CHAPTER V

MOTIONS IN SPACE

239.— After occupying ourselves in the preceding chapter wighnotion of a gas,
based on the assumption that its motion was exclysikegdtilinear, we recall the
equations of motion in three dimensions, in other woh#segjuations:
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In chapter Ill, we saw that there is an apparentradittion between these equations
and the conditions at the wall. However, the discusiat was presented above in the
case of rectilinear motion shows us how this difficutigty be clarified. The agreement
between the two sets of conditions is maintained khato the production of
discontinuities that arise on the wall and propagdie tine body of the fluid. Parallel
waves arise each time the accelerations of arbivedgr of the wall are different from
the ones that result from the internal equations ofanpand will be of order equal to
that of the accelerations for which this discord is mmegful. In the course of an
arbitrary motion they are produced when the accelerationone of the derivatives of
higher order- of the wall becomes discontinuous with respect to.time

We therefore study the propagation of a discontinuitthe gas upon supposiargo
fix ideas— that it is of second order. Since the pressure imad to be a function of the
pressure, the equations of motion may be written:
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On either side of a second order discontinuity traponents of the acceleration take
the two sets of values:

LR
at? )\ at? ) at? ) (ot )\ at® ), ot® ),

and the derivatives of the density take the two setsloks:

GO EICICIC)

Both of them satisfy the preceding equations. Sincedhgonents of the force are
supposed to be continuous, if one subtracts both sidée oélations thus obtained one
will obtain:
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Let A, 1, v be the components of the discontinuiéyerred to the present state, which
is taken to be the initial statend let@d be the velocity of propagation. The variations of
the acceleration will bd&, u&, v&. Those of the derivatives of logdwill be given
by formulas 63) of no.111 One will have, upon always denoting the directiosirues
of the normal to the discontinuity surfaSéy a, 5, y.

a@()la+,u,[>’+vy) =&,
dp

@) ﬁ¥(/‘a+ﬂﬁ+vy)=u92,
0

y P Ga+ uB+vy) = vér.
dp

A, 4, v are not simultaneously null, since otherwise tiseahtinuity would not be of
second order, but of third order. Therefor@ it different from O then the same is true
for at least one of the right-hand sides of the@déng equations, and one sees that these
right-hand sides are proportionaldog, y.

Therefore,any second order discontinuity that propagates igas is, from(115),
longitudinal.
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On the other hand, the quantdy + 5+ vy, which, in the general case, represents
the projection of the discontinuity onto the nornwathe wave surface, is nothing but the
magnitude of this discontinuity itself here, and, uporcessively multiplying bya, S, y
one obtains the projections onto the coordinate axesA, 1, v. Equations Z) thus
reduce to:

_dp
(3) ez_dp.

Therefore,the velocity of propagation of the discontinuity, when referred to the

actual state, has the vaI@ )
do

240. - If one would like to find the velocity of propagatiékh when referred to an
arbitrary initial stated, b, 9 then one must dividé by the normal dilatation of the wave
during its passage from that state to the actual stapmn denoting the quadratic form
that was introduced in n&1 by ¢(a, b, 9, the adjoint form tap by ®, and the density in
the initial state byx, one will have ):

2
@ L)
,OOd,O fa+fb+fc

As for the velocity of displacemeiit since it is related t& by equation %4) in no.
100, one has:

) T= /@+ua+vﬁ+wy,
do

in whichu, v, ware the components of the velocity.

241. — It remains for us to examine the hypothe®rs 0. Equations2) then give
Aa +uB +vy=0. Inother wordghe discontinuity is transversal.
A gas will thus support:

1. Longitudinal discontinuities that propagate wité velocity %
\/ P

2. Stationary transversal discontinuities.

242. — We assumed, to fix ideas, that the discontinuitys v second order.
However, the results that we just obtained pernsighat they are essential for an order
that is greater than 2. Indeed, suppose — as we obviouatha right to do — that is
non-zero, and then differentiate equatiffjsn — 2 times with respect ta. Only the

() See the note on page ??.



MOTIONS IN SPACE 203

terms that contain the partial derivatives of ondevill be affected by the discontinuity.
Now, on the right-hand side these terms are providedigxely from the differentiation

2 2 2
gti( : ;Z gtzz and in order to obtain the first one, one must applgf the levels of
differentiation to the factor%lgg’o : 6Iggp : alggp. Under these conditions, and if one
X y z

refers to formulasg7), (57'), (63) of chap. Il, one sees that the equations thataoriees
at are nothing but relation)( both sides of each equation being simply mudigloy
2. Therefore, as in the foregoing, we may have, tive one had, longitudinal

discontinuities that propagate with velocisgﬁ, and, on the other hand, stationary
\/ P

transversal discontinuities.

Just as was the case with the Hugoniot remarksdinge is true under more or less
general conditions. We saw above that in certageg may be a function of not onjy,
but alsoa, b, ¢ This is the case, for example, when the gashemogeneous at any
moment, or when first order waves are produced.

What happens to equatiqdy under these conditions? One immediately sees(upo

referring to equationd’)) that they will be modified by the addition ofes €):

1(@%+0_p@+ﬂ’0_3
ploaodx odbox dcox
respectively.

