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 The general theory of integral invariants was developed by Poincaré in Tome III of his book 

Méthodes Nouvelles de la Mécanique céleste. The goal of this article is to contribute to the study 

of the following general question: If one knows an integral invariant, whether absolute or relative, 

of arbitrary order for a system of differential equations, what will that imply for the integration of 

that system? I will show that from any integral invariant, one can deduce at least one system of 

differential equations whose integrals all belong to the proposed system and whose integration is 

generally a simple problem. In the case where the two systems are equivalent, one can determine 

a multiplier (1). 

 

I. 

 

 1. – I shall first recall the main results of the theory of multiple integrals that will be utilized 

in this article, as well as the precise significance of the notations that will be employed (2). 

 Let x1, x2, …, xn be a system of n independent variables, and let: 

 

  
1 2 p

A     (p  n) 

 

be a system of functions of those n variables, each of which is endowed with p different indices 

1, 2, …, p that are taken from the first n numbers. Each arrangement of the first n numbers 

taken p at a time will then correspond to a well-defined function of the n variables x1, x2, …, xn. 

The functions for which some indices differ will be completely independent, but all of the functions 

whose indices differ by only their order are equal, up to sign. Therefore, let 
1 2( , , , )p      be a 

new permutation of the indices (1, 2, …, p). One has: 

 

 
 (1) The main results of this article have been summarized in a note that was presented to the Academy of Sciences 

(C. R. Acad. Sci. Paris, 2 June 1907).  

 (2) In addition to the cited work of Poincaré, one can consult the following articles by the same author: “Sur les 

résidus des intégrales doubles” (Acta Mathematica, t. IX); “Analysis Situs” (Journal de l’École Polytechnique, 1895); 

“Complément à l’Analysis Situs” (Rendiconti del Circolo matematico do Palermo). One will also find some 

bibliographic information on invariants in two papers by de Donder (Rendiconti, 1901 and 1902). 
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(1)  
1 2 p

A      = 
1 2 p

A  
 

 

if the two permutations (1, 2, …, p) and 
1 2( , , , )p      belong to the same class, and: 

 

(2)  
1 2 p

A      = −
1 2 p

A  
 

 

when the two permutations belong to different classes. When two indices are equal, the function 

will necessarily be zero. 

 We observe, in passing, that the two permutations: 

 

(1, 2, …, p) and 
1 2( , , , )p      

 

will belong to the same class if p is odd and to different classes if p is even. Indeed, in the two 

cases, one passes from the first permutation to the second one by p – 1 exchanges of two 

consecutive elements. 

 Suppose that the n variables x1, x2, …, xn are expressed by means of p independent variables 

u1, u2, …, up, and consider the multiple integral of order p : 

 

(I)    Ip = 1 2

1 2 1

1 2

p

p p

p

xx x
A du du

u u u

 

  

 

  
  , 

 

which is extended over a certain domain (ep) in the space (u1, u2, …, up), and the summation that 

is indicated by the symbol  extends over all arrangements of the first n numbers taken p at a time. 

From formulas (1) and (2), that multiple integral can be further written: 

 

(II)    Ip = 
1 2

1 2 1

1 2

( , , , )

( , , , )

p

p p

p

D x x x
A du du

D u u u

  

    , 

 

in which the symbol  in that formula extends over all combinations of the first n numbers taken 

p at a time. In each combination, one can take the indices in an arbitrary order, but one must be 

careful to take the variables xi in each functional determinant in the order that is indicated by the 

order of indices of the corresponding coefficient. 

 When the point with the coordinates (u1, u2, …, up) describes the domain (ep) in p-dimensional 

space, the point whose coordinates are (x1, x2, …, xn) will describe a p-dimensional continuum (Ep) 

in n-dimensional space. The form (II) of the integral Ip, which resembles the formula for the change 

of variables in a multiple integral, shows immediately that the value of Ip does not depend upon 

the choice of auxiliary variables u1, u2, …, up, but only on the domain (Ep). Meanwhile, it must be 

pointed out that the integral might change sign when one exchanges any of those variables. That 

fact is analogous to the one that presents itself for a surface integral in three-dimensional space, in 
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which the sign of the integral will change at the same time as the surface on which one takes the 

integral. 

 Most often, we shall write the multiple integral Ip in the abbreviated form: 

 

(III)    Ip = 
1 2 1 2p p

A dx dx dx       , 

 

in which the symbol  extends over all combinations of the first n numbers take p at a time. 

However, in order to get the precise significance of that symbol, one must always refer to the 

expression (I) or (II). 

 

 Remark. – The order in which one writes the differentials in products such as 
1 2 p

dx dx dx  
 

is not irrelevant, as one sees. For example, if one is dealing with a surface integral then the 

symbols: 

  Ady dz B dz dx C dx dy+ +   , 

  Ady dz B dz dx C dy dx+ +   , 

  Ady dz B dx dz C dx dy+ +    

 

will not all have the same meaning. The notation (I) has the advantage of eliminating any 

ambiguity. A surface integral will be written with that notation as: 

 

I2 = 2 3 3 11 2
12 23 31

( , ) ( , )( , )

( , ) ( , ) ( , )

D x x D x xD x x
A A A du dv

D u v D u v D u v

 
+ + 

 
 , 

 

in which x1, x2, x3 are supposed to be expressed in terms of the two auxiliary variables. 

 

 

 2. – One will find proofs of the following theorems in the cited article by Poincaré (Acta 

mathematica). The functions that one considers are supposed to be uniform and continuous, at least 

within the domain of integration. 

 

 Any integral Ip that is extended over a closed multiplicity (Ep) in the n-dimensional space (p < 

n) can be replaced with an integral Ip+1 that is extended over a multiplicity (Ep+1) in the n-

dimensional space that is bounded by the first p-dimensional multiplicity: 

 

(IV)   Ip+1 = 
1 2 1 1 2 1p p p

dx dx dx      + +  . 

 

The symbol  extends over all combinations of the first n numbers taken p + 1 at a time. 

 

 The coefficient: 
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1 2 1p p    +
 

 

can have two different expressions according to the parity of p. 

 If p is even then one will have: 

 

(3)   
1 2 1p   +

 = 
1 2 2 1 1 1

1 1

p p p p p

p px x x

        

  

+ +

+

  
+ + +

  
, 

 

with only + signs in the right-hand side. If p is odd then one will have: 

 

(4)   
1 2 1p   +

 = 
1 2 2 1 1 1

1 1

p p p p p

p px x x

        

  

+ +

+

  
− + −

  
, 

 

in which the + and – signs alternate. 

 Those formulas provide the answer to the following question: 

 

 What are the necessary and sufficient conditions for the integral Ip, which is extended over a 

p-dimensional multiplicity, to depend upon only the p – 1-dimensional multiplicity that bounds that 

domain? 

 

 In order for that to be true, it is necessary and sufficient that the integral Ip should be zero when 

it is extended over an arbitrary closed p-dimensional multiplicity or that the integral Ip+1 (which is 

equal to it) that extends over an arbitrary p + 1-dimensional multiplicity should be zero, i.e., that 

one must have: 

1 2 1p   +
 = 0 

for all combinations of indices. 

