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 1. – The second-order partial differential equation: 

 

(1)      
2 4 ( , )s x y p q−  = 0 , 

 

in which  (x, y) is an arbitrary function of x and y, can be converted into a linear equation that 

combines some equations with equal invariants. Set: 

 

p = 
2u ,  q = 

2v . 

Equation (1) gives us: 

(2)      

,

,

u
v

y

v
u

x






= 


 =

 

 

 

and the elimination of v from those two relations will lead to the linear equation: 

 

(3)  
2 1 log

2

u u
u

x y x y




  
− −

   
 = 0 . 

 

 If u is an integral of equation (3) then one will deduce an integral of equation (1) by a 

quadrature: 

z = 

2

2 1 u
u dx dy

y

 
+  

 
  , 

 

and one will then obtain all of the integrals of that equation. When the function  (x, y) is real, any 

real solution of the equation in u will correspond to a real solution of the equation in z. If u has the 

form i f (x, y), where f (x, y) is a real function then z will once more be real. Moreover, any real 

integral of the equation in z will correspond to a function u that is either real or has the form i f (x, 

y). Upon noting that when one changes u into i u, z will change into – z, one concludes that in order 
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to have all of the real integrals of equation (1), it will suffice to know all of the real integrals of 

equation (3). 

 The invariants of equation (3) have the values: 

 

h =  ,  k = − 
21 log

2 x y





+

 
 . 

 

The invariants of the equation (E1), which is obtained by applying the Laplace transformation u1 

= u / y to equation (E), have the values: 

 

h1 = 2h – k − 
2 log

x y



 
 = k ,  k1 = h . 

 

They are then equal to those of the equation (E) but taken in the opposite order. In other words, 

the adjoint to the equation (E) has the same invariants as the equation (E1), which one deduces 

from (E) by applying one of the Laplace transformations. 

 If the Laplace sequence relative to the equation (E) terminates in one direction – on the side of 

positives indices, for example – after n transformations then one knows that the sequence relative 

to the adjoint equation or to equation (E1) must likewise terminate on the side of negative indices 

after n transformations. Since one will recover (E) after a first application of the transformation to 

(E1), one can conclude that the Laplace sequence relative to (E) will terminate on the side of 

negative indices after n – 1 transformations. 

 Any linear equation (E) that is such that the equation (E1) that one deduces by the first Laplace 

transformation has the same invariants as the adjoint equation to (E) can be converted into an 

equation of the form (3). Indeed, upon changing u into K (x, y) u, one can always convert the linear 

equation into the form: 
2u u

b cu
x y y

 
+ +

  
 = 0 . 

 

The invariants have the following values: 

 

h = − c , k = 
b

y




 − c , 

 

whereas the invariants of the transformed (E1) are: 

 

h1 = − 
2 logb c

c
y x y

 
− −

  
, k1 = − c . 

 

In order for the invariants h1 and k1 of that equation to be identical to the invariants k and h of the 

adjoint, it will suffice that one should have h1 = k , or: 
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2
b

y




 = − 

2 log c

x y



 
. 

The equation must then have the form: 

 

  
2 1 log

2

u c u
X cu

x y x y

   
− + + 

    
 = 0 , 

 

and it will suffice that one can replace u with 

0

exp

x

x

u X dx  and c with –  in it in order to recover 

equation (3). 

 

 

 2. – Any equation of the form (3) that is integrable by the Laplace method will then correspond 

to an equation (1) that can be integrated by quadratures. From the preceding, the determination of 

the values of  for which that is true amounts to the following problem: Find all Laplace sequences 

that terminate in both directions and are composed of an even number 2n of equations such that 

two equations at an equal distance from the extremes will have the same invariants but arranged 

in the opposite order. One can obtain the solution to that problem by considerations that are 

analogous to the ones that Darboux appealed to in order to obtain all of the equations with equal 

invariants for which the Laplace sequence does not contain a finite number of equations. One can 

appeal to linear differential equations with only one independent variable and of even order that 

are equivalent to their adjoint instead of the equations of odd order that occurred in the problem 

that Darboux treated. 

