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FOREWORD

In the course that | taught at the Collége de Frandagitire years 1898-1899 and 1899-198)0 (
whose diverse circumstances retarded the publicatitmsoWvork, | principally proposed to research
how boundary conditions exert an influence on the moveofdtuids.

As far as liquids are concerned, this amounts to a @mlhat is analogous to the Dirichlet
problem: theNeumann Problen®), which is the object of the first chapter of this work latter
times, the theory of harmonic functions has been stdagjeto important refinements, most of which
are only appended to my own discussion; in my referecasriemoir of Stekloff | have used those
refinements that are of direct interest to the Neunmxahlem.

On the contrary, in the case of a gas one is I¢dettheory of Hugoniot, which has been afforded
much attention for several years, thanks to the lesssoHydrodynamique, Elasticité, et Acoustique
of Duhem.

To enjoy all of the benefits that mechanics hasffer othis theory — as well as the development
of the memoirsSur la propagation du mouvement dans les c@dpsirnal de I'Ecole Polytechnique,
tome XXXIII, lett. 57-59), in which the notion of compaitity is less clear as it is in the memoir of
the Journal de Liouville — seems to me to beg sevewrdtguns. This is why | have discussed the
facts that are of a purely kinematical nature sepgrdtem those that depend on the dynamical
properties of movement. By means of this distinctas,well as what one would expect, many
viewpoints are clarified. Thanks to them, in particuiageometric representation seems immediate.
This, in turn, permits us to make the analogy between wauasas Hugoniot imagined and the ones
that are considered in vibrational mechanics more precise

Finally, there is good reason to approach the theoryugfoHiot from the standpoint of the
characteristics of equations with more than two inddpan variables, which is its analytic
expression, and which J. Beudon posed the fundamentad$ooéthis cruelly premature death.

The solution of the Cauchy problem for linear equatiomgoming to the path taken by
Kirchhoff, is related in a direct manner to the notafrcharacteristic, and we naturally follow this
path. In all of its details, we have nonetheless deeel@ theory that, except for the important works
that were published since the epoch when this course begmastill not arrived at a definitive form.

Moreover, by its very nature, a discussion such asiiethat | have attempted to define as the
object of the present work, and which, in the eyesgurricomprises all of continuum mechanics,
cannot be complete, and | have made no pretensd that i

| would like to thank M. Gaudet here, an old student at I&EdBolytechnique, whose
collaboration has been precious to me. In a large parte the editing of the first two chapters to
him, in which he likewise corrected certain proofs. MoegpVam happy to express my recognition

(") Chapters | to IV reasonably correspond to the conrd898-1899, and chapters V-VII to the one in 1899-1900. |
have nevertheless included a discussion of the method whaten following Stekloff (nos12-16), the necessary
conditions for the minimum of the elastic potential.(@70), and the final notes to this edition.

(® This is the term | have adopted in the text, at Jeaish Stekloff. In the recent works relating to hait
functions that appeared during the printing of this pres@mk this same term is used in a completely differensee
There is therefore reason to modify it, all the meoeif Fr. And C. Neumann have recognized the importaftkeo
problem in question; the priority — at least as fait @sncerns the present publication — seems to be duetkn®Bs and
Dini.
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of all of my auditors at the Collége de France, whkisel assistance has greatly facilitated the
publication of these lessons.

J. HADAMARD







FIRST CHAPTER

THE SECOND BOUNDARY-VALUE PROBLEM
IN THE THEORY OF HARMONIC FUNCTIONS?

§ 1. — CLASSICAL PROPERTIES OF HARMONIC FUNCTIONS

1. — One knows that a functiohis calledharmonicin a domairD if for all interior
points ofD, V and all of its first two derivatives have definiteweas, and moreover:

1. It satisfies the equatioAYV = 0;

2. In the case for which the dom&ns unboundedy is regular at infinity, i.e., that
it behaves like a potential and its derivatives behavdh&ealerivatives of a potential.

Some harmonic functions, outside of attracting masses ar

1. The potentials of spatial distributions:

IH UT dxdydz

2. The potentials of simple coverings:
[[Zds
r

3. The potentials of double coverings:

d 1

”Ud—;dS,

which are functions of the poiM, and in whichU denotes a function of the integration
element that is calleddensityor weight.

With only the condition on the weight that it be everywhere finite, these potentials
are everywhere finite and continuous, as well ag fiirst derivatives, except in the case
that there are surface potentials on the surfadeeotiomain; on this surface, there will

() See, among others: Bjerkn&yr le mouvement simultaneé des cofg, Soc. Sc. Christiana,
1868-1871; DINISull’ Equazioneé)?u = 0, Annali di Matematica, series II, tome 5, 1871; BEPFIncipii
dell Idrodinamica razionale,Mem. Ac. Sc. Bologne, tomes 1-5, 1871-1874; C. NEUMANN,
Untersuchungen Uber das Logarithmische und Newton’'sche Potdrdigzig, 1877; Fr. NEUMANN,
Potential und Kugelfunctionemdited by C. Neumann, Leipz. 1887; STEKLOFF, C. R. Ac. @&ssim;
Les Méthodes général pour résoudre les problémes fondamentaux deiguBhyathématiquénn. Fac.
Sc., Toulouse, " series, tome II, and another work (in Russian) of shme title, Kharkow; 1901;
Poincaré, passim, etc.
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be discontinuities in the potentials of the double cogeand the derived potential of the
simple covering. The integrals that represent eitherfirst of these functions or the
normal derivative of the second one experience twapalaugmentations that are equal
to 272J when one passes from a point in the neighborhooteottirface on the side of
the positive normal to a point on the surface, and wdr@npasses from the latter to a
point in a neighborhood on the other side. On theraontthe tangential derivatives of
the potential of the simple covering remain continuouse fibrmal derivative of the
potential of the double covering remain likewise continuoweucertain conditions of
continuity on the weightJ, which are, in particular, verified I has first and second
derivatives on the surfac® (

If V is a harmonic function in a domain then, upon denotiegradius vector that
issues from an arbitrary point of the boundary surfatkegointA by r, one has:

1
r ldv _{O, if Aisexterior to the domair

d
L[lv—t -2 gg=y OB ETENOTO
a4 dn rdn V,, if Aisinterior toit.

This formula expresses the value\bat A as a function of its values and those of its
normal derivatives on an arbitrary surface surroundingpihiist, and the fact that it takes
the form of a sum of potentials of simple and double KGongs.

From this, one concludes that a harmonic functiondoraain:

1. isanalytic,i.e., it is developable in a Taylor series about any poitite interior
of the domain.

2. has neither a maximum nor a minimum at an inteaant.

The first of these properties may be further statethénfollowing form: If two
harmonic functiond/; andV, are defined in two domairi3; andD,, that are exterior to

each other, but have a common boundargnd their valueg andv,, as well as their

normal derivativegldv—l ando(lji (both of which are regarded in the same sense), are th
n n

same ork, thenV; andV; are analytic continuations of each other.

The second property may be generalized, in the sensadhanly does a harmonic
function have neither a maximum nor a minimum, bani¢ is given the extreme values
L andL’ of this function on a closed surface then one may fimdigper bound for the
difference of the values that it takes at two given goamt the interior of that surface that
is a definite fraction ofL'-L. One of the consequences of that remark is Harnack’s
theorem, which says:

1. A series whose terms are all positive harmonictiong in a domai, as well as
the derived series, may not be convergent at an intpaot of this domain without
being uniformly convergent and harmonic in any domain thattérior toD.

() See, for example, LiapounofBur les potentials de double couchéarkow, 1897; andSur
certaines questiones qui se rattachent au probléme de Diridolernal de mathématiques, 1898.
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2. A series of harmonic functions that is uniformlyeergent on the boundary of a
domain is, moreover, uniformly convergent and harmoniberentire domain.

2. — The notion of a harmonic function may be extenaedrt arbitrary number of
variables. In the plane, one knows that any harmomctifon is the real part of a
complex function of the imaginary variable varialdes x + iy, and conversely. ¥ is
the harmonic function theN + iW is the complex functionyV is another harmonic
function, which will be called theonjugateof V. One has:

av _ dw
ds dn’

in whichdsis an arbitrary element of arc add is an element of arc that is normal to the
first and positive to the left. From this, one infdrat:

V = I—ds -W = I—ds

A conjugated function is therefore defined up to a constant.
If Vis uniform thenN will be uniform only if:

I—ds 0,

around any bounding contour.

The function that plays the same the same role iplee as X/does in space is log
1/r. It gives rise to potentialsogarithmic potentials) that are analogous to the ones that
we just discussed in nd, and which are harmonic in any region of the plane ithat
exterior to attracting lines or surfaces.

A harmonic function in the plane will be calleggular at infinityif one may find two
constant$vl andC such that this function approaches infinity like:

M Iogl +C.
r

3. Boundary-value problems — One may propose to determine a harmonic function
V either by knowing its values on the boundatyy the knowing the values of its normal

derivative?j—v,or by knowing the values %\l—hv, in which h is a positive quantity.
n n

The first of these problems is ti@richlet problem:the interior problem is when the
entire domain is at a finite distance, and ¢xéerior problem is when it is extended to
infinity in any sense; in the latter case, it islvk@own that the function must be regular
at infinity.

If the Dirichlet problem has a solution then thexenly one, except in the case of the
exterior problem in the plane, because then théition that two functions are regular at
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infinity does not imply that their difference is htliere. One must therefore give one of
the two constant® andC. One may not always give arbitrarily, but one may always
give M; for example, if one imposes the condition tiiat O.

4. — The question concerning harmonic functions whose salusoof the most
interest to hydrodynamics is not the Dirichlet probldmt thesecond boundary-value
problemor Neumann problemn which one is given the values of the normal denvesti
The second boundary-value problem, whose study is muchdeasiced than that of the
Dirichlet problem, is the one that we shall now addrekie the former, it may be
interior or exterior. In the former case, Gauss’s theorem gives a donaif possibility:

J'—dS 0 inspace
)

'[—ds 0 intheplaneg

assuming that the integrals are taken over thefdsbundary points for the domain. By
contrast, if the problem is possible then an aabjtradditive constant must obviously
enter into the solution.

In the case of the exterior problem, there is nssfmlity condition and no arbitrary
additive constant if one is in space because ofegalarity condition. On the contrary,
in the plane the additive constahpersists. As for the constawtin the termM log 1+,
it is determined by Gauss’s theorem:

dv

M=— —d
dn

5. Generalized problems.— One may further determine a functihh by the
condition:
(2 AU =f,

in which f is given function, and by boundary-value condiidhat are similar to the
foregoing.
The problems that are thus posed immediately retiutiee corresponding problems
in harmonic functions.
Indeed, set:
U=-W+YV,

in whichW s a spatial potential:
_ 1 f
W —Em'?dxdydz

One has:
AV =0,
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with
V =U +W,
in which:
v _du, dw
dn dn dn’

An analogous transformation will make not the lediRd side of the partial differential
equation, but the boundary-value condition, disappe

§ 2.—- THE SECOND BOUNDARY-VALUE PROBLEM
EXISTENCE OF THE SOLUTION

6. — In order to establish the existence of the sedmundary-value problem, Lord
Kelvin has indicated a method that is analogouthéoone that Riemann gave for the
Dirichlet problem. Look for the minimum of the agral:

| = m{@_ﬁf {%j {%_Zﬂdxdydz

for the functions/ that satisfy the equation:
(3) K= j j VFdS

in which K is an arbitrary — but non-null — constant; we dertbe given values of the
normal derivatives on the surface by
If one assumes the possibility condition, namely:

(1) j j FdS=0,

thenl is positive for any functiol, and is not annulled if equatio8)(is verified; indeed,
| may be annulled only ¥ is a constant, which will give (by virtue of eqioat(1')):

K=0.

From this, one is led to think thhthas a positive minimum for the functiowsthat
satisfy equationd). If one assumes — and this has not been provedt this minimum
is actually attained for a particular function, ihene may prove, like Lord Kelvin, that
this functionV constitutes a solution of the proposed boundahyevaroblem, up to a
constant factor.

Indeed, if we chang¥ intoV + W in | then it becomek+ il + &l + ... in which
al represents the set of termssinin the development dfin increasing powers af

One must have:



6 CHAPTER |

al=0
for anyW, provided that this function satisfies:

(3) jWFds:o.

However:
51 = ng- ov ow 6V ow av ow
! Ox 0X ay ay "oz oz

jdxdydz
—25[ ”w ds- jHWAdedyd%

It is therefore necessary that the equation:
4 ”W dS= J‘J'J'WAdedydz

be a consequence of equati@n. If we first take a function fow that is null on the

surface and has the same sigi\gseverywhere, moreover, then one sees that one must
have:
AV=0

in this domain. Equatiord) then reduces to its first term. This shows %q\é\must be
n

proportional toF.
Indeed, we shall see that one has:

”UFdS

”W—dS

for any functionU in which A is a well-defined number. It obviously suffices show
that this ratio is the same for two arbitrary fuocs U and U'. Now, for anyU
andU ' one may always find a constamtsuch that whetJ + pU' is substituted folV in
equation(3' katisfies this equation.

It must therefore also satisfy the equation:

”W—dS 0,

which suffices to prove the proposition. One iaffom this that:
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”u&rA—&ﬁ 0,

for any functionU; it is therefore necessary that all of the integratelements are
separately null, namely:
5) F=a9V
dn
Q.E.D.

Conversely, a harmonic functidhthat satisfies equatio®) will satisfy equation3)
for a conveniently-choselg, and of all of the functions that satisfy equati8hi( is the
one that will give a minimum for the integal

Moreover, since it is clear that the previous reasais® the same objections as the
analogous reasons of Riemann, nothing permits us to confiemexistence of the
minimum considered.

7. — In reality, not only is one uncertaia,priori, that an arbitrary problem in the
calculus of variations has a solution, but it is easysee that the case in which the
solution exists must be in no way considered as morea@edhan the contrary case.

For example, consider the integral:

J'w/dx2 +dy?.

If one looks for the minimum of that integral overtak different arcs of the curves
that join two points of the plan& andB then one sees that this minimum exists and is
given by the line segmeAB.

Now look for the minimum of the same integral whers itaken, no longer over all
the arcs of curves joining to B, but only over the ones that admit given tangents at
andB. It is easy to confirm that this minimum is noteetively attained. Indeed, there
exist lines (for example, arcs of conics that are asytiaily flat) that admit the given
tangents aA andB, and whose length differs from that of the stralgia AB by as little
as one likes. This latter length is therefore therddsninimum; however, it does not
correspond to any line that satisfies the conditiorth@fproblem.

We therefore have two problems in the calculus ofatiamns such that the first one
admits a solution, but the second one does not. Nawneg ik no reasom, priori, to pose
one of these problems more often than the other, aadhte second one that will be the
most natural to envision if the unknown function in gneposed integral is involved by
way of not only its first derivatives, but also it€sad derivatives.

In general, if we consider the integral:

[ F Oy Yy )ex,
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and if we are given the valuesyofy,---, ¥ for x = Xy andx = x; then the classical

methods of the calculus of variations may be usedtbthe minimum of the integral ¥
< u—-1. Onthe contrary, if > 1 then the minimum is not effectively attained (exdept
particular values of the givens).

8. — The theory of harmonic functions itself easily pded analogous examples.
Indeed, look for the minimum of the integral:

5] (5] (5 e

The functionV is subject to the double condition thaand its normal derivative take
the given value¢ andV! on the boundary surfa@of T. If such a minimum is attained it
will necessarily correspond to a harmonic functiohereas nothing that verifies both of
the given boundary conditions exists.

The minimum is, moreover, furnished by the harmonic foncti, that takes the
given valuesv on S This is what one will confirm (at least in the case Which this
function has finite derivatives in a neighborhoodptipon considering functions of the
form:

_FV, +A¢
F+A

in which A is a positive constant is an arbitrary function that satisfies the condisio

¢ =V, ?f =V'onS The equation dBis F = 0, in whichF is positive on the interior of

T, and the derivative%E,a—F,a—F are not null ors. One will have:

ox dy 0z

o _9p,  F oV-9) 0 Fj
+ — —_

ox ax F+1  ox Vo ¢)6x F+A

o _9p,  F o9, F
6y 6y F+A4 oy Mo ¢)6y[F+)lj
o _9p,  F oV-9) d( F
0z 62 F+A4 o0z +Vo=9) [F+)lj

One sees that the functidhsatisfies the given boundary conditions for &hgince
Vo — ¢ is unigue orS. Moreover, by virtue of the hypotheses madéeVprandF, the

-9

.V - .
quotlentOT does not exceed a certain linkit from this, it results that the absolute

values of the derivatives dare everywhere less than a littiat is independent of.
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From this, for very small the integral tends towards the quantity:

o0 () 5] (] e

as one sees upon dividing the integral into two partge @lates to the region whefe<

0 and goes to zero with(for anyA) because the volume of integration is infinitesimal;
the other relates to the region in whigel» £ and ¢ has a definite, but arbitrary, value)
the differences:

vV v, 9V _dv, v oV,

ox ox oy o9y 0z 0z

are infinitesimal with.
The desired minimum is therefolg and it is not attained by functions that sattsiy
imposed conditions’),.

§ 3.—- CASE OF THE PLANE

9. — In the plane (Diniloc. cit), the second problem immediately reduces to tisé fi
By virtue of the equation:
av __dw
dn ds

in which W is the conjugate function of the desir¥d one is obviously led to the
following operations:

1. Quadratures to determiVg along the boundary contours.

2. Solution of the first boundary-value problem Yo

3. Derivation ofW and quadrature:

jO('j j—d ——dx j—ds V.

10. — Discussion of the solution= 1. Interior problem.— This pertains to whenever
the possibility condition is verified, namely:

—ds=0,

(1) | ‘3\;

() Quite recently, Hilbert has arrived at a modificatidrihe reasoning of Riemann in such a way as
to prove the existence of the solution for the Diriclpjebblem and, more generally, for an arbitrary
problem of the calculus of variations, by means of obviotesyrictive conditions whose necessity results
from what we just said.
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in which the integral is taken along the set of contofiexterior or interiors.
If the given area has just one contour then this itiond expresses that the

functionW is uniform along this contour, since one has:

Id—vds Ides

From this, the functionV is well defined over the entire area, and the integral

j—dy——dx which is uniform in the same area, gives us tlsree function.

If there aren boundary contours then the integj.r%\ids will not be null on each of
n

them, in general, and consequently the funatiomill have periods on these contours.
However,n — 1 of these periods will disappear (and, as a rethéin™ one, by virtue of
equation {)) after subtracting conveniently chosen logarithnfiinctions from the
functionV +iW, for example, functions of the form:

An log(x + iy — an) h=12 ..n-1),

in which i, ao, ..., an-1 are the names of points that are situated inrttegiors of then
— 1 contours and thé's are real constants. The terms thus introducedifynV only by
a uniform quantity, moreover.

Having taken this precaution, one will know theuesd ofW on the boundaries, but
only up to an additive constant on each of them.

Whenn = 1, the unique constant that is thus added toahees ofwW on the contour
is similarly added to the functiov over the entire area; it has no influence on tiaes
of V.

However, forn > 1 only one of the additive constantsc,, ..., ¢, that correspond to
the different contours of the ar€a, C,, ..., C,, respectively, may be considered to be
insignificant. The othen — 1 constants (or rather, the differences c,, ¢ —¢Cn, ..., Ga
— Cy) influence the functiolV in an essential manner.

On the other hand, in order for the functidmo be uniform in the area considered, it
is necessary that one have:

I—ds 0

on each of the& contours, and the equations thus obtained reducente 1, moreover,
since the functioW is harmonic. The question is therefore one oéaeiningc,, c;, ...,
¢n (upon supposing, = 0, as one has the right to do, from the foregjoin such a way as
to satisfy the conditions that we just wrote.

Let ¢ be the harmonic function that takes the constahtevl on ¢, and the value

zero on each of the — 1 other given contours; I;z}be the integrzil%dstaken along

the contourC;. The addition of the constaatto the values o¥V on the contouC; will
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obviously add the term¢; to W and the terrqyj to.[c_(z—\;\/ds The equations that trep

must satisfy will therefore be of the form:

n-1 )
Gy, =a,, G=1,2,...n),
1

in which thea; are given quantities.
These equations, which reducente- 1 distinct ones, determine the at least when

the determinant +);)7--- )/ is non-null.

n

However, this last hypothesis might not be realizeéltich amounts to saying that one
might never satisfy the equations:

n-1 )
Gy, =a,, (G=1,2,..n1),
1

with values of; that are all non-null.
Indeed, ifg; is always taken between 0 and 1 then the quanigycertainly negative

and the quantity| (i # ) is positive ). In particular, one hgg>0 (=1, 2, ...n- 1),

and, as a consequence, the idertity; =0 (which results from the obvious identigy
i=1
+ @+ ... + = 1), gives:

n-1

Vi 1>>. 'y,

in which the signt,’ denotes a summation over all indidethat are different fronj.
Therefore, the equation that corresponds to thexinpavill not be satisfied ifc; has the
largest absolute value of the quantitigscy, ..., Cr-.

2. Exterior problem.— As before, one subtracts logarithmic terms stnet the
conjugated functioW does not have periodic points on boundary contaum V; one
agrees to determine the functidhin such a way that the constéat(no. 2) is null. With
these conditions, things happen exactly as they fdidthe interior problem: the
function g; will be the harmonic function that is equal to arethe contour of indek
and zero on all of the other contours, and is i@gat infinity with a constari¥l equal to
zero.

(6) The quantitieg/} will not have to be null i€, C,, ..., C,1 denote the interior contours; indeed, for

this to be true, it is necessary thigh / dnbe everywhere null o@;. However, in this case the functign
and the function that equals 0 (for j) or 1 (fori =j) in all of the interior ofC; will be (no.1) analytic
continuations of each other agdwill be constant, which is absurd.
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§ 4.—- CASE OF SPACE — APPLICATION OF NEUMANN'S METHOD

11. — The question in the case of space is not as simpleras in the planar case.
Therefore, it will not suffice to solve the Dirichlgtoblem by an arbitrary method in
order to solve the second boundary-value problem.

By contrast, one may deduce this solution from the solufahe Dirichlet problem
by the Neumann methodndeed, one knows that the latter gives the desiredicolin
the form of a potential of two sheets.

Having said this, suppose that we are concerned with theaproblem, and take a
potential of one sheet with densiEf27z in which the normal is positive towards the
interior of the domain (i.e., to the exterior of tgeven boundary surfac&), and F
denotes the given value of the normal derivativet Wée that potential and l&t be its
value on the surface. Then, determine a two-sheetecdtdtthat is defined in the
interior of S and takes the valuéson the points that infinitely close &®and situated in
the interior. LetV'be that potential, which is obtained by Neumann’s method, a
whose normal derivative is continuous upon crosSing

The desired function is:

V=W-W".

Indeed, this function, being the difference of two potdstiis harmonic in the
domain considered. Moreover, its normal derivative, whaken on the boundary
surface, has the value:

dv _dw dwW' _dW dU _ F _
—= - = - =2m— =F.
dn dn dn dn dn 2

In the case of the interior problem, there is a pdggilbondition:
[[Fds=0.

Moreover, one follows exactly the same path astf@ exterior problem. The
possibility condition expresses the idea that tbestantC that must be added in the
Neumann method to the two-sheeted potential irDihiehlet problem will be null. The
difference of the normal derivatives is calcula&sdn the preceding case.

12. — Nevertheless, two types of objections may bsedaagainst the use of the
Neumann method:

1. Neumann proved the legitimacy of his method in ¢hse of a convex surface
that is not doubly starlike. Poincar® lifted that restriction by proving the convergenc
of Neumann’s developments in the most extended case

2. Itis not obvious that the function so obtainedafe/has a normal derivative, and
the study of the existence conditions for that\@give is quite delicate (see Liapounoff,
Journal de Mathematiques pures et appliquEes3).

(') Acta Mathematicat, 20; 1896.
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The sufficient conditions that were obtained in tregard by Liapounoff are of a
relatively complicated form, and there is nothing tp that these conditions are satisfied
by the successive functions that are formed in the Neumatimod.

This second objection may be likewise lifted. Thankshe work of Stekloff and
Korn, we shall show, as Stekloff did in his previoushegdiworks, that it is sufficient to
establish the legitimacy of the Neumann method as onéub#ipistudies it in order to
apply it to the problem we are concerned with.

Furthermore, as we shall see, the Neumann method thlisdagmounts to the
method that was given by Robin to find an electric distidouin equilibrium.

We let M denote an arbitrary definite point, and tetdenote its distance from a
variable poinM’ of the surface. (All of the quantities that relatéhte latter point will be
indicated by accented letters.) This is why wedketenote an element of the surfége
that surrounds the point’when we integrate over all positions of that pointtbe
surface, and lein’ denote a normal elementMt whendn denotes a normal element at
M, and letV' denote the value of an arbitrary functidmt M " .

Moreover, an arbitrary functio may have different expressions depending on
whether one is exterior or interior to S; accordinghe usage, the expression will be
denoted by, in the former case ang in the latter. This is why we have to distinguish

e \Y/ dv. . .
the two normal derlvatlve%—' andd—e at a point of the surface for a potential of one
n n
sheet, for example.
In addition, we consider the integral:

1

”,o’d—r:ds’ = ”%cos(r, n)ds,

(o is the density)- in other words, the value %#\ithat one obtains upon differentiating
n

the” sign, when this differentiation is legitimate, antlen one knows the mean of the

two derive\tives,OM and% )
dn dn

We denote this latter quantity by the nota&%g/—j.
n

Let o be a continuous function on the surfé§eand consider the sequence of
guantities:
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ql

P, —%Tﬂpad—éds’,

(6) 0, :%T”p;i—;dsz
ql

Py —%Tﬂp’kd—;ds’,

which are precisely the quantities that appear in Rolethod f). These quantities
may be expressed with the aid of one-sheeted potentmleed, if one sets:

Vlz—%T”pT")dS',
__ () oS
(7) V2 = 2n”(dnlj r’

1 (dV,) dS
e G

then equations6) will obviously give:

avi)_ dv, ) _ avi ) _
dan P dn P>, dn Pk -
From known properties of the one-sheeted potentialef Hie integrals in®) and {7)
will exist and will be continuous when the functipnpossesses this property.

On the other hand, sind& is harmonic in the interior of our domain and possesse
normal derivatives on the boundary, one has:

1
o190 1avy | ds
Vk__g-[.”vd Ty

] H

n r dn r

butV, is a one-sheeted potential with densitzv1L

[%j One therefore has:
T

dn

() Nevertheless, in the latter the functignis taken in such a way tthpodS;t 0,whereas, on the
contrary, we shall suppose that the same integraillis n
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e

If we substitute this in the preceding equation thenetha-tiﬂ—l(%J ds will
2’ r\ dn

disappear from the left-hand side, and we will get:

1

: d-
1 (dVy)dS L iy ot e
L [d_r:jT:Vk”:_E”de_nr'ds'

However, these equations are precisely the onésotimwrites in Neumann’s method,
which apply when one starts with the function:

7) V= [[Poas.

Nevertheless, we thus obtain the successive Neurharctions only on the same
surface. However, it is easy to deduce the exjpmredsr these same functions in the
interior and exterior domains. Indeed, gtbe the two-sheeted potential of weight

1 , . . . .
-—V,,, i.e., one of the desired functions. On the serfggince the aforementioned

2ir
two-sheeted potential has the valtyon that surface itself), one will have:

Vki = Vi + Vi,

and this equation is true in the entire interiomain, moreover. Similarly, one has:
Vke = Vk = Vi1,

in the exterior domain.

It results from this that the potentialg andw. admit normal derivatives, since thie
admit them. Moreover, if one takes the valueshaf hormal derivatives o¥y into

account then one gets:
dvy, _dv, _(dV,) (dV,
dn dn dn dn )

We have therefore proved thatadmits normal derivatives on either sideSpand that
these normal derivatives are equal to each other.

13. — To extend the same conclusion to the sum oféhnes formed from the as
indicated by Neumann, it is necessary to invokeh Wwiapounoff, two lemmas, the first
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n

relates to the way in which the normal derivatives tentheir limits in a neighborhood
of that surface. One supposes that the surfate everywhere regular (at least in a
neighborhood of the points considered), and, in particula

1. that it admit a definite tangent plane at each point;

2. that there exist a sufficiently small lendbhsuch that a parallel to the normal at
an arbitrary point o6 does not cu§ in two points in the interior of the sphere thas ha
this point for its center and for its radius;

3. that planes that are tangent to two of its points @&odted a distancefrom each
other form an angle less th&m, whereK denotes a number that one may assign once
and for all ).

of which relates to mode of continuity[(%xj on the surface, and the second of which

13 (cont.). — It easily results from the foregoing tleaich of these tangent planes
makes an angle less th&m (K denotes a constant) with the chord that joins the tw

points (9).

14. — With these conditions, we Igtbe the one-sheeted potential of dengithat is
defined on the surfacg and look for the order of the magnitude of the diffiese

between the values tk{agjxj takes at two neighboring point$ andM; of Sas a function
n

of the distanc®M; = 4 namely, the quantity:

e

in whichr, r; denote the distances from the poiktsM; to an arbitrary poirtl’ of the
surface, which is the center of the elemdSifand ¢, ¢4 denote the angles
thatM M andM M, make with the normalsin andM;n atM andM; (fig. 1).

We divideS into two subsets, one of whichs— consists of points whose distance to
M is less thapd (1 is a definite number that is larger than 1), dedther of which 5
— consists of the rest &

() Liapounoff supposed only that this angle is less #rdnit is easy to adapt the reasoning to what
follows from this new hypothesis.

(*% We letK denote any of various positive numbers that are dependehe surface, but
independent of the choice of poifMs M3, M’ and the form of the function.
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U

In the first subset the integj‘a@ww will be less
r

thanKAId—S(upon denoting the maximum ¢ |on S by
r

A), a quantity that, by means of the various hypotheses
that we have made, will be less tH&Ad. A completely

- . 'co .
similar argument applies j'do—zswl &',
rl

. rr T
In the subsets, the ratlosg,?;are less thany — 1, and the ratie falls
rl

between H and H

H+1 H-1
thanKr (see nol13(cont.)), and, as a consequence, the aviyldVl, is less tharK g, the
same is true for | cag— cosyx |, by virtue of the inequalities:

. On the other hand, the aniyléM M, or its supplement, is less

1cospy—cosy | <= ¢a | < (Mn,M,n)+(MM,MM, ).

On the other hand, the inequalityj |-r | < d easily shows th*ﬂl;—iz
r>or

. K

IS less thanTé,
r

and, as a consequence, that the quantity:

{2222 ol -3y )

r r 1 r

K
seems to be less thaﬂf—a‘.
r

Now, the integraj.[g, when taken over the portion of the surf&fer whichr >
r

R, is less thaik | logK |.

Therefore, we finally conclude that the differeromesidered is less thadAd log o
We remark that the upper bound so obtained doessgmime thap is continuous; it
suffices that this function be continuous.

14 (cont.).— In the second case, et be a neighboring point td that is situated on
a definite side o8 - for example, the interior — in such a manner Mht; is not tangent
to the surface, and makes an angle that is gréstera definite limit with it; let, be the
distance fromM; to an arbitrary point1’ of S which, under these conditions, has a ratio
with MM, that remains greater than a definite limit; §etbe the angle thi M, makes

with the normal Mn at M; let ¢, ¢» be the angles th&t™M,MM,make with
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normalM’n'at M (fig. 2). We seek to evaluate the difference that existavden the
integralﬂ&fw2 dS and the analogous integﬁl’[)ifgw dS taken oveM.
r2

This time, in addition to the preceding hypothebes
we made on the form of the surfaBe we will make
another one on the values of the functmnve suppose
that the value gb atM ' differs from the valugy, that this
function takes at the poi¥l by a quantity that is less
thanLr?, if we let a denote a definite exponent (which is
obviously equal to 1 ifM is arbitrary andr is not
constant), and ldt denote a constant. Fig. 2

) co .
We therefore remark that the inte @Mds IS
r
cosg,
r

equal to Zgy and that the integraj j yor dSis equal to 2, and we write the

desired difference in the form:
r r,
co , cosy ,
u=npor—?”ds—npo

cosyp cos¢2
=] - po( > jds

cos¢2jds

”- (coa// cosp cosy, -

I’2

We know the quantitls. In order to evaluatke, we once more decompoSénto two
partss ands, that are formed from points whose distance topthiaet M is less than or
greater thamo, respectively, where this tintedenotes the distan®¢M,, andy denotes
a fixed number (greater than 1).

In s, the two integrals:

[Jto-p)Stas  and (o= o) Fzas.

are less thaKL &, by virtue of the hypothesis that was madepbn p, and the fact that

r? has a finite ratio with.
In 5, it will suffice to remark that:

| cosg - cosgs| <2 ¢~ g2 <IK sin@—¢o) | <.
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1 1
2 2

and tha{
r r,

Ko . .
<—35, in order to see that the integral:
r

I, 7 - 0| 22 - Js

r

ds’
=

is less tharKLJ”SD d% : e

3 However, the integrﬂ
r

which is taken over a portion of

the surface for which> R, is less tha%. Hence), < KL

As for I3, it is less thaiKAdin s, as one sees immediately upon remarking that {{cos
— cos¢ | and | cogk — cosg, | are less thaKdr. In s, one remarks thatcosy —r, cos
Y» andr cos¢@ —r, cos¢@, are equal tacosf and J cosd', if we let #andd’ be the angles

thatMM, makes with the normals bt andM ' — angles whose difference is less tikan

osw—z cog - coswz—z co®, will therefore be sum of two terms:
r

I

The quantit\f

rcogy —r, cogy, —  cog—r, cas, ) I(cosd— co¥ |
- 2

I ry

and

r(cosy - cos¢)(ri3 —isj

r

each of which is less the;fnzé. The integrals (which is taken ovesy) is therefore less
r

ds'

thanKAaj Lo_z’ i.e., less thaKkAdlog J.
r

Finally, this implies that the desired differensddss thaikKAd" for all @ < 1 and less
thanK(A +L) dlog dwhena = 1.

Nevertheless, our reasoning assumes that the Pgiapproache#! in such a way
that the angleMiM, with the surface is not infinitesimal. Howevelr,ig easy for this
condition to be satisfied. When it is not realizeéduffices to consider a poiM; that is
situated ors and tends towardsl along withM,, in such a manner that the aniylé/.
makes with the surface is always greater than iaigefimit. One will then compare the

co?// ds andj j COSZI/IZ dSto the analogous integrjﬁ{lcoszt‘[/l dSthat

r r, r,
relates toM; by virtue of what we just proved and what we pryasly established (no.
13), we have upper bounds for the two differences thiotained that are of the same
form as the ones that we just indicated for thes gasvhichMM, makes a finite angle
with the surface. The conclusion is therefore cletety general.

two integ raI# J'
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15. — We have a further remark to make concerning the natenalative of the two-
sheeted potential. The previously-imposed conditions ofutieionr do not permit us
to conclude that this derivative has a limit on the s@rfar even that it is finite; however,
the upper bound that we shall find for this derivative, Whincreases indefinitely as one
approaches the surface, will suffice for the reshefreasoning that follows.

We will obtain this upper limit upon remarking that the idetive of the

cosp

expressior—=in an arbitrary direction (wheneis the distance from the variable point
r

M to an arbitrary, but definite, point of the surfdte, and ¢ is the angle

betweerMM "and the normal aM ") is less thanKTA. The derivative of the two-sheeted
r
potential will therefore be less thm”d—f(whereA is the maximum of p|). Now, it
r

is easy to insure that this expression is Iess%péﬁor example, by comparing it to the

analogous integral that is taken upon replacing the surfabats/tangent plane) i is
the distance from the poiM to the surface.

16. — Having said this, recall the functidfy . Suppose that we have proved that it
tends to a constant (as one is led to do in the Neumann method), withdifierence
being uniformly less than thé' term of a geometric progression of ratio We first seek

to deduce a limit fop, = [%j from this assumption.
n

To that effect, ifM is a point of the surface amd; is a point taken in the interior on
the normal aM at a distance from the pointM then we apply the inequalities that we
just found in no14 and14 (cont.) to the functiopk. If R¢ denotes the maximum opj |
on Sthen we first see that the difference of the twtues ofo1 corresponding to two
points ofSthat are situated at a distaretérom each other is less th&Rd“ (a is less

e dv,
than 1, but also as small as one pleases). Frontttlaesults that the value efd"—*zat M,
n

satisfies the inequality:

(9) (%j _(pk+2 _pk+l) < K(Rk + Rk+1)5a-

dn

Now, Vi+2 may be put into the form of a two-sheeted potentiadleéd, we have seen that
the two-sheeted weigh hasVi + Vi« for interior potential. Therefore, up to a constant
(once one is given the convergence hypotheseg)fork will be a two-sheeted potential
whose weight is:

Wk = Vik—= Vike1 + Vkio = Viez + ...
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and is, as a consequence, less (B&h(C is a definite constant). The inequality that we
just found for the normal derivative of the two-sheetetdptial thus permits us to put the
inequality ©) into the form:

.,  CA*
| Psz = Psa € K((Rk +R.)0% + 5 j;

we se® = A%, 1* = X', and this becomes}:

(10) | Pis2 = Prn |< (K(Rk + Rk+1) + C)/]’k-

In particular, one will have:
Rz < Ry +A“[K(R +R,;) +Cl.

One will obtain an upper bound f&: by replacing the successive inequalities thus
obtained from the corresponding inequalities. @ilethen haveR«1 > Ry, and, as a
consequence:

Rk+2 < Rk+1 + A'k (ZKRkﬂ + C),

or.

C C
+— < (L+2KA™ +—).
Rea 50 ( )R 2K)

This inequality shows us thaf +%converges like an infinite product, and, as a

consequencdy is a finite quantity.
It results from the inequalitylQ) that the series(p,,, — o, Fonverges uniformly in

the manner of a geometric progression. Therefaregach point of the surface the
function o« tends to a limijp that (from the defining equation8)) satisfies the equation:

1
1,0 e
'0_277”'0 dn

If the integraﬂ p,dSis different from zero then the functignis not identically zero

(since one haﬁpds :”,oodS). It is the distribution of an electric chargendity in

equilibrium (the surfaces is that of a conductor that is isolated and fremmf all
influence), and the method by which it was justagi®d is due to Robin.

(Y K always denotes any of various positive numbers whiplertte only on the nature of the surface
S, andC will always denote any of various positive numbers tlegtend only or§ and the form of the
function p.



22 CHAPTER |

On the contrary, if”pdS:”podS:O then the functionp is identically null.
Indeed, this amounts to saying that an electriegehdistribution that is in equilibrium
with itself and has a null total quantity is in theutral state throughout; the proof of this
proposition is well known.

| | is therefore less th&@n™ (in which C denotes a constant). From nd, it results
that the difference of the values @f at two pointsM, M; of the surface is less

thanCA' EIMMla. By virtue of no.14 (cont.), it then results that one has the inetyali

dv, o
(11) ‘(d_rl;lj _(pk _pk—l) <CA* DMMz 1
M,

and finally, from what we saw in n@2, we have the inequality:

(%j - (pk - pk—z)

<CA* MM, .
dn

(12

This latter inequality is true, moreover, whettieg pointM is interior to the surface
(v« = vx) or exterior ¥k = V). It proves that the conclusion that relates r@rm
derivatives of the functiong extends to the Neumann series that has thesadosdbr

its terms, since the coefficient MMl”in the left-hand side is the general term of an
absolutely convergent series; as a consequergiges us the solution to the problem.
If”,oodszﬂpd8¢0 then we must occupy ourselves with the solutionttuf

exterior hydrodynamic problem, and, as a consequence, veé econsider that the series
by which Neumann solved the Dirichlet problemingerior. Now, this derivative is
alternating, in such a way that this time it willfice to establish inequalities that are
analogous to1(1) and (12) upon replacingVk, Vk, & by Vk Vi1, Vk = Vk-1, &k — -1
Now, one will obtain parallel inequalities upon lapng o« by o — o1 in the reasoning
that led up to formulasl@) and (L2), which is less tha@A™under either hypothesis

(that”pOdSis or is not null).

The conclusion that we demanded is thus establishady case. It lets us know the
solution of the Neumann problem, with taken to be equal to the given vallkesf the
normal derivative, and the functidn, which is defined by equatidi’) , is none other

than the potentidlv of no.11, up to sign.

17. — If, instead of being given the values of a hamim functionV on the bounding
surfaceS of a volume exactly, one is given only an uppeurigb for the modulus o¥
then one may, as we recalled above, assign upperdbao the modulus of and its
derivatives at an arbitrary interior point.
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Similarly, one may propose to find analogous inequaliesn one is given not only

an upper bound to/|, but also an upper bound ’r%\e/ on the surface. Here, the issue

n
might not be that of obtaining an upper bound #gr 4t a given point, sinc¥ is
determined only up to a constant. One may only asskgyruad to the difference of the
values ofV at two given arbitrary interior points. The precedinghodtpermits to arrive
at this easily ).

Indeed, letar be an upper bound for the modulus of:

F:d—v: |F|<a.
dn

The potentialV that was defined above:

—vl:W:H%ds,

will be such that one will have:
| W] <Ka,

in whichK is a constant that depends only upon the form of thasrfFrom this, if\\V]
represents the oscillation that is possibleVibione deduces that:

[W] < 2Ka.

As a result, in the Neumann method, one determines:

Va, a two-sheeted potential of weight zﬂ :

T
V.
’ 21T
V.
\/i 1 . “ “ I__l 1
21T

and, from Neumann, one has, witlbeing a positive constant that is less than one:

[V2] <A W],
[Va] <A [V,
[Vi] <A [Via].
From this, one deduces:
[Visg] < 24 Ka

(*?) POINCARE. -Sur les équations de la Physique Matématique, Rendic. del Ciraimatico di
Palermo,tome 8, pp. 114-115; 1894.
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[V] = [W+ ZVi] [ [W] + Z[V] < ﬁz Ka,

or

[V] < ha,
in whichh is a definite constant.

18. - Direct search for inequalities.— Up to a certain point, one may obtain directly
analogous conclusions without passing to the Neumann meéthedtploying some of
the means by which Poincar€)(established the legitimacy of that method, and first
making use of the inequality of Schwartz.

One knows that this inequality results from consitgthe integral:

H = S[(As + AB1)* + (A2 + ABp)® + ... +(A, + ABy)* ] do,

in which S is the symbol for a simple or multiple integratiaken over the multiplicity
o, anddo is the differential element of;, A1, A, ..., By, By, ... are well-defined
functions, and is an arbitrary constant. The integral can be emitt

(13 H=1+2JK + A%,
upon setting:
| =S(A’ + A +--)do,
K =3(AB, +AB, +-)do,
J=S(B/ +B; +--)do.

Since the quadratic formig) is positive for anyl one must have:
(14 A=1J-K?*>0,

and this is what constitutes the Schwartz inequalit
The minimum oH asA varies is attained wheh= - K/J and has the value:

Finally, the inequality 14) gives an expression fdy itself in the form of a multiple
integral:

A :%s S (AB| - A Bi)z}dada',
i

in which the elementdo, do’ describe the multiplicityo independently of each other,
andA, B are the values of the functioAsB at a point ofio”.

(*® Acta Math.loc. cit.
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We apply the preceding inequality to the case in whitha closed surfacg LetV
be a harmonic function in the interior &f First consider the surface integral:

H:”(\/+/1)2d8

It results from the foregoing that the minimumtbét integral isA/S if we let A
denote the quadruple integral:

a==[[[fv-v)dse.

In the second, consider the volume integral:

o ={1(5) <[5 +(5%) pr

(in whichdr is the volume elementix dy dz, taken over the domaid that is bounded
by S
SinceV is harmonic, one has:

G :_”N”)%ds’

no matter what the constahtand, as a consequence, by virtue of the ineguaH):

G? <HJ,

1= [f[ & os

Upon givingA the value that corresponds to the minimurklpit becomes:

where:

G* _J
1 — <=,
3 AR

in which Sdenotes the total extent of the given surface.
If one is given the values alV/dn on that surface thethe right-hand side of the
preceding inequality is known.