 We say, to abbreviate, that the expression: 

 

(5)  
1 2 1 1 2 1p p p

dx dx dx      + +  

 

is an exact total differential, and we can state the following proposition: 

 

 In order for the expression (5) to be an exact differential, it is necessary and sufficient that one 

should have: 

 

(6)  
1 2 2 1 1 1

1 1

p p p p p

p px x x

        

  

+ +

+

  
+ + +

  
= 0 

 

for all combinations of indices if p is even, and: 
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(6)  
1 2 2 1 1 1

1 1

p p p p p

p px x x

        

  

+ +

+

  
− + −

  
= 0 

 

if p is odd. The total number of those conditions is equal to the number of combinations of n objects 

taken p + 1 at a time. 

 

 If the expression (5) is not an exact total differential then the analogous expression: 

 

(7)  
1 2 1 1 2 1

1 2 1

p p

p

dx dx dx     
  

+ +

+

 , 

 

in which the coefficients 
1 2 1p   +

are given by formulas (3) or (4), will be an exact total 

differential. Indeed, one will very easily deduce that the relations that are analogous to (6) and (6) 

are verified identically from those expressions for the coefficients. 

 It follows from this that any multiple integral Ip of order p that extends over a closed 

multiplicity (Ep) can be replaced with an integral of an exact total differential Ip+1 that is extended 

over a multiplicity (Ep+1) that is bounded by the multiplicity (Ep) (viz., the generalized Stokes 

theorem). 

 Conversely, if the expression (5) is an exact total differential then the integral Ip, which is 

extended over a non-closed multiplicity ( )pE , can be replaced with an integral Ip−1 that is extended 

over the closed multiplicity (Ep−1) that bounds ( )pE . In order for that to be true, it would suffice 

to show that one can define an integral Ip−1 : 

 

Ip−1 = 
1 2 1 1 2 1

1 2 1

p p

p

C dx dx dx     
  

− −

−

  , 

 

such that Ip can be deduced from Ip−1 in the same way that we have deduced Ip+1 from Ip . One will 

then have a certain number of partial differential equations for determining the coefficients 

1 2 1p
C   −

, and those expressions will be compatible as long as the relations (6) or (6)  

 

 

 3. – Let us apply those generalities to the simplest cases. 

 If p = 1 then one has the simple integral that is analogous to a curvilinear integral: 

 

(8)     I1 = 1 1 2 2 n nA dx A dx A dx+ + +  . 

 

When that integral I1 is extended over a closed line L, it will be equal to the double integral: 
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(9)  I2 = 
,

i i
i k

i k k k

A A
dx dx

x x

  
− 

  
  

 

that extends over a two-dimensional multiplicity that is bounded by the line L. In order for I1 to be 

an integral of an exact differential, it is necessary and sufficient that the integral I2 should be 

identically zero, which will then give the well-known conditions: 

 

(10) i

k

A

x




 = i

k

A

x




  (i, k = 1, 2, …, n). 

 

 Now, let I2 be an arbitrary double integral: 

 

(11) I2 = ,

,

i k i k

i k

A dx dx . 

 

That double integral I2, which extends over a closed multiplicity (E2), is equal to a triple integral 

I3 that extends over a three-dimensional multiplicity that is bounded by (E2): 

 

(12)    I3 = 
, ,

ik kl li
i k l

i k l l i k

A A A
dx dx dx

x x x

   
+ + 

   
  

 

 In order for I2 to be an integral of an exact differential, it is necessary that one should have: 

 

(13) ik kl li

l i k

A A A

x x x

  
+ +

  
 = 0 (i, k, l = 1, 2, …, n) 

for any indices i, k, l. 

 If those conditions are satisfied then one can identify the expressions (9) and (11). In other 

words, one can determine n functions A1, A2, …, An that are satisfied by the relations: 

 

(14) i i

k k

A A

x x

 
−

 
 = Ai,k  (i, k = 1, 2, …, n). 

 

 4. – Recall once more the definition of integral invariants. 

 Let: 

(15) 1

1

dx

X
 = 2

2

dx

X
 = … = n

n

dx

X
 = dt 

 

be a system of differential equations. We suppose that the functions Xi are uniform and continuous, 

as well as their derivatives, and do not include t, and we say characteristic to mean any one-

dimensional multiplicity 1 that is represented by the equations: 
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x1 = f1 (t) , x2 = f2 (t) , …, xn = fn (t) , 

 

when f1 (t) , …, fn (t) form a system of solutions to equations (15). A characteristic  that is 

described by the point (x1, x2, …, xn) when t varies starts from each point 0 0 0

1 2( , , , )nx x x  in n-

dimensional space. 

 If the initial value of t is supposed to be zero then consider an arbitrary p-dimensional 

multiplicity 0( )pE  in n-dimensional space. A characteristic starts from each point 0 0

1( , , )nx x  of 

that multiplicity, and after a length of time t, the point 0 0

1( , , )nx x  will arrive at the point (x1, …, 

xn). The locus of those different points is another p-dimensional multiplicity (Ep). If the multiple 

integral: 

 

(16)    Ip = 
1 2 1 2p p

A dx dx dx        

 

has the same value for two multiplicities 0( )pE  and (Ep) for any t then one says that Ip is an absolute 

integral invariant of order p of the system (15). 

 It might happen that this invariance property is true for only closed multiplicities. One then 

says that one has a relative integral invariant of order p, and one denotes it by the symbol Jp. 

 As far as absolute invariants are concerned, we shall once more make the following distinction: 

An absolute invariant can be an integral of an exact total differential. In that case, we represent it 

by d

pI . There is no reason to make that distinction for relative invariants since the integral of an 

exact total differential will always be zero when it is extended over a closed multiplicity. 

 From the foregoing, an integral invariant Jp or Ip will immediately give an integral invariant 

1

d

pI +
. Conversely, an integral invariant d

pI  is equivalent to a relative integral invariant Jp−1 . 

 

 

 5. – We shall now look for the conditions that the coefficients 
1 2 p

A    must satisfy in order 

for Ip to be an absolute invariant in a general manner. In order to do that, it will suffice to consider 

Ip to be a function of t and to write that its derivative is zero: 

 

pdI

dt
 = 0 . 

 

 In order to obtain dIp / dt, suppose that one gives an increment of  t to t and calculate the 

coefficient of  t in the difference Ip (t +  t) – Ip (t). 

 Let (x1, x2, …, xn) be the coordinates of an arbitrary point of the multiplicity (Ep) at the time t, 

and let 1 2( , , , )nx x x    be the coordinates of the corresponding point on the multiplicity at time t + 

 t. One has: 

  ix  = xi +  t Xi + …   (i = 1, 2, …, n), 
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in which the unwritten terms are infinitely-small of second order in  t. We write the two integrals 

Ip (t) and Ip (t +  t) in the explicit form (I): 

 

Ip (t) = 1

1 2 1 2

1

p

p p

p

xx
A du du du

u u



  



 
  , 

 Ip (t +  t) = 1

1 2 1 2

1

p

p p

p

xx
A du du du

u u



  




 
  . 