 When equation (3) is integrable by the Laplace method, the general integral of equation (1) 

will belong to the first Ampère class, which will result from the following general theorem: 

 

 If the expression: 

 

(4)  
( ) ( ) ( ) ( )( , , , , , , , , , ) ( , , , , , , , , , )p p p px y X X X Y Y Y dx x y X X X Y Y Y dy    + , 

 

in which X is an arbitrary function of x, Y is an arbitrary function of y, and  and  include X and 

Y and their derivatives up to a well-defined order, is an exact differential for all possible forms of 

the functions X and Y then one will have: 

 

dx dy +  

 

= 
( ) ( ) ( 1) ( 1)

1 2( , , , , ) ( , , , , ) ( , , ,..., . , , , )p p p pF x X X X dx F y Y Y Y dy F x y X X Y Y Y− −  + +   , 
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in which F includes only x, X, X  , …, ( )pX , F1 includes only y, Y, Y  , …, ( )pY , and F2 is a well-

defined function of the variables that appear in y (1). 

 

 Suppose, to fix ideas, that the highest-order derivatives of the functions X, Y that appear in  

and  are the ones of order p, in such a way that one of the derivatives ( )pX , ( )pY  enters into at 

least one of the functions  and , but that no derivative of order higher than p will enter in. By 

hypothesis, one must have: 

d

dy


 = 

d

dx


 

 

for all possible forms of the functions X and Y when one sets: 

 

  
d

dy


 = ( ) ( 1)

( 1) ( )

p p

p p
Y Y Y

y Y Y Y

    +

−

   
+ + + +

   
, 

 

  
d

dx


 = ( ) ( 1)

( 1) ( )

p p

p p
X X X

x X X X

    +

−

   
+ + + +

   
. 

 

One sees that d / dx does not contain ( 1)pY +  and that d / dy does not contain ( 1)pX + . It is then 

necessary that one must have: 

( )pY




= 0 , 

( )pX




 = 0 , 

 

i.e., that  must contain the derivatives of the function Y only up to order at most p – 1, and 

similarly, that  contains the derivatives of X only up to order at most p – 1. d / dx, and as a result 

d / dy, must then be linear functions of ( )pX . One must then have: 

 

2

( ) 2[ ]p

d

dy

X

 
  

 


 = 0 , 

or what amounts to the same thing: 
2

( ) 2( )p

d

dy X

 
 

 
 = 0 , 

 

 
 (1) This proposition extends with no difficulty to the expressions: 

 

1 dx1 + 2 dx2 + … + n dxn , 

 

in which 1, 2, …, n include n arbitrary functions X1, X2, …, Xn of x1, x2, …, xn, respectively, and a finite number of 

their derivatives, which are exact total differentials for all possible forms of the arbitrary functions. 
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which shows that 
2

( ) 2( )pX




 is independent of y, Y, Y  , …, ( 1)pY − : 

2

( ) 2( )pX




 = ( )( , , , , , )pv x X X X Y   . 

 

 One then deduces that  has the form: 

 

 = 

  
( ) ( 1) ( 1) ( ) ( 1) ( 1)

1 2( , , , , ) ( , , , , , , , , , ) ( , , , , , , , , )p p p p p px X X X x y X X X Y Y Y X x y X X X Y Y− − − −    + + , 

 

and one proves in the same fashion that  must have the form: 

 

 = 

  
( ) ( 1) ( 1) ( ) ( 1) ( 1)

1 2( , , , , ) ( , , , , , , , , , ) ( , , , , , , , , )p p p p p py Y Y Y x y X X X Y Y Y Y x y X X X Y Y− − − −    +  +  . 