19. — However, Poincaré has established a secondialigq between the two
guantitiesG and A: he has shown thdor any functionV (harmonic or notpne may
assign an upper bound to the ratiéG that depends only on the form of the surface.
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First suppose that it is convex and that there existgpprr boungp to the ratiol /
cos(, n), in whichl is the length of a chord of this surface aha) is the angle that this
chord makes with the normal to one of its extrersitie

In addition, letL be the maximum of the length In the quadruple integr@ one
may expressS’ by means of the spherical angle:

_ dS'cos(,n)

|2 ’

in which one seed' from a point ofdS By hypothesis, one has:

A<%2j”j(v -V")cos(, n)dSdw.

| will exhibit the successive integrations upopsosing that one first performs them
relative to the elemerdtS of S and then relative to the elemeatw of the spheres on
which one successively makes the different sphlergaresentations of centelS In
addition, if we replac®/ —V') by a linear integral that is taken alolngpen one has:

A<—” deo| [ cost, n)dSD —dl}

However, from the Schwarz inequality, one may &vrit

(e a() 35

It therefore results that:

pTZL [[dao[.cos(, mas] K‘z_\;jz +(‘z_\;j2 +@9 }dl

or, since co$( n) dSis the projection odS on a plane that is perpendicular to the

a2 (2] o2 o

The triple integral is none other th@&n(for any imaginable elemedtd).
We therefore have:

A
16 =<,
(16) G
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A= 'O;L ”Zdw: 2mp°L.

20. — We seek to pass from a domain bounded by a surfacesdtiafies the
conditions of the preceding section to a domain thadbaunded by another arbitrary
surface. In general, if the connection remains the same if we are always dealing
with a unique simply connected surface, then we may estalali correspondence
between the pointx(y, 2 and (X,y',Z) of the two domains such that the coordinates of

the second are continuous with respect to the fingir first-order derivatives are finite
and continuous on the boundary surface, and thailmdf the functional determinant:
D(X” yI’ ZI)
D(x,y,2)

remains constantly greater than a given positiantjty.
| say that under these conditions, the ratio:

(A'andG' are quantities that are analogous 4o G) has a well-defined positive
maximum. This will obviously suffice for one tofém a further inequality from the
inequality of the preceding section:

—<A.
GI
For the proof, we set:

[avjz v’ [avjz_ oV oV oV

[ T i T N _¢ _———

0x oy 0z ox 0y o0z
dx'? +dy'? + dz'? = f(dx, dy,d2).

The formsf and ¢ have the square of the functional determinant thoeir
discriminants. These two forms represent ellipsaichose axes fall between well-
defined limits. One therefore knows a lower botordhe quantity:

() (3] (5

@ L ox oy 0z

[avjz vy +[avjz (avjz vy +[avjz |
ox’ oy' 0z ox’ oy' 0z
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The ratio((jj—sc also has a minimum. Therefore, the same is trugG—forOn the other

!

hand,((jj—sc has a given minimum with respect to the sectiond@®tilipsoidf = 1, and the

~

sphere of radius 1. One therefore has precisely a minifnr%.

21.— One may proceed in a different fashion and generddzenethod of proof in
the preceding section by using curvilinear chords with 4 pettensiinstead of rectilinear
chords, such that there is always one and only oneeaf that passes between any two

points of the surface; the lengthand ratic;coslT will have upper boundk and p.
,n

Finally, one may distribute them in families thapdnd on each of the two parameters
b, and are such, thatsfdenotes the arc described on an arbitrary chotieofamily then
the modulus of:

D(x,y.2)

D(a,b,s)’

remains greater than a well-defined number. Utdese conditions, the reasoning of no.
19 remains valid.

22.— Now combine the inequality §) with the previously obtained inequalit¥5)
(no.19); it becomes:

)
S

2
A<AJ.

These are the inequalities that we had in mind.
One may remark that these inequalities give aruppund to the integral:

. m(aq: oV , 0PV 0P avj
- 0X 0Xx ay dy 0z 0z

(in which one designs a given arbitrary functionddy since one has — as always, from
the Schwarz inequality:

<ofl () () () pr
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235 () (2

23. — The inequalities that we arrive at with the aidhaf Neumann method play the
same role relative to the second boundary-value problerthe propositions that we
recalled in nol play relative to the Dirichlet problem; however, treg a long way
from providing limits for the oscillation of the desiréainction and the moduli of its
derivatives that are as precise as in the latter.ekample, in the Neumann method they
may constitute onhalternate methods that are similar to the ones that we usebein t
solution of the Dirichlet problem. We know that thepasts a number that the ratio of
the oscillation oV to the maximum modulus @V / dn remains less than; however, the
existence itself of this number is the only thing we knowhat regard.

This absence of precise givens on the coefficientweajust spoke of is one of the
principal lacunae in our knowledge of the second boundary-pahdem.

§ 5. — THE FUNCTIONS OF Fr. NEUMANN AND KLEIN.

24. — The considerations that were discussed in § 4 priweelxistence of a solution,
but they did not provide any simple expression for it.

We shall confirm that one may write such expressibase knows how to construct
functions that are analogous to the Green functi@msthe second boundary-value
problem, since one knows the essential role they plathe theory of the Dirichlet
problem.

Like the Green functions, the functigri$that we consider will be harmonic in the

given domain, except for a poiAf which is chosen arbitrarily, and at which they become
infinite (in the three-dimensional case) like the iseeof the quantity = AM.

Such functions will not satisfy equatioh) (of no.1 when one is concerned with an
interior point. This equation is true only if one adials surface of a small sphexehat
hasA for its center to the given boundary surf&eNow, when the radius of this sphere

grows infinitely small the integrﬂz%dz goes to 4 since ja then reduces to its
n

principal term 1. On S equation {) of no. 4 must therefore be replaced by the
following formula:

a7 (R

1. Franz Neumann's function- Exterior problem. Lety} be a function of the
coordinates of the poirll that is harmonic in the given normal domain except fer th
point A, has a null normal derivative on the surface, and besomimite atA like 1k,
i.e., such thaya — 1/r remains harmonic &. The determination of such a function is
obviously a particular case of the second boundary-valoblgmm. However, it will
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suffice to solve this same problem in the general c#is¥.is a harmonic function that
satisfies the conditions of the problenm other words, such thdi/dn=F onS- it will
suffice to consideY and y}' as in the theory of Green functions in order to obtai

) v, = [k Fas

Interior problem.— By virtue of equationl(7), one may no longer take:

on the surface; we shall only assume that thisvdeve is constant. Evidently, one will
therefore have:
M
17) s _ 4
dn S

Upon once more applying Green’s theorem to thetfansV andy)', this time we

get:
1

V, = —%T”yx Fds- [[vds

However, we seekVh only up to an additive constant, i.e., we seek the
differencev/, —V,,in whichA'is an arbitrary point of origin. We may thereforeglect
the complementary term, which is the same for ails.

25. — 2" Klein function.— In the case of the interior problem, the funcpd of Fr.

Neumann is itself defined only up to an additivengtant. This fact constitutes an
inconvenience from several standpoints. This ig,wimder these conditions, it does not

seem possible to establish a symmetry propertghferfunctiory) that is analogous to
the well-known relation:

(18) Op = Oy

that applies to the case of the classical Greectitum

In order to obviate this inconvenience, Klei) (was led to form a function that
possesses not just one, but two, poles of oppaegiies. Such a function satisfies
equation {) of no.4. Nothing prevents its normal derivative on theface from being
everywhere null. The Klein function is thereforefided by this condition and by the
following ones:

1. That it be harmonic in the given domain, exdeptwo pointsA andA,.

(Y In Pockels:Uber die partielle Differentialgleichundgu + K?u = 0 und deren Auftreten in der
Mathematischen Physikgipzig, 1891.
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2. That it be such, that its difference witlr It the neighborhood oA remains
harmonic.

3. That its difference with—E = —ﬁ remains harmonic in a neighborhood?gf
r

4. Finally, that it be annulled at a given pdif.
The value of such a function at a pdihiof the domain may be written:

MM
[ an ° -

In reality, this is the increase that any functibat satisfies all of the same conditions
except the last one experiences upon going fro¥, to M.

The function',ﬁ"pt"", like the function of Fr. Neumann, permits us ¢dve the problem

that we posed, since one has, from a theorem @rGre
Lifrmog ds, =v, -v
ZT'” A T M SM —Va A"

The arbitrary constant that gets added to the \afid& is -V, here.

On the other hand, sinE¢;" represents the increase in a function betweendhmtsp

Ay

A, andA; one may write:
MiM; — MM, M,Mg
Fan” =Tan " +TA%

and, in particular:
MM, _ _p M,M,;
Fan® = Tai

One may perform the same operations on the lowekees:

MM, — MM, MM,
rALAS _rA1A2 +rAzAs !

as one sees immediately upon referring to the itiefinof the symbol™. In particular:

MM, — _ MM,
rA1A2 - rA2A1 )

| say that one has, in addition, that:
(19 Can =T,

i.e., the property that is analogous to the coordmg property of Green functions.
Indeed, if we set, to abbreviate:

— MM,
r(M) - rAiAZ
I —rrAA
r(M) - erMz !
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then one has, from Green’s theorem:

II. [rd——r—jds a{r e —r % ).

However, the left-hand side is null, so the inetjyad therefore proved.

26. — As we shall see, it is not at all necessary iandon the function of Fr.
Neumann in order to preserve the property of symmett suffices to complete its
definition.

Indeed, the functiop,' is defined only up to an additive constant thatsdeat depend

upon the pointM but is a function of the poirh. We shall confirm that it suffices to
conveniently determine the additive quantity in gjiee for the Neumann function to
possess the desired property. First of all, ong ewsily pass from the Neumann
function to the Klein function.

Indeed, one has:
1M2 _

_yA1 _yA2 yA12+y

M21

because the right-hand side possesses the prepésdiecharacterize the symbol:

MM,
rAiA2 .

It results from this that the Neumann symbol hapreperty that is completely
analogous to the one expresses by equati®)s (19), provided that one conveniently
determines the arbitrary parameter — a functiothefpointA — that figures in the latter.
Indeed, from the preceding relation, equatib9) fnay be written:

My _ My _ M Moy — A _ A P Ao
V' =Va, TV TV =V, ~ Vi, TV T

from which, upon setting:
(20) _VM =¢(AM),
we obtain:
(A1, M1) = @(A1, Mp) = @(Az, M1) + §(A2, M2) = 0

a functional relationship that the functignmust satisfy, and whose general solution is,
as one easily verifies:

HA M) = YA) — yr(M).

By virtue of equation40), it is clear, moreover, that the functioggsand ¢4 must be
identical.
From this, one may choose the functigrguch that the functiog is always null; it

suffices to replacg) with ), =y —yw(A).
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Furthermore, the functiogfA) may be determined directly in such a manner as to
nullify ¢@. Indeed, | say that in order to do this it suffit@galculate the constagiA) at
each pointA by the condition:

[Lytds, = [[1vk -w(Alds,
= [[.yids, -sp(A) =K,
in whichK is a constant that is chosen once and for allakuitrarily (for, example, one

may takeK = 0).
Indeed, one will then have:

Iy - s, <o,

® dn

and, as a consequence, by applying Green’s thetoetime functiong’,” andy;,” one
obtains the desired relation:

(21) Va =Ve
Conversely, if this relation is true for all paokpoints A, B) then one has:
(22 [Jrias, =K,

in whichK is a constant that is independeniof
27. — One knows that the use of the Green functiomipe us to solve not only the
Dirichlet problem, but also the generalized probtéat relates to the equation:
2) AV =1(x,y, 3,
in whichf is a given function, at every point of the domanvisionedD.

Parallel remarks apply to the present questionpp8se we are given, on the one
hand, equation?j, and, on the other, the condition on the surface:

dv _

(23 an

F.

Condition @) of no.4 for the interior problem is then replaced by:

(24) j j jD f(x,y,2)dr + j LFds: 0.
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By applying Green’s theorem to the functignand the Neumann functigrf this
becomes:
47N, +”_|'D yn fdr +”Sy,“(' FdS

(29 —c”vas: 0,

in whichC is zero for the exterior problem and (from equatid7')) the constanf'sﬁ for

the interior problem. In the two cases, the t@[ﬁ‘}\/ds may be ignored, since it is either
null or constant.

§ 6. — CASE OF THE SPHEREYY

28. — Now that we have established the existence efstilution of the second
boundary-value problem and shown how its expresssmnces to the search for the
function of Fr. Neumann, it remains for us to irad& the cases in which this solution
may be obtained effectively, for example, ones Imclv the Neumann function is known.
However, these cases are very few in number.

A general method by which one may propose to egptiee desired solution consists
of representing it by a series of the form:

AgDo + APy + ... +A D + ...
in which the ®’s are well-defined harmonic functions and tlés are arbitrary

coefficients. It is clear that one will obtain sug representation if one may put the given
values of the normal derivative into the form:

A

do, do, do
+ +. 4 +...
dn A dn An dn

This is what one often encounters upon takingd®feto be thefundamental functions
that were introduced by Poincaré, Le Roy, Stekletf,

28 — This method immediately leads to the solutionhie case of the sphere. One
knows that any given function on that surface mayléveloped into a series of spherical
functions, provided that it is continuous and $&tssthe Dirichlet conditions on any great
circle.

Having said this, first suppose that that we a@&idg with the interior problem. We
must find the functio, when we knowdV/dn, that satisfies the relation:

() Dini, loc. cit.
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(2) ”Z—\;ds:o.

Suppose that we are givern the form of a series of spherical polynomials:

V=Yo+pYi+ Yo+ ...
From this, one deduces that:

(26) (i—vz—(Yl+2RY2+~--+mR‘“‘1Ym+~-).
n

It therefore suffices to develap/dn in a series of Laplace functions:
P +Dy+ ..+ Dy + .

There must not be ¥, term; this is precisely the possibility conditiol) for the
problem. We will only have to suppose:

(6}
Y, =- 2_1.
mk

If the functiondV/dn does not satisfy the Dirichlet conditions, so it magt be
developed in a series of spherical functions, then, prdwidat it is continuous or finite
with isolated discontinuities, one may)(develop it into a series whose terms will each
be asum of spherical functions (of different degrees, in gahe and work with this
series we did with the seriea5) (*").

Similarly, for the exterior problem one will have:

V :£+L12+...+%’
p P P

and one determines thés in a manner that is analogous to the foregoing.

29 (cont.). —Case of two concentric spheres- We apply the same method to the
space between two concentric spheres of RdindR, . Here one sets:

V :Y0+Y1,0+"'+Ym,0m+"'

(*°) Picard,Traité d’Analyset. |, pp. 248 et. seq.
(*") Cf. Le Roy, ThesiSur l'intégration des équations de la chalepp, 28-30.

(*® In the case for which the given values of the nordweiivative do not satisfy the Dirichlet
conditions one applies the same modification as ipteeeding section.
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Yo, Y Y
+L2+ T4t
P P Y

One simultaneously determin¥g andY, by two equations:

+ !
- (lem:I+-)2Ym = q)ma
+ !
(m+1)Y, —o'

m+2

mR™Y_

-mRY_ +

whose determinant is different from zero far> 0. Form = 0, the two equations will
also be compatible because of the possibility ded(1).

30. — In the two problems that we just treated, Wiet®n may be obtained without
recourse to a series. We shall see that in ettieercase of a sphere or that of two
concentric spheres one may reduce the Neumannepnatal the Dirichlet problem and
quadratures.

Case of one sphere. Let D be the interior (or exterior) domain bounded bg th
sphereS. LetD'be the domain bounded by the spi&ithat is obtained by adding (or
subtractingdR from the radiuRk of S

If Vis the desired function then by a simple homotloety may deduce a functigh
that is harmonic in the domalih and takes the same values at the various poists it
V takes at the corresponding pointsSf The differenc® —V'will be harmonic inD.

However, it takes the value(jj—VdR onS. Therefore, if one sets:
n

V-V’
Vi drR

then one will have calculatéd since one knows the solution to the first boundaaiye
problem.

In other words, and more rigorouslyMfx, y, 2 is harmonic then the same is true for
V(AX, Ay, A2), in which A is an arbitrary constant. Therefore, the samalss true

fora%V()lx,)Iy,)lz), i.e., forA =1, since:

VAR VAR \VAR; Y,
2 V,=X—+y—+2—=0—,
@7 YT oax yay 9z 30

in which dis the distance to the center.
In fact, one directly sees that one has:

ov oV _oV ov ov _oVv
Z— | =| X— AV .
0x oy 0z 0x oy 0z

(29 A(x—+ y—+ +ty—+z—+2
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If V1 is calculated then one will deduce tWeof equation 27) by the following
rectilinear integral, which is taken over the radg:

(29 V= J. Vi do +const (interior problem)

(30) V= —j Yy do + const (exterior problem).

The integral means something in the case of the intgmoblem because the
condition:
V]_ =0

at the center of the sphere is, from Gauss’s timeonething but the possibility condition
for the problem:

(1) j —dS 0.

Likewise, the integral means something in the cdisbe exterior problem becauge
has been calculated as a function that is regtiafiaity.

If V1 is a function that is regular at the origin an@mulled there then the same will
be true for:

V= jOle do,

as one sees by replaciwgwith its development into a Maclaurin series.

Moreover, ifV; is harmonic therV will be harmonic, as well; now, by virtue of
equation 28), since AV, is null, if AV is not identically null then it must be a
homogeneous function of degree -2, which is absindeAV is regular at the origin.
Furthermore, one verifies the same fact from thgression folV in the form of a definite
integral. This latter manner of operation is fertlapplied to expressio(), for which
the former line of reasoning will fail.

On the sphere of radilR the functionV; obviously takes the same values as the

quantity- R?j—v does in the case of the interior problem alﬁd(;l does in the case of
n n

the exterior problem. One may thus obtain the @sgion by solving the Dirichlet
problem. From known formulas for the solution litproblem on the sphere, one will
have:

1

1dV
”S dn dn ”Sr dn

(the — sign in the first integral refers to theenmr problem, the + sign in the other refers
to the exterior problem). From this, one deduedasr the interior problem, for example
- that:
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1

d-

R dv do

e S e
1 dv p1ldo
+5ﬂsadso P

The simple quadratures are performed without diffjc Moreover, one is led to the
same quadratures upon seeking the Neumann funesome shall do.

(31

31 — Neumann function. — We look for the Neumann function for the interio
problem in the case of the sphere. This amoungsftmctiory)' that is harmonic on the

sphere, except for a neighborhood Afand such thaty / dn is constant along the
boundary surface.
Set:

(32 Ya ==+H,

1

ad=
(33 d_H:K__f_
dn dn

We may apply the method of solution that we jaslidated to this particular case of
the preceding problem, and direct the calculatibnsuch a manner as to deduce the
Neumann function from the known expression for@neen function.

Let p be the distanc®M, J, the distanc®A, andy;, the angle these two lines make
with each other. The application of the precedimgthod first leads us to look for a

harmonic functiotd, = pg—H that takes the same values, up to a factoRphs the left-
0

hand side of equatio3), i.e., the quantity:

oL
K+
op

Now, the functior-%is homogeneous of degree —1 with respegb t;md 4, and one

), A

has, as a consequence:

(34) 0

from which, foro=R:
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)

dH _

3 H,=—R— =-KR+9d — .
(39 ! dn a5 r
Now let:
M _1 M
Ja ___hA

-

be the Green function for the interior Dirichlet prablen our sphere. When the polvit
is on its surface, one has:

and this inequality, which is true for any poftmay be differentiated with respectdo
One thus obtains:

(36) H1=—KR+h+5@.
00

This equation is true on the surface and, as a consequretioe entire volume, since
both sides of the equation represent harmonic functigxsfor h, one knows that it is
obtained by considering the poidt which is the image oA (fig. 3) situated on the ray

2
OA at a distance from the centerGX =o' :%. Upon denoting the distanb&’

byr', one obtains:

R

(37) hzy.

This quantityh is homogenous and of degree 0 as a functionp,gf andd’

(sincer—l, is of degree -1, an%l is of degree +1), in such a way that one has:

goh __soh ___oh

(39)

90 a5 Cop

Since the functioid; is determined by formul&6), all that remains for us to do is to
calculateH by the equation:
oH
H =p0—.
0p

If one takes the identity8g) into account then one sees that one will have:

(39 H :h+jo"[§—KRjd—p.
yo,
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As we shall see, the constatis chosen in such a way that the integral makes sense

I.e., in such a way as to nullify the coefficientggf; we must therefore tak@zﬁ.
v

One will perform the quadrature simply by introducing thele@g'M = , which
gives:
_ O'siny (= o'siny
sin(y +¢)” sin(y +y)
and, as a consequence,

IP[E_EJ%
olad’" R)p

(40) =I! R{S'”(y #){(coty - cotly + ¢)ldy - p}

Sin

oR? tan?
i _de) 1 2
oR(sing p) R posiny

Formulas 82), (39), (40) give us:

1 R 1 oR? tan?

M

(42) yu =S+ slog— <.
r o R posiny

Conforming to our general conclusions, the qugntit
thus obtained is symmetric with respect to the psots
A, M upon which it depends. Indeed, as is well known,
this property comes from the second tedRm &' of the
preceding formula. It likewise belongs to the anglthat
figures in the third term, because, if one dslls the
image of the point M then the two
trianglesOA' M, OAM are, as one knows, similar to each

other and to the triangle that has an angle equak t
between its two sides of leng® andpd, respectively.

Upon accounting for the trigonometric relationgtth
the triangleDA M provides, one may easily write the last
term in the form:

1 20’ 1 2[0OM'
—log—— =—log=—-——
R "r'+d'-pcosy R ~AM'+OM'-Jcosy

(upon permuting the poinsandM).
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When the poinM is on the sphere the valueygfreduces to:

2 1 r + R—Jocosy
—=—=log————,
r R 2R

a value that was obtained (up to a constant) by Fr. Newrfid by summing a series of
spherical functions, and it will suffice to substitutestim formula (E) of no24.

Finally, if one is concerned with the exterior prablenot the interior problem, then
the equalities35) and B6) persist upon taking = 0. The formula39) must be replaced
by:

H=h- ”i,d—p,
P P
and one finally has:
' 1 R 1 v, vy
41 Y =~ + — + —|og| tantanZ |.

32 — We again attempt to apply the same method ¢octse oftwo concentric
spheres.Let ¢; be the given values of the normal derivative anittterior spher&, (of
radiusRy); @, are the corresponding values for the exterior p8gof radiusR,. Of
course, one supposes that possibility condition:

(42) | L¢ld5+ | Lz $,dS=0.

Furthermore, consider the auxiliary function:

V. :Xa_v+ya_v+za_vzpa_v
Y lax Tay oz Top

This function will take the valueR;¢; on the interior sphere and R.¢, on the
exterior sphere. The solution of the Dirichlet lgeom will thus be known. If one is then
given the valued/, of V on a concentric sphei® that is intermediate to or coincident
with one of the boundary spheres then one will have

\ :V0+'[“:A Vld_pl
ot p

in which the pointdMy andM are taken on the same ray.

(*° Vorles. uiber die Theorie des Potentials und der Kugelfunctiqpqer275. As for the interior and

exterior values of the functiqn,'l’I , they are due to Bjerknekg¢. cit., 1871) and Beltramildc. cit., tome
lll, pp. 370-371; 1873.)
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Obviously one may not choose the valdgsandV on the spher& in an arbitrary
manner. These values will be determined by the condihat one have:

AV =0,
in the given space.
Now, from the identityZ8) it already results that the conditidv; = O forcesAV to
be a homogenous function of degree -2.
It will therefore be necessary and sufficient tauasshatAV is null onS,.
Let p, 6 ¢ be polar coordinates. One has:

2
(43) av=1]| 0[N, 1 i[sine—avj+ 1 oV
p| 0p dp) sin@add 08) sin“@0¢
and here:
1|9 1 0(. 0V 1 oV
AV =— | — +———| sinf— |+ =0..
p{ap(pvl) sineae[ aej sin296¢2}

The first term is therefore known, as a consequem® one knows the sum of the other
two terms.

33 — The sum of these other terms is nothing but seond-order differential
parameterfor the sphere.
In a general manner, let:
E d + 2F du dv + GdV

be the area element of a surface.
One knows that one gives the namefiodt-order differential parameteof an
arbitrary functionV to the quantity:

2 2

G@Vj —2F‘ZV‘ZV+G[%VJ

AlV: u u 2\/ \ ,
EG-F

and the nameecond-order differential parameter the quantity:

(44) pv=L0|"0u "ov|, 1070w " ou
2 Hau H H ov H

N oV oV _ oV

in whichH =+ EG - F? satisfies the identity:

dS =H du dv.
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(See Darboux,.econs sur la théorie des surfacBsok VII, chap. 1.)
If A1(V, W) is the polar form of\;(V) then one has a formula that is analogous to the
Green formula:

(45) [[a.v, W)dS+J'W ds+”WA Vds=0,

in which the double integrals are taken over a certailomegyn the surface and the simple
integral is taken along the bounding contour of this domain

If the functionsV andW are regular on the whole surfaSewhich is assumed to be
closed, then one may suppose that the domain of integi@imprises the entire surface;
the simple integral then disappears.

From this, one deduces that there is no regular nostananfunction that satisfies
either the equatio,V = 0 or the equation:

(46) A,V = const.
on the whole surface.

34. — The second-order parameted may be further defined geometrically in the
following manner: Make two rectangular geodesics pass thrtluglpointM on the
surface considered, or, furthermore, two normal rectangdetions, and on each of

these lines consider the second denva%rvg, in whichs is the arc-length of the curve.
<

dav d2 )

is’  ds
not vary when they revolve around the polhtwhile remaining rectangular to each
other, and will be equal #.,V, precisely.

It is easy to deduce a relation from the relation éxigts between the parameféy/
and the symboAV that relates to space such that the idendi8y (s only a special case.
It suffices to refer it to three rectangular axes stiat one is the normd¥in to the
surface and the other twblx; and Mx, are tangent to our two normal sections,
respectively. IfR; andR; are their radii of curvature, taken to be positivehia direction
of Mn, then one will have:

The sum of the values o?—on the two geodesics or normal sections does

oV _d¥V 14V
x> d$ R on’
0%V d2V 1ov
x d$ R,on’

and, as a consequence:

2 2
AV = 6\2/ 62\2/ R, SAV+ 62\2/ 1 av.
x> 0ox; an’ on R1 R2
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35. — The equation that we shall have to integrate theform:
47 NV =H,

in whichf is a function that is given at every point of thefacg. Moreover, this problem
is possible (sinc¥ is an everywhere regular function) only if one has:

(48) j L, fdS=0,

as equation4b) shows when extended to the whole surfaceNor 1. If it is possible
then there is only one solution, just as we corediathen we discussed the equatieW
=0.

In order to integrate equatioA?) one must define a function that is analogouséo t
Green function in the plane, i.e., one that haaribigmic singular points. There exists no
function that has just one logarithmic singularnp@nd satisfies the equatidpV = 0.
However, one may, with Picard, consider eitherrecfion that satisfies this equation and
hastwo singular points (like the function of Klein thatas/ considered in n@5) or a
function that satisfies equatio#§) and has only one singular po#at In other words, it
is regular everywhere except for a poktand infinite atA like 1/, in whichr is the

geodesic distance ta Letg) be such a function:

in whichH is a function that is regular on the whole surfabeformula é45), take:

W=1,
V=gj.
One then has:

dg)
A,g) dS+|—2-ds=0.
[]a.gds+ [~
If one takes the integral over the whole surfawmus a small circle around the point
A, then the simple integral reduces &yzand one obtains:

KS+ 2mr=0,

in whichK is the constant value Afg) , which is therefore found to be determined. As
in the foregoing, one may dispose of the functidnActhat remains arbitrary in the
definition ofg) in such a manner that:

(49) Jn =0y -

In order to do this, it suffices to impose thedition on g that:
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'”.ngldsw =¢

in whichc is a constant that is independent of the pAiffor examplec = 0).

Sinceg) is known, the solution to equatioa7) is obtained by applying formul@%)
(taken over the whole surface, minus a small circtl@ve that encircles the poiA) to
the functions/ andg) . We also obtain:

(50 21N, = —”S f,, g\ dS, +const

Here, one easily proves that the valueMdhus obtained answers the question, since
the difficulty that results from the boundary carahs does not exist here. If suffices to

remark that, on the one hand, by virtue of the sgtnynrelation 49) the functiorg))
also satisfies equatiod) when one considers it to be a function of thenpai On the
other hand, since the expression undeﬁhsign in formula $0) is irregular in the same

fashion as a logarithmic potential, the differetiia under theﬂ sign is legitimate, so

we can form the symbdl, with the condition that the quantity27f, be added to the
result. Now, the result of this differentiation dem the” sign is null by virtue of
condition 48).

The functiorg)) is easily obtained on the sphere. From formd8, (equation 46)

will be written:
2
_ii[sinea—gj+ 12 9 % = const
sing 06 068) sin“@0¢

If one takes the poir for the pointd = 0 theng will obviously be independent .
Furthermore, under these conditions, the precedmqgation admits (up to an additive
constant and a constant factor) only one regulatisa for &= 0, namely:

(51 g= —Iogsing :

36. — Now we return to the problem posed. It remd&amsus to determine a regular
function on a spher& that satisfies the condition:

BV, = = (V).
0

From formulas%0) and 61), this function will be:
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0 )
27N, = ”%(pvl)logsmid8+ const,

which serves to determine the solution to the probl¥ve. must nevertheless assure that
the possibility condition48) is satisfied, which, in this case, is:

(52 Il 55 (%08, =0

However, this condition will result from the condit:
(42 JI, #.0s +][ 4,05, = 0.

Indeed, it suffices to show that relatiob2 will be verified, at least on an
intermediate spher&.

Now, sincedw is the element of the sphere of radius 1 that cpomds to the
elementdS ord$ one has:

V,
¢,dS = jd% =V,p,dw,
1

V,
$,dS, :p—ldS2 =V, p,dw.
2

Therefore, the integrﬂsvlpdw, which is taken over a sphere of radiygakes the

same value fop= 0 andp= p,. Its derivative with respect jois thus annulled, at least
for a valuem of pthat is somewhere betweppando, in such a way that one may take
a sphere of radiya for § (9.

37. — One may demand to know whether consideratimatsare analogous to the ones
that we just presented for the sphere will permita solve the second boundary-value
problem for other surfaces. The response is negait least for the method that we just

developed. Indeed, let, 5, ybe the direction cosines of the normal to a clesethceS
and suppose further that one knows the quantity:

_:a_+,3_+y_

at every point.

(*° Of course, under these conditions the integmllpdw will be null, not only for one value ¢,

but for any value op that is betweem, andp,. Moreover, it is easy to see that this integrad imear
function ofr, as a consequence of the equafivh = 0, and abstracting from conditiofi?j.



BOUNDARY-VALUE PROBLEMS IN THE THEORY OF HARMONIC BNCTIONS 47

In order to imitate the path that we followed in theecaf the sphere we must know
three functionsX, Y, Z that are proportional ta, £, yon the surfac& and are such, that
the equatiod\V = 0 entails that:

(53 AXa—V Y6_V ZG_V =0.
0x ay 0z

We saw in no30that the same is true faf=x,Y =y, Z =z Furthermore, it seems
to be a consequence of this fact that:

is an infinitesimal transformation of a certain qraameter group.
Conversely, ifX, Y, Z are three functions that satisfy relati&@3)(for any harmonic

function then consider the one-parameter group thab(?tras’r ya—+za—vfor its

y 0z
infinitesimal transformation. In other words, write dlfferentlal equations:

X = dy' = 4 =dA
X(X,y,Z) Y(X,Y¥,Z) X(X,y.Z) ’
and let:
X =&(XY,2,7),
(54 Y =n(xy,zA),
Z' =¢(xY,2,A),

be the solution that reducesxpy, zfor A = 0. The right-hand side of relatiob3} may
be written(%AV(x’,y’,z’),and, under the hypotheses that we accepted, thistiguis

null for an arbitrary value of since the corresponding transformatiéd)(preserves the
equatiomAV = 0.
Now, the conditions for this to be true are:

(555 5] (3] (5]
(55) :[?szj [Zj [gzzj

ox' ox 6y oy’ 62 (4 6x oxX 6y’ 6y’ 0z 07

oy 62 dy 0z 6y 9z o0z 6x 0z ax 0z 0x
_ 0X 0x 6y 6y’ 0z 0z _

T X 6y 0x 6y ox 6y
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2,/ 2,/ 2\, 2\, 2\, 2., 21 21 21
6x+6x+6x:6y+6y+6y:62+62+az:

56 0.
(50) ox> ady> 09z° ox* oy> 0z° ox> oy o7
Therefore, if the transformatio«%l+ y%—v+ z%—\; preserves the equatidkVv = 0
X y

then the derivatives of the left-hand sides of equatibbs dnd 66) with respect tol
must be null at the same time as these left-hang digenselves — as is easily verified by
direct computation.

Moreover, conditions5b), (56) are verified ford = 0 since<, Y, Z reduce tox, vy, z.

Therefore, they are verified for any valuetof

However, equations5p) define conformal transformations of space, andaaqgns
(56), in turn, exclude any transformations beside ldsgments and similarities.

If one adds the condition that, Y, Z be the direction cosines of the normal to a
surface then it is easy to see that this surfasdeanothing but a sphere.

§ 7. — MIXED PROBLEMS

38. — Up till now, we were occupied with the problemwhich the normal derivative
is given on the entire boundary surface. One mastthink that this problem and the
Dirichlet problem, in which the values of the fuincs V themselves are given on the
entire boundary, are the only ones that we mayehaired to solve. Not only does one

encounter analogous questions in the theory ofthaatinvolve the values %f\i +hV (h
n

being a negative number), but also in hydrodynamvidgere one is, in general, led to
neither the Dirichlet problem nor the one that w& jtreated, but to mixedproblem in
which the values of the desired harmonic funchbare given on a subset of the surface
and those of its normal derivative on the othesstif®).

As in the foregoing, if this problem has a solntiben it has only one; the classical
reasoning by which one proves this fact for thst fiwo problems applies again without
modification. However, this negative result is abhthe only one that we possess in that
regard.

39. — The study of a limiting case permits us toeatst account for the nature of the
difficulty. We propose to solve the problem foe thubset of space that is situated over
the xy-plane, with the value adV / dnbeing given at every point of this plane, with the
exception of a certain ar@ain which one give¥/ itself. In addition, one imposes the
condition on the functio¥ that it go to zero at infinity like a potentialf(course, the
given values on the boundary are assumed to beatdi@with this condition). The
problem is then well-defined.

(*Y Rigorously, this problem may regarded as a particus ofithe one that one studies in the theory
of heat by consideriny to be sometimes null and sometimes infinity.
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If the value ofV is given over the entire plane then the solutioh béla two-sheeted

potential of Weightz\L. On the contrary, if the derivative is given everyrehthenV
T

will be a one-sheeted potential of denszgtyz—v.
77 dn

We take the values of the density of this one-sheetezhfmiton the interior of the
area to be unknown auxiliary variables. They will be detered by the condition that
the corresponding potential has known values on thia @gramely, the given values
minus the ones that the one-sheeted potential take®exter).

The problem thus posed iso distribute a one-sheeted potential over a given
bounding area such that it has a given value at each poink,ofvhich may be reduced
to the Dirichlet problem in the following manner:

Construct very small lengths on either side of the normal Bothat annihilate the
contour. The set of all of them thus forms two |eatieat together constitute a closed
surfaceS. The problem that consists of finding a given one4gtkpotential at each
point of S is none other than that of finding the electric dsition on S (which is
assumed to be placed in a given electric field); it resiteehe Dirichlet problem. The
desired density ol is obviously twice the limit that the density 8riends to when the
lengthsA tend to zero.

When the are& is circular or elliptic one may take an infinitelatf ellipsoid forS
that has for its principal section.

The known methods of solution for the Dirichlet problemthe ellipsoid then give
the solution of the problem.

Unfortunately, the preceding procedure does not applyeéest lin the same form)
outside of the case of a planar boundary (which is dewbany real significance). For
example, consider a sphere whose surface is dividedtwia parts; the value of is
given on one of ther, whereaslVV/dnis given on the other. K is reduced to O then the
value of the harmonic functiovi will be given by formula31). Therefore, if one takes
the values odV/dnin the area> to be unknown auxiliary variables then they will be
determined by the condition that the integral:

1 e R 2R2tanl‘g
_ZT'” S__ ” r ? E ©9 posiny aS

have given values an. This is a much more difficult problem than the fose. True, it
belongs to a category of questions that have been solve mgcent work of Fredholm
(*®; however, this solution has a relatively complicafierm.

40. — Meanwhile, there exist several exceptional casedich the problem is easily
reduced to the Dirichlet problem. Some of them are,Xample:

(* Among others, see C.R. Ac. des Sc., 27 January — 30.908e
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1. The case of a prism or a right cylinder (tkexis parallel to the edge), in whith
isg given on the lateral surface atd/dnis given on the base. The harmonic function
dVv/dnwill then be given by the Dirichlet conditions.

2. The case of a portion of a sphere that is boundedpayyhedron or cone that has
its vertex at the center, in whithis given on the polyhedral or conical surface dwéin
is given on the spherical surface. (A remarkable @dsi case is that of the hemisphere,
for which the polyhedral surface reduces to a plane.) Qermtes as in n@0.

3. The case of a portion of a volume of revoluticat th bounded by two planes that
intersect the axis, in whicthvV/dnis given on these planes axids given on the surface.

One takes the harmonic functim%%— y%—\; (in which the z-axis is the axis of
revolution) to be the new unknown (as is easily in$ug the considerations of n@0
and37).

One likewise calculates a function that is harmoinicthe space between two
concentric spheres and given by its values on oneedheres and its normal derivative
on the other in the form of a series of sphericattions (compare n@9 (cont.)).

41. — On the other hand, one generalizes the theory o&tken function that we
applied to the Neumann problem to the mixed problem withofitutfy. However, this
Green function is unknown, in general.

41 (cont.). — As in nob, it is clear that one must not consider the problemwiegust
spoke of and the one in which one is concerned, no lomgfethe Laplace equation, but
with equation 2), with the same boundary conditions, as being esdigrdifferent.



CHAPTER I

WAVES FROM THE KINEMATICAL VIEWPOINT

§ 1. — CLASSICAL RESULTS?®)

a) Results concerning deformations

43. — The position of a deformable medium, such as a flgidleifined when one
assigns a position to each point, in other words, whencbordinatex, y, zof an
arbitrary point are given by relations of the form:

x=F,(a,b,c),
(1) y=F,(ab,c),
z=F,(a,b,c),

in whichx, y, zare parameters that are intended to distinguish theugagoints of the
fluid from each other, for example, the coordinates that respective points of the
medium have at a definite position of the medium.

If there ismotion,i.e., if the position of the medium depends on tinteen formulas
(1) become:

x=F,(ab,ct),
1) y=F,(a,b,ct),
z=F,(a,b,c,t).

The figure formed by the set of points, each oicWwinas the Cartesian coordinates
b, c that correspond to a point of the medium will @dled theinitial state of that
medium. This initial state may be, for example tme in which the medium is found at
a definite instant, of its motion. However, it is not necessary ttias be the case in
order for that state to be physically realizabks. rble is limited to permitting us to
mathematically express thidue particlethat occupies the positiory( y», ) at the instant
t; isthe sameaas the one that is ati( y1, z) at the instant;. One recognizes that this is
the case when the values forb, cthat givex = x1,y = w1, Z = 7, fort = t; are the same
as the ones that give= %,y = y,, z =23 fort = t.

In any other case, nothing will prevent us fronarmging the initial state; in other
words, from expressing, y, zin formulas(1' ) no longer as functions af b, c,but as

(* See Lord Kelvin and TaitJreatise of Natural PhilosophyKirchhoff, Mécanique; Traité de
Mécanique rationellefrom Appell, tome 1lI, ch. XXIl and XXIII.
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functions of other parametess,b’,c', provided that the latter are functions af b, c
uniquely, and not of time, with, b, cbeing likewise calculable as functionsafb’,c’

43. — In the particular case where one considerithal state to be the first position
that is occupied by the by the medium, formulBsdefine adeformationthat permits us
to pass from this first position to the one whoserdinates arg, y, z.

One calls a deformation for which the second mosicoincides with the first
position andentity deformationso the functiongi, F,, F3 would be none other tham
b, c.

44. — We shall always suppose that when one is gikjeg, z,andt equations
(1) admit a unique solution fax, b, c;in other words, that two different particles may

not occupy the same position at the same instantThis obviously expresses the
impenetrabilityof matter.

45 — We likewise suppose that the functionsy, zare continuous, in general.
Nevertheless, we remark that as far as continuitty Kspect t@, b, cis concerned, this
second hypothesis is much less legitimate thanfitse We account for this by
remarking that two liquids or two gases are findilpught into opposition by their
mixing, in general. In this case, it is clear thailecules that are originally separated by
finite intervals— namely, the ones that belong to the two fluidspegtively, and are not
originally situated on their contact surface —rateme into immediate contact with each
other. There is obviously no reason to supposethtieadifferent parts of the same fluid
do not diffuse into each other as one supposesh®molecules of the two different
fluids. If this is the case then y, z—which are always continuous with respect te
will be totally discontinuous functions af b, c.

Other than that case, the hypothesis of contirsggms to sufficiently account for the
phenomena that are found in a large number of cad#s shall adopt this hypothesis in
what follows, and suppose, moreover, that the fansk, y, zare differentiable.

45 (cont.). — From what we said above, it is cleat th& restricts us in the choice of
the initial state to a certain degree, if it isk® arbitrary. When we replace the initial
coordinatesa, b, c by other onesa,b,cwe must have that they are differentiable

functions of the first.

46. — We do not exclude the case in which the funeti y, zare discontinuous with
respect t@, b, con isolated surfaces, and we will study it later o

In particular, whereas, by virtue of our first bypesis (no44) the two portions of
the medium may never interpenetrate each othemppesite may be true: It may very
well be the case that the two regions are originadintiguous and then separate from
each other in such a manner as to create a catityelen them.
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Unless indicated to the contrary, one nevertheless seppoas we shall do in all of
what follows —that such cavities are not producea)d reserve treatment of the case in
which they come about.

47.— We shall first recall the principles that relaededeformations.
When equationslj are differentiated, they give:

dx=ada+bdb+cdc,
2 dy=a,da+b,db+c,dc,
dz=a,da+b,db+c.dc,

in whichay, by, ¢, az, by, ¢, ag, bs, ¢ are the partial derivatives &f y, zwith respect to
a, b, c. The determinant:

a b c| |[0a db dc

3 D=la, b, c, Yy ¥ %
da db o0c

% bocf oz 0z 0z

da db oOdc

which is the functional determinant xfy, zwith respect t@, b, c,must not change sign
when one varies, b, ¢ If this were not true then it would be easy to tee this sign
change between an initial position surfé&&geand the present positidhwould take the
regions of the initial medium that are closeésand on either side of it to regions of the
present mediun$, but on the same side of it; this is contrary toljpothesis made in
no.44. The determinarD must not be zero in equatidf’) for anya, b, cfor a certain
value oft. Otherwise, one would know thaty, zare distinct functions &, b, c,which

is contrary to the same hypothesis. This detemmbimall therefore have an invariant
sign; we always suppose it is positivd).( This determinant is related to ttiensityp of
the medium at the point considered. Indeed, deined by the condition that the mass
elementdmis equal tgo dx dy dz.On the other hand, since this same element sl ¢égqu
Mda db dc,n which gy is a function of, b, cthat is independent ofone has:

3) p=e.
P

we suppose thatis never infinite so thdd is never zero.

One further refers to the determinam:& by the name oflilatation of the state
Yo,

(x,y,2 with respect to the stata,b,0.

(** It is clear that this implies a new restriction oa tihoice of initial state.
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48. — If the medium considered occupies only a bounded poofiGapace then it is
impossible (under the theoretical hypotheses that wetedlpfor a point that is situated
on the boundary surface of the initial state to becammterior point or vice versa. This
is because a small arc of a tangent curve that vaoeSnuously about the point in
guestion will necessarily change into an analogoushatcriecessarily will or will not be
completely contained in the medium, according to whethie point is or is not interior,
respectively.

49. — If one is confined to studying what happens in the neigbloariof a definite
point of the medium while neglecting higher-order infinitess, and one transports the
origin of the coordinates at this point in both the atiand present space then one may
replaceda, db, dc, dx, dy, d®y a, b, c, X, y, m formulas 2) and write:

Xx=aa+bb+cc,
(2) y =a,a+b,b+c,c,
z=aa+bb+c,c

Thus, the deformation of the medium around thentp@ considered essentially
coincides with the one that is defined by the lim&ébstitutior(2' )

Geometrically speaking, the transformation thatie§ined by equatiof® (yvhich
we sometimes call aafinity) is a homographic transformation that preservegtane at
infinity. It may be considered to be characterifgdthe property that it changes two
arbitrary parallel lines into two parallel linesdhalters two arbitrary segments taken from
these two lines in the same fashion.

50. — In general, as one knows, equati@smay be put into the form:

a-s b G
©)] a, b,-s ¢, |=0
s, b3 G~

however, when the preceding equation has multgaésrit may not always be possible to
reduce the substitutiq®’ }Jo the form §). Furthermore, equation5) may have
imaginary roots.