 

1 2 p
A  

  denotes what 
1 2 p

A  
 will become when one replaces xi with ix , and the two integrals 

are extended over the same domain for the auxiliary variables u1, u2, …, up . 

 Let 1 2

1 2

1 2

p

p

p

xx x
A

u u u

 

  

  


  
 be an arbitrary term in the second integral. One will have: 

 

1 2 p
A  

 = 
1 2 1 2

( )
p p

A t X A     + +  

1

1

x

u





 = 1 1

1 1

h

h h

x X x
t

u x u

 


  
+ +

  
 , 

2

2

x

u





= 2 2

2 2

h

h h

x X x
t

u x u

 


  
+ +

  
 , 

………………………………….. 

p

p

x

u





= 

p p h

hp h p

x X x
t

u x u

 


  
+ +

  
  

 

 Let us seek the coefficient of 1 2

1 2

p

p

xx x

u u u

 
 

  
 in the new integral. In order for the product: 

 

1 2

1 2

1 2

p

p

p

xx x
A

u u u

 

  

  


  
 

 

to give a term of that type, two and only two hypotheses are possible: 

 

 1. One can have: 

 

1 = 1 , 2 = 2 , …, p = p , 

which will give the term: 

1 2

1 2

1 2

( )
p

p

p

xx x
t X A

u u u

 

  
 

  
, 

in which one has set: 
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X (f) = 1

1

n

n

f f
X X

x x

 
+ +

 
. 

 

 2. One can once more obtain a product of the desired form by supposing that all of the p 

equalities i = i are verified, except for one. For example, if one has: 

 

1 = 1 , …, i−1 = i−1 , i+1 = i+1 , …, p = p , 

 

in which i is arbitrary, then one will have the product: 

 

1 2

1 1 1

1 1 2

pi

i i i p

p

xX x x
t A

x u u u

  

    




− +

  

   
, 

 

and the sum of the terms that are obtained from it by varying i can be written: 

 

1 2

1 1 1

1 1 2

p

i i p

h
h

h p

xx xX
t A

x u u u

 

   




− +

 

   
 . 

 

 Since the variable index i can replace any one of the indices 1, 2, …, p, one sees that, by 

definition, the coefficient of 1

1

p

p

xx
t

u u






 
 in the second integral will have the expression: 

 

(17)   
1 2 p

B    = 
1 2 2 1 1 1

1 2

,( )
p p p p

p

h h h
h h h

h

X X X
X A A A A

x x x
        

  
−

   
 + + + +
   
 

 , 

 

and the derivative dIp / dt will be represented by a multiple integral of the same form as Ip : 

 

(18)   
pdI

dt
 = 1 2

1 2 1 2

1 2

p

p p

h p

xx x
B du du du

u u u

 

  

 

  
  , 

 

in which that integral is extended over the same domain as the original one. 

 In order for Ip to be an absolute integral invariant, it is necessary that dIp / dt must be zero for 

any domain of integration, i.e., all of the coefficients 
1 2 p

B    must be zero separately. Therefore, 

in order for Ip to be an absolute integral invariant, it is necessary and sufficient that one should: 

 

(19)  
1 2 2 1 1 1

1 2

,( )
p p p p

p

h h h
h h h

h

X X X
X A A A A

x x x
        

  
−

   
 + + + +
   
 

  = 0 
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for all combinations of the indices 1, 2, …, p . 

 

 In order for Ip (t) to be a relative integral invariant, it would suffice that the multiple integral 

(18) that expresses dIp / dt is zero when extended over an arbitrary closed multiplicity, i.e., that the 

expression: 

1 2 1

1

p p

p

B dx dx    
 

  

 

should be an exact total differential. One will obtain the same conditions by expressing the idea 

that the multiple integral 
1

d

pI +
 of order p + 1 that one deduced from Ip in the way that was explained 

above is an absolute integral invariant of order p + 1 that provides equations of the same form as 

equations (19): 

(20)  
1 2 1 2 1 1 1 1

1 2 1

( )
p p p p p

p

h h h
h h h

h

X X X
X

x x x
         

  
+ + +

+

   
 + + + +
   
 

  = 0 , 

 

in which 
1 2 1p   +

 are given by equations (3) or (4) according to the parity of p. 

 

 

II. 

 

 6. – Poincaré has also indicated (Méthodes Nouvelles de la Mécanique céleste, t. III, pp. 33) a 

procedure that will permit one to deduce an absolute invariant of lower order Ip−1 from an absolute 

invariant Ip. 

  

 Let: 

Ip = 
1 2 1 2p p

A dx dx dx        

 

be an absolute invariant of order p of the system (15). If one sets: 

 

(21) 
1 2 1p

C   −
 = 

1 2 1

1
p i

n

i

i

A X   −

=

  

 

then one will have a new relative invariant of order p – 1: 

 

(22) Ip−1 = 
1 2 1 1 2 1p p

C dx dx dx     − −  . 

 

 That is the general form of the proposition that Poincaré deduced from the link that exists 

between the integral invariants and the equations of variations. It is easy to verify that by means 

of the conditions (19). Indeed, it suffices for one to show that the relations: 
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(23)  
1 2 1 2 1 1 2 2

1 1
1

( )
p p p

p

n
h h

h h

h

X X
X C C C

x x
       

 
− − −

−
=

  
 + + +
  
 

  = 0 

 

are consequences of equations (19). Now, one has: 

 

1 2 1
( )

p
X C   −

 = 
1 2 1 1 2 1

( )
p p

i
i i i k

i i k k

X
X X A A X

x
     − −


+


  . 

 

 Replace 
1 2 1

( )
p iX A   −

 with its value that one infers from formula (19). That will give: 

 

1 2 1
( )

p
X C   −

  

= 
1 2 1 2 1 1 2 1 1

1 1

p p p p

p

i h h h
i h i h i hi h

i h i hh i

X X X X
A X X A A A

x x x x
        

 
− − − −

−

    
 − + + +
    
 

   . 

 

 Upon likewise replacing the C with their values, the relation to be verified (22) will become: 

 

1 2 1 2 1 1 1

1

p p p

i h h
i h i h i h

i h i hh i

X X X
A X X A A

x x x
      


− − −

   
− + + 

    
    

 +
2 1 1 1

1 1

p p

p

h h
h i i h i

h i i

X X
A X A X

x x
   

 
− −

−

  
 + +
  
 

    = 0 , 

 

or, upon suppressing the terms that cancel immediately: 

 

1 2 1p

i
i h

i h h

X
A X

x
   −




  = 

1 2 1p

h
h i

i h i

X
A X

x
   −




 . 

 

In order to perceive the identity of the two sides, it would suffice to permute the indices i and h. 