 

 The coefficient of 
( ) ( )p pX Y  is 1

( 1)pY −




 in 

d

dy


 and 1

( 1)pX −




 in 

d

dx


. One must then have: 

 

1

( 1)pY −




 = 1

( 1)pX −




, 

 

which shows that 1 and 1 are the partial derivatives with respect to ( 1)pX −  and ( 1)pY − , 

respectively, of a function: 

 
( 1) ( 1)( , , , , , , , , )p pU x y X X X Y Y− −  = 

( 1) ( 1)

1 1

p pdX dY− − +  . 

 

 The total differential of that function U has the expression: 

 

dU =  

 

( 1) ( 1) ( ) ( )

1 1( 2) ( 2)

p p p p

p p

U U U U U U
X X dx Y Y dy X dx Y dy

x X X y Y Y

− −

− −

       
 + + + + + + + +  +   

        
, 

 

and one can write: 

dx dy +  = 1 1dx dy dx dy  +  + +   , 

when one sets: 
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1 = 
( 1)

2 ( 2)

p

p

U U U
X X

x X X

−

−

   
 − + + + 

   
, 

 

1 = ( 1)

2 ( 2)

p

p

U U U
Y Y

y Y Y

−

−

   
 − + + + 

   
 . 

 

 We now remark that 1 dx + 1 dy must be an exact differential for all possible forms of the 

arbitrary functions X and Y and that 1 and 1 include only the include the derivatives of those 

functions only up to order at most p – 1. Upon repeating the same operations with 1 1dx dy +  

and applying the process as many times as possible, one will conclude by arriving at an integral of 

the form: 

( , , ) ( , , )p px y X dx x y Y dy + , 

 

in which the expression p dx + p dy must be an exact differential for all possible forms of X and 

Y. One must then have: 

p

y




 = 

p

x




. 

Now, p does not contain Y, so the same thing must be true for 
p

x




, i.e., p must have the form 

P (y, Y) + Q (x, y). 

 One must likewise have that p has the form M (x, X) + N (x, y), and the integrability condition 

will become 
N

y




= 

Q

x




. 

 The integral in question can then be written: 

 

p pdx dy +  = ( , ) ( , )M x X dx P y Y dy N dx Q dy+ + +   . 

 

 Upon combining all of the results that were obtained, one will indeed get an expression of the 

stated form for the integral dx dy + . 

 

 Remark. – If one supposes that the functions  and  are linear with respect to the functions 

X, Y and their derivatives then one will recover the theorem that Darboux proved (1) and which is 

greatly useful in the study of linear equations. Indeed, the functions  and  will then have the 

form: 

   = ( ) ( 1)

0 1 0 1 1

p p

p pA X A X A X B Y B Y B Y −

−
 + + + + + + +  , 

   = ( 1) ( )

0 1 1 0 1 1

p p

p pC X C X C X D Y D Y D Y−

− −
 + + + + + + +  , 

 
 (1) Leçons sur la Théorie générale des surfaces, t. II, pp. 151. 
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in which Ai , Bi , Ci , Di are well-defined functions of x and y. If one sets: 

 

U = ( 1) ( 1)p p

p pA X D Y− −+  

then one can write: 

dx dy + = U − 1 1dx dy + , 

 

in which 1 and 1 are expressions of the same form as  and  that contain the derivatives of X 

and Y only up to order at most p – 1. Upon continuing in that way, one will arrive at an expression: 

 

a X dx + b Y dy 

 

that must be an exact differential for all possible forms of the functions X and Y, which demands 

that a must depend upon only the variable x and b must depend upon only the variable y. If those 

functions are not zero then one can make all of the quadrature symbols disappear by replacing X 

with 1 /X a  and Y with 1 /Y b , in which X1 and Y1 denote two new arbitrary functions of x and y, 

respectively. 