On the contrary, another form that is given to $dstitution (2' )that has great
importance in the mechanics of fluids is alwayssgae in real form; this is how
introduces the notion ofure deformation.

One says that the substituti@ represents pure deformatiorwhen it may be put
into the form 4) with the plane®\ = 0,B = 0,C = 0 forming a tri-rectangular trihedron.
The necessary and sufficient condition for thibéahe case is that the quantity:
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(6) xda + ydb + zdc

be an exact differential; in other words, that the mheitgant @) be symmetric. The first
part of this proposition relates to the well-known tiyeof surfaces of ¥ degree. The
second part results from the fact that the expreg§pis invariant under any change of
rectangular coordinates that is performed simultaneousky g, zand ona, b, cand, on
the other hand, the fact that if one takes the planes0,B = 0,C = 0 to be the new
coordinate planes (which is always possible in the cdise pure deformation) then
equations4) become:

(4" X = g4, y = sb, zZ=sC.

In this latter form, one sees that the pure deftion amounts to a system of three
dilatations performed in rectangular directions.

51 — Any deformation in the for2 nay be replaced by a rotation that is preceded
by or followed by a pure deformation. To that effet is sufficient to consider the
ellipsoid of dilatationor theellipsoid of deformation.For an arbitrary deformation that is
defined by equationdl), one therefore refers to the ellips@id= 1 by either term, where
@ is the quadratic form that is defined by the idtgnt

#(da, db, di
=(1+2g)da + (1 +2) db’ + (1 + 2%) A&
+ 21db dc+ 2y, dc da+ 2ysda db
=d¥ +dy’ + dZ.

The coefficientss, &, &, U, )5, ) that figure in the preceding formula, i.e., thatities
that are given by the formulas:

2 2 2 2
1+2¢ = [%j +[ﬂj +[%j , 1+2¢, = [%j +[ﬂj [azj
oa oa oa ob ob ob
2
e =(2] (2] (2]
@) oc oc Jc

0X 0X 6y 6y 0z 0z 0X 0X 6y 6y 0z 0z

1= 5pac Tabac abac’ 72 " dcoa  dcoa dcoa’
0x 0x 6y 6y 0z 0z

Vs = 3800 9adb  dadb’

are called theomponents of deformationlhe dilatatiorD is a function ofs;, &, &, W,
1%, 5, this is because the discriminantgis equal taD?
When the deformation is of the for(® the ellipsoid of deformation:

(7) #(a, b, 9=1
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is the locus of points that are found on the sphere:
X +y+Z=1

once this deformation has been performed.

Three diametrically conjugate planes of the quddhdecome three rectangular
planes under the deformatiq2 . )There thus exists one and only one tri-rectargul
trihedronT to which there corresponds a tri-rectangular ¢hiba T'; it is formed by the
principal planes of the quadric in question. Aatmn of either space makes the
trihedronsT and T' coincide, and after that one will require only agpdeformation to
make the two media correspond completely.

If the substitutiorf2' s a pure deformation then the quadrie 1 that is defined by
the identity:

(6 1df = xdat+ ydbt zd

has the same principal planes as the ellip$did with) the axes of one having the squares

of the axes of the other for length. This is wiia¢ immediately sees upon regarding the
pure deformation in the for(d’ ).

52 — All of these results that relate to deformati@me well known, but we must
insist, for the moment, on a particular case timegt may associate with the general case
by considering circular cross-sections of the sdid (7' ), as Lord Kelvin and Tait did.

Let P be such a plane of circular section andPléie its homologue. A circle that is
traced in the plan® has a circle in the plaf&for its transform. In other words, all of
the curves in the plane are dilated by the same ratio, in such a way @ahatfigure of
the planeP is similar to its own homologue in the pla®e In order to transform the
initial medium into another one that is similarthe final medium (in other words, that it
may be obtained by a homothety and a displacentast)herefore sufficient to perform
a deformation of the forn@2" in which all of the points of the plaferemain unaltered.
These are the deformations that we shall studwitiqular.

If, to simplify, we take the plan® to be thexy-plane then formula® nmay
obviously be written:

Xx=a+Ac

(8) y=b+c
z=c(l+v),

since one must have=a,y=b, z=dorc =0.

These formulas show that the displacements obfallhe points have the same
direction and are proportional to the distance ftbese points to the plaife In order to
completely understand the deformation in questiorsuiffices to give the segment
(A, i, v). This segment, which represents the displacewfeatpoint that is situated at a
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unit distance from the plarie may therefore be called tlbbaracteristic segmertf the
deformation.

The triangleMompM (fig. 4) that is formed by an arbitrary poMy, its projection on
P, and its new position after the deformation is alwsiysilar to the analogous triangle
that is formed with the aid of a definite point thasigiated a unit of distance from the
planeP and has the characteristic segment for one of its.side

In order for one to be dealing with a pure
deformation, it is necessary and sufficient that i/ =
0, i.e., that the characteristic segment is normahéo
planeP. The deformation then reduces to a dilatation
that is normal to that plane. -

Suppose that this is not the case. We may alwae/_s /Mo
nonetheless suppose that 0 by taking a plane that isF19-4 |
parallel to the characteristic segment to be xke
plane. Take this plane to be the plane of the figure.

Let M be the final position of the point that was P me
originally situated aMy in the plane of the figure. The
perpendicular altitude in this plane to the medium
MoM cuts the plan® at a pointO (fig. 5) such thaOM = OM,. At a second poin®’ that
likewise belongs to the trace of the plane of there on the planB we construct a line
O'M,that is equal and parallel @M,. The parallelogra®M,0' M, will be transformed

into another parallelogra®MO'M’; it will be deformed in the manner of an articuthte

parallelogram.
It is easy to deduce the displacement of an

Ngi )
) 01 N arbitrary pointNp in the plane of the figure from
i M this deformation. Indeed, if we construct a
Fo, o s parallel toOM, at this point that cut©0O’ at w

I » and M M| at /o then this poinfu may obviously

, ",u be considered as the result of the motion of the
superior basM M, of the articulated
’ parallelogram; this is how we will know its new

w o position/. If we then take a segmeaN that is
Fig. 5 equal toaNy on the Iine_cquthen one will have the
new position of the poirilo.

The motion of a point that is not situated in flane of the figure will then be
defined by the motion of its projection on thism@a As for the rest, in order to obtain
the displacements of all of the points of spacthatsame time it obviously suffices to
replace our articulated parallelogram by an ardimd right parallelepiped that has this
parallelogram for its base.

53 — If one takesOO'to be equal tdOM, then the parallelogra®M,O'M; is a

rhombus, and it remains one after deformation. W diagonals of this rhombus and
the perpendicular to the plane of the figure tholsttute the axes of the trinedrdn
which is tri-rectangular in the initial state aslwas in the final state. If one wants to
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decompose the deformation into a pure deformation andatiorothen one chooses the
perpendicular to the plane of the figure for the rotati@nas and the angle through

which the diagonals to the rhombus tarnamely, MOSM - to be its angle.

54.— The ratio of the densitiesin other words, the ratio by which the volume luod t
articulated parallelepiped is alteredis obviously nothing but the ratio by which the
surface of the parallelogram that serves for iteha altered, or again the height of this
parallelogram. One will thus have:

in which v is the normal component of the characteristic gggm

If this component is null then it is clear thatydigure that is situated in a plafg
that is parallel td® is subjected to a simple translation in its pléme is parallel to the
fixed direction g, &, 0) and proportional to the distance between the planesPP;.
Such a deformation goes by the name sifde.

Upon decomposing the characteristic segment mto pieces, one of which is
parallel to the plan€ and the other of which is perpendicular to thigngl, one will
decompose the deformation with which we occupy @ues into a slide and a pure
dilatation.

55. — If the planeP, instead of being thry-plane, has the direction cosingsg, y
then formulas&) will obviously be replaced by:

Xx=a+A(aga+ [o+)c),

) y=b+u(aa+ fo+)c),
z=c+v(aa+ fo+)c).

The characteristic segment will be the one thatl ha, n for its projections, and the
density ratio, which is related, as we have seethd normal component of this segment,
will be:

(10 LR

1+ Aa + uB +vy.

This ratio will likewise be the one by which thes@ince of an arbitrary point to the plane
P is altered.

56. — The preceding permits us to represent a defaméého longer homographic,
but arbitrary) in a neighborhood of a surf&that leaves all of the points of this surface
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unaltered. Indeed, in a neighborhood of an arbitraryadribese point© this may be
included in its tangent plane, in such a way that theatisphent of an arbitrary poilt,

of the neighboring space @ is obtained by multiplying a definite segméat 1, v) by

the normal distance to a poiM, of the surface. This being the case, the segment
(A, i, v) varies with the position of a poi@@ onS. The partial derivatives of, y, zwith
respect t@, b, cat the pointO will be:

ox ox ox
Z=1+Aa, —=AB, ==y,
% o A % 4
y _ y _ y _
11 =2 = ya, =1+ uB, L=y,
(11 ga U gb up gc uy.
Z Z VA
— =Vva, — = V0, — =1+vy,
da db P oc 4

in which a, g, yare the direction cosines of the normastat O. The dilatation at this
point, which is equal to the ratio by which the shortestadce to the poirtly to Sis
changed, will be given by formuld @), which represents the determinant of the matrix
(11), moreover.

57. —Higher-order deformations- If, having accounted for first-order infinitesimals
in an arbitrary deformation, as we have done, one wakadtd introduce infinitesimals
of higher order then in the general case one will bealestudy that is extremely
complicated and actually seems useless. We will needotthis study only in an
extremely important particular case that is compjedglalogous to the one that we must
treat.

We consider a deformation that not only leaves alhefpoints of a certain surfa&e
unaltered, but also coincides with the identity defoiomatt each of its points up to
infinitesimals of then™ order, i.e., it is such that all of the partial detives ofx, vy, z
with respect ta, b, cup to ordem—1 inclusive are null oi$, with the exception of the

derivativesa—x,ﬂ,%,which will be equal to 1. We seek relations that willijgle the

da odb dc
derivatives of orden under these conditions.
The method that shall serve for us will, moreoveplace the one that we used in the
preceding section for the casencf 1.
First, letn = 2, to fix ideas, and let:

f(a,b,9=0
. . o of af of
denote the equation f& and leff,, fy, fc denote the partial derlvatlveés—, B 3
a

By hypothesis, the relation:
% =1
oa
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is true for all of the points & Therefore, we may differentiate it on that suefadn
other words, the relation:
2 2 2
9 X ga+ 2% gbr 9% ge=0
oa dadb dac

is true for all values ada, db, ddhat satisfy the relation:
(12) fada+ f,db +f.dc=0,
which gives:

a°x  9°x  0°x

da® _ dadb _ dadc
f £, f

a Cc

Similar, the equationé;% = O,? = 0,when differentiated o8, give:
o

0°x  0°x  0%x
dadb _ ab® _ abdc
f £, f,

a Cc

0°x  90°x  9°x
dadc _ dbdc _ dc*
f £, f

a Cc

Together, these relations imply:

0°x  9%x  9*x  0°x  9*x  0%x
da® _ 0adb _ dadc _ db* _ dbdc _ dadc

(13 2 T - T2 T - 2
fa fa fb fa fc fb fb fb fc

or, upon designating the common value of the precedtiasay A:

0°x 0°x 0°x _

a2, S X=pp2 S Xz 2
(14) oa’ ob* 7 o’ F
OX _grf, 9X g, 9X gt
dbdc dcda dadb

relations that one may express as follows: the syimbquation:

0 0 o .Y\
14’ Z da+—db+t— dc| xA( fda fdb f
14) [aa 2 aor j (fda fdb §ok
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is an identity with respect to the differentidts, db, dc.

If we remark that the difference—a is null at the point ofS we are considering, as
well as its first derivatives, then we see that anay write, up to third-order
infinitesimals:

2
(15 x:a\+/hc2 :

Similarly, upon introducing new numbexrs v one may write:

2
y=b+H",

(15) 2
Z=C+—.

2

58 — The quantitie$,, f,, f. are proportional to the direction cosingsg, y of the
normal toS They areequalto these direction cosines, respectively, if thaation forS
has been taken in a convenient form. Supposelhisais true. f will then represent the
normal distance to the point &, b, 9 onS up to second-order infinitesimals. We then
see that the deformation under consideration isvknaip to third-order infinitesimals,
when it is given at each point of the segmehif V). The displacement of an arbitrary
point My nearS may be obtained by constructing the noridain = J at that point and
multiplying the corresponding segment f, 1) at the pointn by &/2. A small segment
of the normal td&s becomes a segment of a parabola after deformation.

59, — Things happen in a completely analogous fasfbom greater than 2. By
hypothesis (fop + g + r = n —1), one will have:

an—lX B
daPob’dc’

which, when differentiated of will give:

0"x 0"x 0"x
da+ db+ dc=0,
da"ob%c’ daPab*oc’ daPoh%c'*

by means of relatioriLl@), and, as a consequence:

0"x e 0"X e 0"x .
—ae . f, = P f, = T f..
daP~ob%c 0aPob?ac 0a’obdc

In other words, the ratio:
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0"x
16 ——(f P f)), +g+r=n
( ) aapabqacr (a b c) (p q )

is independent of the choice of indigesq, r, provided that their sum is equalio One
denotes this ratio by, and, similarly, there will exist two other number, v such that
one has:

0"y o
. ) L E LT I
(16) darapiac M Tl
0"z _ prags
daPoblaoct 2 P C’

which then gives:

[ida+idb+idcj x=A(f,da+ f,db+ f_dc)",
Ja db oc

d d a )\
—da+—db+—dc| y=u(f.da+ f . db+ f_dc)",
[aa ab ac j y ,U( a b c )

(ida+idb+idc z=v(f,da+ f,db+ f.dc)".
oa ob Jc

Suppose further that the equation &is taken in such a manner thaepresents the
normal distance to the poira,(b, 9 atS andf,, fi, fc represent the direction cosines of
the normal tdcS We see that the displacement of a neighboringt @d S is of the form

()I:ll ,urf] | ,anl j Small segments of the normal $are transformed into segments of

parabolas of degree

60. — Density, which depends on first-order derivegivremains unaltered to higher
order under the deformations that we shall consioielly its derivatives of order greater
than or equal ten —1 are modified. It is easy to see what these noadibns will be for
ordern —1.

Indeed, start with formulasg), (3). Here, all of the elements of the determin@nt
are equal to zero, except for the ones on the ipahdiagonal that have the value 1.
Form the derivative:

an—l &: an—lD
daPob’dc’ p daPobidc’

Insofar as we do not make the weights of the wdiffeation depend on one and the
same element, the term that we obtain will be raifice only derivatives of order less
thann appear in it, and they are null by hypothesis épkdor orderone. On the other

n-1

hand, if we perform the operatiogwon a non-principal element then we must
a C
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multiply the result that we obtain by the minor thalates to that element, which is null.
There thus remain only three terms that are obtainefiffeyentiating the elements of the
principal diagonah —1 times, namely (since the corresponding minors of th&saents
are equal to 1):
ot Po|__0x . 9y . 09"
daPobiac’ | p ) 0aP?ob%c” 0afob?ac’ odafobioc’

and consequently, by virtue of formulas), (16) :

an—l p
1 —| 2 | = f P (A, + UL,
(7) aapabqacr(pj a 'b c( a lUfb c)

for example, fon = 2 one will have:

9 Po -t (i, +4f, +1A,),
ox p
a7) i%: £, O, + 4, +1F,),

9.5 _ f (Af, + uf, +Uf).
0z p

One may replacP = m/p in the preceding formulas (which will be usefuhsawhat
later on) by the quantity lo®, whose derivative with respect @ is equal to 1 on S

(which is also true for formuldl{), whose terms on the left-hand side contain devea
of higher order in the logarithm and are thus hylthe hypotheses we made).

a) Results relating to velocity

61. — Having occupied ourselves with the deformatibattwas represented by
formulas () in the foregoing, we now pass to the study ofiomtproperly speaking, i.e.,
we maket vary in formulas(l’ ).

Under these conditions, the system of independamables that we have employed
up till now — namely, the initial coordinates b, c,and timet — is not the only one that
we have to consider. One may also have to expinesgarious quantities on which one
operates as a function of theesentcoordinates, y, z,andt. When it will cause no
confusion, we denote the derivatives that are takefirst system byd and the partial
derivatives for whiclx, y, z, tare considered to be independent variables bgytimiolo.

Therefore, the components of velocity will bazg,vzg,wzg;those of
2 2 2
acceleration will be%, izy izz
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It is necessary to write the relations that exedtveen the partial derivatives of the
same quantity in the two systems. If one first carsidhe derivatives with respectdp
b, corx, y, zthen one must consideto be constant, and one has:

5 _ &0 ¥a,
B @mox Jaay 5aaz
5 _&d ¥a,
S ébax ébay ébaz
o _&xd &0,

ac d:ax d:ay d:az

As far as the derivative% and%are concerned, y, zare functions of, sincea, b,

c are given, and their derivatives with respect twe the components af v, wof the
velocity, and one has:

(18) 9.0 +ui+vi+wi

a ot ox oy 0z

61 (cont.). — We must employ a system of variablesg th intermediate between the
preceding two. In the latter system, in order todg what happens at an arbitrary
definite instant, the state of the medium at that instant has tthéenitial state. Itis a
function of the initial coordinates thus definedlasf timet that gives us the coordinates
of the different points at the instants neighbotiygt is clear that the derivatives with

respect to the initial coordinates for this manwoéroperation will bei i i

ox oy 0z’

however, the derivative with respect to time witt rbeg—t,but the derivative;;that
X

figures in the left-hand side of formula8).

62 — If the state of the medium at the inst@gns taken to be the initial state then we

compare it to the state at the instant- &. At this new state, the coordinates of the
different points will be given by the formulas:

X = X+uad,
y =y+va,
Z =z+wA.

Upon differentiating these equations with resgect, y, zwe obtain formulas that
correspond t¢2' which will be:
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X' = dx+ ddu = dx{1+@a‘tj + 9 gay+ Y &z
0x oy 0z
(19) oy = ddx+dyf 1+ 2t |+ &Y iz,
0x oy 0z

dz' = a—dex+a—wddy+ dz(1+a—wdj.
0x oy 0z

Here, the determinam will be:

1+ Mg Mg UMy
0x ay 0z
%& 1+%& %& =1+ 6_u+@+6_w &’
0x oy 0z oxX o0y 0z

My Mg 1.0y
0x oy 0z

(upon neglecting powers @t greater than the first). Since this determinant is lefgua

P =1- P» ,one will have:
p+op p+op
(20) @-}-@ +ﬂ+a_W =

px ox 9y o0z

which gives usi_tﬁ, and by means of this expression, relatib®) gives%—’f as:

90, 3(pv) , ) , aow) _

(21)
ot 0x oy 0z

On the other hand, we now occupy ourselves with tdsk of decomposing the
preceding linear substitution, namely, the subistittwhose coefficients are:

1+ Mg My Ny
0x oy 0z

(19) Ni 14V Vx
0x oy 0z

Mg MWy 1. Wg
0x oy 0z
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into a pure deformation and a rotation. We do this byittermediary of the two

substitutions:
1+%d, du_ ov & [au awj&
0x 6y ox 0z 0Xx
(22) o[V, g 1+ Vg, o[ VLW
ox oy oy 62 6y
—[a—""+a—”j5t, W Mg, 1+ Mg
ox 0z 6y 0z 0z
and:
1 L[0u _ov & [au awj&
6y ax 0z 0X
ov du ov ow
23 i —-— &, — X,
) 2(0X ayj " 2(62 6yj
-, () .
ox 0z dy 0z

whose product givgd9'), when one neglects termsdif.

The first represents a pure deformation, since rtiarix @22) is symmetric; the
second represents the effect of the rotation whoegonents are:

oo v
dy 0z)

Ju ow
24 =1 &9
24 a 2[62 axj

_4.(0v _du
r=3 -5
lox oy
during the time intervadk.

The rotation whose components are the quanfitieg rthat we just wrote is called
theinstantaneous molecular rotatiar vorticity.

63. — One may justify the name of instantaneous nutdeaotation with the remark
that Stokes- and later on, Helmholtz once made, that if one mentally isolates a small
spherical portion of the moving fluid around theinpoconsidered at the instant
considered, and one briefly supposes it to be ifielidthen the instantaneous rotation
experienced by the solid so obtained will have toenponentsp, q, r, precisely.
Beltrami ¢°) has shown that this conclusion remains true ag &s the principal axes of
inertia of the solidified portion coincide with th® of the pure deformatio83), i.e., with
those of the quadric:

(®® Principii dell’ Idrodynamica razionalelMem. de I'Ac. de Bologne,“i’sseries, tome |, pp. 458-459,
1871.
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x2+y2+zz+¢:x2[1+a_uj+y2 1+% [1+6_Wj
0 0 0z

X y
(25) +y ﬂ+a_w +7 6_W+%j X %+ﬂ :(1+a)x2
0z oy ox 0z dy 0x

A+a')y* + (+a")z* + 2fyz+2[B'zx+ 23"xy =1,

whose coefficients are those of the substitutR), (up to the quantity® + y*+ 2.
In a general manner, let:

(26) O=AX+Ay+ AZ+2By#2 Bzx2 B:=1

be the equation of the ellipsoid of inertia of tthelecule, which one supposes to be
isolated at the instamg and briefly solidified, as we shall explain, witke origin taken to
be the center of gravit® of that molecule. In order to find its movemerdundO after
solidification, it will suffice, as one knows, t#l the total moments of the quantities of
movement relative to three rectangular axes issinorg O; in other words, write:

100 %,

=2 - Ap +B" +Br—§n’{ = ,
2 ap, ptBq Yi5

10P X oz,
——=B'p,+Aq +Br, =) —L—x— |,
200, P+t AG “421& L5
10 A 2
ST =B, +Ba AT =Y m X k- ,
2 or, P+ BG 1 % yld

in which p;, 1, r1 denote the components of the rotation after daation, assuming
that x1, y1, z denote the coordinates taken with respect to tesy®f axes that are
parallel to our fixed axes, but whose origin alwagsncides with the poin©. Since

% Zl izl are noting but the variations that are feltupyw, wwhen one passes from
the pointO to an infinitely close point, one may write, uphigher-order infinitesimals:

F _ou
& ox T dy S

_ou, ,1fou 6vy+1[6_u+6_wjy +qz, -1y
ax ayaxlzazaxlle

10¢
=—_7 4
2o T9R M
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Y, _0ov ov ov 10¢

= X +—V +—7 =——L 471X, —
& ox ayyl 9z 20y, P4
& _ow . ow, ow, _104 . _
5 ox O ayyl 37 2 202, Py, —a%,

in which p, g, rare the components of the vorticity, as we hawayd written. If we
substitute into the preceding equations, we get:

n I m a a
Ap, +B'q, + B'r =25(y1£—zlﬁj+2m[p(yz +2%) - qxy—rxz]
1

= Ap+B'q+B'r =) my, (8% + B, +a'z)
—Z(B% +ay, + z)]
+ BB’

B'p, + A'g, + Br, =B"p+ Alq+Br+) miz(ax, + B, + 57)

% (8% + B, ta'zy)]
= B"p+A’q+Br—aB’—ﬂ”B-}-ﬂ’(A—A”)-}-@"
+a'B'

B'p, +Bg, + A'r, = B'p+ Bg+ A'r + ) mix (8% +a'y, + fz)
—yi(ax + BY, + BZ)]
= Blp+ Bq+ A"r +ﬂ"(A’ _A)_a’B" _a’B" _@I
+aB" + BB.

One therefore sees that, g1, r1 coincide withp, g, rwhen the ellipsoid of inertia
reduces to a sphere, and also when its axes ceimciirection with those of the quadric
(25) (because nothing prevents us from supposingatmathas taken the coordinate axes
parallel to the axes in question, which implies tthane will have
B:B':B":,B:,B':,B":O).

On the other hand, we must point out the fornhefdomplementary segment:

ﬁ"BI — ﬁ’B" + ﬁ(A" — AI) — B(a" _al),

(27) ' - fB+ [ (A-A)-Bla-a"),
fB-B'+['(A-A)-B'(@ -a),

that figures in the expression for the resultingmeat of the quantities of motion. This

segment remains unaltered up to sign when one agelahe quadratic forms that figure
in equationsZ5), (26).
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64. — A simple geometric interpretation, except on segn@nj, at least for the
direction, may be obtained in the following fashion:

Let Ax+ uy + vz = 0 be an arbitrary plane through the origin. The lozlughe
directions for which the planes of the conjugate diametith respect to the quadrics
(25) and @6), respectively, cut this plane is, as one knows,re af second order that
has the equation:

A 7 Vv
(28) Ax+B'y+B'z B'x+Ay+Bz B'x+By+A'Z=0.

ax+pYy+fz  Bx+ay+pz px+py+az

Furthermore, this cone passes through the three sidd®e afihedronT that are
mutually conjugate to the two quadrics in question (a triadisrelways real since one of
these quadrics is an ellipsoid). Conversely, the eguati any cone that passes through
the sides of the trihedrohmay be put into the preceding form.

We suppose that the con28) is capable of having a tri-rectangular trihedron
inscribed in it. We find:

(BB’ -~ BB+ B(A ~ A) = B(a' ~a") + u(BB ~ B
+B(K ~A)-B(@ ~a)+v(B B + B'(A-A)~B'(@-a) =0

in other words: the plang&+ wy + vz= 0 must pass through the directi@7)(

However, among all of the second-order cones plaas through the sides of the
trihedronT one immediately perceives three of them that adiiaiectangular trihedra.
These are the ones that are formed by an arbitaagy of the trihedrofi and the plane
perpendicular to that face through the opposite.siloreover, as one knows, the three
planes so constructed intersect along the sam@lirg@ince the condition that is imposed
on a cone of second degree in order to make ittaani-rectangular trinedron is linear
with respect to the coefficients the con28)(that admit tri-rectangular trinedra will be
the one that pass through the sides of the trimetliand the line\.

What is more, it is clear that if one takes th@jegate diameter planes afwith
respect to the two quadric®5) and @6) then their intersection will provide the directio

(27).

65. — One arrives at an interpretation of the segr{@&ntitself upon considering not
only the quadricZ6), but also the quadri@®$) (or, what amounts to the same thing, the
quadricg = 1 that one deduces upon dividixtg+ Y + Z by the left-hand side) to be the
ellipsoid of inertia. Consequently, upon settiag only:

A=) m(y* +27%), A =) m(z +x%), A= m(x? +y?),
B=-> myz B'=-> mzx B"=-> mxy,

(in which, for the sake of simplicity, we have stggsed the useless initial factors);
however:
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a=> m(y*+z?), a'=> m(Z?+x?), a" =) m(x?*+y?),
B=-> myz, B'=-> mzx, B' ==Y mxy,

and one finds the values:

D mmxyzx-ZxXxy - y'Z(y* = 2°) + yzy'* - 2?)]
=Y mm (X + Yy + Z)(y'z- ZY)

D mmy'zZxy-xy'yz- X (z* - x*) + z(Z* - x'?)]
=> M (X + W'+ Z')(Zx - X2)

D . mm[ZXyz-y'Zzx= XYy'(X* = y?) + xy(X'* = y'?)]
= mm (X + yy' + Z)(Xy - y'X)

for the quantitiesZ7).
One knows that the expression+ yy+ zzdoes not change under an arbitrary

transformation of rectangular coordinates, and alsottigasame is true for the geometric
significance of the segmeyz-Zz'y, Zx—- X'z, X'y — y'x). We have therefore illustrated

this property for the segmeri7).

66. — If the instantaneous molecular rotation is ywere null then the expression
udx+ vdy +wdzis an exact differential.

There then exists a function, which is called Wedocity potential,whose partial
derivatives are the componentsv, w. If the medium considered completely occupies
space then this function — which is defined up tooastant — is unique in the whole
medium. The same is true when it occupies onlymrign of space if this portion is
simply linearly connected,e., when any closed curve that is traced inrtteglium is
reducible to a point by a continuous deformatioat s performed without leaving the
medium.

In the contrary case (for example, if the voluimat is being occupied has the form of
a torus) then the velocity potential may hgegiods,i.e., it is augmented by a constant
when the pointX, y, 2 describes a closed path that is not reducibke point (in the case
of the torus, when this point amounts to its omgdiposition after having been turned
around the axis by73.

67. — When the instantaneous molecular rotatipnd, n is no longer null the
differential equations:

(29) ax_dy_ a:

define a double infinitude of curves that are chllertex lines.
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It may happen that the vortex lines close on themsglewever, in general, their
character (like that of all lines defined by differentmjuations) is considerably more
complicated. Each of them returns as close as oméswa its point of departure an
infinitude of times, but without ever passing through thaintpprecisely. Similar
observations apply to thertex tubespr the surfaces that are formed by the vortex lines
that issue from the points of an arbitrary closed curVee misunderstanding of these
circumstances has sometimes led people to state et®genclusions.

By contrast, the analogous reasoning, when appliecetoutinent lines,i.e., the ones
that are defined by the equations:

in the case where there exists a velocity poteRtias exact (at least if the medium is
simply linearly connected and, consequently, the funcios unique). IndeedkF is
increasing along the current lines (since its diffeedrdiF = udx + vdy + wdzis
proportional tou” + vV + w?). They may neither close on themselves nor exhitgit
complicated character in question; they necessariyitate on the boundary surface (or
at infinity, if the medium is not bounded).

68. — If the instantaneous molecular rotation is non-éh one may further write:

oF oy

u=—+y-—=,

ko5

F X

30 V=—+y -2,
(30 oy l,l/ay
oF oy

w=—+y -2

0z waz

in which ¢ and y are two other functions that are left to be deteech He based the
possibility of such a reduction on the followingsening:

If one differentiates the second of equatio3@ (vith respect te, and the third one
with respect tg, and then divides them then one obtains:

ov_ow_ ., _dyox dwox

(3D — .
0z oy 0z dy 0y 0z

This equation and the two analogous ones:
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_2q :a_wa_)(—a_wa_)(

(31) oxX 0z 0z ox
_op 0¥ Ox 0y ox

dy 0x 0x oy

show thaty and y satisfy the partial differential equation:

oy oy oY _.

L +g—ZL+r—L=0;
pax qay 0z

in other words, they are integrals of the systerdifiérential equations2Q) that defines
the vortex lines.
However, the functiong, q, rsatisfy the relation:

@+%+ﬂ:o_
ox o9y 0z

From this, it results that the syste®®) admits unity as anultiplier (*°. The theory
of the multiplier informs us that under these ctinds one may find two integralg and
x for this system that verify relation81), (31'), from which one may derive3()
without difficulty.

Indeed, this demonstration proves precisely tim may give the form3(Q) to the
componentss, v, win a sufficiently small regioR of the medium.However, things are
very different, in general, if one envisions thedmen globally. Indeed, the existence of
the integralgy and y is established in a region suchRasand there is such a region in the
neighborhood of every point of our medium. Howeviér— as is true except in
exceptional cases — the vortex lines exhibit thegeaated behavior referred to above all
of the time then it is obviously impossible fgrand y to be well-defined in the entire
volume considered.

By contrast, the form:

= OF 0w _ox
ox 0z oy
_OF ,0x_0¢
dy oOx 0z
_OF 09 oy
oz dy oOx

which has likewise been proposed for the componehtke velocity, may always be
obtained. In order to show this, it obviously sdf to establish that by means of the

(*°) See, for example, JordaBours d’Analyseyol. lll, ch. 1.
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condition Z—A+?+%—C: 0 one may always find three functiogsy and y that satisfy
X 0y 0z
the equations:
A:a_w—a_/\/,
0z oy
B :a_X —%,
ox 0z
C= % _6_1//.
dy 0Ox

However, the proof of this propositioff\ avoids the difficulty that we have always
pointed out, and (by means of some simple preaagitithis is also true if the region is
multiply connected.

§ 2. — STUDY OF DISCONTINUITIES — IDENTITY CONDITINS

69. — In the foregoing, we supposed that the cootdima y, zand their derivatives of
various order were continuous. Meanwhile, thisdtlpsis is far from being the only one
that is convenient to envision, and the study ofioms in which one of the derivatives in
guestion experiences abrupt variations is indispiglesin a multitude of physical
theories. The propagation of discontinuities imttlspace has been determined by
Riemann for the case of rectilinear movement imaa i) a celebrated memoir that we
shall discuss later on. Later on, in 1877, Chfistq?®) repeated the results of Riemann
for the extension to motions in three dimensions, e confined himself to waves of a
very exceptional nature — viz., shock waves (foster waves) — whose existence had
been discovered by Riemann, and, moreover, sireettidy of these waves presented
special difficulties, he only considered a Ilimitingase, the one for which the
discontinuities are infinitely small. It was Hugon (*®) who, in 1887, without any
knowledge of the work of Riemann and Christoffeyreover, showed the importance of
the discontinuities that we shall discuss and madgeneral study; he illuminated a
fundamental notion, that afompatibility, on which we shall later insist, and whose
necessity seems to have been apparent to Christaffaough it was indicated by
Riemann in the case of rectilinear movement.

(*") See, for example, Picariaité d’Analysetome I.
(*®® Annali di Matematicatome VIII; 1877.

(*® Journal de I'Ecole Polytechniquegme XXXIII, 1887;Journal de Math.tome IlI, series 1V,
1887.
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70. — The discontinuities that we shall study will extctly be the most general that
we are required to consider. For example, we shalénaision singularities such as the
ones that we alluded to in sd&.

On the contrary, we suppose that the discontinuniegestion affect only an isolated
surface at an arbitrary instant. The equation of oné,suben referred to the initial
state, will be:

(32 f(a, b, ) = 0,

i.e., the preceding relation expresses the conditinet tmust replace the initial
coordinatesa, b, cof a particle in order for it to posses a discontinait the instant.
Likewise, one may further envision the equation:

(33 o(x,y,3=0,

of the same surface with respect to the present catedxy y, z At each instant this
equation expresses the locus of present positions ofattiiel@ that are affected by the
discontinuity at that instant, and one deduces thé &guation from this one by
eliminating @, b, 9 with the aid of relationsl)j. We letS& denote the surface as
represented in Cartesian coordinates by equaB@n (We further letS denote the one
that is represented by equatid3B8), and which is transformed into the former by the
deformation {).

The surfac&y divides the spatial locus of points, (0, 9 (or the surfac& divides the
spatial locus of pointx( y, 2) into two regions 1 and 2. In each of them (at lepstntil
one encounters a new discontinuity surface) we asshatethe coordinates, y, zand
their derivatives exist and are continuous.

71. — We shall complete this hypothesis with another one:dWdt the derivatives
that we shall discuss will be continuous in the iateof each of the regions 1 and 2 but
we further assume that each of them tend toward aitéeliimit when the pointd, b, 9
tends towards a limiting position that is situatedSowhile always remaining inside the
same region.

In other words, letb be an arbitrary function of, y, z, a, b, c, tand the partial
derivatives of all orders of, y, zwith respect taa, b, c, t. This quantity, once it is
expressed with the aid of the independent variadlds cfor a definite value of, will
give a function®; that is defined at every interior point of region H a continuous at

those points. Likewise, this function will have a definite vafbigat an arbitrary point
(a0, bo, co) of S Furthermore, it will be continuous, in the sense téhat tends
towardd; when the pointd, b, § tends towardgp, bo, o) without ceasing to belong to
region 1 at any moment.

Similarly, @, when considered in region 2, will be a functibnof a, b, cthat will be
defined and continuous in that entire region. That fonatiill take a definite valu®; at

the point éo, by, Co) Oof S at this point, it will be continuous for displacemetitat are
interior to region 2.
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However, the two values; and®d’that correspond to the same poiag, (o, Co, 1)

might not be equal to each other, and this is what totes the discontinuity.
Therefore, the value ob will be subject to arabrupt variationupon passing. The
value of that variatio? — ® will be denoted by the notatiom].

72.— Because of the preceding hypotheses, we must prove lsticahéemma that is
necessary for all of what follows.

Suppose tha, b, cvary along a curve that is completely situated in redio Then,
since we make the same hypotheses on the partial degwvati® as we do ford itself,
and, as a consequence, these derivatives will existeaodrinuous in region 1, we will
obtain the differential o by applying the composite function theorem.

Will the same be true when the poiat b, 9 is situated org and displaced on that
surface? This is entirely obvious. Indedd, has no place of, in terms of partial
derivatives, properly speaking, since it is defined only ma side ofSand not in all of a
neighborhood of the point considered; one is therafotavithin the purview of the usual
condition for the application of the theorem in qumasti

Nevertheless, the conclusion remains exact. Wel slalfirm this by placing
ourselves in the two-dimensional case, for the salsengflicity.

We then have a functioh that is defined on only one side of a cus/éig. 6). In its
region of existence, it will have partial derivativdsatt tend towards definite limits
(which we designate bgg andaﬁ) when the pointX, y) tends towards a poit (xo,

X 0Y,
Yo) of S.
This amounts to saying thBtwill have a derivative that is given by the relation:

do _ 00> dx, 9 dy,

ds ox, ds dy, ds’

along the ard.

One may respond to the question above by
employing the classical proof in a convenient

manner. IM'andM"” are two points orS that

are infinitely close to each other then it consists
of introducing either the poinP that has the
same abscissa it and the same ordinate Ms
or the point Q that has the same abscissa
asM "and the same ordinateMs .

However, of the two broken
linesM PM " andM ‘QM “, there is, in general, one

of them €ig. 6) that is situated completely within the regadfrexistence for, and which
permits us to apply this reasoning as a consequence

Fig. 6
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One may further arrive at this result, as Painlei} ifidicated, by taking small
segments from the different points of the rmM " that are equal and parallel to ones that
are situated in the region of existence dor The locus of extremities of these segments
is an ardN'N", on which one may write (since the derivativesboéxist this time):

P o X LY
NN gx ds  dy ds

When the length of the segment tends toward Oqt]imtities%E andai) tend —
X

ay

uniformly, moreover —towargﬁandgﬁ. One will thus have, in the limit:
Xo Yo

o, -0, =[ 0P dx, N 0P dy, ds
MM* 9x, ds dy, ds

which is obviously equivalent to the desired result
Each of the two preceding lines of reasoning miayicusly be extended unchanged
to a greater number of dimensions in such a waydiwalemma is proved.

73. — Having said this, suppose that the functidris not subject to any abrupt
variation onS, but that its first derivatives are, on the contraliscontinuous; in other
words, that one has:

(@] =0, @},[@Haﬁ}to
da | |db] | oc
The preceding lemma permits us to see that thengdsa in the
value 6;19} [6;19} [aﬁ} that are experienced by these partial derivativag not be
da | | db oc
arbitrary.

Indeed, describe an arbitrary path that is sithate the surfac& at the point &, b,
c). The function®; is defined at each point of this path; one mayeower, differentiate
it on S by applying our lemma, and write:

do, = o, da+ b, db+ 0, dc.
da [0 o

The same considerations apply to the funcignone obtains:

(% Sur les lignes singuliéres des functions analytighesiales scientifiques de I'Ecole Normale
supérieure 1887, ' part, ch. I, no. 2.
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do, = %P, da+ %0, db+ %P, dc.
da & o

Divide the corresponding sides of these equations; thédefl sides cancel sinde
is assumed to be continuous when pasSing/Ne get:

&)l_&)z da+ &)l_&)z db+ &)l_&)z dC
oa A b D oc c

{2 {3 {2

However, the differentialgja, db, dcare clearly arbitrary, except for the condition
that they satisfy the differential equations $r

foda + fdb + fdc =0

(in which we have denoted the partial derivativesly f,, fi, fc, as before).
Therefore, one must have:

LRSI

74. — Now suppose that not ony, but also its first derivatives remain continuous.
What may we say about the abrupt variations osde®nd derivatives?
We may apply the preceding mode of reasoningeduhctiondd/da ; this gives:

0| . _[s0] . _[6@]
.fa— 'fb_ 'fcl
a’ dadb dacc

and similarly for the function%%), %,Which gives:

so| . [s0] . [s0]
f=| S| fy = f
&b 3 D&
o] . [s0] . [s0]
== | | ..
R D& &

As before, these equalities show that one has:
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2 2 2
Baﬂ:)lf;, {;ﬂ:)ﬁ;, {%}:Aff,

(35) 2 2 2
O ot (22 g1, |22]-
dac cda aad

S
| |
|
h-
=
®
—
<

whenA is a suitably chosen number.

In a general manner, if the functignis continuous, along with its derivatives up to
order n-1, then one will have the following series of proporidretween the partial
derivatives of orden:

(35) o’ cfl == _o0® CfP N == o’ .
a" dafdhix’ "

Upon denoting the common value of these rations, mne will have for anga, db,

dc:
[i}da+ [i}db{é}dc ® = A(f,da+ f,db+ f.dc)".
o 06.0) c

75. — The discontinuities that we shall study migatds different orders. To begin
with, it may happen that the coordinatey, zthemselves are discontinuous, not only as
functions of time (we never assume that a molepalsses instantaneously from one
position to another), but also as functionsolb, c. Such discontinuities will be callext
order zeroor absolute.

In the contrary case, the discontinuity does mpetid on the coordinates themselves,
but on their derivatives; these are classifiedhgyrtorders.

We call the total order of differentiation withsggect taa, b, ¢, thamely,p+q+r=

n

o"x

n, theorder of a derivative )
aPdix' a®

Often, there will be good reason to establishgmates within the derivatives of the
same order, according to the numbef differentiations that are performed with regpec
tot. This latter number will be called tiedexof the derivative considered.

For example, there are 30 second-order derivatfgsy, z,18 of which have index
zero, namely:

0°x  O°x o’x_ oy 0z
d? b’ a? Ao

9 of which have index one, namely:
0°x 0°x 90%°x 0%y 0’z
B’ b k& dad’ ' dcot
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and 3 of which have index two:
o’x 0%y 0%z
az’ oar’ o ar’

i.e., the components of acceleration.
Theorder of a discontinuitill be the least of the orders of the derivativieat are
affected.

76. — We must point out that one may be forced tcsictem discontinuities of order
infinity.

Indeed, if a function is regularly analytic aroutite point &, by, ) then it is
determined by the Taylor formula when one givesi@alto all of its derivatives at that
point, which is not true if the function is arbityaeither because it ceases to be analytic
or because it ceases to be regular.

Therefore, suppose that the motion is analytiallrof region 1. It may happen that
one has continuity of the derivatives of all ordep®n crossingv, and that, nevertheless,
the motion in region 2 cannot be analytically coméd into the first region, either
because it is not itself analytic, or because @sents suitable singularities & (for

example, like those that the functiet presents at = 0).
The study of discontinuities of this nature preésguarticular difficulties. We shall
not go into them in what follows.

77.— Leaving aside the absolute discontinuities, adldirst occupy ourselves with
discontinuities of the first order.

There are then three derivatives of index oneramel derivatives of index zero. The
first are the components of velocity. At the momeve have no observation to make in
regard to them.

On the contrary, from the lemma that we proveditays results that the abrupt
variations of the derivatives of index zero canmet arbitrary. Indeed, since, by
hypothesis, there is no discontinuity of order zamdx is continuous one must have:

FREIRH

f f, o f,

a Cc

or, upon denoting the common value of these rétyos

(36) [Q} = X, [Q} = ), P} = Xf,.
& XD X

Similarly, upon introducing two other numbegr&nd v one will have:
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3o (3 [2

e B (2

We consided, y, vto be the projections of a vector (the locus ahfsotraced out by
starting with a pointx, y, 2 in space).This vector suffices to define the variations of the
nine derivatives of index zero.

In order to obtain the abrupt variations of alltbé first-order derivatives one adds
the vector that represents the abrupt variaticth@telocity— which we call, by analogy,
(A1, 4, V1) — to this latter vector.

(36))

78. — The considerations that we developed in 3 permit us to give a simple
geometrical interpretation to the preceding resulio that effect, imagine — which is
clearly possible — a fictitious state of the medithat coincides with the present state
envisioned in region 1, but in such a way thatdberdinate derivatives are continuous
upon passing the surfaeg

To abbreviate, we call the state thus definedlinfaspace “the state of region 1;” as
one sees, it is the state of region 1 prolongemregion 2.

Let X, Yy, Z be the coordinates of an arbitrary particle ofead? in this new state.

The quar tities:
da ’ 1o.0) ’ oc

are obviously nothing but the values of the expoess

O(x=Xx) J(x=X) d(x—X)
a = d 1 4

(considered with respect to region 2) at an antyitpa@int of .

