gl (F). The set ˆ  contains . It therefore verifies 

(F. V.)I . 

 Let (U, ) and (V, ) be two charts on ˆ  such that U  V   . For any point x in U  V, 

there exists a chart (U, ) in  such that x  U . One can then write: 

 

 −1 (y, f) = (y, g (y) f) , (y, f)  (U  U )  F , 

 −1 (y, f) = (y,  (y) f) , (y, f)  (U  V )  F , 

 

in which g (, resp.) is a continuous map of (U  U, resp.) into Gl (F). 

 If one writes: 

 −1 (y, f) = (y, g (y) f) , (y, f)  (U  U )  F 

then one will have: 

 

g (y) = 1( ( )) ( )y g y  −  for any  y  U  U  U  

 

Consequently, g is a continuous map of U  V into Gl (F), which shows that ˆ  verifies (F. V.)II . 

 Finally, ˆ  satisfies (F. V.)III , by the construction itself. 

Q. E. D. 
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 One also denotes the vector bundle (E, p, B ; ) by  = (E, p, B ; ). 

 

 2.4. Corollary. – Let F be a finite-dimensional vector space and let  = (E, p, B) be a locally-

trivial bundle with fiber F. In order for two atlases  and  on  to define the same vector bundle 

structure, it is necessary and sufficient that the following property should be verified: 

 

 If (U, ) is a chart on  and ( , )U 
   is a chart on  such that U  U

    then one 

will have: 
1

 

−  (b, f) = (b, g (b) f) , (b, f)  (U
  U)  F , 

 

in which g is a continuous map of U
  U into Gl (F). 

 

 2.5. Examples: 

 

 i) Trivial vector bundle. – Let I be the identity map of the product B  F to itself. The chart 

(B, I) forms an atlas  on the trivial bundle  = (B  F, p1, B) :  = (B  F, p1, B ; ) is the trivial 

vector bundle with base B and fiber F. 

 

 In particular, the trivial bundle with fiber (0) is the null vector bundle with base B. 

 

 ii) Tangent bundle to the sphere 
2S . – With the notations of the example iii) in 1.6, let  be 

the set of charts (Ui, i), i = 1, 2, 3 ;  = (E, p, B ; ) is a vector bundle with fiber 2. 

 

 Indeed, the changes of charts are represented by the following matrices: 

 

g2,1 (u) = 
2 2

1 x y z

z x yy z

 −
 

−+  
 , 

g3,2 (u) = 
2 2

1 y z x

x y zz x

 −
 

−+  
 , 

g1,3 (u) = 
2 2

1 z x y

y z xx y

 −
 

−+  
 . 

 

Let D be the set of pairs ((u, v), ( , ))u v   in E  E such that u = u and < u, v > = < u, v = 0 . The 

maps: 

   : D → E , ((u, v), ( , ))u v  → (u, v + )v  , 

 

   :   E → E , (, (u, v)) → (u,  v) 
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are continuous and induce the structure of a two-dimensional vector space on each fiber of . 

 Indeed, that situation is a general property of vector bundles, as the following theorem shows. 

 

 2.6. Theorem. – Let  = (E, p, B) be a vector bundle with fiber F, and let D = b b

b B

F F


  be 

the set of pairs ( , )e e  in E  E such that p (e) = ( )p e . There exists: 

 

 − a section s0 : b 0b of  over B, 

 − a continuous map  : ( , )e e e + e  of D into E, 

 − a continuous map  : (, e)   e of   E in E 

 

that have the following properties for any point b of B: 

 

 i)  (Fb  Fb)  Fb , 

 

 ii)  (  Fb)  Fb , 

 

 iii)  and  define a vector space structure on Fb that is isomorphic to F and has 0b for its 

zero. 

 

One says that: 

 

 − s0 is the zero section of  (one generally writes 0 for 0b), 

 − e + e  is the sum of e and e  [when p (e) = ( )p e ], 

 −  e is the product of e by the scalar . 

 

 Proof: Let ˆ  = {(U, )} be the maximal atlas on . For any chart (U, ) in ˆ , one 

defines: 

 

 − A section (s0) : U → E by (s0) (b) = 1( ,0)b

− . 

 − A continuous map  of the open subset D = b b

b U

F F


  of D in into E by: 

 (e, )e = 1

2 2( ( ), ( ) ( ))p e p e p e  

−   +  . 

 

 − A continuous map  of   1( )p U

−  into E by: 

 

 (, e) = 1

2( ( ), ( ))p e p e −  . 
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One then has p  (e, )e = p (e) = ( )p e  and p  (, e) = p (e) . 

 Let (U, ) be a second chart in ˆ  such that U  U   . One will then have: 

 (s0) (b) = 1( ,0)b

−  = 1 1( ,0)b  

− −    

 = 1( , ( )0)b g b 

−  = 1( ,0)b

−  

 = (s0) (b) for any  b  U  U . 

 

  (e, )e = 1

2 2( ( ), ( ) ( ))p e p e p e  

−   +   

  = 1 1

2 2( ( ), ( ) ( ))p e p e p e    

− −     +   

  = 1

2 2( ( ), ( ( ))[ ( ) ( )])p e g p e p e p e   

−   +   

  = 1

2 2( ( ), ( ) ( ))p e p e p e  

−   +   

  =  (e, )e  for any pair  (e, )e  D  D 

 

  (, e) = 1

2( ( ), ( ))p e p e −   

  = 1 1

2( ( ), ( ( ))[ ( )])p e g p e p e    − −     

  = 1

2( ( ), ( ))p e p e −   

  =  (, e) for any pair (, e)    
1p−
(U  U ) 

 

There will then exist some continuous applications s0 : B → E,  : D → E, and  : R  E → E such 

that 
0 |Us


= (s0) , |D

 =  and 1 ( )
|

p U

 −
 =  . The verifications of the properties i), ii), and 

iii) will then become immediate. 

Q. E. D.  

 

 One easily shows that if one wishes to define the maps s0, , and  then one can restrict oneself 

to an arbitrary atlas on . Consequently, the operations that were constructed in the example ii) 

will coincide with the ones in Theorem 2.6. 

 

 2.7. Corollary. – Let  = (E, p, B) be a vector bundle and let A be a subset of B. The maps s0, 

, and  induce the structure of a vector space on the set of sections of  over A whose zero is the 

zero section s0 |A . 

 

 More generally, if  : A →  is a continuous function and if s is a section of  over A then s : 

b  (b) s (b) will be a section of  over A. 

 Let s be a section of  over B and let  = {(U ,  )} be an atlas on . For any chart (U, ) 

on , one will have s (b) = 1( , ( ))b s b 

− , b  U , in which s is a continuous map of U into F. 

One will then have s (b) = g (b) s (b), b  U  U . 
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 Conversely, when one is given a family of continuous maps s : U → F that verify the 

preceding relations, that will determine a section s of  over B. 

 For example, the zero section s0 is determined by the constant maps s : b → 0 of U into F. 

 

 2.8. Definition. – Let  = (E, p, B) and  = ( , , )E p B    be two vector bundles with fibers F 

and F   that are defined by the maximal atlases ˆ  = {(U ,  )} and ˆ   = {( , )}U 
  . A 

homomorphism (H, h) of h into   is a vector bundle homomorphism if it satisfies the following 

condition: 

 

 (H) For any chart (U, ) in ˆ  and any chart ( , )U 
  in ˆ   such that h (U)  U

   

, one will have: 

   1( , )H b f 

−   = (h (b), h (b) f) , (b, f)  (U  1( ))h U

−   F, 

 

in which h is a continuous map of 1( ))h U

−   U into Hom (F, )F   (see 1.4). 

 

Moreover, it would suffice that the condition (H) is verified by arbitrary atlases  and ˆ  that 

define  and  . 

 The identity homomorphism is a vector bundle homomorphism. The composition of two vector 

bundle homomorphisms is again a vector bundle homomorphism. 

 On what follows, one will write simply “homomorphism” for “vector bundle homomorphism,” 

and one will say that a vector bundle is trivial if it is equivalent to the trivial bundle in Example 

2.5. 

 

 Exercise. – Let  = (E, p, B) and   = ( , , )E p B    be two vector bundles and let (H, h) be a 

homomorphism of  into  . If H is a homeomorphism of E onto E   then 
1 1( , )H h− −

 will be a 

homomorphism (of vector bundles). 

 

 2.9. Lemma. – With the same notations as the ones in the definition 2.8, one has: 

 

  h (b) g (b) = h (b) , b  1( )h U

−    U  U , 

  g
 h (b) h (b) = h (b) , b  1( )h U U 

−     U , 

 

(in which g and g
  denote the changes of charts  and  ). 

 

 2.10. Theorem. – Let  = (E, p, B) and  = ( , , )E p B    be two vector bundles with fibers F 

and F   that are defined by the atlases  = (U, ) and ˆ  = ( , )U 
  . Let h be a continuous 

map of B into B   and let h : 1( )h U

−    U → Hom (F, )F   be a family of continuous maps that 
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verify the relations of Lemma 2.9. There will then exist one and only one homomorphism H of  

into   over h such that the condition (H) in 2.8. is satisfied. 

 

 Proof: For any chart (U, ) in  and any chart ( , )U 
   in ˆ  such that ( )h U U 

   , 

one must set: 

 H (e) = 1

2( ( ), ( ) ( ))h b h b p e  

−  , e  U and b = p (e). 

 

That choice is possible because if e is in 1( )h U U 

−     U  U  then one will have: 

 

 H (e) = 1

2( ( ), ( ) ( ))h b h b p e  

−   

 = 1 1 1

2( ( ), ( ) ( ))h b h b p e      

− − −        

 = 1

2( ( ), ( ) ( ))h b g h b g p e    

−    

 = 1

2( ( ), ( ) ( ))h b h b p e  

−   

Q. E. D.  

  

 For example, the constant maps h : b → 0 of 1( )h U

−    U into Hom (F, )F   determine a 

homomorphism (0, h) of  into  . One says that (0, h) is a zero homomorphism (over h). 

 

 2.11. Proposition. – Let (H, h) :  →   be a homomorphism of vector bundles. One has: 

 

   H (0) = 0 , 

  ( )H e e+  = H (e) + ( )H e , 

  H ( e) =  H (e) . 

 

 Conversely, if H : E → E   is a continuous map that takes fibers to fibers linearly then H will 

be a vector bundle homomorphism. 

 

 2.12. Proposition. – Let  = (E, p, B) and   = ( , , )E p B    be two vector bundles, and let h be 

a continuous map of B into B  . The sum and scalar product maps induce a vector space structure 

on the set Homh (, )  of homomorphisms of  into   over h that has the null homomorphism 

for its zero. 

 

The proofs of those two propositions present no difficulties. 

 

 2.13. Theorem. – Let   = ( , , )E p B    be a vector bundle with fiber F and let h be a continuous 

map of a space B into B  . Let  = (E, p, B) be the reciprocal image bundle ( )h   and let H be the 

canonical homomorphism of  into  . There exists a vector space structure on h that has the 

following properties: 
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 i) (H, h) is a vector bundle homomorphism. 

 

 ii) If  = (D, p, B) is a vector bundle and if K : e    is a vector bundle homomorphism over 

h then the associated homomorphism L : e   is a vector bundle homomorphism. 

 

Moreover, that vector bundle structure on  is determined by the conditions i) and ii), up to an 

equivalence. 

 

 Proof: Let ˆ   = {( , )}U 
   be the maximal atlas on   and let U = 1( )h U

−  . For any ,  

: ( , )b e
2( , ( ))b p e

   will be a homomorphism of 1( )p U

−  onto U  F that defines a chart 

(U, ) on . The set  = {(U, )} will then be an atlas for . Indeed, if U  U    then 

one will have: 

  1( , )b f 

−   = ( , ( ( ) )b g h b f
 , (b, f)  (U  U )  F 

 

(in which g
  denotes the changes of charts in the atlas ˆ  ). 

 

 The homomorphism (H, h) is then a vector bundle homomorphism because: 

 

 1( , )H b f 

−   = 1( ( ), )h b f 

−    

= ( ( ), ( ( ) )h b g h b f
  . 

 

Under the hypotheses on ii), one easily verifies that L is a vector bundle homomorphism. 

 Finally, the proof of uniqueness (up to equivalence) of the vector bundle structure on  is 

analogous to the one that was given in 1.7. 

Q. E. D.  

 

 Under the hypotheses of 2.13, let  = ( )h    denote the vector bundle, thus-defined, in what 

follows. Moreover, one can define  by starting from an arbitrary atlas on  . 

 

 2.14. Theorem. – Let  = (U) be an open covering on a space B and let F be a finite-

dimensional vector space. If U  U   then let g : U  U → Gl (F) be a family of continuous 

maps such that: 

 

g (x) g (x) = g (x) , for any  x  U  U  U . 

 

There will then exist one and only one (up to equivalence) vector bundle with fiber F for which the 

maps g are the changes of charts in the atlas . 
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 One says that (U, g) is a cocycle over B with values in Gl (F) (subordinate to the open 

covering ). 

 An atlas  = (U, ) on a vector bundle  then determines a cocycle (U, g) that 

characterizes  up to equivalence. 

 

 Proof: Let  be the topological sum of the products U  F and let  be the equivalence relation 

on  that identifies the pairs (x, e)  U  F and (y, f)  U  F when x = y and f = g (x) e (the 

conditions imposed on g imply that  is indeed an equivalence relation).  is an open equivalence 

relation. 

 Let  be the projection of  onto the quotient space E / . The continuous map of  onto B that 

is defined by the first projection U  F onto U is compatible with . It will then determine a 

continuous, surjective map p : E → B. 

 The triplet  = (E, p, B) is then a locally-trivial bundle with fiber F : The restriction  of  to 

U  F is indeed a homeomorphism onto 1( )p U

−  such that p   (x, f) = x and (U, 1) −  is a 

chart on . 

 The set  = {(U, 1)} −  is an atlas on  because when U  U  , one will have: 

  
1 ( , )b f  −  = (b, g (b) f) ,  (b, f)  (U  U)  F . 

 

Consequently,  = (E, p, B ; ) is a vector bundle with fiber F for which the maps g are changes 

of charts. 

 Now, let   = ( , , ; )E p B     be a vector bundle with fiber F that is defined by an atlas  = 

{(U, )} that also has the applications g for changes of charts. 

 The continuous map Ĥ  of  into E   that is equal to 1



−  on U  F is compatible with . It 

will then determine a continuous map H of E into E   such that p H  = p. The homomorphism 

(H, h) of  into   over B will then be a vector bundle isomorphism. Indeed, one has: 

 

 H  (b, f) = 1( , )b f 

−   

  = (b, g (b) f) , (b, f)  (U  U)  F. 

 

Q. E. D.  

 

Under the hypotheses of Theorem 2.14,  = (E, p, B ; ) will denote the vector bundle that is 

constructed in the preceding proof from now on. 

 One proves the following proposition in an analogous fashion. 
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 2.15. Proposition. – Let (U, g) and ( , )U g 
   be two cocycles on a space B with values in 

the same linear group Gl (F). In order for the bundles  and   that are defined by those cocycles 

to be equivalent, it is necessary and sufficient that when U U 
    , there should exist a family 

of continuous maps h : U U 
   → Gl (F) that verify the following relations: 

 

   h (b) g (b) = h (b) , b  U U U  
   , 

   g (b) h (b) = h (b) , b  U U U  
   . 

 

 2.16. Corollary. – Let (U, g) and (U, )g
  be two cocycles on a space B with values in 

the same linear group Gl (F) that are subordinate to the same open covering (U) of B. In order 

for the bundles  and   that are defined by those cocycles to be equivalent, it is necessary and 

sufficient that there should exist a family of continuous maps h : U → Gl (F) such that: 

 

  ( ) ( )g b h b 
 = h (b) g (b) , for any b  U  U . 

 

Indeed, with the same notations as in 2.15, it suffices to set h = h [then h (b) = h (b) g (b)]. 

 

 

§ 3. – Associated bundles. Orientation. 

 

 3.1. – Let  = (E, p, B) be a vector bundle with fiber F, and let (U, g) be the cocycle over B 

that is associated with the maximal atlas on . 

 Let l be a continuous homomorphism of the group Gl (F) into the group Gl( )F  be 

automorphism of a finite-dimensional vector space F  . The continuous maps g
  = g  of U 

 U into Gl( )F  verify the relations: 

 

  ( ) ( )g b g b 
   = ( )g b

  for any  b  U  U   U . 

 

( , )U g 
  is then a cocycle over B with values in the group Gl( )F . 

 

 3.2. Definition. – Let F and F   be two finite-dimensional vector space and let l be a continuous 

homomorphism of Gl (F) into Gl( )F . Let  be a vector bundle with base B and fiber F and for 

which one lets (U, g) denote the cocycle that is associated with its maximal atlas. The bundle 

 with base B and fiber F   that is determined by the cocycle (U, g ) is called the associated 

bundle to  for the homomorphism . 
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 If  is an atlas on  that defines a cocycle ( , )V g 
  over B then the bundle with base B and 

fiber F   that is determined by the cocycle ( , )V g    will be equivalent to  . 

 The associated bundles to a trivial vector bundle are also trivial then. 

 

 3.3. Examples: bundle of exterior p-forms. 

 

 Let Ap (F) be the vector space of exterior p-forms on F. The map  1( )  −  is a continuous 

homomorphism p of Gl (F) into Gl (Ap (F)). The associated bundle Ap () = 
p  is called the 

bundle of exterior p-forms over . 

 The bundle    = A1 () is also called the dual bundle to . 

 

 3.4. Proposition. – Let  = (E, p, B) be a vector bundle with fiber F and let mD = ( )m

b

b B

F




mE  be the set of sequences (e1, …, em)  mE  such that p (e1) = … = p (em) . The vector space of 

sections over B of the bundle Am () is isomorphic to the set of continuous functions  : mD →  

whose restrictions to ( )m

bF  are exterior p-forms on Fb for every b  B. 

 

 Proof: Let ˆ  = {(U, )} be the maximal atlas of  and let (U, g) be the cocycle that is 

associated with ˆ . 

 A section s of Am () over B is determined by a family of continuous maps s : U → Am (F) 

such that: 

   (b) = 1( ) ( ) ( )g b s b 

 − , b  U  U . 

 

As in the proof of Theorem 2.6, one then verifies that those maps  determine a continuous 

function  on such that for each point b  B, the restriction of  to (Fb)
m will be an exterior p-form 

on Fb . 

 Conversely, by the preceding equality, such a continuous function will determine a section of 

Am () over B, and those two correspondences will be the inverse isomorphisms to each other. 

Q. E. D.  

 

 3.5. Remark. – The preceding isomorphism is compatible with restrictions, in the following 

sense: If A is a subset of B and s is a section of Am () over B that corresponds to a numerical 

function s on mD  then the restriction of s to A corresponds to the restriction of  to the subset 

( )m

b

b B

F


 of mD . 

 In particular, take A to be a point x in B, which will show that the fiber of Am () over x is 

isomorphic to the space of exterior p-forms on the fiber Fx of  over x. 
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 In what follows, one will denote a section of Am () and the corresponding function on mD  by 

the same symbols. 

 

 3.6. Corollary. – Let  and   be two vector spaces and let (H, h) be a homomorphism of  

into  . If s is a section of ( )m A  then the map (e1, …, em) s (H e1, …, H em) will determine a 

section (H, h)s of Am () . 

 

 The map s  (H, h)s is then a linear map of the vector space of sections of ( )m A  into the 

vector space of sections of Am (). In particular, if (H, h) is the canonical homomorphism of the 

restriction  |A into h then (H, h) will be the restriction homomorphism for sections (Remark 3.5). 

 

 3.7. Definition. – An n-dimensional vector bundle is orientable if the bundle An () of exterior 

n-forms over  is trivial. 

 

 3.8. Proposition. – Let  be an n-dimensional vector bundle. In order for  to be orientable, 

it is necessary and sufficient that there should exist a non-zero section of the bundle An (). 

 

 Since An () is a one-dimensional vector bundle, Proposition 3.8. is a consequence of the 

following result: 

 

 3.9. Proposition. – In order for a one-dimensional vector bundle to be trivial, it is necessary 

and sufficient that it should possess a non-zero section. 

 

 Proof: The necessary condition is obvious. Therefore, suppose conversely that  = (E, p, B) is 

a vector bundle whose fiber F is one-dimensional, and for which there exists a non-zero section 

:s  B → E. 

 Let  be an isomorphism of F onto . The map H : B  F → E defined by H (b, f) =  (f) s (b) 

is an isomorphism of the trivial bundle  = (B  F, p1, B) onto  : Indeed, if {(U, )} is an atlas 

on , and if the section s is determined by some maps s : U → F then one will have: 

 

 H (b, f) =  ( (f) s (b)) = (b, l (f) s (b)) . 

Q. E. D.  

 

 3.10. Lemma. – Let  = (E, p, B) be a one-dimensional trivial bundle and let s1 and s2 be two 

non-zero sections of . There exists a continuous function  : B →  – (0) such that s2 =  s1 . 

 

 The proof of that lemma presents no difficulty. 

 Let  = (E, p, B) be an orientable n-dimensional vector bundle and let 0 be the set of non-zero 

sections of An (). The relation s2 =  s1, in which  is a continuous, strictly-positive function on 

B, is an equivalence relation on 0 . 
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 3.11. Definition. – Let  = (E, p, B) be an orientable, n-dimensional vector bundle and let 0 

be the set of non-zero sections of An (). An orientation on  is an equivalence class of 0 under 

the relation s2 =  s1, in which  is a continuous, strictly-positive function on B. 

 

 An orientation of  determines an orientation of each of its fibers. 

 When one makes a choice of orientation, one says that  is an oriented vector bundle. 

 A non-zero section s of An () determines an orientation on  by its equivalence class. One 

also says that s is an orientation on . 

 

 3.12. Proposition. – Let  = (E, p, B) be an orientable, n-dimensional vector bundle whose 

base B is connected. The fiber  possesses two and only two distinct orientations. 

 

 Indeed, any continuous, non-zero function on B is either strictly positive or strictly negative. 

 If s is a section of An () that defines an orientation on  then the second orientation on  will 

be defined by the section – s . 

 

 3.13. Definition. – Let  and   be two n-dimensional vector bundles that are oriented by non-

zero sections v and w of An () and ( )n A , resp. An isomorphism (H, h) of  and  is compatible 

with the orientations if v and (H, h)w define the same orientation on . 

 

 If  =   and v = w then one also says that (H, h) preserves the orientation on . (H, h) reverses 

the orientation of h if v and – (H, h) v define the same orientation. 

 

 3.14. Theorem. – Let B be a paracompact, locally-connected topological space, and let  be 

a vector bundle with base B whose fiber F is an oriented, n-dimensional vector space. In order for 

h to be orientable, it is necessary and sufficient that there should exist an atlas  on  that defines 

a cocycle (U, g) on B such that for any pair (, ) and any point b U  U, the 

automorphisms g (b) preserve the orientation. 

 

 Proof: Let  = {(U, )} be an atlas of  that defines a cocycle (U, g) on B. Since B is 

locally connected, each connected component of U will be an open set in B. One can then suppose 

that the open sets U are connected. 

 Let s be a non-zero section of An () over B that is determined by a family of continuous maps 

s : U → An (F). For any chart (U, ) of , one can write 1[( ) ( | )]( )Us b


−   = s (b) = ( ) ,b v

 in which v is a volume form that defines the orientation on F and  : U →  is a continuous 

non-zero function. 

 One can then suppose (after having possibly composed  with a symmetry with respect to a 

hyperplane in F) that each function  is strictly positive. Under those conditions, one has: 
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s (b) =  (b) v = det (g (b)) s (b) = det (g (b))  (b) v , 

 

and consequently: 

det (g (b)) =  (b) /  (b) > 0 . 

 

That shows that the condition is necessary. 

 Conversely, suppose that  = {(U, )} is an atlas on  for which the changes of charts g 

have their values in the subgroup Gl+ (F). Since B is paracompact, one can suppose that the open 

covering (U) of B is locally finite. There will then exist a partition of unity () that is subordinate 

to the covering (U). [So () is a family of continuous maps  : B → [0, 1] such that 1(]0,1[) −

 U for any , and ( )b


  = 1 for any b  B] (1). 

 For every chart (U, ) on ,  = ()v (in which v also denotes the section b  (b, v) of 

the trivial bundle (U  An (F), p1, U) is a section of An () over U and the section ( | )U    

prolongs to a section s of An () over B by way of the zero section over B – U .  

 Since the open covering (U) is locally-finite, the sum s = s


  will be a section of An () 

over B, and that section will not go to zero over B. Indeed, let b be a point of B and let 
1

U , …, 

r
U  be the open subsets of the covering (U) that include b. One will have: 

 

1
( ( ))s b  = 

1 1

1

, ( )det ( )
i

r

i

b b g b v  
=

  
  

  
  , 

 

and consequently s (b) will be non-zero. 

 That shows that the condition is also sufficient. 

Q. E. D.  

 

 

§ 4. –Sub-bundles. Quotient bundles. Whitney sums. 

 

 4.1. Proposition. – Let F be a finite-dimensional vector space and let F   be a subspace of F. 

Let  = (E, p, B) be a vector bundle with fiber F and let   = ( , , )E p B   be a vector bundle with 

the same base B and fiber F  . Finally, let H be an injective homomorphism of   into  over B. 

One can find an atlas  = {(U, )} for  that has the following properties for any  : 

 

 i) There exists a homeomorphism 
 : 1( )p U U F 

− →   such that ( , )U 
  is a vector 

bundle chart on  . 

 
 (1) A construction of a partition of unity when X is a differentiable manifold (Prop. 2.1.2) is given in Chapter III.  



§ 4. – Sub-bundles. Quotient bundles. Whitney sum. 41 
 

 ii) 1( , )H b f 

−   = (b, f), (b, f)  ( , )U 
 . 

 

Moreover, under those conditions: 

 

 iii) The set of charts ( , )U 
  is an atlas  on  . 

 

 iv) The changes of charts g of in the atlas  leave F   invariant. 

 

 v) The changes of charts g
  in the atlas  are the restrictions of g to F  . 

 

One says that   is a sub-bundle of  (subordinate to H). 

 

 Proof: Let  = {(U, )} be an atlas of  such that for any , there exists a (vector) 

trivialization 
  of |U

 . One will then have: 

 

 1( , )H b f 

−   = (b, h (b) f),  (b, f)  U F
 , 

 

in which h is a continuous map of U into Hom ( , )F F . 

 For each , one can find a continuous map g of U into Gl (F) such that g (b) h (b) is the 

canonical injection of F   into F for every point b  U, even if it means refining the open covering 

(U). 

  The map  : e  (p (e), g (p (e), p2  (e)) determines a vector chart (U, ) on , and 

the set of charts (U, ) is an atlas  for  that verifies the conditions i), ii), and iii). 

 The properties iv) and v) are then immediate consequences of Lemma 2.9. 

Q. E. D.  

 

 One easily proves the following converse: 

 

 4.2. Proposition. – Let (U, g) be a cocycle on B with values in Gl (F) such that the g leave 

the subspace F   of F invariant. Let  = (E, p, B) be a vector bundle with fiber F and let  = 

( , , )E p B   be a vector bundle with the same base B and fiber F  . Finally, let K be a surjective 

homomorphism of  onto   over B. One can find an atlas  = {(U, )} on  that has the 

following properties for any  : 

 

 i) There exists a homeomorphism 1: ( )p U U F  

−   →   such that ( , )U 
  is a vector 

chart on  . 
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 ii) 1( , )K b f 

−   = (b, q (f)), (b, f)  U  F . 

 

 Moreover, under those conditions: 

 

 iii) The set of charts ( , )U 
  will be an atlas  for  . 

 

 iv) The changes of charts g of the atlas  are compatible with q . 

 

 v) The changes of charts g
  of the atlas   are the quotients of the g . 

 

One says that   is a quotient bundle of  (subordinate to K). 

 

 4.4. Proposition. – Let (U, g) be a cocycle on B with values in Gl (F) such that the g are 

compatible with the projection q : F → F  . Let  = (E, p, B) and  = ( , , )E p B   be vector bundles 

over B with fibers F and F  , resp., that are associated with that cocycle. There exists one and only 

one surjective homomorphism K of  into   over B that has the following property: 

 

for any index , h (b, f) = (b, q (f)), b  U  and  f  F . 

 

 4.5. Definition. – Let i = (Ei, pi, B), i = 1, 2, 3, be three vector bundles with base B and fibers 

F1, F2, and F3, resp., and let H (K, resp.) be a homomorphism of 1 into 2 (2 into 3, resp.) over 

B. The sequence 
1 2 30 0

H K

  → → → →  is an exact sequence of vector bundles if the sequence: 

 

1 2 30 ( ) ( ) ( ) 0
H K

b b bF F F→ → → →  

is exact for every b in B. 

 

 Under those condition, the dimension of 2 will be the sum of the dimensions of 1 and 3, 

and the composition K H  will be the zero homomorphism of 1 into 3 over B. 

 

 4.6. Proposition. – Under the hypotheses of Proposition 4.1, there exists a vector bundle   

= ( , , )E p B   with B and fiber F   = /F F , and a surjective homomorphism of  into   over B 

such that the sequence 0 0
H K

   → → → →  is exact. 

 Moreover,  (and the homomorphism K) is determined by that condition, up to equivalence. 

 

One says that   is the quotient bundle of  by (the sub-bundle)  . 
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 4.7. Proposition. – Under the hypotheses of Proposition 4.3, there exists a vector bundle   

= ( , , )E p B   with B and fiber F  = 1(0)q−   F, and an injective homomorphism H of  in h over 

B such that the sequence: 

0 0
H K

   → → → →  

is exact. 

 Moreover,  (an homomorphism H) is determined by that condition, up to equivalence. 

 

 4.8. Proposition. – Let  = (E, p, B) and   = ( , , )E p B   be two vector bundles with the same 

B, and let H be a homomorphism of  into   over B of constant rank (the rank of H : Fb → bF   is 

independent of b). One will then have: 

 

 i) ker H = 1

0( ( ), , )H s B p B−   is a sub-bundle of  . 

 

 ii) Im H = (H (E), p , B) is a sub-bundle of  . 

 

 iii) ker H and Im H are determined by the exact sequence 0 ker Im 0
H

H H→ → → → , up to 

equivalence. 

 

One says that ker H is the kernel of H, and Im H is the image of H. 

 

The proofs of those three propositions present no difficulties. 

 

 4.9. – Let  = (E, p, B) and   = ( , , )E p B    be two vector bundles with fibers F and F  , resp., 

that are defined by their maximal atlases ˆ  = {(U, )} and ˆ   = {(V, )}, resp. The triplet 

   = ( , , )E E p p B B      is a locally-finite bundle with fiber F F  , and the set ˆ ˆ   = 

{(U  V,   )} defines a vector bundle structure on   . 

 

 4.10. Definition. – Let  = (E, p, B ; ˆ )  and   = ˆ( , , ; )E p B     be two vector bundles. The 

vector bundle   = ˆ ˆ( , , ; )E E p p B B        is called the product vector bundle of  and 

 . 

 

 The dimension of    is therefore the sum of the dimensions of  and  . 

 

 Exercise. – Let  = {(U, )} be an atlas on  and  = {(V, )} is an atlas on   

= {(U  V,   )} will be an atlas on   . 
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 4.11. – Let p1 (p2, resp.) be the projection of B B  onto B ( B  , resp.). The bundle 
1 ( )p   is a 

bundle with fiber F that whose base is the product B B  and whose total space is the set D of 

triplets (b, ,b e)  B B  E such that p (e) = b. 

 Let I1 : D → E E and P1 : E E → D be continuous maps that are defined by I1 (b, ,b e) = 

( ,0 )be   and 1 ( , )P e e  = ( ( ), ( ), )p e p e e  , resp. One verifies that I1 and P1 are vector bundle 

homomorphisms over B B  such that 1 1P I  is the identity automorphism on 
1 ( )p  . 

 One similarly defines vector bundle homomorphisms I2 : 2( )p    →    and P2 :   → 

2( )p    such that 2 2P I  will be the identity automorphism on 
2( )p   . 

 One then has: 

 

 4.12. Proposition. The sequences: 

 

1 2

1 20 ( ) ( ) 0
I P

p p     → →  → → , 

2 1

2 10 ( ) ( ) 0
I P

p p     → →  → →  

are exact. 

 

 4.13. Definition. – Let  = (E, p, B) and  = ( , , )E p B   be two vector bundles with the same 

base B. The Whitney sum    of  and   is the inverse image bundle of the product bundle 

   under the diagonal map d : b (b, b) of B into B  B. 

 

 One denotes the Whitney sum bundle   by ( , , )E E p p B   . 

 The dimension of    is the sum of the dimensions of  and  . 

 The total space E E  of    is the set of triplets: 

 

(b, e, )e   B  E E   such that p (e) = ( )p e   = b . 

 

It is therefore homeomorphic to the set D of pairs (e, )e  E E  such that p (e) = ( )p e  . The 

projection p p  is transformed into the map  : (e, )e p (e) = ( )p e   by that homeomorphism. 

 

 4.14. – As in 4.11, the maps: 

 

 I1 :  E  → E E ,  e (e, 0) , P1 : E E → E ,  (e, )e  e , 

  I2 : E   → E E , e (0, )e  , P2 : E E → E  , (e, )e e  

 

are vector bundle homomorphisms that have the following properties: 

 

 i) 1 1P I  is the identity automorphism of  . 
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 ii) 2 2P I  is the identity automorphism of  . 

 iii) The sequence 
1 2

0 0
I P

    → →  → →  is exact. 

 iv) The sequence 
2 1

0 0
I P

    → →  → →  is exact. 

 

 Exercises. 

 

 i) The sum map  : (e, )e e + e  (Theorem 2.6) is a homomorphism of    into  over 

B. 

 

 ii) If  and   are two orientable vector bundles over B then    will be orientable. 

Moreover, orientations on  and   will determine an orientation on   . 

 

 iii) Let  and   be two vector bundles. The fiber product is    is equivalent to the Whitney 

sum 
1 2( ) ( )p p    . 