Now, they contain only first order derivativesxgfy, zwith respect ta, b, c, t and,
as a result, they suffer no discontinuity.

Therefore, formulas2) persist, with the quantitdp/dpo being, of course, replaced
with the partial derivative ofp with respect tqpo. That derivative will therefore give the
square of the velocity of propagation.

The same thing will again be true if the foréesy, Zdepend upon the density (to the
exclusion of its derivatives) or contain the fidgrivatives ofx, y, zin an arbitrary
fashion.

243 — We just saw that the velocity of propagatioexpressed by a square root and
iS, as a consequence, given two signs. At fitsthus seems that the sense of this
propagation is undetermined at an arbitrary instant

Meanwhile, it is somewhat obviows priori that this sense will not be completely
arbitrary, since it might, for example, change §lyian the course of motion. Indeed, it
is easy to see that for a given discontinuitynas a perfectly well-determined sign.
Indeed, that quantity must satisfy not only equatl®), but the compatibility conditions
of n0.103

() Inthese terms, the derivativR ,@ ,@ are deduced from the equation that gipes a function
da db dc

of p, a, b, ¢ which are considered to be four independent variables.
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In the latter, it is the only unknown and is, a®suit, given unambiguously since it
appears to the first degree.

244.— If one has neither equatior® or @), (3) then there is no compatibility. We
then know that the discontinuity might not remainqu, and we may propose to study
what will be produced under these conditions. Howeveréegroceeding with this
study, we must speak of the case of liquids.

For them, as we previously remarked (@6, one may not have a normal
discontinuity since it would influence the derivativeshs density.

On the other hand, we shall see that only a normsabdtinuity may propagate. We
may state this result in the following general form:

In a moving medium, if the components of the acceleration are equal, up
continuous quantities, to the partial derivatives (with respect to theabcoordinates) of
the same everywhere continuous quanditythen they may propagate only normal
(second order) discontinuities.

Indeed, the variations of the components of the awt&la aredd, ué, vé and

must be equal to the variations %q—)ai) 0P

X oy 0z
continuous, they must be proportionalaog, y;, from the lemma of no/3. The same is
therefore true fod, y, vif @is non-zero.

One thus sees thdte jump in acceleration is normand that this result is obtained
without it being necessary to appeal to compatipitir any other hypothesis than the
continuity of® at the instant considered.

Now, if we admit that there is compatibility, withvelocity of propagation that is
non-zero, then we know that the direction of thegum acceleration is also that of the
characteristic segmemnd, (i, v).

The lemma that we just proved may be immediately appb the case that occupies
us now, with the quantit§p beingp/p here, by virtue of equation)(

We remark that whether there is no compatibilityher discontinuity is of first order
and not second, under only the condition that the pressueserywhere continuous, the
preceding reasoning shows thée jump variation in the acceleration is a normal
segment to the wave.

Now, since® is assumed to be

to



MOTIONS IN SPACE 205

245.— 1t is easy to generalize to a discontinuity of aapjtrordem. In this case, the

_ . o o
variation of the acceleration of orderdepends ¥ on that of the derivatives eaiftnfzp
Now, the a6 — 2)" derivatives ofp with respect tax, y, z which may be expressed as
functions of the derivatives of ordar— 1 of the coordinates, are continuous under the
present hypothesis, and the same is true for the athe)" derivatives op, by virtue
of the fundamental proposition of n87. One may thus apply the preceding lemma

_2p
ot
normal segment to the wave.

to and deduce from that that the variation of the acagder of ordern is a

246. — Now, if one introduces the compatibility conditiorethone sees that the
tangential component of the discontinuity and, asrseguence, all of the other ones are
null if there is propagation.

We have therefore established that the motion of aidliquay present only
discontinuities that are both stationary and tangkentia

247.— The lemma that we just used is, moreover, likewmdi@ble to a gas, by

taking ® to be the quantit'&%, which is a function op. The previously stated fact that
P

any discontinuity that propagates in a gas is normalhéefore, as one sees, a
consequence of the fact that the acceleration isetefrem a potential.

248. — Now take, as in chap. Ill, a liquid in which one give fositions and the
velocities of the various molecules, and suppose tleaethivens present a second order
discontinuity along a certain surfaB which will be, as a consequence, known at each

: . . : O°X . L :
point, as far as its derivatives of index Z%Fq, ... and its derivatives of index
a

2

O0°X — .
onem, ... are concerned. We do not, moreover, assume the dbiifiyatonditions
a

are satisfied. However, by contrast, the identicaldémns are necessary, since the
discontinuity is of second order all aloBg We thus have two given segments at each

a2\ ax) ox| o2

(as one sees by expressing the synﬁ)als a function of_and developing) consists of only the derivatives
ot ot

of the coordinates up to order- 1 and the derivatives of the pressure up to ande?, all quantities being
continuous under our hypotheses.

n-2 -2
¢) On does not havg_[@j= g [Jn p} however, the difference of these two expressions
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point of it, whose directions are not necessarilyséwme. Under these conditions, what
’x 0’y 0°z

oY’ at? T ot®

Furthermore, in order to respond to this question, wepdbe hypothesis whereby
there are no cavities created in the interior offlilnd and, as a consequence, that the two
regions situated on either side®femain automatically contiguous to each other for the
duration of the motion.