However, since', Y, Z coincide withx, y, zat any point ofS the deformation that
permits us to pass from the poin,(y’, Z') to the pointX y, 2 falls into the category that
we studied in no56. In other words, the displacement that is expersd by a poinM
that is infinitely close to a definite point & during this deformation has constant
direction and is proportional to the distance friginto $.

Moreover, this results from the preceding formuldsleed, if we start with a point of
S and give incrementda, db, ddo a, b, cthen since, on the other haiids null onS,,
one will naturally have:

df =f =f,da + f,db + f.dc,

in such a way that one may write, up to higher-onanitesimals:
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X=X = Af,
(37) y-y = uf,
z- ur.

b
I

!

N <
I

One therefore sees quite well that the displacewfemir particle upon passing from
the state of region 1 to that of region 2 is represkehyethe segmentA( 1, v) multiplied
by the numbef, which is itself proportional to the distance from gant @, b, 9 to the
surfacef = 0.

79. — It results immediately from this remark that thgmsent we just introduced,
which we represented by the numbgdrg., v, is independent of the direction of the axes
with respect to which thex(y, 2 is defined. In other words, if one refers to other
rectangular axes of space at this point then the newewald A, i, v will be the
projections of the same segment on the new axes.s 3égment represents the
displacement of the point considered (upon passing (i, z') to (, y, 3) divided by
the value off, which is calculated on the initial state and isejpendent of the present
coordinates.

79 (cont.). — However, the choice of axes in spaceoisthe only arbitrary element
that exists in our mode of representation.

In the first place, the surface of discontinuitshen referred to the initial state, was
represented by an equatit{a, b, § = 0. It is clear that there are therefore aminfde
of ways of representing the same surface. Notitigprevent us from multiplying by
an arbitrary constant number, or, more generajharparbitrary function that is non-null
on$.

In the second place, we may choose the initiaé stet we refer the molecules to in
an entirely arbitrary fashion. We therefore mustend to know what sort of influence
the choice of initial state will have oA, (y, v).

We first occupy ourselves with this question. [Suge that one changes the initial
state &, b, ¢ into another on@',b’,c’ Rhut without changing the functioh(in other

words, we are content to replageb, cwith their values as a function ¢&',b’,c' in)this

function). Thereforethe segmenid, 4, v) will not change. It results immediately from
the interpretation that we just indicated that temsgment is the quotient of the
displacement of an arbitrary point when one pags@s the state in region 1 to the state
in region 2 with the value dfat that point.

80. — Now suppose, on the contrary, that without ghamna, b, c,one multiplies the
function f by a (continuous and differentiable) factor thatnion-null at the points
considered. With these conditiorfg, f,, fc will obviously be multiplied by the same
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number %) since they are proportional to the direction cosioshe normal t0S.
Therefore A, i, v must be divided by that numhbarformulas 86), (36").

We thus see that it is necessary to specify tha fo which one writes the equation
of the surfac&, in order to define the componenksy, vin a precise fashion.

The convention that is natural make in this regamdsists of assuming, for example,
that a, B, yareequalto the direction cosines of the normalSp respectively, and taking
the normal distance from the poird, (b, 9 to that surface to b& We adopt this
convention in what follows.

It is, moreover, easy to write the componehtg, v thus defined when the equation
of & is given in an arbitrary form. The direction cws a, £, y will then have the
values:

f f, f

a C

/fa2+ fb2+ fCZ ! /fa2+ fb2+ fCZ ! /fa2+ fb2+ fCZ '

It will then suffice to replace formula86), (36) with:

f

[gjl =] fa , [Qil =A fb , =A ¢ ,
1o>] /faZ + fb2 + fCZ 1% 0) /faZ + fb2 + fCZ /faZ + fb2 + fCZ
f f f
(38) [Qil =u a , [Qil 7, b , 7, c ,
&_ }faZ + fb2 + fCZ d) }faZ + fb2 + fCZ }faZ + fb2 + fCZ

f f,

f
— =y a , — =V ,
[dé} JEZ+f2+ 12 [éb} 2+ 2+ 12

C

Vv .
\/faZ + fb2 + fCZ

I
& & H &
I

81 — Meanwhile, it remains for us to choose the sifithe radical,/ 2 + f,” + f 2.

We suppose that the direction cosime®, yare those of the normal & that is directed
into region 2. The sign of the radical must therefbe that of in that region.

On the contrary, if has been chosen in such a manner as to pernapgieation of
formulas 86),(36)then, to that effect, it must be equal (at leasttaphigher-order
infinitesimals) to the normal distance from themidg, b, 9 to &, where this distance
must be considered as positive in region 2 andtivegia region 1.

82 — The preceding convention resolves the difficuilating to the form of the
functionf. However, it spoils the validity of the remark tha always made that the
choice of initial state seems to have no influeocehe result. Indeed, for two different

initial states & b, 9 and (a,b,¢) the quantityf?+ f’+ f *that figures in the

(*% This number is, moreover, the value that the factor istiuretakes at the point considered.
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denominators of formulas3®) has different values’). As a consequence, depending
upon whether one has adopted one or the other of thensegmentA, &, v) must be
multiplied by a different factor.

It is, moreover, easy to see the significance efrdtio of these two factors. Indeed,
each of them represents the quantity by whichust be multiplied in order for it to
represent the normal distance from a point to the smirfaf discontinuity in the
corresponding initial state. Their ratio is thereftne normal dilatation to that surface
when passing from one of these states to the other.

83, — Therefore, we may now speak of the segmént;(v) only upon indicating
which initial state it was formed from.

For certain questions (for example, in elasticityy tnitial state is indicated by the
nature of the problem itself. The same is not trueymrodynamics. We then agree to
take the actual state of region 1 at the instant cereidto be the initial state. It is true
that this state is defined only in a part of the medilfowever, one may prolong it into
region 2, as we shall do in a moment, since the pakiavatives of the coordinatesy,

z with respect to the coordinates, b, c(the coordinates of the arbitrary initial state that
we originally chose) remain continuous. That fictitictigte may be taken to be the new
initial state without having the condition that wagedian no .45 (cont.) cease to apply.

84. — If one inverts the roles of the regions 1 and 2 thenimmediately clear that
one must change the signs of the quantities:

&) (a5 )]

However, on the other hand, the denomingityt + f,> + f * will experience a double

change. On the one hand, there will be a changgof On the other hand, from what
we just said, there will be a multiplication byaactor that is equal to the dilatation normal
to Sthat is associated with passing from state 1 ates?, i.e., unity plus the normal
componentia + yf + vy of our segment.

() ¢(da',db,dc’) represents the linear elemet® + db® + d&® expressed with the aid of the
variables da’,db’,dc’; @ is the form added t@; D is the functional determinad?(@0.¢) and the

D(a,b,c)’

2 2 2

quantity[ﬁj +[ﬂj +[ﬂj is equal tolqg(af,af,af,j_
da ab ac D? \9a’'ab adc
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By definition, depending on whether or not the directiosimes a, S5, y will be
changed into—-a, —£, -y, the components that we must concern ourselves with wi
change into:

3= A i = U
(39 1+ Aa+ uB+vy’ 1+ Aa+uB+vy’
. v
1+ da+uB vy

85. — Before passing to the general case, we again treataee of second-order
discontinuities, by reason of its importance. Firsagine the derivatives of index 0.
Since the functiom is continuous, as well as its derivatives of firsley, the proposition
of no. 74 shows us the existence of a numbeauch that one has:

2 2 2
e [l 2]
(40 O%x O%x O%x
=, f., = Mf_f,, = A _f,.
A xda dadb

Similarly, if #z andv denote two conveniently chosen numbers, one may write:

o [ [ 2]

&’ D2 x? A
o%y oy
= f, =uf f,
&& )Ufc a @.d) ,Uf b

(40)

2 2 2 2
522 = U, 522 = Uy, 5_22 =uZ, 0z =uf, f.,
aa fo.9) ac dac

2 2
Ozl g, (22|t
X Jadb

The numbersl, y, v will again be considered the as the componenssseigment.

It is clear that this result may be interpretedrathe preceding. If we prolong the
state in region 1 into region 2, in such a manmat the second derivatives remain
continuous, then in order to pass from state 1 tpudonged into region 2, a
transformation that belongs to the category weistudth no.57 must act on this latter
region, in such a way thatxf, y, Z are the coordinates of the prolonged state 1 xagd

z are those of state 2 then one will have formulk$) for x'-x,y' -y,Z' -z,and

analogous ones from n67, which will be completely equivalent to the preicgdones.
These formulas show that one has:
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2 f2 f2

41 X=X =A—, -y =u—, z-7Z=v—.
(41 5 y-y=u 5 5
The may furthermore be written:

({220 o

= (A, i, V(fada + f, db+ f.do)>.

86. — We pass to the derivatives of index 1. Thdy/lwei of the form:

O%x 0%z
Aad’ i

We apply the lemma of n@2to the quantityyx / & ; we will have:

O°X O°x O°X
42 =\ f., =Af,. = A f,,

and similarly:

0%y Y 0%y
= f, — 72 | = f, — 7 = fc’
{&&} Ty {d)& M Ty X Hy

0’z | _ 0’z | _ 0z | _
=v,t, |—=|=Vf,, |—=|=vf,,
aadx oA aa

in which (A1, ta, V1) are a new segment.

Finally, the discontinuitiesl,, (b, 1. experienced by the three derivatives of index
two may be considered to be the components ofrd gagment, which is the abrupt
variation of the acceleration.

The geometric interpretation of this latter segimsrtherefore self-evident. As for
that of the segmentl{, £4, 11), one may obtain it by attributing fictitious velties to the
different points that are equal to the presentesin region 1, but in such a way that the
partial derivatives of their components are corgusi Of course, this will change the
new positions that are acquired by the points gibre2 during a timeX, and this change
may be interpreted as a deformation that belongbeaategory that was studied in no.
56. Since this deformation is proportional & it will have a characteristic segment of
the form (1 &, ta &, vid), in which A4, £a, v are the quantities that figure in formulas
(42), (42).

As before, it results from this that the segmepitsy, v) and @, 14, V1) do not
change when one changes the initial state withdwainging the functiorf (in the
previously-explained sense), but only changesatsnfby altering the components of

(42)
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each by the same rati’) It is then convenient to takequal to the normal distance to
the pointa, b, cof &, or, what amounts to the same thing, to replace thesgireg
formulas by:

O°x O°x oy 0°z
=a?, ..., =ABy, ... = 2, = ,

in which a, B, yagain denote the direction cosines of the norm&} that is directed into
region 2. Likewise, as in the case of first-order disicwiities, one must specify what the
choice of initial state is. When there is nothingha nature of the problem to suggest a
choice, one takes the present state at the instasideoed.

Here, contrary to what takes place in the first-oadee, it makes no difference if the
state is chosen from region 1 or region 2. Indeeddéf@mation that permits us to pass
from one of these states to the other one coincidebstiae identity transformation up to
second-order infinitesimals in a neighborhood of the pa@h& . Therefore, there is no
normal dilatation at these points, and consequently change in the quantity
f2+f2+f2.

If one inverts the roles of the two regions then thefficientsf,, f,, f. will undergo
simple sign changes. As a consequence, the saméaviliue forA, y, v, whereas
A1, t4, i remain unaltered.

88 — The results that relate to the case of arbitranow appear by themselves.
There will existn+1 segments, of which, the first ong f, V) will make the variations
of the derivatives of index 0 known, by means of the foasul

o"x } o'y
— oo | =ACPBY, {—}W”ﬁqyr,
p q r p q r
(43 {@'d)& 5z ‘b’ (p+q+r=n),
{Japd)qa‘cr}:'/apﬁqyr,
or

) ) 51, _ .
[[E}da{g}db{g}d% (%,y,2) =, u,v)(ada+ Sdb+ ydc)";

the second segmem( t4, 1) exhibits the variations of the derivatives ofemdl by the
formulas:

(% This ratio is equal to the ratio of the two valuesf,ofs it relates to the segmenit, (14, 11);
however, for the segmem,(, V), it has a value equal to the square of the first one.
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o"Xx B ,

saroviscot| AV

. I " 1 .
(43) Wq’gm =ua®By’,  (p+q+r=n-1)

i 0"z 1 .

saroviscot| NaBY

Theh+1" segmentAn, th, W) will give the variations of the derivatives of index

o"Xx B ,
saroviscat |- M BV
" | 5ny __ P 9, —
(43") SADOCOF =u.a’ By, (p+g+r=n-h),
i 0"z 1 .
Saaniader | Y

and so on, up the+1™ segment Ay, £ W), which will be nothing but:

o"X o'y 0"z
ar | an | an |

The geometric interpretation of the segmenmtsy( v) and (1, L4, vi) will be the
same as always. That of the segmem, /b, 1») is obtained by correcting the
accelerations of the points of region 2 in such a v&atoamake the derivatives of order
n—2 continuous when passigy, while leaving the positions and velocities unaltered. A
deformation results from this during the infinitely sntathe &, which is proportional to
&, and whose characteristic segment will bed?, & &, v, &).

The same situation will apply to the remaining segmamen introducing
accelerations of higher order.

From this (or, further, from the obvious fact thas therivatives ok, y, ztransform
like the variables themselves under a change of absodatelinates), one deduces that
the preceding segments do not depend on the choice of catesdim X, y, z) space.
They are independent of the choice of functipeince the preceding formulas contain
only the direction cosines of the normalSp

If no particular state is suggested by the problem therlomases the present state at
the instant considered to be in either of the twooregi(which is indifferent to the fact
thatn is greater than unity).

The inversion of regions 1 and 2 will change the sehskeosegments whose index
has the same parity asand leave the others unaltered.
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§ 3. — STUDY OF DISCONTINUITIES (cont.)
KINEMATICAL COMPATIBILITY CONDITIONS

89. — We now must demand to know whether the relationtsvilbaobtained up till
now are the only ones that the elements of our disugties are subject to.

Suppose that we are given the numbkrg, v; Ay, ta, wi;...; An, th, Vn arbitrarily at
each pointag, by, co of . On the other hand, 1&¢, Y, Z; X1, Y1, Za; ...;Xn, Ya, Zy be
functions ofa, b, cthat are everywhere continuous, as well as theivataeres of all
orders. At the instant considergdwe give the different points of the medium:

Positions X, Y, Z) in region 1 and positions:

(x+)hc ,Y+'uf ,z+Vf j
nl nl nl

in region 2;
Velocities i, Y1, Z3), in region 1 and velocities:

n-1 n-1 n-1
xl+)Ilf ,Yl+’ulf ,Zl+Vlf |
(n-1)! (n-1)! (n-1)!

in region 2;
Accelerations Xz, Y2, Z») in region 1 and accelerations:

n-2 n-2 n-2
x2+)lzf ,Y2+,uzf ,ZZ+V2f |
(n-2)! (n=2)! (n=2)!

in region 2, etc.

Finally, there will be accelerations of ordethat are equal toX(, Y, Z,) in region 1
and Kn + An, Yn + th, Zn + 14) in region 2.

In the preceding expressions it is convenient to give v, ..., A, th, Vs the values
that they have at the poirdo( bo, ), which is the foot of the normal that is based at the
point @, b, g onS,.

One thus obtains a discontinuity of oraeat the instant, for which the segments
defined above have the arbitrarily chosen valdeg/(V), ..., (A, th, Vn) at each point of
S.

90 — It remains for us to see whether this system ofciéds and accelerations
actually corresponds toraotionthat satisfies that condition of impenetrability tknes
stated in no44, as well as the supplementary hypothesis that was imame46.

However, if we consider two media that occupy twotigoious regions of space, 1
and 2 (with bounding surfac®, at the instant, and if we suppose these regions to be
mutually independentand we give velocities and accelerations to theouarpoints in
each medium at that instant that are continuousrdws orders, but vary (for the points
of the contact surface) when one passes from onetother then these media will, in
general, cease to be contiguous at the instants lfeet.t They will separate, or, on the
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contrary, merge, with certain points of region 1 angemto region 2, and conversely. In
order for things to be otherwise, it is obviously neces&argertain conditions to hold.
These conditions, which we will recall later on, #re following onesFor each point of
Sthe normal components of successive velocities and accelerationberthst same in
both regions.

It therefore seems that this must be verified inctiv@ext of the actual problem.

91 — We shall see that things do not always happen exditlyay. However, to
that effect, we have two fundamental cases to distihguis

1. The discontinuity constantly affects the sam@eeules; in other words, the
equation of the surface of discontinuity does not containWe then say that the
discontinuity isstationary.

2. The equation of the surface of discontinuity dep@mlsme. As a consequence,
we must write:
(49 f(a, b,c,}=0,

and it is soluble fort whena, b, care given (at least in a certain region). The
discontinuity then affects different molecules depegdon the instant considered; we
say that itpropagates.We further give such a discontinuity the namevate.

The preceding stated conditions are essentially negessahe case of stationary
discontinuities.

This is no longer the case for propagating discontesuit

92 — Nevertheless, if we place ourselves, as we haery @ight to do,in a region
and an interval of time during which the surface of discontinuities remnaiguethen the
segmentsA, 4, V), (A1, ta, Vi), ..., (An, L, Vi) might not be arbitrary.

Suppose that the instagtat which we take the surface of discontinuggysubdivides
such a time interval. With these conditions, we myptess that this surface is unique,
not only for the value,of t, but also for the other values, before and after.

When this is the case we say, with Hugoniot, thatttbe motions that occur in
regions 1 and 2 at the instanarecompatible.

The conditions for the media to be compatible vaity whe dynamical problem that
one must solve. However, we shall confirm that thereomething that all of these
problems have in common: These conditions are nagessarder for compatibility to
be kinematically possible.

93. Case of stationary discontinuities.— First of all, consider a stationary

. - o"X . .
discontinuity of ordern, and let———————be a derivative of orden that is

A dix a
discontinuous. Suppose that the intiex different from zero.
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At a point &, by, co) of the surface of discontinuity, th&' derivative with respect to

n-h

time o _oTx is different from zeroand this is true for a continuous sequence of
aa’dix’

values of t,since, by hypothesis, the discontinuity does not céasgepend on the

molecule &, by, ).

n-h

Therefore{ 9
o)

}may not be null, except for particular valuestof If we
P’
abstract from this, we see that a derivative of ordeh is discontinuous, and that, as a
consequence, the discontinuity is of order less tharhich is contrary to hypothesis.
Thus,h must ultimately be null.
Thereforefor a stationary discontinuity the first derivatives that are discontisuou
are of index zero.

n n

94. — In particular, suppose that a derivative of the fg%gn 5tr¥’§t”
discontinuous. Then, from the preceding reasonhmsame will be true for at least one
of the coordinateg, y, or z. It will therefore have amabsolute discontinuity.The two
portions, 1 and 2, of the medium behave like twitedknt bodies and slide over each
other while constantly remaining in contact.

These are precisely the conditions that we impoagedn ourselves in no90.
Therefore, as we said in that section, if the vigjp@acceleration, etc., are discontinuous
then their discontinuities may not be arbitrary.isleasy to find the conditions that they
must satisfy (while always assuming, as we diddn46, that the two partial media, 1
and 2, remain in contact and do not indeed separate

Indeed, letS be the surface of discontinuias considered for the present staded
let:

(45 P(x,y,3=0,

be the equation & A particle, either in region 1 or region 2, thalongs to that surface
at an arbitrary moment will not cease to do so 4&p. One will thus have:

99k 09 0pa, 0p _
oXxa oya o0zAa& ot
Let (x1, Y1, z1), (X1, Y1, ) be particles that are situated at the same (ot 2 of Sat
the instant, one of which belongs to portion 1, and the otledoiigs to portion 2 of the

medium. One may replace y, zby xi, y1, z, as well as by, y», 2, in the preceding
equation. Upon dividing the respective sides eftikio relations so obtained, we get:

EHEHEE)
oX| & | oy| & ]| oz|a&

Thereforethe abrupt variation of the velocity is a segméat is tangent t&.
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¥
A
variation of the acceleratiofif it is non-zero)is tangent to &long its course. One sees
this upon differentiating equation®) twice, which gives:

For some particular instant, it may happen ﬁ%ﬂ [ } [%} are null. Therthe

2 2 2 2 2 2
0 ¢(§j b0 P XY S 0PK 0Py 0@
x>\ & oxoy & & oxot & oyot & o0zot &
2 2 2 2
L0°0  040°x 090°y 00’z _
ot> ox ot> dy ot® 9z ot’

(47)

in which everything is continuous, except for teents:

%62x+%62y+%622
ox ot> oy ot> 0z at?

Therefore, the set of them does not vary over theodtinuity.

If the acceleration itself is discontinuous theoaaclusion that is analogous to the
preceding one will be true for the third-order detaion, and so on.

We further remark thatone of the derivatives of x, y, z is discontinuaasn it is
considered as a function of timejth a, b, cfixed; the point &, b, § must belong to
either region 1 or region 2, and everything is swdus in each of them.

95. Case of waves- Contrary to the latter case, the discontinuitiegt propagate
never give rise to absolute discontinuities. Imjé®/o molecules that are infinitely close
at a given instant may cease to be that way onlpdssing through the discontinuity.
However, since this passage can happen only danngfinitely small time interval their
positions will be altered only by an infinitesinahount during this time.

Contrary to the case of stationary discontinujtii®e derivatives that will be
discontinuous will be the derivatives with respectime. This is because an arbitrary
specific molecule will pass from one region to ttker at the moment when it contacts
the wave.

Finally, if there is compatibility then it will ridoe true that the derivatives of index O
will be discontinuous to the exclusion of the otberivatives of the same order as in the
case of stationary discontinuities. Indeed, oncietrary, we shall see that all of them
vary in time.

96. — We thus occupy ourselves with expressing thecegt that there is
compatibility, in the sense of n82. The motion will be continuous in each of the two
regions, 1 and 2, and they will be separated hyrffase whose position varies with time,
but which is unique at each instant, and whosetequave express by:

(44) f(a, b,c,31=0.
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To that effect, it will be convenient for us to use kueguage of four-dimensional
geometry and considex, b, c, tto be the coordinates of a point in a four-dimensional
Spacek,.

In this conception, ordinary space [which relates te point @, b, ¢], when
considered at the instatt must be regarded as the section of the sfacby the
multiplicity t = const.

Equation 44) will represent a triply extended multiplicit§y, which is the section for
t = const. The multiplicitySy dividesE, into two regions, 1 and 2, which are generated

by the previously considered regions 1 and 2 of ordinaryespaspectively, when time
varies.
The preceding hypothesis that we made (0s/1) consists of demanding that the

guantities that we operate on and their derivatives@mgnuious outside a$o and onSy
itself, but may be discontinuous upon crossig

97. — This being the case, we apply the method o¥8ono longer to the surfac®,
but the multiplicitySo. Let ® be a function on this multiplicity that is continugumsit

whose derivatives are discontinuous (always undecdmelitions indicated in nog.0-
71). As in the preceding, one verifies that one has:

(48) [@} da+ [@} db+ [@} dect+ [@} d=0
oa ob oc ot

by means of the differential equation of the multipficSy, which may be written this

time as:
(49 fada + fodb + f.dc + fidt = O,

in which f; denotes the derivativg_t;. Equations 34) may thus be completed, and one

may write:
&), _[@]., _[&]., _[#].
=0 =2 <[ 2] <[ 2],

Now, if one likewise supposes that the derivatiwe® up to ordem are continuous
then one will have, instead of the proportio8S){(

5ncb. n — - 5nq) . reh _5ncb. n
(51) {Jan } . -'---{@—p&q&rah} (Prarr { A } i,

which may be summarized, as before, by the ide(uitth respect tala, db, dc, dt
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2 Jaas| 2 Jabs| 2 Jaer| & fo | o
aa o o o
= A(fada + fydb + f.dc + fidt)",

in which A is the common value of the ratidsl).

98 — Suppose, as we agreed to do in8).that the derivativesk, f,, f. areequalto
the direction cosineg, S, y; respectively, of the normal to the to the surf&eéhat is
represented by equatiod4) at the instantt. f represents (up to second-order
infinitesimals) the normal distance of a point tottkarface,when measured on the
adopted initial stateand regarded as positive in region 2.

Therefore, lefy(a, b, 9 be the left-hand side of equati&s i.e., the functiorf when
one does not vary letS; be the surface that is analogousg@nd corresponds te dt.

The normal distance from a pointjfto S (which is taken to be positive in region 2 and

negative in region 1) will obviously be equal to the valtiéo0or, what amounts to the
same thing, oflfy . Let:

dn =db =fsda +fydb + fcdc=-fdt.

The quantitydr/dt is the velocity of propagatiorof the wave, as measured in the
initial state considered. We denote it by the leftgr such a way that one has:

(52) g=- ft.

It is positive or negative according to whether theppgation is from region 1 into
region 2 or vice versa.

If f is the left-hand side of the equation &r, when taken in an arbitrary form, then
in order to obtain the direction cosingsf, y one must divide the coefficients of9)

by fZ+ 2+ f2. One will then have:
a b c

(52') = 1

lfa2+ fb2+ fCZ !

with the radical always being taken to have the siff in region 2.

99. — Thanks to the presence of the radical, thecitgl@ depends on the choice of
initial state, and, when one changes this, it igiasly altered by the same ratio as the
normal distances to the surface of discontinuity.

As in the foregoing, we usually choose the prestie at the instant considered to be
the initial state by specifying that it amountghe state of region 1 in the first-order case.
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100 - Along with the velocity of propagation, one may neethtimduce thevelocity
of displacementf the wave, i.e., the velocity that the surfacelis€ontinuity moves with
when considered in the present space.

Let:

(49 #(x,y,z,¥=0

be the equation of that surfaggi§ the value taken iywhen one replaces b, cby their
values as deduced from equati¢liy. LetSbe its position at the instanaind letS be
its position at the instamt+ dt. The velocity of displacement, which we designatd,
will be the quotient of the normal distance to sefaces S§' by dt (with the same sign
convention as always).

The argument that was presented above obviougdsgi

_0¢
(53) T= ot

2 2 2
BEGER
0x oy 0z
for the value of that velocity.

The velocityT is distinct from the velocity of propagation, ewshen it is computed
in an initial state that is identical with the peat state at the instamt indeed, &
coincides withSin this case. Howeve®, does not coincide with'. S is related to the

positions that are occupied at the instiaby the particles that form the surf&eat the
instantt + dt.

It is, moreover, easy to find the relation thaistx between the two velocities.
Indeed, suppose, to simplify, thais chosen in such a manner thatf,, f. are equal to
the direction cosines, S, yof the normal t&y (i.e., t0S).
%% at the instant, sincex, vy, z
oy 0z

0¢

are nothing bug, b, cat that time. One will hav8=—-fiandT = _E'
However,¢ is nothing buf when it is expressed with the aid of the variakles z, t,

These direction cosines will also be equa%—(zo
X

and, as a consequen%%is nothing but the derivativgeft—, which is related t% = f, by

relation L8). One therefore has:

(54) T:—(ft—uau—v%—wﬁ

sl j =0+ V.,
ox oy 0z
in whichv, denotes the component of the velocity\, W that is normal t& at the point
and instant considered.

Moreover, one will arrive at the same result bylging the theorem on the
composition of motions. Indeed, the motionSih space may be considered to be the
result of:
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1. Its relative motion with respect to the mediumtich, when considered only
during the time intervadt, bringsS into agreement with the position &f and is nothing
but the propagation of the wave.

2. Its ensuing motion, which is also the motion ofrtrelium.

The velocityT is therefore the sum of the normal velocities afsthtwo motions,
which are precisely andv.

100 (cont.). — Formulagk?2'),(53) are, moreover, susceptible to a geometric
interpretation that will be seem clearer to us & Vrst consider motions in two
dimensions.

Envision a motion that takes place in a planesuoh a way that it has two initial
coordinates, b, and two present coordinatesy. The discontinuities that we consider
will then define curves whose position at the inst@af timety will be represented in the
initial state by, (fig. 7).

We may take time to be the third coordinate, with thexis taken to be vertical and
the horizontal coordinates taken to &eb. The multiplicity Sp, which represents the

progress of a wave, according to a conventionighahalogous to the one that was made
in no. 96, will be a surface herdfig. 7), whose sectiof by an arbitrary horizontal
planet =t" will give the new position of the wave at the cegpending instant. It will no
longer be necessary to represent this curve inséime plane as the one in whigh
figures, which will obviously be in the
horizontal projections, on that planefig.

7).

If t'is infinitely close toty then the
normal displacemendn of the wave will
be described by the normal
distanceMm' (fig. 7) between the curves
S, Sy,-  Moreover, sincat is nothing but
the normal distance from the pomitto
the pointM’ of Sj, which is its projection,
one sees that theelocity of propagation

Fig. 7

dn/dtis nothing but the limit ofm,—l\l\//ll,, I.e., theinverse of the slope of the surfaggewith
m

respect to the horizontal plarfer the cotangent of the angle that this surfacem$ with
that plane).

However, the formulas of analytical geometry gaveexpression for the quantity thus
obtained that is completely analogou$s® . )

If one takes the actual coordinatesy to be the horizontal coordinates, i.e., if one
constructs not onlySy, but S, then the inverse of the slope of the latter wilte the
velocity of displacement in a form that is analogjtm 63).
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It is clear that these considerations may be singilextended to motions in space
with no more difficulty than the introduction of fodimensional geometry, and one thus
recovers the formulgd82') , (53) that we wrote for them.

In what follows, we will need to employ figuresatirelate to planar motions (such as
fig. 7) in order to represent the reasoning that wé steke on motions in space (in such
a way that when we speak ofarfaceS in the text we will trace out eurve S in the
figure, and so on).

101 — As before, we first treat discontinuities oé first and second order.
For the first order casg,is continuous, but not its derivatives; we therefarite (no.

T e

If the common value of the first three ratiogl ién the system of notations of nb?),
whereas the variation @k/& is denoted byl;, then one obtains:

(59 M=-6).
Similarly:
’ Hy = [%} =-6u,
> = 2=

Therefore,the two segmenté, y, v), (A1, 14, V1) have the same direction. Their
ratio is equal, up to sign, to the velocity of pagation &.

102 — This relation persists for any adopted inisiate, but wheread, (4, 11 will be
independent of that initial state, on the contrémgt choice will influencel, 4, v, and 6.

If one chooses the present state of region 1,ardhregion 2, then the quantigwill
have two value®, and &, which are generally different, and whose ratiegsial to the
normal dilatation 1 ¥la + g+ vy.

By reason of that circumstance, there is ofteadwantage to introducing the velocity
of displacemenT for a first-order discontinuity that is indepentehthe choice of initial
state. This velocity is related t and & by the formula%4), in whichv, — which is, in
general, affected by the discontinuity — has twitedent values/;, andv,, . One has:

(56) T=6i-Vin= 6 —Von.
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103 — Now suppose we have a second-order discontinuity.le@una, when applied
to the quantityk, which is continuous, as well as its first-order dernes, gives us:

2 2 2
{;?};az :...:{;2};—a@:...:{zzx};ez_

2
. X .
However, the ratl%L 5 } -a?, as well as all of the analogous ratios that retatde

derivatives of index zero, is equalAqno. 85. Similarly, we have set:

o*x | | 0| , || _
{Ja&}a_{dﬂ}ﬁ_{&&}y—)l“

and:
0°x
&)
Therefore:
A, A
(57) my- il
Since one has, analogously:
- H _H
ﬂ T T T o
(57') -8 62
y="1 =Y
-9 6%

the three segmentd, y, V), (A1, ta, V1), (A2, L&, V2) have the same direction and define a
geometric progression, with the ratio of that progression betiég
The preceding proportions may then be written:

[ o[ Zher] 2]

= A(ada + Bdb + ydc - 8dt)?,

[ e 2o

= y(ada + Bdb + ydc - 8di)?,

(ko[ 21

= Wada + Bdb + ydc — db)>.
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These considerations may be generalized. For arbitrathe n +1 segments
A, 1, V), (A1, ta, V1), ..., (An, th, V) have the same direction and form a geometric
progression whose ratio is equal, up to sign, to the velocity of propagatehas:

A:i:...:j_h:,,,: An ,

i (-6)" (-0)"

(58) :ﬂ:...:Lh:m: M
~0 (-6) (-6)"

L UM U

-0 (-6)" (-6)"

These relations are true for any choice of ingtake, as well as their influence on the
values of the quantities that they figure in. ©ticse, for orders higher than unity it is
useless to specify, when one chooses the iniai $b be the present state, whether it is
state 1 or state 2. If one inverts the order efttho regions the® undergoes a simple
change of sign.

104 — The case of stationary discontinuities obvigpusbrresponds tofd = 0.
However, if one nullifie®? in formulas §8) then one then getdy, = 14 = v, = 0 (forh >
1). One thus comes back to the result obtainedoir93 precisely:for a stationary
discontinuity of order n, the only derivatives of order n that are digsnooiis have index
zero.

105 — On first sight, the case in which relatiob8)(are verified seems to be much
more particular than the one where the segmelntg4, v,) are arbitrary. Meanwhile, it
results from the foregoing that compatibility mbstregarded as the rule and the contrary
case, the exception. Indeed, if there is no coimiigt then the surface of discontinuity
might not be unique, and, at the very least, ithilesiinto two leaves that are separated
before the instant and are something different afterwards. Withoista@htinuity, the
discontinuity that exists at the instanhust therefore be regarded as being, in reahty, t
superposition of two or more others whose surfanesnentarily coincidef). One
supposes only that the absence of compatibilityus an infinitude of times in a finite
interval of time, because then the surfaces ofodiicuity, which double an infinitude of
times, will not be isolated.

106 — From now on, there is therefore reason to ssgpanless indicated to the
contrary, that the + 1 segments have the relatiod8)(between them. In particular, it
results from this thaa discontinuity is completely defined by a segment at each point of

(*% Such a case is, moreover, the exceptional case; witediscontinuities propagate independently
of each other, they encounter each other only alorigea ih general, without the wave surfaces ever
coinciding at any moment. (See chap. VII).
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the wave surfacethe segmentA, 4, v) that corresponds to the derivatives of index zero,
and a numberthe velocity of propagation.

107. — This segment and this number may be arbitrary, naereoln other words,
this time, equations5@) give precisely all of the relations that exist bedw the
variations of the derivatives of ordein order for there to be a discontinuity of thatler
when one knows nothing about the dynamical nature ahtten.

Indeed, suppose that we are given equaddnhfor Sy arbitrarily. We may obviously
choose it in such a manner ti&thas a given position at a definite instant #&idas a
given value at each point. Suppose that we are algen ghe segmentA(y, V),
arbitrarily at every point 0%, and similarlyS,. Finally, letX, Y, Z be functions o#&, b,
c, tthat are continuous, along with their derivativesliobaers. The equations:

x=X, y=Y,z=2 in region 1,
=X 41 [f(a,b,lc,t)]
n!
(59 y=Y+ ,u—[ fa b,lc,t)] in region 2,
n!
,=7 +I/[f(a,b,lc,t)]
n!

define a motion (and no longer just a system of velescdm accelerations, as in 189)
that presents a discontinuity of ordemwhose elements are precisely the ones that we
were given.

Moreover, we see precisely why the motion thus defines dot cease to verify the
general hypotheses of n@gl-46, even though it does not satisfy the conditionsa 6.
The reason for this is the same as the one that agplany the discontinuities that
propagate do not give rise to absolute discontinuities, esaw in n0.95 For an
arbitrary particle, the continuity of velocities arcalerations ceases at the moment when
it encounters the wave. However, it ceases only danmgpfinitesimal time and is then
re-established, in such a way that the continuity ation is not disturbed.

108 — In the case where there is no compatibility, tiseahtinuities of orden are
divided, in general, into discontinuous partial derivatived are likewise of order (the
segmentsA, th, W) that relate to them have a geometric sum for ea@lewvofh that is
equal to the analogous segment that corresponds to theabdgicontinuity).

However, we remark that other hypotheses are posgtoleexample, a discontinuity
of ordern may subdivide into discontinuities of ordgreater than n A discontinuity
that depends on the velocities may be replaced by twasothat depend only on the
accelerations.
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In order to account for this, consider, to simplifypation that is performed along the
axis of the abscissa with each point of the initigtestbeing defined by just one
coordinatea, and its actual position by just one coordinateThe variation ofx as a
function ofa andt may then be represented by a surface.

Suppose that this surface is composed of two semi-
planes that form a dihedral; we then have a first-order
discontinuity.

Construct two lineSA andSBthrough a poinSin the
intersection of the dihedral (which corresponds to ae/aj
of a and a valuéy of t), which are contained in the two faces
(fig. 8), and relate these two lines by a tangent conicalenapp
with the lines as generators in the two faces of thedial.

We may then suppress the portion of it that is contiaine

between the two lines and the portion of the intersedtig.

8) that corresponds to> tp in order to replace them with the Fig. 8
conical nappe, and we therefore have a motion thatnisese

a discontinuity of order 1 fdr=ty and two discontinuities of order 2 for t,.

109 - Returning to the case of compatibility, we proposeatoulate the variations
experienced by the principal elements that we considerd ifirst part of this chapter.

Density. — In order to study density, we suppose that one has th&erdsent state
to be the initial state.

First, consider a first-order wave. We know that tleformation of state 2 with
respect to state 1 belongs to the category that we stidienl 56, and we have learned
to evaluate the normal dilatation, which is equal ®rttio of the densities/ p,. This
dilatation is obtained by adding unity to the normal compbnen+ yf5+ vy of the
discontinuity ¢°), which is assumed to be the state 1 of the medinenefore, one has:

(60) &:1+)la+,u,[>’+vy.

2

This expression may be transformed in various menhy considering the indicated
relations in n0s101-102 First of all, upon multiplying the normal compon of the
discontinuity by—6& we obtain the normal component of the variatiorthe velocity.
Therefore:

Pr_q_ V]
(62) Y 1 5

In this formula,v, denotes the normal component of velocity and mesgive the
value 6. One will clearly obtain the same value @y 0, upon changing the sign of]

(*® That is, the segment which, when combined with the euribdefines the discontinuity, as we
just saw.
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and replacingd, with &, andp. / p, with o>/ p1; one verifies this without difficulty with
the aid of the preceding relations (18d).

On the other hand, we have seen that the normal dilatatequal to the ratio of the
velocities@, and &. If we derive this from the double equaligff then we obtain:

T
62 M =Z2-_ "o
(62) T

or, if one prefers:

(61) LEE

110 — One proves the same fact directly by considetite portion of space that is
comprised of the interior of a small cylinder whos® base€, C' are situated in the two
positionsS, S' respectivelyfig. 9), that are
occupied by the wave surface at the instant
t andt + dt, and whose volume ST dt.

This portion of space takes state 1 to
state 2 during the timet.

However, the volume that is generated
by the faceC in state 1 is given by the
expressiorCvi, dt, but the volume that is
terminated by the fac® in state 2 is equal
to Cwndt. As for the volume generated or
terminated by the lateral faces, it is
negligible if we suppose, as we have the rightactldat the ratiat / Cis infinitesimal.

One comes back to relatiod2) upon writing that the volume of the remaining setb
varies with a ratio that is inverse to that of tlemsities.

111 - For the discontinuities of higher order, theuglb variation does not depend on
the density itself, but only on its derivativesavflern — 1 (if the wave considered is of
ordern). Since the quantitg/p is continuous, as well as its derivatives up teon —

2, inclusive, there will exist a numbegrsuch that one has:

ﬁ‘llogl’ij
63 —F _I=kaPBY (-6)".
63 daPdobhioc ot £y (6)

In order to evaluate, we may confine ourselves to considering deriestiof index
zero. If we take the state of region 1 to be fligail state then the quantity logy(o) will
be identically null in that region. On the othemd, since the deformation of region 2
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with respect to region 1 has the properties that wereestud no.59, the value of

ot Iog&

——————inregion 2 will be given by formuldal?). One will therefore have:
da’d' &’

(69 K=Aa+ uB+vy.

Since is, in general, continuous, as well as all of its\dgives, we therefore have
the variation of the derivatives of log@)/

111 (cont.). — One may, moreover, likewise start wite tlerivatives of non-null
index by using formula20). Forn = 2, this gives:

o 1) odu 6v ow
— |Og -
a P " ox 6y oz

2 2 2
The left-hand side may be erttend—u+§/+ﬂv o X 5 Y+ 9 2
oa ob OJc 585t 5h§t oDt
coincide withx, y, z(*®). One therefore arrives at formuB¥) precisely. Moreover, one
generalizes to the case of arbitrarpy differentiating formula (20) a sufficient number
of times.
If one would like to find the change of density, with thecontinuity being referred
to an arbitrary initial state, then one must, of seytransform the formulas that we just

found with the aid of the previously established principles

|f a, b, c

112 — Components of deformation.— More generally, we seek the influence of a
discontinuity on the components of deformati@h (ho.51). This time, we shall make
no hypothesis on the choice of initial state.

Again, let X, Yy, Zbe the corresponding coordinates of the state of mefjiavhen

prolonged into region 2. First take = 1; one will have, up to second-order
infinitesimals:

X=X+Af, y=y+u, z=7+u,
and, as a consequence:

dx® +dy? +dz® = (o' + Adf)? + (dy' + pdf)? + (dz' + wdf)?
=2 +dy'2 + dZ'2 + 2df (AdX + pay’ +vdr)
+(/]2+/,12+V2)df2
- dXIZ +dy12 + dZIZ

(*®) This transformation is applicable in the two regiovhenever the initial state is in region 1, thanks
to the fact that it introduces onbye differentiation with respect ta, b, c.
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+2(f da+ f,db+ f_dQ)(AdX' + pdy’ + Vi)
+(A% + u” +v?)(f da+ f,db+ f_dc)’.

The variations that are felt by the components ofitfermation are thus half of the
coefficients of the polynomial:
65 2(f,da+ f,db+ f dc)(Adx' + pdy' +vdz')
+ (A + p® +v?)(f da+ f, db+ f_dc)>.

113 — These results take a much simpler formnfer 1. In that case, it is no longer
the components of deformation, but their derivatives oodler n — 1, that are
discontinuous. As always, we take the most importase,cthat of = 2, in which:

2
]

X=X+
L M
-y + 57—
y=y 5

VfZ
z=7+—
2

from which:
dx = dx' + Afdf
(66) dy = dy' + pfdf
dz= d' + vdf

upon neglecting the terms that conttims a factor. The simplification that results from
this is the fact that upon squaring and adding mag neglect the squares Adf, df,
vdf. One then obtains:

dx® +dy? +dz? = dx'? + dy'? + dz'* + 2 fdf (Adx’ + wdy' +vdz),

in such a way that the variations&f &, &, U, )5, )4 are the coefficients of the quadratic
polynomial fdf (Adx' + udy' +vdz').

As in no.47, denote the first derivatives rfy, zwith respect t@, b, cby as, by, Ci;
ap, by, &; &g, b, c3. These derivatives coincide with those'of/, Z at every point of the
wave surface, since the discontinuity is of secorttér, and one has:

(67) AdX' + udy' +vdz' = Lda+ Mdb+ Ndc,
with:
(67') L:/la1+,L1a2+vae,, M:/]b1+/1b2+l/b3, N:/]C1+,UC2+VC3.
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Sincedf is equal td, da + f, db+ f,dc, the quantities by whiclk, &, &, U, )4, ) vary
in passing from state 1 to state 2 are (as always tevrns of ordef?):

fLf, fLf, fLf,
(68 ’

f(Mf,_+Nf,), f(Nf, +Lf), f(Lf, +Mf,).

Finally, sincef is null on& and has,, fy, f. for its partial derivatives, one obtains:

AR VPR
X x
T . v

%% fa:%%}ﬁb%é%}ﬁczmc

Mg =| g, =| Dl f = Mf, +NF,
YT x

Wolog o Waloq =\ Yo lig o np 4L,
& Iz x

Vol g | Vol g |Vl t =15 +mi,,
& I x

which is, of course, a result that one verifies withdifficulty with the aid of formulas
(40), (40").

n-1

If the discontinuity is of ordemn then we must repladeby in formulas 66),

n-1)!
and, as a consequence, in formu&.( Formulas §9) will then be replaced by:
n-1 ]
0 A | grgagl =L,
| daPda’da’ |
5n—1.1./. ]
——E [ fPfIf] =MFf_ +Nf,,
dafd’da’

We have written only the formulas that relateh® derivatives with respect & b, ¢
However, we may obviously deduce the variationslbthe derivatives of orden — 1
from them, since the lemma of i/ is applicable t@, &, &, W, )5, ).

From the preceding formulas, one may deduce th@atien of the density (in the
first-order case) or its derivatives, since thatdifion is a function of the components of
deformation.
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113 (cont.) — Similarly, when the discontinuity is ofsti order the result is entirely
similar to the one that we just described if that disicmity is very small in such a
manner that one may neglect the squares pf v. The polynomial §5) then reduces to
its linear part with respect to these three quantitia$ we get (on account dd1)):

(69)

[£,] = Lf,, [&,] = Lf, [&,] = Lf,
[y,]=Mf_+Nf,, [y,]=Nf +Lf,, [y,]=LF +Mf,.