 

 4.15. Proposition. – Let  = (E, p, B) and  = ( , , )E p B   be two n-dimensional vector bundles 

over a space B. In order for   to be equivalent to the dual    of , it is necessary and sufficient 

that there should exist a continuous map h : E E →  such that the restriction of h to each fiber 

of    will be a non-degenerate bilinear form. 

 

 The proof of that proposition is left to the reader. 

  

____________ 



 

CHAPTER III 

 

DIFFERENTIABLE MANIFOLDS 
 

 

 Let m denote the real numerical space of dimension m (and endow it with its Euclidian norm), 

and let x1, …, xm denote the canonical coordinates on m. One identifies m  n with m+n, and 

one identifies m−1 with the hyperplane in m whose equation is xm = 0. 

 One writes “differentiable” to mean “indefinitely differentiable.” 

 Let mH  be the half-space in m that is defined by xm  0. A map h of an open subset of mH  

into a space n is differentiable if there exists an open set V in n that contains U and a 

differentiable map g : V → n, such that h = g|U . The restriction of h to U  m−1 is then a 

differentiable map. 

 One assumes the following two fundamental results: 

 

 i) Invariance of the dimension: For m  n, an open subset in mH  will not be homeomorphic 

to an open subset of nH . 

 

 ii) Invariance of the boundary: Let U and V be two open subsets of mH  and let h be a 

homeomorphism of U onto V. One will then have h (U  m−1) = V  m−1. 

 

 

§ 1. – Differential structures. 

 

 1.1. Definition. – A manifold (topological, with boundary) of dimension m is a non-vacuous 

topological space that is separable and has a denumerable basis of open subsets, and every point 

of it possesses an open neighborhood that is homeomorphic to an open subset of mH . 

 

 A 0-dimensional manifold is a denumerable discrete space. 

 A non-vacuous open subset of an m-dimensional manifold is again an m-dimensional manifold. 

 Let mM  be an m-dimensional manifold. A chart in mM  is a pair (U, ) that consists of an 

open set U in mM  and a homeomorphism  of U onto an open subset in m or mH . One says that 

the numerical functions y1 = 1x  , …, ym = mx   form a system of local coordinates on the open 

set U. 
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 1.2. Proposition. – The dimension of a manifold is a topological invariant: Two homeomorphic 

manifolds will have the same dimension. 

 

That proposition is an immediate generalization of the theorem of the invariant of dimension. 

 

 1.3. – Let mM  be an m-dimensional manifold. Let Int mM  denote the set of points of mM  

that possess an open neighborhood that is homeomorphic to an open set in m, and let mM  = mM

− Int mM  be the complement to Int mM  (that distinction is justified by the theorem on the 

invariance of the boundary). One will then have: 

 

 i) Int mM  is a non-vacuous open subset of mM . 

 

 ii) Int mM  is an m-dimensional manifold such that  (Int mM ) = . 

 

 iii) mM  is a closed subset that is nowhere-dense in mM . 

 

 iv) If 
mM  is non-vacuous then it will be an (m – 1)-dimensional manifold such that ( )mM 

= . 

 

 v) If m = 0 then 
mM = . 

 

One says that Int mM  is the interior of mM  and that mM  is the boundary of mM . If mM =  

then one also says that mM  is a manifold without boundary. 

 

 1.4.  Proposition. – Let mM  and 
nN  be two manifolds of dimensions m and n, respectively. 

The product space 
m nM N  is a manifold of dimension m + n whose boundary is ( )m nM N   =

( ) ( )m n m nM N M N    . 

 

Indeed, the product m nH H  is the homeomorphic (but not diffeomorphic) to m nH + . 

 One says that 
m nM N  is the product manifold of the manifolds mM  and 

nN . 

 

 1.5. Examples: 

 

 i) Vector spaces. – A real vector space of finite dimension m is an m-dimensional manifold 

without boundary. 

 

 ii) Circle. – The unit circle 
1S  is a compact manifold without boundary of dimension 1. 

Indeed, for any point x = 
2 ie  

, 0     1, of 
1S , the map t 

2 i te 
 will determine a 
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homeomorphism x of the open neighborhood Ux = 1S  − {− x} of x onto the segment ]  – 1/2,  

+ 1/2 [. 

 

 iii) Möbius band. – The Möbius band E is a compact, two-dimensional manifold with 

boundary: Indeed, with the same notations as in Example 1.6 of Chapter II, any point x of E can 

be written x =  (u, v), v < 1. The projection v will then determine a homeomorphism u of an 

open neighborhood Uu of x onto an open subset Vu = ] u – 1/2, u + 1/2 [  [0, 1[ of 2H . 

 The boundary E =  (  {0}) =  (  {1}) of E is homeomorphic to the circle 1S . 

 

 iv) Sphere. – The unit sphere 2S  in 3 is a compact, two-dimensional manifold without 

boundary: Indeed, let Ui, , i = 1, 2, 3, and  =  1 be the open sets in 
2S  that are defined by  xi > 

0. The maps: 

1, : U1, → 3, (x1, x2, x3) (x2, x3) , 

 

2, : U2, → 3, (x1, x2, x3) (x1, x3) , 

 

  3, : U3, → 3, (x1, x2, x3) (x1, x2) 

 

define charts in the neighborhood of each point of 
2S . 

 

 1.6. Definition. – Let mM  be an m-dimensional topological manifold. A differentiable 

manifold structure on mM  is defined when one is given a family ˆ  = {(Ui, i)} of charts on mM  

that have the following properties: 

 

 (D. M.)I (Ui) is an open covering of mM . 

 

 (D. M.)II If Ui  Uj   then 1

j i −  is a differentiable map of i (Ui  Uj) into j (Ui  Uj). 

 

 (D. M.)III If   ˆ  is a family of charts on mM  that has the properties (D. M.)I and (D.M.)II 

then  = ˆ . 

 

 One denotes such a manifold by ˆ( , )mM , or even more often by mM , and one says that 

ˆ( , )mM  is an m-dimensional differentiable manifold. 

 The set ˆ  is the atlas of the differentiable manifold ˆ( , )mM , and the elements of ˆ  are the 

differentiable charts on mM . The differentiable maps 1

j i − : i (Ui  Uj) → j (Ui  Uj) are 
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changes of charts of the atlas ˆ . More generally, an atlas on ˆ( , )mM  is a subset  of ˆ  that 

has the properties (D. M.)I and (D. M.)II . One then says that ˆ  is the maximal atlas of mM . That 

notion is, in fact, justified by the following proposition: 

 

 1.7. Proposition. – Let mM be an m-dimensional topological manifold, and let  = {(Ui, i)} 

be a family of charts on mM  that have the properties (D. M.)I and (D. M.)II . There exists one and 

only one family ˆ  of charts on mM  that contains  and defines the structure of a differentiable 

manifold on mM . 

 

 Proof. – Let ˆ  be the set of charts (U, ) on mM  that have the following property: For any 

chart (Ui, i) of  such that Ui  Uj  , 1

i −  and 1

i−  are differentiable maps. The set ˆ  

contains . It will then verify (D. M.)I . 

 Let (U, ) and (V, ) be two charts of ˆ  such that U  V  . For any point x of U  V, there 

exists a chart (Ui, i) of  such that x  Ui .  One will then have 1 −  = 1 1( )( )i − − , and the 

map 1 −  will be differentiable at the point  (x) . That shows that ˆ  verifies (D. M.)II . 

 Finally, ˆ  will satisfy (D. M.)III, by the construction itself. 

Q. E. D.  

 

One can also let ( , )mM  denote the differentiable manifold ˆ( , )mM  then. 

 

 1.8. Corollary. – Let mM  be an m-dimensional topological manifold. In order for two 

differentiable manifold structures on mM  that are defined by atlases  = {(Ui, i)} and  = {(Vk, 

k)} to be identical, it is necessary and sufficient that the following property should be verified: 

 For any chart (Ui, i) of  and any chart (Vk, k) of  such that Ui  Uj  , the maps 1

k i −  

and 1

i k  −  are differentiable. 

 

For example, the two charts (, x x) and (, x 
3)x  define two distinct differentiable manifold 

structures on the real line . 

 

 1.9. Examples: 

 

 i) Vector spaces. – Let E be a vector space of finite dimension m, and let h be an isomorphism 

of E onto m. The chart (E, h) on E defines a differentiable manifold structure on E, and that 

structure is independent of the choice of isomorphism h. 
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The finite-dimensional real vector spaces will always be endowed with the differentiable manifold 

structure, thus-defined. 

 

 ii) Let I be an interval in  and let j be the injection of I into . The chart (I, j) defines a 

differentiable manifold structure on I. 

 

 iii) Open submanifold. – Let mM  be a differentiable manifold that is defined by its maximal 

atlas ˆ  = {(Ui, i)}, and let V be an open subset of mM . The set ˆ |V  of charts (Ui, i) of ˆ  

such that Ui  V determines a differentiable manifold structure on V: That structure is the 

differentiable manifold structure that is induced on V by mM . 

 As a result, one can endow an open subset V in a differentiable manifold mM  with the induced 

differentiable manifold structure. One then says that V is an open subset of mM . 

 In particular, if E is a real, finite-dimensional vector space then the group Gl (E) is an open 

submanifold of the vector space End (E). 

 

 iv) Circle. – The two charts (U1, 1) and (U−1, −1) [see 1.5, ii)] define a differentiable manifold 

structure on the circle 
1S . Indeed, one has: 

 

1

1 1 ( )t −

−
 = 

1
2

1
2

1 for 0,

for 0 .

t t

t t

+ −  


 
 

 

 v) Möbius band. – One similarly verifies that the four charts (Uu, u), u = 0, 1/2, 1, 3/2 [see 

1.5, iii)] define a differentiable manifold structure on the Möbius band. 

 

 vi) Sphere. – The six charts (Ui,, i,) [see 1.5, iv)] define a differentiable manifold structure 

on the sphere 
2S . Indeed: 

1

2, 1, ( , )x y  −  = 
2 2( 1 , )x y y − − , 

1

3, 2, ( , )x y  −  = 
2 2( , 1 )x x y − − , 

1

1, 3, ( , )x y  −  = 
2 2( , 1 )y x y − − . 

 

 1.10. Proposition. – Let mM  be an m-dimensional differentiable manifold with a non-vacuous 

boundary that is defined by its maximal atlas ˆ  = {(Ui, i)}. The set  of charts (V, ) on 
mM  

for which there exists a chart (U, ) in ˆ  such V = U  
mM and  =  |V define a differentiable 

manifold structure of dimension m – 1 on the boundary 
mM  of mM . 

 

In what follows, one will always endow that boundary of a differentiable manifold with the 

differentiable manifold structure, thus-defined. 
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 Proof: Let (Vj, j) and (Vk, k) be two charts in  such that Vj  Vk   and they are restrictions 

of differentiable charts (Uj, j) and (Uk, k) on mM . If: 

 
1

k j − (x1, …, xm) = (h1 (x1, …, xm), …, hm (x1, …, xm)) 

 

then one will have hm (x1, …, xm−1, 0) = 0. Consequently: 

 
1

k j  − (x1, …, xm−1) = (h1 (x1, …, xm−1, 0), …, hm−1 (x1, …, xm−1, 0)) 

 
1

k j  −  is therefore a differentiable map of j (Vj  Vk) into k (Vj  Vk) . 

Q. E. D.  

 

 Exercise. – If  is an arbitrary atlas of ˆ( , )mM  then  will induce an atlas on mM  that 

determines the structure of a differentiable manifold on 
mM . 

 

 1.11. Example. – One always endows the half-space mH  with the differentiable manifold 

structure that is defined by the chart ( mH , identity). The differentiable manifold structure that is 

induced on the boundary 
mH  = m−1 is the canonical structure on m−1 then.  

 

 

§ 2. – Differentiable maps. 

 

 2.1. Definition. – Let mM and 
nN be two differentiable manifolds. A continuous map h : mM

→ 
nN  is a differentiable map of mM into 

nN if the following condition is satisfied: 

 

 (D. M.) For any differentiable chart (U, ) on mM and any differentiable chart (V, ) on 
nN  such that h (U)  V  , 

1h  −
 will be a differentiable map of 

1( ( ))U h V −  into  (V). 

 

 It would then suffice that the condition (D. M.) should be satisfied by the charts of arbitrary 

atlases on mM and 
nN . 

 The identity map of a differentiable manifold into itself is a differentiable map. The 

composition of two differentiable maps will again be a differentiable map. 

 However, if h is a differentiable homeomorphism then 
1h−
 will not necessarily be 

differentiable. For example, x 
3x  is a differentiable homeomorphism of , but x 3 x   is not 

a differentiable map. 
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 2.2. Definition. – A differentiable curve in a differentiable manifold mM  is a differentiable 

map of an interval I into mM . 

 

 2.3. Examples: 

 

 i) If V is an open submanifold of a differentiable manifold mM  then the injection of V into 
mM  will be a differentiable map. 

 

 ii) If mM  is a differentiable manifold with a non-vacuous boundary then the injection of mM  

into mM  will be a differentiable map. 

 

 iii) Let mM  and 
nN  be two differentiable manifolds. A constant map of mM  into 

nN  is a 

differentiable map. 

 

 iv) The injection of 2S  into 3 is a differentiable map (see 1.5 and 1.9). 

 

 2.4. Remarks: 

 

 i) In the case of open subsets of m, this new notion of a differentiable map coincides with 

the classical one. 

 

 ii) The notion of differentiability for a map is a local one: A continuous map h : mM → 
nN  is 

differentiable if and only if any point x of mM  possesses an open subset V such that h |V is 

differentiable. 

 

 iii) Let h : mM → 
nN  be a differentiable map and let (U, ) be a differentiable chart on mM , 

while (V, ) is a differentiable chart on 
nN  such that h (U)  V   . One can write: 

 
1h  −
(x1, …, xm) = (h1 (x1, …, xm), …, hm (x1, …, xm)) . 

 

If yi, i = 1, …, m (zj, j = 1, …, n, resp.) denote the local coordinates on (U, ) [(V, ), resp.] then 

one often says that zj = hj (y1, …, ym), j = 1, …, n, is the local expression for h [in the charts (U, ) 

and (V, )]. 

 A differentiable map is therefore a map that is expressed locally by differentiable functions. 

 

 2.5. Definition. – Let mM  and 
nN  be two differentiable manifolds. A diffeomorphism of mM  

onto 
nN  is a homeomorphism h : mM → 

nN such that h and 
1h−
 are differentiable maps. 
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 The two manifolds mM  and nN  will then have the same dimension, and 1h−  will be a 

diffeomorphism of nN onto mM . One says that mM and nN  are two diffeomorphic manifolds. 

 

 2.6. Examples: 

 

 i) Let (U, ) be a chart on a differentiable manifold mM . In order for (U, ) to be a 

differentiable chart on mM , it is necessary and sufficient that  should be a diffeomorphism of U 

onto  (U) 

 

 ii) Let F be a finite-dimensional vector space. The map h 1h−  is a diffeomorphism of 

Gl ( )F onto itself. 

 

 iii) The map x 3 x   of  into itself is a diffeomorphism of the two differential structure that 

were defined in 1.8. 

 

 2.7. Proposition. – Let (Ui) be an open covering of a topological manifold mM , and let i be 

a homeomorphism of Ui onto a differentiable manifold Ni for every i. If 1

j i −  is a diffeomorphism 

of i (Ui  Uj)  Ni onto j (Ui  Uj)  Nj then there will exist one and only one differentiable 

manifold structure on mM  for which the homeomorphisms are diffeomorphisms. 

 

 Indeed, for one such structure, if (V, ) is a differentiable chart on Ni then 1( ( ), )i iV  −  must 

be a differentiable chart on mM , and one easily verifies that the set of charts on mM  that are 

constructed in that way will define a differentiable manifold structure that has the desired property. 

 One then says that the differentiable manifold mM  is obtained by “gluing” the manifolds Ni 

together. 

 

 2.8. A differentiable function on a differentiable manifold mM  is a differentiable map of mM  

into . The set  (M) of differentiable functions on mM  is a commutative algebra with unity over 

. One identifies  with the subalgebra of constant functions on mM . 

 Let f be a differentiable function on mM . The support of f is the adherence of the set of points 

x  mM  such that f (x)  0. The support of f is therefore a closed subset of mM . 

 A family (i) of functions in  (M) in is a locally-finite family if any point x of mM  possesses 

an open neighborhood Vx such that all of the restrictions |
xi V  will be zero except for a finite 

number of them. 
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 Under those conditions, one can define a function  : ( )i

i

x x , and that function will be 

differentiable on mM :  = i

i

  is the sum of the locally-finite family (i). That sum will then 

possess all of the algebraic properties of finite sums. 

 If h is a differentiable map of mM  into a differentiable manifold nN  then :h f h f  will 

be a unitary homomorphism of the algebra  (N) into the algebra  (M) (that is compatible with 

locally-finite sums). In particular, if V is an open set in mM  then the injection of V into mM  will 

induce the restriction homomorphism of  (M) into  (N). 

 

 2.9. Proposition. – Let mM and nN be two differentiable manifolds and let h be a continuous 

map of mM  into
nN . In order for h to be a differentiable map, it is necessary and sufficient that 

for every function f   (N), h f  should belong to  (M). 

 

It remains for us to prove that the condition is sufficient. In order to do that, we shall utilize the 

following lemma: 

 

 2.10. Lemma. – There exists a positive, differentiable function  on n such that: 

 

 (x) = 1 for || x ||  1 , 

 (x) = 0 for || x ||  2 . 

 

Proof of lemma: The function h :  →  that is defined by: 

 

h (t) = 
1/ for 0,

0 for 0

te t

t

− 



 

is a differentiable function on . 

 The function: 

 (x) = 
(2 || ||)

(2 || ||) (|| || 1)

h x

h x h x

−

− + −
 

then possesses the desired properties. 

Q. E. D.  

 

 Proof of Proposition 2.9: Let x be a point of mM  and let (U, ) be a local chart on mM  that 

contains x. One can find a local chart (V, ) on 
nN  that contains h (x) and is such that the image 

of  is n or nH , and  (h (x)) = 0. 
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 Let zi, i = 1, …, n be the system of local coordinates that is defined by y on the open set V. The 

functions  () zi  (V) extend by zeroes to 
nN – V into functions i  (V) such that i = zi on 

an open neighborhood W  V of h (x). 

 The functions i h  then belong to  (M), and one will have: 

 

h (u) = 1

1( ( ( )), , ( ( )))nz h u z h u −  = 1

1( ( ( )), , ( ( )))nh u h u  −  for every u  1( )U h W− , 

 

which shows that h is differentiable on a neighborhood of z. 

Q. E. D.  

 

 One can remark that the first part of that proof is a justification for the following proposition: 

 

 2.11. Proposition. – Let mM  be a differentiable manifold, let U be an open neighborhood of 

a point x of mM , and let f be a differentiable function on U. There exists a differentiable function 

g on mM  such that g = f on a neighborhood of x. 

 

 2.12. Proposition. – Let  = (Ui) be an open covering of a differentiable manifold mM . There 

exists an open covering  = (Vk) of mM that is locally-finite and finer than , and a partition of 

unity (k) that is subordinate to the covering  such that each function k will be differentiable on 

mM . 

 

 In other words,  = (Vk) is an open covering of mM , and (k) is a locally-finite family of 

differentiable functions on mM  that have the following properties: 

 

 i) Any point of mM  possesses a neighborhood that meets only a finite number of open sets 

in . 

 

 ii) Any open set of  is contained in an open set of . 

 

 iii) 
k  = 1. 

 

 iv) The support of k is contained in Vk . 

 

 Observe that such an open covering is  denumerable. 

 One then says that (k) is a differentiable partition of unity. 

 The proof of that proposition utilizes the following lemma: 
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 2.13. Lemma. – Let  = (Ui) be an open covering of an m-dimensional differentiable manifold 

mM . There exists an atlas {(Vk, k)} of mM  that has the following properties: 

 

 i)  = (Vk) is an open covering of mM  that is locally-finite and finer than . 

 

 ii) The image of k is m or mH . 

 

 iii) The open sets Wk = {v  Vk | || k || < 1} define an open covering of mM . 

 

 Proof: Since mM  is a locally-compact space that has a denumerable basis of open sets, there 

exists a family (Kr)rN of compacta in mM  that has the following properties: 

 

 − Kr is contained in the interior of Kr+1 . 

 

 − mM = rK . 

 

For any point x of Lr = 
1r rK K+ − , there exists an open subset Ui (x) of  and a local chart (Vx, k) 

on such that: 

 

 − x  Vx and k (x) = 0 . 

 

 − Vx  (Kr+2 − Kr−1)  Ui (x) . 

 

 − k (Vx) is equal to m or mH . 

 

Let Wx be the open set of Vx that is defined by || k (v) || < 1. Since Lr is compact, there exists a 

finite family x1, …, xs (r) such that 
1x

W , …, 
( )s rxW  will be an open covering of Lr . 

 The set of all local charts, thus-chosen, will then be an atlas for mM  that has the desired 

properties. 

Q. E. D.  

 

 Proof of the proposition 2.12: With the same notations as in Lemmas 2.10 and 2.13., the 

functions  = k     (Vk) will extend by zeroes to mM − Vk into positive functions ˆ
k   (M) 

that are equal to 1 on Wk and have its support contained in Vk . 

 The family ˆ( )k  is a locally-finite family of functions then, and the sum ˆ
k

k

  is not annulled 

on mM . 
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 The differentiable functions k = ˆ ˆ/k k   will then determine a partition of unity subordinate 

to the open covering . 

Q. E. D.  

 

 

§ 3. – Product manifolds. Differentiable vector bundles. 

 

 3.1. – Let mM  be an m-dimensional differentiable manifold without boundary, and let 
nN  be 

an n-dimensional differentiable manifold, possibly with a boundary, that are defined by maximal 

atlases ˆ  = {(Ui, i)} and ˆ  = {(Vk, k)}. Since m  mH  = m nH + , the pairs (Ui  Vk, i  k) 

are local charts on the product manifold m nM N , and the set ˆ ˆ  = {(Ui  Vk, i  k)} of 

local charts will be an atlas of a differentiable structure on 
m nM N . 

 

 3.2. Definition. – Let ˆ( , )mM  and ˆ( , )nN  be two differentiable manifolds such that 
mM  

= . The differentiable manifold ˆ ˆ( , )m nM N   is called the (differentiable) product manifold 

of the manifolds  ˆ( , )mM  and ˆ( , )nN . 

 

 3.3. Remarks: 

 

 i) If  = {(Ui, i)} is an atlas on mM  and  = {(Vk, k)} is an atlas on nN  then    = 

{(Ui  Vk, i  k)} will be an atlas for 
m nM N . 

 

 ii) The canonical isomorphism of m  n onto m+n is a diffeomorphism. (That 

diffeomorphism will then justify the identification of m  n with m+n.) 

 

The verifications of the following proposition, which are stated under the same hypotheses as in 

3.1, are immediate. 

 

 3.4. Proposition. – The boundary of 
m nM N  is the product manifold 

m nM N . 

 

 3.5. Proposition. – The projections p1 : 
m nM N  → mM  and p2 : 

m nM N → 
nN  are 

differentiable maps. 

 

 3.6. Proposition. – For any point u (v, resp.) of mM  (
nN , resp.), the map iu : y  (u, y) (jv : 

x  (x, v), resp.) is a differentiable map of 
nN  ( mM , resp.) into 

m nM N . 
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 3.7. Proposition. – In order for a continuous map h of a differentiable manifold pV  into 
m nM N  to be differentiable, it is necessary and sufficient that the maps 1p h  and 2p h  should 

be differentiable. 

 

By contrast, it is well-known that if k : m nM N  → pV  is a continuous map then the hypothesis 

of the differentiability of all maps uk i : 
nN  → pV and vk j : mM  → pV will not suffice for one 

to assert that k is a differentiable map. 

 

 3.8. Proposition. – Let M1, M2, and M3 be three differentiable maps such that 1M  = 2M  = 

. The canonical homeomorphism of (M1  M2)  M3 onto M1  (M2  M3) is a diffeomorphism. 

 

That proposition therefore justifies the suppression of the parentheses in the products of differential 

manifolds. 

 

 3.9 Proposition. – Let F, F  , and F   be three finite-dimensional vector spaces. The maps: 

 

  ( , )f f f f +  of F  F into F, 

 ( , )f f   of   F into F, 

 ( , ) ( )h f h f  of Hom ( , )F F   F into F  , 

 or of Gl (F)  F into F, 

(h, k)  k h  of Hom ( , )F F   Hom ( , )F F   into Hom ( , )F F  

  or of  Gl (F)  Gl (F) into GL (F) 

are differentiable. 

 

 3.10. Definition. – Let F be a real, n-dimensional vector space, and let B be an m-dimensional 

differentiable manifold. A vector bundle  = (E, p, B) with fiber F and base B is a differentiable 

vector bundle if it possesses an atlas  = {(Ui, i)} for which the changes of charts gij : Uj   Ui 

→ Gl (F) are differentiable maps. 

 

One says that  is a differentiable atlas on . 

 

 3.11. Lemma. – Let  is a differentiable vector bundle. There exists one and only one 

differentiable atlas  of  and that contains all of the differentiable atlas of . 

 

The proof of that lemma is analogous to the proof of Proposition 2.3 of Chapter II. 

 The atlas  is the maximal (differentiable) atlas of the differentiable vector bundle . A chart 

(U, ) on  is a differentiable vector chart on . 
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 3.12. Proposition. – Let  = (E, p, B) be an n-dimensional differentiable vector bundle whose 

base B is an m-dimensional differentiable manifold. The total space E of  is a topological 

manifold of dimension m + n, and there exists one and only one differentiable manifold structure 

on E such that for any differentiable chart (U, ) of h,  is a diffeomorphism of the open set 
1( )ip U−  onto the product manifold Ui  F. For that differentiable manifold structure, the 

projection p is a differentiable map. 

 

 Proof: Let  = {(Ui, i)} be the maximal differentiable atlas of . For any pair (i, j) such that 

Ui  Uj  , the map 1

j i

−   : (x, f)  (x, gji (x) f) will be a diffeomorphism of i (Ui  Uj) onto 

j (Ui  Uj). 

 The existence and uniqueness of the differentiable manifold structure on E is therefore a 

consequence of Proposition 2.7. 

 Since p = 1 ip   on 1( )ip U− , the projection p will be differentiable. 

Q. E. D.  

 

As a result, one will always endow the total space of a differentiable vector bundle with the 

structure of a differentiable manifold, thus-defined. (That structure is, in fact, independent of the 

choice of differentiable atlas on .) 

 

 3.13. Corollary. – Let  = (E, p, B) and   = ( , , )E p B    be two differentiable vector bundles 

with fibers F and F  , and let (H, h) be a homomorphism of  into   such that  is a differentiable 

map. In order for H to be a differentiable map of E into E  , it is necessary and sufficient that the 

following condition should be verified: 

 

 For any chart (U, ) of a differentiable atlas for  and any chart (V, ) of a differentiable 

atlas for   such that h (U)  V   , one will have  H −1 (x, f) = (h (x), g (x) f), (x, f)  
1( ( ) )h V U F−   , in which g is a differentiable map of 

1( ) )h V U−   into Hom ( , )F F  

 

One then says that (H, h) is a differentiable homomorphism. 

 

 As a result, one says that a differentiable vector bundle is trivial if it is differentiably 

isomorphic to the trivial bundle  = (B  F, p1, B). Indeed, one can show that a (continuously) 

trivial bundle is differentiably trivial by differentiable approximations. 

 

 3.14. Proposition. – If  and   are two differentiable vector bundles then    will be a 

differentiable vector bundle. Moreover, if  and   have the same base then   will also be a 

differentiable vector bundle. 
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 3.15. Proposition. – Let  = (E, p, B) be a differentiable vector bundle. The zero section s0 : B 

→ E, the sum map  : E  E → E, and the scalar product  :   E → E are differentiable maps. 

 

 3.16. Proposition. – Let  = ( , , )E p B    be a differentiable vector bundle, and let h be a 

differentiable map of a differentiable manifold B into B  . The inverse image bundle  = ( )h    is 

a differentiable vector bundle, and the canonical homomorphism (H, h) of  into   will be a 

differentiable homomorphism. 

 Furthermore, if (K, h) is a differentiable homomorphism of a differentiable vector bundle  

with base B into   then the associated homomorphism of  into  will be differentiable.  

 

The verification of those results will present no difficulties. 

 

 

§ 4. – Tangent bundle. 

 

 4.1. – Let mM  be an m-dimensional differentiable manifold that is defined by its maximal atlas 

ˆ = {(Ui, i)}. The maps gji : x 1

( )( )
ij i xD  −  [viz., the Jacobian matrix of 1

j i −  at the point 

i (x)] have the following properties: 

 

 − gji is a differentiable map from Uj  Ui into the group Gl (m, ) = Gl (m). 

 

 − gkj (x) gji (x) = gki (x) for any x  Uk  Uj  Ui . 

 

They therefore define a differentiable cocycle (Ui, gji) on mM  with values in the group Gl (m, ). 

 

 4.2. Definition. – Let mM  be an m-dimensional differentiable manifold that is defined by its 

maximal atlas ˆ = {(Ui, i)}.  The tangent bundle to mM  is the differentiable vector bundle with 

base mM  and fiber m that is determined by the cocycle 1( , ( ))i j iU D  − . 

 

The tangent bundle to mM  can also be defined analogously by starting from an arbitrary atlas on 
mM  (Prop. 2.15, Chap. II). 

 One denotes the tangent fiber bundle to mM  by  (M) = (T (M), pM, mM ) . The total space T 

(M) is the tangent bundle to mM , and the fiber Tx (M) over x is the set of tangent vectors to mM  

at the point x. 

 The associated bundle Ap ( (M)) of exterior p-forms on  (M) are also differentiable vector 

bundles. In particular, one denotes the dual bundle to  (M) by ( )M 
 = ( ( ), , )m

MT M q M : ( )M 
 

is the cotangent fiber bundle to mM , and ( )T M
 is the cotangent bundle to mM . 
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 4.3. Definition. – A differentiable manifold is parallelizable if its tangent bundle is trivial. 

 

In that case, all of the bundles Ap ( (M)) will also be trivial. 

 

 4.4. Examples: 

 

 i) The tangent bundle to m is trivial. One always chooses the trivialization of  (m) that is 

determined by the chart (m, identity). 

 

 More generally, an isomorphism h of a vector space E onto m determines a trivialization  : 

( )T E  → E  m of  (E). If k : E → m is a second isomorphism, and if  : ( )T E  → E  m is 

the corresponding trivialization of  (E) then one will have 1−   = identity  1k h− . 

 Consequently, (identity  
1)h−   will determine an isomorphism of  (E) onto the trivial 

bundle (E  E, p1, E) that is independent of the choice of isomorphism h. That is why one will 

identify T (E) with E  E in what follows. 

 

 ii) The tangent bundle to the sphere 
2S  is differentiably isomorphic to the vector bundle in 

Example 1.6 of Chapter II. 

 

 iii) If U is an open set in a differentiable manifold mM  then the tangent bundle  (U) will be 

the restriction to U of the tangent bundle  (M). 

 

 iv) Let mM  and 
nN  be two differentiable manifolds. The tangent bundle  (M  N) is 

differentiably isomorphic to the product bundle  (M)   (N). 

 

 4.5. – Let mM  and 
nN  be two differentiable manifolds of dimensions m and n, resp., and let 

h be a differentiable map of mM  into 
nN . For any differentiable chart (U, ) of mM  and any 

differentiable chart (V, ) on 
nN  such that h (U)  V  , g  1

( )( ) xD h  −  is a 

differentiable map of 1( )h V U−   in Hom (m, n). Those maps verify the relations in Theorem 

2.10 of Chapter II. They will then determine a differentiable homomorphism 
T( , )h h  of  (M) into 

 (N) : 
T( , )h h  is the tangent homomorphism to h, and 

Th : T (M) → T(N) is the tangent map to h. 

 If h is the identity map on mM  then 
T( , )h h will be the identity automorphism of  (M). 

 If h : mM  → 
nN  and k : 

nN → 
pV  are differentiable maps then 

T( )k h  = 
T Tk h . 

 Consequently, if h is a diffeomorphism of mM  onto 
nN  then 

T( , )h h  will be a differentiable 

isomorphism of  (M) onto  (N). 
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 If c : I → mM  is a differentiable curve then ( )c t  = T ( ,1)c t   Tc (t)(M) is called the tangent 

vector to the curve c at the point c (t). 

 

 4.6. Examples: 

 

 i) If h is a linear map of E into F then 
Th  will be the product map h  h : E  E → F  F. 

 

 ii) If h is a bilinear map of E1  E2 into F then Th  will be the map ((x, u), (y, v))  (h (x, y), 

h (u, y) + h (x, v)). 

 

 iii) If h : mM  → nN  is a differentiable map and U is an open set of mM  then one will have 

(h |U)T = 
( )|T

T Uh . 

 

 4.7. – Let mM  be a differentiable manifold. For any differentiable function f on mM , one lets 

df   (T (M)) be the second component of the tangent map Tf : T (M) → T () =    [see 

Example i) in 4.4]. The following properties will then be verified: 

 

 i) df = 0 if f is a constant function. 

 

 ii) d (f + g) = df + dg [Example i) of 4.6]. 

 

 iii) d (f g) = (df) g + f (dg) [Example ii) of 4.6], 

 

and consequently: 

 

 iv) d (a f) = a (df) for a  . 

 

One has, moreover: 

 

 v) df (u + v) = df (u) + df (v) . 

 

 vi) df ( u) =  df (u) . 

 

 vii) If U is an open set of mM  then d (f |U) = (df) |U [Example iii) in 4.6]. 

 

 viii) If h : mM  → 
nN  is a differentiable map then ( )d f h  = 

T( )df h . 

 

One says that df is the differential of the function f. 
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 If f is a differentiable function on an open set U in m then one will have df (x, u) = ( )xD f u , 

(x, u)  U  m. 

 

 4.8. Local expressions. – For each differential chart (U, ) on a manifold mM , T( , )U   

1 T[( ( ), )Mp U − , resp.] is the differentiable vector chart that corresponds to the tangent bundle  (M) 

[the differentiable chart that corresponds to the manifold T (M), resp.]. 