 

 

 7. – In order to state the results that follow more simply, I shall first present a certain number 

of expressions and notations that will be employed. I shall call the operation by which one passes 

from an absolute invariant Ip or a relative invariant Jp to an absolute invariant 
1

d

pI +
 (§ 4) the 

operation (D). When that operation is applied to an invariant d

pI , it will lead to an invariant that is 

identically zero, as one has seen before. The operation that was defined in the preceding section 

by which one deduces an absolute invariant Ip−1 of lower order from an absolute invariant Ip will 

be called the operation (E), to abbreviate. That operation will lead to an invariant that is identically 

zero when the invariant Ip to which applies it satisfies the relations: 
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(24)     
1 2 1

1
p

n

i h

i

A X   −

=

  = 0 

 

for any indices 1, 2, …, p−1. We then say that the invariant Ip is exceptional, and we represent 

it by the notation e

pI . When it is applied to an invariant that is not exceptional, the operation (E) 

will lead to an exceptional invariant 
1

e

pI −
. Indeed, we have: 

 

1 2 2

1
p

n

h h

h

C X   −

=

  =
1 2 2p hi i h

h i

A X X   − , 

 

and the coefficient of Xi Xh in the right-hand side is: 

 

1 2 2 1 2 2

, ,
p phi ih

i h i h

A A     − −
+   = 0 . 

 

 That property shows the close relationship between (E) and (D), and by definition, we will be 

led to consider four types of absolute invariants: 

 

 1. The invariants that are neither d

pI  nor e

pI . We shall represent them by the notation 0

pI  when 

there is good reason to make that property obvious. 

 

 2. The invariants d

pI  for which the expression under the integral sign is an exact total 

differential. 

 

 3. The exceptional invariants e

pI  that were just defined. 

 

 4. An invariant Ip can be both d

pI  and e

pI . We shall represent them by ( , )d e

pI . 

 

 The results that we have acquired up to now can be summarized as follows: 

 

 1. When the operation (D) is applied to an invariant 0

pI  or e

pI , it will lead to an invariant d

pI  

or ( , )d e

pI . When it is applied to an invariant d

pI  or ( , )d e

pI , it will lead to an invariant that is identically 

zero. 

 

 2. When the operation (E) is applied to an invariant 0

pI  or d

pI , it will lead to an invariant e

pI  

or ( , )d e

pI . When it is applied to an invariant e

pI  or ( , )d e

pI , it will lead to an invariant that is identically 

zero. 
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 Those two operations parallel each other by the following property then: If one applies one of 

them twice in a row then one will always arrive at an invariant that is identically zero. 

 

 

 8. – We shall complete the preceding statements. 

 

 A. The operation (E) applied to an invariant d

pI  leads to an invariant ( , )

1

d e

pI −
. 

 

 It will suffice to prove that if the functions 
1 2 p

A  
 verify the relations (19) and the relations 

(6) or (6) then the functions 
1 2 1p

C   −
 that are defined by the formulas (21) will satisfy relations 

that are analogous to the relations (6) or (6). 

 Suppose, to fix ideas, that p is odd. p – 1 will then be even, and one must prove that the 

equation: 

 

(25)   
1 1 3 1 1 22

1 2 1

p p p p

p p

C C CC

x x x x

        

   

− −

−

  
+ + + +

   
 = 0 

 

is a consequence of equations (6) and (19). 

 Replace the C with their values. The relation to be verified will then be: 

 

1 2 1 2 2 1

1 1

p p p p

p p

i i i
i i i

i i i

X X X
A A A

x x x
       

  
− −

−

  
+ + +

  
    

+ 
1 2 1 2 2 1

1 1

p p p p

p p

i i i

i

i

A A A
X

x x x

       

  

− −

−

   
 + + +
   
 

  = 0 . 

 

 However, since p is odd, a circular permutation of p indices will be equivalent to an even 

number of transpositions, and that relation can once more be written: 

 

2 1 3 1 2 1

1 2

p p p

p

i i i
i i i

i

X X X
A A A

x x x
       

  
−

   
 + + +
   
 

  

+ 
1 2 1 2 1 1 2

1 1

p p p p p

p p

i i i

i

i

A A A
X

x x x

        

  

− − −

−

   
 + + +
   
 

  = 0 , 

 

or, upon taking the relation (6) into account: 
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1 2 2 1 1

1

( )
p p p

p

i i
i i

i

X X
X A A A

x x
      

 
−

  
 + + +
  
 

  = 0 

 

 One will get back to equations (19) precisely. 

 One will get some analogous calculations for the case in which p is even (1). 

 

 B. When the operation (D) is applied to an invariant e

pI , it will lead to an invariant ( , )

1

d e

pI +
. 

 

 Let e

pI  be an absolute invariant of order p : 

 
e

pI  = 
1 2 1 2p p

A dx dx dx       , 

 

in which the functions 
1 2 p

A  
 verify the relations: 

(19)   
1 2 2 1 1

1

( )
p p p

p

i i
i i

i

X X
X A A A

x x
      

 
−

  
 + + +
  
 

  = 0 , 

 

(24) 
1 1p i i

i

A X  −  = 0 . 

  

 If one supposes, for example, that p is even then the corresponding invariant 
1

d

pI +
 will have the 

expression: 

1

d

pI +
 = 

1 1 1 2 1p p
dx dx dx    + +  , 

in which one has set: 

2 p i 
 = 

1 2 2 1 1

1

p p p

p

i i

i

A A A

x x x

      

 

−
  

+ + +
  

 . 

 

 The problem is to show that the relations: 

 

1 2

1
p

n

i i

i

X  
=

  = 0 

or 

1 2 2 1 1

1

p p p

p

i i

i

i i

A A A
X

x x x

      

 

−
   
 + + +
   
 

  = 0 

 

 (1) It can happen that when the operation (E) is applied to an integral invariant 
0

p
I  will also lead to an invariant 

( , )d e

p
I . 
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are consequences of the relations (19) and (24). 

 The relation to be verified can be written: 

 

1 2 2 1 1

1 2

1

( )
p p p

p

p

i i

i

i i

A A A
X A X

x x x

      

  

 

−
   
 + + + +
   
 

  = 0 , 

 

or, upon replacing 
1 2

( )
p

X A  
 with its value that is inferred from (19): 

 

2 1 1

2 1 2 1

1 1

p p

p p

p p

i i i i
i i i i

i i i i

A A X X
X X A A

x x x x

   

    

   

−

−

   
+ + − − −

   
     . 

 

 However, since p is even, one will have: 

 

2 piA   = −
2 p iA  , …, 

1 1p iA  −
 = −

1 1piA  −
, 

 

and what will remain is: 

 

2 1 1

1

p p

p

i i i i

i i

A X A X
x x

   

 
−

    
+ +   

    
   = 0 . 

 

In that form, one will see immediately that the relation to which one will be led is a result of the 

relations (24). 

 The same calculation proves that one will be led to an invariant ( , )

1

d e

pI +
 upon applying the 

operation (D) to an invariant 0

pI  for which all of the sums: 

 

1 1p i i

i

A X  −  

are constants. 

 

 C. The operations (D) and (E) commute. 

 

 Upon applying the operations (E) and (D) to an invariant Ip in succession, one will be led to an 

invariant ( , )d e

pI  (which can be identically zero). Upon applying the same operations in the opposite 

order to the same invariant Ip, one will again obtain an invariant ( , )d e

pI  . The two invariants ( , )d e

pI

and ( , )d e

pI  are identical, up to sign. 