The question is noticeably simplified by reason oftaeicular physical properties of
the fluid. Indeed, they will not preserve any tracehdir initial state, as long as the
density does not cease to be given by equédipof no.47.

Furthermore, the restriction that is concernedhwhie choice of initial state in nd5
ceases to be necessary. One may just as welitstdgither of two initial states such
that the derivatives of the coordinates of one wat$pect to the coordinates of the other
present discontinuities or arbitrary singularit@svided that the functional determinant
of the old coordinates with respect to the new oisegontinuous, along with its
derivatives.

Now, in the present case the given positions ef ittolecules must obviously be
chosen such that the density is constant.

Thus, whenever one has a discontinuity one mag tiad present state to be the initial
state for all of the fluid, and consequently anthd segment that corresponds to the
derivatives of index zero.

In order to see what the segmet, (4, V1) that corresponds to the derivatives of
index one will be under these conditions, we meshl that the velocities are chosen
such that the derivative of the density with respedime is everywhere null. If we then
refer to the calculation of the variation of thatridativeas we did in nol11 (cont.) (the
considerations of ndl11 may not be invoked here since there is no compiag)binen
we see that the segment, (14, 1) must be tangent to the surfege

As for the accelerationt exhibits no discontinuityif one always avoids the case in
which the fluid contains cavities). Indeed, we dgreviously seen (n@®44) that by
virtue of the equations of motion such a discontynmust be normal, and, on the other
hand, we know that it must be tangential, sinceemtise it will not persist when it
propagates, which is impossible.

will be the discontinuities that are experience

249.— However, one may go further and confirm not dhbt the accelerations of all
orders are continuous, but also that the givenodistuity does not give rise to any
absolute discontinuity during the course of theiomot

In order to see this, recall the considerationa@f244, from which it resulted that
the jump acceleration is necessarily normal for digcontinuity considered. This
conclusion persistsven when there is a jump in the velocity.

Therefore, lef',n' be the curvilinear coordinates on the surface efdiscontinuity,
coordinates that define an arbitrary molecule af gurface that belongs to region 2. Let
&, n be the curvilinear coordinates of the moleculé than region 1 at the instaty, and
which also coincide with the molecul€’(7') in region 2 at the instarit ¢& 1 are

functions oft for givené',7'. For these functions, the condition that the jump
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acceleration be normal gives two second order diffeabatjuations that are obviously
satisfied whené and 7 are constants* Moreover, this latter circumstance will
necessarily be produced if the two derivatidé&lt, ds/dt are null at a given instant; we
would like to establish this.

250.— It is easy to verify the existence of a motion withabsolute discontinuity by
using simple examples of discontinuities that rel&be vortices, i.e., transversal
O°X
daot
For example, take a motion in two dimensions that i;vedfby the two conditions:
1. Throughout the entire volume of a certain cylinderenolution C whose axis is
vertical it must reduce to a uniform rotation around thas.a 2. It must have null
molecular rotation in the rest of space. The knowthows of hydrodynamics show that
under these conditions there exists a velocity potethizdlis equal td arctany/x, where
k is a constant and theaxis isC. The velocity will then be perpendicular to the plane
through the pointx, y) and the axis, and inversely proportional to the digane

JX°+y?. Each point that is exterior © will thus describe a circumference and will

discontinuities that relate to the derivatives offidren

turn through an angle equal{lét during a timd.
r

Moreover, in order for the velocity to be continuaishe origin of the motion the
constantk will have to be calculated in such a manner that tigular velocity at the
surface of the cylinder is the same as that of theiort points.

Under these conditions, it is clear that the ioteand exterior points that are in
contact with each other will likewise be in contaicaay instant.

By contrast, the surface of the cylinder will obviously the site of a first order
discontinuity that relates to the derivativ@®da, ... Nonetheless, that discontinuity will
not be physically appreciable. It will not exist at dniteary instant, considered in itself,
but will relate uniquely to the way that the positionsvad different instants compare to
each other. In other words, a curve with a continuongetat, such as the one that is
represented irig. 18, that traverses the surface of the cylinder wilkd@daced at the
following instants by a curve that has the behaviorithegpresented ifig. 18 (cont.).

]
1
i 1
\ i .
1
'

Fig. 18. Fig. 18 (cont.)

(%) See note Il at the end of this volume.
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In the general case, the existence of a disconyirafitthis type result from the
foregoing considerations; we know (r@8) that a stationary second order discontinuity
that affects the derivatives of index one gives rise tiost order discontinuity that relates
to the derivatives of index zero.

251. - Now return to the case of a gas. Again let the ginEnghe positions and
velocities of the molecules with a second order dinaity of at all of the points of a
surface S with the same conditions being satisfied, except foe tompatibility
condition. There will thus exist two segmenis &, V) and @1, 14, 1) at each of its
points, which correspond to the derivatives of index zeone, respectively.