114. Molecular rotation. — Suppose we have a second-order discontinuity. Take the
present state to be the initial state, while alwayspesing that,, f,, f. are equal to the
direction cosines, S, yof the normal to the wave. The components:

_1fow ov
P ‘E(a_y Ej
_1(0u ow
4= E[E _&j
: g(@ﬂ}
2l ox oay)
of the molecular rotation may be written here as:

1(o0°z _o% 1( d*x _0d°z 1( 3%y %
2| D& &) 2l &a dAad) 2\ a&k  dba)

From our formulas, its variation will therefore: be
6 6 6
(70 [ p] —E(,UV—V,B), [d] —E(Va—/ly), [r] —E(Aﬁ—ua)-

The geometric interpretation of these expressigsnaell known: With the point
considered as origin, if one constructs the segniént, v) that characterizes the
discontinuity, and constructs, on the other hargkgment that is normal to the wave and
has the magnitudé&/2 thenthe variation of the molecular rotation is equal toe
moment of one of these segments with respect extremity of the other.

Or, if one prefersthe variation of the molecular rotation is obtainbg turning the
projection of the segmeiid, 1, V) into the plane that is tangent to the wave throagh
right angle and multiplying it by/2.

One sees thahe variation of the molecular rotation is alwayssagment that is
tangent to the surface of discontinuity.

It is clear that one can write down formulas tha¢ analogous to7(Q) for the
variations of the derivatives pf g, rin the discontinuities of order greater than 2.
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115 — Thedirection of a discontinuitys the direction of the segmem, (4, V) that
characterizes it, a direction that we also know tothee direction of the segments
(A1, ta, Vi), ..., An, thy, V).

If this direction is normal to the wave surfé&gavhen considered in the present state,
then the discontinuity will be calledngitudinal; if it is tangent then the discontinuity
will be calledtransversal.

It results from the formulas above ttatongitudinal discontinuity has no influence
on the molecular rotatioanda transversal discontinuity has no influence on the density.

116. Sign of a discontinuity— Suppose that we are given a discontinuity of arlgitrar
order that relates to the instantand imagine that upon starting at that instant, each
molecule continues to move with the same velocity e same initial acceleratienin
other words, that one makes these velocities and aatietes continuous with respect to
time.

As we remarked in n®0, the fictitious motion thus obtained no longer vesiftbe
hypotheses that were stated in 9646, in general. Either the two partial media, 1 and
2, penetrate each other, or, on the contrary, theyaepaom each other and cease to be
contiguous.

In the first case, the discontinuity considered Wél calledpositive or compressive;
in the second case, it will be calledgativeor dilative.

From this definition, the sign of a discontinuitynst modified when one inverts the
roles of the two regions that it separates. It chaufgene reverses the motion, i.e., if one
substitutes the anterior instants for the posteridaints, and vice versa (which amounts
to changing the sign @fin the equations of motion).

From what we said in n®4, it is obvious that the sign in question is related, in a
sense, to the difference that exists between the &lves of the normal component of the
velocity or of one of the successive acceleration® obtain the exact form of that
relation, it suffices to repeat the present argumeritandontext.

Let S; be the boundary surface of the medium 1 (which coincidisthe surface of
discontinuityS at the given instarig) in our fictitious motion, and let{, yi, z) be any of
its points, with:

(7D P(x1, Y1, 21) =0,
for its equation.

Agree, to fix ideas, that medium 1 is situated ongtke0 side of that surface.

Furthermore, le§; be the boundary surface of medium 2, andxgtyg, z) be one of
its points that coincides witlxy, y1, z1) at the instanty, and this point is likewise assumed
to be animated by our fictitious motion. There will begieation of the two media if one
has:

(72 P(X2, Y2, 2, 1) = 0,
fort=ty+¢€.

In order for this to be true, it suffices that theiekive of the left-hand side is
negative fort = to, if it is not null. Since the left-hand side of equat{@l) is assumed to
be identically null, this gives (compare equatid6)y:
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73 e IR RUE R
oX| & | oyl ]| o0z| &

However, since is assumed to be negative on the side of regi%ﬁl%, g—¢have
X z

the signs of the direction cosines of the normalStthat is directed into region 2.
Therefore, inequality?3) expresses thathen passing from regioh into region2 the
normal component of the velocity increases by a segment that issditegtard region
1.

On the contrary, if the change of the normal congmb of the velocity is directed
towards region 2 when one enters into the lattgiorethen the quantitg(xz, Yz, 2, t)
will be positive at the instartt + € and, as consequence, the powat (>, z) will be
external to the new position that is occupied g/ itiedium 1 at this instant. In a word,
the discontinuity will be dilative.

Now, if the normal component of the velocity rengacontinuous then the inequality
(73) is replaced by an equality that must expressfdbethat the second derivative of
P(x2, Vo, 2, t) is Negative. To that effect, as in 92, one will have only to differentiate
equation 71) and inequality (72) twice. In the case for whitte velocity itself is
continuous (and no longer only its normal compo)yeane therefore obtains for a
compressive discontinuity (compare equatibn):

2 2 2
% 5 X +% ﬂ +% E <0,
ox| &> | ay| &* | az| &2

and, for a dilative discontinuity:

%52)( +%ﬂ+%& >0
ay '

ox | &2 &? 0z| &?

These expressions express the same conditionsagsalexcept that velocity is replaced
by acceleration.

If the latter is continuous throughout the motiban it will suffice to replace it with
the third-order acceleration, and so on.

117. — The preceding conditions persist even wheretiemno compatibility (a fact
that will be useful in the sequel).

Of course, it makes sense to speak of stationagountinuities, which, from the
foregoing, are neither compressive nor dilative.

If there is compatibility then one may give a sorhat different form to the result.

To fix ideas, take the first-order case; the ddfece of the normal velocities is equal
to —@ multiplied by the normal component of the segnfdnjy, v); however, the latter is
equal top/ p, — 1.
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Therefore, the discontinuity is dilative or compressaccording to whether
propagation is toward the region of increasing densith@region of decreasing density.

For a second-order discontinuity it is no longerwélecity but the acceleration that is
discontinuous. Similarly, if the discontinuity is ofdern then it will depend only upon
the acceleration of order, and its sign will consequently depend on the signhef t
normal component of the segment, (L, V).

On the other hand, consider the successive derivativiiee afensity with respect to
time. The firstn — 2 of them are continuous; for the{1)* one, one has (nd.11):

{5””092
At

} =(Aa+uB+vy)(-6)"",

which, from formulasg8), may be written:

{5””092
e

} —%(Anawnmvny).

The discontinuity will be compressive if the paresiheon the right-hand side is
negative, i.e.if the propagation is towards the region in which the- 1)" derivative of
the dilatation with respect to time is largest.

118 — One may append certain simple remarks to the pgrecednsiderations that
relate to the splitting of a discontinuity.

For example, consider a compressive first-order digaaityf. Suppose that there is
no compatibility, but the splitting relates to jusibtwaves, and that, moreover, these two
waves propagate in opposite senses. It is clear thedisatone of the two is compressive.
In order for this to be the case, the propagation mudbwards the region of lower
density, and, as a consequente, intermediate state that gives birth to the two states
will be more condensed than at least one of the two states.

On the contrary, if the given discontinuity is til@ then the intermediate state will
be less condensed than at least one of them.

§ 4. — STUDY OF DISCONTINUITIES (cont.)
HIGHER-ORDER COMPATIBILITY CONDITIONS

119 - In the foregoing, we studied a discontinuity of ondérom the viewpoint of
its effects on the derivatives of order What relations does this discontinuity imply
between the variations of the derivatives of orté@anh (upon supposing that they, like
the latter, take definite values on each side of tiee)?

These relations are notably more complicated thanlatter ones. We form them
only in the simplest case.
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Consider a first-order discontinuity, and introduce gbeond derivatives. We have
found that the conditions regarding the variabéee:

(36) [Q} = X, [Q} = A, [Q} = A,
& & X
X | _

(74) [E} = M,

the first three of which provide identity condit®mand the last of which provides a
kinematical compatibility condition.

We suppose, to fix ideas, tHatepresents (rigorously, this time) the distanoenfthe

2 2 2
pointa, b, cto . With these conditions, we may remark thda{i,ﬂ,ﬂ— viz.,
axk dba i

the derivatives of the direction cosines of thenmalrto the surfacé= const. with respect
to time— will be known wherf; is given on that surface. Of course, the samkbeitrue
for the second derivatives bwith respect, b, c. All of these quantities will therefore
be known when one is giveh and the left-hand sides of equatio86)( (74).

We compose the following differential forms by msaf them:

f,(da,db,dc) = f,da+ f,db+ f.dc,
o o o .\, o
7 f.(da,db,dc) =| —da+—db+—dc| f = da’ +
(75 »(da, ) [Ja 5 % j =
2 2 2
f,(da,db, dc) = Ol ga+ 2 gp+ 21 dc,
Ak D& xd

and we likewise consider the analogous forms thattain the variations of the

derivatives ok:
2
o o o
da,db,dc) =| | — |da+| — |db+| — |dc| X
& (dadhdo qaa} [ab} M J

(76) 2 2 2
¢;(da,db,dc) {;ﬂda{é X}db{a X}dc

da axca

First, form the identity conditions. Differentgathe equationq = const. twice on the
surfaceS. We see that one must have:

&, + [é}d “a+ [é}d b+ [é}d ’c=0,
oa 16 4] &
by means of the relations:
(77 f, =f,da+ f,db+ fo.dc =0



11C CHAPTER Il

and:
(78) 2 +f.d%a + f, d’b+ f.d’c = 0.

By virtue of relations36), this amounts to saying that equati@@)(implies &, — Af;,
= 0. In order for this to be true, it is necessary thare exist a linear polynomiada +
Bdb+ Cdcsuch that one has, for adg, db, dc:

(79) & = f, + Z1(Ada+ Bdb+ Cdd) = 0.

Likewise, differentiate the first equatiodd) onS . The differential o%is:

2 2 2
5Ida+5fdb+5fdc:1 o,
& &d  dx  204(da)

. One therefore has:

and, similarly, the differential {é} is 1 0¢
oa| 20d(da)

106 ¢ gped e
20(da)  *  20(da)

However, upon differentiating identity9) with respect tala one obtains (sinck =
0):
10, _A of,
20(da) 20d(da)

+ f,(Ada+ Bdb+ Cdo),

and comparing these two formulas gives:
(80) dA =Ada+Bdb+ Cdc (onS).
Formulas 79) and 80), as well as analogous formulas that relatg, to(which introduce

six more auxiliary coefficients that are analogtu4, B, C), are the identity conditions.

120 — We now pass on to the compatibility conditionso that effect, we must
complete the preceding calculation, on the one haydlifferentiating orSo and, on the
other hand, 0%, by using 74). If we first differentiate the latter d& then we get:

& = f.dA+Af) = Af, + f,(Ada+ Bdb+ Cdg).

Since this must be true for all valuesagfb, cthat verify condition 77), one has,
upon introducing the auxiliary quantity :
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2y ] 2
O XN g0t L At 4%
ad | oad
2y | 2
(81) OX|_ 407 LBt a1,
DA | b
2y | 2
OX N2 297 et + a1,
A | aca
If we now makea, b, c, tvary onSp then we must have, no longé&i7y, but now:
(77" f, +fidt=0.

If the first equation36) is differentiated under these new conditions tihevill give
(from (82)):

2 2
106 (290 LAt 4t |dt= .+ )Ilaf o’f
20(da) " @a 20(da) o |

If we replaceé; with its expression79) and tak€77' nto account then we have,
after making all reductions:

(80 Ada+ Bdb+ Cdc+ A'dt = dA (on&o).

If we suppose that the abrupt variations of tleosd derivatives af are known then
everything in the left-hand side @0' is)known (thanks to equationgd) and 81)), and

this gives us the infinitesimal variation fvhen time varies.
Finally, recall 74) in order to differentiate it oy, which gives (on account of

(80)):

52 0% f
&+ dt = f (Ada+ Bdb+ Cdc+ A'dt) + A f/+—-dt}|
X

We replacé; by its value from §1) and takg77' Jnto account; only the terms ait
remain. This gives:

2 2
(82) O Xl 4291
A2 a

2

If we always suppose that the second derivatifes are known then this formula
2

f : . P
gives u55d ,i.e., the motion of the wave surface up to thirdewr infinitesimal

e o f .
elements. However, one will likewise obtaaltﬂz— by means of analogous equations that
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correspond toy and z. Upon equating the expressions thus obtained, one gets n
compatibility conditions.
If one sets:

2
X, =&, +251’dt+{§2x}dt2

2
= éda+£db+£dc+£dt X,
(83 A M & &
2 2
F,=1, +2fl’dt+5 f dt? :[Eda+£db+£dc+£dtj f,
&2 a o ac fo.}

F, = f + f.dt
then the preceding results may be summarized irddeity:

(79) X, = AF, + 2F,(Ada+ Bdb+ Cdc+ A'dt).

121. Third-order conditions. Now add the following forms to/), (76):

3
f3=[£da+£db+£dcj f,
& b &

2 3
f;:(ﬁda+£db+£dcj |
da [o9] c

3 3
&= [i}da{i}db{i}dc x=| 9% e +...
da & c da
2 2
& = [i}da{i}db{i}dc L U
da & 1o a |da‘a
Differentiate the relatior ] = O three times 0fy; we obtain:

53+§(id2a+ 652 d2b+ 652 dZCj

da® +

2\ 0(da) d(db) d(do)
+ [é}d Sa+ [é}d% + [Q}dsc =0,
aa D ac

by means of equationg7), (78) and:
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P4 e gsaq 2 gopy e gsg
(89 2| a(da) d(db) a(do)
+f d%a+ f,d®0+ f.d’c=0.

The third differentials are eliminated immediately loydition 36). If we replaces,
by its value from79) then we get the relation:

& = Mz + F(Ada + Bdb + Cdg,
which must persist because @¥). In other words, we may write:
(85) & = Afz + F(Ada + Bdb + Cdy + F1y,
in which ¢»(da, db, dtis a quadratic form ida, db, dc.

In order to understand the significance ¢af consider equation7@), which is an
identity with respect toda, db, dc. Changeda, db, dcintod’a,db,d’c, and then

differentiate them o/ (without varyingd‘a,d’b,d'c); this gives:

3( %2 gas 9% gps 9% dcj
3\ada)  adb)  a(do)

= f,(d'a,d’b,d'c)(Ada+ Bdb+ Cdc)

+i af? da+ af? db+ af? dc
3la(d'a)  a(db)  a(dc)
+2f,(d'a, d'b,d'c)(dAd'a + dBd’b + dCd c)

+(Ad'a+ Bd'b+ Cd'c) of, da+ of, db+ of, dc|.
9(da) a(db) d(do)

If we replaceé by its value 85) then the polynomial,(d'a, d b d g becomes a
factor, and the equation reduces to:

dAd'a+dBd'b+dod'c) = < 2%2 ga+ 9%z g+ 9% g¢|
2(a(da)  ~ a(db)  a(do)

Sinced'a, d'b d c are arbitrary, one has:

(86) dA:EM, dB:lM, dC:E awz ,
20(da) 2 0d(db) 20d(dc)

(0nSy),

equations from which one may deduce the valu# d{by virtue of 80)):
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(87) odA=A da+B ofb + C dfc + .

Once we have the identity conditions, we obtain ¢henpatibility conditions by
differentiating all of the condition¥9) and 82) on S,.

We carry out the calculations for one piece uporothicing the expression83),
and:

: %X O°x
X3=4; +3<‘2dt+3(_chd2}da+~-jdt2 { PE }dte'

[al3fe 2]

3 3 3 3
F, = f, +3f,dt+ ° f2 da+2 1 ab+ 0 g dt2+5—jdt3
=Y o

di? X?

3
=(£da+£db+£dc+£dtj f.
a b x A

We may then rewrite the preceding formulas byaeph thef's with X's, f with F,
and introducing terms idt, d’t, d’t everywhere they exist in termsad, db, dc; &, ofb,
dc; d®a, &b, dfc. In this fashion, the identity6) will be replaced by:

(85 X, = AF, +3F,(Ada+ Bdb+ Cdc+ A'dt) + 3F,W,,

in whichW; is a quadratic form ida, db, dc, dt.
Comparing the preceding formula witB5 shows that the part o#, that is
independent adit is nothing butys,; one may set:

(88) W, =y, + 2dt(A'da+ B'db+ C'dc) + A"dt?.

Upon continuing to follow the method that we halays presented, one verifies
that the complete differentials Af B, C,A' on& are:

29(da)  2d(da)
29(db) 2 a(db)
:E 0w, :1 oY, +C'dt
29(do)  20(do)
y 1Y, 10y,
29(dt)  2(dt)

(86))

+ A'da+ B'db+ C'dc+ A"dt,

in such a way that (compar&?):
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(87) Y, + Ad’a+Bd’b+Cd%c+A'd’t =d?A  (on6y).

Finally, if one equates the coefficients of the ddfd powers ofit in(85') then one
has, in addition to the identitg$), the relations:

&, = Af, + A'f, + 2f/(Ada+ Bdb+ Cdc) + f,¢,
+2f,(A'da+ B'db+ C'dc),

3 3 2 2

5x2 :Acff +A5f+2)l'5f

dadk dadk

(89) + 2N, + A,

adk’ A’

3 2 3
Ej} :321';: +30'f, + 5&5 .

If we are given the position of the discontinusyrfaceat the instant then these
various formulas and their analogues relatingytoz permit us to calculate the
parametersd’,B',C', A" and their analogues as functions of the abrupttians of the
first, second, and third derivatives of the cooatlzs. Similarly, one eliminates these

guantities between them, in such a manner as tairolbhe compatibility conditions.
3

: : f. . .

Finally, the last of formulas3@) gives us FER l.e., the third-order acceleration of the
wave surface, and one has two other compatibibityd¢ions upon equating the value
thus obtained to the one that one deduces fronanb&®gous equations that relateyto

andz.

122. If these conditions are not satisfied then tinst-order discontinuity surface
might remain unique. However, if one adds at least wave of higher order then it
separates from the first in the neighboring insaotthe one considered.

123. Case of one wave of second orderWe further propose to find the third-order
conditions for a second-order discontinuity.

We may arrive at them by calculations that ardoguas to the ones that we just
carried out. However, we may also deduce this rdsan the preceding one, because
one obtains a second-order discontinuity uponrgefti= 0 in formulas 79) and(79' )(the

analogous quantitieg andv are likewise null).
The second-order conditions must then coincidéh whiose of nos85, 86, 103
indeed, this is easy to confirm. From rela{i@®dl it 3uffices to remark thadda + Bdb

+ Cdc +A'dt must be annulled because of condi{iod  Qne may therefore write:

A A
90 A== =
(90) 5
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(in which, A is, of course, no longer the quantity that we haveagdwdenoted by that
symbol, which is null here). Relati¢r@') then becomes:

X, = )lFlz,
which is precisely the result that we found in H03

Now consider the expressidf, that figures in the third-order conditions. From
(87", this expression must be such that:

W, +A dfa + B db + C dc + A'd’t=d?a,
are nullified because of the relatidas= 0, and:
F, +f,d%a + f, d’b + f.d’c + f,d’t = 0.

From the values9Q) of A, B, C, A',this gives:
(91 Y, = % F, + F,(Ada+ B, db+C dc+ A/dt),

in which Ay, By, C1, A denote new parameters.
All three relationg86)are then reduced (for example, sincézgfa and

_1 oF,
=~ 29(da)

) to:

dA =Ai;da+B;db+ Cidc+ Adt,
and relations§5), (85) become:

X, =3AF,F, +3F?(Ada+ B,db+C,dc+ A/dt),
&, =3if,f, +3f?(Ada+ B,db+C,dc),
& = M, f, + 2f [}/ + f (Ada+B,db+C,dc)] + 2,

O°X o°f o’ f ,
{&&2} = A1f12 +2Afta+ fa(A?-i_ZAlft)’

0°x o’f .,
|:&3 :| :3ft(A?+Alftj'
2

3
Naturally, these equations no longer g%[gf—,but onIy5 f

>—»Which appears in the last

two derivatives, and, as a consequence, may becdéduom six different equations
(counting the one that correspondyi@).
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Moreover, the distinction between the identity candés and the compatibility
conditions is different from the one we had befonedekd, condition74) is given, and,
as a consequence, furnishes the identity conditions,athsté making it part of the
compatibility conditions.



CHAPTER Il

THE FORMULATION OF THE HYDRODYNAMICAL

PROBLEM
AS AN EQUATION

§ 1. THE INTERNAL EQUATIONS AND THE SUPPLEMENTARY QEDITION

124 — One knows that the equations of hydrodynamics are dedwmedthose of
hydrostatics by d’Alembert’s principle. As is well knovthis deduction, upon which we
will not insist here, leads to the following equations:

_ 52x 1 dp
a2 ,06x’
o’y 19
(1) Y= dzy ap,
p oy
_d°z, 10p
&2 poz’

in which the symbolsﬁ 0 have the same significance as in chapter Il. The quemtiti

u= s v—% W—Edenote the components of velocity, in such a way—Hﬁgatfor

example, is equal '%J—; equation 18) of chapter Il further permits us to write:

O°X _0u du_  Ou Ou_ 1dp
= U +v— X -=2E
a* ot ox dy oz 0 0X

d°y_ov_ ov_ av_ dv_,, 1dp
tU—+vV—+w—=Y -———,

&2 ot ox oy oz 0 0y
0°z _ow Ow Ow  Ow _ 1dp
=—+U—+vV—t+tWw—=7-——,

&% ot ox 9y 0z 0 0z

(2)

Here, the quantity — which is the density, as expressed by equatiBnan(d(3’) of
no.47 -
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XK XK XK
a d o
0 |& d &
@ a x
a d oc

Equations I) and @) (through which one may expreg%,g—s,%,with the aid of the

partial derivatives ofp, X, y, zwith respect toa, b, 9, when combined with one
supplementary condition that remains to be defiaeelthe ones that define the unknown
guantitiesx, y, z, p,o as functions oé, b, c, t. However, one knows that it is most often
advantageous to substitute the Eulerian formulabiothis equation, in which, b, cdo
not figure, for this mode of formulation, which tisat of Lagrange. In the Eulerian
formulation, the independent variables &reg/, z, tthe unknown functions amg o, and
the components of the velocity argv, w.

In this manner of operation, equatiod3 are replaced by equation®),(and as for
equation 8), which defineg, it will be replaced by the equation:

9p, 0(pu) , 3(pY) , (oW _
ot 0x oy 0z

(4)

that was derived in n@2. The latter equation, which is called #guation of continuity,
is nothing but the one that expresses the consenvat mass.

125 - EquationsY) and @), which are of the Lagrangian form, and equati@snd
(4), which are of the Eulerian form, are insufficiamtnumber to determine the unknown
functions since there are five of them, and itesessary to add a fifth equation to them
that is called thesupplementary conditionThe latter condition is the one by which the
physical nature of the fluid intervenes, and hash®&®n assumed in the formulation of
the equations that we have written up till now.

For liquids (which are assumed to be perfectlpmpressible) this equation is:

© = constant.
As far as compressible fluids are concerned, trendtion of the supplementary

condition involves greater difficulty. One knowsat one then considers the fluid as
characterized — from the physical viewpoint — bnglation of the form:

) F(p, 2 T) =0,

between the density of a portion of the fluid, the pressupeand temperatur@. For
example, for the perfect gas this relation is:
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(5) P~ constant.
poT

On the other hand, this relation provides the supplemeatadition that we seek if
one knows the law by which the temperature varies. Wdren supposes that it is
constant — as had been done until the time of Laptate supplementary condition is
given by the law of Mariotte:

(6) P _ constant.
0

If, on the contrary — and research into the velooitysound has proved that this
hypothesis is much closer to reality than the firstne admits that the gas has null
conductivity, in such a way that the release or absorgif heat by the contraction or
dilation of the different parts serves only to warncool the molecules themselves that
are situated in these partsd{abatic contraction or dilatation) then one confirms that
relation @) must be replaced by the following one:

@) im = constant,
P

in whichm is a constant coefficient (the ratio of the two siiebeats of the gas).

126 — One must note an essential difference that sesamrquation ) from
equationgs’ and 6). The constant that figures in the right-hand sidé5'dpfs an

absolute constant that is knowanpriori for a gas of a given nature. Up to a constant
factor, it is the one that one often calls tensityof the gas, i.e., the ratio of the weight
of an arbitrary volume of fluid to the weight of samelume of air under the same
conditions of temperature and pressure. The same idotrdlee quantity that equation
(6) refers to if one is given the temperature. On tbetrary, the constant that is
introduced in equatiorv) is an integration constant that depends on the origiatd that
the fluid starts from and varies adiabatically. I&thkiate is unique for any mass then the
same is true for the constant in question. Howevés,not in the least bit necessary for
this to be true; in the contrary case, the right-ha@ &f equation ), which is
independent df, is a function of a, b, c.

127. — However, either of formula$) and {) presupposes relatio®d)( Now, its
existence itself does not come about without raisingrsg¢wbjections in hydrodynamics.
True, it is indubitable (at least under the conditions tadnal hydrodynamics places on
it) any time there is equilibrium, and relatiod) has been established for perfect gases,
for example, by a series of experiments in which omepawes diverse equilibrium states
of the same gas. However, no analogous experimertesas carried out to verify this
relation for a gas in more or less rapid motion.
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Therefore, it has not been established that equéi)gureserves its form in this latter
case. Similarly, Bjerknes’) has studied the hypotheses under which that relatidevil
modified by terms that correspond to motion, i.e., sore®ntaining velocity or
acceleration.

On the contrary, a line of reasoning that has the tgeof establishing that relation
(5) persists irevery case has been presented by Dulf8m [t consists of reducing this
fact to a hypothesis that relates to the form of thentiyathat is calledthe

thermodynamic potentialThis represents a magnitudethat permits the application of

the principle of virtual velocities when one accoumtsthe changes of temperature and
pressure, just as the potential function for force perasts®d write this same principle in
a simple manner when one is in the domain of classieahanics.

This thermodynamic potential is composed of the exteiorce potential plus a
complementary part that we call timernal thermodynamic potential.

Duhem assumes that the latter has an expressite &drim:

j ” pdPdxdydz

in which ® depends on density and temperature. As a conseguthis potential is a
function of the position of the medium, but not tredocity or acceleration of its points.
One obtains the equilibrium conditions of a fluigwriting that the total variation of the
thermodynamic potential is null or positive for amfinitesimal modification that is
compatible with the constraints.

If one defines the modification in question by egsively taking infinitesimal
modifications that do not change the density at point and do not interrupt the
continuity then one proves the existence of a fongt that iscontinuous at each point,
and whose introduction verifies the classical eigmatof hydrostatics.

Upon introducing a modification that creates atgaane obtains the conditiop > 0.

Finally, upon considering a modification that esrithe density one arrives at the
relation:

_ L, 00
pP=p 0’

and this relation is of the forng), precisely.
128 — If one now writes equations of motion instede@quations of equilibrium then

— by virtue of the general laws of thermodynamid$e principle that one applies is that
of Hamilton (in which, the thermodynamics potentgplaces the force potential).

(") Acta Mathematicatome 1V, pp. 121-170.

(*® Cours de Physique mathématique, Hydrodynamique, Elasticité, Acoustame |; Paris,
Hermann, 1891.
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However, the application of this principle leads to shene result as d’Alembert’s
principle, namely, equationd)( and formuld5') persists in the case of motion as in the

case of equilibrium.

129 - By virtue of the foregoing, does assuming eiquafs) force equation?) to
follow as a consequence in the case of adiabatipoession or relaxation?

An objection that is similar to the preceding es@osed with regard to this. Indeed,
the reasoning that permits us to pass from onbeset relations to the other rests on the
study of the specific heat of the gas, namelyfohewula:

(8 dQ:Ca—Tdv+ ca—po,
ov ap

which represents the quantity of heat released rbynainitesimal modification as a
function of the variation of the voluntss and the variation of the pressutieg Now, the
values C and c of the specific heat have been established, lie doefficients of
dilatation, by experiments that are essentiallyistae., one in which the motion of the
gaseous mass to be studied has very little rapidityby experiments in which the
velocities of these movements are poorly known @hkperiments of Clements and
Desormes). Does the same formula remain validargeneral case of hydrodynamics?

Thermodynamics permits us to respond to this durestTo that effect, it suffices to
start with the fundamental equation that expresegrinciple of equivalence:

(9) d7 -1d=m\ = EdQ+ dL,

in which d7 represents the work done by the external forcas &ne applied to the

system,ZmV? is the vis viva,E is the mechanical equivalent of a calom) is the
guantity of heat released, and is the internal energy, i.e., a certain functidntlee
internal state of the system.

The external forces that are applied to a gasemss will be of two types:

1. forces applied to the mass elements, such as graléttricity, etc.

2. external pressures that are applied to the surface.

The elementary work that is done by the lattel bat

(10) dt j j plucosf, X) +vcosh, y) + wcosf, 2)|dS,

in whichdSis the element of the boundary surfateés the normal to that element, amd
v, ware the components of velocity, as before. Tliehknd side of equatiord) is

therefore written, lettinglZ, denote the work done by gravity and other fordad® first
category:
(1) d7,+ dtj j d ucos(n, X)+ vcos(n, y¥ wcos(n,z)]dS: = ni= EdQ+ dU.
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Under the conditions that are imposed by the experirhenéasurement of the
specific heat of the gas, the watk is negligible. The same is true for the vis viva since
the velocities are immeasurable. Since the double int€bParepresents the quantity
pdV, for constantp, in whichdV is the variation of the volume, the preceding formula
may be written:

(12) szé( 0d9 V- dU).

It is clear that this formula is what gives us Heat that is released under an arbitrary
change of volume or pressure, and, as a consequendghithand side coincides with
the quantity §).

Now we place ourselves in the general case and sthrthe equations of motiori).
Multiply these equations bydt, vdt, wdtand add them. Multiply again hydx dy dz,
and integrate over the volume occupied by our fluid. @neft-hand side, we obtain the
work d).

As for the quantity:

dtm'p( d‘tz 5[2y Wi_;zjdxdydz

2 2 2
it is (by virtue of the relatlon%—X d Oy _oN 0%z %) the differential of one-

& a & a
half the vis viva. The last term obtained in tight-hand side may be written:

- dt{” p[ucosf, X) +vcosh, y) + wcosf, 2)]dS
i (% Lo +6—Wjd dydz}

by virtue of Green’s theorem. Finally, formulkl) then becomes:

EAQ+dU = dt[[[ (@ +a_; +g—wjdxdydz

As one knows, the quantity:
at| 2+ Y OW) gy iy
ox dy 0z

represents the change of voluté felt during the instandt by the masp dx dy dz.
Therefore, the quantity of heat released by tlameht will be:

dQ= é(pdV—dU),
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in whichdU is the internal energy of that element.
As in the case of motiome therefore arrive at formuld?). Moreover, this is true
independently of the velocity that is imprinted on th&lflas have stated.

130 — Nevertheless, one must remark that our reasoning exdlelgmssibility of
abrupt variations in the velocity; in other words, pesauss that are exerted in the
interior of the mass. Indeed, this assumption is sacgsn order to write the relation:

dizsmv? = dt.mp(u i_;x +V§2y

2
+ wi_t 22 jdxdydz

which expresses the variation of one-half the vis viva.

The relation in question is obviously analogous to tkerm of vis viva, and one
knows that in the theory of percussions one is le@ptace the theorem of vis viva with
a relation of a different form: Carnot’s theorem.

Moreover, it is clear that all of the preceding cdasations relate to the case in
which such percussions do not exactly exist. In particulas no longer true that
pressure remains continuous when they are produced, asalNehate occasion to
remark later on.

131 — When the fluid considered is neither an incompresktpl& nor a perfect gas,
relations §) will nevertheless continue to be true if one adoptshypothesis of Duhem;
however, it will have a different form fro(g'). We will succeed in determining the

internal equations of motion if we are given, ind#éidn, the manner by which the
temperature varies priori, as must always be the case. In the case for vithiemains
constant, relations) obviously takes the form:

(13 F(o, p) = 0.

From a line of reasoning that is completely simitathe preceding one, the same will
be true for the case of adiabatic relaxation or m@ssion if the velocity remains
continuous.

We have nothing to say in general about the aafgrm of the relations thus
obtained. However, they all satisfy a common comdiof inequality: pressure is an
increasing function of densityin other words, upon adding the pressure feltheyfluid,
one diminishes its volume. This condition expressee stability of the internal
equilibrium of the medium®).

(*°) Duhemloc. cit., pp. 80-83. — See also, ch. VI, no. 272.
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§ 2. —INTRODUCTION OF THE BOUNDARY CONDITIONS

132 — The motion of an arbitrary fluid is determined, oe dme hand, by internal
equations such the ones that we wrote in the foregoing,camthe other hand, by the
initial conditions, and finally by the boundary condigon

The initial conditions consist of being given the poasiof the different particles
and their velocities at an instaptfrom which one begins to study the motion.

Boundary conditions will be of two types: On allpgart of the surface, the fluid will
be in contact with solid walls whose motion we asstméee given. We thus have to
write that a part of this surface (which is, as we sgdan no.48, constantly formed from
the same molecules) coincides with the wall at eastiant.

If there exists a free surface then we suppose thatatlbe of pressure is given on
that surface, i.e., the quantpythat figures in the equations of motion.

133 - In rational mechanics, when one writes the diffeméaquations of motion for
a system that is subject to arbitrary given constrainese equations permit us to
calculate, in the first place, the accelerationthefdifferent points at an arbitrary instant
when one is given the positions of these points a@id ¥elocities at this instant, with the
two conditions:

1. the given position of the system satisfies thesstcaints,

2. the given velocities of the different points ane bnes that these points must
receive under a motion that is compatible with tresestraints at the instant in question.

We thus occupy ourselves with the problem of solving thistire in the present
case, in other words, of calculating the acceleratafithe different points at the instant
to if we know:

1. the forces that act upon the fluid,

2. the positions of the points and their velocities,

3. the motion of the wall and the pressure on the #fnedace as well as its
derivatives with respect to time at that instant.

The question presents itself in a very different faghaepending on whether one is
concerned with a liquid or a gas.

(1.) Case of liquids.— We employ the system of independent variables that we
indicated in no61 (cont.), and, other than timewe make the initial coordinates coincide
with the present coordinates at the instant considered.

Since the fluid is assumed to be incompressibletioalél3) reduces to:

© = constant,

and the value gb cannot be known from this. As for relatiag}),(it reduces to:

(14) Z+ 2=

The other equations of motion, namely equatidhsdive us the sums:
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a 16p 5\/ 1dp dN 10p

a ,oax a ,oay & ,oaz

If one differentiates the first of these equationthwespect tax, the second with
respect toy, the third with respect t@, and adds them term-by-term, then this will
produce a result of the form:

yo ox\ &) oylda) oz\ &

in whichF is a known function of, y, zin the interior of the liquid volume.
However, equationld) applies at any instank,(y, zare the present coordinates at

that instant). One must therefore take the dévia%‘?% of it and write:

16 62u 0%v 6 w_a [auj 0 [6Vj+i[6_wj:

0xot ayat 6zat ~oxl ot oy\ot ) o0dz\ ot
We replace‘?E v a—Wby their values as functions o@,ﬂ,d—'\/,as given by
ot at ot a & &
relations R); we therefore obtain the value &[QJ +i[ﬂj +i[d—Nj ;
ox\ &) oylda) oz\ &
0 [djj 0 [d/j 0 [d/vj 0( Ou_ 0u ou
—| = |t = |[t—| = |=—|U—+tV—F+W—
(16) ox\ &) oylda) oz\ & ox\ ox oay 0z
0( ov, _ov ov| o0 ow _ow _ow
+—|UuU—+Vv—+W— [+ —|U—+V—F+W—
oyl ox oy 0z) 0z\ o0x oy 0z )

and if we substitute this irL$) then we get:
a7 Ap =F,
sinceF is likewise known at each point.
134 — On the other hand, the coordinates of the mddethat are in contact with the
wall must not cease to verify the equation of tindase for the latter. This equation:
f(x,y,z,X=0

may or may not depend on time, but we nonethelegpose that it is known at any
instant. If we differentiate it twice with respéott then we get:
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2 2 2 2
(18) ﬂdx+i5y+ﬂaz+[i§+ig+ié+ij f=0.

ox &2 oy &> o0z A&* (ox& oyd& oz& ot

2 2 2
Everything in this relation is known exceph%lzz,ﬂ 02
a

&z’ at
of of of . o .
&,a—y,a—zare proportional to the direction cosingsg, y of the normai to the wall,
one thus obtains the normal compongmf the acceleration at each point of it.

Since the quantities

2 2 2
Finally, if one replace%t—i(,;z,%zzby their values obtained from equatiory (
then one sees thathe preceding equation gives us the value of the normal
dp

derivatived— at every point of the wall.
n

If the contact with the wall takes place all aldhg boundary surface of the fluid then
the search for the quantipyas a function ox, y, zis, as a consequence, reduced to the
problem that was the object of chapter I. As we,2be problem assumes a condition of

possibility, namely:
J]<Lds= [[[F.oxdydz

It is easy to interpret this condition. Indedadisiobtained by integrating equation
(16)- or, what amounts to the same thing, equatib), (which is equivalent by

relations @) — over the entire volume that is occupied by thedfluNow, the latter
equation, when differentiated with respect to tiasein (L4), expresses the fact that the
second derivative with respect toof the elementary volume that is occupied by an
infinitesimal portion of the fluid is null. Aftemtegration, it will express the fact that the
total volume bounded by the given wall has a nedlosid derivative; the necessity of this
condition is obvious: priori (*9).

If this condition is assumed to be satisfied thée considerations that were
developed in chapter | show the possibility of fm@blem for all of the types of
containers for which the Neumann method is applecatWe know, moreover, that the
solution is unique, up to an arbitrary constant thay be added to the valuepénd that
has no influence on the desired accelerations.

These accelerations are therefore determined.

135 One similarly obtains the accelerations of higbeder (provided that the
expressions for the force§ Y, Z are given at any instant). It suffices to diffeiate
equations ), (16), (18) with respect to time, and to determine the susieegderivatives

(*% It is easy to see that for one or the other ek¢hforms the condition of possibility gives us the
integral ” j,dS,when taken over the surface of the wall, as a funcfigrogition and velocity.
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of pressure with the aid of the equations thus differettjads we have determined them
from the original equations.

136 — Nevertheless, the preceding reasoning seems to suppiséheé desired
accelerations are distributed in a continuous mannere @y demand this (and the
following chapters will show that a degree of doubt &ified) if one does not arrive at a
different conclusion when one abandons this.

It is easy to confirm that such is not the case. ddd# we suppose that the velocities
are continuous with respect to time then the pregsuamast be continuous. On the other
hand, the same will be true for the normal componéiicoeleration. Indeed, suppose
that a discontinuity is produced along a certain surfd@igher, this discontinuity will be
stationary, and, in this case, since the velocitieassamed to be continuous, the fact in
question will result from no94, or it will propagate %), and then there will be
compatibility at other instants than the instant carad itself, at least for infinitely
close instants. If this is true, and the density doésany then the normal component of
the discontinuity will be null, and, as a consequente normal component of
acceleration will be continuous.

Now, in the preceding expression that we found for lacagon the only unknown
elements are the derivatives of pressure. Thereforgheif normal component of
acceleration is continuous (and the givens of the proldeen too) thendp/dn is
continuous.

On the other hand, let the functipp that verifies equationl{) and the boundary
conditions that we have always used to deternpnee continuous, as well as its
derivatives. The differenc—p; is a function that is harmonic except for its
discontinuities, and which is continuous on passing tonthes well as its normal
derivative. From a remark that was made inIpat is therefore harmonic everywhere in
the volume that is occupied by the liquid, and sincs, itn addition, determined by the
givens on the null boundary, one sees ghatidentically equal tq;.

Of course, as we said before, the foregoing supposethtia is no discontinuity in
the givens in question, namely, in the components of tglacid their derivatives with
respect t, y, z. The contrary hypothesis will be examined later on 9h

137 — Now suppose that the liquid has a free surface. @owskonlydp/dnon it;
however, we suppose that one is given the valyeabfeach point.

This time, we are thus reduced to the mixed prollesh was posed in no88-
41(cont.):p is given on the free surface amp/dnis given on the wall.

It is therefore certain that the solution to this peoblis unique; however, it remains
for us to show that one actually exists.

The remarks that we just made in the preceding seaanigue to apply, moreover.

(* In reality, no discontinuity may propagate in the case of liquids.
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138 — By contrast, the preceding conditions lose thdidis if the pressure, when
determined in the manner we just described, becomes negalikie. corresponding
solution becomes inadmissible, moreover.

Since the conditiorp > 0 is destined (nol27) to assure equilibrium (and, as a
consequence in the case of motion, equilibrium aftendlucing forces of inertia) under a
virtual modification in which cavities are created, sachmodification will be produced
under the present hypothesis.

We shall not undertake a discussion of the generalfoaghis type of situation. It
will be quite difficult if one wants to account foll af the possible circumstances, despite
the fact that in all of the practical cases that mresented the solution is simple, in
general.

139. (2.) Case of gases.Now, if we pass on to the case of compressiblddlthen
relation L3) must be solved with respectpo Since the value of density at each point is
one of the givens of the problem, as one knows the positf the diverse molecules at
the given instant as a function of their initial p@sis, one sees that, contrary to what
took place in the preceding capdas known directly at all of the points.

Moreover, the equations of motion give us all ofdbeelerations.

However, at the points that are situated on the diognsurface these accelerations
must verify condition18). It is therefore necessary that the value (givegvary point)
of dp/dn is precisely the entity that verifies that relatiomith the components of
acceleration being calculated as we just explained.

Now, there is no sort of argument that would make ighitrue. What is more, when
this concordance is presented in the instants that prelbedene in question, it might
disappear in the instants that follow by a change@htrmal acceleration to the wall.

There is thus a contradiction.

140 — This contradiction is also found in the calculatioh tiee higher-order
accelerations. It is clear that when we differeatquationsl) with respect to time, as
was indicated for the case of liquids, one will kndw iccelerations in question at every
point of the fluid, and there will seem to le,priori, no reason for the surface of
acceleration to coincide with that of the wall.

We shall, moreover, return to this again later on whkierreason by analogy with the
situation in classical mechanics. In the problems w/ibis is posed, at the moment
when one may calculate the accelerations as a fumetithe position and velocity of the
system at any instant, it results that the motiothat system is determined entirely by
being given its position and velocity at a given instaNbw, we just saw that one may
calculate the accelerations of all the moleculefsiastions of the positions and velocities
here, without taking into account the motion of the wdlherefore, the ultimate motion
must be likewise determined independently of the motioheoftall.

More generally, the motion of an arbitrary portiontieé fluid will be determined
without having to take into account the neighboring regionsjgtubviously absurd.

In the following chapters we shall learn how to efiate this apparent contradiction.



CHAPTER IV

RECTILINEAR MOTION OF GASES

§ 1. — CASE OF CONSTANT PROPAGATION VELOCITY

141 — In order to elucidate the difficulty that defindx tsubject of the preceding
chapter, we shall first consider a particularly simgase for which the equations of
the problem may be integrated: It is the casediilinear motionor motion by fronts.

The study of this movement was the subject of the ilapbmemoir of Riemann
(*3 to which we alluded in no69. Likewise, Hugoniot ) dedicated two of his
memoirs that were published in 1887 to this study, in whichge lpart of Riemann’s
results were recovered without his knowledge of that fac

One supposes that the receptacle in which the gas isaasasthas the form of a
right cylinder whose lateral surface is fixed, and whosses are formed by movable
pistons. Moreover, we assume that the density istaahin any section parallel to
the bases at an arbitrary instant, as well as thecis| which is parallel to the
generatrices. Under these conditions, the state oftamaay point of the medium
and its velocity depends only on the abscissa of thigt,pmeasured parallel to the
generatrices. The problem then comes down that of t@e€pg the present abscissa
x as well as the densify and pressurp as a function of the original abscissand
time t. Here, instead op, it will be more convenient for us to introduce the ineers

quantity& = w, or dilatation, which will have the expression:
P
(1) w=Po - X
p da

If the densityo, of the initial state is constant thenis everywhere inversely
proportional top. Unless stated to the contrary, we shall alwayspase that the
initial state is chosen in such a fashion thatithtsue.