 Let: 

Ip = 
1 2 1p p

A dx dx       
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be an arbitrary absolute invariant of order p. Upon applying the operation (E) to it, one will get an 

invariant 
1

e

pI −
: 

1

e

pI −
 = 

1 2 1 1 1p p
C dx dx    − −  , 

in which: 

1 2 1p
C   −

= 
1 2 1p i i

i

A X   − . 

 

 One then deduces the invariant ( , )d e

pI   from 
1

e

pI −
: 

 
( , )d e

pI   = 
1 2 1p p

dx dx      , 

in which one has set: 

 

 
1 2 p  

= 
1 2 1 1 1 2 1

1 1

p p p p p

p p

C C C

x x x

        

  

− − −

−

  
+ + +

  
 

= 
1 2 1 1 1 1

1 1

( ) ( ) ( )
p p p p

p p

i i i i i i

i i i

X A X A X A
x x x

       

  
− −

−

  
+ + +

  
    

 

upon supposing that p is odd, to fix ideas. 

 On the other hand, upon applying the operation (D) to Ip first, one will get an invariant Ip+1 : 

 

1

d

pI +
 = 

1 2 1 1 1p p
dx dx    + +  , 

in which one has set: 

1 2 p i   = 
1 2 3 1 1 1

1 2

p p p p

p

i i i

i

A A A A

x x x x

        

  

−
   

− + − −
   

, 

 

since p is odd, which one can further write as: 

 

1 2 p i   = 
1 2 3 1 1 1

1 2

p p p p

p

i i i

i

A A A A

x x x x

        

  

−
   

− − − −
   

, 

 

from an earlier remark (§ 1). 

 Finally, one deduces the invariant ( , )d e

pI   from 
1

d

pI +
 by means of the operation (E): 

 
( , )d e

pI   = 
1 1p p

C dx dx   
  , 

in which one sets: 
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1 p

C 
 = 

1 2 p i i

i

X    

=
2 1 1

1 2

1

( )
p p

p

p

i i

i i

i i

A A
X A X X

x x

   

  

 

−
 

+ −
 

  . 

 

 Upon adding the expressions for 
1 p 
  and 

1 p
C 

 , one will get: 

 

1 p 
 + 

1 p
C 

 = 
1 2 1 1 2

1

( )
p p p

p

i i
i i

i

X X
X A A A

x x
      

 
−

  
 + + +
  
 

  , 

or rather: 

1 p 
 + 

1 p
C 

 = 
1 2 1 1 1

1

( )
p p p

p

i i
i i

i

X X
X A A A

x x
      

 
−

  
 + + +
  
 

  = 0 , 

since p is odd. 

 One will then have, by definition: 
( , )d e

pI = − ( , )d e

pI  . 

 

 

 9. – Having established those properties, suppose that one knows an absolute integral invariant 
0

pI  of equation (15) (p > 1). 

 Upon applying the operation (E) to it, we will get an invariant 
1

e

pI −
 that will not be an invariant 

( , )

1

d e

pI −
, in general. Thus, upon applying the operation (D) to 

1

e

pI −
, one will get an invariant ( , )d e

pI  

that is not identically zero. 

 We just saw that one will get the same result by proceeding in the opposite order. The links 

between the four invariants 0

pI , 
1

e

pI −
, 

1

d

pI +
, ( , )d e

pI  is represented by the following diagram (Fig. 1): 

 
Figure 1. 

(E) 

 

(D) 

 

(E) 

 

(D) 

 



E. Goursat – On integral invariants. 18 
 

 It can happen that the cycle is incomplete. As always, start from an invariant 0

pI . If the 

operation (E) leads to an invariant ( , )

1

d e

pI −
 then the invariant ( , )d e

pI  will be identically zero, and the 

invariant 
1

d

pI +
 that is deduced from 0

pI  by the operation (D) will be an invariant ( , )

1

d e

pI +
. If one starts 

from an invariant d

pI  then the operation (E) will lead to an invariant ( , )

1

d e

pI −
. If one starts from an 

invariant e

pI  then the operation (D) will lead to an invariant ( , )

1

d e

pI +
. 

 We can then summarize all of the preceding results into the following statement: 

 

 One can always deduce at least one invariant ( , )d e

pI  that is not identically zero from any 

absolute invariant Ip (p > 1) or any relative invariant Jp by additions, multiplications, and 

differentiations. 

 

 The conclusion can break down for an absolute invariant I1; that case will be treated separately. 

 

 

III. 

 

 10. – We are now led to examine the following question: 

 

 If one knows an integral invariant ( , )d e

pI  of the differential equations (15) then what can one 

infer from that knowledge that will help one integrate the system? 

 

 Let ( , )d e

pI  be an integral invariant of order p : 

 

(26)    ( , )d e

pI  = 
1 2 1 2p p

A dx dx dx       . 

 

The coefficients 
1 2 p

A    verify the relations: 

 

1 2 1

1
p

n

i i

i

A X   −

=

  = 0 

 

for any indices 1, 2, …, p−1, so equations (15) will imply the following ones: 

 

(27) 
1 2 1

1
p

n

i i

i

A dx   −

=

  = 0 . 

 

 Equations (27), which are linear and homogeneous in dx1, dx2, …, dxn, will then reduce to m 

distinct equations, where m is less than or equal to n – 1. If m = n – 1 then the two systems (15) 
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and (27) will be equivalent. However, when m is less than n – 1, the system (27) will be more 

general than then proposed system (15), and any integral of the system (27): 

 

F (x1, x2, …, xn) = const. 

 

will also be a first integral of the system (15). In that case, knowing the invariant ( , )d e

pI  will permit 

one to simplify the problem of integration. Indeed, we shall show that the m distinct equations to 

which the system (27) reduces will define a completely-integrable system. 

 First recall the following result of Frobenius (1). If one is given k equations: 

 

(28) A1 dx1 + … + An dxn = 0 ( = 1, 2, …, k) 

 

that reduce to m distinct equations (m < n), in order for those m equations to define a completely-

integrable system, it is necessary and sufficient that the relations: 

 

(29)  
1 1

n n
ji

i j

i j j i

AA
u v

x x



= =

 
−    

  = 0 

 

should be consequences of the relations: 

 

(30) 
1

n

i i

i

A u
=

  = 0 , 
1

n

j j

j

A v
=

  = 0 . 

 

 For the system that is considered here, the coefficients Ai in equations (28) have the form 

1 2 1p iA   −
, in which 1 2…p−1 denotes a combination of the first n numbers taken (p – 1) at a 

time. The difference: 

1 2 1 1 2 1p p

j i

i jA A

x x

     

 

− −
 

−
 

 

 

is a linear combination of the derivatives: 

 

1 2 1

1

p ijA

x

  



−



, 

2 1 1

2

p ijA

x

  



−



, …, 

 

from the condition equations (6) or (6), which express the idea that: 

 

 
 (1) Frobenius, Crelle’s Journal 82 (1877), pp. 276. See also Forsyth, Theory of differential equations, Part I, pp. 