We first take a particular case, namely, the one evtier segments are all normal to
S One may then determine two normal discontinuities, @f which propagates with the
velocity @ that is given by formula3] and the other of which propagates with the
velocity — &, such that superposition produces the given discontinuit

Indeed, let and’'be the magnitudes of these two discontinuities, and &tdk be
the magnitudes of the given segmemsy v) and @, t4, V1), which are regarded as
positive or negative according to their directionis Itlear that one must have:

h=1+I'
) {k:(l’—l)e

and that, conversely, if these two conditions are feadishen the waves of magnitute
and |’ are precisely the one that we seek.

252.— In order to treat the general case, it sufficesotabine what we just said with
the results that were obtained in the case of adiqui

We are free to take the initial state as we like, pledithat the density and its
derivatives are continuous. We may, moreover, makestate coincide with the actual
state in region 1, and define it in region 2 in theofwlhg manner:

Consider each poirtl of region 2 to be defined by its normal distaivti® = oto S
and the position of the poinmt. On the same normal & choose a new distantém, =
&. We may obviously choose the latter as a functiath@former and the position of
in such a manner that if one imagines each moleculegidn 2 to be transported from its
true positionM to the corresponding positidvly then the density becomes continuous,
along with all of its derivatives. It is the ficttis state thus obtained that we shall take to
be the initial state. It is clear that the segméhty, v) will then be normal to the
discontinuity surface.

On the other hand, we may decompose the segmentii( 1) into its normal part
and its tangent part. If we first abstract from tigel then we will be reduced to the case
that we just studied, and we find two copies of the disgory that propagate in the
opposite directions with the velocity

Furthermore, it will suffice to add the discontinuihat is produced by the tangential
component to the segmemi (14, 1) to these two waves; it is necessarily stationary.
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One may apply the argument that was presented in e @hliquids to it without
modification. The accelerations of all order wilus remain continuous when this third
discontinuity no longer persists. The result thatpiseduced will be a first order
deformation of one of the regions with respect to theerobne, just as we have been
saying all along.

253.— It is in a completely analogous manner that one detesntivee state that is
created at the point of contact with the wall when tbamal acceleration of the wall
disagrees with the one that results from the intezgahtions of motion, as we explained
in n0s.139-140. We must then deal with a normal discontinuity hapagates with the

velocity 6= % towards the interior of the fluid. The magnitddef this discontinuity
\/ P

will be determined by the condition tH&f be equal to the difference of the two values of
the normal acceleration. Having thus calculdfedl that remains for us to do will be to
apply the formulas of ch. Il to obtain the second oivatives at the point of contact
with the wall, since one knows the same values beharereation of the discontinuity.

254. — As we know, the most important results in hydrodyeanthat have been
obtained up till now relate to the conservation otiedy, and consequently, the velocity
potential, when it exists.

Now, the components of the vorticity are composedhef second order partial
derivatives ofx, y, zwith respect toa, b, ¢, t One must therefore demand to know
whether the theorems that concern them do not break dawam one passes our
discontinuity.

The response is negative: it immediately results fribms that hydrodynamic
discontinuities are normal. Similarly, it will natffect the molecular rotation, whose
variation is proportional (nd.14) to the tangential component of the discontinuity.

255.— Furthermore, the same fact appli®gd the consideration of the integfal dx
+ v dy + w dz or circulation, which provides, as one knowd,(the simplest proof of the
theorems that we shall discuss, which relate to dreservation of that integral in the
course of motion when it is taken over a closed cor@our

The question is therefore that of knowing whether titegral in question, which
necessarily keeps the same value as long as the c&t@mains in one region or the
motion is well defined, might change when the contotnaigersed by a wave.

Now, during a time intervalt, the influence of one discontinuity is felt only the
arc s of C that exists between the two positions that are oedupy the wave at the

() We content ourselves by summarizing the logic of tigument in a manner that is completely
analogous to the one presented later on in note hieagrid of the volume.

() THOMSON, Cambridge Trans.1869; BASSET Hydrodynamiquet. I, pp. 70-73; DUHEM,
Hydrodynamique, Elasticité, Acoustique I, pp. 108-115; POINCAREThéorie des Tourbillonsch. I;
APPEL, Traité de Mécaniqud, Ill, ch. XXXV, etc.
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commencement and the end of that interval, arcs wieoggh is of ordedt. On the
other hand, if one writes the integral in the form:

(8) j(ud—1(+vy+ W%Zj dr

(r being a parameter that defines a definite molecule of cimwe C) then the
expressiou%+v% + vv%tzwill not vary sharply on the wave, since it is afcend
order. The quantity by which it will be modified by theabntinuity at an arbitrary point
of the arcs will therefore be of the same order as the ardf,taed the corresponding
alteration of the integral8] is of the same order a8, i.e., ofd®. Therefore, the
derivative of that integral will be null, as when thetion is continuous.

The fact that this line of argument is successflduirising, given that it does not
involve the direction of the discontinuity, and thlsgm the preceding no., the actual
result will obviously cease to be true it that directis not normal. However, one must
observe (no.247) that the orthogonality that exists between theedadion of the
discontinuity and that of the wave surface amountthéoexistence of an acceleration
potential, which was used when one established the corisengt vorticity in the
continuous motion.