 Consequently, if (y1, …, ym) is the system of local coordinates that is defined by  on the open 

set U then 1 1( , , , , , )M m M my p y p dy dy  will be the system of local coordinates that is defined  

by T  on the open set 1( )Mp U− . 

 The local expression for the projection pM in those systems of local coordinates will then be yi 

= i My p , 1  i  m. 

 Let h : mM  → 
nN  be a differentiable map, and let (z1, …, zn) be a local coordinate system on 

an open set V in such that h (U)  V  . If zi = hi (z1, …, zn), i = 1, …, n is the local expression 

for h then the local expression for Th  will be: 

 

 i Nz p  = 1( , , )i M m Mh y p y p  

idz  = 
1( , , )i

M m M j

j j

h
y p y p dy

y




 . 

In particular: 

 

 If 
nN  =  then dh = i

j

j j

h
dy

y




 , 

 

 If mM  is an interval in  then ( )h t  = 1( ( ), , ( ))nh t h t  . 

 

 Exercise. – For any vector v  Tx (M), there exists a differentiable curve c : ] – , +  [ → mM  

such that c (0) = x and (0)c  = v. 

 

 4.9. Definition. – An m-dimensional differentiable manifold mM  is orientable if the bundle 

Am ( (M)) is (differentiably) trivial. 

 

 A parallelizable manifold is therefore orientable. 

 An orientation on M is an orientation on its tangent bundle ( )mM  (Chap. II, Def. 3.11). 

 When one has made a choice of orientation, one says that mM  is an oriented manifold. 

 Let mM  and 
nN  be two oriented differentiable manifolds. A diffeomorphism h : mM  → 

nN  

is compatible with the orientations if that is true for the isomorphism 
T( , )h h :  (M) →  (N). 
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(Chap. II, Def. 3.13). One similarly defines the notations of diffeomorphism that preserve or 

reverse the orientation. 

 

 4.10. Theorem. – Let mM  be an m-dimensional differentiable manifold. The following 

propositions are equivalent: 

 

 i) mM  is orientable. 

 

 ii) There exists a differential section with no zero of the bundle Am ( (M)) over mM . 

 

 iii) There exists an atlas  = {(Ui, i)} on mM  such that for any change of chart 1

j i −  and 

for any point x  Uj  Ui, the Jacobian 1

( )det[ ( ) ]
ij i xD  −  will be positive. 

 

The proof of that theorem is identical (up to the qualifier “differentiable”) to the proofs of the 

analogous results in Chapter II, § 3. 

 

 4.11. Examples: 

 

 i) The vector space m is an orientable differentiable manifold. One always orients it by the 

choice of canonical orientation on each fiber {x}  m of T (m) = m  m. 

 

One proceeds similarly for the half-space mH . 

 A diffeomorphism h of m ( mH , resp.) preserves the orientation if its Jacobian is positive; 

otherwise, it will reverse it. 

 

 ii) The sphere 
2S  is an orientable differentiable manifold. 

 

 iii) An open set U of a orientable differentiable manifold mM  is orientable. 

 

If mM  is oriented then an orientation on mM  will determine an orientation on U. One always 

endows U with that induced orientation. 

 

 iv) The tangent bundle T (M) to a differentiable manifold mM  is orientable. Indeed, if  = 

{(Ui, i)} is an atlas for mM  then  = 1 T{( ( ), }M ip U −  (see 4.8) will be an atlas for the manifold 

( )T M , and one will have: 

 

T

T T 1

( )
det[ ( ( ) ) ]

i
j i x

D


  −
 = 1 2

( )(det[ ( ) ])
i Mj i p xD  −  . 
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 4.12. Proposition. – If mM  is an orientable differentiable manifold then its boundary mM  

will also be orientable. Furthermore, an orientation on mM  will determine an orientation on 

.mM  

 

 Proof: An orientation on mM  will permit one to choose an atlas  = {(Ui, i)} that has the 

property iii) in Theorem 4.10 (Chap. II, Th. 3.14). Therefore, let  be the set of charts (V, ) on 

mM  for which there exists a chart (U, ) of  such that V = U  mM  and  =  |V (Prop. 1.10). 

 Let (Ui, i) and (Uj, j) be two charts on  such Ui  Uj  mM   . If one writes: 

 
1

j i − (x1, …, xm) = (h1 (x1, …, xm), …, h1 (x1, …, xm)) 

then one will have: 

m

i

h

x




(x1, …, xm−1, 0) = 0 for 1  i  m – 1, 

  m

m

h

x




(x1, …, xm−1, 0) = a (x1, …, xm−1) > 0 . 

 

Consequently, at a point x  Vj  Vi = Uj  Ui  
mM , one will have: 

 

1

( )det ( )
ij i xD   −  = 

1

( )

1
det[ ( ) ]

( ( )) ij i x

i

D
a x

 


−
 > 0 . 

 

The atlas  of 
mM  will also possess the property iii) of Theorem 4.9 then, and it will determine 

(Chapter II, Th. 3.14) an orientation of 
mM . 

Q. E. D.  

 

 4.13. Convention. – If mM  has even (odd, resp.) dimension then one endows 
mM  with the 

orientation that was determined in the proof of Theorem 4.11 (the opposite orientation to that 

orientation, resp.). 

 

 One finds the justification for that choice in Stokes’s formula (Chap. IV, Th. 4.6). 

 

 

§ 5. – Rank of a map. Submanifolds. 

 

 5.1. Definition. – Let mM  and 
nN  be two differentiable manifolds, and let h be a differentiable 

map from mM  into 
nN . The rank of h at a point x of mM is the rank of the linear map T

xh : Tx (M) 

→ Th (x) (M) that is the restriction of 
Th  to Tx (M). 
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The rank of h at a point x is therefore less than the dimensions of mM  and nN . One says that h 

has maximum rank at x if its rank if equal to the smaller of those dimensions. 

 One also says that h is: 

 

 − an immersion if m is less than n and h has rank m at each point of mM , 

 − a submersion if m is greater than n and h has rank n at each point of mM . 

 

 5.2. Lemma. – Let (U, ) be a differentiable chart on mM and let (V, ) be a differentiable 

chart on 
nN such that h (U)  V   . The rank of h at a point x  1( )h V−  U is the rank of the 

Jacobian matrix 1( )D h  −  at  (x). 

 

 5.3. Corollary. – The rank of a differentiable map is a lower-semicontinuous positive function 

with integer values. 

 

 In other words, if h has rank p at a point x then it will have rank at least p at any point that is 

sufficiently-close to x. 

 We assume the following classical theorem (J. Dieudonné, [5]): 

 

 5.4. Theorem. (the rank theorem). – Let mM  and nN be two differentiable manifolds without 

boundary, and let h : mM  → nN  be a differentiable map of constant rank p. For any point x of 
mM , there exists a local system (y1, …, ym) of differentiable coordinates on an open neighborhood 

of x, and a local system (z1, …, zm) of differentiable coordinates on an open neighborhood of h (x) 

such that the local expression for h is: 

 

zi = yi  for 1  i  p , 

zi = 0  for p < i  m . 

 

 5.5 Definition. – Let f1, …, fp be p differentiable functions on a differentiable manifold mM . 

Those functions are independent at a point y of mM  if the map z ( f1 (z), …, fp (z)) of mM into 

p has rank p at y. 

The functions f1, …, fp are then independent of the neighborhood of y and one will have p  m. 

 If p = m then the functions f1, …, fp will form a local system of differentiable coordinates on a 

neighborhood of y. 

 

 5.6. Proposition. – Let f1, …, fp be p differentiable functions on a differentiable manifold mM  

that are independent at a point y of mM . There exist m – p differentiable functions fp+1, …, fm on 
mM  such that (f1, …, fm) is a local system of differentiable coordinates on a neighborhood of y. 

 

That proposition is an immediate consequence of the rank theorem (5.4) and proposition 2.11. 
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 5.7. Corollary. – In order for the functions f1, …, fp to be independent at a point y of mM , it 

is necessary and sufficient that the differentials df1, …, dfp should induce independent linear forms 

on ( )m

yT M . 

 

 5.8. Definition. – If mM  is an m-dimensional differentiable manifold without boundary. An n-

dimensional submanifold, n  m, (or codimension m – n) of mM is a subspace N of mM that has 

the following property: 

 For any point x of N, there exists a local system (y1, …, ym) of differentiable coordinates on an 

open neighborhood U of x in mM such that U  N  is the subspace that is defined by yn+1 =  … = 

ym = 0 or by yn+1 =  … = ym = 0 and yn  0. 

 

 5.9. Proposition. – Let N be an n-dimensional submanifold of a differentiable manifold without 

boundary mM . There exists one and only one structure of an n-dimensional differentiable manifold 

for which the injection i : N → M is an immersion. 

 

In what follows, one will always endow a submanifold of a differentiable manifold with that 

structure of a differentiable manifold. 

 

 Proof: With the notations of 5.8, the local coordinates y1, …, yn define a chart on the open set 

U   N of N (which is therefore a topological manifold of dimension n), and the set of charts, thus-

defined, will determine a differentiable manifold structure on N for which the injection i: N → M 

will be an immersion. 

 If there exists a second differentiable structure on N for which i is also an immersion then one 

can deduce from the rank theorem that the identity map on N is a diffeomorphism, so those two 

structures are identical. 

Q. E. D.  

 

 5.10. Corollary. – Let mM  be an m-dimensional differentiable manifold without boundary, 

and let 
nN  be an n-dimensional differentiable manifold, n  m, and let h be an injective immersion 

of 
nN  into mM such that the image ( )nh N  is an (n-dimensional) submanifold of mM . Therefore, 

h is a diffeomorphism of 
nN  into the submanifold ( )nh N . 

 

Under those conditions, one says that h is an embedding of 
nN  into mM . 

 

 Exercise. – A proper injective immersion is an embedding. (In particular, an injective 

immersion of a compact manifold is an embedding.) 

 

 5.11. Examples: 

 

 i) An interval in  is a submanifold of . 
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 ii) The injection of mH  into m is an embedding. 

 

 iii) If U is an open subset of a differentiable manifold without boundary mM  then the injection 

of U into mM  will be an embedding. 

 

 iv) The injection of the sphere into 3 is an embedding (Example 1.9). 

 

 5.12. Definition. – Let mM  and nN  be two differentiable manifolds of dimensions m and n, 

resp. If h is a differentiable map of mM  into nN then a regular value of h is a point c in nN such 

that h has rank n at each point 1( )h c− . 

 

In particular, if 
1( )h c−

 is vacuous then c will be a regular value of h. 

 One immediately deduces the following two propositions from the rank theorem: 

 

 5.13. Proposition. – Let mM  and 
nN  be two differentiable manifolds without boundary of 

dimensions m and n, resp., with m  n. Let h : mM → 
nN be a differentiable map, and let c be a 

regular value of h, The subspace 1( )h c−  (if it is non-vacuous) is an n-codimensional submanifold 

of mM . 

 

 5.14. Proposition. – Let mM  be a differentiable manifold without boundary and let h be a 

differentiable function on mM . For any regular value c of ( )mh M , 
1(] , ])h c− −   is a submanifold 

mM  that has the submanifold 
1( )h c−

 for its boundary. 

 

 5.15. Examples: 

 

 i) If  = (E, p, B) is a differentiable vector bundle then the projection p : E → B is a 

submersion. Consequently, every fiber 
1( )p x−

, x  B, is a submanifold of E. 

 

 ii) The function h = 
2

1

i

i m

x
 

  is a differentiable function on m with maximum rank at every 

point x  0. The set mD  = 
1([0,1])h−

 is therefore a compact submanifold of m : mD  is the unit 

ball of dimension m, and its boundary 
1mS −
 is the unit sphere of dimension m – 1. 
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§ 6. – Vector fields. 

 

 6.1. Definition. – Let mM be a differentiable manifold. A vector field on mM  is a differentiable 

section of that tangent bundle  (M) over mM . 

 

 Let  = {(Ui, i)} be an atlas for mM . A vector field X on mM  is determined (Chap. II, § 2.7) 

by a family of differentiable maps Xi : Ui → m such that: 

 

Xj (y) = 1

( )[ ( ) ] ( )
ij i y iD X y −  for any  y  Uj  Ui . 

 

 The set  (M) of vector fields on mM  is a module over the algebra  (M) of differentiable 

functions on mM  (Cor. 2.7, Chap. II). One also has the notion of a locally-finite family in  (M). 

 If mM  is parallelizable then  (M) will be a free module that has a basis of m elements. 

 If U is an open subset of mM  then the restriction to U of a vector field on mM  will be a vector 

field on U. The map X  X |U is then a homomorphism of the  (M)-module  (M) into the ( )U

-module  (U). [It verifies (f X)| U = (f | U ) (X | U).] 

 

 Exercise. – Let mM  and 
nN  be two differentiable manifolds such that 

mM  = . A vector 

field on 
m nM N  is written X + Y, in which X (Y, resp.) is a differentiable map from 

m nM N  

into ( )mT M  [ ( )nT N , resp.] such that ( , )Mp X y z  = y [ ( , )Np Y y z , resp.]. 

 

 6.2. Proposition. – Let mM  and 
mN  be two differentiable manifolds, and let h be a 

diffeomorphism of mM  onto 
nN . If X is a vector field on mM  then Y = 

T 1h X h−
 will be a vector 

field on 
mN . 

 

Indeed, Y is a differentiable map of 
mN  into T (N) such that:  

 

pN Y (y) = T 1( )Np h X h y−  = 1( )Mh p X h y−  = 
1( )h h y−

 = y for any y 
mN . 

 

 6.3. – Let X be a vector field on a differentiable manifold mM . For any function f   (M), 

X f : y df (X (y)) is a differentiable function on mM : X f  is the derivative of f with respect 

to X. 

 The following properties are then verified: 

 

 i) If f is constant function on an open subset of mM  then ( )X f y  = 0 for any y  U. 
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 ii) ( )X f g +  = X f X g +  . 

 

 iii) ( )X f g  = ( ) ( )X f g f X g +  , 

 

and consequently: 

 

 iv) ( )X a g = ( )a X f , a  . 

 

One has, moreover: 

 

 v) ( )X Y f+  = X f Y f +  . 

 

 vi) ( )g X f  = ( )g X f . 

 

 vii) If U is an open set in mM  then ( )
U

X f  = ( | ) ( | )U UX f . 

 

 viii) Let h : mM  → 
nN  be a differentiable map, let X be a vector field on mM , and let Y be 

a vector field on 
nN  such that 

Th X  = Y h. One will then have: 

 

( )X f h  = ( )Y f h  

for any f   (N). (Indeed: 

 

( )X f h  = ( )d f h X  = df (Y h) = ( ( ))d f Y h  = ( )Y f h .) 

 

  6.4. Definition. – Let mM  be a differentiable manifold. A derivation of the algebra  (M) is 

a map D :  (M) →  (M) that has the following properties: 

 

 i) D (f + g) = D (f) + D (g) . 

 

 ii) D (f g) = D (f) g + f D (g) . 

 

 iii) D (f) = 0, if f is a constant function on mM . 

 

Moreover, a derivation will then verify: 

 

 iv) D (a f) = a D (f), a  . As a result, it will be an endomorphism of the vector space  (M). 
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The set of derivations of the algebra  (M) is a module over  (M). A vector field X on mM  will 

determine a derivation f  X f  of  (M). That correspondence is linear and compatible (in a 

sense that is easy to explain) with diffeomorphisms [see 6.3 iii)]. 

 Indeed, one has: 

 

 6.5. Theorem. – The correspondence that associates a vector field X on mM  with the 

derivation f  X f  of  (M) is an isomorphism. 

 

The proof of that theorem utilizes the following lemma: 

 

 6.6. Lemma. – Let f be a differentiable function on m. There exist m differentiable functions 

g1, …, gm on m that have the following properties: 

 

 i) f (x) = f (0) + ( )i i

i

x g x . 

 ii) gi (0) = (0)
i

f

x




. 

 

 Proof: One can write: 

 

f (x) = f (0) +
1

0

( )df t x
dt

dt  = f (0) +
1

0

( )
i

i i

f t x
x dt

x




   . 

 

The functions gi (x) = 
1

0

( )

i

f t x
dt

x



  will then have the desired properties. 

Q. E. D.  

 

 6.7. Lemma. – The correspondence of Theorem 6.5 is an isomorphism for mM  = m. 

 

 Proof: Since  (m) is a trivial vector bundle, a vector field X on m will be determined by a 

differentiable map x  (a1 (x), …, am (x)) of m to itself. One will then have ai = iX x , 1  i  

m, and X f = i

i i

f
a

x




 . 

 Now, let D be a derivation of the algebra  (m), and let X be the vector field on m whose 

components are ai = D (xi). 
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 For a differentiable function f on m and any point y of m, there exist m differentiable 

functions g1, …, gm on m such that: 

 

  f (z) = f (y) + [ ( ) ( )] ( )i i i

i

x z x y g z− , 

  gi (y) = ( )
i

f
y

x




. 

Consequently: 

D (f) (y) = ( ) ( ) ( )i i

i

D x y g y  = ( )( )X f y . 

 

The derivation that is associated with the vector field X is therefore D. That proves that the 

correspondence is bijective. 

Q. E. D.  

 One likewise proves that: 

 

 6.8. Lemma. – The correspondence in Theorem 6.5 is an isomorphism for mM = mH . 

 

 6.9. Lemma. – If D be a derivation of  (M). If f and g are two differential functions on mM  

that are equal to each other on an open subset of mM  then the functions D (f) and D (g) will also 

be equal on U. 

 

 Proof: Let y be a point of U and let  be a differentiable function on mM  that is equal to 0 

outside of U and to 1 on a neighborhood of y (Lemma 2.10). One will then have:  

 

f – g = (f – g) (1 – ) 

and: 

D (f – g) (y) = D (f – g) (y) (1 –  (y)) + (f (y) – g (y)) D (1 – ) (y) = 0 . 

 

Q. E. D.  

 

 6.10. Lemma. – Let D be a derivation of  (M), and let U be an open set of mM . There exists 

one and only one derivation DU of  (U) such that DU (f |U) = D (f) |U for any f   (M). 

 

 Proof: Let f be a differentiable function on U, and let y be a point of U. There exists a 

differentiable function g on mM  such that g = f on a neighborhood of y (Prop. 2.11). 

 One then sets DU (f) (y) = D (g) (y). That definition is independent of the choice of g and 

determines a derivation DU of  (U) that has the desired properties. 

Q. E. D.  
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 Proof of Theorem 6.5.: Let D be a derivation of  (M) and let  = (Vk) be a locally-finite open 

covering of mM  that has the properties required in Lemma 2.13. Let (k) be a differentiable 

partition of unity subordinate to . The derivation k D determines a derivation Dk of  (Vk). 

 Let Xk be the vector field on Vk that corresponds to the derivation Dk : Xk is zero outside of the 

support of k . It will then extend by zeroes from a vector field on mM − Vk to a vector field on 
mM , which is again denoted by Xk . 

 The (locally-finite) sum X = k

k

X  is therefore a vector field on mM  such that X f  = 

k

k

X f = ( )k

k

D f  = D (f) for any function f    (M). 

 That field X is perfectly determined by the derivation D, which shows that the correspondence 

in Theorem 6.5 is an isomorphism. 

Q. E. D.  

 

 In what follows, one will identify  (M) with the module of derivations of  (M) by means 

of that isomorphism. 

 The composition of two derivations is not generally a derivation. Meanwhile: 

 

 6.11. Lemma. – Let X and Y be two vector fields on a differentiable manifold mM . The map f 

→ ( ) ( )X Y f Y X f  −    is a derivation of the algebra  (M). 

 

 That lemma (whose verification is a simple exercise) justifies the following definition: 

 

 6.12. Definition. – Let X and Y be two vector fields on a differentiable manifold mM . The Lie 

bracket of X and Y is the vector field [X, Y] = XY – YX. 

 

 If U is an open set of mM  then one will have [X, Y] |U = [X |U , Y |U] [see 6.3, iii)]. 

 

 6.13. Proposition. – The Lie brackets have the following properties: 

 

 i) [X, Y + Z] = [X, Y] + [X, Z] . 

 ii) [X, f Y] = ( ) [ , ]X f Y f X Y + , f  ( )mM . 

 iii) [X, Y] = − [Y, X] . 

 iv) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 . 

 

The latter equality is called the Jacobi identity. 

 The proof of Proposition 6.13 presents no difficulty. 

 



74 Chapter III – Differentiable Manifolds. 
 

 6.14. Proposition. – Let h : mM  → nN  be a differentiable map, and let X1, X2 be two vector 

fields on mM , while Y1, Y2 are two vector fields on nN  such that T

ih X  = Yi h, i = 1, 2. One will 

then have T

1 2[ , ]h X X  = [Y1, Y2] h . 

 

 Proof: It suffices to show that for any f  ( )nN , one will have: 

 
T

1 2( [ , ])df h X X = df  ([Y1, Y2] h) . 

Now: 

  T

1 2( [ , ])df h X X = 
T( )df h  ([X1, X2] 

  = ( )d f h  ([X1, X2] 

  = 1 2 2 1( ( )) ( ( ))X X f h X X f h  −    

  = 1 2 2 1(( ) ) (( ) )X Y f h X Y f h  −        [6.3., viii)] 

  = 1 2 2 1( (( ) ( (( ))Y Y f h Y Y f h  −    

  = 1 2([ , ] )Y Y f h  

  = 1 2( [ , ])df Y Y h  = 1 2([ , ] )df Y Y h . 

Q. E. D.  

 

 6.15. Local expressions. – Let (y1, …, ym) be a local system of differentiable coordinates on an 

open subset U of mM , and let X be a vector field on mM . 

 If ai = dyi (X | U) then one says that i

i i

a
y




  is the local expression for X (in the local 

coordinates y1, …, ym). Under those conditions, for any function f   (M), one will have: 

 

( ) |UX f  = i

i i

f
a

y




 . 

 

Let Y be a second vector field on mM  whose local expression is i

i i

b
y




 . The local expression 

for the Lie bracket [X, Y] will then be: 

 

,

j j

i i

i j i i j

b a
a b

y y y

   
− 

   
 . 

In particular, ,
i jy y

  
 
   

 = 0. 
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 6.16. Definition. – Let N be a submanifold of a differentiable manifold without boundary ,mM  

and let i be the injection of N into mM . A vector field X on mM is tangent to the submanifold N 

if X (y)  
T ( ( ))yi T N  for any point y  N. 

 

 6.17. Proposition. – Let Y be a vector field on a differentiable manifold mM  that is tangent to 

a submanifold N of mM . There exists one and only one vector field X on N such that 
Ti X = Y i. 

 

 Proof: Since Ti  is injective, for any point x of N, there exists one and only one tangent vector 

X (x)  Tx (N) such that T ( )i X x = Y (x). It remains to be verified that the map x  X (x) is 

differentiable. 

 Let x be a point of N. There exists a local system (y1, …, ym) of differentiable coordinates on 

an open neighborhood U of x in mM  such that U  N is the subspace that is defined by yn+1 = … 

= ym = 0 (and possibly yn  0). 

 If Y = 
1

m

i

i i

a
y=




  is the local expression for Y in U then one will have: 

  ai (y1, …, ym, 0, …, 0) = 0 for i > n. 

 

Consequently, X | U  N = 
1

1

( , , ,0, ,0)
n

i n

i i

a y y
y=




  is differentiable. 

Q. E. D.  

 

More generally, one further proves the following result analogously (by using the rank theorem): 

 

 6.18. Proposition. – Let mM and 
nN  be two differentiable manifolds, let h be an injective 

immersion of 
nN  into mM , and let X be a vector field on mM such that for any point y 

nN , one 

has X (h (y))  T ( ( ))yh T N . There will then exist one and only one vector field Y on 
nN  such that 

Th Y  = X h. 

 

 6.19. Corollary. – Let N be a submanifold of a differentiable manifold without boundary .mM  

If X and Y are two vector fields on mM  that are tangent to N then their Lie bracket [X, Y] will also 

be tangent to N. 

 

 6.20. Proposition. – Let mM be a differentiable manifold without boundary, and let h = (h1, 

…, hn) be a differentiable map of mM into n, while c is a regular value of h such that N = 
1( )h c−

 . In order for a vector field X on mM  to be tangent to N, it is necessary and sufficient that one 

should have 1X h  = … = nX h  = 0 on N. 

 

Indeed, for any point x of N, Tx(N) is identified with the kernel of T

xh . 
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§ 7. – Differential forms. 

 

 7.1. Definition. – A differential form of degree p on a differentiable manifold mM is a 

differentiable section of bundle Ap ( (M)) of exterior p-forms on  (M). 

 

 One also says that a differential form of degree 1 is a Pfaff form on mM . 

 Any differential form of degree p > m is zero. 

 The set p (M) of differential forms of degree p on mM  is a module over the algebra  (M) of 

differentiable functions on mM . One has the notion of a locally-finite family in p (M), just as one 

does in  (M) and  (M),  

 If U is an open subset of mM  then the restriction to U of a differential form of degree p on 
mM  will be a differential form of degree p on U. The map    | U is then a homomorphism of 

the  (M)-module p (M) into the  (U)-module p (U). 

 

 7.2. Proposition. – Let mM  be a differentiable manifold and let p = ( , , )p mD M  be the 

Whitney sum of p exemplars of the tangent bundle  (M). The module p (M) of differential forms 

of degree p on mM is isomorphic to the module of differentiable functions  : pD →  whose 

restriction to each fiber (Ty (M))p, y  mM  is an exterior p-form on Ty (M). 

 

 [The structure of  (M)-module on  (D) is induced by the homomorphism   :  (M) → 

( )D .] 

 The proof of that proposition is analogous to that of Proposition 3.4 in Chapter II, up to the 

qualification that everything must be differentiable. 

 As in the continuous case (Chap. II, Remark 3.5), that isomorphism is compatible with 

restrictions. 

 In what follows, one denotes a differential form of degree p on mM  and the corresponding 

differentiable function on pD  by the same symbol. 

 

 7.3. Corollary. – The differential df of a differentiable function f   (M) is a Pfaff form on 

mM . 

 

 Indeed, the Proposition 7.2 permits one to identify the module 1 (M) with the module of 

differentiable functions on T (M) whose restriction to each fiber Tx (M) is linear. 

 

 7.4. Local expression. – Let (U, ) be a differentiable chart on a manifold mM , and let (y1, …, 

ym) be the system of local coordinates that is defined by  on the open set U. 

 

 Proposition 7.2 then permits one to interpret the functions: 
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1

1

, , , , ,M m M

m

y q y q
y y

  
 

  
 

 

as a local system of coordinates on an open set 1 ( )Mq U−  of ( )T M . The local expression for the 

projection qM is then: 

  yi = i My q , i = 1, …, m . 

 

 7.5. – Let  be a differential form of degree p on a manifold mM . If X1, …, Xp are p vector 

field on mM  then: 

 (X1, …, Xp) : x  (X1 (x), …, Xp (x)) 

 

will be a differentiable function on mM . 

 One then associates  with an exterior p-form on  (M)-module  (M), and that 

correspondence is compatible with the restrictions. 

 Indeed, one has: 

 

 7.6. Theorem. – The correspondence that associates a differential form  of degree p on mM

with the exterior p-form (X1, …, Xp)  (X1, …, Xp) on the module  (M) is an isomorphism. 

 

The proof of that theorem utilizes the following Lemma: 

 

 7.7. Lemma. – The correspondence in Theorem 7.6 is an isomorphism when mM  = m or mM

= mH . 

 

 Proof: The proofs in both cases are analogous, so one will suppose that mM  = m. 

 The vector fields 1/ x  , …, / mx    form a basis for  (m) over  (m). The Pfaff forms dx1, 

…, dxm form a basis of 1 (m) over  (m), and one has i

j

dx
x

 
   

 = ij . The correspondence in 

7.6. thus identifies the basis (dxi) for 1 (m) with the dual basis to the basis 
jx

 
   

 on  (m). As 

a result, it will be an isomorphism when p = 1. 

 More generally, a differential form  of degree p on m is determined by its values 
1 pi ia  = 

1

, ,

pi ix x


  
 
  
 

   (m), in which 1  i1 < … < ip  m (see 7.2). Consequently, the 
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correspondence of 7.6 that associates  with the exterior p-form 
1 1p pi i i ia dx dx   [here, one 

identifies 1 (m) with  (m)] is an isomorphism. 

Q. E. D.  

 

 7.8. Lemma. – Let a be an exterior p-form on  (M) and let U be an open subset of mM . There 

exists one and only one exterior p-form ij on  (U) such that: 

 

U (X1 | U, …, Xp | U) =  (X1, …, Xp) 

for all X1, …, Xp  (M) .  

 

 The proof of that Lemma, and that of Theorem 7.6, are now the same in appearance as those 

of Lemma 6.10 and Theorem 6.5. 

 In what follows, one will identify p (M) with the module of exterior p-forms on  (M), 

and  (M) = 
0

( )p

p

M


  [0 (M) =  (M)], with the algebra of exterior forms on  (M) :  (M) 

is the algebra differential forms on mM . 

 

 7.9. Proposition. – Let f1, …, fp be p differentiable functions on a differentiable manifold .mM  

In order for f1, …, fp to be independent at a point y of mM , it is necessary and sufficient that the 

form  = df1   …  dfp should not be zero at y. 

 

The result is an immediate consequence of Corollary 5.7. 

 

 7.10. – Let h : mM → 
nN  be a differentiable map and let  be a differential form of degree p, 

with p > 0 on 
nN . The map: 

 

  h  : (v1, …, vp)  1( , , )T T

ph v h v , (v1, …, vp) 
pD  

 

determines a differential form of degree p on mM  (Prop. 7.2). That differential form is 

characterized by: 

  ( h  (X1, …, Xp)) (x) 
1( ( ), , ( ))T T

ph X x h X x ,      X1, …, Xp   (M). 

 

One says that is h  is the reciprocal image form of  under h. 

 For a differential form of degree 0, i.e., for a function f   (M), one sets h f
 = f h  (see 

2.8). 

 



§ 7. – Differential forms. 79 
 

 7.11. Proposition. – Let h : mM → nN  be a differentiable map, and let f be a differentiable 

function on nN . One has ( )h df  = ( )d h f . 

 

Indeed [see 4.7, viii)]: 

( )h df  = T( )df h  = ( )d h f  . 

 

 7.12. Proposition. – Let h: mM → nN  be a differentiable map. The map h :  (N) →  (M) 

is a homomorphism of algebras. 

 

The verification is immediate. 

 If h is the identity map of mM  then h  will be the identity isomorphism of  (M). If h : mM

→ nN  and k : nN  → pV  are differentiable maps then one will have ( )k h 
 = h k  . 

 

 7.13. Local expression. – Let h: mM → nN  be a differentiable map whose local expression in 

the systems of differentiable coordinates (y1, …, ym) and (z1, …, zn) is zi = hi (y1, …, ym). If: 

 

1 1

1

1

1

( , , )
p p

p

i i n i i

i i n

a z z dz dz
   

   

 

is the local expression for a differential form  of degree p on 
nN  then the local expression for 

h   will be: 

1 1

1

1 1

1

( ( ), , ( ))
p p

p

i i n n i i

i i n

a h z h z dh dh
   

  . 

 

 7.14. Definition. – Let mM  be a differentiable manifold of dimension m. A volume form on 
mM  is a differential form  of degree m on mM  such that  (x)  0 for any x  mM . 

 

 7.15. Proposition. – In order for a differentiable manifold mM  to be orientable, it is necessary 

and sufficient that there should exist a volume form on mM . 

 

That proposition is, in fact, only a partial reformulation of Theorem 4.10. 

 A volume form  on mM  determines an orientation on  (M) (Chap. II, 3.11). In that case, one 

also says that  is an orientation on  (M), and even more often, an orientation on mM . In order 

for a diffeomorphism h of mM  to preserve (reverse, resp.) the orientation, it is necessary and 

sufficient that  and h 
  (− h 

, resp.) should define the same orientation. 
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Appendix: Riemannian structures. 

 

 A.1. Definition. – Let  = (E, , B) be a vector bundle with fiber F. A Riemannian structure 

on  is defined by a continuous function Q : E →  such that the restriction of Q to each fiber Fb 

is a positive-definite quadratic form. 

 

If  is a differentiable vector bundle then one imposes the further condition on Q that it must be a 

differentiable function on E. 

 The given of Q is equivalent to that of a continuous (or differentiable) function g : E  E → 

, such that for any point b  B, the restriction of g to the fiber Fb  Fb is the polar form of the 

restriction of Q to the fiber Fb of . One says that g is a Riemannian metric of . 

 When  is the tangent bundle to a differentiable manifold mM , one also says that Q is a 

Riemannian structure on mM  and that mM  is a Riemannian manifold. 

 

 A.2. Theorem. – If the space B is paracompact then there will exist a Riemannian structure 

on any vector bundle  = (E, p, B) with base B. 

  

 Proof: Let  = (U) be a locally-finite open covering of B such that for any index , there 

exists a trivialization  of 
U

 , and let () be a partition of unity that is subordinate to the 

covering . 

 Let q : F → , be a Riemannian structure on the fiber of . For any , Q̂ = q p2  will be a 

Riemannian structure on 
U

 . 

 The function Q̂   then extends to a continuous function Q : E → , and one easily verifies 

that Q = Q


  is a Riemannian structure on . 

Q. E. D.  

 

 When  is a differentiable vector bundle, one can similarly obtain a differentiable function :Q  

E → . 

 

___________ 

 



 

CHAPTER IV 

 

DIFFERENTIAL AND INTEGRAL CALCULUS 

ON MANIFOLDS 
 

 

 From now on, all manifolds, charts, …, will be supposed to be differentiable. That qualification 

will be omitted in what follows when no possible confusion would arise. 

 

 

§ 1. – Derivations and anti-derivations. 

 

 1.1. Definition. – Let A be a unitary algebra over a commutative field K. A gradation of A is a 

denumerable family (Ap)p of subspaces of A that has the following properties: 

 i) A is the direct sum of Ap . 

 ii) Ap Aq  Ap+q . 

 

In particular, K is contained in A0 (viz., it is identified with K  1). 

 One says that A is a graded algebra and that Ap is the set of (homogeneous) elements of degree 

p in A. 

 Let (Bp)p be a gradation of an algebra B. A map h : A → B is compatible with the gradations 

if h (Ap) is contained in Bp for every p. 