51. Frobenius supposed that k < n. However, one can also suppose that k > n, which is the case in the example that is 

treated here.   



E. Goursat – On integral invariants. 20 
 

1 2 1 2p p
A dx dx dx       

is an exact differential. 

 It will then suffice to verify that the relations: 

 

(31) 
2 3 1

1
1 1

p

n n
ij

i j

i j

A
u v

x

  



−

= =




  = 0 

 

are consequences of the relations (30). We can write equation (31) as: 

 

2 3 1

1
1 1

p

n n
ij

i j

i j

A
u v

x

  



−

= =




   = 0 . 

 

On the other hand, from the relation (30): 

 

2 1

1
p

n

ij j

i

A v  −

=

  = 0 , 

one will deduce that: 

2 1

2 1

1 1
1 1

p

p

n n
ij j

j ij

j j

A v
v A

x x

 

 

 

−

−

= =

 
+

 
   = 0 . 

 

and the relation to be verified can be further written as: 

 

2 3 1

1
1 1

p

n n
j

ij i

i j

v
A u

x
  


−

= =




   = 0 

or 

2 3 1

1
1 1

p

n n
j

ij i

j i

v
A u

x
  


−

= =




   = 0 , 

 

and the latter condition is obviously a consequence of the relations (30). 

 When m = n – 1, it seems that the method gives no simplification. However, one can then find 

a multiplier (1), as one will see later (no. 11) in a special case. 

 

 

 11. – We shall treat the simplest cases in detail, namely p = 1 and p = 1. 

 Let ( , )

1

d eI  be a first-order invariant of the system (15): 

 

 
 (1) The proof in the general case will be given in another work that will be dedicated to the study of the systems 

(27), in particular.  
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( , )

1

d eI  = 1 1 2 2 n nA dx A dx A dx+ + + . 

 

The coefficients A1, A2, …, An must verify the relations: 

 

A1 X1 + A2 X2 + …+ An Xn = 0 , 

 

i

k

A

x




 = k

i

A

x




.  

 

 It will then follow that A1 dx1 + A2 dx2 + …+ An dxn is an exact differential du, and u = c is a 

first integral of equations (15). One will then deduce an integral combination of equations (15) 

from any first-order invariant ( , )

1

d eI . 

 Let us go on to the case of p = 2. Let: 

 
( , )

2

d eI  = ik i kA dx dx  

 

be a second-order invariant ( , )

2

d eI . The coefficients Aik verify the relations: 

 

(32)     ik kl li

j i k

A A A

x x x

  
+ +

  
 = 0 , 

(i, j, k = 1, 2, …, n) 

(33) Ai1 X1 + Ai2 X2 + …+ Ain Xn = 0 . 

 

 The n relations: 

(34) 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

0,

0,

......................................................

0

n n

n n

n n nn n

A dx A dx A dx

A dx A dx A dx

A dx A dx A dx

+ + + =


+ + + =


 + + + =

 

 

can be considered to be linear combinations of equations (15). By virtue of the relations (32), one 

can determine n functions B1, B2, …, Bn such that one has: 

 

Aik = i k

k i

B B

x x

 
−

 
, 

 

and the system of differential equations (34) is a covariant of the Pfaff form (1): 

 

 
 (1) Darboux, “Sur le problème de Pfaff,” Bull. Sci. math. (2) 6 (1882), 14-36 and 49-68. 
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(35) B1 dx1 + B2 dx2 + …+ Bn dxn . 

 

Furthermore, that system is always compatible since it admits all solutions to the proposed system 

(15). It will then result that the corresponding Pfaff determinant: 

 

 = 

11 12 1

21 22 2

1 2

n

n

n n nn

A A A

A A A

A A A

 

 

is always zero. Having said that, one can distinguish two cases according to the parity of n. 

 Suppose, to begin with, that n is even. Since  is zero, the same thing will be true for all of its 

first-order minors, and in reality, the n equations (34) reduce to n – p – 1 distinct equations (p > 

0). Since those equations form a completely-integrable system, they will admit (n – p – 1) distinct 

integrals: 

1 = C1 , 2 = C2 , …, n−p−1 = C n−p−1 

 

that one will obtain by integrating a complete system or a system of n – p – 1 differential equations. 

Since those integrals 1, 2, …, n−p−1 also belong to the system (15), one sees that the problem of 

integration has been simplified since one can obtain (n – p – 1) first integrals by integrating a 

system of (n – p – 1) differential equations. 

 If n is odd then  will always be zero. If all of its first-order minors are also zero then the 

system (34) will again reduce to (n – p – 1) distinct equations (p > 0), and the conclusion will be 

the same as before. However, if all of the first-order minors of  are non-zero then the system (34) 

will be comprised of (n – 1) distinct equations, and it will be entirely equivalent to the system (15). 

In that case, one can find a multiplier for the proposed system (15). 

 It would suffice to recall the following properties of skew-symmetric determinants. Let , , 

…,  be a system of 2r whole numbers that are chosen from the first n numbers. The expressions 

(, , …, ) are defined step-by-step by means of the recurrence relation: 

 

(, , …, ) = (, ) (, , …, ) + (, ) (, …,  ) + … + (, ) (, , …, ) , 

 

combined with the relation: 

(, ) = A . 

 

 If one is given two permutations (, , …, ) and ( , , , , )       that differ by only the order 

of the indices then one will have: 

 

(, , …, ) = ( , , , , )       , 
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in which the sign + pertains to the case in which the two permutations have the same class, and the 

– sign pertains to the contrary case. 

 Having said that, let n = 2p + 1, and suppose that all of the first-order minors of the determinant 

 are non-zero. One then infers an equivalent system from the relation (34): 

 

(36)  1

(2,3, 4, , 2 1)

dx

p +
 = 2

(3,4, , 2 1,1)

dx

p +
 = … = 1

(1,2,3,4, , 2 )

dx

p
. 

 

 The system (36) is no different from the system (15). However, it admits the multiplier M = 1. 

In order to show that, it would suffice to verify that one has indeed: 

 

(37)  
1 2 3

(2,3,4, , 2 1) (3,4, , 2 1,1) (4,5, , 2 1,1,2)p p p

x x x

 +  +  +
+ + +

  
 = 0 . 

 

 An arbitrary term on the left-hand side of that relation has the form: 

 

ik

i

A

x




(, , , …, ) , 

 

in which (, , , …, ) is a permutation of the (2p – 2) whole numbers that remain after 

suppressing the three indices i, k, l. Now, it is easy to see that the three derivatives ik

i

A

x




, kl

i

A

x




, 

li

k

A

x




 have the same multiplier. For example, one has the sum: 

  ik kl li

i i k

A A A

x x x

   
+ + 

   
   (4, 5, …, 2p + 1), 

 

and all of the other terms can be grouped in an analogous fashion. The relation (37) will then be a 

consequence of the relations (32). 

 

 

 12. – Let I1 be an arbitrary absolute integral invariant of the system (15): 

 

I1 = 1 1 2 2 n nA dx A dx A dx+ + +  . 