256.— Other than acceleration waves, one may produceedsmawe seen, first order
waves, orshock waves.We have likewise confirmed that such waves migheasiken
the velocity of the wall does not present any sharpatian. It is easy to establish
equations for the propagation of such waves that are ctefypknalogous to the ones
that we wrote in no2205-209in the case of rectilinear motion.

Let (A, i, V) be the characteristic segment of the discontindltg initial state being
the one in region 1. The sharp variation of the vejowill be (- A8, — 16, — v6. On
the other hand, lep] = p. — p1 be the variation of the pressure. Apply the theorétheo
guantity of motion projected onto a small cylinder thastsxbetween a portio® of the
wave surface at the timeand the corresponding portion of the wave surface et th
infinitesimally neighboring instartt+ dt. Now, since this cylinder is considered in the
state 1 of the medium, its height will be:

dn=qdt
and its mass will be:
o @S dt.

We assume tha® is very small, but thadt is negligible with respect to the
dimensions ofs. Thanks to that circumstance, we may neglect thsspres that act on
the lateral surface of our cylinder by comparison toaihes that act on the bases. The
effect of the forceX, Y, Zwill be likewise negligible, as we saw in 205 Therefore, if
a, B, yare the direction cosines of the normal to the wawe they do not vary sharply,
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then, since our cylinder passée$ from region 2 to region 1 during the tind and
consequently, from the velocity(— A6, vi — 16, wi — v to the velocity 1, vi, W)
under the action of the opposing normal presspr@sdp;:

01 0S did=—- ofp] S dt
01 0S dud=-Ap] S di
01 0S dtvd=- y[p] S dt

This shows us, first of all, that the discontinugyecessarily normal. Its magnitude
is:
©) =18
p.

The ratio of the densities is given by formué&)(of no.109. If we take into account
the fact that the discontinuity is normal and iggmitude id then we obtain:

(10) P,
P

One may eliminatéfrom these two equations, and one obtains:

(11) o] = ;& [1—%} & (0:—p1) .

2

This formula corresponds to the expressio®) (hat was obtained in n@07 for the
velocity of propagation. It nevertheless has aeghat different form by reason of the
fact that we have taken the initial state to beatteial state in region 1, which we did not
do in the case of rectilinear motion.

257.— We must further write the equation of adiabsticilf we adopt Poisson’s law
then this condition will be simply:
P _ P
PP
in whichp; andp; are the two pressures.
If, on the contrary, we follow the path that wadicated by Hugoniot then we must
directly write that the differential of the totabwk done by the pressure, when evaluated
as we did in no209, has the expression:

d7=py(wa+vi B+wW )) =Pz [(L1 =140 a + (1 =16 B+ (W~ A6 )]
=p2 16— [p] (ma+vi f+w ),

(") Asin no.205 we assume thalis positive in this argument, but the final result Wi, of course,
independent of this hypothesis.
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and the sharp variation of thas vivais equal to the variation of the internal energy.

Now, this energy, which is, up to a factoreal—l, the product of the volume with the
m_
pressure, has the vatu%&ls dtin the state 1 and the vald‘gjils dtin region 2, where
m- m-

the volume is multiplied byoi
P>

We thus have (upon suppressing the fagtd).

(12 P18 - pl(ua + B+ w)) +%H[( 0+ V+ W] :mi—l[ p- E,%j

2

As in no.209 we must transform this equation in such a manner asnder it
independent of the motion of the fluid. To that effese only have to use the
previously-obtained equations:

Uo :U1—|0'€,
Vo :V1—|ﬁ€,
W2:W1—|y9,

(in whichug, vi, wp andu,, v, W, are the two velocities), which give us the variatién o
thevis vivaper unit mass [¢ + V¥ + w/)].
Equation 12) thus becomes:
— ,015 202 _ 2 _ 6 _ £
AL [p](%a+V1,5+V\£V)+7{ FO* 2 18 u* + V' + wi} =—_1 R 9; )
2

and one sees precisely that the terms;in+ v15 + wy yare eliminated, by virtue o8J.
What remains (upon dividing b§ and then eliminating and & by means of equations
(9) and 0)) is:

+ 1
(13) %(pl—pz) = = (Po—pop)
m-1

I.e., the same equation that we obtained for the eheectilinear motion in no209 (the
guantitiesay and «p that appear in that section are inversely proportitmal and ;).

258. — The proof in no254 that acceleration waves will not alter vorticial tioa
does not apply to shock waves. On the contrary, by coenyi modifying the
argument of no255, one may prove®) that they are capable of giving rise to vortices
when none existed prior to their passage.

() See note Ill at the end of the volume.



CHAPTER VI

APLLICATIONS TO THE THEORY OF ELASTICITY

259. — In this chapter, we propose to study the propagation eésyano longer in
liquids, but in elastic solids. Contrary to what we tbr liquids, for this study there is
good reason to take the initial state to be no longeprdsent state, but a perfectly well-
defined state of the body considered calledndteiral state. The initial state having been
thus chosen, the internal tensions are functionseoédmponents of the deformatien
&, &, W, )5, )4 that were defined in n@.1.