From the conclusions that we reached in the pragechapter, the pressure will
be a function ofaw If one adopts the Mariott law, i.e., if one sapes that the
temperature is constant, then one will have:

(**) Uber die Fortpflanzung ebener Luftwellen von endlicher SchwingureyMgémoires de I'Ac. des
Sc. de Gdottingue, tome VIII; 1860). The French transiatiiue to Stouff, occupies pages 177-203 of the
edition of the Oeuvres de Riemann that was translated haugel (Paris, Gauthier-Villars, 1898).

(**) Journal de I'Ecole Polytechniquegme XXXIII; 1887.
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(2) p=Kp=— k= Ko).

On the contrary, if one chooses the adiabatic laRaisson, as one has the right to
do, then one will write:

(2) p = Kd" = kaw” (k= Kpg'),

in which, as we saw (nd.26), k is a function of the initial abscissabut it reduces to a
constant at an arbitrary instant if the fluid haeib kept at a pressure and temperature that
is uniform over all of its mass.

We remark that formula2j] may be considered to be a particular cag®'of the

former is deduced from the latter by setting 1.
For the moment, we shall not specify the form & tklation that exists between
pressure and density, and we write it here in #rernl form of (no131), which is:

(3) p=d(a),

in which the functiong(«) may depend oa.

142 — Nevertheless, we must recall that the funcfanay be completely arbitrary
a priori. Indeed, we know (ndL31) that upon increasing the pressure, the densitst mu
increase, and the specific volume must decreakerelore, one must have, in any case:

dg
4 %<O.

143 — We use the Lagrange variables, whichaaamdt here. This time, it will be,
moreover, useful to employ the notatidno denote the derivatives that are taken under
this hypothesis, if this will not create confusion.

Equations 1) of the preceding chapter (rnt24) reduce to the first of them; in it, the
quantitydp/dxmust replaced by:

op
oa_10p
X woa
oa
The equation then becomes:
2
(5) i@ =X —a_;(
P, 0a ot

In the general casp,may be a function ofv= dx/da anda. For example, if the law
of constraint is that of Poisson then the quarkithhat figures in formulé2' will be a

function ofa. Equation $) will then be written:
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2
©) dk[@xj —mk{axj 9°x _y 0%
0, | dal 0a da) 0a’ ot?

Nevertheless, we shall principally consider the casg/fach relation 8) is the same
for all values ofa, and for which, at the same time, there are no extdorces acting, in
such a way thaX is null in equation%). If we then set:

@ —pi¢'(w) =y(@)
then this equation becomes:

9°x _ 0°x _ 9°x
® @i 25

a second-order partial differential equation thatedmines the unknowx as a function
of the independent variablest.

144.— To begin with, we shall further simplify the @tien by replacing the function
() (Which is positive, from inequalityd]) with a constan&”. This is what one is led to
do when one studies thamall motionsof the fluid. Indeed, one supposes that the
distances from the molecules to their initial posis are infinitesimal, and that their
velocities¢( «) differ very little from the value/(1) that they take in the initial state.

Furthermore, the hypothesj£c) = & = const. applies to motions of finite amplitude
if one takes the expression:

(3) #U) =C- b

for the functiong , with C being a constant.

However, it is clear that such an expression fergressure will not be admissible, at
least for a gas, since it must become negativa Sufficiently largew

In theory, a law of this type might be entirely eppriate for a slightly compressible
fluid. Indeed, in such a fluidp varies between very sizable limits for very small
variations ofw and is annulled for a certain finite value of thisantity. Of course, in
reality, the phenomenon will be limited to a certpbsitive non-null value gb by the
vaporization of the liquid.

145 — By means of the preceding simplification, equa(8) may be written:

(®) C =6
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This is the equation for a vibrating string. Its genemalgral is well known; it may
be written:
9) x=1i[f,(a+ &)+ f,(a-@)].

The whole issue then reduces to that of choosing thetifunsf; andf, in such a
manner that they satisfy:

1. the initial conditions,

2. the boundary conditions.

Take one of the extremities of the pipe to be thgimof the coordinates, and lebe
its length;a will thus vary between 0 arid

We suppose that the values of x %)l?((are given fott = 0, namelyXo an({%j ; one
0
will then have, for 0 @ <lI:
f,(a)+ f,(a) = 2x,

ati(a) um—{ml

(10

The second of these to equations may be integratedgives:

(11 @[fi(a) —fx(a)] = F(a) — F(0) + constant,

in which F(a) is the primitive ofz[%j . As for the constant, one may assume that it is
0
null because the valu®)(of x does not change if one adds a constant to theidunrfg.
However, if one subtracts the same constant frafithctionf, then this operation adds
an arbitrary constant to the left-hand side of éiqug10).
From equations1(0), (11), we know the function$; andf, for all values of the
argument between 0 ahd

146.— We now include the boundary conditions. We amsthat the positions of the
pistons that close the pipe at its two extremitiesknown at every instant. We thus have
the values ok that correspond ta= 0 anda = | for each positive value of

It is easy {*) to show directly that these conditions succeediétermining the
unknown functions. Here, it will be convenient fos to employ a geometric
representation.

We considen, t, andx to be coordinates in space, in which t@ane is taken to be
the horizontal plane of projection. The desiretutson will then be represented by a
portion of that surface. Sineeis, by definition, between 0 aridandt is positive, this
portion of the surface will necessarily be bountigdhree planes: one of theih, is the
x-plane, the second on®, is thetx-plane, and the third onk, is thea = | plane.

(*) For example, see JORDARpurs d’Analysetome II1.
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In figure 10, we use the auxiliary plan&s O, L as the plane of projection, in
addition to the horizontal plane.

"
d,

One may set:

in whichx; represents the functidi(a + &) andx, represents the functidg(a — &).
The equations:
X1 = fl(a + ﬂ),
Xo = fz(a - ﬂ),

represent two cylinder; andKs, one of which will have its generators parallel te th
line d; and represented by the equations:

(12 x =0, a+ta=I,

and the other will have its generators parallel to lthe d, and represented by the
equations:
(12) x =0, a-&=0;

the desired value ofwill be the mean of the ordinates of these twandgrs.
From equations10) and (1) we know the curveg, )5 (fig. 10), along which our
two cylinders cut the plang



RECTILINEAR MOTION OF GASES 13¢

We therefore know a portion of the cylind€r that is projected horizontally along
the triangle formed by the-axis, thet-axis, and the lin€;. Similarly, we know a portion
of the cylinderK; that is projected along the triangle bounded byt-toas, the trace of L,
and the lined,. If we call the sections of our cylinder by tBeplane,l'; andl",, and the
sections of our cylinder by the-plane[;andl,, then we immediately will have a

portionA;B; of the curvd ', and a portio\,B, of the curve,.

147.- Having said this, the effect of the boundary conditisrt® make known the
sectionsag, a'f' (fig. 10) of the desired surface by the pla@eandL. Once we have
obtained the aré&\;B; we may deduce the corresponding As8,, of I, by the same
construction that gives us the #®, ofl"] that corresponds #,B, .

We thus have two new nappes for our cylinders. Franfitht one, we now know
everything that is projected between the traces of taregD, T, L, and the linel;,
which is represented by the equatoor & = 2I; from the second one, we know the part
that is projected between the same traces and the,limehich has the equatioft —a =
l.

The two new nappes determine a newBfe; of 'y, and a new aB,C,, ofl,, from
which one deduces an @&C, ofl[ and an ar8,C,, etc., by means of the curves

apa'f' .

The solution of the problem therefore presents nocditfy.

148 — It remains for us to demand to know what form the reglittion that we
encountered in the preceding chapter will take. This odioti@an is apparent in

2
equatior(8) . Indeed, at the initial instant the quan%?? depends only on the motion

2
of the wall. Now, it must be equal to the quarﬁi’tyg—)z(, which depends only on the
a

initial state, and these two givens are independéatch other since the fluid molecules
are only required to be in contact with the walllat instant = O as far as their initial
positionsare concerned.

Indeed, we have seen that when we know only thelistate, an abstraction made
from the motion of the piston lets us know a pafttlee cylinder K;, and, as a
consequence, the valuexaffor all values ofa andt (positive) that are sufficiently close
to 0. On the contrary, the cylindkp is not completely known in a neighborhood of the
ordinatea = 0, t = 0 under these conditions, since the known porsobounded by the
generator projected alordp. The curvature of that known portion of the cgiiin K,

2
obviously depends upon the valuegeiS :
a

The construction of the nappe along the cylindgitself depends on the afgBs,,
and, as a consequence, on the motion of the pighencurvature of this nappe thus
depends on the initial acceleration of this piston.
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From the foregoing, it is obvious and, moreover, quitg éasonfirm directly, that
the condition for the curvature of the two neighboringjaes on the cylindeK, to be the

2 2
same is precisely the equality of the two quant%'é(s, andg® % when this is of issue.
a

149. — When this equality does not hold, since the curvatutheotylinderK; is
discontinuous all along the projection of the generatod, the same is true for the
.. 0°X 0°x 0°x
derivatives—, -
da“ odadt ot
As a consequence, if we consider a positive, but swalle oft, which amounts to
cutting the figure by a plane that is parallel todkeplane, then we see that the derivative
9°x
a2

of the dilatation, which is continuous in general kst for the points in a

neighborhood of the extremity O of the cylinder), wekhibit a discontinuity at the point
whose projection is on the ling. Ast increases, the particles between which this
discontinuity is produced move away from the extremity.

Similarly, if we consider a well-defined molecule néae extremity, which amounts
to cutting the figure by a plane perpendicular to dkexis, then we confirm that the
acceleration of this molecule exhibits a discontinaityn instant that is very close to the
initial instant if the molecule in question is very s#doto the extremity, and the valte
that corresponds to the discontinuity increases asonsiders more remote points of the
piston.

In a word, we recognize second-order wavesuch as the ones that we studied in
chapter Il. This wave propagates in the positive sende avitelocity (referred to the
initial state that we chose) that is nothing Busince the equation of the lidgisa = &.

Thanks to the presence of this discontinuity, the reaindtion discussed in the

preceding chapter disappears. Whé@n— a is very small and negative, the two
2

2
quantitiesgt—;( andez% have the same value, which is deduced from the inititd sta
a

the extremitya = 0. If & —a is very small and positive then they have the sameeval
again, which is the initial acceleration of the piston

150. — If an analogous phenomenon takes place at the oppmditemity of the
cylinder then it will give rise to a discontinuity thabviously affects the cylindét;, and
no longer the cylindeK,. It is produced at all of the points of the projectidrthe
generator ord;. It therefore propagates with a velocity@®#fgain, but in the negative
sense this time.

151 — In particular, this will be true (except in the excepal cases) when the wave
begins at the extremity = 0 at the initial instant with a propagation that is regnésd
by the lined, and reaches the extremigy= |. Indeed, since the cylindét, has its
curvature discontinuous along the generator that quorets to this wave, the same will
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be true for the curvie,. If the curvature of the lin@'3'y,... does not present a variation
of appropriate magnitude before this point then the lMlp@nd, as a consequence, the
cylinderKj, will have discontinuous curves.

In a word, the original wave that begins at the extremi= 0 and propagates with
the velocity@is reflectedby the pistora = [; i.e., when the wave encounters the piston, it
generates an analogous wave that propagates with tlutyelé.

2 2
152 — If the two quantitie%t—;( andez% are equal to each other for the extremity
a

0 at the origin of time then the curvature of the cylindewill be continuous. However,
the singularity that we studied in the preceding chapt@rasluced for the third-order
derivatives ok. Equatior(8') gives, effectively:

, 0% 0%

13 _Ix
(13 da‘dt ot®

an equality whose left-hand side is provided forbysthe initial state of the gas, and
whose right-hand side is provided by the motiothefpiston. When this equality is true
precisely it will produce a third-order discontitwithat will successively affect the
different points of figure 10 that are projected o) and, as a consequence, also
propagate with a velocity &

As before, such third-order discontinuities mayodbéwo types that propagate with
the same velocity but in different senses; one begins at the extyean= 0 of the pipe
and the other at the extremay= .

Meanwhile, if equation1(3) is verified then it may, in turn, give rise tdaaurth-order
discontinuity, and so on.

153. - Similarly, one clearly sees here how a discaiitnof infinite order may be
produced. This is what happens when the first @appthe cylinderK, (which is
furnished by the initial state) is analytic, so gecond nappe is precisely the analytic
continuation of the first, but with a contact o€ler infinity.

154. — Finally, one may take the viewpoint that was@dd in no.140 upon
successively considering two motiokls and M, that coincide at the initial instant, but
for which the motions of the pist@= 0 will be different after that instant. The cylerd
Kz will then be modified by means of the projectidrtlee generator alond, a line that
defines the law of propagation for this modificatio

Similarly, when the motion of the pistam = | is unaltered the cylindeK, will

change (as a result of the change of the dufyeafter the moment when this

propagation reaches the extremity of the tube; ageén, there will beeflection.
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155.— We return to the case of a discontinuity thatéated at the initial instant and
at the extremitya = 0.

At a point that is projected ai, but in a region where the curvature of the cylinder
K is continuous along with its derivatives, there wdldompatibility: The discontinuity
will remain unique not only at the instant that correspotedshis point, but at the
preceding and following instants.

The same will be true for a point that is projectedipanly if — at the very least — a
discontinuity is produced fa = | at the time origin.

On the contrary, consider the point of intersectibrihe linesd;, d,. This point
corresponds to a value of t for which there exists a unique discontinuity. Only this
discontinuity affects the two cylindeks andK; at the same timeThere is no point of
compatibility: Any value oft that is different front; will correspond to a perpendicular
to the axis ot that cutsd; andd; at two distinct points. Here one sees quite well ghat
discontinuity without compatibility is nothing but the sypesition of two discontinuities
that intersect at an isolated instant, conforming taytheeral considerations of 05

In the present problem, the compatibility condition pres itself in a very simple
particular form: It is obvious that only one of the ftimws f; andf, has discontinuous
derivatives. For example, #fis positive then we must have that the second derevafi
the functionf; does not experience any variation. Now, one has:

(14) B X} =[]+ 1]
a
, 0°x | _ e
(14) L’ aat}—e{[ £1-16

Upon eliminating f,], which is different from zero, in general, we dbta

(15 2[fl']:O:|:a_2X:|+£|:azx:|.

da* | 6| dadt

One will obtain a third condition that is analogdag14), (14') upon envisioning the
acceleration. However, in the present probleng ihinot a distinct quantity; it must be
considered as determined by equati@ Yith the aid of the other second-order
derivatives. The condition that one obtains byadticing them is obviously none other
than (L4).

Similarly, if the discontinuity is of arbitrary oedn then one will have to consider
only the derivatives of indexero or one since all of the others are calculated as a
function of the first by means of the partial diffatial equation. The corresponding
compatibility condition will thus be:

(16) Ox1 1) 90X g
da" | &|oa"ot
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156.— However, one does not have just one condition eftype that corresponds
to the same order of discontinuity. No matter wha orderny is, one must also write
all of the conditionsX6), which are infinite in number and correspond to differeiues
of n that are greater tham, and which will be théigher-order compatibility conditions,
whose kinematical part we obtained in nbk9-123

For example, for a second-order discontinuity that pyafes in the positive sense,
one must have not only conditiorib), but also conditions that express that the function
f1 has continuous third, fourth, etc., derivatives.

If these conditions are not verified at an arbitrangtant then the second-order
discontinuity that progresses in the positive senfiedable into a discontinuity of third,
fourth, etc., order, which will separate from the tfied instants that are ne&r and
propagate in the negative sense.

As one sees, these compatibility conditions of difiexders are independent from
each other here.

157.— The consideration of the two functiohsandf, will permit us express the
compatibility in the present problem, and similarly fodiacontinuity of infinite order
(no.76).

Indeed, suppose thatandodx/ot are analytic functions cd for a < a; at the initial
instant in a part of the tube, and that &P a; these same functions cease to be the
analytical continuations of the first ones, and mdalefor a = a; their derivatives of all
orders with respect ta are continuous. The condition for there to be corbpisi with
propagation in the positive sense in this discontinuitypfirfite order is that the function
f1 be analytic and regular. Now, this function may be udated with the aid of the
preceding givens by the intermediary of equatidy &nd (1).

If, at the same time as the motibh one considers another ok that coincides
with M; at the initial instant in a regioR of the tube and is distinct from it in another
regionR’' that is contiguous with the first, then the two masidm, and M, will be
identical at an arbitrary instahtn a certain regiof; and distinct in another regid;.

The point of separation of these two regions genematlyes towards the regidtdiwith
velocity @ as they displace. One may further say that the@mpatibility if, on the
contrary, the displacement of this point is towarasrédgion R’ . In order for this to be
the case, one of the functiofisandf,, when calculated in the way we just described,
must be the same fdf; andM..

158 — The study of the propagation of discontinuities suctveagust encountered
agrees with the theory of characteristics of seamagr partial differential equations, so
we shall summarize its principles and refer to tledl-known treatises of Darboux and
Goursat {°) for the details. Moreover, we shall recover tiisary in a more general
form in the following chapters (chap. VII).

Consider thaMonge-Ampérequation:

(*°) Darboux,Lecons sur la théorie des surfacésme Ill, pp. 263 et seq. — Gourshgcons sur
I'intégration des équations aux dérivées partielles du second ,drine .
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(17) A(t—<)+Br+2Cs+ Bt+D=0,

in whichr, s, andt denote the second-order partial derivatives of an unkrfanctionz
of x andy. Meanwhile A, B,B’, C, D are given functions of, y, z,as well as the first-
order partial derivativep andq. If x, y, zare considered to be the coordinates of a point
of space then any functionof x andy that satisfies this equation will represent an
integral surface.

Such a surface is, in general, determined byCi#wechy conditionsyhich consist of
giving the values of and its first derivativep, q at all of the points of a curvein the
xy-plane. This obviously must be such that the relation:

(18 dz = pdx + qdy,

is verified for a displacement that is effected alpng

Geometrically, this amounts to being given a skew clr@hich projects ory) that
passes through the desired surface as well the tangeattpléimat surface at each point
of the curve.

In order to solve th&€auchy problenm+ i.e., to determine the solution from these
givens— one first seeks the values nfs, andt at each point of/; these quantities
obviously must satisfy the conditions:

dp = rdx + sdy,
(19 p = rdx + sdy,
dqg = sdx+tdy,

(the differentials always correspond to a displacegmenformed along), and equation
(17), for that matter. The latter is of second degatdeast whe\ # 0. Meanwhile, if
one obtains the values of two of the quantities, andt as functions of the third one
from equationsX9) then the left-hand side of7) will be of first degree with respect to
them.

(If one considers, s, t, instead ofx, y, z,to be the Cartesian coordinates then this
amounts to saying that the line that is represented byiegsall9) is parallel to a
generatrix of the asymptotic cone of the quadric that spaomds to 17)).

Upon takings to be the unknown, one finds:

20 {S[ A(dpdx+ dqdy) + Bdy’ - 2Cdxdy+ B'dx’]

= Adpdg+ Bdpdy+ B'dgdx+ Ddxdy

In the equations that we must study the coeffickns, moreover, null, and the

linear character of equations7, (19) appears at first glance.
3

A completely similar calculation gives us the third-ordderivativesg—i,

X

9’z 0°z
X2y oxdy*
each point of .

and, in general, the derivatives of all orders of therekgunction at
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Hence, if one knows that this function is holomorphic then it is pigrigetermined,
since one has all of the coefficients in its develepm

Conversely, when the givens are analytic and regudar dine proves, with the aid of
the theorem of Kowalewsky9, that the solution thus determined exists; it resudtmf
the preceding that this solution is unique.

159. — However, things are different if solving the firsgdee equation20) is
impossible or indeterminate, which follows from:

(22) A(dp dx + dg dy+ Bdy’ — 2Cdx dy + B’ dx¢ = 0.

If this condition is verified then the problem that ssts of looking forr, s, tis, in
general, impossible. Putting aside this hypothesis, tohwhie shall return later on, we
assume that equations7f and (9) are compatible. The condition for this to be true is
that one have the following:

(22 Adp dq + Bdp dy B’ dg dx + Ddx dy= 0,

in addition to equatior2l).
If A'is null then equatior2) reduces to:

(21) Bdy? — 2Cdx dy +B' dx = 0.

For each system of values xfy, z, p, this defines two valued; and A, of the
angular coefficiendl = dy/dx for the tangent tg:
If one has, for examplely/dx= A; then relationZ2) becomes:

(22) A(Bdp + Ddx +B' dq =0.

When conditionsZ41) and @2) are verified, our equations no longer deterning
andt, and it seems that one of these three quantitiest el chosen in a completely
arbitrary fashion at each point gf

However, this is not exactly what happens; indeedne considers the following

3 3 3
derivativesa f 622 : 9 22 then one sees that the equations that they mysy im
0x”  0X°0y oxoy

likewise have the left-hand side &flj) for their determinant (which is obvious far= 0,
since the coefficients of these equations are thensame as those of equatiof3)
(19)). There will therefore be a condition of poshHii which consists of a first-order
linear differential equation that s, andt must satisfy. The choice of the latter therefore
involves only one arbitrargonstant. As for the third-order derivatives, if they verthe
differential equation that we just described ttleey must be, in turn, indeterminats,

(*) Compare ch. VII, no. 281.
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rather, as the consideration of the fourth derivatste®ws, they must depend on a new
arbitrary constant.

Therefore, each order of derivative introduces a nawstent.

There is good reason to believe that the problem thusdpm$mits an infinitude of
solutions this time; one can prov&) that this is indeed the case.

160.— Now suppose that one starts with a given integralciEa On this surface,
the differential equation2Q) will define two families (a curvef each family passes
through an arbitrary point of the surface), and on eadheryh one will have condition
(22) moreover, since the contrary would be in contramlicwith the existence of the
surfaceX itself.

The curves thus defined are called tharacteristicshat are situated on the surface.

161.— We now demand that there may exist another integrialcguthat is tangent
to the first one all along a curye From the foregoingthe necessary and sufficient
condition for this to be the case is tHabe a characteristicat least if we suppose that
the two surfaces are analytic.

Our reasoning does not rigorously exclude the existencevof(hon-analytic)
integral surfaces that have a contact of infinite oftfralong a curvé that is or is not
characteristic.

162 — From the fundamental property of characteristicgbviously results that
these curves will be preserved under any change of vesiabl
) More generallythe characteristics are preserved under any contact transformation
™.

For example, consider the Legendre transformationrtizktes the variables vy, z,
and the partial derivativgs qcorrespond to analogous quantiteesy:, z, p1, th that are
defined by the formulas:

X =P, Y1=0, 2=px+qy-z,
PL=X, G =Y.

Under this transformation, the new values of the sgclemivatives are:

(*') See below, ch. VI, no. 319.
(*®) See note | at the end of this work.

(*% For the definition and the fundamental propertiesasftact transformations, see Goursaigons
sur l'intégration aux dérivées partielles du premier ordre, XI, Paris, Hermann.
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When this transformation is applied to equatidrY) (we obtain an analogous
equation in whickA, B,B', C, D are changed intb, B', B, -C, A.

Furthermore, two arbitrary tangent surfaces are chamgedwo tangent surfaces.
Therefore, the characteristics of the new equatiorespond to those of the original one.

What we just said about the Legendre transformation at&y be repeated for any
contact transformation; they change an arbitrary equatibthe form 17) into an
equation of the same form and the characteristicschmoacteristics.

163. — However, one must recall that an integral of on¢hefequations does not
always produce a corresponding integral of the other, gyogeeaking, since the
transformation under consideration may make a curvegpoond to a surface (or even to
a unique point). This is why the Legendre transformatiohigly as one knows, is
equivalent to a transformation by reciprocal poleshgka any developable surface into
a curve. Lie ) has indicated a general definition of the integradmequation such as
(17), from which such a curve may be considered as an inhtfgitais equation, the same
as a surface. Without going into the consideratiortbaifdefinition, one may say that a
curve is adegenerate integradf equation 17) if the developable surface into which it is
changed by the Legendre transformation is an integtakatransformed equation.

164.— Finally, if A is null then the coefficient8, B', C are functions of jusk, v,
and equatiof21') may be considered to be an ordinary differentialatign in these two

quantities. If the discriminar B’ —C? is different from O then this equation will have
two series of distinct integral curves that we rdayote byX = const..Y = const. Upon
taking X and Y for new independent variables one makesndt disappear from the
equation.

165.— The application of these results to the thedrthe propagation of motion is
immediate.

Indeed, if two motions of our fluid mass are secornder discontinuous then
according to the geometric representation thatseaged us up till now there are two
corresponding mutually tangent surfaces all alohgea since the first derivatives do not
change value at any point of discontinuity. Frdma preceding results, such a line is
necessarily a characteristic.

If the discontinuity is of higher than second ortteen this conclusion will not be
modified. Indeed, we have seen that if the firel decond derivatives of the desired
integral are given along the curve then the third derivatives will have perfectly
determined values (in such a way that there mayhbeot third-order discontinuity
produced) if the curvE is not a characteristic, whereas, in the conttase they may not
change.

(*° See Goursat,econs sur I'intégration aux dérivées partielles du premier orrag |, pages 49-
51.
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Therefore, the compatible motions will obviously be tneowhose representative
surfaces agree along a lihe
The coefficients for equatidf’) are 1, 0, and?, respectively. The characteristic

will therefore correspond %? =x6. Since the quantityé obviously represents the

velocity of propagation, the two families of chamtstics correspond to the two senses
in which this propagation may be effected.

§ 2. - GENERAL CASE

166. — We now study the propagation of these disconi@suin terms of the
equation of motion that we originally obtained, amat equatio8’ ) which we have

substituted arbitrarily.

This study presents no difficulty, moreover, whene oeither employs the
considerations that were developed in chapter Wieen one makes direct recourse to the
theory of characteristics.

To that effect, we begin with the equation of motin its most general fornb), as
we obtained it in nol43 namely:

) i@:i(

= x-2F (0 = g(ca )

ot?

¢ azx+%j 9°x
Po 08 P,

Suppose that the motion presents a second-ordemtiisuity for a definite value of
a and a definite instarit Furthermore, suppose that there is compatibéinhg let@ be
the velocity of propagation. If we let the indicesind 2 denote things that refer to the
two regions that are separated by discontinuigpeetively, then one must have:

o), Lo =3, 1)
(&) 1) 1) )

2 2 2 2
However, the quantitis{sa )z(j : (6 ;(j {6 )z(j : (6 ;(j must separately satisfy
da® ), (ot® ) \oda® ), (ot )

eqguation %), in which the first derivatives have the sameugalin either case. Upon
subtracting the relations so obtained side-by-sigeget:

o'x]__109[0x
ot? 0, 0w| 0a® |’

(23)

or.
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(24) 6> = —i%,
Po 0w

or

(24) =Y a,

in which (A« is the quantity that is defined by formulg.(

We thus obtain the value of the velocity of progaga 6 The theory of
characteristics will lead us to the same resulthvdl being nothing but the angular
coefficientda/dt of the tangent to the characteristic, which isisined by equatiof2l” .)

The quantity@ is thevelocity of soundn the gas for the pressure and temperature
considered. Indeed, it is the velocity with whigh arbitrary motion (such as a sound
vibration) is propagated under these conditions.

167. — In addition, relations2@) tell us about compatibility. If one consider® th
motion of a fluid as being determined by the posiiand velocities of the molecules at

2
. X . .
the instant theng—2 will be an unknown that one must obtain from ecqurafb).
a

2 2
On the contrary, gt;( and.(;3 a)f[ are the givens of the question, which are
a
discontinuous for the value af considered. Between these givens, one must Imeve t
first relation of 23) for compatibility, in whichéd denotes the square root of expression
(24), with a sign that depends on the sense of prajosg@").

In the contrary case, the discontinuity divideoinwo ¢?), such that one of them

propagates with the velocity i% , and the other with the velocity i% :
\ 2 0w \ oo 0w

If the discontinuity is of order higher than thesed then we know from the theory
of characteristics that the velocity of propagatitoes not change in value. In order to
obtain the same result by starting from kinematicahsiderations it obviously will
suffice to remark that the" derived variations (wheneis the order of the discontinuity)
will then form a geometric progression of ratiand, on the other hand, that one must
substitute these variations in any one of the egusithat are obtained by differentiating
(5) p—-2times.

Likewise, it is clear that the expression for theoeity of propagation does not
change if, among the accelerating forces, one appkat is a function of velocity, or if,
in general, the forceX depends arbitrarily on not only, a, andt, but on the first
derivatives ok with respect t@ andt.

(*%) Compare ch. V, n@43

(*?) We shall return to this doubling in the general caspate in ch. V251



14¢ CHAPTER IV

168.— From the preceding, it is impossible to treat the dyos of gases without
taking into account the discontinuities that propagatdem. Their absence assumes an
exceptional agreement between the initial givens and themof the wall.

This circumstance does not present itself in the dyeawi liquids, in which one
always studies only motions that are continuous, oreast| ones with stationary
discontinuities ).

This constitutes a special difficulty in the study of ems Indeed, one sees that
before setting out to define the equations of motions ihecessary to determine the
domain in which these equations are valid. This domain unded by waves whose
propagation must be studied.

Furthermore, there are very few general results omibtgons of gases. Almost all
of them relate to the rectilinear motion that wasted by Riemann and Hugoniot in the
cited memoirs, with which we shall now occupy ourselves.

169 — We confine ourselves to the case in which the gdsnseatary (or, at least,
may have been at an arbitrary instant), with a unifpressure and temperature, in such a
way that the equation of motion reduces to:

02X 02X

(8) ?:w(w)ﬁ,

in which, as we have seeg(«) represents the function -@/¢'(«), andwis the partial
derivativeox/da. As for the other partial derivatidx/ot, it is nothing but the velocity.

The velocity of sound & is equal ta&.¢(w), and this is what
equatior(21) expresses. On the other hand, write equé®@n: it gives us (herep is
replaced by, andq by @):

du = 8dw= *,/¢(w) dw

This equation is integrableUpon setting:

(29 V(W) = x'(w),

in which one intends that the radical on the lefhdh side should be given the + sign, one
gets:
(26) ux &« = constant.

170. - Therefore, each family of characteristics adraitsintegrable combination.
This remark led Riemann to take the quantities:

(*® See ch. V, no244-246
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u+x(w) =4,

2
@9 {u—)((w) =1,

as independent variables, which gives:

3

+
S

(28) u=

N
S

(28) (o) = % .

In order to perform this change of variables weimdyy performing a Legendre
transformation, i.e., by takingt and w to be the independent variables, and the
combination:

(30 Z=aa+ut-x,

to be the unknown function, in which the derivasiveith respect ta and ware nothing
butt anda. The new values of the second derivatives areutaied by means of the
formulas of n0162 and equationd) becomes:

0%z

(3D 0’

Now it is easy to pass to the variabfeg. We get:

4622 )((a))(az gj
o&n  x*(w\oé an)

or, after derivingwfrom equatiorf28' )

0’z 0z 0z
(32 28 f(¢ )(65 6/7}

in whichf is a function that is defined by the relation:

(33 fl2x(w) = T X (@)
2 X% w)

The equation is thus referred to its charactesstichas the Laplace form:

2
0z, E+ba—+cz 0.

(34)
o&n “a& an
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171.— It is precisely this example that led Riemarif) {0 imagine his method of
integration, which was, as we know, extended to the geeguation 84) by Darboux.

We recall that this method is, in many ways, analogoubké one that we discussed
in chapter 1. It rests on an identity that is cosbglly similar to that of Green, namely:

(39) [[le7(2 - () & dp= [ My~ N,
in which:
zand{ denote two arbitrary regular functions,
F(2) is the left-hand side of equatioddj, and

G(2) is the left-hand side of equation:

0éon o0& 0N

_0%¢ __0¢c_ ¢ ( _oa_0b) _
(36) a0 =25 _a +[c . agj‘ 0

which is called thadjoint of the one that was proposed.
M andN are the expressions:

M = azc+%(cE - za—nj
on

0

(37 0z 6:‘7
N=bz¢+3| ¢———-z—=|
2+ c22-2%¢)

the double integral is taken over an arbitrary arethe plane of, #, and the simple
integral in the right-hand side is taken over tharidary contour of that area.

Once this identity has been posed, the solutiotih@fCauchy problem for equation
(34), in which the curveis an arbitrary arc in thén-plane, subject to the condition that
it be cut by an arbitrary parallel to theaxis at only one point, also be cut by an arbjtrar
parallel to therp-axis at only one point — in other words, the clatan of an integrat of
equation 84) that is given by its values and first derivatiaseach point of; at an
arbitrary pointA(¢',7"), (fig. 11) — comes down to that of constructing a
functiong(é,n;¢',n') that one may regard as corresponding to the Gtewion.  This
functiong is defined by the three-fold condition:

(** The unknown that was considered by Riemann was, ot a quantityv that he defined to be an
integral of an exact total differential by the foriaau

-_Z | Zde-Zan|,
dw= > (d&+dn) +wy (w)(ag dé on dl]j

which is equivalent to formuleB) (sec. Il) of Riemann’s memoir (page 183 of the Frenahstation); the
relations that allow us to pass from Riemann’s notoour own are:

V9'(P) =wx'(w), f(0) =- X, r:%, S:_g.
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1. It must satisfy the equatigh= 0, when one considers it as a functiof,of (&'
andy' are constant).

2. It must reduce texpj:b(f,n)df forn=n", and toexpj}j a(&,n)dn foré=¢&".

This presents a reciprocity property that is analesgto that of the Green function,
and is proved in a completely similar mann&}; (the expressiog(¢,77;¢',17') does not

change when one permutes the pofitg,&',n' along with the differential polynomials

G, F (a fact that is immediately obvious for
condition 2, but not condition 1). n
Once the functionG is constructed, one
substitutes it ford in identity @5), by means of
which the left-hand side will disappear, in whizh
is the desired unknown function. As for the area
integration, one bounds it, on the one hand, by thg
curveg, and the other, by the parall&8, AC (fig.

11), which are parallel to th& and n axes,
respectively, at the poirt. 0 _ ¢
By virtue of the properties that we assumed for Fig. 11

the function g the integraj Mdrp—Ndé  reduces té[(zg), —z,] on AB
and;[(zg). — z,] onAC, and one has:

\L4

(39) 2, =3[(20)5 +(29) ] - | M~ Nd&,

a formula that resolves the question, since evarytin the right-hand side is expressible
directly with the aid of the givens.

Converselyjf the curveysatisfies the geometric condition that was indédatbove,
and, of course, if the given valueszadnd its derivatives opsatisfy the relation:

0z 0z
39 dz=—dé+—dn,
(39 Y5 é on n

then the preceding formula defines a function Hadisfies the conditions of the problem
precisely.

If, instead of integratingF = 0, one must integrate the equation:

F=A,

(*®) DARBOUX, Loc. cit.,no. 359,



15C CHAPTER IV

in whichf is a given function o€, n, then if we use the same method again forn8@a (
is completed simply by taking the double inteﬂdgd{dn over our curvilinear triangle;

this results immediately from the general formc8) (

172.— Finally, the same method applies just as well tac#s® in which the curve
is replaced by a system of two characteristics,angthe values of are given on each
of these two lines. Formul8§) (or rather, the equation in the right-hand sidehent
replaced with:

(40) z, =(92), - j(f g(g—é + bZde - j: g(g—; + aZJdn :

173. — One does not simply describe a general method for theutation of the
Riemann functiom(&,7;¢',7"). However, one is assured of the existence of this

function such that the coefficients of the equagoa analytic and regular®), or, more
generally, that they are continuous and differdatei”).

Under these conditions, it obviously results frana toregoing that that if the curye
is cut by a parallel to théaxis at only one point and a parallel to tpexis at only one
point (as we have assumed), then the Cauchy pradadienits one and only one solution.

More precisely, if the functiomand its derivatives are given alongan PQ, and it
satisfies the preceding condition then this funct® defined over the entire rectangle
that hadPQ for its diagonal and sides that are parallel ®akes.

174.— This allows us to fill a lacuna whose existemeepointed out a little earlier
(no. 161 in the context of the equations with which we presently occupied. Indeed,
suppose that equatioh®) has the Laplace form. We may then confirm that integral
surfaces— analytic or not — may not have a contact of theesanfinite order along an
entire line without this line being a charactecistsince one may then consider, in
particular, an arc of the line in question alongichhé and 7 are each constantly
increasing in such a way that the givenzoénd its first derivatives along this arc
completely determine this function in the neighloath.

This conclusion extends to equati@). Indeed, consider the Cauchy problem for
that equation, i.e., assume that one is giveniassef values fos, t,w, u, xthat depend
on one parameter. This problem may be immediazlyced to the analogous problem
that relates to equatio3l), since one knowsand its derivative8z/d w= a anddz/du =t
for a series of values @bandu.

The necessary and sufficient condition for thisogm to cease to be well-defined is
therefore that the series of values thus consideeetharacteristic.

(°®) DARBOUX, Loc. cit.,tome Il, pages 91-94.

(") DARBOUX, Loc. cit.,tome IV, pages 355-359 (Note from Picard).
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Physically speaking, if one imagines two successive mokband M’ of our fluid
mass that coincide fdr< to, a < ap then these motions will again coincide for a valué of
that is greater thatg until it reaches the value afthat is attained by the wave that starts

atap and propagates with negative velocity/¢/(w) ; in other words, up to the value:

a=a, —fo«/él/(w)dt-

Up till now, this result has been true in full rigonly by assuming that the motions
in question are analytic for either wave.

175.— In the case of a perfect gas, we have found:

(2) #a) =
and, as a result:
(41 Y(w) =Kw ™, k' = %k .

m+1

x'(c)is therefore equal talk'w 2 .

Since this quantity represents the velocity of shuhe constanfk’ is nothing but
the velocity of sound in the initial stateone has:

(42) )I:\/?:\/@.
Po

If m different from unity, as is the case in Poissdai® of springs [Trans. Note:
détentg then we get (neglecting an additive constant):

pey=-2 o A
m-1

“3 X'(@) __m+1w-m7_l__m+1w‘m7_l
Xiw) 2K 21

and, as a consequence, the functitrat was defined above (formu8) has the value:

(44) f(E-m=-L_,
&-n

in which:

(45) =2 m
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One is then led t&uler’s equation:

(46) 0°z _L(E_Ejzo
oén ¢-n\oé an

Whengis an integer the general integral of this equati@xgessed in finite terms;
it is (°%):

I X-Y
(47) Z_afﬂ’lanﬁ’l(f—nj’

in which X andY are arbitrary functions df, 7, respectively.

One finds that this case is approximately the same Bsigson’s law. The general
value that is assumed for the coefficiem(the ratio of the two specific values) is 1.41;
the hypothesisn = 1.40 gives3 = 3.

176.— However, the Riemann method allows us to solve thelSaproblem for any
B. Indeed, one may form the quantity One finds that>}):

(48) (&7 E )= -8 (n-&)V - F(B.BLO),
in which o denotes the quotient:
o= &= -m)
(§=m)n-¢)

andF denotes the hypergeometric series:

F(B,BL0) :1+’f—ja’+[%} g’ +...

+[ﬁ(ﬁ+1)~-(ﬁ+n—1)rgn+...

nl

(49

177.— We just excluded the case in whiolx 1 - i.e., the case of Mariotte’s law
in which ¢(«j is given by formulaZ). In this case, one has:

(50) X'(w) :g,
(50) x(w) =K logw,

(°® DARBOUX, loc. cit.,no.353(tome II, pp. 65).
*%) Ibid., no.360.



RECTILINEAR MOTION OF GASES 15¢

and the quantityXlz(—a) simply gives the constartl = —i,.
X' (w) JK
Equation 82) is therefore:

(51 a—ZZ+I(E—EJ:O,
ofon \o& on

which may be further transformed into:

0%z
a&n

(52) +1%2,=0

by a change of variables= ¢~ z,.
Finally, one may likewise reduddo unity by taking ¢ andl# for new independent
variables. The equation thus obtained, or radmeequation that is easily reducible to it,

is known by the name of thelegraph equation.The Riemann functiog(é, 7;¢',7') is
likewise known for the telegraph equation, and essalt, for equationsl); one has:

(53 9(&,m;&\n') =T ENI(E-EN -1,

in whichJ is the Bessel function:

2 4 2n
J(X):]_—X_2+ X2+...+ X
2 (2)

178. — Since Mariotte’s law is a limiting case of theeothat is represented by
formula (2'), the results that we just obtained must be dedfroed the ones that were
the object of nosl75176 At first, it seems as if this is not the casel d@hat, for
example, equatiorb@) may not be derived frond§).

Indeed, in order to reach this conclusion it isessary to account for the additive
constanth that will have to be added to the right-hand silé43). As one knows, it is

I

by making this constanth(:z—\/rl) increase indefinitely that one passes from foemul
m_

(43) to formula(50" ) for an infinitesimam - 1.

We thus augmer2x(«), or its equalé — 1, by the constanh, and simultaneously
replaces with Ih. Equation 46) then becomes:

0’z Ih (g_gj_o
ofon  &-n-hlas an

and if one now makesincrease indefinitely then one arrives at equatidi
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The same calculation may obviously be performed on teen&n function that is
given by formula48), and which may be written:

B B
9(5,/7;5’,/7’)=['7, ‘(j [” ‘(,j F(8,810).
n-&) \n-¢

If we replacen - & n'-¢& with n—- &+ h, n'= &+ h, and 8 with lh then the first

factor becomes:
Ih N
n-¢+h |1+ n-n
n'-&é+h h+n'=¢)

and tends t&@'”") for infinite h. Similarly, the second factor will have the lingit¢™" .

As for the hypergeometric seridqf, 5, 1, 0), its limit is precisely the Bessel
function that appears in formul&3); indeed, the general term of the sefds:

o [B(B+D---(B+n-1)]°
ni?
_ [(6=&)n-m1"  [Ih(h+1D---(h+n-1)]°
[(E-n"—h)(n-&+h)" ni® ’

2(5_5’)(,7_,7’)]2 forh= o
(n)* .

which is precisel;L_I

179.— Is the Cauchy problem, when it is solved byRemann method, as we have
just seen, the mathematical translation of a paygimblem that is posed to us?

In order to respond to that question, first consttie case of an indefinite pipe, and
suppose that one is given the positions of the cotds and their velocities at every point
at an initial instant. Under these conditioxgnd its first two derivativeeandu will be
known fort = 0, no matter what the valae We are therefore led to the Cauchy problem
that relates to equatioB)(

Now, we have seen that this problem amounts tamladogous problem for equation
(32). Nevertheless, an objection may be presentéldisrspirit. We have remarked that
whether or not the Cauchy problem can be posedbigrdinate to the issue of whethgr
and /7 are always increasing or always decreasing orcdinge . However, there is no
reason for this to be true whehand n are deduced from the given distribution of
molecules, and, for example, the velocfiynay have a maximum whemnvaries ag
remains null.  Still, this does not imply the impimlity of the problem that was
originally posed. Indeed, might have several different values for the sagstesn of
values foru and wif several systems of values for then independent variables, t
correspond to this pair of values forcx Not only might this be true, butandymay be
constant, whilez takes all possible values; this is what happertbansimplest case of a
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fluid at rest k = a; u =0, w=1). In a word- and this fact, which we shall encounter
again in the following sections, is obvious from what a& #1 n0.163— a singularity of

z, when considered as a functionwgf«y does not necessarily give a singularityxpf
when considered as a functionagft, under a Legendre transformation.

Unfortunately, the inverse may obviously produce them. @meehas obtained a
value forz as a function ofi and «j if one is to consider these values as acceptable then
one must calculate the derivativdz0 w= a, dz/0u =t and assure that:

1. These quantities may be taken as independent variables.

2. They take precisely all of the systems of valuesdhaipossible whein=> 0.

The examination of the conditions under which this ug tundoubtedly presents some
difficulties.

180.— Now consider the case of a cylinder that is boundedidigns. x and its
derivatives will then be known only fora <t, and one will therefore have only arc
of a curve in thefn-plane along whiclz and its derivatives with respect ticand w are
known. These givens permit us to calculate a rectangle of thén-plane {ig. 11). In
the at-plane, this rectangle will obviously correspond to the seguehportions of the
tube that are not, moreover, attained by the wavessthat from the extremities.

Outside of the region in the-plane that we just obtained one must take into account
the conditions that are implied by the motion of ti&gm. Now, it is easy to see that
they may not be transformed as in the foregoing. Indéed,give us the value affor
each value of, and, as a consequence, thatigivith a being equal to 0 dr However,
the value ofwis not given to us.lt is therefore impossible to trace the corresponding
curve in theén-plane,a priori.

Therefore, under these conditions, the Legendre tremation and the Riemann
method might not lead to the determination of the motiolhere is good reason to
attempt this determination by a direct study, and it iy éasee what sort of analytical
problem one is thus led to.