 

 Exercise. – The sub-modules A0 and p

p

A are sub-algebras of A. Each Ap is a module over A0. 

 

 1.2. Definition. – A graded algebra A = p

p

A


  is anti-commutative if one has: 

 

xp xq = (− 1)pq xq xp 

 

for every element xp  Ap and every element xq  Aq . 

 

 In this case, if A is an algebra with characteristic 2 then A will be commutative. If A is an 

algebra with characteristic not equal to 2 then any element of odd degree in A will have square 

zero. 

 The sub-algebra 2 p

p

A  is contained in the center of A. It is then commutative. 
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 1.3. Example. – For any manifold nM , the algebra  (M) of differential forms on nM  will be 

a (real) graded anti-commutative algebra if one sets ( )p M  = (0) for p = 0. 

 

 The homomorphism h  :   (N) →  (M) that is associated with a differentiable map h : mM  

→ nN  is compatible with the gradations. 

 If mM  is a parallelizable manifold then the algebra  (M) will be generated by its elements of 

degree 0 and 1 (Chap. I, Th. 5.5). More generally: 

 

 1.4. Proposition. – Any differential form on a manifold mM  is the sum of a locally-finite family 

of decomposable differential forms. 

 

 Proof: Let  = (Vk) be a locally-finite open covering of mM  by parallelizable open sets. 

 Let  be differential form on mM . Using a partition of unity subordinate to , one can find a 

locally-finite family (k) of differential forms that have the following properties: 

 

 i) The support Fk of k is contained in Vk. 

 ii)  =  k . 

 

 Each k |U is a finite sum of decomposable forms that are zero outside of Vk . Consequently, k 

will be a finite sum of decomposable forms, which proves the proposition. 

 

 1.5. Corollary. – If  mM  is a compact manifold then the algebra  (M) will be generated by 

its elements of degree 0 and 1. 

 

 In what follows, A will denote a graded anti-commutative algebra over a (commutative) field 

K. 

 

 1.6. Definition. – Let p be an even integer. A derivation of degree q of A is an endomorphism 

d of the vector space A that has the properties: 

 

 i) dAp  Ap+q . 

 ii) If x  Ap then d (xy) = (dx) y + (− 1)p x (dy) . 

 

 Convention. – When A is the algebra of differential forms on a manifold mM , one imposes the 

following additional condition upon a derivation (anti-derivation, resp.): 

 

 If (k) is a locally-finite family of differential forms on mM then (dk) will also be a locally-

finite family, and k

k

d 
 
 
 
  = k

k

d . 
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 Exercises: 

 

 i) A derivation (anti-derivation, resp.) is zero on the base field. 

 

 ii) The set of derivations (anti-derivations, resp.) of A admits the structure of a module over 

the algebra A0. 

 

 1.8. Example. – Let X be a vector field on a manifold mM . Let iX :  (M) →  (M) denote the 

interior product with X . iX is an anti-derivation of degree – 1 on  (M) (Chap. I, Prop. 6.3) that 

has the following properties: 

 

 i) iX+Y = iX + iY . 

 

 ii) ifX = f iX . 

 

 iii) Let h : mM  → 
nN  be a differentiable map, and let X   (M) and Y   (N) be two vector 

fields such that 
Th X = Y h . For any form    (N), one will have: 

 

( )Yh i   = ( )Xi h   . 

 

In particular, if U is an open set on mM  then (iX )| U = (iX | U)  | U . 

 

 1.9. Proposition. – Let d1 (d2, resp.) be a derivation of degree p1 (p2, resp.) of A, and let a1 (a2, 

resp.) be an anti-derivation of degree q1 (q2, resp.) of A. One will then have: 

 

 i) a1 a1 is a derivation of degree 2q1 of A. 

 

 ii) a1 a2 + a2 a1 is a derivation of degree q1 + q2 of A. 

 

 iii) [d1, d2] = d1 d2 – d2 d1 is a derivation of degree p1 + p2 of A. 

 

 iv) [a1, d1] = a1 d1 – d1 a1 is a derivation of degree p1 + q1 of A. 

 

 1.10. Proposition. – If A is generated by its elements of degree 0 and 1 then two derivations 

(anti-derivations, resp.) of A will be equal if and only if they coincide on A0  A1 . 

 

 The verification of those two propositions presents no difficulties. 

 

 1.11. Proposition. – Let mM  be a manifold, and let d be a derivation (anti-derivation, resp.) 

of  (M). For any open U of mM , there exists one and only one derivation (anti-derivation, resp.) 

dU of  (U) such that (d)|U = dU (a|U) for any    (M). 
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One says that dU is the restriction of d to the open set U. 

 

 The proof of that proposition is analogous to the proofs of Lemmas 6.9 and 6.10 in Chapter 

III. 

 

 1.12. Corollary. – Two derivations (anti-derivations, resp.) of  (M) are equal if and only if 

they give the same values to f and df for any function f   (M). 

 

  1.13. Example. – Let X be a vector field on mM . The interior product iX is characterized by the 

following relations: 

 

 i) iX f = 0 . 

 ii) iX df = X  f, f   (M). 

 

 

§ 2. – Exterior differentiation. 

 

 2.1. Lemma. – Let  be a differential form of degree p  1 on a manifold mM : 

 

d : (X1, …, Xp+1)  

 
1

1

1 1 1 1

1

ˆ ˆ ˆ( 1) ( , , , , ) ( 1) ([ , ] , , , , , , )
p

i i j

i i p i j i j p

i i j

X X X X X X X X X X 
+

− +

+ +

= 

−  + −   

 

(in which the terms with “hats” are omitted) is a differential form of degree p + 1 on mM . 

 

 In particular, if  is a Pfaff form then: 

 

d (X, Y) = X   (Y) − Y   (X) –  ([X, Y]) . 

 

 2.2. Lemma. – Let f be a differentiable function on mM : d (df) = 0 . 

 

 2.3. Lemma. – Let f1, …, fp be differentiable functions on mM : 

 

d (g df1  …  dfp) = dg  df1  …  dfp . 

 

 The verification of those three lemmas is a simple exercise in calculation. 

 Upon setting d = d on  (M), the maps d in Lemma permit one to define an endomorphism d 

of the vector space  (M) that has following properties: 
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 i) dp (M)  p+1 (M) . 

 

 ii) If (k) is a locally-finite family of differential forms then (dk) will also be a locally-finite 

family, and 
k

k


 
 
 
d  = k

k

d . 

 

 iii) For any open subset U of M and any form    (M): 

 

(d)|U  = d ( |U) . 

 

 2.4. Proposition. – The endomorphism d is an anti-derivation of degree + 1 on  (M). 

 

 Proof: Since d is compatible with the restrictions, it will suffice to prove that proposition when 

mM = m and mM = mH . 

 In those cases, any differential form will be a finite sum of decomposable forms 
1i

f dx  …  

pi
dx . One can then restrict oneself to verifying the condition ii) of Definition 1.7 when  = 

1i
f dx

 …  
pi

dx and  = 
1j

g dx  …  
qj

dx . One will then have (Lemma 2.3): 

 

 d = 
1i

df dx  …  
pi

dx  

 

 d = 
1j

dg dx  …  
qj

dx  

 

 d (  ) = (g df + f dg)  
1i

dx  …  
pi

dx  
1j

dx  …  
qj

dx  

 

 (d)   = g df  
1i

dx  …  
pi

dx  
1j

dx  …  
qj

dx  

 

   (d) = (− 1)p g dg  
1i

dx  …  
pi

dx  
1j

dx  …  
qj

dx . 

Q. E. D.  

 

 2.5. Corollary. – The anti-derivation d of  (M) is characterized by the following relations: 

 

 i) df = df . 

 

 ii) d (df) = 0, f   (M) . 

 

 2.6. Definition. – Exterior differentiation on a manifold mM  is the anti-derivation d of degree 

+ 1 of algebra  (M) that is characterized by the following relations: 
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 i) df = df . 

 

 ii) d (df) = 0, f   (M) . 

 

One says that d is the exterior derivative of the form . 

 

 2.7. Proposition. – Let h : mM → nN  be a differentiable map. One has h
d = h

d . 

 

 Proof: If 
ih 

d = 
ih 

d , i = 1, 2, then one will also have: 

 

1 2( )h   d = 
1 2( )h   d . 

 

Consequently, since h and d are compatible with locally-finite sums, it will suffice to verify the 

relation h 
d = h d  when  = f and  = df, f   (N). Now: 

 

 h f
d  = h df

 = dh f  = h f
d , 

 

 ( )h df
d = 0 and ( )h df

d  = dh f
d  = 0 . 

Q. E. D.  

 

 2.8. Proposition. – The exterior derivative is an anti-derivation of square zero. 

 

 Proof: Since 
2

d  is a derivation of degree 2, it would suffice to verify that 
2d  = 0 when  = 

f and  = df, f   (M) . Now: 

2 fd = d df = 0 , 2dfd  = 0 . 

Q. E. D.  

 

 2.9. Definition. – A differential form    (M) is a closed form if d = 0. 

 

 Any differential form of degree m on a manifold of dimension m is therefore closed. 

 

 2.10. Definition. – A differential form    (M) is an exact form if there exists a differential 

form    (M) such that  = d . 

 

 An exact differentiable form is a closed form. The converse is false:  = 
2 2

x dy y dx

x y

−

+
 is a closed 

Pfaff form on 2 – {0}, but it is not exact. 

 Meanwhile, the Poincaré lemma is a local converse: 
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 2.11. Theorem (Poincaré lemma). – A closed differential form of degree p  1 on m ( mH , 

resp.) is exact. 

 

 The proof, which we will write out in the case of m, utilizes the following lemma. 

 

 2.12. Lemma. – Let Ji , i = 0, 1, be injections of  m   that are defined by Ji (x) = (x, i). There 

will then exist a map (on ) K :  (m  ) →  (m) that has the following properties: 

 

 i) K ( 1p+ (m  ))  p (m) . 

 ii) d K + K d = 
1 0J J −  .  

 

 Proof: Let  denote the canonical coordinate of the factor  in m   and define a linear map 

K :  (m  ) →  (m) by: 

 

 K f = 0 if f   (m  ) , 

 K  = 0 if  = 
1 pi ia dx dx  , 

 K  = ( ) 1 1

1

0 pj jbdt dx dx
−

   if  = 
1 1pj jbdt dx dx

−
   . 

 

 It remains to verify the condition ii). Now: 

 

 d K f = 0 , 
 

 K df = 
1

0

f
dt

t



  = 
1 0( )J J f − , 

 

 d K  = 0 , 
 

 K d = 
1

1

0 pi i

a
dt dx dx

t

 
  

 
  = 

1 0( )J J  − , 

 

 
1J   = 

0J   = 0 , 

 

 d K  = 
1 1 1

1

0
1

pi j j

i m i

b
dt dx dx dx

x −

 

 
   

 
  . 

Q. E. D.  
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 Proof of Theorem 2.11. – Let  be a closed differential form of degree p  1 on m. 

 

 Let H denote the differential map from m   into m that is defined by H (x1, …, xm, t) = 

1( ,t x …, t xm). H  J1 is the identity map on m and H  J0 is the constant map m on 0. One will 

then have: 

  = 
1 0( )J J H   −  

 = ( )K H K H  +d d  

 = ( )K H 
d . 

 

Consequently,  will be an exact form. 

Q. E. D.  

 

 Exercises: 

 

 i) Carry out the preceding calculation when  has degree 1. 

 

 ii) One can generalize Theorem 2.11 in the following way: Let mM  be a manifold (a manifold 

without boundary, resp.), and let H : (x, t) ht (x) be differentiable map of mM   ( mM  [0, 1], 

resp.) into mM . If  is a closed form on mM  then 
1 0( )h h  −  will be an exact form. 

 

 

§ 3. – The Lie derivative. 

 

 Let X be a vector field on a manifold mM . LX = iX d + d iX is a derivation of degree 0 on the 

algebra  (M) (Prop. 1.9). That derivation is characterized by the following relations: 

 

 i) LX f = X  f , 

 ii) LX df = d (X  f ), f   (M) . 

 

 3.1. Definition. – Let X be a field of vectors on a manifold mM . The Lie derivative with respect 

to the vector field X is the derivation of degree 0 of  (M) that is defined by LX = iX d + d iX . 

 

 Exercise. – If  is a differential form of degree p  1 then one will have: 

 

(LX ) (Y1, …, Yp) = X   (Y1, …, Yp) − 1( , ,[ , ], , )i p

i

Y X Y Y . 

 

In particular, if  is a Pfaff form then (LX ) (Y) = X   (Y) –  ([X, Y]) . 
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 3.2. Proposition. – The Lie derivative commutes with exterior derivation. 

 

Indeed, LX d = d iX d = d LX . 

 

 3.3. Proposition. – Let X and Y be two vector fields on a manifold mM , and let f   (M) and 

   (M). One has: 

 

 i) LX+Y = LX + LY . 

 

 ii) Lf X  = f LX + df  iX  . 

 

The proof of that proposition is immediate. 

 

 3.4. Proposition. – Let X and Y be two vector fields on a manifold mM . One has: 

 

 i) [LX, iY]  = i[X, Y] . 

 

 ii) [LX, LY] = L[X, Y] . 

 

 Proof. – Since [LX, iY] and i[X, Y] ([LX, LY] and L[X, Y] , resp.) are two anti-derivations of degree 

– 1 (two derivations of degree 0, resp.), it will suffice to verify that they take the same values on 

the forms  = f and  = df, f   (M). Now: 

 

 [LX, iY] f = LX iY f − iY LX f = 0 , 

 i[X, Y] f = 0 ,  

 

 [LX, iY] df = LX (Y  f) − iY d (X  f) = X  (Y  f) − Y  (X  f) = [X, Y]  f , 

 i[X, Y] df = [X, Y]  f , 

 

 [LX, LY] f = X  (Y  f) − Y  (X  f) = [X, Y]  f , 

 LX, Y] f = [X, Y]  f , 

 

 [LX, LY] df = LX LY df − LY LX df = d ([LX, LY] f) = d ([X, Y]  f) 

 LX, Y] df = d ([X, Y]  f) 

Q. E. D.  

 

 Exercise. – Let h : mM → 
nN  be a differentiable map, and let X   (M), Y   (N) be two 

vector fields such that 
Th X = Y h . For any form    (N): 

 

( )Yh 
L  = ( )Y h L . 
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In particular, if U is an open subset of mM  then (LX )|U = (LX|U) (|U) . 

 

 3.5. Local expression. – Let (x1, …, xm) be a system of local coordinates on an open subset U 

of a manifold mM , and let: 

1 1

11
p p

p

i i i i

i i m

a dx dx
   

   

 

be the local expression for a form    (M). One has, for example: 

 

1/ x  L  = 
1

1

11 1

p

p

p

i i

i i

i i m

a
dx dx

x   


 


 . 

 

 

§ 4. – Integration of differential forms. 

 

 For any manifold mM , let ( )p

c M  denote the sub-module (over the algebra  (M)) of 

differential forms of degree p on mM  that have compact support. One has: 

 

( ( ))p

c Md   1( )p

c M+ . 

 

If mM  is compact then ( )p

c M  = p (M). 

 

 4.1. – Let  = f dx1  …  dxm be a differential form with compact support of degree m on an 

open subset U of m ( mH , resp.). The number 
U

  = 
U

f d  (in which  is the Lebesgue measure 

dx1…dxm on U) is called the integral of the form  on U. One thus defines a linear form on the 

vector space ( )m

c U . 

 Let  = (Vi) one a locally-finite open covering of U and let (i) be a partition of unity that is 

subordinate to . The support of a differential form  meets only a finite number of open subsets 

Vi, and one will have: 

U
  = 

i
i

V
i

  . 

 

Let V be an open subset of m ( mH , resp.) and let h = (h1, …, hm) : V → U be a diffeomorphism 

that is compatible with the orientation. One will then have det i

j

h

x

 
   

 > 0. In that case: 
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U
f d  = ( )det i

V
j

h
f h d

x


 
   

 , 

and consequently, 
U

  = 
V

h  . 

 

 4.2. Theorem. –  Let mM  be an oriented manifold. There exists one and only one linear form 

 
mM
  on the vector space ( )m

c U  that has the following property: 

 

 (I) If h is a diffeomorphism of an open subset U of m ( mH , resp.) onto an open subset V of 

mM  that is compatible with the orientations, and if   ( )m

c U  has its support contained in V 

then one will have: 

mM
  = 

U
h  . 

 

One says that 
mM
  is the integral of the form  on mM . 

 

 Proof: Let  = (Vi) be a locally-finite open covering of mM  such that for any i, there exists a 

diffeomorphism hi of an open subset U of m ( mH , resp.) onto Vi (Chap. III, Th. 4.10) that is 

compatible with the orientations, and let (i) be a partition of unity that is subordinate to . 

 The support of a differential form   ( )m

c M  meets only a finite number of open subsets Vi . 

One must then have: 

mM
  = 

m i
M

i

 
 
 
 
  = 

m i
M

i

    = ( )
i

i i
U

i

h    . 

 

That shows the uniqueness of the integral. 

 Conversely, the preceding equality determines a linear form on the vector space ( )m

c M . It 

remains for us to verify that condition (I) is satisfied. 

 Let h be a diffeomorphism of an open subset U of m ( mH , resp.) onto an open subset V of 

mM  that is compatible with the orientations. The diffeomorphisms 1

ih h−  are compatible with the 

orientations, and one has: 

 
mM
  = 

( )
( )

i i
i i

U h V
i

h  





   

= 
1

1

( )
( ) ( )

i i
i i i

U h V
i

h h h  
−

−  


   

 = 
1 ( )

( )
i

i
U h V

i

h h 
−
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= 
U

h  . 

Q. E. D.  

 

 4.3. Corollary. – Let mM  and mN  be two oriented manifold, and let h : mM  → mN  be a 

diffeomorphism that is compatible with the orientations. One has: 

 

  
mN
  = 

mM
h   for any   ( )m

c N . 

 

That corollary is an immediate consequence of the uniqueness of the integral. In particular, if h is 

a diffeomorphism of mM  that preserves the orientation then: 

 

  
mM

h   = 
mM
  for any   ( )m

c M . 

 

 4.4. Corollary. – If mM is a compact manifold that is oriented by a volume form  then the 

integral of  over mM  will be strictly positive. 

 

 Exercise. – If one changes the orientation of a connected manifold then the integral will change 

sign. 

 

 Consequently, if h is a diffeomorphism of mM  that reverses the orientation then: 

 

  
mM

h   = −
mM
  for any   ( )m

c M . 

 

 4.5. Remark. – Let mM  be an oriented manifold and let c(M) be the ideal of  (M) that 

consists of differentiable functions with compact support. For any differential form   m (M), 

 : f 
mM

f   is a linear form on the vector space c(M) that determines a Radon measure on 

mM  in a unique manner. 

 

 4.6. – Let  = i

i

a dx1  …  dxi−1  dxi+1  …  dxm be a differential form with compact 

support of degree m – 1 on an open subset U of mH . If U  
mH  =  then one will have: 

 

U
 d  = 

1( 1)i i

U
i i

a
d

x
− 

−


   = 0 . 

 

Now suppose that V = U  
mH   , and let j be the canonical injection of V into U. In that case: 
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U

 d  = 
1( 1)i i

U
i i

a
d

x
− 

−


   

 = 1

1 1( 1) ( , , ,0)m

i m
V

a x x d−

−
− −   

 = 
V

j    (convention 4.13 of Chapter III). 

 

 4.7. Theorem (Stokes’s formula): Let mM  be an oriented manifold, and let j be the canonical 

injection of the oriented manifold mH  (convention 4.13 of Chapter III) into mM . For any 

differential form   1( )m

c M− , one will have: 

 

mM
 d  = 

mM
j 

 . 

 

Proof: With the same notations as in the proof of Theorem, 4.2., one will have: 

 

mM
 d  = 

m i
M

i

 
 
 
 
 d  = ( )

i
i i

U
i

h    d . 

 

Let j be the canonical injection of mH  into m and let ki denote the restriction of hi to U  .mH  

When one takes 4.5 into account, one will have: 

  

  ( )
i

i i
U

h  

 d = 0    if U  mH  = , 

while: 

( )
i

i i
U

h  

 d  = ( )
m

i
i i

U H
j h   


  

   = (( ) )
m

i
i i

U H
k j j  

  if U  
mH   . 

Consequently: 

mM
 d  = 

mM
j 

 . 

Q. E. D.  

 

 4.8. Corollary. – Let mM be a manifold without boundary. For any differential form  
1( )m

c M− , one will have: 

mM
 d  = 0 . 

 

___________ 

 



 

CHAPTER V 

 

DIFFERENTIAL EQUATIONS AND  

DIFFERENTIAL SYSTEMS ON MANIFOLDS 
 

 

 Unless stated to the contrary, the manifolds that will be considered in the rest of this book will 

be manifolds without boundary. 

 

 

§ 1. Integrating vector fields. 

 

 1.1. Definition. – Let X be a vector field on a manifold mM .  An integral curve of X is a 

differentiable curve c : I → mM  such that for any t  I, c (t) = X (c (t)) (Chap. III, § 4.5). 

 

 If y is a singular point of X [viz., X (y) = 0] then the constant map t  y of  into mM  will be 

an integral curve of X. 

 Let (y1, …, ym) be a local coordinate system on an open set U of mM .  If i i
i

a
y




  is the local 

expression for X then the integral curves of X in U will be the solutions of the differential equation 

ix  = ai (x), i = 1, …, m.  That is why one says that X is a differential equation or a dynamical 

system on mM .  The integral curves of X are also called the solutions or trajectories of X. 

 If one reformulates the local existence and uniqueness theorem for solutions of a differential 

equation (H. Cartan [4], J. Dieudonné [5]) then one will get: 

 

 1.2 Theorem. – Let X be a vector field on a manifold mM .  For any point y  mM and any  

 , there will exist: 

 

 − An open neighborhood U of y, 

 − A number  > 0, 

 − A differentiable map  : (t, z) t (z) of (t – , t + )  U into mM that has the following 

properties for any z U: 

 

 i) t  t (z) is an integral curve of X. 

 ii)  (z) = z. 

 

 Furthermore: 

 



§ 1. − Integrating vector fields 95 

 iii) If Vi , i , i , i = 1, 2 are analogous givens that have properties i) and ii), and if  = inf. 

(1 , 2) then 1 and 2 will coincide on (t – , t + )  (V1  V2) . 

 In particular, two integral curves that are defined on the same interval I in  will be equal if 

they take the same value at a point of I. 

 

 1.3 Corollary. – Let X be a vector field on a manifold mM .  There exists an open neighborhood 

U of {0}  mM  in   mM and a differentiable map  : (t, y)  t (y) of U into mM  that has the 

following properties for any y  mM : 

 

 i)   {y}  U is connected. 

 ii) t  t (y) is an integral curve of X. 

 iii) 0 (y) = y. 

 iv) If (t, y), (t + t, y), and (t, t (y)) are in U then t + t (y) = t (t (y)) . 

 

Furthermore: 

 

 v) If Vi , i , i = 1, 2 are analogous givens that have the properties i), ii), and iii) then they 

will also have property iv), and 1 = 2  on V1  V2 . 

 

 Proof. – One can find an open covering (Ui) of mM , a family (i) of strictly-positive numbers, 

and a family (i) of differentiable maps i : (−i , + i)  Ui → mM that has properties i) and ii) of 

Theorem 1.2. 

 Let U = 
i

(−i , + i)  Ui    mM and let  be the differentiable map of U into mM  that 

is equal to i on (−i , + i)  Ui . [That choice is justified by property iii) of 1.2.]  The open set U 

and the map  will then have properties i), ii), and iii) of the statement. 

 Under the hypotheses of property iv),   + t (y) and   t (t (y)), 0    t are two 

integral curves of X that take the same value t (y) for  = 0 ; consequently,  + t (y) = ( ( ))t t y   . 

 Property v) is proved in an analogous fashion. 

Q. E. D.  

 

 1.4 – Let W be an open set of mM  such that {t} W are contained in U, as well as { }t−  t 

(W) .  The map y  t (y) is a diffeomorphism of W onto t (y) that has z  −t (z) for its inverse; 

in particular, t (W) is an open subset of mM . 

 Moreover, if {t } t (W), {− t } t (t (y)), {t + t}  W and {− t − t } t + t (y) are in U 

then t + t (y) = t (t (y)) for any y  W; one will then have t + t = t  t on W. 

 Those remarks justify the following terminology: 
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 1.5 Definition. – A local one-parameter group of diffeomorphisms of a manifold mM  is a 

pair (U, ) in which: 

 

 − U is an open neighborhood of {0} mM in   mM , 

 −  : (t, y)  t (y) is a differentiable map of U into mM  that has the following properties: 

 

 i) For any y  mM ,   {y}  U is connected. 

 ii) y  0 (y) is the identity map of mM . 

 iii) If (t, y), (t + t, y), and (t, t (y)) are in U then t + t (y) = t (t (y)) . 

 

 One also denotes that local one-parameter group of diffeomorphisms by t (without specifying 

the domain of definition). 

 A vector field X on a manifold mM  permits one to construct a local group (U, ) of 

diffeomorphisms of mM : One says that (U, ) is generated by X.  In that case [property v) of 1.3], 

the germ of  at {0}  mM will be determined by X. 

 

 1.6. – When U =   mM , one says that (U, ) (or t) is a (global) one-parameter group of 

diffeomorphisms on mM .  The following properties will then be satisfied: 

 

 i) For any t  , t : y  t (y) is a diffeomorphism of mM . 

 ii) 0 is the identity map of mM . 

 iii) t + t  = t  t . 

 iv) −t = (t)−1. 

 

 Example. – For any manifold mM , ht : (t, v)  et v is a one-parameter group of 

diffeomorphisms of T (M) : ht is the one-parameter group of homotheties of T (M). 

 

 1.7. Lemma. – Let X be a vector field on a manifold mM .  The set of local one-parameter 

group of diffeomorphisms of mM that is generated by X will possess one and only one maximal 

element when it is ordered by inclusion. 

 

 That lemma is a direct consequence (thanks to Zorn’s lemma) of property v) of 1.3. 

 In general, that maximal local group is not a global one-parameter group of diffeomorphisms 

of mM . 

 

 Example. – The maximal local group (U, ) that is generated by the vector field 
2x

x




 on  

is given by: 
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 U = {(t, x)     | 1 – t x > 0}, 

  (t, x) = 
1

x

tx−
. 

 

 1.8. Definition. – A vector field on a manifold mM is complete if it is generated by a global 

one-parameter group of diffeomorphisms of mM . 

 

 1.9. Theorem. – A vector field on a compact manifold is complete. 

 

 That theorem is a consequence of the following proposition: 

 

 1.10. Proposition. – Let X be a vector field on a manifold mM and let (U, ) be the largest 

local one-parameter group of diffeomorphisms of mM that is generated by X.  For any y  mM , 

let (y , y) denote the interval of  that is defined by   {y}  U =  (y , y)  {y} and let 
yc+ : 

[0, y) →
mM [

yc− : (y , ] → mM  , resp.] denote the integral curve t  t (y) of X.  If the image 

of 
yc+  (

yc− , resp.) is relatively compact then one will have y = +  (y = − , resp.). 

 

 Proof. – Suppose that the image of 
yc+  is relatively compact and that y is finite (the second 

case can be deduced by changing X into – X). 

 Let z be an accumulation point for the curve 
yc+  for t → y , let W be an open subset of z, let  

be a strictly-positive number, and let  : (− , + )  W → mM be a differentiable map that has 

properties i) and ii) of Theorem 1.2. 

 Let  be in the interval (y – , y) such that t (y)  W.  One can find an open neighborhood 

V of y such that { }  V is contained in U and t (V) is contained in W. 

 Then let U = U  (y – , y + )  V.  One can prolong  into a local group (U, ) by 

setting: 

(t, x) =  (t – ,  (, x)), x  V, and | t − y | <  , 

 

which is absurd, since (U, ) is maximal. 

Q.E.D.   

 

 1.11 Corollary. – A vector field with compact support is complete. 

 

 1.12. With the same notations as in 1.10, let y be a point of mM  such that (y , y) = , and let 

 =  (  {y}).  For any point z  , one will have (z , z) =  . 
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 The set G = {t   | t (y) = y} is a closed subgroup of  that independent of the choice of 

point y on  .  Three cases must then be considered according whether G = {0}, G = , or G = , 

  0: 

 

 − If G = {0} then t t (y) is an injective immersion of  in mM . 

 − If G =  then y is a singular point of X (and conversely). 

 − If G = ,   0 then one says that t t (y) is a periodic solution of X of period  . In that 

case,  will be compact and a submanifold of mM  that is diffeomorphic to the circle 1S . 

 

 Exercise. – A trajectory c :  → mM  is periodic iff its image is compact. 

 

 1.13. Proposition. – Let X be a vector field on a manifold mM .  There exists a strictly-positive 

differentiable function f on mM  such that the vector field Y = f X is complete. 

 

 The maximal solutions (in the sense of 1.7) of X and Y that pass through a point y of mM have 

the same images then. 

 The proof of this proposition uses the following lemma: 

 

 1.14. Lemma. – There exists a proper differentiable function on any manifold. 

 

 Proof: 

 

 Let  = (Ui)i  N be a locally-finite open covering of a manifold mM that is indexed by the set 

of strictly-positive integers (any local-finite open covering of a manifold is denumerable) and let 

(i) be a partition of unity that is subordinate to . 

 The family (i i)i  N is locally finite, and g = i

i

i



N

 is a proper differentiable function on mM

. (If K is compact in  then g−1 (K) will be compact in mM ]. Q.E.D. 

 

 Proof of proposition 1.13 (2): Let g : mM →  be a proper differentiable function on mM  and 

let f = 
2( )X ge− 
.  If Y = f X then one will have dg (Y) = (X  g)

2( )X ge− 
 1 on mM . 

 Let c : (a, b) → M be a solution of Y that is defined on a bounded interval of .  One has: 

 
 (2) I must thank A. Dold for the idea behind this proof.  
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dg c

dt
= [(X  g) 

2( )X ge− 
]  c 

and 

( )dgc t

dt
  1, t  (a, b). 

 

The set gc (a, b) is then bounded, and consequently the image of c will be relatively-compact in 
mM . 

 One then deduces from Proposition 1.10 that Y is complete. 

Q.E.D.   

 

 1.15. Proposition. – Let X be a vector field on a manifold mM  and let y be a point of mM such 

that X (y)  0.  There exists a local coordinate system (x1, …, xm) on an open neighborhood of y in 

which the local expression for X is  / x1 . 

 

 Proof: 

 

 Since the property has a local character, one can suppose that X is a vector field on m such 

that X (0) =  / x1 . 

 Let (U, ) be a local one-parameter group of diffeomorphisms of m that is generated by X : 

 (t, x1, …, xm) = (h1 (t, x1, …, xm), …, hm (t, x1, …, xm)).  Let k = (k1, …, km) be the differentiable 

map that is defined in a neighborhood of 0 by: 

 

ki (x1, …, xm) = ki (x1, 0, x2, …, xm),  i = 1, …, m . 

 

Since X (0) =  / x1 , the Jacobian matrix (0,0)i

j

k

x

 
   

 will be the identity matrix.  The map k will 

then possess an inverse map l = (l1, …, lm) on a neighborhood of 0 that defines local coordinates 

yi = li (x1, …, xm) on that neighborhood. 

 In that local coordinate system, the trajectories of X are curves t  (t + y1, y2, …, ym), and 

consequently the local expression for X is  / y1 . 

Q.E.D.   

 

 1.16. Proposition. – Let h : mM → 
nN be a differentiable map and let X   (M), Y   (N) 

be two vector fields such that hT X = Y h.  If t and t are local one-parameter groups that are 

generated by X and Y then one will have t h = h t . 

 

 The proof of that property is immediate. 

 Similarly: 
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 1.17. Proposition. – Let X be a vector field on a manifold mM  that is tangent to a submanifold 

N of mM .  Any integral curve of X that passes through a point y  N will be contained in N. 

 

 

§ 2. One-parameter groups and derivations 

 

 2.1 Theorem. – Let t be a local one-parameter group of diffeomorphisms on a 

manifold mM .  There exists one and only one vector field X on mM such that t is a local 

one-parameter group that is generated by X.  That vector field is characterized by the 

relations: 

 

(X  f) (y) = 
0

( ( )) ( )
lim t

t

f y f y

t



→

−
, f   (M). 

 

 The proof of that theorem uses the following lemma: 

 

 2.2. Lemma. – Let U be an open neighborhood of {0}  m in   m such that for 

any x  m,   {x}  U is connected, and let f (t, x) be a differentiable function on U 

such that f (0, x) = 0 for any x  m.  There exists a differentiable function g (t, x) on U 

such that f (t, x) = t g (t, x). 

 

 Indeed, one has f (t, x) = 
1

0
( , )

f
t ts x ds

t



 .  It will then suffice to take g (t, x) = 

1

0
( , )

f
ts x ds

t



 .  g (0, x) will then be equal to 
f

t




(0, x). 

 

 Proof of theorem 2.1: 

 

 Suppose that there exists a vector field X on mM  that generates the local one-parameter 

group t .  For any point y  mM , X (y) is the vector tangent to the curve t  t (y) at y = 

0 (y) .  Such a vector field is then unique. 

 We shall now show that for any function f  (M) and any point y  mM , 

( ( )) ( )if y f y

t

 −
 has a limit (Df) (y) when t tends to 0 and that Df is a differentiable 

function on mM . 

 Since that result has a local character, one can suppose that mM = m.  There will then 

exist a differentiable function g (t, y) such that: 
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f (t (y)) – f (y) = t g (t, y) . 

 

 One then verifies, in a classical fashion, that f  Df is a derivation of the algebra 

(M).  It then determines a vector field X on mM . 

 Finally (Chap. III, § 4.8), for any point y  mM , X (y) is the tangent vector to the curve 

t t (y) at y = 0 (y).  If one recalls condition iii) of Definition 1.5 then X ((y)) will also 

be the tangent vector to the curve t t (y) at t (y), which shows (Corollary 1.3) that t 

is a local one-parameter group that is generated by X. 

Q.E.D.   