The distinction between the initial state and thegirestate does not have to play a
role in the simplest case that one must study, tleeimmhich one supposes: 1. that the
body considered is homogeneous and isotropic; 2. thaddéfe@mations to which it is
subjected are infinitely small.

In this case, the coordinatas b, cof the initial state (i.e., natural state) esselytial
coincide with the coordinates y, z, tof the present state; one has:

X=a+¢,
y=b+n,
z=c+{,

in which &, 17, { are assumed to be very small, along with their devest Reduced to
the infinitely small terms of first order, the compatgeof the deformation will be:

=% e,=91 =9

) 0x oy 0z
an oc ¢ o0& & an
=—14+=> =+ =547
Car= ay CRF VAFFIRE dy 90X

As we shall have occasion to recall a little laber, the equations of motion are
deduced from the consideration of a certain fumctmf the components of the
deformation that is called thedastic energy In the isotropic case that we now address,
this quantity has an expression of the form:

2 [T] Wpdx dy dz

) {2ﬂW: L(g, +&,+ &) + M(28] + 265+ 25+ yi+ i+ y7)
S(L+2M)(E+ &+ &)V M (i +yotys—de g4 g 4¢ ),
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in whichL andM are two constant§)(such that the quadratic foi is positive definite,
I.e., subject to the inequalities:

(3 M>0, 31+2M>0.

The equations of motion may be written:

0%¢ il
—=MAE+(L+M)—+ pX,
Poe $+( )ax p
°n oo
4 —L=MAp+(L+M)=+pY,
(4) pre n+( )ay P
0°¢ il
=MA{+(L+M)—+ pZ,
P ¢ +( )az P
in which o'is the expression:
508,00
ox dy 0z

such that 1 4o represents the dilatatigm/p, andX, Y, Zare the given forces, which act
on a unit mass.

260.— Equations4) are, as one knows, of second orde§,iry, {; they make known
the components of the acceleration widery, ¢ are given for each value af b, ¢ i.e.,
when one is given the positions of the molecules.

Now, experiments inform us that in order to determimertiotion of an elastic body,
one must give not only the positions and velocitiehefmolecules at the given instant,
but also a set of boundary conditions, such as the nstbthe different points of the
surface of the body at every instant, or the presshatsare exerted on that surface at
each instant.

Under these conditions, we again encounter the sdifi@iltly as in the problem of
hydrodynamics.

For example, we adopt the hypothesis that one givesmthien of each of the points
of the surface. Moreover, we know the acceleratiohshese points, and the values
found for these accelerations are completely indeperafehe interior equations. There
will thus be no reason for them to agree with the dhasresult from these equations.
The contradiction is likewise more complete than phevious one, since these are the
values of the accelerations themselves, and no longerthas normal components,
which are given by the boundary conditions.

Since the present state essentially coincides wehirtitial state, letd, i, v be the
components of the discontinuity when referred toeeitdf these states arbitrarily; 18be

() We letL, M denote the coefficients that one usually callg, since the latter letters are employed
with a different significance here.
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the velocity of propagatioand leta, £, ybe the direction cosines of the normal to the
wave surface. In equationd)(if we replace the sharp variations of the seconi@groby
their values derived from the formulas of 403 then they become:

PAGF =MA+(L+M)a(Aa + uB +vy)

(5) PUE? =M p+(L+M)B(Aa + B +vy)
ovE* =My +(L+M)y(Aa + uB+vy).

If we write these equations in the form:

(0 —M) A= (L + M) a (Aa +uB +v))
(& —M) 1= (L + M) B(Aa +uB +v))
(P& —M) v= (L + M) y(Aa +uB +vy)

then we see that they are entirely similar to d@qoaf2) of the preceding chapter.
Consequently, from what was said there, they atimaittypes of solutions:

1. 22%:%: the discontinuity isongitudinal. It propagation velocity will be given
by the relationrpd” —M =L + M, namely:
(©6) & = 2M +L .
P

2. Aa +uB +vy= 0 : the discontinuity isransversal. Its propagation velocity will
be given by the relatiop# —M = 0, namely:

(7) g=M

The two values obf thus obtained are, moreover, real, by virtue ofittegualities
3.

Therefore, solid isotropic bodies are capableroppgating two sets of waves with
different velocities: one set is exclusively longiinal, and the other is exclusively
transversal. Just as we saw in hd5 the former are not accompanied by any variation
of the instantaneous molecular rotation, and thterlaare not accompanied by any
variation of the derivatives of the density.

261. — If, at a particular instant, there exists aniteaby difference between the
accelerations of the surface that are derived ftloeninternal equations and these same
accelerations, as derived from the boundary canttithen this will give rise to two
waves, one of which is longitudinal and the ottetransversal, corresponding to the
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normal component and the tangential component of thmesgigthat represents this
difference, respectively.

On the other hand, if there exists a second ordeomtisity along a well defined
surface in the interior of the body at a particularmmat and this discontinuity is
absolutely arbitrary (the only restriction being the igattconditions) then it gives rise
to four waves, one of which is longitudinal, the others of whack transversal; one
propagates in one direction, while the others propagates iopposite sense.