 

 

 3. – When the function  (x, y) has the form  = k / (x + y)2, in which k denotes a constant, 

equations (1) and (3) will become: 

(1)      2

2

4

( )

k p q
s

x y
−

+
 = 0 , 

 

(3)  
2

2

/

( )

u u y k u

x y x y x y

  
+ −

  + +
 = 0 , 

 

respectively. If one forms the Laplace sequence relative to equation (3) on the side of positive 

indices then one will find that the successive invariants have the values: 

 

2( )

k

x y+
 , 

2

1

( )

k

x y

−

+
 , 

2

4

( )

k

x y

−

+
 , …, 

2

2( )

k n

x y

−

+
 , … 

 

 From that, in order for the sequence to be bounded, it is necessary and sufficient that k must be 

the square of a whole number. 

 Let us examine the simplest case. If k = 1 then the general integral of equation (3) will be: 

 

u = 
Y X

X
x y

−
 +

+
 . 

From formulas (2), one will then have: 
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v = ( )
u

x y
y


+


 = 

X Y
Y

x y

−
 +

+
, 

 

and with that, the general integral of the equation: 

 

(5)       s = 
2 p q

x y+
 

will be: 

(6)     z = 

2 2

Y X X Y
X dx Y dy

x y x y

   − −
 + + +   

+ +   
  . 

 

 If one applies the general theorem that was just proved to that expression then one will find 

that it can be written: 

z = − 
2

2 2( )Y X
X dx Y dy

x y

−
 + +

+   . 

 

 In order to make the quadrature disappear, it will suffice to introduce two new independent 

variables  and  by setting: 

 

X   =  , Y   =  , x = ( )  , y = ( )  , 

which will give us: 

X = X dx  = ( ) d     = ( ) ( )     − , 

  
2X dx  = 

2 ( ) d     = 
2 ( ) 2 ( ) 2 ( )        − +  , 

and similarly: 

  Y = ( ) ( )     − , 

  
2Y dx  = 

2 ( ) 2 ( ) 2 ( )       − +  . 

 

 The general integral of equation (5) is then represented by the formulas: 

 

(7)   2 2

2

( ) , ( ) ,

( ) 2 ( ) 2 ( ) ( ) 2 ( ) 2 ( )

[ ( ) ( ) ( ) ( )]
,

( ) ( )

x y

z

   

              

       

   


  = =


   = − + + − +
    − − +
 −

 +

 

 

in which  and  are variable parameters, and  and  are two arbitrary functions. One remarks 

that the general integral of that equation contains the two arbitrary functions explicitly without that 

equation belonging to the class that Moutard studied. 
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 When k = 4, the general integral of equation (3) is: 

 

u = 
2 2

4 6 2 6

( ) ( )

X X Y Y
X

x y x y x y x y

 
 − + + −

+ + + +
 , 

 

and the corresponding value of v is: 

 

v = 
2

x y u

y

+ 


 = 

2 2

4 6 2 6

( ) ( )

Y Y X X
Y

x y x y x y x y

 
 − + + −

+ + + +
 . 

 

The general integral of the equation: 

s = 
4 p q

x y+
 

is then represented by the formula: 

z = 
2 2u dx v dy+  , 

which will become: 

 

z = 
2 2 2

2 2

2 2 3

4 ( )
4 12 12 12

( ) ( ) ( )

X Y X X Y Y X Y X Y X Y X Y
X dx Y dy

x y x y x y x y x y

       + + + −
 + − + + − −

+ + + + +   

 

upon applying the general theorem. 

 As another example of an equation to which one can apply the preceding transformation, I will 

cite the equation 2s  = 4pq, which was encountered by Thomas Craig in certain problems in the 

theory of surfaces, and which thus reduces to the well-known equation 
2u

x y



 
 = u. 

 

 

 4. – The transformation that was just studied can be attached to a more general question. From 

the way that we obtain equation (3) itself, if we set: 

 

M = 

2

1 u

y

 
 

 
,  N = − 2u  

then we will have the identity: 

 

M N

x y

 
+

 
 = 

22 1 log

2

u u u
u

y x y x y






    
− − 

     
 . 