Indeed, the desired motion must be compatible with tlggnai motion such that it
propagates by following a wave whose progress is knownthéfefore know the value
of x along a line in that-plane, namely, the one that represents this wave, aruh vgha
characteristic®). On the other hand is likewise given (by the motion of the piston)
along another line that is secant to the first, ngyriake linea = 0 (ora =1). It is by this
double condition that one may determine a solution to @oués).

The problem thus posed is considerably more difficult that Cauchy problem,
even in the case of a linear equation. One kn&WgHat when the givens are analytic
one may establish the existence of a holomorphic sojubath one may not put this
solution into a form that is sufficiently simple anseful.

(°® There must be concordance (along that line) in nigttbe values ok, but also in the values of the
derivatives ofu and w However, as we will see later on (note on page 18) dbncordance of the
derivatives will result from the latter, provided tliais true initially, i.e., provided that the initial legity
of the piston is equal to that of the molecules thabunidls.

(* PICARD, in DARBOUX, Loc. cit., tome IV, pp. 361-362; GOURSATecons sur l'integration
des équations aux dérivées partielles du second amires Il, pp. 303. — See below, chap. VII.
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On the contrary, Hugoniot showed that this result mawptb@ned in an important
case, that of a gas that is originally at rest.

181. Motions that are compatible with rest— Suppose that the gas is at rest for
0, and has a uniform pressure and temperature in a poréibmwéhtake to be an initial
state. We associate a motion to one of the twopsst the one that correspondste 0
— that is arbitrary, but never has an abrupt change icitxelo

A motion will originate at the point of contact witine piston, a motion that
propagates in the positive sense with the velocity oféduny’ (). This motion and the

original state of the gasnamely, the rest state — will bempatible.

This ceases to be true starting from the momentnwthe motion thus created
encounters the analogous motion that is producethéypiston that is situated at the
extremity | if this piston is moving. At this moment, a thirdotion arises that is
compatible with the first two, but not with the regate. Hugoniot’'s theorem, as we have
presented it, is no longer applicable to this thation.

Nevertheless, we can write its equation once wevkihe first two motions.

Indeed, the integral surface that it representeesgmwith each of the first two
motions along two characteristics of the differegstems. In particular, there is one
characteristicf = const. for the first of the two motions that spoke of above (since the
propagation of the third motion is in the negaemnse), and a characteristic=- const.
for the second. One knows the series of valuesafor, X, u, w on each of these
characteristics, and, as a consequence, the valuanal its first derivatives. Indeed, all
of these quantities are assumed to be known fofirgteewo motions and are not altered
by the discontinuity since it is of second orderhiagher. Ifz is known on the two
characteristics®f) then one comes back to the problem of 2

No matter whether the second piston is at restotr one will always arrive at a
moment when a new motion originates; it is the mainweghen the wave that starts from
the extremitya = O reaches the opposite extremity.

At this moment, as we saw in nbbl, there will be reflection, and the discontinuity
will be retarded. The new motion that is produtedo longer compatible with the rest
state. The study of this motion is not carried actording to the method that we just
indicated. It depends on the considerations tleatieveloped in nd.80, but, up till now,
we do not possess the methods that would pernut calculate them explicitly.

(*?) It seems that the problem is impossible becauseodfitge a number of conditions, since one of
them gives the agreement betweeand its derivativesyhereas the one givawill suffice to determine
the solution. However, if the values of a functithat satisfies the Laplace equati@4)(are given on one
characteristi¢f = const. then the valuesa¥ /0 will satisfy the relation (a particular case 2g)):

d(oz 0z _ 0z
—| —=|+a—==-{b—+cz|
dn(afj o¢ ( on j

on that line, which determines the quantigp& by which those values are given at a point. Now, this
relation is verified by the first given motion. Thewed, if one determines the third motion by formu @) (
then the values a@iz/0¢ will coincide precisely. Indeed, this coincidence igetat one point, namely, the
point that the two characteristics have in commoid, e integral surfaces that correspond to the three
original motions are then mutually tangent.
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182. — In the previously studied case, in which the velocitypafpagationé is
constant, the equilibrium state is the one in which finectionsf; and f, that we
introduced in nol45have the expressiofiga + dt) =a + @t; f,(a— 0t) =a— 6t.

The motions that are compatible with the rest statecharacterized by the fact that
one of the two functions reduces to the same varidtide it depends on. The
corresponding representative surface is obviously a cylinder

We propose to determine these same motions in thefaragdich the functiong is
arbitrary, and find an integral surface that agrees with the plane = a along a
characteristid” that corresponds to:

%‘ = Jp@) =+x'O).

Choose the characteriskit of the system that is opposite [fcat an arbitrary point
of that surface. The quantity+ x(«) is constant oh'. Now, the lind"' necessarily
encounter$’, and the quantity + x(«) is everywhere equal tg(1) onr .

Thus, the desired surfagesatisfies the first-order partial differential equation

(54) u+ () = x(1).

Thereforeduring a motion that is compatible with the rest state, velocity ansitge
are functions of each other. These two quantities increase simultan@ebsly velocity
is given its algebraic value) sing§«) is positive, angb increases whewdiminishes.

183. — One easily provesd that if a surface is such that there exists aticel
between the angular coefficients of its tangentnglahat is independent of the
coordinates of the point of contact then this stefs developable.

This is therefore the case for the desired surdanmeeu and ware derivatives of,
which is regarded as a functionatindt. If we choose the various planes at the origin
of the coordinates whose directions satisfy equad), planes whose general equation
is:

(59 x=caa+ 1) -xayl,

then these planes envelop a certain dOn&hose equation is obtained by eliminatig
between the preceding equation and its derivative:

(55" a-ty'(«) = 0.
The generatrices of the developable surleee parallel to the generatrices of C.

Since these generatrices are tangent to the edggssion one sees that its spherical
indicatrix is known.

(%3 JORDAN, Cours d’Analyse?™ ed., tome I, pp. 476; GOURSATpours d’Analysetome I, pp.
524,
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184.— If we take our ordinates to be, no longer the values ladit the velocities or
dilatations (with the horizontal coordinates stillfgea andt) then we will have not just a
developable surface with which to represent the motimrt, a ruled surface with
horizontal generatrices, since the velocity and ditatedre constant on each wave.

185.— The preceding conclusions persist for any motion thabmpatible with the
former as long as the characteristic on which thegeabas the same systenfas

Therefore, they persist if arbitrary discontinuitje$ order at least two) are produced
by the motion of the piston at= 0. As we said before, they will be modified onlyhiéy
propagate in the inverse sense after the moment wheenopenters a wave.

One also arrives at analogous results if the molecaie not at rest in their original
state but are animated with a uniform motion that ismgivy the equation:

(56) X=g0a+ [,

in which a and 3 are constant (a motion that obviously satisfies equ8ip.

More generally, the line of reasoning that we just used beapplied to any
equation of the form1(7), in which one of the families of characteristics &dnan
integrable combinatiodF, when one seeks the integral surface that agreeswsitinface
that satisfies the equatién= constalong a characteristic of the other system.

186.— If one tries to apply the Legendre transformation ta used before to the
developable surfaceE that we just obtained then one does not produce a surfac
Indeed, the reciprocal pole of a developable surface ia sotface, but a line, each point
of which corresponds to an infinitude of points of the dgvable surface, namely, all of
the points that are on the same generatrix. Equa®rsbiows that in thén-plane this
line corresponds to the liné= x(1). In this, we have an obvious example of the
degenerate integrals to which we previously alluded168).

187. — The developable surfacésare the only developable surfaces that satisfy
equation 8). Indeed, if one assumes that one has:

OX _ [ 0x _
o)1

then by successively differentiating with respedt@anda one will deduce that:

o> odaot

0°x  0°x ., 0°x  0°X
=—f'(«), = (),
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and equationg) will be verified only if /(w) = f'*(w )(except whedx/da andox/ot are
constant).

188. — It now remains for us to completely determine theionotvhose general
properties we just found by assuming that the motioneoptston is given.

To that effect, it suffices to recall the method giresentation that we used in nos.
146, et seq.f{g. 10). The motion of the piston lets us known tiesection fig. 10) of
the desired surface by the plane that we cdlleabove. The developable surface will
admit a tangent plane at each point of this sectianrttust:

1. Contain the tangent to that curve,

2. Satisfy equatiorbd), or, if one prefers, be parallel to a tangent plaine cone
C.

This tangent plane will thus be known. As for theeagatrix of contact, it will be
parallel to the corresponding generatrix of the cGneThe locus of these generatrices
will be the desired surface.

As one sees, each of these generatrices representrdpagation of the given
motion of the piston at the instant that correspdadss point of origin.

189.— Analytically speaking, let:
(57) Xo = f(to),

be the equation that gives the abscigsaf the piston as a function of tinlg One will
have the value, = f'(t, fpr the velocity of this same piston. Meanwhile, thé&tion
(54) gives the valuey of win the immediate neighborhood of this piston. For gdam

if the law of relaxationdétentg is Poisson’s law, then, from formuld3), «p will have
the expression:

(58) w, = [1+ Mj_m_l ,
24

in which A is still the velocity of sound in the initial séat
The motion that is communicated to the piston atitistantt propagates with the
velocity x'(«w, ). At the timet >ty one arrives at the point whose initial abscissa is

(59) a= x'(@)t-t,) = (t -1) j;‘) |

and to which the velocityp is communicated at this instant.
Here, we assume that this point has been succhssittained by the waves that
originate at different instants befdgetherefore, its actual abscissa will obviously be:

to=to ,
x=a+ [’ ‘u(ty)dt,
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in which t designates a function tjunder thqr sign that is defined by equatiof9],

namely:

dw,
t=t,—a—>.
u0

If we replacd by this expression, and, as a consequettdsy:
dg—m{m%)
du,

to , , dw
x=a+Lud%m%—qyﬂ(m£j

then we get:

=a+ E’ u,dt, —au, g—ua +a(w, —1)
0

or (since [ udt, = x, , and taking9) into account):
0 o~ XO

(60) X=Xy _(t _to)(wog%_uoj =Xt (t _to)(wo)('(wo) +U0) )

0

in whichxo, a, Up are the functions ap whose method of calculation we just indicated.
Eliminatingt, between equation$9) and @0) gives the desired result.

190. — One may further imagine that instead of givihg motion of the piston at
every value of time, one is given the external gues that this piston is subjected to. It is
clear that the preceding calculations will not bsentially modified. Instead of, one
must first calculatewy by solving equatiof2’). One will then havel = X(1) — x(w),

and thenx, by a quadrature; after that, all that remainse mitite formulas %9), (60).

191. - Thanks to the intervention of the discontinwitgves, if the gas is animated
with a given motion at a given instant then we roagfirm the existence of a motion that
satisfies either the internal equations or the Hawn conditionsat the instants that
follow immediately. Do we have the right to conclude that the disooities that we
studied up till now- and they alone- assure us of the existence of the mofmmany
later value of time?Such a conclusion will be vacuously legitimate.

In order to account for this, it suffices to puesealf in the simple case of a constant
velocity of propagation. We assume that the gest st at = 0, and put the piston
whose abscissa is 0 into motion in the positivesseat this instant, i.e., in such a manner
as to compress the fluid. Under our hypotheses,nbtion that is thus created at an
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arbitrary instant will extend to the points whose initial abscissas lf@tween zero and
@t while the remainder of the mass remains at rest.

Now, by conveniently accelerating the motion of thegmis one may obviously
make its abscissa greater théinat a certain instant.

There is obviously a contradiction, since the neighbonmdecules to the piston
must coincide with certain molecules that are stillest at this instant. If we would like
to preserve our fundamental hypotheses of impenetrabiity continuity (nos44-45)
then we shall be obliged to get involved with phenomenaateadistinct from the ones
that we described in the foregoing.

We must remark that this hypothesis of a wall thaispldced with a velocity that is
greater than that of the wave is not purely theaktit presents itself in the most
important application that one has dreamed of making is Bymamics up till now,
namely, the study of the motion of projectiles. Irjeene knows that their velocity is
greater than that of sound.

192 — Nevertheless, before we study the singularities thast therefore be
produced when one gives the piston a compressive met®must mention one that is
produced in the contrary case of a decompressive motion.

In order to calculate the value af we solved equatiorbd) with respect to this
quantity.

Now we must demand to know whether this solution is ptessiThe derivative of
the left-hand side with respect ta is always different from zero (it is equal

to ¥'(w) = ¢ (w) ). u may therefore take all possible negative values #ritl$ toward
—oo for w= +; i.e., the integral:

X = x() = - x'(@dw=~["Jp(wdw,
is infinite.
This is true for Mariotte’s law, for which the funatig{ ¢ is logarithmic. However,
this is not the case for Poisson’s law. In this clsejula @3) gives:

X - x(e)=-22.
m-1

When the piston reaches the point that it takes omative velocity and has a ratio
with the corresponding velocity of sound in the inititdte that equals 2i(— 1) (in
absolute value}hen the fluid will cease to follow the pistom vacuum is produced
between them just as if one were concerned with adliq@ihe only difference is that the
latter gas layers will be infinitely dilated (sincewill become infinite {%), whereas in

order for the aforementioned liquid to be to be compressigleseparation will have to
happen after a certain finite value af

(*) Of course, if this indefinite expansion is to be atdi then we must assume the completely
theoretical hypothesis that the gas maintainsdpgrties down to absolute zero.



162 CHAPTER IV

On the contrary, if the piston does not attainrnbgative value- 2/(m — 1) then its
motion will produce a well-defined state at each instarthe neighboring layers that
propagates, as we have said, at least during a certanirtberval, until it produces
singularities such as remain for us to discuss.

§ 3. — THE RIEMANN-HUGONIOT PHENOMENON

193. - If, as we assumed a moment ago, the motion olmyatien(8') then it is
easy to see that the singularity whose existenemeag necessary to us in ri@1 will
appear (and for the first time) at the moment wheninfinitely large compression is
produced, withwbecoming null.

Indeed, if the fluid is assumed to be originallyes$t then a motion that propagates
in the positive sense (starting with the instart0) will have the equation:

(61) x=a+f(0t-9 (a<6),

with f(0) =f'(0)= 0. The functiorf will then be given by the relation:

f(81) = o,

in which xo again represents the space in which the pistoresiolf this quantity is a
differentiable function of time them will be a differentiable function o& andt.
Moreover, in any case, exactly one value cbrresponds to each system of valuesafor
andt. In order for the converse to be true — i.e., #yame value ofn corresponds to a
system of values of andt — it is necessary and sufficient that the denatv = dx/da
does not change sign. If this condition ceasdsetsatisfied then this will start at the
moment wherwis annihilated.

As the values ofw propagate from the extremity = 0 this phenomenon is first
produced at the point of contact with the piston.

194.— We shall see, as did Riemann and Hugoniot thnags are different when the
function ¢{«) no longer reduces to a constant, and, in padicun the case of Poisson’s
law.

Indeed, in this casev can be null only when the velocity becomes inénitOn the
other hand, instead of the cylinder that was ddfihg equation §1), we will have a
developable surface whose edge of regression gilitnated at a finite distance (at least
when then velocity of the piston is not constant).

From this,x, when considered as a functionaofwith t being regarded as constant),
may present two types of singularities:

1. Those for whiclox/da is null, which, as a consequence, are analogotigetones
that we just spoke of.

2. Those that correspond to the edge of regressitimtecgurface.
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One may verify this directly by the study of the dernx@bx/oa .
Indeed, if one differentiates formulasdy, (60) for constant then one finds:

BPSIN (7,
da:{(t_to))( (0)0) d 2 -
to

- (t_to))("(wo) duo '
= { @)  d +X(a)0):|dt0

dw,
d

)('(%)}dto

(62)

dx = w{(t ~t)X" (@) —x'(wo)}dto

_ —w{(t ~to) X" (@) du,
X'(@)  dt

+X’(wo)}dt0'

If we eliminatedty then we will obtain the value ok&/0a from the quotient ofix/dt,
and da/dty , at least when the latter of these quantities it amnihilated. As a
consequence, except for the casesuof 0 andw =, which, as have seen, are only
produced at the point of contact of the piston, theré be no other singularities for
which da/dty is annihilated, and, as a consequemb&ty as well. As one knows, this
characterizes a point of regression for the curve tbestiby the pointd, X whent
varies. The first derivatives afwith respect t@ andt therefore remain constant, but the
second derivatives become infinite.

Here, from formula&2) this point of regression is given by the equation:

(63 (t- ty )X"(wo)

dw ,
r ® - x'(w,)=0.

0

195. — The physical interpretation of this circumstansesimple, moreover. It
suffices for us to recall that each generatrix of developable surface represents the
propagation of a well-defined motion with the vétgo/'(«), and is characterized by a

well-defined system of values af and w A point of regression of our surface
corresponds to the intersection of extremely clgseeratrices, and, as a consequence,
the intersection of two consecutive waves, wheeesdtond one catches up with the first
one.

196. — If, instead of the representative surface ofdisplacements, one considers
the one for which the dilatations appear as a fonaif a andt, or the one for which the
velocities are of concern, then on either of these surfaces the two consecutive waves
that we just discussed will correspond to two gatnees that have the same horizontal
projections as the developable surface. Moreotese new generatrices no longer
intersect in space, and the point of intersectibnheir horizontal projections will be
simply the base of their common perpendicularuichsa way that the edge of regression
of our developable surface corresponds to the dihe'striction” of the surface of
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dilatations or that of velocity, since these surfacesrtical tangent plane at each point of
that line.

197. —The surfaces thus constructed permit us to analyzehdm®omena that we are
occupied with in a simple manner by
considering their sections with the =
const. planes. Indeed, each pain(fig. | e
12, 13) of such a section belongs to
certain generatrix that corresponds to a =~ ~""TT>tTTTTeTTm ST
well-defined wave, and we know tha
these various waves are displaced with x4/ H":'_' ____________

they are compressed to a greater or lesser
degree. As a consequence, during a given
time interval t'—t they will describe Fig. 12

unequal paths, and the curve of the section

will be deformed, instead of the pojat If the forward waves are the ones that propagate
the fastest then the horizontal distances
will be increased, and the curve will be
stretched in the horizontal sendigy.(12).
However, in the opposite cadey( 13) the
curve tends to straighten and nothing
prevents this from happening up to a
certain instanflT when one of its tangents
goes vertical. If one follows the same
deformation at the instants aftethen one
verifies that the inclination of that tangent
to the vertical changes sign, and the
different parts of the curve separate from
each other, just as if it were a wave that broke.

198 - In the case of Poisson’s law or Mariotte’'s law — the waves that are
compressed the most are the ones that that propagafastist; in other words, the
velocity ¥'(«) is a decreasing function a@ We therefore make the hypothesis that this

condition is verified ). Then, since I is increasing withu, it must be the case that
this latter quantity is increasing in timein other words, that the piston hapasitive
acceleration — in order for the wave to overtakalagr one that originated before it did.
Therefore, if one gives the piston a motion withegative acceleratioau, / dip (in
other words, directed in the same sense as themgbeession) then the waves thus
generated will not cross each other. Indeed, ftar(@B), in which one hag"(« 9 0,

(®®) One may remark that the opposite hypothegig,) > 0, might not be verified, or at least might not
be constant, in which case, after a certain morpewill be less thanan expression of the form),
although we have shown the impossibility of this in el



RECTILINEAR MOTION OF GASES 165

shows that the point of contact of the generatridesuo developable surface with the
edge of regression corresponds to a negative valtie @f and, as a result, afas well.
The representative surface of the motion does not pravigesingularity, and will give
precisely the equation of a physically possible motiongast if the phenomenon that
was pointed out in nd.92is not involved).

199. — On the contrary, suppose that the acceleratign’ dt, is positive at an
arbitrary instant. Then, the wave that originatethat instant overtakes the wave that
immediately precedes it at an instatitat is given by equatio®g), namely:

R dt, x'(w,)?
—t0 ] *
du, x"(@)

As one sees, for the same value of velocity, the tinat is necessary in order for
consecutive waves to meet is just as considerabléeasdceleration of the piston is
small. In the previously examined case in which one me&med with infinitesimal
motions this encounter will be extended indefinitely.

If the acceleration is due to gravity, and if the gasriginally at the temperaturé 0
and normal atmospheric pressure then the quayi(ity) will be initially (i.e., foray = 1)

equal to the velocity of sound, which is in theghdiorhood of 330 meters per second for

air. M will have the value—m—+1i = _m_+1. Upon ta\kingOli 21 one finds
X' (@) 2 w, 2 du, 9

that the first wave will be overtaken by the onbattfollow after about 28 seconds,
during which time it will have traveled a little meothan 9 kilometers.

On the contrary, in the case for which the gaoimaressed by an explosion, as in
the experiments of Vielle that we shall describertiip the waves will overtake in an
interval of several centimeters.

In any case, what is certain is that this time sheyularity will not have to be
produced at the point of contact with the pistanwas the case under the hypotheses that
were treated in nd93 The value of — {, is always different from O; it is in the midst of
the gas itself that the waves meet.

200 — We have seen that under the present hypothibeesompression might
become indefinite. By contrast, it is easy to $ed# one may make it attain a value as
high as one wants before the phenomenon for whishg true will occur.

Indeed, we look for the condition under which thlsenomenon does not happen
before the tim&. The timet that is given by formula@) must be less thah namely:

dtO X’(a}O) <T )
daw, X" (aw,)

t, +
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However, this inequality states that the produiet (T —to) x'(cv,) is decreasing®f).

One may always make the compression increase safficiglowly that this will be true.
This condition is likewise compatible with the conditithat cy must have an arbitrarily
small given value at the instamt Indeedy'(w, )s equal to minus the derivative with

respect ta of the product that we just discussed atT, a derivative to which one may
assign an arbitrary (negative) value with@uteasing to be decreasing.

This value itself may null, in such a way that one hhigrrive at an indefinite
compression, if one likewise indefinitely increaseswvitlecity of the piston according to
a convenient law.

201.— We just assumed that the prodAcilways decreases. On the contrary, what
will happen if one governs the motion of the pistonsuth a way that this product
preserves a constant value?

Under these conditions, all of the waves will overdaghe timeT. In other words,
all of the generatrices of our developable surface widtragthe same point.

This developable surface is therefore reduced to a caremne that is obviously
equal to the con€ that was considered in nb83 The trace of such a cone on & 0
plane thus furnishes the convenient motion that mustJas o the piston in order fé
to be constant.

Equation §9) shows that the constant valueAois nothing but the abscissa of the
vertex of the cone, i.e., the common point of irgeti®n for the waves.

202. - Furthermore, one may continue this motion only up éctithet, = T, since
the density, and, in turn, the velocity become indefiat that point.

Suppose that one has continued it up to the instdmt whichuy will have a certain
value u;, and « will have a certain valuew, and that one then diminishes the
acceleration in such a way that the wave that weastenleat the instartt will no longer
be overtaken by the ones that follow before the fimgor example, one renders the
motion uniform fort >t;). Then, for ara that is infinitely close tot(~t1) ¥'(«,) , but less
than that quantity, the velocity will be essenyigdlual tou; and the dilatation equal to
a. In particular, fot =T these values af and wcan be obtained at the poat A — &,
wherec¢ is an infinitely small positive number.

However, fot =T,a=A+ gone hasi = 0, w= 1.

Hence, fort =T, a + A the velocity and density will not change abruptige will be
in the presence of a first-order discontinyignd no longer a second-order one.

203. — Starting with the intersection of consecutiveves equationsb@) and 60)
cease to give a physically acceptable motion.

This is already exhibited by the velocity and ditain surfaces since the section of
one of these surfaces by the plarel has a vertical tangerfig. 13), and the sign of the

(°®) This is, moreover, obvioua priori from equation %9) since it states that at the instdh@an
arbitrary wave is behind the ones that originated imatelyi before it.
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angular coefficient of the tangent changes at cegaints fort =T + & in such a way
that this curve is cut at several points by a conveniatitsen ordinate. One will then
be led to several values for the velocity for the sgarticle at the same instant.

204.— In order to recognize this fact with the aid of the espntative developable
surface of motion, we recall that a developable surfackvided into two nappes by its
edge of regression, and that an arbitrary generatrix p&ssa one nappe to the other at
the moment when it touches this edge of regression.

In the developable surface that is presently under
consideration, ifT is the instant when the generatfbg
that corresponds to the initial wave touches the edge pf
regression (if we assume, to fix ideas, that it reathiss
edge for a positiveg and, on the other hand, assume that it
is the first wave to do so) then the entire part that
corresponds td < T belongs to the first nappe. The
section by the plane=T — £ will be a certain curve that
agrees with the straight line that is the sectiothek = a Fig. 14

plane {ig. 14) at a point 06o.

From what we just said, far=T + £the generatrixs,
will pass through the second nappe of the surface.
Therefore, the section of the latter by the plareT + &
will agree with the linex = a only after crossing the edge
of regression.

For such a value of, x will be represented as a
function ofa by a line that no longer has the form that is
. represented infig. 14), but one which is represented in

Fig. 14 (cont.) figure 14 (cont.), and which, together with the line a,
determines a small curvilinear triangle. This is phykicabsurd, since all of the
ordinates that traverse this triangle will give thvaties ofx for one value oé.

205.— A new problem is therefore posed to us: the searcthdéosingularity that is
created at the instafit In the particular case that we recently considéned202), this
singularity is a first-order discontinuity. We are thed to demand that this not be true
in the general case.

To that effect, one must first study the conditions tlte propagation of such a
discontinuity.

This study, like that of the second-order discontinuiigsarried out with the aid of
the equation of motior8f; however, the reasoning that led to that equation as$unat
the velocity was continuous. On first glance, it likemvseems that the general principles
of dynamics imply such a discontinuity, and likewise #xistence of acceleration, since
this is what makes the force known. We shall nevlatisesee that when conveniently
applied these principles permit us to account for the gunenon that remains for us to
treat.
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If the fluid is always referred to an initial homogenatate then let, u, be two
values ofu on one side and the other of the discontinuity; sirty) let aa, a» be those of
the dilatation i, p., those of the pressure, afidthe velocity of propagation (relative to
our initial state). We first have the kinematicahdion:

(64) Ur— U+ & — ap) = 0.

In order to now write the dynamical relation that exisetween the forces that act
and the motion, consider two consecutive positiis BB' that are occupied at the

instantst andt + dt by the discontinuity slice, and whose separatigtadce is, as a
consequence, measured 8yt on the initial state. We shall apply the fundataé
equation of dynamics to the small fluid volun®A" BB' whose mass igS@dt, in

which S denotes the cross-sectional area of the tube,(@mon assuming tha# is
positive, to fix ideas) assuming that we pass fthenstate s, p1, a) to the statelg, po,
ap) by writing that the variation of its quantity wiotion during the timelt is equal to the
total impulse during the same time of the forces #tt on it. They are (where they are
defined), on the one hand, the forces that areieapppb the mass elements, whose
impulse will be of ordedt (since the forces themselves and the duratiomefttion
will both contain a factor oflt), and, on the other hand, the pressures on the two
surfaceAA’ BB', whose impulses will bpiS dtandp,S dt respectively.

Since the velocity of the portion of the fluid thaé envision passes from to u,
during the timedt, one obtains (upon dividing Iy d):

(69) P1— P2 = QU — Wp).

As one sees, the fact that a finite force (the qumes difference across the
discontinuity) produces not only acceleration but a&brupt change of velocity is
explained in a completely natural fashion. It amtsuto saying that, thanks to the
propagation of the discontinuity, the force in gimsis not applied to a mass of well-
defined magnitude, as in the usual situation, b tnass that is infinitesimal during the
time in question.

206.— Before he wrote the two equatiogl)( (65), Riemann obtained a third one
by expressing the notion that the change of densityan edge traversed by the
discontinuity happens without release or absorptibhneat and is governed by Poisson’s
law:

(66) pla)]in = prg]l

an equality that is, moreover, verified if the gatrting from a homogenous perfect
state, reaches its present state by transformatansatisfy all of Poisson’s laws.

As a consequence, if two contiguous regions of flnel have a first-order
discontinuity then if there is to be compatibiligne must satisfy equatio66) and the
equation:
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(67) (U, _U2)2 :pi(pl — p)(w, ~w)

0

that is obtained by eliminatingfrom (64) and 65).

207.— If these conditions are satisfied then the disoaity will propagate with a
velocity @ that is a common solution of equatiot@g)(and €5). One may express this
velocity as a function of pressure and density uchsa way that one obtains an
expression that is analogous ), Eliminatingu; — u, gives:

(68) o= PP
Po(w, — )

One sees that, contrary to what we found for th@ession 24), here the velocity
depends on two pressures and two densities. IEonsiderg as the ordinate of a point
whose abscissa @then the pairs of valuesy, p1) and (, p2) correspond to two points
that, from 66), are situated on the same curve of the form:

(2) pa” = k.

The quantity under the radical in formu&8) is, up to a factor of — A, the angular
coefficient of the line that joins these two points

Likewise, the analogous quantity that appears nmiita @4) corresponds to the
angular coefficient of the tangent to the cu@e. )When the discontinuity is

infinitesimal (o1 is very close t@,) the velocity@is, as one naturally suspects, essentially
equal to the velocity that corresponds to a seavddr discontinuity. However, this is
not the case whep is noticeably different fronp,, and, in particular, for a well-defined
system of values gb; and w, € may take values that are as large as one wants for
sufficiently largep,. Thus, the progress of a wave is no longer detecinby a
characteristic, but by a line of arbitrary directio

208.— The influence that is thus exerted by a firstenrdiscontinuity on the velocity
of propagation appears clearly in the experimehigale (°9).

These experiments consisted of provoking, eitherth®y detonation of a small
quantity of explosive or the rupture (by means tobrgy air pressure) of either glass
ampules or a collodion diaphragm, a sufficientlgrgetic disturbance whose progress is
recorded in a perfectly closed cylinder.

If the wave thus produced is of second order theresults from the preceding
considerations that its velocity of propagation|viié rigorously independent of the
nature of the propagated motion and equal to tHecig of sound in the original
medium (about 330 meters per second).

(®") C.R.Ac. Sc.1898-1899Mémorial des Poudres et Salpétremme 10, pp. 177-260; 1900.
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Now, by raising the pressure enough Vielle has obtain&xtities of propagation
that were greater than 1200 meters per second.

One sees that this one fact suffices to exhibit the endst of a first-order
discontinuity and to show that it modifies the velgaf propagation.

On the other hand, if one imposes the law of the vanaif the pressure at a point
with the aid of an appropriate apparatus then one confiratsat a certain distance away
from the explosion the pressure immediately attagye@iximum value, whereas, at least
for certain experiments, the same fact is not trudnénimmediate neighborhood of the
point of departure. The traces thus obtained then shawttd discontinuity is initially
of second order and changes character in the course mdgation. This is the same
phenomenon that we considered in the foregoing.

209. Hugoniot's objection. — The conclusions that we just obtained were
established under the hypothesis that Poisson’s law icapf@i Hugoniot showed that
this hypothesis is no longer legitimate in the casédni@ condensations or dilatations.

Indeed, recall what we said in nd29 (ch. Ill). There, we established that the
expression for the quantity of heat released during condemsatthe same for any rest
state or fluid motion. However, the reasoning thatewgloyed assumed in an essential
way that the velocity was continuous. It rests ocoabination of the equations of
motion that is analogous to the one that led to theréime ofvis vivain the dynamics of
solid bodies, and which changes form when the velwaities abruptly.

To see what the true condition for adiabaticity w#l, lve recall the equation that
expresses the conservation of energy, and we regaegsbenption that the velocities are
continuous or instantaneous to be completely genera.apply this equation as above
to a small fluid volume that is defined by the positi&¥s, BB'of the plane of
discontinuity at two successive instapts+ dt

The work done by the forces that act on the mass aelsn negligible, as before.
The work done by the pressures will gpug — pouz) dt S We thus specify that this
guantity is the one that varies the sum of the semswvia and the internal energy during
the time intervatlt. The first term is easy to evaluate since thalflaass, which is equal
to SmEdt, has passed from the velocpiyto the velocityp;.

As for the internal energy of a perfect gas, its exgwesis known. If we remark
that:

1. It depends only on temperature or, what amounts to the tsaéimge on the product
of volume and pressure,

2. If the gas is subjected to a slow adiabatic releapeesisure, then the variation of

energy is uniguely measured by the work done by externabyme i.e., bydV, in
whichV is the volume, then one finds that this energy havatue:

u="Y -gs gz .
m-1 m-1

The desired equation is therefore:
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u; — U

u, = p,u =9 ( - Po;) +
pl 1 p2 2 m-1 pla)l p2 2 100

It is nevertheless necessary to give this a slighfferént form, because on first
glance, it seems to contain the two velocitigsand u;, and not just their difference,
which is the only thing that must appear if the resutbi®e independent of a common
translational motion of the system. This is what ob&ins by multiplying equatior6®)
by (u1 + up)/2 and subtracting the preceding equation. One obtains:

(p]_ + pz)(ul _uz) —
2

o
(69) m— 1( P — pzwz) .

The relation between the two pressures and the two tigsnss obtained by
eliminatingu; —u; between§4) and 69), namely:

(p]_ + pz)(wz _wl) — 1

(70) 5 m _1( P, — Po,) -

210.— This is the relation that Hugoniot has substituted 86y in order to express
that the jump in condensation or dilation happens witllo@trelease or absorption of
heat. One actually gives relatio®6] the name of theynamic adiabatic lawwhich is
called thestatic adiabatic lavwwhen the changes are slow.

Whenp; is very close t@; anda is close toa, both give:

Ap Aa

Prm=2 =o.
P w

In the contrary case, it is easy to see in whaseehese two relations differ. That of

Poisson gives:
P: _ (ﬂj
P\ &,

whereas the value that is deduced from formiQy is:

(m+1) % —(m-1)
(70) Pz - @ .
Py m+1—(m+1)ﬂ

2
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Let r="2 . The two functionsr™ and(m+1)r_(m_1)
@, m+1-(m-Yr

have the logarithmic

. ... m
derivatives— and:
r

m+1 + m-1
(m+DHr-(m-1) m+1-(m-Dr

_ dm

S22 +D) - A+ r)(m* -1’

respectively, for close to 1, the second of these two fractionsgokirger than the first
(°®). Therefore, if one regargs and c as known and consides to be an abscissa and
p2 to be an ordinate then equatiof$)(and {0) represent two osculating curves at their
common point, with the second one increasing fasin the first. In other words, for
the same variation of the density, the pressureeréeqpces a larger change from
Hugoniot’s law than it does from Poisson’s.

There is more: in Hugoniot's way of seeing thindpe ratio of the pressures is null
or infinite, or else the same is true of the dessitnamely, of the value:

w _m+l

w, m-1

The right-hand side of this equality is, as we hae@en, almost equal to six for the
given value oim. Therefore, at a discontinuity where the denségies from simple to
six times as great the pressure necessarily becoufies infinity.

As for the velocity of propagation, it is clear thiaone givesay (along withp; and
a) then its value from70) will be greater than its value frorég), and the converse will
be true if the given ip.

211. — After passing the first-order discontinuity, tpeoductpa” will become
constant as a function of time. However, it isacldhat, in general, this product will have
a different value for each molecule, in such a wet the partial differential equation of
motion will no longer have the forn8), but, in fact, the form@) (with X = 0), and that
this is true even if the gas is perfectly homogenbefore passing the discontinuiti
will be a function ofa whose expression is obtained by calculating tseafitinuity at
the moment when it reaches the molecule with absais

The form of that function therefore depends oméllhe past circumstances of the
motion, and, as a consequence, if one accounthéoobjection of Hugoniot then one
sees that there exists no equation of the fa8no¢ (6) that is verified by all of the
motions of a given gas. As Hugoniot remarked,rioteo to obtain such an equation one

(*® If we given them the common denominator ofthen the difference of the denominators is:

2r(mt+ 1) — (A +H)(nf-1)—4 =-(1-rd)m’ - 1).
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must considek to be anunknownfunction ofa in equation §) and eliminate it by
differentiating with respect td As is easily seen, this gives two fourth-order partial
differential equations).

212.— The experiments of Vielle seem to confirm the viedwislugoniot that we just
discussed. For the single case in which one may absitinthe pressure difference and
the velocity of propagation, the former is around 3 apheses and the latter, from 601
to 609 meters per second, a value that is slightlyréifiefrom the 600 meters per second
that corresponds to the law of Hugoniot. Poisson’s d¢aves us a velocity that is
somewhat less (around 14 meters per second less).

The divergence between these two hypotheses becomescubeewhen one passes
to more intense discontinuities, such as thoseateproduced by the motion of artillery
projectiles. They are launched with velocities around Q@200 meters per second.
They are preceded by an aerial wave that — at leastoitspart — is reasonably plane
and propagates with the same velocity as the projecHewever, when the motion of
the air is obviously quite different, like the cased tha studied in the preceding chapter
(9, there exists a remarkable concordance between ttstare® experienced by the
projectile and the corresponding pressure differencethéobserved value of velocity.
One therefore finds, for example, a measured resistahdéd kilograms per square
centimeter for a velocity of 1200 meters per second, wdoctesponds t@, —p1 = 15.64
kg. in Hugoniot’s theory. On the contrary, Poissonis temands an overpressure of
17.24 kg. 4

213 — Now consider an arbitrary first-order discontinufty, which the state of the
gas is characterized by the quantifiesci, u; on the left side of this discontinuity, and
the quantitiesp,, a», U, on the right.

In general, there is no compatibility; a new motion wilis originate and there will
be good reason to look for the corresponding valugs af u. We shall do this by first
assuming the Riemann hypothesis (in which Poisson’s éamains exact), and then that
of Hugoniot.

We suppose, moreover, that the state considered firdhease defines a state that
is perfectly homogenous beforehand, and that, as a comsequae has equati¢ii)
for all of the states envisioned.

By once more consideringandp to be coordinates, this equation represents acurv
on which one finds the two pointsy( p1) and (@, p2), and on which one likewise finds

(*% In his memoir, Hugoniot obtained a single third-order #qnaas the result of this elimination.
There is an error in that result that is due to thetfaattpreviously the author effectively assumed a certai
change of the initial state that assumed kthaas known.

(" It is clear that, on the one hand, there is adafow, and, on the other hand, that air resistance
does not account for the difference between the peessuthe head of the projectile and ordinary
atmospheric pressure, but for the difference betweesspre at the head and pressure at the tail, which is
smallerthanatmospheric pressure. Compare below22@.

(" VIELLE, Mém. Poud. Salp., loc. cipp. 255.
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the point ¢ p) that corresponds to the unknown state that will ftabdished in the
intermediary cut. Moreover, if denotes the velocity in this cut then one must have:

u-u, :\/(p_ pl)(a)l_a))
Po

u-u, :\/(p_ pz)(wz _a))
Po

(71

and, as a consequence, upon eliminatinge have:

(72 a=u, -u, = /P, - P,

in which P; and P, designate the quantities that appear under the radicadlse itwo
formulas of 1), respectively.
If we put the preceding equation into integer form themay be written in one of
the equivalent forms:
2 —_ 2\2
73 {4a2P1 =(R-P+a’)’
4a°P, = (P -PF,-a’)
in whicha denotesi; —u,. In the system of coordinates that we adoptedrépiesents a
conic inscribed in the rectanghA,B1B; (fig. 15) that
has the two point#\;, A, for opposite vertices and
whose sides are parallel to the axes. The choyd;
that joins the points of contact with the sideB;, Ai1B;
has the equatiof’;, — P, + a® = 0, and the analogous
chordC,D;, (fig. 15) has the equatid®, — P, — a = 0,
wheread?; — P, = 0 represents the diagoriaB..
It is easy to see that whefi is taken between 0

and i(pl —p2)(@ — wp), the conic T3) is an ellipse

0

1 Fig. 15
and that whera® exceeds this limit— (p; — po)(ad —
0

w), it is a hyperbola whose two branches are defimethe opposing sides to the vertex
of the angle#\; andA; of the rectangle.

In both cases, this conic cuts our cuy@/¢ at two pointsA’, A", one of which is
situated on the ar€;D;, and the other, on the atgD-.

However, in order for the solution that correspotadsne of the pointd’ or A" to be
acceptable, it must satisfy a condition of inegyahat we have not written up till now.
Since the intermediate cut must be contiguous thithmotion 1, i, u;) on the leftand
with the motion g2, a3, uy) on the right,one obviously must have:

(74 6, < 6.
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The quantitiegh and & will be therefore be given by applying formuled) as a
function ofu —u; andu — Wy, i.e., of/P, and,/P, , in which the radicals have the same

signs as in equation'®).

One then easily sees that of the two poiiandA” there is always one and only
one of them that satisfies the inequalidd)( and, as a consequence, that provides the
solution to the problem we posed, a solution in whichrterinediate motion propagates
in a sense that is contrary to the interior of thgioal two motions. From the foregoing,
it is clear that the pressure and density of the new shats created will or will not be
defined between the original pressures and densities, dageodiwhether the given
difference of velocities is less than or greater thiam geometric mean ¥ — p2

1 1 1
and—(w —w) = —- —.

o P P

214.— However, one may present this same discussi@nfarm that is simpler in
some regards by giving a name to the right-hanelssid equationsr().

If pi1, aa are always understood to represent the coordiradtéise pointA;, and
similarly, p;, a» always represent the coordinates of a second Pgititen we agree to
give the name ofhyperbolic distance between the pointsA;, A, to the

expressior\l/pi(pl— p,)(w, —w,) (with the radical being given the + sign), and we
0

denote it by the notatiofy A, .

Of course, this hyperbolic distance will be reagreover, only if the quantitieg,
w» have an order whose magnitude is inverse to that andp,. However, this will
always be the case if the two points consideredrigeio the curvg?').

Having said that, if we are given two states oluaf between which there exists a
first-order discontinuity, then these two statesrapresented by the two poidts A, of
the curvg2' ) the desired state will be represented by a it A of the same curve.
The differencesu — uy, u — u, will then have the hyperbolic distanogs , AA, for

absolute values. If we always suppose that 0, & > 0 thenu will be either external to
u; andu, or between these two quantities, depending onhehnetis betweerp; andp,
or external to them. In the former case, the wiffiee of the two given velocities and

u, will be equal to the difference @ andAA, , which are both less thaA, . In the
latter case, (n — Uy| will be the sum of the distancag, andAA, , in which at least one of

them is greater thafy A, .
Thereforethe first hypothesis necessarily corresponds to:

lui— | < AA,,

and the second one to:

lui— o] > AA, .
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Conversely, on the segmemtA; on the curvé2)the differencedA — AA, will
obviously take any value positive or negative that is less thaA A, in absolute value
once and only once, and on the remaining arcsabfdimve, the suni\A + AA, will take

every value greater thaA, once and only once.

The conic {3) is the locus of points such that the sum or diifiee of their
hyperbolic distances tA; andA; has a given value; one might say that it AagandA,
for hyperbolic foci. They reduce to two straight lines when this givafue is null or
when it is equal to the distandeA,, just as when one considers ordinary distances
instead of hyperbolic distances.

If the pressure is outside ofp; and p, then we know from noll8 that it is
necessarily greater than them when the given diseoty is compressive, and that it is
less than them when this discontinuity is dilative.

In the contrary case i.e., the one whengis betweermnp; andp, — the choice between
the two points of intersection of the cuf2é widh the conic 73) is made quite simply if
one remarks that fon; — u, > 0, i.e. (n0.116), if the discontinuity is compressive, the
point A is closerto the pointA; or A, that corresponds to the greater pressure; ilep %o

p. the hyperbolic distanc&A is smaller than the hyperbolic dista®, (because one

then hagp < p1, p2 <p; U—u =AA, u— 1 =AA ). The contrary case is true for a
dilative discontinuity.
Conversely, the point thus chosen will indeed Batlse condition:

Ul—UzziA_Aiim,

in which the signs are precisely the ones thatespond ta?, < 0, 6, > 0.

215.—- Nevertheless, one must note that the pdinasmdA" definitely might not be
the only points of intersection of the cuf2e and the conic43). A'is indeed the one
point of(2')that is situated on the af€;D;; similarly, the poinA”is unique on the arc
C.D,. However, there is nothing to say that thererarether points of intersection on
the remaining arcs of the conic that corresponeetocitiesé and & in the same sense.
It is likewise clear that such points will exist ibr example, the coni&®) is very close
to the lineA;A..

What is more, it is obvious priori that motions of this type must be produced. This
is what happens when two first-order discontinaitroceed with velocities that are
different, but have the same sense, and one oesrthk other.

If, to fix ideas, one supposes that the coiii®) (s an ellipse then it is clear that the
points of intersection may only be on the inte@oc of C,D, (fig. 15) that is situated
above the lin&' A", and not on the arc that is abdygC,.