262.— If, instead of giving the positions of the points of sieface, one is given the
tensions that act on those points at each instanttti®gnmay likewise have different
values at the initial instant than the ones that wieduced from the components of the
deformation at these same points. Under these comnslitone will likewise produce a
wave. However, this time, it will be of first ordéecause a finite difference between the
internal and external pressures will produce a sharpticarie the velocity. Such waves
have been studied by Christofféf)( Thanks to the hypothesis that the motions are
infinitely small, that savant further obtained badicéhe same results as the ones that
enable one to study acceleration waves.

263.— In the treatises on elasticity, one easily fothes equations of motion for the
case of anisotropic bodies. We shall not develop tkelteefor these bodies that
correspond to the previous ones; indeed, we shall find im¢n@ most general case of a
finite deformation. Recall only thatV is, moreover, a quadratic form if, &, &,

W, V6, V5, and that equationgl) are replaced by three second order equations that again
give the projections of the acceleration as a functibthe second derivatives (and also
the first derivatives, if the body is not homogeneais), /7, { with respect tx, y, z

In optics, when one looks for the vibratory states Hadisfy the equations that we
just wrote one confirms thad any direction of a plane wave there correspond three
directions of vibration, which are mutually orthogonal and are the three principal
directions of a certain quadrior polarization ellipsoid One recovers precisely the same
result when one adopt the viewpoint of Hugoniot: The dafimn is completely
analogous to the one that was presented above2@ip,. or to the one that we made
above (n0267).

264.— Now, we put aside the case of infinitely small defations and propose to
study elastic wavewith finite deformationgn a solid that is or is not isotropic.

The case in which such deformations exist has been emetiby Boussinesq and
Brillouin. In order to write the equations of equiliom under these conditions one again
starts with the consideration effastic energyi.e., a certain triple integral of the form:

) [1] Wpdxdyd=[]] W dadb dg

(*°) Annali di Matematicaseries II, tome VIII, pp. 193; 1877.
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in which p dx dy dz= o da db dcds the mass element akdis a certain function of the
SiX componentsy, &, &, W, )5, ), of the deformation at each instant. This function
contains thea, b, cexplicitly, possibly from somewhere else, accordingvhether the
body considered is heterogeneous or homogeneous in s stéie.

Since the system of independent variables that is cesapof time and thanitial
coordinates, b, cis the only one that is employed in this chapter, amseguently no
confusion should arise in that regard, it will not beassary for us to conform to the
convention of no61. We thus denote derivatives that are taken with redpetttese
variables by the symbal, the signo being reserved for the components of the virtual
displacements.

We write that the variation of the integra) for any system of virtual displacements
(dx, dy, d¥ that are communicated to the various points is equaheowork that
corresponds to the given forces (acting on a unit mxssy,(4, namely, the expression:

3 [T] (Xx+Ydy+2Z&) pdxdydz

if the positions of the points of the surface are fixadio that expression, when it is
combined with the work done by the external pressurebeindntrary case.

As in no.47, leta, by, ¢, ap, by, ¢, &g, bs, C3 be the partial derivatives af y, zwith
respect toa, b, ¢ The variation of the integraR) is (upon observing that the mass
elemento dx dy dzdoes not vary):

6W 6W ow ow
5 + oa,+-+—0 dxdyd
. R A
-l oW a(5x)+awa(5>;+m pelxdy dz
da, 0a dh b

According to the general rules of the calculus ofateims, we must transform that
expression by an integration by parts, or, more prec¢ibgl\Green’s formula. We thus
have one surface integral and one new volume integral:

Ao () o) 255
o (el 5a e od3e)
o 22 o). 2(8% L sy

In order for the sum thus obtained to be idengicatjual to the sum of the quantity
(8) and the work done by pressure, it is necessaityttiere be equality for ar¥, dy, oz,
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for both the surface integral and the volume integmdividually. This gives us the
internal equations of equilibrium, namely:

0(0W) d(o0W) d(0d
+— +—| —|=0
da aa1 ob aq oc d¢
(10) iaﬂ+ia_\/\/+ia_\/\/:
da\ da, ) Oob{db ) 0d d¢

o (o), afaw), a(aw)_
da\ 0a, ) Ob{ dly) 0d 0¢
whereas the equality of the surface integrals pvitvide (upon assuming that the exterior
pressures were given) by the boundary conditions.

Finally, if we would like to pass from the caseeasjuilibrium to that of motion, we
must only substitute the principle of virtual wdde Hamilton’s principle: Moreover, this
amounts (compare to what we said in chap. Ill) akimg use of d’Alembert’s principle

and introducing inertial forces into the forcésY, Z The equations on the surface will
remain unaltered, whereas the internal equatiolhvacome:

9 (oW, 0(aW) a(oW) \ 0°x_,
dal 0a ) obl o ) 9d ¢ ot
1) a[awj a[awj ac(awj VA A
dal da, ) ablob) dc dg ot
o fow), a(ow|, o (owW) , _d*z
dal 0a, ) oblab ) 9d dg ot

These equations are of second order, either w#pact td or with respect t@, b, ¢

since one must derive the tergqu\i M M , which are certain functions of the first

da, ' b ' ac
order derivatives. If the body is homogeneous these quantities do not containb, c,
t explicitly, and consequently the equations contaity terms of second order. In
addition, first order terms will enter into themthre contrary case.