 

 2.3 Definition. – Let X be a vector field on a manifold mM .  A first integral of X is a 

differentiable function f on mM such that X  f = 0. 

 

 Proposition 1.15 then ensures the existence of m − 1 independent first integrals in the 

neighborhood of a point y of mM such that X (y)  0. 

 If f is a first integral of X then one will have iX (df) = X  f = 0.  That is why one says, 

more generally, that a first integral of X is a closed Pfaffian form  on mM such that iX  

= 0. (When one takes the Poincaré lemma into account, those two notions will be locally 

equivalent.) 

 

 2.4 Proposition. – Let X be a vector field on a manifold mM .  In order for a 

differentiable function on mM to be a first integral of X, it is necessary and sufficient that 

it should be constant on the trajectories of mM . 

 

 Proof: 

 

 That proposition (briefly) expresses the following property: Let t be a local one-

parameter group of diffeomorphisms of mM that is generated by X.  In order for f  (M) 

to be a first integral of X, it is necessary and sufficient that for any y  mM , t f (t (y)) 

should be constant. 

 Now, if one lets fy denote the function t f (t (y)) then one will have (Th. 2.1): 

 

( )ydf t

dt
= 

0

( ( )) ( ( ))
lim t tf y f y



 


+

→

−
 = (X  f) ((t (y)). 

Q.E.D.   

 

 2.3 Proposition. – Let X be a vector field on a manifold mM and let t be a local one-

parameter group of diffeomorphisms of mM that is generated by X.  For any differential 

form    (M), one will have: 
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 LX   = 
0

lim t

t t

  

→

−
 

 = 
0

lim t

t t

  

−

→

−
. 

 Proof: 

 

 Since this proposition has a local character, one can suppose that mM = m.  In that 

case, it will suffice to verify it for  = f and  = df, f  (m).  Now: 

 

 LX f  = 
0

lim t

t

f f

t

 

→

−
 (Th. 2.1), 

 

 LX df = d (X  f) = 
0

lim t

t

f f
d

t



→

 −
 
 

 

  = 
0

lim t

t

df df

t



→

−
. 

 

One deduces the second relation from the first one by switching X with – X and t with – t. 

Q.E.D.   

 

 2.6 Proposition. – Let X and Y be two vector fields on a manifold mM and let t be a 

local one-parameter group of diffeomorphisms of mM that is generated by X.  One has: 

 

  [X, Y] = 
T

0
lim t t

t

Y Y

t

 −

→

−
 

   = 
T

0
lim t t

t

Y Y

t

 −

→

−
. 

 Proof: 

 

 Since 1 (M) and  (M) are locally dual to each other, it will suffice to show that for 

any Pfaffian form  : 

 ([X, Y]) = 
T

0
lim t t

t

Y Y

t

 
 −

→

 −
 
 

. 

Now: 

 
T

0
lim t t

t

Y Y

t

 
 −

→

 −
 
 

 = T

0

1
lim [( )( ) ( )]t t
t

Y Y
t

   −
→

−  
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 = 
T

0 0

( )( ) ( ) ( )
lim limt t

t
t t

Y Y Y

t t

     
−

→ →

− −
+  

 = − (LX )(Y) + X   (Y) (Prop. 2.5 and Th. 2.1) 

 = a ([X, Y]) (Chap. IV, § 3.1) . 

 

The second relations are obtained as before by changing X into – X and t into – t. 

Q.E.D.   

 

 2.7. Corollary. – Let X and Y be two vector fields on a manifold mM and let t and t 

be local one-parameter groups of diffeomorphisms of mM that are generated by X and Y.  

The following properties are equivalent: 

 

 i) [X, Y] = 0. 

 ii) t and t commute. 

 

 Under those conditions, one says that the vector fields X and Y commute. 

 That corollary is a direct consequence of Propositions 1.16 and 2.6. 

 

 2.8 Remark. – When y is a point of mM such that X (y)  0, one can verify Propositions 

2.5 and 2.6 more simply by using a local coordinate system (y1, …, ym) in the neighborhood 

of y such that the local expression for X is  / y1 (Prop. 1.15). 

 

 

§ 3. – Differential systems 

 

 3.1 Definition: A p-dimensional differential system on a manifold mM is a sub-module 

 of  (M) that has the following properties: 

 

 i)  is stable under locally-finite sums. 

 ii) For any point y of mM , y = {X (y), X  } is a p-dimensional subspace of Ty(M). 

 

 A vector field with no singularity on a manifold mM will then generate a one-

dimensional differential system on mM . 

 If U is an open subset of mM then let U denote the sub-module of  (U) that is 

generated by the restrictions of the vector fields on  to U.  One will then have: 

 

 3.2 Lemma. – The sub-module U is a p-dimensional differential system on U. 

 

The proof of this lemma presents no difficulties. 
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 3.3. Definition. – Let  be a p-dimensional differential system on a manifold mM .  An 

integral manifold of  is a pair ( pV , h) in which pV  is a p-dimensional manifold and h is 

an injective immersion of pV in mM such that form any point y  pV , one will have hT (Ty 

(V)) = h(y) . 

 

 3.4 Definition. – A differential system  on a manifold is integrable if there exists an 

integral manifold of  for every point y of mM whose image contains y. 

 

 3.5 Theorem. – Let  be a p-dimensional differential system on a manifold mM .  In 

order for X to be integrable, it is necessary and sufficient that it should be stable under the 

Lie bracket. (That is, if X and Y are in  then [X, Y] will also be in .) 

 

The necessity of that condition is a consequence of Proposition 6.18 of Chapter III.  The 

proof of the converse uses the following two lemmas: 

 

 3.6 Lemma. – Let  be a differential system on mM that is stable for the Lie bracket.  

For any open subset U of mM , U will also be stable under Lie bracket. 

 

 Proof: 

 

 Let X and Y be in U .  One can find: 

 

 − Two locally-finite families (fi) and (gj) of differentiable functions on mM . 

 − Two locally-finite families (Xi) and (Yj) of vector fields in , such that X = 

( )i i U
i

f X and Y = ( )j j U
j

g Y . 

If one writes out [X, Y] explicitly then one will find that the bracket belongs to U . 

Q.E.D.   

 

 3.7. Lemma (Frobenius’s theorem). – Let  be a p-dimensional differential system 

on a manifold mM .  If  is stable under Lie brackets then there will exist a local coordinate 

system (z1, …, zm) on a neighborhood U of any point y in mM such that U is generated by 

 / z1 , …,  / zp . 

 

 Proof: 
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 Let X1, …, Xp be p vector fields in  such that X1 (y), …, Xp (y) generate y .  One can 

find an open neighborhood V of y and a local coordinate system (y1 , …, ym) on V that has 

the following properties: 

 

 i) X1, …, Xp generate U . 

 ii) y1 (y) = 0. 

 iii) The local expression for X1 in V is  /  z1 (Prop. 1.15). 

 

If p = 1 then the lemma will be proved.  If p > 1 then one will proceed by recurrence.  Let 

Y1, …, Yp be the vector fields on V that are defined Y1 = X1 and Yi = Xi − (Xi  y1) X1, i = 2, 

…, p. 

 Those vector fields have the following properties: 

 

 i) Y1, …, Yp generate V . 

 ii) [Yi , Yj]  V . 

 iii) Yi  y1 = 0 for i  2. 

 

 Let N m−1 be the submanifold of V that is defined by y1 = 0.  The vector fields Y2 , …, 

Yp are tangent to N m−1.  They generate a (p − 1)-dimensional differential system on N m−1 

that is stable under Lie bracket.  One can then find a local coordinate system (2 , …,  m) 

on a neighborhood W of y in N m−1 such that W
  is generated by  / 1 , …,  / p . 

 Let z1, …, zm be differentiable functions on a neighborhood of y in M m that are defined 

by: 

 z1 = y1 , 

 zi  = i (y1 , …, ym), i = 2, …, m. 

 

Those functions, which are independent of y, for a local coordinate system in the 

neighborhood of y, and one will have: 

 

 Y1 = 
1z




, 

 
1z




 (Yi  zj) = [Y1, Yi]  zp  

 = ( )k

ij k j

k

a Y z   for j  2. 

 

For each j > p, the functions Yi , zj , i = 1, …, m are then the solutions to a linear, 

homogeneous differential system.  Now, they are annulled for z1 = 0.  As a result, they will 
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be identically zero on a neighborhood U of y.  Consequently, Yi = 
ij

j p j

b
z




  on U, which 

will show that the vector fields  / z1 , …,  / zp generate U . 

Q.E.D.   

 

 Proof of Theorem 3.5: The proof is now immediate, because with the notations of 

Lemma 3.7, the submanifolds of U that are defined by zi = const., i = p + 1, …, m will be 

integral manifolds of . 

 

 3.8. Corollary. – A one-dimensional differential system is integrable. 

 

 

§ 4. – Pfaffian systems. 

 

 4.1 Definition: A Pfaffian system of rank p on a manifold mM  is a sub-module  of 

1(M) that has the following properties: 

 

 i)  is stable under locally-finite sums. 

 ii) For any point y of mM , y = { (y),   } is a p-dimensional subspace of ( )yT M

. 

 

 If U is an open subspace of mM  then let U denote the sub-module of 1 (U) that is 

generated by the restrictions of Pfaffian forms in  to U.  As in the case of differential 

systems (Lemma 3.2), one has: 

 

 4.2 Lemma. – The sub-module U is a Pfaffian system of rank p on U. 

 

 4.3 Proposition. – Let  be a p-dimensional differential system on a manifold mM .  

The orthogonal complement ⊥  to  is a Pfaffian system of rank m – p on mM such that 

 = {X   (M) |  (X) = 0    ⊥ }. 

 

 Proof: 

 

 One can use a partition of unity argument to reduce to the case in which there exist m 

vector fields X1, …, Xm on mM that define a basis for  (M) and are such that X1, …, Xm 

generate . 
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 If (i) denotes the basis that is dual to the basis (Xi) then the Pfaffian forms p+1 , …, 

m will generate ⊥ , and one will have  = {X   (M) |  (X) = 0   ⊥ }. 

Q.E.D.   

 

 One likewise proves that: 

 

 4.4. Proposition. – Let  be a Pfaffian system of rank p on a manifold mM .  The sub-

module 0 = {X   (M) |  (X) = 0   } will be an (m – p)-dimensional differential 

system on mM  such that (0)⊥ = . 

 

Propositions 3.5 and 3.6 then show that   ⊥  is a bijective correspondence between 

p-dimensional differential systems on mM  and Pfaffian systems of rank m – p . (Of course, 

that is not true for the set of all sub-modules of  (M) and 1(M)}. 

 

 4.5 Definition: Let  be a Pfaffian system of rank p on a manifold mM .  An integral 

manifold of  is a pair (Nm−p, h), in which Nm−p is an (m – p)–dimensional manifold and h 

is an injective immersion of Nm−p in mM  such that for any Pfaffian form   , one will 

have h* = 0. 

 

In other words, in order for (Nm−p, h) to be an integral manifold of the Pfaffian system , it 

is necessary and sufficient that it should be an integral manifold of the differential system 

0. 

 

 4.6. Definition: A Pfaffian system  on a manifold mM is integrable if there exists an 

integral manifold of  for any point y of mM whose image contains y. 

 

 4.7. Proposition. – In order for a differential system  on mM to be integrable, it is 

necessary and sufficient that ⊥  should also be so. 

 

The proof is immediate. 

 

 4.8. Theorem. – Let  be a Pfaffian system on a manifold mM .  In order for  to be 

integrable, it is necessary and sufficient that d should be contained in the ideal of  (M) 

that is generated by . 
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 Proof: 

 

 Let  be the differential system on mM  such that ⊥  = .  For any  in  and X, Y 

in , one will have: 

 d (X, Y) = X   (Y) – Y   (X) –  ([X, Y]) 

  = –  ([X, Y]) . 

 

First suppose that  is integrable.  One will then have that d (X, Y) = 0 for any    and 

any X, Y  .  That will put one into a situation that is analogous to the one in the proof of 

Proposition 4.3, so one will deduce that d is contained in the ideal in  (M) that is 

generated by . 

 Conversely, if that property is verified then one will have  ([X, Y]) = − d (X, Y) = 0 

for all X, Y in  and all  in .  Consequently, the bracket [X, Y] will be in , and  will 

then be integrable. 

Q.E.D.   

 

 4.9. Corollary. – Let  be a Pfaffian system that is generated by a Pfaffian form  with 

no singularities.  In order for  to be integrable, it is necessary and sufficient that there 

should exist a Pfaffian form  such that d =   . 

 

When one translates Lemma 3.7 into the language of Pfaffian systems, one will get: 

 

 4.10. Lemma (Frobenius’s theorem). – Let  be a Pfaffian system of rank p on a 

manifold mM .  In order for  to be integrable, it is necessary and sufficient that for any 

point y of mM  there should exist a local coordinate system (z1, …, zm) on an open 

neighborhood U of y such that U is generated by dz1, …, dzp . 

 Exercise. – In Lemma 4.10, one can choose the system (z1, …, zm) in such a way that  

z1 = f |U , in which f is a differentiable function on mM  that have the following properties: 

 

 i) df  . 

 ii) df (x)  0. 

 

 4.11. Proposition. – Let  be a Pfaffian system of rank p on a manifold mM .  In order 

for  to be integrable, it is necessary and sufficient that for any forms , 1, …, p in , 

one should have d  1  … p  = 0. 
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If one takes 4.8 into account then this proposition will be a consequence of the following 

result: 

 

 4.12. Proposition. – Let 1, …, p be p independent Pfaffian forms on a manifold mM

.  In order for a differential form    (M) to be in the ideal that is generated by 1, …, 

p , it is necessary and sufficient that one should have   1  … p = 0. 

 

 Proof: 

 

 One can suppose that mM  is parallelizable and that there exist m – p Pfaffian forms 

p+1 , …, m such that 1, …, m generate  (M). 

 Since the ideal I that is generated by 1, …, p is the direct sum of sub-modules of I   

q(M), one can restrict oneself to the case in which  is homogeneous of degree q : 

 

 = 
1 1

11
q q

q

i i i i

i i m

a  
   

  . 

 

In that case, in order for  to be in I, it is necessary and sufficient that 
1 qi ia = 0 for i1 > p.  

Now, since: 

  1  … p = 
1 1

1

q q

q

i i i i

p i i m

a  
   

   1  … p , 

 

that condition is equivalent   1  … p = 0. 

Q.E.D.   

 

 

____________ 

 



 

CHAPTER VI 

 

CHARACTERISTIC SYSTEM AND CLASS  

OF A DIFFERENTIAL FORM 
 

 

§ 1. – Characteristic system and class. 

 

 Let  be a differential form of degree p  1 on a manifold mM . 

 

 1.1. Definition. – The characteristic subspace of  at a point y of mM is the subspace 

Cy (a) of Ty (M) that is the intersection of the associated subspaces A ( (y)) and A ( ( ))d y

.  (Chap. I, Def. 7.4) 

 

 1.2. Definition. – The characteristic system of  at a point y of mM  is the subspace 

( )yC   of ( )yT M  that is orthogonal to the characteristic subspace Cy (). 

 

 The characteristic system of  at y is then the sum of the associated systems A*( (y)) 

and A*(d (y)) . (Chap. I, Def. 7.7) 

 

 1.3. Definition. – The class of  at a point y of mM  is the dimension of the 

characteristic system ( )yC  [or the codimension of the characteristic subspace Cy (a)]. 

 

 The class of  at y is therefore greater than the rank of  (x), and as a result, it will be 

greater than the degree p of  when  (x)  0. 

 

 Example. The form  = 2 2

1 2( )x x+  dx2 on 2 has: 

 

 − Class 2 if x1  0. 

 − Class 1 if x1 = 0 and x2  0. 

 − Class 0 if x1 = x2 = 0. 

 

 If  has degree p and class p at y then d (y) = 0. 

 If  is a closed form [in which d (y) = 0] then the class  of y will be equal to the rank 

of  (y).  Consequently, (Chap. I, Prop. 8.3, 8.4, and 8.5). 

 

 1.4. Proposition. – A closed form of degree 2 has even class at each point. 

 



§ 1. – Characteristic system and class. 111 

 1.5. Proposition. – Let  be a closed form of degree 2 on mM .  In order for  to have 

class 2s at a point y of mM , it is necessary and sufficient that one should have  s (y)  0 

and  s+1 (y) = 0. 

 Furthermore, under those conditions, one will have: 

 

( )yC   = 2( )yC   = … = ( )s

yC   = A* ( (y)) . 

 

 1.6. Proposition. – Let  be a Pfaffian form on mM .  In order for  to be have class 

2s + 1 at a point y of mM , it is necessary and sufficient that one should have (  (d)s)(y) 

 0 and (d)s+1 (y) = 0. 

 Moreover, under those conditions, one will have: 

 

( )yC   = ( )yC d    = ( ( ) )s

yC d   = ( (y)) + A* (d (y)) . 

 

 Proof. – In order for  to have class 2s + 1 at y, it is necessary and sufficient that d 

should have class 2s at y and that ( )yC   should be the direct sum of: 

 

( )yC d  = A* (d (y)) 

 

and the subspace that is generated by  (y), or rather that there should exist a basis 1( )i i m  

for ( )yT M  such that: 

 (y) = 1 , 

d (y) = 1  2 + … + 2s  2s+1 . 

Q.E.D.   

 

 1.7. Proposition. – Let  be a Pfaff form on mM .  In order for  to have class 2s at a 

point y of mM , it is necessary and sufficient that one should have: 

 

(d)s (y)  0 and (a  (d)s) (y) = (d)s+1 (y) = 0. 

 

Moreover, one has: 

 

( )yC   = ( )yC d  = ( )yC d    = … = ( )s

yC d  = A* (d (y)) 

 

under those conditions. 

 

 Indeed, in order for  to have class 2s at y, it is necessary and sufficient that d should 

have class 2s at y and that  (y) should belong to the characteristic system ( )yC d , or 

rather that d should have class 2s at y and that (a  (d)s) (y) = 0. 
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 When y is not a singularity of  [so  (y)  0], one can make Proposition 1.7 more 

precise in the following way: 

 

 1.8. Proposition. – Let  be a Pfaffian form on mM and let y be a point of mM such 

that  (y)  0.  In order for  to have class 2s at y, it is necessary and sufficient that one 

should have: 

 

(d)s (y)  0  and  (  (d)s) (y) = 0. 

 

 Proof: One first points out that if  has class 2s at y then one will have (  (d)s−1)(y) 

 0.  Indeed, one can find a basis (i)1  i  m for ( )yT M  such that: 

 

 (y) = 1 , 

 

d (y) = 1  2 + … + 1  2  (Chap. I, Cor. 8.2) . 

 

Now suppose that one has: 

 

(d)s (y)  0 and (  (d)s) (y) = 0. 

 

The class of  at y is then greater than s.  Now,  cannot have class s > s because one 

would then have (Prop. 1.6, or the preceding remark): 

 

(  (d)s) (y)  0. 

Q.E.D.   

 

 1.9. Rules: Let  be a Pfaffian form on mM , and let 1 =  , 2 = d , 3 =   d , 

4 = (d )
2, … 

 

 The class of  at a point y of mM such that  (y)  0 is the smallest integer r such that: 

r+1 (y) = r+2 (y) = 0,  

 

 The class of  at a point y of mM such that a (y)  0 is the smallest integer r such that 

r+1 (y) = 0. 

 

 1.10. Local study. – Let (y1 , …, ym) be a local coordinate system on an open subset U 

of mM .  The characteristic system of   p (M) at a point y of U is generated (Chap. I, 

Prop. 7.9) by the linear forms: 
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1i

i
y

 
 
  

, …, 

1pi

i
y

−

 
 
 
 

 (y),  1   i1 < … < ip−1  m, 

and 

 

1i

i
y

 
 
  

, …, 

pi

i
y

 
 
 
 

d (y),  1   j1 < … < jp−1  m . 

Consequently: 

 

 1.11. Proposition. – The class of a differential form   p (M) is a positive lower-

semi-continuous function with integer values. 

 

 In other words, if  has class q at a point y of mM  then it will have a class that is greater 

than q at any point that is sufficient close to y. 

 

 

§ 2. Characteristic vector fields and forms. 

 

 Let  be a differential form of degree p  1 on a manifold mM . 

 

 2.1. Definition. – A characteristic vector field for  is a vector field X on mM such 

that X (y)  Cy () for any y  mM . 

 

 The set  () of characteristic vector fields of  is a sub-module of  (M) that is stable 

under locally-finite sums. 

 

 2.2. Theorem. – In order for a vector field X on mM to be a characteristic vector field 

of , it is necessary and sufficient that one should have iX  = iX (d) = 0. 

 

 That theorem is a direct consequence of Proposition 7.5 in Chapter I. 

 

 2.3. Corollary. – In order for X to be characteristic vector field of , it is necessary 

and sufficient that one should have iX  = LX  = 0. 

 

Indeed, LX  = iX d + d iX  . 

 

 2.4. Corollary. – If X and Y are characteristic vector fields of  then their Lie bracket 

[X, Y] will also be a characteristic vector field of  . 

 

Indeed (Chap. IV, Prop. 3.4): 

 i [X,Y]  = LX iY  − iY LX  = 0, 
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 L[X,Y]  = LX LY  − LY LX  = 0 . 

 

 2.5. Definition. – A characteristic Pfaffian form of  is a Pfaffian form  on mM  

such that  (y)  ( )yC   for any y  mM . 

 

 The set *() of characteristic Pfaffian forms of  is a sub-module of 1 (M) that is 

stable under locally-finite sums. 

 

 2.6. Proposition. – For any point y of mM , the set of covectors  (y)  ( )m

yT M ,   

*() is equal to the characteristic system ( )yC   of  at y. 

 

 Proof: Let y be element of ( )yC  .  With the notations of 1.10, there exists a Pfaffian 

form  on U that has the following properties: 

 

 i)  (y) = y . 

 ii)  (y)  ( )yC   for any z  U. 

 

Let  be a differentiable function on U that is equal to 1 at y and zero outside of a 

neighborhood of y.  The Pfaffian form  extends by zeroes on mM  – U to a Pfaffian form 

 that belongs to *() and is such that  (y) = y .  Q.E.D. 

 

 Exercises: 

 

 i) There is no analogue of Proposition 2.6 for the module of characteristic vector 

fields of . 

 

 ii) The sub-module *() is contained in the orthogonal complement to (), but it 

will generally be distinct from it. 

 

 iii) If  is a characteristic Pfaffian form for  then d will not necessarily belong to 

the ideal of  (M) that is generated by *(). 

 

 iv) The form  does not necessarily belong to the sub-algebra of  (M) that is generated 

by *() (contrary to the linear case: Chap. I, Prop. 7.8). 
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§ 3. – Differential forms with constant classes. 

 

 In this section, suppose that  is a differential form on a manifold mM  of degree p and 

constant class q  p. 

 The sub-module *() of characteristic Pfaffian forms of  is a Pfaffian system of rank 

q on mM  in this case (Prop. 2.6). 

 The sub-module  () of characteristic vector fields of  is then equal to the differential 

system  on mM such that ⊥  = *() (Chap. V, Prop. 4.5 and 4.6). 

 Consequently,  () will be an (m – q)-dimensional differential system on mM , and 

one will deduce the following theorem from Corollary 2.4: 

 

 3.1. Theorem. – Let  be a differential form of constant class q on a manifold mM .  

The sub-module () of characteristic vector fields of  is an integrable (m – q)-

dimensional differential system on mM .  The sub-module ( )
 of characteristic Pfaffian 

forms of  is the orthogonal system to (). 

 

 3.2. Proposition. – Let  be a differential form of degree p and constant class q on a 

manifold mM .  For any point y of mM , there exists a local coordinate system (y1, …, ym) 

on an open neighborhood U of y such that local expression for  is: 

 

1 1

1

1

1

( , , )
p p

p

i i q i i

i i q

a y y dy dy
   

  . 

 

 Proof: For any point y of mM , Frobenius’s theorem (Chap. V, Lemma 4.10) insures the 

existence of a local coordinate system (y1, …, ym) on an open neighborhood U of y such 

that the Pfaffian system ( | )U  = ( ) |U  is generated by the forms dy1, …, dyq . 

 One will then have: 

 

  = 
1 1

1

1

1

( , , )
p p

p

i i q i i

i i q

a y y dy dy
   

  , 

 

 d = 
1

1

11

p

p

p

i i

j i i

i i q j j

a
dy dy dy

y   


  


   

 

on U.  Consequently, 
1

/
pi i ja y   = 0 for j > q. 

 One can then suppose, after possibly restricting U, that the functions 
1 pi ia  are 

independent of yj for j > q. 

Q.E.D.   
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 3.3. Remark: If  admits a local expression that is analogous to the one in Proposition 

3.2 then  will have a class that is less than q.  Consequently, if  has class q then that 

expression will include each of the functions y1, …, yp explicitly.  One can then say (E. 

Cartan [3]) that: 

 

“The class of a form  (of constant class) is the minimal number of 

independent functions that are necessary for expressing .” 

 

 3.4. Corollary. – Let  be a differential form of degree p and constant class p on a 

manifold mM .  For any point y of mM , there exists a local coordinate system (y1, …, ym) 

on an open neighborhood U of y such that local expression for  on U is dy1  … dyq . 

 

 Proof: One can find a local coordinate system (z1, …, zm) on a neighborhood V of y 

such that: 

 = a (z1, …, zp) dz1  … dzp , a  0 

on V. 

 Let A = A (z1, …, zp) be a differentiable function on V such that A / z1 = a, and let y1, 

…, ym be functions that are defined by: 

 

 y1 = A (z1, …, zp), 

 yi = zi  for i  2. 

 

Those functions define a local coordinate system on a neighborhood U of x and one will 

have  = dy1  … dyq . 

Q.E.D.   

 

 

§ 4. – Local models for differential forms of degrees 1 and 2. 

 

 When  is a differential form of constant class and degree 1, or of degree 2 and closed, 

one can make Proposition 3.2 more precise: 

 

 4.1 Theorem (Darboux). – Let  be a Pfaffian form with no singularities on a manifold 
mM of constant class 2s + 1 (2s, resp.).  For any point y of mM , there exist 2s + 1 (2s, 

resp.) differentiable functions y1, …, y2s+1 (y1, …, y2s , resp.) on a neighborhood U of y that 

are zero at y and are such that: 

 

  |U = dy1 + y2 dy3 +…+ y2s dy2s+1 , 

 

 [ |U = (1 + y1) dy2 + y3 dy4 +…+ y2s−1 dy2s , resp.]. 
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The proof of that theorem uses the following two lemmas (1): 

 

 4.2. Lemma. – Let  be a Pfaffian form without singularities and constant class 2s + 

1 > 0 on mM .  For any point y of mM there exists a differentiable function f on an open 

neighborhood V of y that is zero at y and such that 1 =  |V – df has no singularity for s > 

0 and constant class 2s on V. 

  

 4.3. Lemma. – Let  be a Pfaffian form without singularities and constant class 2s > 

0 on mM .  For any point y of mM there exists a differentiable function g on an open 

neighborhood W of y that is zero at y and such that 2 = (1 + g) ( |W) has constant class 

2s – 1 on W. 

 

 Proof of Lemma 4.2. –  The sub-module of characteristic forms  (  (d)s) =  ( )  

[

((d)s) = 


(d), resp.] is an integrable Pfaffian system of rank 2s + 1 (2s, resp.) on 

mM , and one has 

(d)  


(). 

 One can then find a local coordinate system (z1, …, zm) on an open neighborhood V of 

y that is zero for y and such that: 

 

 i) (d)s |V = dy2  … dy2s+1 , 

 

 ii)   (d)s |V = dy1  … dy2s+1 (Corollary 3.4), 

 

 iii)  |V = dy1 +
2 1

2

s

i i

i

a dy
+

=

  with 2( )ia z  0 for any z  V. 

 

The form 1 =  |V – df has no singularities on V then and possesses the following 

properties: 

 

 i) (d1)
s = (d)s  0, 

 

 ii) 1  (d1)
s = 0. 

 

It then has class 2s on V. Q.E.D. 

 

 Proof of Lemma 4.3. – The sub-module of characteristic forms 

((d)s) = 


(d) is 

an integrable Pfaffian system of rank 2s on mM .  Let * be the set of Pfaffian forms  on 

mM  such that  (y)  * ((  (d)s−1)(y) for any y  mM .  * is then a sub-module of 

1 (M) that is stable for locally-finite sums.  Since   (d)s−1 is a form of constant rank 

 
 (1) The principle of this proof is due to J. Martinet.  
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2s – 1 (proof of Proposition 1.8), one shows, as in 2.6, that * is a Pfaffian system of rank 

2s – 1 on mM .  One has, moreover, *   ((d)s) . 

 The Pfaffian system * is integrable.  Indeed, it is the orthogonal complement to the 

differential system: 

 = {X   (M) | iX (  (d)s−1) = 0}, 

 

and if X and Y are in  then one will have: 

 

 i[X,Y] (  (d)s−1) = LX iY (  (d)s−1) − iY LX (  (d)s−1) 

 

 = − iY diX (  d)s−1) − iY iX (d)s 

 

 = − iY iX (d)s = 0  [((d)s)  ]  

 

One can then find a local coordinate system (z1, …, zm) on an open neighborhood W of y 

that is zero at y and such that: 

 

 i) (d)s |W = dz1  …  dz2s , 

 

 ii) (  (d)s−1) |W = b dz2  …  dz2s , with b (z)  0 for any z  W. 

 

If h is a differentiable function on W and if 2 = h  |W then one will have: 

 

2  (d2)
s−1 = hs (  (d)s−1) |W , 

 

(d2)
s = hs−1 [s dh  (  (d)s−1) + h (d2)

s |W] . 

 

Consequently, if g = e−B / s − 1, in which B = 
1 1

0

z dz

b  then the form 2 = (1 + g) ( |W) will 

have class 2s – 1 on W.  Q.E.D. 

 

 Proof of Theorem 4.1. – One achieves that proof by recurrence on the class of , while 

noting that a form of constant class zero is identically zero. 

 First of all, suppose that  has constant class 2s + 1.  There will then exist a 

differentiable function f on an open neighborhood V of y that is zero at y and such that 1 

=  |V – df has no singularity for s > 0 and has constant class 2s on V.  One can then find 2s 

differentiable functions g1, …, g2s on an open neighborhood U  V of y that are zero at y 

and such that: 

1 |U = (1 + g1) dg2 + g3 dg4 + … + g2s−1 dg2s . 
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Set y1 = f + g2 (y1 = f if s = 0), yi = gi−1 for i = 2, …, 2s + 1.  Those functions are annulled 

at y, and one will have: 

 |U = dy1 + y2 dy3 + … + y2s dy2s+1 . 

 

Now suppose that  has no singularity and constant class 2s + 2.  There will then exist a 

differentiable function g on an open neighborhood W of y that is zero at y and is such that 

2 = (1 + g) ( |W) has constant class 2s + 1 on W.  One can then find 2s + 1 differentiable 

functions f1 , …, f2s+1 on an open neighborhood U  W of y that are zero at y and such that: 

2 |U = df1 + f2 df3 + … + f2s df2s+1 . 

 

Set y1 = − 
1

g

g+
 , yi =

1

1

if

g

−

+
 for i = 3, 5, …, 2s + 1 and yi = fi−1 for i = 2, 4, …, 2s + 2.  Those 

functions are zero at y, and one will have: 

 

 |U = (1 + y1) dy2 + y3 dy4 + … + y2s−1 dy2s . 

 

 4.4. Remarks: 

 

 i) The functions (yi) that enter into the statement of Theorem 4.1 are independent at y 

(Remark 3.3). 

 

 ii) If  is a Pfaffian form of constant odd class then  will have no singularity on mM

. 

 

By contrast, if  has constant even class then it can have singularities.  In that case (as in 

the one where  does not have constant class), one cannot exhibit a general local model. 

 

 4.5. Theorem. –  Let  be a closed differential form of degree 2 and constant class 2s 

on a manifold mM .  For any point y of mM , there exist 2s differentiable functions y1, …, 

y2s on an open neighborhood U of y that are zero at y and such that: 

 

 |U = dy1  dy2 + … + dy2s−1  dy2s . 

 

 Proof. – The Poincaré Lemma (Chap. IV, Th. 2.11) insures the existence of a Pfaffian 

form  on an open neighborhood V of y such that d =  |V .  The class of  at y is either 

2s or 2s + 1 then. 

 First suppose that 2s < m.  After possibly adding the differential of a function f in (M), 

one can suppose that  has class 2s + 1 at y.  Hence, it will have constant class 2s + 1 on 

an open neighborhood W  V of y.  One can then find 2s + 1 differentiable functions y1, 

…, y2s+1 on an open neighborhood U  W of y that are zero at y and such that: 

 



120 VI. – Characteristic System and Class of a Differential Form. 

 |U = y1 dy2 + … + y2s−1 dy2s + dy2s+1 . 

One will then have: 

(d) |U = dy1  dy2 + … + dy2s−1  dy2s . 

 

When 2s = m, one can likewise suppose that  has no singularity on a neighborhood W  

V of y.  One can then find 2s differentiable functions on an open neighborhood U  W of 

y that are zero at y and such that: 

 

 |U  = (1 + z1) dz2 + z3 dz4 + … + z2s−1 dz2s , 

 

(d) |U = dz1  dz2 + … + dz2s−1  dz2s . 

Q.E.D.   

 

 4.6. Remark: In Theorem 4.5, one can take y1 to be the restriction to U of a 

differentiable function f on mM  such that df is a characteristic Pfaffian form of  that is 

not zero at y. 

 

 The verification of that assertion is left as an exercise. 

 

 

___________ 



 

CHAPTER VII 

 

HAMILTONIAN SYSTEMS AND  

CONTACT STRUCTURES 
 

 

§ 1. Symplectic manifolds. 

 

 1.1. Definition – Let 2nM  be a manifold of even dimension 2n.  A symplectic structure 

on 2nM  is defined when one is given a closed differential form   2 (M) of degree 2 and 

constant class 2n . 

 

 One also says that ( 2nM , ) (or 2nM ) is a symplectic manifold, and that  is a 

symplectic form on 2nM . 

 If U is an open subset of 2nM  then (U,  |U) will be a symplectic manifold. 