 

When the operation (E) is applied to that absolute invariant, it will lead to a first integral: 

 

A1 X1 + A2 X2 + … + An Xn = const., 
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which is a theorem that is due to Poincaré. The result might be illusory when A1 X1 + A2 X2 + … + 

An Xn reduces to a constant. We shall examine the most-general case in which one knows a relative 

invariant of the system (15): 

(38) J1 = 1 1 n nA dx A dx+ +  . 

 

 One deduces an invariant 
2

dI  from that invariant J1 by means of the operation (D): 

 

(39) 
2

dI  = i k
i k

k i

A A
dx dx

x x

  
− 

  
 , 

 

and one then deduces an invariant ( , )

1

d eI  from the invariant 
2

dI  by means of the operation (E): 

 

(40)    ( , )

1

d eI  = 1 1 2 1 n ndx dx dx  + + + , 

 

in which one has set: 

(41) 

1 1 2 2 ,i i i in n

i k
ik

k i

a X a X a X

A A
a

x x

 = + + +


 
= −  

  (i, k = 1, 2, …, n). 

 

 If the i are not all zero then one will obtain a first-integral of the system (15) by quadratures: 

 

U (x1, x2, …, xn) = 1 1 2 1 n ndx dx dx  + + +  = const. 

 

 The proposition also applies to an absolute integral invariant I1, provided that all of the 

coefficients i are non-zero. However, the first integral to which one is led will be nothing but the 

first integral that is given by Poincaré’s theorem. 

 It suffices to verify the equalities: 

 

  
ix




(A1 X1 + A2 X2 + … + An Xn) + X1 ai1 + … + Xn ain = 0 (i = 1, 2, …, n), 

which will become: 

  1
1 ( )n

n i

i i

XX
A A X A

x x


+ + +

 
 = 0  (i = 1, 2, …, n) 

 

upon replacing the aik with their expressions. 

 One will recover the relations that express the idea that I1 is an absolute integral invariant 

precisely. However, if one starts from a relative integral invariant then some quadratures will 

generally be necessary if one is to obtain the first integral U. 
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 13. – The proposition does not apply when the invariant ( , )

1

d eI  that is represented by formula 

(40) is identically zero. The second-order invariant (39) is then an invariant ( , )

2

d eI . If that invariant 

( , )

2

d eI  is not itself identically zero then one saw before how knowing that invariant will permit one 

to simplify the problem of integration. The invariant ( , )

2

d eI  can be identically zero only if it was 

deduced from an absolute invariant 
1

dI  by the operation (D). 

 If that invariant is 
1

dI  then one has seen how it will give a first integral by quadratures (no. 11). 

The only case in which the method will seem to give no simplification is the case of an absolute 

invariant 
1

dI  that is not, at the same time, ( , )

1

d eI . Let: 

 

1

dI  = 1 1 2 2 n nA dx A dx A dx+ + +  

 

be that invariant. The expression A1 dx1 + … + An dxn is an exact differential dU. On the other 

hand, the expression: 

A1 X1 + … + An Xn 

 

cannot be zero unless 
1

dI  is ( , )

1

d eI . Moreover, since the coefficients i are all zero then that 

expression will reduce to a non-zero constant K. One then deduces from equations (15) that: 

 

1 1 n nA dx A dx

K

+ +
 = dt , 

 

and one will get a first integral that contains t by quadratures: 

 

1 1 n nA dx A dx+ +  = K t + C . 

 

 

 14. – The general result in no. 12 established a link between the search for integrable 

combinations of the system (15) and the first-order relative invariants of that system. It is easy to 

exhibit that link directly. 

 Finding an integrable combination of equations (15) amounts to finding a system of n functions 

1, 2, …, n such that 1 dx1 + 2 dx2 + … + n dxn is an exact differential and one will have, at 

the same time: 

 

(42)     1 X1 + 2 X2 + … + n Xn = 0 . 

 

 One can satisfy the latter relation by setting: 

 

(43)     i = i1 X1 + i2 X2 + … + in Xn , 
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in which ik are new functions of the variables x1, x2, …, xn that satisfy the conditions: 

 

ii = 0 ,  ik + ki = 0 . 

 

 The integrability condition i

kx




 = k

ix




will then be written as: 

 

(44) 
1 1

( )
n n

h h
ik k ihk hk ih

h h i k

X X
X X

x x
   

= =

  
− + + 

  
   = 0 , 

when one sets: 

ihk = ih hk ki

k i hx x x

    
+ +

  
. 

 

 If we compare those conditions (44) to the conditions: 

 

(45) 
1

( )
n

h h
ik hk ih

h i k

X X
X a a a

x x=

  
+ + 

  
  = 0 , 

which express the idea that: 

I2 = ik i ka dx dx  

 

is a second-order integral invariant, then we will see that they will become identical upon replacing 

ik with aik, provided that one has: 

ih hk ki

k i h

a a a

x x x

  
+ +

  
 = 0 , 

 

i.e., whenever the invariant I2 is 
2

dI , one will have deduced an invariant J1 or I1 by the operation 

(D). 

 

 

 15. – The combination of calculations that led to that theorem can be justified a priori by a 

remark that was the starting point for this work and which I will develop in only the case of three 

variables, for simplicity. 

 Consider a system of three first-order differential equations that I will write: 

 

(46) 
dx

X
 = 

dy

Y
 = 

dz

Z
 = dt , 

 

with the usual notations, in which X, Y, Z does not depend upon t, and let: 
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J1 = a dx b dy c dz+ +  

 

be a relative integral invariant of that system, which we can replace with a second-order integral 

invariant: 

2

dI  = Adx dy B dy dz C dz dx+ + , 

in which: 

A = 
a b

y x

 
−

 
, B = 

b c

z y

 
−

 
, C = 

c a

x z

 
−

 
, 

 

and the expression under the  sign is an exact differential. 

 Let C0 be an arbitrary closed curve that is not tangent to the characteristic of equations (46) 

that issues from any point. Take a surface 0 that is bounded by 0 and is such that the characteristic 

that issues from any of its points is not tangent to the surface. 

 
Figure 2. 

 

 Let M0 be an arbitrary point of 0 whose coordinates are x0, y0, z0. If we take the initial value 

of t to be zero and the initial values of x, y, z to be x0, y0, z0 in equations (46) then the point whose 

coordinates (x, y, z) will describe a segment of the characteristic M0M when t varies from zero to 

. If  is sufficiently small then the locus of those characteristics will be a volume that is analogous 

to a cylinder that is bounded by segments of the characteristics that issue from the various point of 

C0 when t varies from zero to . 