 

To abbreviate, agree to say that a multiplier of a linear equation: 
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(8)  F (x) = 
2z z y

a b c z
x y x y

  
+ + +

   
 = 0 

 

is any function  that includes the variables x, y, z, and the partial derivatives of z up to any order, 

and is such that the product  F (z) has the form: 

 

 F (z) = 
M N

x y

 
+

 
, 

 

in which M and N are likewise well-defined functions of x, y, z, and the partial derivatives of z 

with respect to x and y. We then see that 
2 u

y




 is a multiplier for the linear equation (3). 

 If one is given an arbitrary linear equation (8) then one knows that there will always exist an 

infinitude of multipliers u (x, y) that include only the independent variables x and y. In order for 

( , )u x y  to be a multiplier of F (z), it is necessary and sufficient that u should verify a linear 

equation of the same form, which called the adjoint equation to the first one: 

 

(9)    G (u) = 
2u u u a b

a b c u
x y x y x y

     
− − + − − 

      
 = 0 . 

 

 If the coefficients a, b, c of equation (8) are arbitrary then one will easily see that there exist 

no other multipliers than the functions u (x, y) that satisfy the adjoint equation. Without wanting 

to enter into a detailed discussion of that question, we will show how one can predict a priori the 

existence of the very extensive case in which there exist multipliers that include not only the 

variables x and y, but also z and its derivatives up to an order that is as high as one desires. 

 First recall the identity: 

(10) u F (z) – z G (u) = 
M N

x y

 
+

 
, 

in which one sets: 

M = 
1

2

z u
au z u z

y y

  
+ − 

  
 , 

N = 
1

2

z u
bu z u z

x x

  
+ − 

  
 . 

 

Suppose that the proposed equation F (z) = 0 is such that one can pass from that equation to its 

adjoint by one of the transformations (m, n) that were studied completely by Darboux. In other 

words, suppose that the general integral of equation (9) is given by the formula: 

 

(11)   u = 
1 1

m n

m nm n

z z z z
A z B B C C

x x y y

   
+ + + + + +

   
 , 
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in which A1, B1, …, Bm, C1, …, Cn are well-defined functions of x and y, and z is the general integral 

of the equation F(z) = 0 . If one substitutes the preceding expression for u in G (u) then the result 

will be identically zero, provided that z verifies the equation F (z) = 0 . Upon supposing that u is 

replaced by the expression (11), one will then have an identity of the form: 

 

(12) G (u) = 
( )

( )
i k

ik i k

F z
F z

x y
 

+
+

 
  , 

 

in which the coefficients  and ik depend upon only x and y. If one makes the same substitution 

in the equation (10) then one will arrive at a new relation of the form: 

 

(13) 
( )

( )
i k

ik i k

F z
F z

x y
 

+
 +

 
  = 

P Q

x y

 
+

 
, 

 

in which P, Q,  , 
ij   include x, y, and z, along with the partial derivatives of z. Now, a series of 

integrations by parts will permit one to keep only those terms in the left-hand side that are divisible 

by ( )F z . For example, if i is positive then one can write: 

 

( )i k

ik i k

F z

x y


+


 
 = 

1 1

1 1

( ) ( )i k i k

ik
ik i k i k

F z F z

x x y x x y




+ − + −

− −

    
 − 

      
 , 

 

and one will have an analogous formula for reducing the index k by one unit. Upon continuing in 

that way and moving all of the derivatives to the right-hand side, one will conclude by arriving at 

an identity of the form: 

 F (z) = 
P Q

x y

 
+

 
, 

 

in which m contain the partial derivatives of z up to arbitrary order, provided that m and n are very 

large. From the final identity, that function  will be a multiplier for the equation F (z) = 0. 

 One can recover the transformation that was considered at the beginning of this article by 

supposing that the transform (E1) of equation (8) has the same invariants as the adjoint of that 

equation. One can then pass from equation (8) to its adjoint by a transformation of the form: 

 

u = 
z

A B z
y


+


 . 

 

__________ 

 