 For any point y of 2nM , (Ty (M),  (y)) is a symplectic vector space (Chap. I, § 8). 

 

 1.2. Proposition. – Let  be a closed differential form of degree 2 on a manifold 2nM

.  In order for  to be a symplectic form, it is necessary and sufficient that 
n  should be a 

volume form (Chap. III, Def 7.14). 

 

 This assertion is a direct consequence of Proposition 1.5 in Chapter VI. 

 

 1.3. Corollary. – A symplectic manifold ( 2nM , ) is orientable. 

 

 One can then orient 2nM  by the form volume 
( 1) / 2( 1)n n n−−  (see example 1.4).  

Conversely, any orientable manifold of dimension 2 is symplectic; however, that result will 

no longer be true in even dimensions that are greater than 2. 

 

 1.4. Example. – The differential form: 

 

 = dx1  dxn+1 + dx2  dxn+2 + … + dxn  dx2n 

 

is a symplectic form on 2n ; indeed: 

 

 n = 
( 1) / 2( 1)n n−− n! dx1  …  dx2n . 

 

The orientation that is associated with  is the canonical orientation on 2n. 
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 The following theorem will permit us to construct some symplectic structures that are 

fundamental in analytical mechanics. 

 Let  *(M) = (T *(M), qM , mM ) be the cotangent bundle to a manifold mM .  For a point 

y  mM  and any cotangent vector   ( )yT M , the tangent map T

Mq  sends ( ( ))T T M

  to 

Ty (M) .  One can then define a linear form on ( ( ))T T M

  by: 

 

u (u),T

Mq  = u,( ) ( )T

Mq   . 

 

 1.5. Theorem. – The correspondence  ( ) ( )T

Mq   defines a Pfaffian form  of 

constant class 2m on T *(M). 

 

 Proof. – Let (y1, …, ym) be a coordinate system on an open subset U of mM .  The 

functions qi = yi  qM and pi =  / yi , i = 1, …, m, define a local coordinate system on an 

open subset V = 1( )Mq U−  of  T *(M) . 

 If u = i i

i i i

a b
q p

  
+ 

  
  is a tangent vector on V then one will have T ( )Mq u  = i

i i

a
y






.  Consequently, if  = i i

i

c dy then , ( )u     = i i

i

c a .  The local expression for  in 

V is then i i

i

p dq , which shows that  is a Pfaffian form on T * (M) . 

 One also deduces that  has constant class 2m on T * (M) from this local expression. 

Q.E.D.   

 

 1.6. Definition. – The Liouville form on T * (M) is the Pfaff form  that is defined by  

() = T( ) ( )Mq  . 

 

 1.7. Corollary. – The exterior differential  = d of the Liouville form determines a 

symplectic structure on the cotangent space T *(M) . 

 

 1.8. Corollary. – The cotangent space T *(M) to a manifold mM  is an orientable 

manifold. 

 

 1.9. Definition. – Let ( 2nM , ) and (
2nN ,  ) be two symplectic manifolds.  A 

differentiable map h : 2nM → N 2n is symplectic if one has h* = . 

  

 In that case, for any point y of 2nM , hT will be a symplectic isomorphism of (Ty (M), 

 (y)) onto (Th (y) (N),  (h (y)) .  Consequently, h will have constant rank 2n (h is then a 

local diffeomorphism). 

 If h is a symplectic diffeomorphism then it will be compatible with the orientation. 
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 1.10. Proposition. –  Let ( 2nM , ) be a symplectic manifold.  For any point y of 2 ,nM  

there exists an open neighborhood U of y and a symplectic diffeomorphism h of (U,  |U) 

onto an open subset of 2n (that is endowed with the symplectic structure of 1.4). 

 Indeed (Chap. VI, Th. 4.5), one can find a local coordinate system (y1, …, y2n) on an 

open neighborhood U of y such that: 

 

 |U = dy1  dyn+1 + …+ dyn  dy2n . 

 

 Exercise. – Let 2nM  be a manifold of even dimension 2n . In order for 2nM  to admit a 

symplectic structure, it is necessary and sufficient that there should exist an atlas {(U, i)} 

on 2nM  such that the changes of charts 1

j i −  are symplectic diffeomorphisms (for the 

structure of 1.4). 

 

 1.11. Proposition. – Let ( 2nM , ) be a symplectic manifold.  The map y : u i (u) 

 (y) of Ty (M) to ( )yT M  determines a differentiable homomorphism  (over 2nM ) of the 

tangent bundle  (M) to the cotangent bundle  * (M). 

 The rank of y is equal to the rank of  (y) . 

 

 Proof. – Let (y1, …, ym) be a local coordinate system on an open subset U of 2nM .  The 

functions ri = yi  pM and ir  = dyi (qi = yi  pM and pi =  / yi , resp.), i = 1, …, m, define 

a local coordinate system on the open subset 1( )Mp U−  of T (M)  [ 1( )Mq U−  of T *(M), resp.]. 

 Let 
,

ij i j

i j

a dy dy , with aji = − aij , be the local expression for  in U.  The map  is 

then determined on 1( )Mp U−  by: 

 

 qi = ri , 

 pi = 2 ij j

j

a r ,  i = 1, …, m ; 

it is then differentiable. 

 Since y is a linear map of Ty (M) to ( )yT M ,  will be a homomorphism of  (M) with 

 *(M) (Chap. II, Prop. 2.11).  Finally (Chap. I, Prop. 7.9), the rank of y is equal to the 

rank of  (y) . 

Q.E.D.   

 

 1.13. Corollary. – Under the hypotheses of the proposition 1.11, X  iX will be an 

isomorphism of  (M) with 1(M). 
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§ 2. Poisson brackets. 

 

 Let ( 2nM , ) be a symplectic manifold.  For a Pfaffian form  on 2nM , one lets X be 

the vector field on 2nM  such that  = 
Xi 

  (Cor. 1.13). 

 

 2.1. Definition. – The Poisson bracket (relative to the symplectic structure of 2nM ) of 

two Pfaffian forms  and  on 2nM  is the Pfaffian form (, ) = 
(X ,X ) 

i . 

 

 The Poisson bracket is then obtained by transporting the Lie bracket on  (M) to 1(M) 

by means of the isomorphism X  iX .  Consequently: 

 

 2.2. Proposition: 

 

 i) (,  + ) = (, ) + (, ) . 

 

 ii) (, ) =  (, ) ,    . 

 

 iii) (, ) = − (, ) . 

 

 iv) (, (, )) + (, (, )) + (, (, )) = 0 (Jacobi identity) . 

 

 v) (, f ) = (X  f)  + f (, ) , f   (M) . 

 

 2.3. Proposition. – If  and  are two closed Pfaffian forms on 2nM  then one will have 

(, ) = − d ( (X , X)) . 

 

 Indeed: 

 (, ) = 
( , )X X 

i   

  = 
X X X X   

 −L Li i  

  = 
X X X X X    

  − −L i di i i d  

  = 
X X 

 −L i d  

  = 
X X 

 +d i d  

  = ( )X X 
d i i d  = − d ( (X , X)) . 

 

 2.4. Definition. – Let f and g be two differentiable functions on 2nM , and let  and  

be the differentials of f and g.  The Poisson bracket (relative to the symplectic structure on 
2nM ) of the functions f and g is the differentiable function: 
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(f, g) = −  (X , X) = X  g = − X  f . 

 

 One will then have (Prop. 2.3) d (f, g) = (df, dg). 

 

 2.5. Proposition. – The Poisson bracket in  (M) has the following properties: 

 

 i) (f, g + h) = (f, g) + (f, h) . 

 

 ii) (f,  g) =  (f, g),    . 

 

 iii) (g, f) = − (f, g) . 

 

 iv) (f, (g, h)) + (g, (h, f)) + (h, (f, g)) = 0  (Jacobi identity). 

 

 v) (f, gh) = h (f, g) + g (f, h) . 

 

 Proof. – Let , , and  be the differentials of f, g, and h, resp.  One has: 

 

 i)  (f, g + h) = −  (X , X + X) = (f, g) + (f, h) . 

 

 ii)  (f,  g) = −  (X ,  X) =  (f, g) . 

 

 iii)  (g, f) = −  (X , X) = − (f, g) . 

 

 iv) (f, (g, h))  = X  (g, h) =    X  (X  h) , 

  (g, (h, f))  = X  (h, f)  = − X  (X  h) , 

  (h, (f, g))  = − [X , X]  h [because d (f, g) = (, )] , 

so 

  (f, (g, h)) + (g, (h, f)) + (h, (f, g)) = 0 . 

 

 v) (f, gh) = −  (X , h X + g X) = h (f, g) + g (f, h) 

 

  [because d (gh) = h (dg) + g (dh) ] 

Q.E.D.  

 

 

 2.6. Local expression. – Let (q1 , …, qn , p1 , …, pn) be a local coordinate system on an 

open subset U of such that  |U = i i

i

dp dq . 
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 If  = ( )i i i i

i

a dq b dp+  then one will have X = i i

i i i

b a
q p

  
− + 

  
  .  Consequently, 

(f, g) = −
i i i i i

f g f g

p q q p

    
− 

    
 . 

 One will then recover the classical expression for the Poisson bracket, up to sign. 

 

 Exercise. – In order for a diffeomorphism on a symplectic manifold to be symplectic, 

it is necessary and sufficient that it must be compatible with the Poisson bracket. 

 

 2.7. Definition. – Two Pfaffian forms  and  on a symplectic manifold ( 2nM , ) are 

in involution when one has  (X , X) = 0. 

 

 Two differentiable functions are in involution if their differentials df and dg are. 

 Consequently, if  and  are two closed Pfaffian forms in involution then their Poisson 

bracket (, ) will be zero.  Conversely: 

 

 2.8. Proposition. – In order for two differentiable functions f and g to be in involution, 

it is necessary and sufficient that their Poisson bracket (f, g) should be zero. 

 

 2.9. Proposition. – In order for two closed Pfaffian forms  and  to be in involution, 

it is necessary and sufficient that  (, resp.) should be a first integral of X (X , resp.) .  

Indeed: 

 (X , X)  = −  (X) =  (X) . 

 

 2.10 Proposition. – Let , , and  be three closed Pfaffian forms.  If  is in involution 

with  and  then it will also be in involution with the Poisson bracket (, ) . 

 

 Indeed, X(, ) = [X , X], and: 

 

    (X , X(, )) =  ([X , X]) 

 =  (X) –  (X) (d = 0) 

 = 0 . 

 

 

§ 3. Hamiltonian systems (E. Cartan [3]). 

 

 3.1. Definition. – A Hamiltonian (dynamical) system on a symplectic manifold ( 2nM , 

) is a vector field X on 2nM  such that iX is a closed Pfaffian form. 
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 If iX is an exact form then a Hamiltonian for X is a differentiable function H on 2nM  

such that iX = −  (iX = − dH, resp.).  One says that X is the Hamiltonian system that is 

associated with  (H, resp.). 

 

 3.2. Proposition. – In order for a vector field X on a symplectic manifold ( 2nM , ) to 

be a Hamiltonian system, it is necessary and sufficient that one must have LX = 0. 

 

 Indeed, LX = diX . 

 Let X be the Hamiltonian system that is associated with a closed Pfaffian form  on a 

symplectic manifold ( 2nM , ).  One immediately has: 

 

 3.3. Proposition. – In order for a point y of 2nM  to be a zero of X, it is necessary and 

sufficient that it should be a singular point of  . 

 

 3.4. Proposition. – The Pfaffian form  is a first integral of X . 

 

 In particular, if  = dH then H will be a first integral of X : H is the energy integral. 

 Let U be the set of points y of 2nM  such that  (y)  0; U is an open subset of 2nM , 

and the Pfaffian form  generates a Pfaff system () on U that is integrable of rank 1. 

 

 3.5. Proposition. – Let ( 2 1nN − , h) be an integral manifold of ().  Hence: 

 

 i) The vector field X is tangent to h ( 2 1nN −
) . 

 

 ii) h* is a closed differential form of degree 2 and constant class 2n – 2 on 
2 1nN −

. 

 

 iii) The differential system  (h*) is generated by the vector field Y that is induced by 

X on 
2 1nN −

. 

 

 Proof. – The first property is immediate, since  (X) = 0. 

 Let x be a point of 
2 1nN −

 and let (e1, …, e2n) be a basis for Th (x) (M) such that if (1 , …, 

2n) is the dual basis on 
( ) ( )h xT M  then one will have (Chap. I, Cor. 8.2): 

 

  (h (x)) = 2n , 

  (h (x)) = 1  2 + … + 2n−1  2n  , 

 X (h (x)) = 2n−1 . 

 

The linear forms i = T( )x ih  , 1  i  2n – 1 form a basis for ( )xT N , and one will have: 

 

(h*) (x) = 1  2 + … + 2n−3  2n−2 . 
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That shows that h* has constant class 2n – 2 on 2 1nN −  and that the characteristic subspace 

of h* (x) is generated by Y (x). 

Q.E.D.   

 

 In particular, if  = dH, and if c is a regular value of H then one can take 2 1nN −  to be 

the submanifold H−1 (c) . 

 

 3.6. Proposition. – There exists a differential form  of degree 2n – 1 on U such that 

( |U)* =    .  One will then have LX =    ,   2n−2 (U). 

 If  is a second differential form on U such that ( |U)n =     then one can write  

=  +    ,   2n−2 (U). 

 

 Proof. – Since    n = 0, there exists a differential form   2n−2 (U) such that ( 

|U)n =     (Chap. V, Prop. 4.12) .  One will then have: 

 

0 = LX ( |U)n = LX (  ) =   (LX) , 

 

and consequently LX =    ,   2n−2 (U). 

 Finally, if  is a second differential form on U such that: 

 

( |U)n =     then one will have   ( –  ) = 0. 

 

Hence,  –  =    ,   2n−2 (U) . 

Q.E.D.   

 

 3.7. Corollary. – Let ( 2 1nN − , h) be an integral manifold of , and let   2n−2 (U) be 

a differential form such that ( |U)n =    .  The form  = h* will then possess the 

following properties: 

 

 i)  is independent of the choice of the differential form   2n−2 (U) such that ( )
U



=    . 

 

 ii)  is a volume form on 
2 1nN −

. 

 

 iii) If Y is the vector field on 
2 1nN −

 that is induced by X then LY = 0 . 

 

 3.8. Local expression. – Let (q1, …, qn , p1 , …, pn) be a local coordinate system on an 

open subset U of 2nM  such that  |U = i i

i

dp dq .  If  = dH is a closed Pfaffian form 

on U then the local expression for the Hamiltonian system X that is associated with  will 
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be 
i i i i i

H H

p q q p

    
− 

    
  .  The integral curves of X will then be the solutions to the 

Hamiltonian equations: 

idq

dt
=

i

H

p




, idp

dt
= −

i

H

q




. 

 

 3.9. Examples. – Let  be the canonical symplectic form (Corollary 1.7) on the 

cotangent bundle T *(M) to a manifold mM . 

 

 i) Finsler structure. – That is defined when one is given a differentiable function H 

on T *(M) that has the following properties: 

 

  − H is positively homogeneous of degree p > 0. 

  − H−1(0) is the image of the zero section of T *(M). 

  − Any number  > 0 is a regular value of H. 

 

The Hamiltonian system X that is associated with H is called the geodesic field of the 

Finsler structure, and the projections of the integral curves of X onto 2nM  are the geodesics 

of that structure. 

 

 ii) Riemannian structure. – That is determined by a Riemannian metric T on the 

cotangent bundle  *(M) . 

 

 One can verify that T is a Finsler structure on T *(M) (with p = 2). 

 

 iii) Classical Hamiltonian structure. – That is determined by a differentiable function 

H on T *(M) that has the form T – U qM , where: 

 

 − T is a Riemannian metric on  *(M) . 

 − U is a differentiable function on mM . 

 

 One can generalize the Hamiltonian systems in the following fashion: 

 

 3.10. Proposition (E. Cartan [3]). – Let ( 2nM , ) be a symplectic manifold, and let H 

be a differential function on 2nM    .  There exists one and only one vector field Y on 

2nM    that has the following properties: 

 

 i) Y (x, t) = Xt (x) + 
t




 in T(x, t) (

2nM   ) = Tx (M)  Tt () . 
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 ii) 
Y 1(p i  − dH  dt) = 0 . 

 

 Proof. – Let Ht be the restriction of H to 2nM {t}.  Equation ii) becomes: 

 

Xt
i  − (Xt  Ht) dt + dHt = 0, 

or 

tX i  = − dHt   and Xt  Ht = 0. 

 

One must then take Xt to be a Hamiltonian on 2nM    that is associated with Ht . 

 The local expressions for Xt (§ 3.8) then show that: 

 

(x, t) → Y (x, t) = Xt (x) + 
t




 

is a vector field on 2nM  . 

Q.E.D.   

 

 Remark. – When H is independent of t, Xt will also be independent of t, and it will be 

equal to the Hamiltonian system X that is associated with H. 

 

 3.11. Corollary. – One has Y  H = 
H

t




. 

 

The function H is not generally a first integral of Y then. 

 

 

§ 4. First integrals of Hamiltonian systems. 

 

 Let X be a Hamiltonian system on a symplectic system ( 2nM , ), and let  = − iX .  

When one reformulates Propositions 2.9 and 2.10, one will get: 

 

 4.1. Proposition. – In order for a closed Pfaffian form  on 2nM  to be a first integral 

of X, it is necessary and sufficient that  and  should be in involution. 

 

 Consequently, if Y is a Hamiltonian system on 2nM , in order for iX to be a first integral 

of X, it is necessary and sufficient that [X, Y] = 0. 

 

 4.2. Proposition. – If  and  are two first integrals of X then their Poisson bracket (, 

) will also be a first integral. 
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 4.3. Proposition (Gallisot [7]). – Let 1, …, n−1 be n – 1 first integrals of X that have 

the following properties: 

 

 i) The forms , 1 , …, n−1 are independent on an open subset U of 2nM . 

 

 ii) The forms i are pair-wise in involution. 

 

 There will then exist n Pfaffian forms , 1, …, n−1 on U that have the following 

property: 

 

 i)  |U =    + i i

i

  . 

 

 ii) The differentials d and di belong to the ideal of  (U) that is generated by , 1, 

…, n−1 . 

 

 Proof. – Let Y1, …, Yn−1 be the vector fields on 2nM  that are defined by 
iY i  = i .  One 

has: 

 i (X) = i (Yj) = 0, 

 i (X) = i (Yj) = 0, i, j = 1, …, n – 1. 

Consequently: 

 

1nX Y −
i i … 

i

q

Y i =  q (q – 1) … (q – n + 1) 1  …  n−1     q−n . 

 

If one takes q = n + 1 then one will get 1  …  n−1     = 0, which shows (Chap. V, 

Prop 4.12) that  belongs to the ideal of  (U) that is generated by , 1, …, n−1 .  There 

will then exist n Pfaffian forms , 1, …, n−1 on U such that: 

 

 |U =    + i i

i

  . 

The forms , 1, …, n−1 , 1, …, n−1 are, in turn, independent on U. 

 One has (d)|U = −   d − i i

i

  d .  If one multiplies that by: 

 

  1  …  i−1  i+1  …  n−1   (1, …, n−1, resp.) 

 

then one will get: 

 1  …  n−1    id = 0,  i = 1, …, n – 1 

(1  …  n−1    d = 0,  resp.) 

That proves property ii). 

Q.E.D.   
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 The Pfaffian forms , 1, …, n−1 generate a Pfaff system  on U that is integrable of 

rank n .  If ( nN , h) is an integral manifold of  then X will be tangent to h ( nN ), and it 

will induce a vector field Z on 
nN . 

 Therefore, let  = h*() and  = h*( i ), i = 1, …, n – 1.  One has: 

 

 4.4. Theorem (Liouville-Cartan integrability theorem). – Under the hypotheses 

above, the following properties will be verified: 

 

 i) , 1 , …, n−1 are independent on nN . 

 

 ii) 1 , …, n−1 are n – 1 first integrals of Z : di = 0 and i (Z) = 0. 

 

 iii) d = 0 and  (Z) = 1. 

 

 That theorem then expresses the idea that the vector field Z on 
nN  admits n – 1 

independent first integrals; Z is therefore “integrable by quadratures.” 

 

 Proof. – One deduces from Proposition 4.3 that , 1 , …, n−1 are independent and that 

d = di = 0, i = 1, …, n – 1.  On the other hand, one has  (Z) =  (X) and i (Z) = ( )i X .  

Now, iX = −  (X)  − ( )i iX  = −  .  Consequently,  (X) = 1 and i (X) = 0, i = 1, 

…, n – 1. 

Q.E.D.   

 

 In the case where X is a Hamiltonian system on the cotangent bundle to a manifold mM

(that is endowed with its canonical symplectic structure), the “symmetry groups” determine 

the first integrals of X : 

 

 4.3. Proposition. – Let t be a one-parameter group of diffeomorphisms of mM .  There 

exists a one-parameter group t of diffeomorphisms of ( )T M
 that has the following 

properties: 

 i) qM t = t  qM . 

 

 ii) (t)
* =  [ is the Liouville form on ( )T M

]. 

 

 Proof. –  Let {(Ui , i)} be an atlas on mM ; (Ui , 
1[ ( )]i jD  −  ) is a cocycle that defines 

 * (M). 

 If t is the one-parameter group of diffeomorphisms of mM  that is generated by X then 

the maps (t)ij = 1 1[ ( )]i i jD   − −   will determine (Chap. II, Th. 2.10) a one-parameter group 
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t of diffeomorphisms of T *(M) such that qM t = t  qM .  That one-parameter group is 

characterized by the relations: 

 

< Tui , t  > = < u,  >,  u  Ty (M)  and   ( )yT M . 

 

If   T *(M) and u  T (T *(M)) then one will have that: 

 

  < u, ( )i   > = < T

i u ,  (t ) > = < T T

M iq u , t  > 

  = < T T

i Mq q u , t  > = < T

Mq u ,  > = < u,  () >. 

 

Consequently, 
i   =  for any t. 

Q.E.D.   

 

 Exercises: 

 

 i) Proposition 4.5 will remain valid when t is a local one-parameter group. 

 

 ii) Let h be a diffeomorphism of mM .  The map   1[( ) ] ( )T

xh −   of ( )xT M  to 

( ) ( )h xT M  determines a diffeomorphism h  of ( )T M
, and ( h , h) is an automorphism of 

*(M) . 

 

 4.6. Proposition. – Let Y be a vector field on a manifold mM .  There exists one and 

only one vector field Z on the cotangent bundle ( )T M
 that has the following properties: 

 

 i) T

Mq Z = Y  qM . 

 

 ii) LX  = 0 [ is the Liouville form on ( )T M
] . 

 

 Proof. – Let t be a local one-parameter group of diffeomorphisms of mM  that is 

generated by X and let t be the correspond local group on ( )T M
 (Prop. 4.5).  The vector 

field Z that generates t will then have the desired properties. 

 The proof of the uniqueness of Z is carried out locally. 

 Let (y1, …, ym) be a local coordinate system on an open subset U of mM , and let 

i

i i

a
y




  be the local expression for X on U. 



134 Chapter VII – Hamiltonian Systems and Contact Structure. 

 The functions qi = yi  qM and pi =  / yi define a local coordinate system on 1( )Mq U− .  

Writing Z = i i

i i i

b c
q p

  
+ 

  
 , one must then have: 

1

Mq Z−  = i

i i

b
y




 = Y  qM = ( )i M

i i

a q
y




 , namely, bi = ai  qM , 

and 

 LZ  = iZ d + d iZ   

  = i i i i i i i i

i i i i

c dq b dp b dp p db− + +     

  = i
i i i M i

i i j

a
c dq p q dq

q

 
+    

  = 0, 

 

when one lets ci = −
j

i M

j j

a
p q

q

 
   

 . 

Q.E.D.   

 

 For example, if Y =  / yi , Z =  / qi in the preceding local coordinate system then 

one will have: 

 

 4.7. Corollary. – The vector field Z is a Hamiltonian system on ( ( )T M
,  = d). 

 

Indeed, iZ  = − d ( (Z)). 

 

 

 4.8. Theorem. – Let X be a Hamiltonian system on a cotangent space ( )T M
, and let 

 = − iX  .  If Z is a vector field on mM such that  (Z) = 0 (with the notations of 4.5) then 

 (Z) will be a first integral of X . 

 

Indeed: 

 d (X, Z) = −  (Z) 

  = X   (Z) – Z   (X) –  ([X, Z]) 

  = X   (Z) – (LZ ) (X) = X   (Z) . 

 

In this case, when Z generates a one-parameter group t of diffeomorphisms of mM , one 

says that t is a symmetry group of X . 

 

 4.9. Examples: 
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 i) Classical Hamiltonian systems. – Let Y be a vector field on mM , let Z be the 

corresponding vector field on T *(M), and let H = T – U  pM  be a differentiable function 

on T *(M) that defines a classical Hamiltonian structure [Example iii) of 3.9.]. 

 If Y  U = Z  T = 0 then  (Z) will be a first integral of X. 

 

 The following example is an explicit case of that situation: 

 

 ii) Motion of a body. – Let 3nM  be the set of points: 

 

(x1, y1, z1, …, xn , yn , zn) 

 

of 3n such that (xi , yi , zi)  (xj , yj , zj) for i  j ; 3nM  is an open subset of 3n, and the 

maps: 

 (xi , yi , zi)  (xi + t, yi , zi) , 

 (xi , yi , zi)  (xi , yi + t, zi) , 

 (xi , yi , zi)  (xi , yi , zi + t) , 

 (xi , yi , zi)  (xi cos t − yi  sin t, xi sin t + yi  cos t, zi) , 

 (xi , yi , zi)  (xi , yi cos t − zi  sin t, yi sin t + zi  cos t, zi) , 

 (xi , yi , zi)  (xi cos t + zi  sin t, yi , − xi sin t + zi  cos t, zi) 

 

define six one-parameter groups of diffeomorphisms of 3nM . 

 The function: 

 

H = 

2 2 2

1
2 2 2 2

1

( ) ( ) ( )

i j

M

i i ji i i i i j i j i j

k m m
q

m x y z x x y y z z

         
  + + +     

      − + − + −        

   

 

is a differentiable function on the cotangent bundle T *(M) = 3nM  3n that determines a 

classical Hamiltonian system X on T *(M) . 

 Each of the six preceding one-parameter groups is then a group of symmetries of X, 

and the corresponding first integrals are the kinetic resultant and kinetic moment. 

 

 

§ 5. Contact structures (G. Reeb [13]). 

 

 5.1. Definition. – Let 2 1nM +  be a manifold of odd dimension 2n + 1.  A contact 

structure on 2 1nM +  is defined when one is given a Pfaffian form   1 (M) of constant 

class 2n + 1. 
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 In particular,  is a Pfaffian form without singularities.  One also says that  is a contact 

form on 2 1nM + . 

 If U is an open subset 2 1nM +  then  |U will be a contact form on U. 

 

 5.2. Proposition. – Let  be a Pfaffian form on a manifold 2 1nM + .  In order for  to be 

a contact form, it is necessary and sufficient that   (d)n should be a volume form. 

 That assertion is a direct consequence of Proposition 1.6 of Chapter VI. 

 

 5.3. Corollary. – If a manifold admits a contact structure then it will be orientable. 

 

 In that case, one can orient 2 1nM +  by way of the volume form   (d)n. 

 

 5.4. Example. – The Pfaffian form: 

 

 = dx1 + x2 dx3 + … + x2n dx2n+1 

 

is a contact form on 2n+1 ; indeed: 

 

  (d)n = n ! dx1  …  dx2n+1 . 

 

The orientation that is associated with  is the canonical orientation on 2n+1. 

 

 5.5. Theorem (G. Reeb [13]). – Let  be a contact form on a manifold 2 1nM + .  There 

exists one and only one vector field Y   (M) such that: 

 

 (Y) = 1 and iY (d) = 0. 

 

One says that Y is a dynamical system on 2 1nM +  that is associated with the contact form  

. 

 

 Proof. – For any point y of (y1, …, y2n+1), there exists a local coordinate system on an 

open neighborhood U of y such that: 

 

 |U = dy1 + y2 dy3 + … + y2n dy2n+1 . 

One will then have: 

1

( | )U
y


 
 

 
= 1 and ( )

1/ y  i d = 0 . 
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Since the associated system to (d)|U is generated by  / y1 , that will show the existence 

and uniqueness of the vector field Y. 

Q.E.D.   

 

 5.6. Corollary. – The vector field Y that is associated with the contact form  has no 

singularities. 

 

 5.7. Corollary. – One has LY () = LY (d) = 0. 

 Indeed: 

 LY ()  = d iY + iY d = 0 , 

 LY (d) = d LY () = 0 . 

 More generally: 

 

 5.8. Corollary. – Let f be a differentiable function on 2 1nM + .  One has Lf Y (d) = 0 

and Lf Y () = 0. 

 

Indeed: 

  Lf Y () = f LY () + df  iY = df, 

  Lf Y (d) = d (Lf Y) = 0. 

 

 5.9. Theorem. – Let  be a Pfaffian form on a manifold 2nM such that  = d is a 

symplectic form, and let X be a Hamiltonian system with no singularities on ( 2nM , ) .  If 

(
2 1nN −

, h) is an integral manifold of the Pfaff system that is generated by iX, and if ( )X

 is not annulled on 2 1( )nh N − then the following properties will be verified: 

 

 i) h* is a contact form on 
2 1nN −

. 

 

 ii) If Y is the vector field that is induced by X on 2 1nN −
 then the associated dynamical 

system to h* will be 
( )

Y

h Y
 = 

( )

Y

X h
. 

 

 Proof. – Let x be a point of 
2 1nN −

, and let (e1, …, e2n) be a basis for Th (x)(M) such that 

(1, …, 2n) is the dual basis for 
( ) ( )h xT M .  One will have: 

 

 iX (h (x)) = 2n , 

  (h (x))  = 1  2 + … + 2n−1  2n , 

 X (h (x))  = 2n−1 , 

   (h (x)) = 
2

1

n

i i

i

a 
=

 ,  with a2n−1  0. 
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The linear forms i = T( )x ih  , 1  i  2n – 1 define a basis for ( )xT M , and one will have: 

  h* (x) = 1  2 + … + 2n−1  2n , 

  h* (x) =
2 1

1

n

i i

i

a 
−

=

 , with a2n−1  0. 

 

Those expressions show that h* has class 2n – 1 at x. 

 Finally, since h* (Y) =  (Y)  h is not annulled on 2 1nN − , the dynamical system that 

is associated with the contact form h* is Y / h* (Y) . 

Q.E.D.   

 5.10. Examples: 

 

 If the notations are the ones in 3.9 then consider a local coordinate system (y1, …, ym) 

on an open subset V of mM , and the corresponding local coordinate system on 1( )Mq V−  that 

is defined by qi = yi  qM and pi =  / yi . 

 

 i) Finsler structure. – Let h > 0 and let 2 1nN −  be the submanifold of T *(M) that is 

defined by H = h.  One locally writes: 

 

  = i i

i

p dq , 

 X = 
i i i i i

H H

p q q p

    
− 

    
  

 = 
i i i i i

T H

p q q p

    
− 

    
 , 

  (X) = i

i i

T
p

p




 = 2T . 

 

Consequently, if 
2 1nN −

 is the complement in 
2 1nN −

 to the image of the zero section of T*(M) 

(
2 1nN −

 is an open submanifold of 
2 1nN −

) then the Liouville form  will induce a contact 

structure on 
2 1nN −

 that has X / 2T for its associated dynamical system. 

 Let W be open subset of mM  that is defined by U  − h .  1( )Mq W−  is an open subset of 

T *(M) that contains 
2 1nN −

, and T = 
M

T

U q h+
 is a Riemannian metric on the cotangent 

bundle  *(W) .  The submanifold 
2 1nN −

 is then characterized by T = 1. 

  Let Y be geodesic field of T .  Y is defined by the relation iY d = − dT ; it will then be 

tangent to 
2 1nN −

.  Furthermore, one has  (Y) = 2T [Example i)]. 

 Consequently, since  induces a contact structure on 
2 1nN −

, one will have X / T = Y / 

T, or rather X = (U  qM + h) Y = T Y . 
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 5.11. Proposition (Maupertuis’s principle). – On the constant-energy submanifold that 

is defined by H = h and T  0, the Hamiltonian system X is equal to T Y, where Y is the 

geodesic field of the Riemannian structure 
M

T

U q h+
. 

 

___________ 



 

CHAPTER VIII 

 

INVARIANT FORMS.  INTEGRAL INVARIANTS. 

 
 

§ 1. – Invariant forms. 

 

 1.1 Definition. – Let X be a vector field on a manifold mM .  A differential form   

 (M) is invariant under X if one has LX = 0. 

 

A function f  (M) that is invariant under X is therefore a first integral for X. 

 

 1.2 Proposition.  The set of differential forms that are invariant under X is a 

subalgebra of  (M) that is stable under d. 

 

 Indeed: 

 LX ( ^ ) = (LX ) ^  +  ^ (LX ), 

 LX (d) = d (LX ). 

 

 1.3 Local expression. – If the point y is not a zero of X then one can find a system (y1, 

…, ym) of local coordinates on an open neighborhood U of y such that X | U =  / y1 . 

 If: 

 = 
1 1

11
p p

p

i i i i

i i m

a dy dy
   

   

 

is a form of degree p on U then one will have: 

 

LX  = 
1

1

11 1

p

p

p

i i

i i

i i m

a
dy dy

y   


 


 . 

 

Consequently, in order for any  to be invariant under X, it is necessary and sufficient that 

each of the functions 
1 pi ia  must be independent of y1 in a neighborhood of y. 

 

 1.4 Examples: 

 

 i) Hamiltonian systems. If X is a Hamiltonian on a symplectic manifold ( 2nM , ) 

then  will be a form that is invariant under X (Chap. VII, prop 3.2). 

 Consequently, 
n  will be a volume form that is invariant under X; this result is the 

expression for Liouville’s theorem (see prop 2.2) in terms of differentials.  If (
2 1nN −

, h) is 

an integral manifold of the Pfaff system that is generated by iX, and if Y is the vector field 
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that is induced by X on 2 1nN −  then there exists a volume form on 2 1nN −  that is invariant 

under Y (Chap. VII, Cor. 3.7). 