 The integral 
2

dI  extends over the entire outer surface that bounds that volume is zero. On the 

other hand, since 
2

dI  is an integral invariant, the integral that is taken along the outer edge of 0 

will be equal to the integral that is taken along the internal edge of 0 . Consequently, when the 

integral 
2

dI  is extended over all of the surface S, it will be zero. If we consider that integral to be a 

function F () of  then we can ( )F   = 0. In order to evaluate that derivative, suppose that the 

coordinates of a point of C0 are expressed as functions of a variable parameter u in such a fashion 

 

 
 

 

M0 

C0 

S 

M C 
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that we will obtain all of the points on that curve by varying u from zero to U. The coordinates of 

a point on the surface S will then be functions of two variables u and t: 

 

(47)    x = f1 (t, u) , y = f2 (t, u) , z = f3 (t, u) , 

 

and one will get all of the points on that surface by varying u from zero to U and t from 0 to . The 

function F () will then have the expression: 

 

F () = 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

D x y D y z D z x
A B C dt du

D t u D t u D t u

 
+ + 

 
 , 

 

in which the double integral extends over the domain that was just defined, and x, y, z are replaced 

with their expressions (47) in terms of A, B, C. Upon taking the differential equations (46) 

themselves into account, one can further write that formula as: 

 

F () = 
0 0

U
y x z y x z

dt A X Y B Y Z C Z X du
u u u u u u


            

− + − + −                 
  . 

 

 For  = 0, the derivative ( )F  will reduce to: 

 

0

( ) ( ) ( )

U
x y z

C Z AY A X B Z BY C X du
u u u

   
− + − + −    

 , 

 

i.e., to the curvilinear integral: 

 

0( )
( ) ( ) ( )

C
C Z AY dx A X B Z dy BY C X dz− + − + −  

 

that is taken along C0. Since that integral is zero for any closed curve C0, the expression: 

 

(48) ( ) ( ) ( )C Z AY dx A X B Z dy BY C X dz− + − + −  

 

will then be an exact differential. 

 Moreover, one has: 

 

( ) ( ) ( )X C Z AY Y A X B Z Z BY C X− + − + −  = 0 , 

 

and as a result, the expression (48) will be an integrable combination of equations (46). 

 If one has, at the same time: 

 

C Z – A Y = 0 ,  A X – B Z = 0 ,  B Y – C X = 0 , 
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then one can deduce that: 

X

B
 = 

Y

C
 = 

Z

A
, 

 

and the system (46) will be equivalent to the system: 

 

(46) 
dx

B
 = 

dy

C
 = 

dz

A
. 

 

That new system will admit unity for a multiplier because one can infer the relation: 

 

B C A

x y z

  
+ +

  
 = 0 

from the expressions for A, B, C. 

 

 

 16. – To conclude, we shall once more apply the general theorem to the invariants of order n 

and n – 1. Let In be an invariant of order n : 

 

(49) In = 1 2 nM dx dx dx  . 

 

Any multiple integral of order n can be replaced with a multiple integral of order n – 1 that is 

extended over a closed multiplicity, so one can consider In to be an invariant d

nI . When the 

operation (E) is applied to that invariant, it will lead to an invariant ( , )

1

d e

nI −
. 

 Suppose that n is odd. We take: 

A12…n = A23…n1 = … = M , 

 

and the invariant ( , )

1

d e

nI −
 will be expressed by: 

 

(50)   ( , )

1

d e

nI −
 = 1 2 1 1 2 1[ ]n n nM X dx dx dx X dx dx− −+ +  . 

 

 The expression under the integration signs must be an exact differential. Since n – 1 is even, 

by hypothesis, one will then have the relation: 

 

(51) 1 2

1 2

( )( ) ( ) n

n

M XM X M X

x x x

 
+ + +

  
 = 0 , 

 

which shows that M is a multiplier, and one will recover a theorem of Poincaré. The system of 

differential equations (27) that is associated with the invariant ( , )

1

d e

nI −
 is identical to the system (15) 

itself in the present case. 
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 The conclusion will be the same when n is even. We must take: 

 

A12…n = − A23…n1 = A34…n12 = … = M , 

 

and the invariant ( , )

1

d e

nI −
 will be expressed by: 

 

(50)   ( , )

1

d e

nI −
 = 1 2 1 1 2 1[ ]n n nM X dx dx dx X dx dx− −− +  . 

 

However, since n – 1 is odd, the condition (51) will not change. 

 Finally, suppose that we know an invariant In−1. There are several cases to distinguish between 

according to the hypotheses that one can make regarding that invariant. If one has an invariant 
( , )

1

d e

nI −
 then it will have the form (50) or (50) according to the parity of u, and the relation (51) will 

again be verified in such a way that M will be a multiplier. 

 An invariant In−1 that is not 
1

d

nI −
 will give an invariant d

nI  under the operation (D), and as a 

result a multiplier. 

 However, if one applies the operation (E) to an invariant 0

1nI −
 then one will get an invariant 

2 ,e

nI −
and it would seem that the operation (D) will be necessary if one is to finally arrive at an 

invariant ( , )

1

d e

nI −
, i.e., a multiplier. However, there is a simplification that can be made in this case 

as a result of a theorem by Kœnigs (1). The system of differential equations (27) that is associated 

with the invariant 
2

e

nI −
 is completely integrable, and one will then obtain an equation: 

 

A (f) = i

i i

f

x





  = 0 , 

 

which will define a completely-integrable system when it is combined with the equation X (f) = 0. 

 It is easy to see the reason for that simplification, and at the same time, to see that it is not 

possible in the general case. Suppose that one has reduced the system (15) to the form: 

 

(52)    1

0

dx
 = 2

0

dx
 = … = 1

0

ndx −  = 
1

ndx
 = dt 

 

by a change of variables, and let In−1 be an integral invariant of order n – 1: 

 

In−1 = 1 2 2 3 1n ndx dx dx dx dx + +  , 

 

in which the coefficients 1, 2, …, n depend upon only the variables x1, x2, …, xn−1 . 

 
 (1) “Sur les invariants intégraux,” C. R. Acad. Sci. Paris 122 (1896), 25-27. 
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 When the operation (E) is applied to that invariant In−1, it will lead to an invariant 
2

e

nI −
 in which 

neither xn nor dxn appear: 

2

e

nI −
 = 

1 2 21 2 2 nn

C dx dx dx     −−
  . 

 

 The system of differential equations (27) that is associated with that invariant 
2

e

nI −
 has the 

form: 

1

1

dx


 = 2

2

dx


 = … = 1

1

n

n

dx


−

−

, 

 

in which 1, 2, …, n−1 do not depend upon xn, and the two equations: 

 
2

2

n

i

i i

f

x


−

=




  = 0 ,  

n

f

x




= 0 

 

will indeed define a complete system. 

 On the contrary, take an integral invariant of the system (52) of order less than n – 1, for 

example, an invariant I2 : 

I2 = ik i kA dx dx . 

 

The coefficients Aik are independent of xn, and the invariant 
1

eI  that one deduces by means of the 

operation (E) will have the form: 

 

1

eI  = 1 1 2 2 1 1n nC dx C dx C dx− −+ + +  , 

 

in which C1, C2, …, Cn−1 are functions of x1, x2, …, xn−1 that can be arbitrary. The system (27) that 

is associated with that invariant 
1

eI  will reduce to a single equation here: 

 

1 1 2 2 1 1n nC dx C dx C dx− −+ + +  = 0 , 

 

and it is clear that this equation is not completely-integrable if n is greater than 3, in general. 

 

____________ 