These new points, if they exist, will be at leagb in number. One easily sees that
they correspond to two intermediate motions forollthe sense of the two velocities of
propagationg, and & is the same, as well as the order of magnitudéhese two
velocities (which amounts to saying that the twpresentative points are on the same
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side of the lineC;Cy). In both cases, the same vertex of our rectangl& be considered
as representing the state of the region to the left.

The same considerations apply if, instead of lookingHerstates that immediately
follow a given first-order discontinuity (without comgality), one proposes to
determine the states that immediately precede its dbvious that the region on the left
must then correspond to the larger algebraic value ofetloeity of propagation.

In particular, if, as we recently assumed, two disooities proceed in the same
sense with different velocities and one overtakes tther, then the two new
discontinuities that are created at this moment ssdy propagate in the contrary
sense.

216.— We just found a case in whishveralpossible motions that start from a given
instant can correspond to a given state (position acitg) of a fluid at that instant — at
least theoretically.

Indeed, recall the motion that was envisioned in2@d. We saw that if the piston,
after having attained a certain veloaityaccording to the law that was considered in that
context, preserves this velocity, in turn, and exhibitsirsform motion then the
representative surface of that motion is composed @f planar portions that are
separated by a conical nappe, in such a way that up toaegndestantT there exist only
two second-order discontinuities that reunite at the mmsia into a first-order
discontinuity.

Now, as one knows, the general equations of dynamicthé¢ absence of friction)
possess the property of not changing under a changeoft; it is, moreover, easy to
verify this fact for all of the equations that we jusbte.

Conversely, if we give ourselves a first-order discantynat the instanfl that is
defined precisely by the same elements as the onesréhastablished at that instant in
the motion that we just discussed then we may asshatethe ultimate motion is
deduced from the one in nR201 by changing into —t. The first-order discontinuity is
thereby resolved into a second-order discontinuity, asimeicated in no108

217.— One must nevertheless observe that the discomtmultat are susceptible to
being resolved must therefore satisfy some very paaticebnditions. On the
representative cone of motion that was studied ir2@d.one has:

u+ x(a) = constant,

and, as a consequence, the quantity () must have the same value on either side of
the discontinuity. It is clear that the same thing thliestrue each time that there exists a
system of characteristics in a neighborhood of the abpwint that intersect any regular
line that issues from that point on the surface. lddéene takes the partial differential
equation in the form31) then one sees that it admits the integeAdu = constantgz/o w

= constant, i.e., the@lane that, after the Legendre transformation, correspondanto
arbitrarypoint of the space in which, t, x play the role of coordinates. If one effects that
same Legendre transformation on an integral surfateat conical point then one will



17¢€ CHAPTER IV

obviously have a transform that is tangent to the pilhat corresponds to that conical
point all along a line (since and wtake an infinite of values at that point). That lné
thus be a characteristic, and, as a consequence, benvdurrounded by infinitely close
characteristics that satisfy the condition thatjust spoke of.

It results from this, in particular, that for such aadintinuity the difference between
the velocities is always less than the geometricnodahe dilatations, divided g, and
the pressure. Indeed, from the formul@s (25), this mean has the expression:

o~ w, — 12
J ~ig(w) - gta)] = (@ - @), 1@,

0

whereas the difference between the velocities is:

U —Us =y (@) — x () :j: Y ()dw.

The order of magnitude of the two quantitias— u, and \/pi(wl—a)z)(pz— p) is
0
thus given by the Schwartz inequality (chap. I, 1&).
On the other hand, the relation:

(79) U -l = x(a)—x(w)

must be completed with an inequality condition. the motion that was studied in no.
201, the two second order discontinuities that elzeforethe instanflT must combine at
that instant into a compressive discontinuity astfiorder. On the contrary, if one
follows that motion in the opposite sense, as vet ijndicated, then the discontinuity of
the first order that exists at the instdhaind doublesfter that instant into two second
order discontinuities will be dilating. It is eaBy see that this is inevitably the case for
any analogous doubling. It suffices to further aeknthat the sign of the discontinuities
(no.116and213) depends upon that of the produgt€ uy)(& — &). Now, the sign ofi;

— Uy or, from equationqb), that of ¥ (ad) — x (a) is the same as that 6f — &, since we
assume that the most compressed waves are théhah@sopagate the fastest.

One sees from this that a discontinuity of ordee dhat was created by the
combination of two discontinuities of second ord®y not subsequently double into two
discontinuities of second order since for this &ppen it must be dilating and not
compressing.

218 — We have assumed that there exists the relation:

(66) P = p,at,

between the pressures and the densities on eitieeofthe discontinuity.



RECTILINEAR MOTION OF GASES 17¢

If this is not the case then, since (under the hyposhdsa we have presently
subjected ourselves to) the prodped” may not change on either side, it is impossible
that at the following instants this discontinuity cancbenpletely referred to the abscissa
a + @dt, where we leta denote the abscissa of this discontinuity at the ihs{@measured
in the initial state) and assume tléds non-zero. Necessarily, it will remain at thisqaa
no matter what sort of discontinuity it originallyag, since a brief variation of the
pressure may not exist since, as we have seen, wtisgantinuity propagates, it is the
densities that must remain different. Nevertheless, mmast obviously not forget that
this reasoning is completely theoretical; in realitywil be impossible to assume that
there is no exchange of heat between the piecesntact. Their temperatures, and, as a
result, their densities will thus tend to equalize.

219 — We will encounter this stationary discontinuitytthiaereby joins with two
others when the relatior6§) is satisfied if we take into account Hugoniot's objection
Indeed, in this manner of looking at things, it is cléat relation §6) no longer actually
implies the existence of a unique intermediate stat®¥e must assume that two
intermediate states are created between the twa gnaions, which are situated on
either side of the original discontinuity and arerebterized by a unique pressure and
velocity p, u, but with two different dilatations/,f’. We must then write the

compatibility conditions of the state, (U, ) with the statef;, u1, @) and the statep(
u, o) with (p2, U2, @), namely:

- pl_p
' po(ul_u)
_u-u
76 8 =
(76) =
Lot mu-u=-2(pw- w)
S(P+ (U= =—"(pw,
4. = pz_p
2 ,OO(UZ_U)
u, —u
76' 6, =—2
(76) =i
Lo p)w-0=-"2(pw,- w)
S(P+P)(L =Y =2 (pw,— ).

When py, w, P2, Uz, ap are given, these equations must allow us to caiey,
udw,d 6, 6é.
To that effect, we first eliminate from the last two equation3§):

m+1 m-1 6(p,-pw, _ B
7 + =14 =p,0rw
(77 AR L S A
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and likewise:

. m+1 m-1 6’(p —p)a) >
77 + p,= 2112 —05&)
( ) 2 P 2 u,—u 0raTe

Here, it will be convenient to take the unknownd&?, and&. The elimination of
p andu from equations®7), (77") gives us:

m-1
(78) :00(5126‘)1_6226‘)2) :T(pl - pz)
2 . 2,
(79) poelwl mpl_poeza)z mp2:p0 m+1(U2—U1) .
] 6, 2

We suppose that the desired propagation of motomes about in an opposite sense
from the given motion. If, to fix ideas, we furthessume that the state that is denoted by
the index 1 is the one in the left-hand region tlwermust have:

(80) 6.<0,6>0.

Now, if one considers eithé® or 6 to be the given then equatior9y is of second
degree its roots are always real and have oppsigits. One easily concludes that if we
now considerg, and & to be Cartesian coordinates then the cubic thegpeesented by
that equation is composed of an odd brariéhagn which& and & have the same sign
(and that we have, consequently, left aside), madranches;, H,, that are analogous
to a hyperbola that is asymptotic to the axes aadituated, in one case, inside the angle
that is defined by the inequalitieB0j, and the other, inside the opposite angle. Sinee
curve admits no tangent that is parallel to thesaitee absolute values éf and & vary
constantly in the same sense on the odd brancharsfantly in the opposite sensethn
or Ho.

Now, since equation/@) represents a hyperbola the inequalité®) are satisfied on
half of the branches. On the arc thus determittesl absolute values & and & vary
constantly in the same sense. It results from tied this arc cuts each of the two
branchedH; andH, of the cubic at one and only one point, which qavenique solution
to the problem. Sadly, it is necessary to add thatstudy of the case in which the
moving discontinuities are on the same side ofstiagionary discontinuity (a case that
may present itself in theory, from what we saw an 215 but which we will not discuss
here) may not be carried out with the aid of thmes@alculations as in the preceding, and
that the equations that one must write will be cesbly different.

One may likewise specify the way that the interraszlpressure is situated with
respect to the two pressurps and p,. One will easily respond to that question by
making the point &, &) vary on the hyperbola78) and calculatingp from the
(consistent) equation3T), (77'); it is clear thap is increasing with@| and §|. In order

("» One knows that this is what one calls a brancthefcurve that is cut by any line at an odd
number of points.
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to see this, it will suffice to substitute the poititat correspond tp = p; andp = pz in
equation 79).

220. — If the gas is originally at rest, suppose that oneflgricommunicates a
uniform motion to the piston with a given velociy One may propose to determine the
motion that will give rise to these conditions.

As was first shown by Sébert and Hugoni6),(and then Hugoniot himself in the
cited memoir, the compatibility equations that we presipiestablished permit us to
solve this problem very simply.

Indeed, we shall see that under either the Riemann hyg®thethat of Hugoniot
there will exist a motion of the form:

(81 X=aa+ Vi,

(w constant) which will be compatible with the state edty of course, the velocity of
propagationd is constant. During this motion the gas will indeedaienin contact with
the piston since one will hawe= Vtfor a = 0.

Moreover, the quantitk that figures in formulé2) will be likewise constant if we

take into account the objection of Hugoniot, all the whad®ing a value that is different
from the one that corresponds to rest under these @orglit Indeedk depends only
upon the elements of the discontinuity; howeverséhelements are constant here.
Sincek is constant, the partial differential equationlviidve the form&) and will
be, as a consequence, satisfied by the linear €sipre@l).
First, start with the Hugoniot formulas:pf is the original pressure in the rest state
andp is the unknown pressure that exists when the mdiegins then the compatibility
equations will be:

(82 V+60(w-1)=0 (kinematic condition)
(83 pP—po=0 NV (dynamic condition)
(84) p_ m+l-(m-Dw

P, (M+DLw—-(m-1)

At this point, we remark that the solution will &dittle more obvious if the given is,
as in the problem in nol90, the pressurg (which is assumed to be constant and
different frompy). One will then havew from equation §4), or from the Poisson
equation, if one remains in the Riemannian viewpaimce the two equation82), (83)
are then solved exactly as in 1206

Return to the problem posed, in which the givevi @d no longep.

We then takedto be the unknown; the preceding equations give:

(85) g_Mtlp MR_y
2 Y0,

("®) Sébert and Hugoniof. R. Acad. des Sctgme XCVIII, pp. 507; 25 February 1884.
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The choice of unknowm offers the advantage of permitting us to immediately
decide between the two roots of the preceding equationedntigey are of opposite sign
and if, as we always assume, the gas is situated quoHtigvea side then it is only the
positive root that applies, since the negative root coorefpto the analogous motion
that is generated by the same motion of the pist@ngaseous mass that is at rest on the
other side of it.

We will thus have:

_m+1 (m+1j2 , . mp
o= V+ Vei+—=2,
4 4 Po

Nevertheless, a further condition is necessaryrderofor the solution obtained to
apply to the problem: It is necessary that one hawe 0. This condition is always
satisfied forV > 0; however, in the contrary case, i.e., if tiggn has a decompressive
motion, one must then have:

Po
qQ<—>7>>
PV
which gives:
(86) V< 2P
(m_l)po

For much larger values of\-the gas ceases to follow the piston, exactly asave
in no. 192 except that when the limiting velocity is everlyattained, its expression is
24 _ 2
m-1 m-1
(86).

One must also remark that in the case of a veldhayis briefly communicated the

pressure and the absolute temperature can becolneitmout that also being the case
for the density.

V =

/mn) , @ quantity that is greater than the one thativiergby formula
Ao

221.— If one continues to apply the ideas of Riemaithout taking into account the
objection Hugoniot then one must replace equadhWith:

(66) pa" = po.

As before, this will represent a curve that one tnmtgrsect with the hyperbola ¢
Po)(1 — @) = wV? that results from the elimination & from equations §2),(83), or
rather, with the branch of that curve that corresisocod> 0. One will further find one
and only one solution, the point of the cuf®®)whose hyperbolic distance to the point
(1, po) IS V.

The question will arise in a completely analogowsner whether the gas, instead of
being originally at rest, can be animated with aiomoof the form 81), with a dilatation
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ap and a velocity/p. One must then seek a point on a curve that is analog@ss) that
is situated at the hyperbolic distan¥e~Vo) from the point &, po).

222 — One may easily deduce from the foregoing a measutee aksistance with
which the gas opposes the motion of the piston.

To that effect, suppose that it is first placed betw®en masses of gas that are at
rest and are both homogeneous, the one situated on shizepa side, and the other on
the negativea side. If, under these conditions, we instantaneously githe positive
velocity V then there will arise, as we just saw, two waved firopagate in contrary
senses. The one, which corresponds to the positive&oaot the equation, will be a
compression wave; the other, which corresponds to tigatime root of the same
equation, will be a dilatation wave. The correspogdgiressurep; andp, are calculated
immediately with the aid of equatio3), and they become:

2
(87) pl—pz:povwl—ez):zf)ov\/[m—”j ARSILEY
4 Po

This quantity represents the desired resistandag libe resultant of the pressures
that are exercised on the two faces of the piston.

The expression8({7) will be roughly proportional to the velocity femall values of
that variable, and to the square of the velocityemvlits value is large. This law is
precisely analogous to the one that we observedeirmotion of projectiles, but with a
somewhat slower increas&)( This discordance should come as no surprise,itais
likewise natural that it is produced in the sers# tve just described since the piston in
our tube moves without completely turning back ithe gas, whereas free air, which
must slide laterally, obviously diminishes the seance.

Meanwhile, still remaining in the viewpoint of rédictear motion, the preceding
considerations suggest two observations:

First of all, they must be modified if the velockyexceeds the limit86). Indeed, a
vacuum is then created on the rear face of themisis a consequence, the (negative)
pressurgy, must be replaced by 0. The resistance is then:

2
R=pi=po+mV rn+1V+ (m+1j V2+& .
4 i) "o

In the second place, it is more natural to asstiiaethe piston acquires the velocity
V gradually, and not instantaneously. One must #paly the formulas of no441 and
182 and not the ones that we just used. One mustdhleulatew by the formula %4)
(no.182), and takep = ¢ («) = poew ™, Which gives:

(" As we already said in n@12 the resistance seems to have essentially the tratié takes when
there is no depression behind; i.e., if onefasp, (as well asgk = V).
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2m
m—]_xjm—l
2 A1)

p= p0(1+

A= % again denotes the velocity of sound in the origatate.
0

The same calculation for the backwards wave gives:

2m
m-1

p= po(l——m_lxj
2 1) 7

hence:

in which the subtracted term must furthermore Ipdaced by 0 wheW exceeds the limit
that was found in ndL92

The resistance thus calculated increases noticefabter than the square of the
velocity.

Nonetheless, the preceding reasoning cannot b@taccwithout objection. Indeed,
it assumes that the singularity of Riemann-Hugoisiatot produced. Now, the contrary
hypothesis is much more likely given the conditianser which we operate for
example, the motion of projectiles. Moreover, omgst admit that it will give rise to two
discontinuities of first order, one of which movesward and the other of which moves
backward. The latter, by reflection on the pistenl] produce a new wave with a
positive velocity, which will propagate faster theme first one ) and recapture it. At
that moment, two new waves will be produced, andrso

Hugoniot assumed that this exchange of waves Yirmlcceeds in establishing a
state that is identical with the one that is pradlbwhen the velocity is communicated
to the piston at once. Later on, we shall confinma particular case, that things actually
happen this way.

223 — We shall now begin the actual discussion of Riemann-Hugoniot
phenomenon.

We suppose, to simplify, that the gas is at resisiprimitive state, that the head of
the wave is the first to present the singularitygurestion, and that the motion that is
communicated by the piston to the part of thatflinat is nearest to it (which we assume
is situated to the left) is analytic. First of,ale shall deduce the equation for this
motion. To that effect, one must, as one knowisjieate to from equations§9) and
(60).

The edge of regression of the developable surface dbtained is defined (nh94)
by the equation:

(®) See below, n®238
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oa dw,
—=({t-t) X" (@)—-Xx(w)=0,
o (t=t) X" (@) d, X (@)
which is soluble in terms d§ in general (and we will not treat the exceptiocede for
which things are otherwise). Lligbe the function ot that, when substituted fds,

satisfies the preceding equation. In equati&@® &nd 60), wheret, is not equal tg,
since one is no longer on the edge of regressierset

o= t(')+ T.

a andx become functions dfandr that, when ordered into powers of the latter \@eia
lack terms of first degree; thus:

(88) azagtapl+agr + ...

(89) X=Xo+Xo T2+ X T2+ ...

ao, Xo, &2, &g, ...; X2, X3, ... being functions of such that the first twa = ay(t) andx =
Xo(t) give the equations of the edge of regression.ofAlhese functions are, moreover,
analytic.

Equation 88) permits us to developin powers of/a, —a, as long as, is non-null

at the origin, a hypothesis that we again distisig(®).
If one substitutes this development B9) then one obtains the value ®fthat
corresponds to motion to the left. We denotevhlse byX. One will have:

(90) X =Xo+ (a0—2a) X1 + (@0 —a)* Xai + ...

(if we let Xy, X35, ... denote analytic functions o

224 — We suppose that the origins of space and tiawe been transported to the
place and instant at which the phenomenon originaWith these condition¥o andag
are null witht; they begin with terms idt, if we let A denote the velocity of sound that
corresponds to the primitive state of the fluid.orgbver, since the surface is tangent to
the planex = a, one has{;(0) =- 1.

We agree that the radicady(— a)® in the preceding equation is taken to mean its
positive value. If this is the case then the doigffit X3,(0) must be positive. Indeed,
since the motion of the piston is compressive onstrhaveX > a, and this can be so for
very smallt and order up to at most the ordeagfa only if X3,2(0) >0 .

(76) If the coefficienta, is different from zero then the same is truextar This is because fd=0
ot,

2 2

the quantityﬂ= 2¢ is equal t%ﬂ, by virtue of the identitﬂ = ap 92 . The coefficients,, x, are,
ot? ot? ot, ot,

moreover, negative in the case at hand, since thacsud situated to the left of the edge of regression.
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225.—- We shall now obtain the intermediate equation dfionathat arises between
the motion that was just defined and the part on the tiggt is at rest. We may,
moreover, do this without determining, at the same sttbkeevolution of the two waves
that propagate it. In other words, just like the equatfanation, it must be found in the
domain in which it is defined.

This is the difficulty that was pointed out in ri&8 However, it is particularly grave
at this point. In the other questions of mechanics in hvthe desired motion is not
represented by only one analytic equation in the entidy lsonsidered, the regions in
which this motion has different expressions are gelyekabwn a priori. For example,
such is the case for a waweé second ordethat propagates in a gas whose anterior
motion is given, wherhis motion appears onlin the expression for the velocity of
propagation. As we have just seen, this is not theiodke present situation.

To simplify, we treat it without taking into accoutte objection of Hugoniot. We
assume that when the discontinuity of first ordercrieated it establishes a unique
pressure, density, and velocity in the intermediate.slitt is then easy to see that the
values of this pressure, density, and velocity may netnlgéhing but the values that exist
in the slice on the right (as a consequernce,0, w= 1), and that initially one has the
same values in the slice to the I€f)(

We must then determine:

1. The abscissa; of the discontinuity between the desired motion andribgon to
the left.

2. The abscissa, of the discontinuity between the same motion and thieqmathe
right that is at rest.

Since the two discontinuity waves propagate with amaimtelocity that is equal to
the velocityA of sound that was introduced in ri5 a; anda, will have developments
that begin with terms it At; we write:

(91) a = — At — V312 t3/2— ] t2
and:
(92) =AM+ t? ...

by assuming in advancé® (as the following calculations will verify) that contains
only terms with fractional exponentstin

3. The equation of motion of the intermediary slice.

The equations that these various unknowns will bet, fitee partial differential
equation:

(") Letpy be the original pressurp, the pressure, and latbe the velocity that exists at the first
moment in the intermediary slice. One must have both:

PR = g, P- = &
u u
where g, and& denote the velocities of propagation of the wave.
However, this may be the case onlp# py, u=0.

(") 1t is clear that we must first of all leave thepenents oft indeterminate, as well as the
coefficients. The sequence of calculations will givesame values for these coefficients as the ones that
we have assigned them here.
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® 0°X _ (axja X

o> " \9a)oa’’

which must be true in the entire intermediary slice.
Since the functioy/ is given by relation41), one will have, on setting:

(93 —=w=1+¢,
and, on taking into account the formu) that definest:
(94) U1 +g):)|2[1—(m+1)g+%(m+2)52+..}

In the second place, one must have:

(95 X=a, fora=ay
(96) X=X=Xo+ (@p—2a) X1 + (@ —2a)**Xap + ... fora=a.

Moreover, the two discontinuities anda, must satisfy the compatibility conditions.
We do not need to write the kinematical conditiongjch are implicitly contained in

conditions 95), (96).
The dynamical and physical conditions give (since lmave made the Riemann

hypothesis):
o2 [p@-d@) _, J 1(@+e) - (L+g) "
Po(@; — @) m &€

(onsettingw=1+¢& w =1 +g) or:

(97) e:iA[l—mT”(g+gl)+...]

& is null in the part that is at rest. On the camntr in the motion to the left it has a
value that is generally different from 0 and whmbst be calculated using equati®d)(
One thus has the two supplementary conditions:

d m+1
(99) d—?:—/] [1_7(“51”'"}
99) 4 _ ) [1— m+1£+...}

dt 4

in which we intend thaa = a, in equation 99), whereas, in equatior®§) & and &
correspondt@a=a; .
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226. — In order to develox into a series, we introduce, in place afindt, the
variables:

=—a+At,
(100 {‘(
n=a-a,
in which:
(101 aQ=At+ Mo+ )P+ ... =ap + M2+ Mot + ..

denotes a development in unknown coefficients (extphe first one) in powers df
Moreover, the variablg is introduced only in order to simply the calculatiomss we
have seen, the same is not true for the varigblghich plays a fundamental role in the
development. We write:

(102 x=a+F,+F+..=a+F,

in which theF; are all homogeneous § 17 and of degree indicated by their indices.
Since one has:

9_0_0 0 _(9_ oY
da 9 an’ d0a> (o0& on)’

2 2 2 2
6—2:A2 62+2Aar a +012 a 2+ani
ot 0¢ oéon on on

(a@',a" denoting the first two derivatives af with respect ta), equation § may be

written:
2 2 2 2
4)|26F:6|z—26|:+6|:2 w1+0_F_0_F_)lz
0éon \0&°  9éan on A& an
2 2
a F _(GIZ_AZ)a |:2_ana_|:.
oéon on an

(103

—2A(a' - A)

In this equationy’,a” may be replaced by their developments.inHowever, they
may likewise be developed in powers of the variabter, as a function of which, may
be expressed by means of solving the equation:

(104 E+n=a+M=2t+ Mo+ 6) 2+ ..+ Mn+ ) t"+ ..

In equation 103, thus written, an arbitrary term in the developief F (provided
that it contains botlf and 77) will give a term on the left-hand side that isdefgree at
least as high as the one on the right-hand side.

We denote the values éf 7 that correspond ta=a; by & andni, namely:
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51 = —Vg'[% —|/2t2...
(109 : .
/71 :2/“'“/;? + (V2+,L12)'[2 LA

and the values of the same variabledera, by & andr;, by:

(106) =2+ P+ L+t +
(106) =Mt + ... +Mpt"+ ...

Equation 96) will thus be written:
(107) F(&L 1m) =Xo—80+ (o —a) (L +X0) + (8= a)' X, + ..

Equation 95) becomes:
(108 F(&, 172) =0,

while (98) and @9) become:

—)I—Evgt%—szt—---
2 2
(109 _ m+1( 0F OF 3 1
=-A|1- 7 T Ko@)t X e e
4 (0§ dn, 2 2
m+1( 0F OF
(110 )l+2,uzt+...:)l{1— (———j+}
4 (0§ dn,

227.— Having said this, consider the terms of orddr/2-in equationX03). They
will be provided exclusively by the terfRin the development df. One must therefore
9°F,
have == 0; hence:
0gon

(111 F,=Knf +K'E:.

The coefficientK andK'will be determined by the boundary conditiod97) and

(108). First of all, fora = a, 77 is of order at least?, whereas¢ is of ordert.
Furthermore, conditioril08 shows thaK' must be null.

228.— On the contrary, foa = a;, the quantityag — a has the principal parti2, and
the same is true fog. A comparison of the terms of order 3/XiandX thus gives:
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K =+X,(0).

We thus see thaf is non-zero, in general. We will thus have a témny*?, and,
consequently, an edge of regression in the repiasen surface that corresponds/ie-
0. One of the nappes that are separated by this euist therefore be a subset of the
region that was used (otherwise, as before, onefinil two values ofx for the same
system of values faa andt); we agree that it is the one that is obtaine@ib'mg\/ﬁ its
positive value.

If this is the case then the radicﬁ =21t +--- in condition (L07) must thus receive

its positive determination. Since the same thmdrue for/a,—a, by virtue of the
convention that was made in r&24, we must therefore write:

K =X,(0),

a positive guantity, as we remarked above.

229 — Now imagine equation®§) and @9) when one retains only terms of order
1/2. None of these terms exist in the quartifyr a = a,, sincer;, is of order higher than
1 int. Therefore, they no longer exist in the left-hagide of equation90), and
consequently we see thatindeed contains no term i

For a = a;, some terms of order 1/2 appearédrand &; these terms are known,
moreover. Indeed, we know the right-hand side 1@f2( up to terms of order 3/2,
inclusive, and, on the other hand, the first pathe development afX/0a that depends
upon vs, (namely, the one that provideas (- a))*?Xs ) contains that quantity as a
coefficient of the first power (at least) of

One confirms, moreover, that the termg'fhare destroyed i + & in such a way
that one hass, =0 .

230.- The determination of the terms of order 2 is pletely analogous. Equation
(103) thus gives:
2
2205 ek
oéan 8

because the only term of order zero that existhenright-hand side of this equation is
2
obtained by multiplying the factor 3f@"? (which is provided byg%:z) by 3/2(m + 1)

(which is provided bw(ﬂg—?—g—':j—)lz). One will thus have:
1
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= :%(m+ 1)Ky &+ Ko 17 +KLE2.

in which K, andK, are coefficients to be determined. Equatid®g will give K, = 0,

since the terms are all of order at least 3. Equafio) (will be composed oK, by
examining terms of order 2 in Therefore, equatiori(9 determines .

On the contrary, conditiorl{0) does not suffice to determing. Indeed, the terms
in t contain the arbitrary coefficieM,, which has played no role up to now, and which is

introduced by the terngai =3 K/7f+
2

Let:
(112 mot + mpt? + ..+t +
denote theositivesquare root in the developmept= M, t* + Ms 2 + ... , in such a way

that m; is the positive square root &fl, . The developmentl(?2 must then be
substituted fonyf in equation £10); we will obtain:

_ 3 (m+1K 9
M2 =

11 +— A%(m+1)? K2,
(113 16 m 128 ( )

231.— We must therefore find a second relation betweemdmy; it will result from
considering terms of order 5/2.

Consider the terms of order 1/2 in equatid®3. Some of them are terms /%, but
-1/2.

two other ones are terms ¢ ; they are provided, on the one hand, by the product
2
of%=%0_5+ .. with:
Ui
w(1+a_l:j_/]2 =)? —-(m+1) a_F_a_F +...
da 0§ on

3 19
=Z22(m+1D)72 +— (m+ 1P K&+ ...
> ( i 32( )" K¢

and with:
AAM2+ ) t=2 Mz + L) ($+ 1) + ...
on the other hand.

After one integration ovef ands, these terms will contain only a factorpfvith the
power 1/2.

Now, that circumstance renders formulal® inexact; indeed, the quantity
a_an_F_a_F will contain a term in.{zn'% that will be of order 1 it for a = ay, sincesn
da 0d¢& dn
is of order 2.

It is this inconvenience that we shall avoid bgpaising of the arbitrary coefficient

M, = n? in such a manner that it annuls the termin We thus write:
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(114 oMy + 1) = 2(mf+ﬂ2)=3%(m+1)2 K22,

which, when combined with relatiod13), permits us to determime; and s, this time.
Upon eliminating the latter, it becomes:

3 9
+ = A(m+1) Km—-——( m+1)? KA°=0.
Y 16 ( ) Km 128( )

We know that we must take the positive root of this eqoatve will thus have:

_3A(M+1K
m=——
16

=—— A (m+ 1Y K*.
e 556 ( )2

232 — Having thus calculated the first terms of our unknowres shall show, in a
general manner, how one obtains the following ones:

Suppose that one knows:

The development dF as a function o€, 77 up to terms of ordeg, inclusive ¢ being
either an integer or an integer + 1/2);

The development &f; as a function of up to the same order;

The developments ofr and a; only to orderq —1/2, and the knowledge of the
development otr — a; = 772, equivalent to that of the developmefhii®) up to terms in
t9%

We suppose moreover that:

1. The known part of the developmento€ontains no contribution from with the
exponent 1/2.

2. The quantity; is the only one that appears with fractional exponemd,that it
does not enter into any of the known parts of the devedopsrofa anday.

Under these conditions, we shall determine the tefnmsderqg + 1/2 forF anday,
and the terms of ordeyfor a anday.

In the right-hand side ofLlQ3), all of the terms of ordey — 3/2 are known, except for
the ones that may be provided from the product of:

q-1
(M + ) 7 = (M + ,Uq)(g;n +j

(a quantity that comprises part of the developmerat' pfwith /7'% :
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However, among those terms there is one that isrims of &% 2 with the

M+
coefficient(za—)q’fllq. We determinéVly + my by the condition that this term destroys the

- : d°F OF OF Lo
similar term provided b%?l/l(l+ o 00} . Moreover, it will giveMq + mg = 0
whenq is not an integer, since we suppose that the tdratsare already known contain
no fractional powers qf.
0°F .
WhenM, + my is known, we knowag—;,;, and, as a consequenég,+ 1/2 itself up

to terms, one of which is iﬁ“% and the other of which is m‘”%. The first of them will
be determined by equatioh(8 and the second one, by equati@@74); indeed, they give

the only two terms in these equations that ardéurtinknown () in £ respectively.
By means of these results, one knows, in the 4hginid side of equatiori9), all of

the terms in® 2, and one has, consequently, the coeffici%p%t.

In equation 99), one likewise knows all of the coefficients 8, except for the
coefficient quy, on the left-hand side and the coeﬁiciﬁlc'p%ls—;mq_l, which is
provided in the right-hand side by the developnuodnt

Rk oF =A m+1(%/72% +j

4 dn, 4 \ 2
One thus has the differenggq — w Mg-1 . On the other hangdy andmg-1

are known, since we have obtainkld + /4 (i.e., up to known terms,n@my-1 + L4).
They are, moreover, null for non-integgrsince the calculations made in the right-hand
side of equation1(10) do not introduce fractional powerstof

233.— We may thus indeed calculate all of the desw@efficients term by term, and
we will have developments that formally satisfy @flithe conditions of the problem. It
will remain to be proved that these developments/eaye. However, this proof will be
very difficult, if not completely impracticable, \e place ourselves at the viewpoint that
we have adopted. In reality, it is only by puttihg question into a completely different
form that we will be able to treat it.

1

(") In the term, —ay)* of the development of, the termy,_ +1t*** of the development @ gives

a term int**"™_ On the other hand, fdr = 1, this term is multiplied by 1 X, which has no constant
term.
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As we have remarked, the development,afthen ordered in powers 6fand\//7 (to

the exclusion of terms of first degree\/ﬁ ) represents, when one assumes its

convergence to have been proved, a surface that dgenoé regression. It is easy to see
that any second order partial differential equation & thrm (7) admits integral
surfaces of this type. Indeed, in order to obtain onsyfiices to treat the Cauchy
problem under the condition that the relati@f)(is satisfied, but not the relatioR3).

The considerations that were developed abovel®®.indeed show that the second
derivatives are then infinite. Moreover, if one fpems a change of variables in such a
manner that the curvyebecomes th&-axis then it is easy to insure, at least formallgt th

z admits a development in powersxénd \N More generally, suppose that condition

(21) is satisfied at goint of the curvey (to the exclusion 0f22)). A calculation that is
completely analogous to the one that was just caroed will provide a formal
development ot that represents an edge of regression surface (this etigetangent to
yat the point considered).

Finally, there is nothing to suggest that the developmémis obtained are
convergent. One recognizes that the contrary is tfuene effects a contact
transformation. For example, perform a Legendre toamation. We must replacey,
zp,qgbyp g px+qy—-2zXx Y, andA, BB, C, D with D,B", B — G A. After this
transformation, relatior2() will cease to be valid, unless one originally hasaddition,
the following relation:

(115 D(dp dx+dgdy + B'def + 2C dpdg+ B df =0 ..

It is obviousa priori that this second relation is satisfied if one H&3,(since the
system of two equation®1) and @2) is invariant under a contact transformation. In
order to verify this fact, it suffices to multiply egfion 1) by dp dg and equationl(15)
by dx dy and add them. The relation that is obtained decompaisesquationZ2) and
the following one:

(116 dp dx+dgdy=0.

We exclude the case in which the relati@?) (is satisfied; it is possible that one
might then be dealing with a characteristic. The Ldgetransformation will thus make
the singularity disappear, except in the case in whigh ltas 116). The transformed
problem will have a regular solution, the representasiwdace of that solution having
only the character of a developable surface at each ofiginally singular points, i.e., it
satisfies the conditiort —* = 0 at each of its points, which is easy to insure.

Upon returning to the old system of variables, the $amgy considered results from
the formulas of no163 which make known the effect of the transformationtba
derivatives, s, andt. An elementary calculation that is, moreover, ptately analogous
to the one that was carried out in B3 shows that this singularity is an edge of
regression (around which the surface is represented bgumti@n that is analogous to
(90)) that corresponds to the line that is the locus ef parabolic points under the
Legendre transform.
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What remains is the case in which one Hda®) The Legendre transformation will
not make the singularity disappear then. This is whaamiee at if the desired surface
has the character of a developable surface in a neighdmbidfoits edge of regression.
One may always avoid this circumstance by performintheoutset, the transformation
that consists of replacing the unknown functiohy z — F(X, y), F being an arbitrary
function. p andq are then reduced by its derivatives, derivatives thanmaeobviously
dispose of in such a manner that relatibhg{ ceases to be valid gn One thus sees that
in all of the cases in which one h&4), but not 22), the Cauchy problem has a solution
that is represented by a surface that is an edge of segreslt is, moreover, clear that
conversely, any integral surface that has an edge afsgign may be considered to be
obtained in that fashion; it may be changed into a reguldace by a convenient contact
transformation.

This will therefore be the case for the surface wathave used all along in order to
develop the equation. The best method for studying thaacgudeems to be that of
performing a contact transformation such that the sei®@@ and the desired surface are
replaced by regular surfaces. The question, thus traredpnmill then be of the kind that
one might apply the method of majorizing functions lowever, a new analysis will be
necessary to that effect, since this question hasppeaaed in any of the problems that
we have treated up till now. It leads to further gemsatbns by starting with the
following problems, which comprise all of the particutases and whose study offers
considerable interest in its own right:

Given five partial differential equations:

F:O, fl:O, f2:0’ f3:0, f4:0,

find an integral surface of first equation on which there exisisallon which one has
both f = 0, f, = 0 ,and a lind’ on which one has both £ 0, f, = 0 (these givens being
assumed to be such the various conditions must hsfisdttogether at the origin,
through which the linel |' must pass).

In a word, one does not know any line here through winehdesired surface must
pass; one only knows that along its (unknown) intersectith the surface9Q) the
singular coefficients of its tangent plane must saesfuation 98) and that an analogous
equation must be valid on its intersection with theasuet = a.

234. — Without stopping to examine whether one may define thetacb
transformation in such a manner that these conditionsniepointlike in such a way
that it results in the knowledge of two lines that siteated on the transformed surface,
we remark that the question may be posed in a somewffeaedt fashion if it is not on
the first wave that the phenomenon is produced to hetim which might be the case,
for example, if one commences by giving the pistoregative acceleration in order to
change the sign of the acceleration later on. his ¢ase, the edge of regression of the
surface that represents the motion to the left wileha point of regression, in such a way
that the developmen®Q) and the desired development must be consequently sxdifi

It is likewise clear that the question becomes notatdye complicated when one
takes into account the objection of Hugoniot. Indeed,omyt will one have two new
surfaces to find, and not just one, since a stationagodtinuity will be established at
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the point of origin for the phenomenon that affebis dilatations, but, as we said in no.
211, none of these surfaces will satisfy the partiafedéntial equations8). This
equation will be replaced by an equation of the fo8jnir{ which the value ok will be
not only a function o, but an unknown function of that quantity, a functi@mose form
will depend on various quantities that figure in equat{@i¥ and the following ones.

By contrast, while remaining at the Riemannian viewpaiate that one might hope
to simplify the question by giving the value 1.4, for which (nd.75), equation §) may
be explicitly integrated.

235 — From the preceding, the Riemann-Hugoniot phenomenon gaedo two
waves that propagate in opposite senses. As we haadgplremarked (nd222), by
reflecting two waves that propagate with different ggles from the piston and
recombining them one thus obtains any of a series ofst&t@s for the fluid. Must one,
with Hugoniot, assume that all of these states tenddmnamon limiting state, viz., the
one that one obtains by briefly communicating the aigloV to the piston, which it
acquires in reality by a gradual acceleration?

Obviously, one may answer this question in a general fashigrbgriirst making a
profound study of the first motion that gives rise to Riemann-Hugoniot phenomenon
as a result, which the foregoing method does not permib ot We thus content
ourselves by responding to the question in a case in whglptior study has been done
completely, the one that was considered in2@®2 and in which the acceleration law is
such that all of the successive waves that are bornobyjact with the piston are
recaptured at the same point. Moreover, we do not takeljection of Hugoniot into
account, and assume that Poisson’s law is alwayscapjsi

Under these conditions, we know that at the instaait which the waves recombine,
a first order singularity is formed. If, after havingained the velocity by accelerating
its motion according to the law that was indicatedan202, the piston moves uniformly
with that velocity then the motions between which tisea@htinuity exists will both be
represented by equations of the for8d)((w being calculated by equatiob4) for the
motion on the right, and equal to 1 for the motionlanleft). At the same time, one may
assume that the intermediate motion obeys an equatide same form, with a velocity
u;, a dilatationczr, and a pressuigg which is obtained as was indicated in 8b3-214

As was confirmed above (n217), the pressures will consist of the pressung of
the motion on the left and the original pressoye On the contrary; will be not only
positive, but greater thavt Since the intermediate state of the fluid willrepresented
by a point of the curv§') — a point that we denote, to abbreviate, by thedeft that

represents the pressure — which will be betweempdiat py that corresponds to the rest
state and the poimt; that corresponds to the motion to the left, thmtpq (fig. 17) will
be, moreover, determined by the equation:

GP— %A=V

in which g, p,, g, p, denote thdyperbolic distancethat were defined in n@14
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When the retrograde wave, by which the stgie¢r) propagates into the state,(
a), reaches the piston, it gives rise, by reflectimna new statepg, a), which is
defined by the double condition of being compatible with trst fintermediate state and
corresponding to a velocity that equsls The propagation velocity must be positive, one
sees, as it was pointed out in 221 that the pressung; is less thaty and that, on the

other hand, the hyperbolic distange, is equal tai, -V, i.e., tog p, .

One sees that this poipt may be considered to be, in a certain sensesyimenetry
of p1 with respect tay;, in such a way that the reflection translates intergain reversal
in the pressure differences here.

236, — Let P be the point of the cur¢&) such thatPp, is equal toV, the being

pressurd® being assumed to greater thmn

| say thatp, is less thar.

This results from the following lemma that relateyperbolic distances:

Let p1 p2 p3 be a triangle such that the hyperbolic lengthalbthree of its sides are
real. Therthe greatest of these lengths will be greater than or equal to the suhe of
other two,the equality being valid only if the three poiate in a straight line.

Indeed, suppose, to fix ideas, tpat> p, > ps, and, consequently, thal < a < a,
in such a way that that the greatest of the thrggeiolic lengths will

bep, p, = \/pi(pl— p.)(w,—w) . The inequality to be proved can then be writgter

0
taking the square):

pi [(pr—p2) + (02— pa)] [ — @s) + (0 — w3)]

0

1 2
> ;(\/pl_ pz\/wz_wl+\/ P~ p3\/a)3—a)2)
()

and, in that form, it results from the well-knowadrange identity, when it is applied to

the four quantitieg p, — P,/ B = Pyiy/@Ws— Wi/ Ws= @,
By virtue of this same identity, the inequalityreplaced by an equality only if one
has that:

\/pl— pz\/wz_wl_\/ P~ pa\/ws_wzz 0,

which is the condition for the three points to baiistraight line.

Our conclusion is therefore proved. Of coursendty be further stated aSach of
the hyperbolic lengths of the sides of the trianglgh the exception of the largest one, is
less than the difference of the other two.

237. — Having established this, consider the triapgleyp. . In this triangle, one has
o P,- G P,=V= Pp. Suppose we are given the same situation ahtke wertices of
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the triangle, respectively, which shows that the thidkep, p, is less tha®p,, which
then entails precisely, < P.

238.— The wave thus created by reflection on the pistolhpnobagate with a certain
velocity that is certainly greater than that of tiecdntinuity that exists between the state
(1, @) and original rest state. Indeed, the velocities afppgation of these
discontinuities depend upon the angular coefficients & thords that join the
representative points of the states, between whighatedefined. At the same time, by
reason of the convexity of the cu®&), these | - %

velocities will increase with pressure. Now, the Ds
pressurey, is greater than the pressyxe

Under these conditions, the new wave will certainl
recapture the original one; sinaendt are considered | P2
to be the plane coordinates (as we already difigin [p Po
10), the evolution of these two waves will be as C
represented ifig. 16. At their point of intersection a
new intermediate state will be formed that is
characterized by a pressugg a dilatationas, and a Fig. 16
velocity u,.

Sincep, p,is less tharV this time,q, will be found betweemp, andP, and will be

determined by the condition:

o)

P t0pP,=V.

Now, letps and a3 be the pressure and the dilatation that come atpuéflection
when the retrograde wavep( ap, U;) encounters the pistonps will be greater tham,
(becausey, is less thaw) and one will have:

q2p3:V—u2,

in such a way thaty, p, is equal tay, p, (fig. 17).
The pressurgs is greater thar’. One can see
this in the trianglgy gz ps, in which the greatest side

P1 iS p, p,, While the sum of the two other sides is equal

01 toPp, .
P At the same time, the same sequence of
Ps3 phenomena will start over. For the same reasail as
2% P2 Do along, the wave that propagates the new pregsure
will rejoin the one that propagates the pressprand,
Fig. 17 at their point of intersection, will give rise tonew
pressuregs that lies between; andP; by reflection
on the piston they will generate a presgurthat lies betweeps andP, and so on.
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The pressurepy, ps, ..., Pon-1, ... are greater thaR and decreasing; they therefore
tend towards a limit, and the same is truedQms, ..., Oon-1, ... Parallel to thispy, pa,
..., P2ny ... @re increasing and remain less tRathey tend towards a limit, as well @5
q4, ---,q2n,

Finally, we shall confirm that all four of these lisiare equal t&.

Indeed, the triangIB p; q; first gives us:

Pq +q,p=Pq +qp, < Pp;
the triangleP @ ps then gives:

&GP, -Pq,=q,p,-Pg, < Pp,.

Upon subtracting the two inequalities side-by-side, dinaios:

mn'i'lz)oe'i'pqu_ sz2<ﬁ1_P_p3'

In other words, the quantiti®s, , Pg, are less than the differenBg - Pp,. In a

general manner, the quantitles,,_,, Pq,,,, are less thaRp, _, — Pp,,.,. They therefore

tend towards 0 whemincreases indefinitely, from which, it results that, andq, tend
towardsP. Moreover, the relation:

GR.= (PR, -9 R)

shows that the same is true for Now, from the considerations of 221, the pressure
P is the one that is established if the piston passég®utitransition from the velocity O
to the velocityV. Conforming to the viewpoint of Hugoniot, we thus confilmttthis
pressure is indeed the same one that is finally producetiebprbcess of successive
reflections.