 Finally, under the hypotheses of Proposition 3.10 of Chapter VII, 
1p  − dH ^ dt will 

be a form that is invariant under Y. 

 

 ii) Contact structures.  If Y is the dynamical system that is associated with a contact 

form  on a manifold 2 1nM +  then  and d will be forms that are invariant under Y (Chap. 

VII, Cor. 5.7) 

 

 Consequently,  ^ (d)n is a volume form that is invariant under Y. 

 Let Nn be a compact, orientable manifold (possibly with boundary) of dimension n, and 

let h be a differentiable map from 
nN  to a manifold mM   Since h (N) is compact, a local 

one-parameter group t of diffeomorphisms of mM  [which is generated by the vector field 

X  (M)] will be defined on a neighborhood U  I of h (N)  {0} in mM   . 

 Under those conditions: 
 

 1.5.  Theorem. –  If  is a differential form of degree n on mM  that is invariant under 

X then the integral: 

I (t) = ( )
n t

N
h 

  

will be independent of t. 
 

 That theorem is a consequence of the following proposition: 
 

 1.6.  Proposition. – Let  be a differential form of degree n on mM  and let I (t) = 

( )
n t

N
h 

 .  One has: 

( )dI t

dt
 = ( ) L

n t X
N

h 

 . 

 Proof. –  One has: 

 I (t + ) – I (t) = [( ) ( ) ]
n t t

N
h h    

+ −  

 = ( ) ( )
n t t

N
h     − . 

Since 
nN  is compact, one can then write: 

 

 
( )dI t

dt
 = 

0

( ) ( )
lim

I t I t





→

+ −
, 

  = 
0

1
( ) lim ( )

n t t
N

h


   


 

→
− , 

  = ( ) L
n t X

N
h 

   (Chap. V, Prop. 2.5) 

 Q. E. D. 
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Conversely, one has, moreover: 

 

 1.7.  Proposition. –  If the integral I (t) = ( )
n t

N
h 

  is independent of t for any 

compact manifold nN  and any differentiable map h: nN  → nM  then the form  will be 

invariant under X. 

 

 Proof. –  If X (y)  0 then one can find a system (y1, …, ym) of local coordinates on an 

open neighborhood U of y such that X | U =  / y1 . 

 If one writes: 

 | U = 
1 1

11
n n

n

i i i i

i i m

a dy dy
   

   

then one will have: 

LX = 1

1

11 1

n

n

n

i i

i i

i i m

a
dy dy

y   


 


 . 

 

The integral 1

1

n

i n
n

D

a
dy dy

y


 

  will be zero (Prop 1.6) for any closed ball nD  in the 

subspace whose equations are: 

yn+1 = … = ym = 0; 

consequently, 
1

i na

y




(y) = 0. 

 

 One thus proves that LX  is zero at y, and consequently, that LX  is zero on the support 

of X. 

 However, if X is zero on an open subset U of mM  then LX = iX d + diX  is zero on 

U.  One thus obtains LX = 0 on mM . 

Q. E. D.  

 

§ 2. – Invariant volume forms. 

 

 In this paragraph, suppose that X is a vector field on a manifold mM  that generates a 

global one-parameter group  t of diffeomorphisms on mM  (which is the case when mM  

is compact, in particular).  One also supposes that there exists a volume form  on mM  

that is invariant under X. 

 

 2.1. Lemma. – One has 
t   =  for any t. 

 



§ 2. – Invariant volume forms. 143 

 Indeed, since LX = 
0

lim
t→

(
t   − ) for each point y of M, (

t  )(y) will be the solution 

of the differential equation z = 0 in ( )yT M  that takes the value  (y) for t = 0. 

 

 2.2 Proposition.  – The Radon measure  that is associated with  on mM  is invariant 

for t : For any Borel set A in mM  and for any t  , one will have: 

 

 (t A) =  (A) . 

 

 Proof. – One can find a locally-finite open covering  = (Ui) of mM  such that for any 

i there exists a diffeomorphism hi of Ui onto an open subset of m that verifies 
ih (dx1 ^ … 

^ dxn) = 
iU  (Chap. VI, Cor. 3.4). 

 If i is the Radon measure on Ui that is obtained by transporting the Lebesgue measure 

 on h (Ui) by way of hi then one will have  i =  j on Ui  Uj .  The Radon measure  

will then be the measure on mM  such that 
iU  =  i . 

 One can suppose that the Borel set A is contained in an open subset Ui and that t (A) 

is contained in an open subset Uj , moreover; in this case, one will have  (t A) =  (hj t 

A) =  (hj A) =  (A) (i.e.,  is invariant under hj t
1

ih− ). 

Q. E. D.  

 

 This proposition has some important consequences in regard to the geometric nature of 

the dynamical system. 

 

 2.3. Definition. – The dynamical system X is recurrent if for any open subset U of mM  

and any T  0 there exists a t  T such that U  t (U)  . 

 

 Under those conditions, for any open subset U of mM  and for any T  0 there exists a 

t  T such that U  t (U)  . 

 

 2.4. Theorem.  (Poincaré recurrence theorem). – If X is a vector field that leaves a 

volume form  on a compact manifold mM  invariant then X will be a recurrent dynamical 

system. 

 

 Proof. – Let U be an open subset of mM , and let  (U) be a finite number m > 0 such 

that one has  ( t U) =  (U) for any t  . 
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 Let T > 0.  If the open subsets  iT (U), i = 1, …, k are pair-wise disjoint then one will 

have ( )iT

i

U 
 
 
 

= km. 

 Consequently, if k is greater than 
( )M

m


 = 

1
mMm
  then there will exist two integers 

i and j, 1  i  j  k, such that iT (U)  jT (U)  ; thus, U 
( ) ( )j i T U −

  . 

Q. E. D.  

 

 2.5. Definition.  A point y of Mm is stable in the Poisson sense for the dynamical system 

X if for any neighborhood U of x and for any T  0 there exist t1  T and t2  − T such that 

1
( )t y  and 

2
( )t y  are in U. 

 

 In this case, any point of the trajectory of X that passes through y is also stable in the 

Poisson sense. 

 

 2.6.  Theorem.  If X is a vector field that leaves a form  on a compact mM  invariant 

then almost all points of mM  will be stable in the Poisson sense. 

 

In other words, the set of points that are unstable in the Poisson sense has measure zero for 

 . 

 

 2.7. Definition. – A point y of mM  is a wandering point for the dynamical system X if 

for any compact subset K in mM  there exists a T  0 such that t (y)  K for | t |  T. 

 

 In that case, any point of the trajectory of X that passes through y will also be 

wandering. 

 

 2.8. Theorem.  (E. Hopf). –  If X is a vector field on a non-compact manifold mM  that 

leaves a volume form  invariant then almost all points of mM  will be either wandering 

or stable in the Poisson sense. 

 

 One will find proofs of Theorems 2.6 and 2.8 in the treatise of V. Nemitskii and V. 

Stepanov [12]. 

 

§ 3. – Absolute integral invariants (E. Cartan [3]). 

 

 3.1. Definition. – Let X be a vector field on a manifold mM .  A differentiable form  

  (M) is an absolute integral invariant of X if one has iX  = iX d = 0. 
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 This is equivalent to saying that  is an absolute integral invariant of X if X is a 

characteristic vector field for  (Chap. VI, Th. 2.2) 

 In particular, in order for a closed differential form    (M) to be an absolute integral 

invariant for X, it is necessary and sufficient that iX  = 0. 

 

 3.2. Proposition. – In order for a differential form    (M) to be an absolute integral 

invariant for X, it is necessary and sufficient that one must have iX = LX = 0. 

 

 Indeed, LX = iX d  + diX . 

 

 3.3. Corollary. – If  is an absolute integral invariant for X then  will be an invariant 

form for X. 

 

 3.4. Proposition. – The set of absolute integral invariants for X is a subalgebra of 

 (M) that is stable under d. 

 

 The verification of that proposition is a simple exercise in calculation. 

 

 3.5. Proposition. – If a differential form  is an absolute integral invariant for X then 

it will also be an absolute integral invariant for f X for any function f  (M). 

 Indeed: 

 if X = f iX = 0, 

 if X d = f iX d = 0. 

 

 3.6. Corollary. – Let  be an absolute integral invariant for X.  There exists a strictly 

positive function f  (M) that has the following properties: 

 

 i)  is an absolute integral invariant for f X. 

 

 ii) f X generates a global one-parameter group of diffeomorphisms of mM . 

 

 This corollary is a direct consequence of Proposition 1.13 of Chapter V. 

 When  is a volume form on mM , moreover, one can apply the conclusions of the 

preceding paragraph to the dynamical system f X (whose trajectories have the same images 

as the trajectories of X). 

 

 3.7.  Local expression. – If the point y is not a zero of X then one can find a system (y1, 

…, ym) of local coordinates on an open neighborhood U of y such that X | U =  / y1 . 

 If: 

 = 
1 1

11
p p

p

i i i i

i i m

a dy dy
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is a form of degree p on U then one will have: 

 

 iX = 
2 2

1

1

2
p p

p

i i i i

i i m

a dy dy
   

  , 

 LX = 1

1

11 1

n

n

n

i i

i i

i i m

a
dy dy

y   


 


 . 

 

Consequently, in order for  to be an absolute integral invariant of X, it is necessary and 

sufficient that 
21 pi ia = 1

1

ni ia

y




 = 0; i.e., that the local expression for  should contain neither 

y1 nor dy1 in a neighborhood of y. 

 

 3.8. Examples: 

 

 i) Hamiltonian systems. Let X be a Hamiltonian system on a symplectic manifold (
2nM , ), and let ( 2 1nN − , h) be an integral manifold of the Pfaff system that is generated by 

iX  . The differential form h* is an absolute integral invariant of the vector field Y that is 

induced by X on 
2 1nN −

 (Chap. VII, Prop. 3.5). 

 

 Under the hypotheses of Proposition 3.10 in Chap. VII, the vector field Y : (x, t)  Xt 

(x) +  / t on 2nM   is characterized by the property that it must admit the differential 

form 
1p   – dH ^ dt as an absolute integral invariant (E. Cartan [3]). 

 

 ii) Contact structures. If Y is the dynamical system that is associated with a contact 

form  on a manifold 2 1nM +  then d will be an absolute integral invariant for Y (Chap. 

VII, Th. 5.5). 

 

 When  is an absolute integral invariant of degree n of X, one can generalize Theorem 

1.5 in the following fashion: 

 

 There exists a differentiable function f  (  N) such that: 

 

( , )

T

t yH
t

 
 

 
 = f (t, y) X (H (t, y)) . 

 

[Geometrically, one can say that ht is a deformation of h0 (
nN ) “along the tube of 

trajectories of X that issue from h0 (
nN ).”]  The situation in Theorem 1.5 then corresponds 

to the case in which f (t, y) = 1. 

 Under these conditions: 



§ 3. – Absolute integral invariants. 147 

 3.9. Theorem. – If  is an absolute integral invariant of degree n for X then the 

integral: 

I (t) = 
n t

N
h   

will be independent of t. 

 

 Proof. – One has: 

i / t H
* = i / t dH*  = 0 (Prop. 3.5) 

 

in   
nN .  Consequently, H* is an invariant form for the vector field  / t on   

nN , 

which is the vector field that is associated with the one-parameter group  t : (t, y)  (t + 

, y) of diffeomorphisms of   
nN . 

 Let j be the canonical diffeomorphism of 
nN  onto {0} 

nN ; one has: 

 

 I (t) = 
n t

N
h   = ( )

n t
N

H j 

 , 

  = ( )
n t

N
j H  

 . 

 

One then deduces from Theorem 1.5 that I (t) independent of t. 

Q. E. D.  

 

 Conversely, one proves the following property in an analogous fashion to 1.7: 

 

 3.10. Proposition. – If the integral: 

 

I (t) = 
n t

N
h   

 

is independent of t for any pair (
nN , H) that has the foregoing properties then  will be an 

absolute integral invariant for X. 

 

§ 4. – Relative integral invariants (E. Cartan [3]). 

 

 4.1. Definition. – Let X be a vector field on a manifold mM .  A differential   (M) 

is a relative integral invariant of X if one has iX d = 0. 

 

It is then equivalent to say that d is an absolute integral invariant of X, or even that X is a 

characteristic vector field of d. 

 An absolute integral invariant is also a relative integral invariant. 
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 4.2. Examples: 

 

 i) Contact structure. If Y is a dynamical system that is associated with a contact form 

 on a manifold 2 1nM + then  will be a relative integral invariant of Y [example ii) of 3.8]. 

 

 ii) Finsler structure. With the notations of example i) of 5.10, Chapter VII, the Liouville 

form  induces a relative integral invariant of the geodesic field on 2 1nN − . 

 

 iii) Classical Hamiltonian structure. [example ii) of 5.10, Chap. VII].  One has an 

analogous result. 

 

 With the same hypotheses as in Theorem 3.9, suppose, moreover, that Nn is non-

vacuous, and let kt denote the restriction of ht to Nn.   

 Under these conditions, one will deduce the following result from 3.9 and Stokes’s 

theorem: 

 

 4.3. Theorem. – If  is a relative integral invariant of degree n − 1 of X then the 

integral: 

I (t) = 
n t

N
k 

  

will be independent of t. 

 

 Conversely, just as one has for absolute integral invariants: 

 

 4.4. Proposition. – If the integral: 

 

I (t) = 
n t

N
k 

  

 

is independent of t for any pair (
nN , H) that has the preceding properties then  will be a 

relative integral invariant of X. 

 

 4.5. Definition. – Let X be a vector field on a manifold mM .  A transversal to X is a 

submanifold 
1mN −
 (possibly with boundary) of codimension 1 of mM  such that for any 

point y of 
1mN −
 the tangent vector X (y) does not belong to the subspace Ty (N) of Ty (M). 

 

 In particular, X is not annulled on 
1mN −
. 

 As H. Poincaré and G. Birkhoff have shown, knowing a transversal of X can be very 

interesting in the geometrical study of the dynamical system X. 

 Meanwhile: 
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 4.6. Theorem. (G. Reeb [13]). – If the vector field X possesses a relative integral 

invariant  of degree m – 2 such that d has no singularity then X will possess no compact 

transversal without boundary. 

 

 Proof. – Suppose the 1mN −  is a compact transversal without boundary of X.  The 

exterior differential d is a differential form of degree m – 1 and constant class m – 1 whose 

characteristic system at each point y  N is generated by X (y).  Consequently 

(transversality hypothesis), i*d will be a volume form on 1mN − .  One thus has that 

1
( )

mN
i d

−



   0 (Chap. IV, Cor. 4.4). 

 Now, one deduces that this integral is zero from Stokes’s theorem (Chap. IV, Cor. 4.8).  

That is a contradiction. 

Q. E. D.  

 

 4.7. Corollary. – The dynamical system Y that is associated with a contact form  on 

a manifold 2 1mM +  does not possess a compact transversal without boundary. 

 

 Indeed,  ^ (d)n−1 is a relative integral invariant of Y of degree 2n – 1, and d ( ^ 

(d)n−1) = (d)n has no singularity. 

 This corollary applies, in particular, to the cases of Finsler structures and classical 

Hamiltonian structures that were studied in examples 5.10 of Chapter VII (see example 

4.2). 

 

§ 5. – Integral invariance relations (A. Lichnérowicz [11]). 

 

 5.1. Definition. – Let X be a vector field on a manifold mM .  A differential form   

 (M) is an integral invariance relation for X if one has iX  = 0. 

 

 Consequently: 

 

 i) The set of integral invariance relations for X is a subalgebra of  (M). 

 

 ii) If  is an integral invariance relation for X then the same thing will be true for f X, 

f  (M). 

 

 iii) In order for    (M) to be a relative integral invariant of X, it is necessary and 

sufficient that d must also be an integral invariance relation for X. 

 

 iv) In order for    (M) to be an absolute integral invariant of X, it is necessary and 

sufficient that  and d must both be integral invariance relations for X. 

 



150 Chapter VIII – Invariant Forms.  Integral Invariants. 

 5.2. Example: Time-dependent Hamiltonian system.  With the notations of proposition 

3.10 of Chapter VII, the vector field Y: (x, t) Xt(x) +  / t is characterized by the 

property that it admits the form 
1p   – dH ^ dt as an integral invariance relation. 

 

 5.3. Theorem. – Under the hypotheses of Theorem 3.9, if  is an integral invariance 

relation of degree n + 1 for X then one will have H* = 0. 

 

 Indeed, H* is a form of degree n + 1 on   N n such that i / t (H
*) = 0. 

 Conversely: 

 

 5.4. Proposition. – If one has H* = 0 for any pair (
nN , H) that has the properties in 

3.9 then one will have an integral invariance relation for X. 

 

___________ 

 



 

CHAPTER IX 

 

SECOND TANGENT BUNDLE 
 

 

§ 1. – Tangent bundle to a vector bundle. 

 

 Let  = (E, p, mM ) be an n-dimensional differentiable vector bundle whose base mM

is an m-dimensional manifold. The space E is then an (m + n)-dimensional manifold, and 

the diagram: 

 
commutes. 

 One supposes (and this is no restriction) that the fiber of  is n. If (U, ) is a 

differentiable chart on the bundle h then T will be a diffeomorphism of 1 1( )Ep p U− −  = 

T 1 1( ) ( )Mp p U− −  onto: 

 

T (U   n) = T (U)  n  n = 1( )Mp U−  n  n. 

 

Consequently,  () = (T (E), 
Tp , T (M)) is a locally-trivial bundle whose fiber is 2n. 

Indeed: 

 

 1.1. Proposition. – If {(Ui, i)} is a differentiable atlas on the vector bundle  = (E, p,
mM ) then the set 1 T{( ( ), )}i ip U−   will be an atlas that defines a structure of a 2n-

dimensional differentiable vector bundle on  () = (T (E), 
Tp , T (M)). 

 

One then says that  () is the tangent vector bundle to the bundle . 

 The proof of that proposition utilizes the following two lemmas, whose verifications 

present no difficulties: 

 

 1.2. Lemma. – Let G be the linear group Gl (n, ). The tangent maps to the maps (g, 

h) gh and g 
1g −
 definition a group structure on the tangent space T (G) = G  

2n . 

 

T (E) 

pE 

E 

 
T (M) 

 
p 

pM 
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 1.3. Lemma. – The tangent map to the canonical map (g, f)  g (f) of G  n into n 

permits one to identify T (G) with the subgroup of Gl (2n, ) of matrices of the form 

0A

B A

 
 
 

, in which A and B are square matrices of order n and A is invertible. 

 

 Proof of Proposition 1.1: Let (U, ) and (V, ) be two differentiable charts of  such 

that U V  . One can write: 

 

 −1 (y, f) = (y, g (y) f), (y, f)  (U  V)  n, 

 

in which g is a differentiable map from U  V into G = Gl (n, ). 

 One will then have: 

 

T (T)−1 (u, v) = 
T( , ( ) )u g u v , (u, v)  1 2( ) n

Mp U V−   , 

 

in which Tg  is the tangent map to the change of chart g. 

Q. E. D.  

 

 1.4. Corollary. – The pair (pE, pM) is a differentiable homomorphism of  () into . 

 

 Indeed (Chap. II, Prop. 2.11), since: 

 

 pE (T)−1 (u, (v, w)) = −1 (pM (u), w) , 

(u, (v, w))  T (U  n) = 1( ) n n

Mp U−   , 

 

pE will be linear on each fiber of  (). 

 

 1.5. Definition. – The tangent bundle to the fibers of  is the bundle p   over E that 

is the reciprocal image of  by the projection p : E → mM . 

 

 The tangent bundle to the fibers of  is therefore an n-dimensional differentiable vector 

bundle over E. One denotes it by p  = ( , , )p E E
. 

 The total space to p E
 to p   is identified with the subspace 1 1( ) ( )

mM

p y p y


− −



  of 

E  E, and the map  is the restriction of the first projection of E  E onto E. If    denotes 

the restriction of p E
 to the second projection of E  E onto E then one will have the 

following commutative diagram: 
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The term “tangent bundle to the fibers of ” is justified by the following construction: 

 For any point y of mM , the fiber 1( )p y−  is an n-dimensional vector space. The tangent 

map to the canonical injection 1( )p y−  → E then determines an injective map H of p E = 

1 1( ) ( )
mM

p y p y


− −



  into T (E) such that  = Ep H . Indeed: 

 

 1.6. Proposition. – The map H : p E  → T (E) is a differentiable homomorphism (over 

E) of p   into the tangent bundle  (E). 

 

 Proof: It suffices to verify that proposition locally. 

 Therefore, let (U, ) be a chart on mM  for which there exists a differentiable 

trivialization  of  |U, and let (y1, …, ym) be the local coordinate system that is determined 

by  on U. 

 The functions zi = iy p , i = 1, …, m, and j = 2ix p  , j = 1, …, n, form a local 

coordinate system on the open subset 1( )p U−  of E. Consequently, the functions ui = i Ez p

, vj = 
j Ep , dzi, dj will form a local coordinate system on the open subset 1 1( )Ep p U− −  

of T (E). 

 Finally, let (w1, …, wm, 1, …, n, 1, …, n) denote the local coordinate system on the 

open subset 
1 1( )p U − −

 of p E
 that is obtained by starting from the trivialization: 

 

  2 2( , ) ( ( ), ( ), ( ))e e p e p e p e    of 1 ( )
( ) |

p U
p  −


. 

 

The local expressions for the maps  and H in those local coordinate systems will then be: 

 

  zi = wi , j = j , 

  ui = wi ,  vj = j , dzi = 0 , dj = j , 

 

respectively. Those expressions then show that H is differentiable and linear over each fiber 

of .p   

Q. E. D.  

 

 

E 

 

 

p 

E 

p 
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 1.7. Definition. – The transverse bundle to the fibers of  is the bundle ( )p M  over 

E that is the reciprocal image of the tangent bundle  (M) by the projection p: E → mM . 

 

 The transverse bundle to the fibers of  is therefore an m-dimensional differentiable 

vector bundle over E. One denotes it by ( )p M  = ( ( ), , )p T M E . 

 The total space ( )p T M  of ( )p M  is identified with the subspace 

1( ) ( )
m

y

y M

p y T M−



  of E  T (M), and the map  is identified with the restriction of the 

projection of E  T (M) onto E. If   denotes the restriction of the projection of E  T (M) 

onto T (M) to ( )p T M  then one will have the following commutative diagram: 

 
One also has this commutative diagram: 

 
Consequently (Chap. II, Th. 1.7): 

 

 1.8. Proposition. – There exists a differentiable homomorphism K (over E) of  (E) into 

( )p M  such that the following diagram commutes: 

 

 1.9. Theorem. – The sequence 0 → ( ) ( )
H E

p E p M   → →  → 0 is exact. 

 

 

E 

 

 

p 

T (M) 

pM 

 

T (E) 

E 

pE 

 

p 

T (M) 

pM 

 

 

E 

 

 

p 

T (M) 

pM 

 

T (E) 

K 

pE 
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 Proof: With the same notations as in the proof of Proposition 1.6, let (l1, …, lm, 1, …, 

n, 1, …, n) denote the local coordinate system on the open subset 1 1( )p U − −  of 

( )p T M  that is obtained by starting from the trivialization (, v) (p (), p2  (), 

T

2 ( ))p v  of 1 ( )
( ( )) | .

p U
p T M −


 

 The local expressions for the maps  and K will then be: 

 

 zi = li ,  j = j , 

zi = ui ,  j = vj ,  i = dzi , 

 

respectively. That shows the exactness of the sequence in 1.9. 

Q. E. D.  

 

 

§ 2. – Second tangent bundle. 

 

 2.1. – We now specialize the preceding situation to the case in which  is the tangent bundle 

( )M  to mM . We will then get the following commutative diagram: 

 
 2.2. – Let U be an open subset of mM  on which there exists a system (q1, …, qm) of local 

coordinates. By abuse of notation, one lets q1, …, qm (instead of i Mq p ), 1q  = dq1, …, mq  = dqm 

denote the corresponding system of local coordinates on the open subset 
1( )Mp U−

 of T (M). One 

also lets q1, …, qm (instead of ( )i M T Mq p p ), 1q , …, mq  (instead of ( )i T Mq p ), dq1, …, dqm, 1,dq  

…, mdq  denote the local coordinate system on the open subset 
1 1

( ) ( )T M Mp p U− −
 = 

T 1 1( ) ( )M Mp p U− −
 of 

T (T (M)). 

T (T (M)) 

pT(M) 

pM 

T (M) 

pM 

 

 

K 

 

0 

T (M) 

 

0 
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 Furthermore, let q1, …, qm (instead of i Mq p  ), 1q , …, mq  (instead of iq  ), dq1, …, dqm 

(instead of iq   ) denote the local coordinate system on the open subset 
1 1( )Mp U − −

 of ( ).Mp T M
 

 With those systems of local coordinates, the expressions for pM, pT(M), 
T

Mp , ,   , H, K will 

be: 

 

 pM : ( , )i i iq q q , 

 pT(M) : ( , , , ) ( , )i i i i i iq q dq dq q q  , 

 
T

Mp  : ( , , , ) ( , )i i i i i iq q dq dq q dq  , 

  : ( , , ) ( , )i i i i iq q dq q q , 

   : ( , , ) ( , )i i i i iq q dq q dq , 

 H : ( , , ) ( , ,0, )i i i i i iq q dq q q dq , 

  K : ( , , , ) ( , , )i i i i i i iq q dq dq q q dq  . 

 

 Exercise. – Verify that those local expressions are actually compatible with the changes of 

charts. 

 

 2.3. Theorem. – There exists a diffeomorphism s of T (T (M)) onto itself that has just one of 

the following properties: 

 

 i) s is an involution of T (T (M)) (viz., 2s  = identity). 

 

 ii) s is a differentiable isomorphism (over T (M)) of the bundle  (T (M)) onto the bundle 

( ( ))M  . 

 

 iii) For any differentiable function f on mM , one will have ( ( ))d df s  = d (df). 

 

The condition ii) expresses the idea that the diagram: 

 
commutes. 

 One says that s is the canonical involution of the second tangent space T (T (M)). 

T (T (M)) 

T (M) 

T (T (M)) 

 

pT(M)  

s 

s 
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 Proof: If s is such an involution of T (T (M)) then one will have: 

 
1 1

( )( ( ))T M Ms p p U− −
 = 

T 1 1( ) ( )M Mp p U− −
 = 1 1

( ) ( )T M Mp p U− −  

 

for any open subset U in mM . 

 Moreover, if U is an open subset of mM  of type 2.2 then the conditions ii) and iii) will imply 

[since idq  = d (dqi)] that the local expression for s will necessarily be: 

 

( , , , ) ( , , , )i i i i i i i iq q dq dq q dq q dq  . 

 

Conversely, that local expression determines a diffeomorphism sU of 1 1

( ) ( )T M Mp p U− −  onto itself that 

verifies the conditions i) and ii). 

 If f is a differentiable function on U then one will have: 

 

d (df) = 
2

,

j k j

j k jj k j

f f
q dq dq

q q q

 
+

  
  . 

 

Consequently (Schwarz’s theorem), sU also verifies the condition iii). 

 The existence and uniqueness of those diffeomorphisms sU for any open subset U of mM  of 

type 2.2 will then permit one to obtain a unique diffeomorphism  of T (T(M)) that verifies the 

Properties of 2.3 by gluing them together. 

Q. E. D.  

 

 Exercises: 

 

 i) The involution s exchanges the image of H and the restriction of s (T (M)) to the zero 

section of  (M). 

 

 ii) Let X be a vector field on mM  and let i be a local one-parameter group of diffeomorphisms 

of mM  that is generated by X. 

 

 a) 
T

i  is a local one-parameter group of diffeomorphisms of T (M). 

 

 b) TX  is a section of the bundle  ( (M)) = (T (T (M)), 
T

Mp , T (M)). 

 

 c) 
T

i  is generated by s  TX . 

 

 Recall (Chap. V, § 1.6) that the map (t, u)  ht (u) = te u  is a one-parameter group of 

diffeomorphisms of T (M). ht is the one-parameter group of homotheties of T (M). One can set: 
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 2.4. Definition. – The Liouville field on T (M) is the vector field V that is generated by the 

one-parameter group of homotheties of T (M). 

 

 2.5. Local expression. – Let U be an open subset of mM  of type 2.2. The local expression for 

ht in 
1 ( )Mp U−

 is ( , ) ( , )t

i i i iq q q e q  . 

 

Consequently, the local expression for V is i

i i

q
q




 . 

 That local expression justifies the following construction of the Liouville field (see 2.2): 

 

 2.6. Proposition. – Let  section of the bundle ( )p T M
 over T (M) that is defined  (u) = (u, 

v). One has V = H  s. 

 

 Exercise. – Let  be a differentiable function on mM . The map (t, u)  
( )Mt p u

e u


 is a one-

parameter group of diffeomorphisms of T (M) that is generated by the vector field (  pM) V. 

 

 

§ 3. – Second-order differential equations. 

 

 3.1. Definition. – A second-order differential equation on a manifold mM is a differentiable 

map X : T(M) → T (T (M)) that is simultaneously a section of the tangent bundle  (T (M)) and a 

section of the bundle  ( (M)). 

 

 In other words, ( )T Mp X  and 
T

Mp X must be equal to the identity map on T (M). In particular, 

X must be a vector field on T (M). 

 

 A solution to the second-order differential equation X on mM  is a differentiable curve c : I → 
mM  such that c : I → T (M) is an integral curve of X. 

 

 3.2. Local expression. – With the same notations as in 2.2, the local expression for a second-

order differential equation on mM  has the form: 

 

( , )i i j j

i i i

q a q q
q q

  
+ 

  
  . 

 

The integral curves of X in are then the solutions to the differential system: 

 

idq

dt
 = iq , idq

dt
 = ( , )i j ja q q , 
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or rather, the second-order differential system: 

 

  

2

2

id q

dt
 = ,

j

i j

dq
a q

dt

 
 
 

,  i = 1, …, m. 

 

One can deduce the following proposition from that local expression (see the proof of 2.3): 

 

 3.3. Proposition. – In order for a vector field X on T (M) to be second-order differential 

equation on mM , it is necessary and sufficient that one should have s  X = X. 

 

 One now introduces a type of second-order differential equation that is very important in 

differential geometry and analytical mechanics. (One can consult the treatise by S. Lang [10] for 

a more detailed study of this.) 

 

 3.4. Definition. – A spray on a manifold mM  is a second-order differential equation X on mM  

such that [V, X] = X (in which V denotes the Liouville field on T(M)). 

 

 3.5. Local expression. – With the notations of 2.2, one can write: 

 

 V = i

i i

q
q




 , 

 X = 
i i

i i i

q a
q q

  
+ 

  
  , 

[V, X] = 
,

j

i i j

i i ji i i

a
q q a

q q q

  
+ − 

   
  . 

 

Consequently, in order for X to be a spray on mM , it is necessary and sufficient that one should 

have: 

  
j

i

i i

a
q

q




  = 2 aj ,  j = 1, …, m , 

 

or rather that the functions aj should be homogeneous of degree 2 in the iq . 

 

 Exercises: 

 

 i) Let X be a second-order differential equation on a manifold mM , and let (U, ) be the 

maximal local one-parameter group of diffeomorphisms of T (M) that is generated by X. The 

following properties are equivalent: 

 

 a) X is a spray. 
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 b) The point (t, u) is in U if and only if the point (1, tu) is in U, and then t t (u) = 1 (tu). 

 

 c) X (ht (u)) = 
T ( )t

te h u . 

 

 ii) The constructions that were made in this chapter are “functorial,” i.e., they are compatible 

with differentiable homomorphisms (in a sense that one must specify). 

 

____________ 

 



 

CHAPTER X 

 

DIFFERENTIAL CALCULUS ON TANGENT BUNDLES 
 

 

 When a manifold is a tangent bundle, its differential calculus is enriched by certain operators 

that play a fundamental role in Lagrangian mechanics. Those operators have been studied by J. 

Klein [9] and, in a more general context, by A. Fröhlicher and A. Nijenhuis [6]. 

 In this chapter, we will consider an m-dimensional manifold mM . As before (Chap. IX, § 2.2), 

if (q1, …, qm) is a local coordinate system on an open subset U of mM  then we will let ( , )i iq q  

[( , , , )i i i iq q dq dq , resp.] denote the local coordinate system on the open subset 
1( )Mp U−

 of T (M) 

1 1

( )[ ( )T M Mp p U− −
 of T (T (M)), resp.]. 

 Recall the exact sequence in Chapter IX: 

 

0 ( ) ( ( )) ( ) 0
H K

M Mp M T M p M   → → → →  

 

 

§ 1. – Vertical endomorphism. 

 

 1.1. Definition. – The endomorphism v = H K  of  (T (M)) is called the vertical 

endomorphism of the second tangent bundle. 

 

One will then have: 

 

 1.2. Proposition. – The vertical endomorphism of  (T (M)) is a differentiable endomorphism 

of constant rank m and square zero. 

 

 1.3. Local expression. – The vertical endomorphism is given locally by (Chap. IX, Prop. 1.6 

and Th. 1.9): 

v : ( , , , ) ( , ,0, )i i i i i i iq q dq dq q q dq  . 

 

Since v is an endomorphism of the tangent bundle  (T (M)), it determines an endomorphism 

(which is once more denoted by v) of the module  (T (M)) of vector fields on T (M). That 

endomorphism is compatible with the restrictions, and one can write: 

 

i i

i i i

v a b
q q

   
+      

  = i

i i

a
q




 , 
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locally. Consequently (Chap. IX, § 2.4): 

 1.4. Proposition. – If V denotes the Liouville field of T(M) then one will have v V = 0. 

 

The endomorphism v of  (T (M)) is not compatible with the Lie bracket. Indeed: 

 

 1.3. Proposition. – If X and Y are two vector fields on T (M) then one will have: 

 

[v X, v Y] = v [v X, Y] + v [X, v Y] . 

 

Proof: Locally one can write: 

X = 
i i

i i i

a b
q q

  
+ 

  
  , 

Y = 
i i

i i i

c d
q q

  
+ 

  
  , 

 v X = i

i i

a
q




 , 

 v Y = i

i i

c
q




 , 

 [v X, v Y] = 
,

j j

i i

i j i i j

c a
a c

q q q

   
− 

   
 , 

 [v X, Y]  =  
,

j

i

i j i j

c
a

q q

 

 
 , 

 [X, v Y]  = −
,

j

i

i j i j

a
c

q q

 

 
 , 

 v [v X, Y]  =  
,

j

i

i j i j

c
a

q q

 

 
 , 

 v [X, v Y]  = −
,

j

i

i j i j

a
c

q q

 

 
 . 

Q. E. D.  

 

 1.6. Proposition. – Let X be a vector field on T (M), and let V be the Liouville field. One has: 

 

v X = v [V, X] + [v X, V] . 

Proof: Locally one can write: 

X = 
i i

i i i

a b
q q

  
+ 

  
  , 
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 V = i

i i

q
q




 , 

 v X = i

i i

a
q




 , 

 v [V, X]  =
,

j

i

i j i j

a
q

q q

 
+

 
 , 

 v [V, X]  = 
,

j

i

i j i j

a
q

q q

 

 
 , 

 [v X, V] = 
,

j

i i

i i ji i j

a
a q

q q q

 
−

  
  . 

Q. E. D.  

 

 1.7. Definition. – The vertical operator in  (T (M)) is the endomorphism v  of the exterior 

algebra  (T (M)) that is determined by the endomorphism v of  (T (M)). 

 

 1.8. Proposition. – The vertical operator is an endomorphism with square zero of the algebra 

 (T (M)) that is compatible with locally-finite sums. 

 

 1.9. Proposition. – If X is a vector field on T (M) then one will have Xi v
 = vXv i

. 

 

In particular: 

 

 1.10. Corollary. – One has Vi v
 = 0 . 

 

 1.11. Local expression. – The endomorphism v  is determined locally by: 

 

  v f
  = f , f   (T (M)), 

  ( )iv dq
 = 0 , 

  ( )iv dq
 = dqi . 

 

Those local expressions show, in particular, that v  does not commute with the exterior derivative 

d. 

 

 

§ 2. – Vertical differentiation. 

 

 If  is a differential form of degree p, p  1, on T (M) then: 
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iv  : (X1, …, Xp) 1( , , , , )i p

i

X v X X  

 

will also be a differential form of degree p on T (M). 

 If one agrees to set iv f = 0 for f   (T (M)) then one will get an endomorphism of the vector 

space (over )  (T (M)) that is compatible with locally-finite sums. Indeed, one verifies the 

following result with no difficulty: 

 

 2.1 Proposition. – The map   iv  is a derivation of degree 0 of the algebra  (T (M)). 

 

That derivation is characterized (Chap. IV, Cor. 1.12) by the relations: 

 

  iv f = 0 , 

  iv (df) = ( )v df
, f   (T (M)). 

 

 2.2. Definition. – The vertical derivative of  (T (M)) is the derivation iv of degree 0 on the 

algebra  (T (M)) that is characterized by the relations: 

 

 i) iv f = 0 , 

 

 ii) iv (df) = ( )v df
, f   (T (M)). 

 

 2.3. Local expression. – The derivation iv is determined locally by: 

 

 iv f = 0 , 

 iv (dqi) = 0 , 

 ( )v idqi  = dqi . 

 

 2.4. Proposition. – Let  be a form of degree p on T (M). One has: 

 

 i) (iv)
p  = !p v 

, 

 

 ii) ( )q

v i  = 0 for q > p . 

 

The verification of that property is immediate. 

 

 2.5. Corollary. – One has v v
i  = vv

i  = 0. 

 

 2.6. Proposition. – Let X be a vector field on T (M), and let V be the Liouville field. One has: 
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 i) [iX, iv] = iX iv − iv iX = ivX . 

 

 ii) [iv, LV] = iv LV − LV iv = iv . 

 

 Proof: It suffices to verify that those expressions take the same values for  = f and  = df, f 

  (T (M)). Now: 

[iX, iv] f = 0 , ivX f = 0 , 

[iX, iv] df = 
X v df

i  = ivX df , 

[iv, LV] f = 0 , iv f = 0 , 

 ([iv, LV] df) (Y)  = (iv d (V  f) − ( ))( )vv df Y
L , 

 = v Y  (V   f) – V  (vY   f) + v [V, Y]  f 

 = ([v Y, V] + v [V, Y])  f 

 = (v Y)  f   (Prop. 1.6), 

 (iv df) (Y) = df (v Y) = (v Y)  f . 

Q. E. D.  

 Hence, by recurrence: 

 

 2.7. Corollary. – One has [(iv)
p, LV] = p (iv)

p. 

 

 

§ 3. – Vertical differentiation. 

 

 The bracket dv = [iv, d] = iv d − d iv is an antiderivation of degree 1 on the algebra  (T (M)) 

(Chap. IV, Prop. 1.9): 

 

 3.1. Definition. – The vertical derivative on  (T (M)) is the antiderivation of degree 1 on the 

algebra  (T(M)) that is defined by dv = [iv, d] . 

 

 One then has: 

 

 3.2. Proposition. – The vertical derivative dv is the antiderivation of degree 1 on  (T (M)) 

that is characterized by the relations: 

 

 i) dv f = ( )v df
 , 

 

 ii) dv (df) = − ( ( ))d v df
,  f   (T (M)). 

  

 3.3. Local expression. – The antiderivation dv is determined locally by: 
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  dv f = i

i i

f
dq

q




 , 

dv (dqi) = ( )v idqd  = 0 . 

 

 3.4. Proposition. – The exterior derivative commutes with the vertical derivative on  (T (M)). 

 

Indeed, d dv = d iv d = − dv d . 

 

 3.5. Proposition. – The vertical derivative is an antiderivation of square zero. 

 

The proof of that proposition uses the following lemma: 

 

 3.6. Lemma. – One has v v df
i d  = 0 for any f   (T (M)). 

 

Proof: Let X and Y be two vector fields on T (M). 

 

 ( )( , )v v df X Y
i d  

  = ( )( , ) ( )( , )dv df v X Y dv df X vY +  

  = v X  (v Y  f) – (v [v X, Y])  f – v Y   (v X  f) – (v [X, v Y]  f 

  = ([v X, v Y] – v [v X, Y] – v [X, v Y])  f 

  = 0  (Prop. 1.5). 

Q. E. D.  

 

Proof of Proposition 3.5: It suffices to verify that dv dv  = 0 for  = f and  = df, f   (T (M)). 

Now: 

  dv dv f = vv df
d  

  = v v df
i d     (Cor. 2.5) 

  = 0 , 

  dv dv df  = d dv dv f = 0    (Prop. 3.4) 

Q. E. D.  

 

 3.7. Proposition. – Let V be the Liouville field on T (M). One has: 

 

 i) [iv, dv] = iv dv − dv iv = 0 , 

 

 ii) iv dv + dv iv = iv , 

 

 iii) [dv, Lv] = dv Lv − Lv dv = dv . 
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Proof: It suffices to verify that those expressions take the same values for  = f and  = df, f 

( ( ))T M . Now: 

  [iv, dv] f = iv dv f = vv df
i  = 0   (Cor. 2.5) 

  [iv, dv] df = − iv d iv df − iv d iv df + d (iv)
2 df 

  = 0   (Lemma 3.6 and Prop. 2.4) 

  (iv dv + dv iv) f = vv df
i = 0    (Cor. 1.10), 

  (iv dv + dv iv) df  = − iV d iv df + ( )v d V f   

  = − LV iv df + iv LV df  (Cor. 1.10), 

  = [iv, LV] df = iv df   (Prop. 2.6) 

  [dv, LV] f = iv LV df − LV iv df 

   = [iv, LV] df = iv df = dv f, 

  [dv, LV] df = dv d (V  f) − LV dv df 

   = − d dv (V  f) + d LV dv f 

   = − d ([dv, LV] f) 

   = − d dv f = dv (df) . 

Q. E. D.  

 3.8. Corollary. – One has vv
d = 0 . 

 

Proof: If  is a differential form of degree p on T (M) then one can write (Prop. 2.4): 

 

vv 
d  = 

11
( )

( 1)!

p

v v
p

+

+
i d  = 

11
( )

( 1)!

p

v v
p

+

+
d i  = 0 . 

 

 3.9. Corollary. – One has v v
d  = v

d . 

 

Proof: One first verifies the relation: 

 

(iv)
p d = p dv (iv)

p−1 + dv (iv)
p 

 

by recurrence. Now, if  is a differential form of degree p on T (M) then one can write: 

 

v 
d  = 

11
( )

( 1)!

p

v
p

+

+
i d  = 

11 1
( ) ( )

! ( 1)!

p p

v v v
p p

 ++
+

d i d i  = v v d . 

Q. E. D.  
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§ 4. – Semi-basic differential forms. 

 

 4.1. Definition. – A semi-basic differential form on T (M) is a differential form on T (M) 

belongs to the image of the vertical operator v . 

 

Consequently: 

 

 4.2. Proposition. – The set  of semi-basic forms on T (M) is a graded sub-algebra of 

( ( ))T M  ( ( ))i

i

T M
 

=   
 

  that is stable under locally-finite sums and contains the 

algebra  (T (M)) of differentiable functions on T (M). 

 

 4.3. Proposition. – The algebra of semi-basic differential forms on T (M) is stable under 

vertical differentiation. 

 

Indeed (Cor. 3.9), v v
d  = v

d . 

 

 4.4. Corollary. – If f is a differentiable function on T (M) then dv f will be a semi-basic Pfaff 

form on T (M). 

 

 4.5. Proposition. – The endomorphisms iV (V is the Liouville field) and iv are zero on the 

algebra  of semi-basic differential forms on T (M). 

 

 4.6. Local expression. – Since ( )iv dq
 = 0 and ( )iv dq

 = dqi, the algebra  will be generated 

locally by differentiable functions and the differentials dqi . A semi-basic differential form of 

degree p can then be written locally as: 

 

1 1

1

1 1

1

( , , , , , )
m p

p

i i m m i i

i i m

a q q q q dq dq
   

  . 

 

One immediately deduces the following results from those local expressions: 

 

 4.7. Proposition. – If  is a differential form on mM  then  = Mp 
 will be a semi-basic 

differential form on T (M) such that dv  = 0. 

 

This proposition justifies the terms “semi-basic differential form on T (M),” in particular. 

 

 4.8. Proposition. – In order for a Pfaff form on T (M) to be a semi-basic differential form, it is 

necessary and sufficient that it should be zero on the image of v. 

 



§ 4. – Semi-basic differential forms. 169 

 

 4.9. Corollary. – In order for a Pfaff form  on T (M) to be a semi-basic differential form, it is 

necessary and sufficient that there should exist a differentiable function  on ( )Mp T M
 that has 

the following properties: 

 

 i)  is linear on each fiber of ( )Mp M
. 

 

 ii)  = K . 

 

Indeed, the image of v is equal to the image of H and ( )Mp M
 is the quotient bundle of  (T (M)) 

that is associated with H. 

 One can also express Corollary 4.9 in the following fashion (Chap. II, Prop. 3.4): 

 

 4.10. Corollary. – In order for a Pfaff form  on T (M) to be a semi-basic differential form, it 

is necessary and sufficient that there should exist a differentiable section  of the dual bundle 

( ( ))Mp M 
 over T (M) such that  (u) = < K (u),  (pT(M)(u) >, u  T (T (M)). 

 

 Conversely, if  is a differentiable section of ( ( ))Mp M 
 over T(M), moreover, then  = < K, 

( )T Mp > will be a semi-basic Pfaff form over T (M). 

 

 4.11. Definition. – The bundle of semi-basic forms over T(M) is the bundle ( )Mp M 
 that is 

the reciprocal image of the cotangent bundle to mM  by the projection pM . 

 

 The bundle of semi-basic forms is therefore an m-dimensional differentiable vector bundle 

over T (M). One denotes it by: 

 

( )Mp M 
 = ( ), , ( )Mp T M T M   . 

 

The total space ( )Mp T M 
 of ( )Mp M 

 is identified with the subspace 1 1( ) ( )
m

M M

y M

p y q y− −



  of 

( ) ( )T M T M , and the map  is identified with the restriction of the projection of ( ) ( )T M T M

onto T (M). If   denotes the restriction of the projection of ( ) ( )T M T M  onto ( )T M
 to 

( )Mp T M 
 then one will have the commutative diagram: 
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Let h be the map of ( ) ( )M Mp T M p T M   to  that is defined by ((u, v), (u, a))  < v,  >. The 

restriction of h to each fiber of ( ) ( )M Mp M p M    is a non-degenerate bilinear form. 

Consequently (Chap. II, Prop. 4.15): 

 

 4.12. Proposition. – The bundle ( )Mp M
 of semi-basic forms on T (M) is equivalent to the 

dual of ( )Mp M
. 

 

One can then state Corollary 4.9 in the following form: 

 

 4.13. Theorem. – The relation  (u) = ( )( ), ( ( )M T Mp u D p u  , u  T (T (M)), establishes a 

bijective correspondence between the semi-basic Pfaff forms  on T (M) and the differentiable 

maps D : T (M) → ( )T M
 such that Mq D  = pM . 

 

 4.14. Local expression. – By abuse of notation, let q1, …, qm (instead of i Mq q ) and p1 = 
1

,
q




 

…, pm = 
mq




 denote the local coordinate system on the open subset 

1 ( )Mq U−
 of ( )T M

. 

 

 If  = i i

i

a dq  is a semi-basic Pfaff form on T (U) and of u = 
i i

i i i

x y
q q

  
+ 

  
  then one 

will have  (u) = i i

i

a x . Consequently, the local expression for the corresponding map D will be: 

qi = qi ,  pi = ai . 

One then deduces that: 

 

 4.15. Proposition. – If  is the Liouville form on ( )T M
 then D   = . 

 

 Exercise. – There exists one and only one antiderivation j of degree – 1 of the algebra  of 

semi-basic differential forms on T (M) that has the following properties: 

 

 

 

T (M) 
pM 

 

 

qm 
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 i) j f = 0 . 

 

 ii) j dv f = V  f, f   (T (M)) . 

 

One will then have: 

 

 i) j  j = 0 . 

 

 ii) (j dv + dv f) v
 = 

Vv
L . 

 

 

§ 5. – Homogeneous differential forms. 

 

 Let ht : u te u  be the one-parameter group of homotheties of T (M) (Chap. IX, § 2.4). 

 

 5.1. Definition. – A differential form  on T (M) is homogeneous of degree k if one has: 

 

( )th 
 = kte  . 

 

 5.2. Proposition. – Let V be the Liouville field on T (M). In order for a differential form  on 

T (M) to be homogeneous of degree k, it is necessary and sufficient that one must have: 

 

LV  = k  . 

 

 Proof: Let  be a homogeneous differential form of degree k on T (M). Since ht is the one-

parameter of diffeomorphisms of T (M) that is generated by V, one will have: 

 

LV  = 
0

1
lim ( )t
t

h
t

 

→
−  = 

0

1
lim

kt

t

e

t


→

−
 = k  . 

 

Conversely, if LV  = k  for every point u of T (M) then ht  (u) will be the solution to the 

differential equation [on Tu (T (M)]: dz / dt = k z that makes z (0) =  (u). Consequently, th 
 = 

kte  . 

Q. E. D.  

 

 5.3. Corollary. – Let  be a semi-basic form on T (M). In order for  to be homogeneous of 

degree k, it is necessary and sufficient that one should have iV d = k . 

 

Indeed (Prop. 4.5), iV  = 0. 
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 5.4. Proposition. – Let  be a differential form of degree p on T (M) that is homogeneous of 

degree k. The differential forms d, iV , iv , dv  are homogeneous of degree k, k, k – 1, and k – 

1, respectively. 

 

 5.5. Local expressions. 

 

 i) Functions. – One has LV f = i

i i

f
q

q




 . Consequently, in order for f to be homogeneous of 

degree k, it is necessary and sufficient that it should be homogeneous of degree k in the iq . 

 

 ii) Pfaff forms. – Let  = ( )i i i i

i

a dq b dq+ . One has: 

LV  = 
, ,

i i
j i j i i i

i j i j ij j

a b
q dq q dq b dq

q q

 
+ +

 
    . 

 

Consequently, in order for  to be homogeneous of degree k, it is necessary and sufficient that ai 

and bi, i = 1, …, m should be homogeneous of degree k and k – 1 in the iq , respectively. 

 

 Exercise. – Let  be a differential form on T (M) of degree p that is semi-basic and 

homogeneous of degree k such that dv  = 0. Then (see the exercise in § 4): 

 

dv j = (p + k)  . 

 

_____________ 



 

 

CHAPTER XI 

 

ANALYTICAL MECHANICS 
 

 

§ 1. Mechanical systems (J. Klein [6]). 

 

 1.1. Definition. – A mechanical system M is a triplet ( mM , T, ) in which: 

 

 mM   is an m-dimensional manifold 

 

 T is a differentiable function on T (M) 

 

  is a semi-basic form on T (M). 

 

 One says that: 

 

 mM  is the configuration manifold 

 

 m is the number of degrees of freedom 

 

 T (M) [or T * (M)] is the phase space 

 

 T is the kinetic energy 

 

  is the force field. 

 

The closed form of degree two  = ddvT on T (M) is called the fundamental form of the mechanical 

system M. 

 

 1.2. Definition. – A mechanical system ( mM , T, ) is regular if its fundamental form  = ddvT 

is a symplectic form on T (M). 

 

 1.3. Local expression. – With the notations of Chapter X, one can write, locally: 

 

 dvT = j

j j

T
dq

q




 , 

 

  = ddvT = 
,

i j i j

i j i j i j

T T
dq dq dq dq

q q q q

  
 +       

 ,  
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 m =  m! det 1 1m m

i j

T
dq dq dq dq

q q

 
        

. 

 

Consequently, in order for M to be a regular mechanical system, it is necessary and sufficient that 

one must have det
i j

T

q q

 
    

  0. 

 Only regular mechanical systems will be considered in what follows; hence, that fact will not 

be specified. 

 

 1.4. Proposition. – Let M = ( mM , T, ) be a mechanical system.  There exists one and only 

one vector field X on T (M) such that: 

 

iX  = d (T – V  T) +  

 

[where V is the Liouville field on T (M)]. 

 

 Indeed, such a vector field X is the dynamical system on the symplectic manifold ( ( )T M , ) 

that is associated with the Pfaff form d (T – V  T) +  (Chap. VII, Cor. 1.13).  One says that X is 

the dynamical system that is associated with the mechanical system M. 

 One will then have d (T – V  T) + , and as a result: 

 

 1.5. Corollary (Vis viva theorem). – Let c: I → T (M) be an integral curve of X, and let a and 

b be two numbers in I.  One has: 

 
b

a
c 

 = 
( )

( )[ ]c b

c aV T T −  . 

 

 1.6. Theorem. – The dynamical system associated with a mechanical system M = ( mM , T, ) 

is a second-order differential equation on mM . 

 

 Proof: With the notations of Chapter X, one can write, locally: 

 

 X = 
i i

i i i

a b
q q

  
+ 

  
 , 

 

  = j j

j

X dq , 
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 iX = 
2 2 2 2

, , , ,

i j j i i j j i

i j i j i j i ji j i j i j i j

T T T T
a dq a dq b dq a dq

q q q q q q q q

   
− + −

       
    , 

 

 dT = 
j j

i i i

T T
dq dq

q q

  
+ 

  
 , 

 

 V  T = j

i i

T
dq

q




 , 

 

 d (V  T) = 
2 2

, ,

i j j i j

i j i j ji j i j j

T T T
q dq q dq dq

q q q q q

  
+ +

    
   . 

 

 The equation iX  = d (T – V  T) + p then leads to the following two equations: 

 

 a)  
2

j

j i j

T
a

q q



 
 = 

2

j

j i j

T
q

q q



 
 , 

 

 b)  
2

j

j i j

T
b

q q



 
 = −

2

j

j i j i

T T
q

q q q

 
+

  
 + Xi . 

 

When one takes the regularity hypothesis for the system M into account, equations a) will then 

give aj = jq , j = 1, …, m. 

Q.E.D.  

 

 One also deduces the following results from these local expressions: 

 

 1.7. Proposition. – Let s : mM  → T (M) be the zero section of  (M).  The singular points of X 

are the points y = s (x) in the image of s for which s* () (x) = − s* (dT) (x). 

 

 Indeed, those points are characterized in local coordinates jq = 0 and 
i

T

q




 = − Xi . 

 

 1.8. Proposition. – The integral curves of X are locally solutions of the “Lagrange equations”: 

 

i i

d T T

dt q q

  
− 

  
= Xi , i = 1, …, m . 

 

Indeed, the integral curves of X verify: 
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2 2

( ) ( )j j

j ji j j i

T T
q t q t

q q q q

 
 +

   
  = 

i

T

q




+ Xi . 

 

 1.9. Theorem. – The dynamical system X that is associated with the mechanical system M = 

( mM , T, ) is characterized by the following property: 

 The differential form  = 1p   + [d (T – V  T) + ]  dt  2 (T (M)  ) is an integral 

invariance relation for the vector field X +  / t . 

 

 Proof: Since the form  has constant class 2m on T (M)  , there exists one and only one 

tangent vector u   Ty (T (M)) such that u
t

 
+ 

 
i   (y, t) = 0. 

 Now, one has: 

 

iX +  / t  = iX + [X  (T – V  T) +  (X)] dt – [d (T – V  T) + ] = 0 . 

 

Q.E.D.  

 

 1.10. Remark. – That theorem shows how one can generalize (in a fashion that is analogous 

to the argument in Proposition 3.10 of Chapter VII) the notion of a mechanical system to the case 

in which the force field  depends differentiably on a parameter t . 

 

 1.11. Proposition. – Let M = ( mM , T, ) be a mechanical system for which the kinetic energy 

T is a homogeneous function of degree k.  Hence: 

 

 i) The dynamical system X associated with M is characterized by the relation iX = (1 – k) 

dT +  . 

 

 ii) If k is non-zero then the zeroes of X will be the points of T (M) that belong to the image of 

the zero section and annul  . 

 

 Proof: The first property is immediate.  Indeed, if T is homogeneous of degree k then V  T = k 

T. 

 As for the second one, one already knows that the singular points of X are characterized locally 

by: 

iq  = 0  and  Xi = − 
i

T

q




  (Prop. 1.7). 

 



§ 1. – Mechanical systems. 177 

Now, if T is homogeneous of degree k then T / qi will also be homogeneous of degree k, so it 

will be zero on the image of the zero section of  (M) in the case of k  0. 

Q.E.D.  

 

 In particular: 

 

 1.12. Corollary (A. Lichnerowicz [11]). – If T is homogeneous of degree two then the 

dynamical system X will be characterized by the following property: The differential form  = 

1p   − (dT – )  dt  2 (T (M)  ) will be an integral invariance relation for the vector field X 

+  / t . 

 

 In this corollary, one can possibly suppose that  depends upon a parameter t (Remark 1.10). 

 

 1.13. Proposition. – Let M = ( mM , T, ) be a mechanical system for which the kinetic energy 

T and the force field  are homogeneous of degree k.  The dynamical system X that is associated 

to M will then be a spray on mM . 

 

 Proof: One already knows (Th. 1.6) that X is a second-order differential equation, so it then 

remains to verify the equality [V, X] = X.  Now: 

 

 i [V, X]  = LV i X – iX LV  , 

 

 LV i X  = LV ((1 – k) dT + ), 

 

  = k (1 – k) dT + k  , 

 

 LV    = LV ddvT = d LV dvT, 

 

  = d ((k − 1) dvT) (Chap. X, Prop 5.4), 

 

  = (k – 1)  , 

 

 iX LV  = (k – 1) (1 – k) dT + (k – 1)  . 

 

Consequently: 

i [V, X]  = (1 – k) dT +  = i X , 

 

which shows (Prop. 1.11) that [V, X] = X. 

Q.E.D.  

 

 1.14 Examples: 
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 i) Riemannian structure. – A Riemannian structure on mM  is defined when one is given a 

Riemannian metric T : T (M) →  on the tangent bundle  (M).  One also says that T is a 

Riemannian metric on mM  (the relationship between that notion and example 3.9 in Chap. VII 

will be pointed out in § 3). 

 Such a structure defines a regular mechanical system M = ( mM , T, 0).  Indeed, the regularity 

of M is a consequence of the non-degeneracy hypothesis on the quadratic form that is induced by 

T on the fibers Tx (M). 

 The dynamical system X that is associated with M is called the geodesic field of T.  That 

dynamical system is the spray on mM  that is defined by iX = − dT (Prop. 1.11 and 1.13). 

 The projections of the integral curves of X onto mM  are called the geodesics of the Riemannian 

structure. 

 

 ii) Motion of a material point. That mechanical system is defined by: 

 

 − M = 3, 

 

 −  T = 
1
2 mg : T (3) =  → , in which m is a positive number, and g is the canonical 

constant Riemannian metric on 3. 

 

 −  p = 

3

1

i i

i

X dq
=

 . 

 

 The associated dynamical system X is then: 

 
3

1

i
i

i i i

X
q

q m q=

  
+ 

  
  

 

Its integral curves are then the solutions to the second-order differential equation: 

 
2

2

id q

dt
= iX

m
, i = 1, 2, 3. 

 

Here, one recovers the fundamental equation of point mechanics: F = m  . 

 

 iii) Harmonic oscillator. The mechanical system of m independent harmonic oscillators is 

defined by: 
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 −  mM  = m, 

 

 −  T = g, where g is the canonical constant Riemannian metric on m, 

 

 −   = − 2 2

1

m

i i

i

d q
=

 
 
 
 , where the i are positive numbers called the pulsations (†) of the 

oscillator. 

 The associated dynamical system X is then: 

 

2

1

m

i i i

i i i

q q
q q


=

  
− 

  
  . 

 

Its integral curves are therefore solutions to the second-order differential equation: 

 
2

2

id q

dt
= − 

2

i iq , i = 1, …, m . 

 

 The functions hi = 
2 2 2

i i iq q+ , i = 1, …, m, and H = 
1

m

i

i

h
=

 are first integrals of X.  Consequently, 

the submanifolds of T ( mM ) that are defined by hi = ai > 0, i = 1, …, m will be invariant under X 

(X is tangent to those submanifolds).  Those submanifolds are diffeomorphic to the torus mT  = 

(S1)m. 

 If the pulsations i are rationally-independent then X will induce an ergodic dynamical system 

on each of those tori (V. Arnold and A. Avez [2]).  Conversely, V. Arnold shows ([1]) showed that 

this is the generic geometric situation for Hamiltonian systems that satisfy the hypotheses of the 

Liouville-Cartan integrability theorem (Chap. VII, Th. 4.4). 

 By contrast, if all of the pulsations are equal (to 1, for example) then all of the integral curves 

of X will be periodic with period 1.  The sphere S2m−1  2m = T (m) whose equation in H = 

2 2( )i i

i

q q+  = 1 will then be an invariant submanifold of X, and the trajectories of X define the 

Hopf fibration of S2m−1 over the complex projective space Pm−1(). 

 

 

 
 (†) Translator: Also called the frequencies.  
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§ 2. – Lagrangian systems. 

 

 2.1. Definition. – A mechanical system M = ( mM , T, ) is conservative if the force field  is a 

closed semi-basic Pfaff form. 

 

 2.2. Proposition. – If M = ( mM , T, ) is a conservative mechanical system then the dynamical system 

X that is associated with M will be the Hamiltonian system on the symplectic manifold (T (M), ) that is 

associated with the closed Pfaff system  = d (V  T – T) –  . 

 

 One can then apply all of the results of Chapters VII and VIII that are concerned with first integrals, 

integral invariants, etc., … of Hamiltonian systems to the dynamical systems that are associated with 

conservative mechanical systems.  In particular: 

 

 2.3. Proposition (vis viva integral). – Let M = ( mM , T, ) be a conservative mechanical system.  The 

Pfaff form  = d (V  T – T) –  is a first integral of the dynamical system that is associated with M. 

 

 2.4. Definition. – A mechanical system M = ( mM , T, ) is a Lagrangian system if there exists a 

differentiable function U on mM  such that: 

 

 = Mp
 = d (U  pM) . 

 

Under those conditions, one denotes M by ( mM , T, U) and says that the force field  is derived from the 

force function U. 

 A Lagrangian system is then a conservative system (Chap. X, Prop. 4.7). 

 

 2.5. Definition. – Let M = ( mM , T, U) be a Lagrangian mechanical system.  The function H = V  T 

– T – U  pM is called the Hamiltonian of the system M . 

 

 In particular, if T is a homogeneous function of degree k then: 

 

H = (k – 1) T – U  pM , (H = T – U  pM for k = 2). 

 

 2.6. Local expression. – With the notations of Chapter X, one will have: 

 

H = i

i i

T
q

q




 – T – U . 

 

 When one reformulates 2.2, one will get: 
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 2.7. Proposition. – Let M = ( mM , T, U) be a Lagrangian system.  The dynamical system X that is 

associated with M is characterized by the relations: 

 

iX = − dH . 

 

 2.8. Corollary (Painlevé integral). – The Hamiltonian: 

 

H = V  T – T – U pM  

is a first integral of X. 

 

 2.9. Corollary (E. Cartan [3]). – The dynamical system X is characterized by the following property: 

The differential form  =  – dH  dt  2  (T (M)) is an absolute integral invariant for the vector field 

X +  / t. 

 

 2.10. Corollary (E. Cartan [3]). – The dynamical system X is characterized by the following property: 

The Pfaff form  = dvT – H dt  1  (T (M)) is an relative integral invariant for the vector field X +  / 

t. 

 

 2.11. Definition. – Let M = ( mM , T, U) be a Lagrangian mechanical system.  The function L = T + U 

pM is called the Lagrangian of the system M. 

 

 One will then have H = V  L – L. 

 In the case of Lagrangian mechanical systems, Proposition 1.8 will become: 

 

 2.12. Proposition. – The integral curves of the dynamical system X that is associated with a 

Lagrangian system M = ( mM , T, U) are locally solutions to the “Lagrange equation”: 

 

  
i i

d L L

dt q q

  
− 

  
 = 0,  1  i  m. 

 

 

§ 3. Legendre transformation. 

 

 Let M = ( mM , T, ) be a (regular) mechanical system.  The Pfaff form dvT is a semi-basic 

form on the tangent space T (M).  Consequently, when one reformulates Theorem 4.13 and 

Proposition 4.13 of Chapter X, one will get: 

 

 3.1. Theorem. – There exists a differentiable map D : T (M) → ( )T M
 that has the following 

properties: 
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 i)  qM   D = pM . 

 

 ii)  D has constant rank 2m . 

 

 iii)  D* = dvT [where  is the Liouville form on ( )T M
]. 

 

 That differentiable map D : T (M) → ( )T M
 is called the Legendre transformation of the 

mechanical system M . 

 Recall (§ 4.13 in Chap. X) that the local expression for D is: 

 

qi = qi ,  pi = 
i

T

q




. 

 

D is then the classical transformation that permits one to pass from the Lagrange equations to the 

Hamiltonian ones. 

 

 3.2 Remark. – Although the Legendre transformation verifies qM   D = pM , it is not generally 

a homomorphism of  (M) into * (M) ; indeed, it is not (generally) linear on the fibers. 

 

 3.3. Definition. – If the Legendre transformation D : T (M) → ( )T M
 is a diffeomorphism 

then the mechanical system M = ( mM , T, ) satisfies the Lagrange-Hamilton duality hypothesis. 

 

 3.4. Lemma. – In order for D to be a diffeomorphism, it is necessary and sufficient that it 

should be a bijection of Ty (M) onto ( )yT M
 for any point y in mM . 

 

 Indeed (cf., the rank theorem), in order for D to be a diffeomorphism, it is necessary and 

sufficient that D should be a bijection.  Now, since qM   D = pM , the latter condition is equivalent 

to the one that D should be a bijection on each fiber of  (M). 

 

 3.5. Theorem. – Let M = ( mM , T, ) be a mechanical system that satisfies the Lagrange-

Hamilton duality hypothesis, and let X be the dynamical system that is associated with M.  

Therefore, Y = 
T 1XD D−

will be the vector field on ( )T M
 that is characterized by the relation: 

 

iY d = (D−1)* [d (T – V  T) + ]. 

 

 Proof: Indeed, one has (Chap. III, Prop. 6.2): 

 

 iY d = iY (D−1)* , 
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  = (D−1)* iX , 

  = (D−1)* [d (T – V  T) + ] 

Q.E.D.  

 

 3.6. Corollary. – If c : I → T (M) is an integral curve of X then  = D  c will be an integral 

curve of Y, and one will have pM  c = qM  . 

 

 Moreover, if M is a Lagrangian system with the Hamiltonian: 

 

H = V  T – T – U  pM 

then one will have: 

 

 3.7. Proposition. – The vector field Y on ( )T M
 is the Hamiltonian system on the symplectic 

manifold ( ( )T M
, d) that is characterized by the relation: 

 

iY d = − d (H  D−1) . 

 

Under those conditions, one further says that H  D−1 : ( )T M
 →  is the Hamiltonian of the 

Lagrangian system. 

 In fact, a good number of mechanical systems that classically show up in differential geometry 

or analytical mechanics satisfy the Lagrange-Hamilton duality hypothesis.  Indeed: 

 

 3.2. Theorem. – Let M = ( mM , T, ) be a mechanical system for which the kinetic energy T 

is a Riemannian metric on mM .  The following properties will then be verified: 

 

 i) M satisfies the Lagrange-Hamilton duality hypothesis. 

 

 ii) D is an isomorphism (in the vector bundle sense) of the tangent bundle  (M) onto the 

cotangent bundle  * (M). 

 

 iii) T  D−1 is a Riemannian metric on  * (M). 

 

 Indeed, if one writes T = 1
2 ij i ja q q locally, with aij = aji , then the expression of D will be qi 

= qi , pi = ij j

j

a q . 

 

 3.9. Corollary. – Under the hypotheses of Proposition 3.7, and if T is a Riemannian metric on 

mM , moreover, then the dynamical system Y will be the Hamiltonian system on ( )T M
 that is 
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associated with the classical Hamiltonian structure (in the sense of Chap. VII) that is defined by 

the H = T  D−1 – U  qM . 

 

___________ 
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