265.- The case of hydrodynamics corresponds to tharomdich W is a function of
only density; in other words (the initial statermgpiassumed to be homogeneous), of the
functional determinant:

O

1
RN
PO
S O
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For W = F(D) the derivatives that were previously consideredrathing but the
products of(D) with the minorsA;, B;, C; of the previous determinant. The expression:

O (oW}, 0 [0W) 0[oW
dal 0a ) abloh ) ad d¢

that appears in the first equatidi®) is therefore written:

A 08 ,0C ), Lyp(p 0, 50D, o D
(D)( ob +6cj F(D)(AanrBlabJrClacj'

The coefficient off(D) is null, as is well known from the theory of mipliers %).
That ofF"(D) may be written:

D(AGD BlaD ClaDj
Doa Dodb Doac

Now, this is nothing butD%—D, because the quantltrés Lare the partial
X

B
D'D’
be

UIO

derivatives ofa, b, cwith respect to (X, y, zbeing taken to ind

The equation:

D

pendent variables).

2
pr0) 2 +x-%=¢
0X ot

is identical to the first equatiod)(of chap. V, by means of equati®) of no.47 and the
relation:
12 p=-p,F(D).

266.— Equations1), which make known the components of the accedaratt each
point by means of the partial derivativesxofy, zrelative toa, b, cat this point, suggest
some remarks that are completely similar to thesahat we made for the equations of
hydrodynamics (no139-14(Q and for equations4] (no.260. The agreement between
the internal equations and the boundary conditibas must be established thus leads us
once more to study the propagation of waves.

To that effect, we must first specify the equadioh motion.

If we take into account the values &fy that define formulas7j of no.51 then we
see that one will have:

(') JORDAN,Cours d’Analysgetome IlI, no.44, pp. 49.
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ow :6‘16W+b16W+C16 W
0a, ¢, oy, oy,

ow ow ow oW
(13 =a_——+th—+¢—,
ob, oy, ~0g, 0y,
W _ OW, 0w, 0w
ac, ay, oy, ~0&,

When we substitute these values into the first equdtid), differentiation will give
two types of terms. Indeed, in each term of the expnesshat we just wrote, one may
substitute either the first factor or the second dnehe former case, we obtain the three
guantities:

azxaw+ 0% x oW, 0°x0 W
0a’ dg, 0adbay, aaacay2
9°x 6W+62x6W+ 9’ xa W
dadbdy, oK ds, dbocay,’
9°x 6W 9% x 6W 9° XDW
daoc ay, abacay1 iFY: 0e,

Once more, lefl, i, v be the components of a discontinuity of second oreéative
to the initial state (which is the stata, (b, 9 this time, and not the present state); let
a, B, y be the direction cosines of the normal to the wawel letd be the velocity of
propagation. If we consider the sharp variations ofsbeond order derivatives that
appear in the previous expression, and we replace thehelsywalues found in nd5
then we see that the discontinuity that results ftbensum of these three expressions is
AQ, when we leQQ denote the quantity:

6W02+6Wl[), aWy2+2—,[>’y+26—\/\/m+ Za—a,[z’

Q_ael oe,”  oe ay, oy, oy,

267.— Now, look at the result that was just obtaindewone differentiates all of the
second factors in the expressiolB)( Here, one encounters the derivatives of the
components of the deformation with respecatt, ¢ derivatives whose variations were
calculated in no113 From what we found there, we introduce the gtiast

(14) &=Lla, &= Mg, 8= N,
6 =My+NB, g,=No+ly, g= L5+ M,

in which one has:

(15 L =Aa;+ pap + vas, M = Aby + pop + Vo, N = Acy + (o + Ve,
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The sharp variations of the derivatives of the componeintee deformation may
then be written in the simple form:

0 | _ 05 |_ . |94 |
Gl e e

Y, oy |_ .. . _
[aa} o [E_‘ﬁgh [ac} W, (=1,223)

From this, let us calcul%&[Mj . One has:
oa\ 0¢

O[oW )| _ (oW oW o'W o'W o'W . 0°W
dal| oz 9 0z, 0g 0e, ¢ s o, © oedy, L osoy, ¥ acoy, Y

Consider the quadratic form:

_ W, 9°W 0°W
l.IJ(ela eZa e3! gl! g2! g3)_ el+ qq+

> e+ 2
o0& 0&,04,

0w
q+...+2 gg,
oy; ay,0y,

in which the6—;5+ 6 = 21 products of pairs and the squares of the six quarjtigs

appear, each of these products having as its coefficierdettond derivative o& with
respect to the variablesor y; respectively, and the terms thus obtained must be doubled
(as usual) if these variables are different, i.eheltamount to a rectangular term.

One immediately sees how this expression comes about.

Indeed, the second differential\¢fis:

oW oW %W 62W
—d’g + - +——d?),+— d%
0&, oy, 0&; 61/161/2

dy, dv,,

and contains, on the one hand, the second differedfials..., d®)s, and, on the other
hand, the first differentialds, ..., dys . If one replaces them with, &, €, 01, O, Gs,
respectively, in the terms that contain them thenainains the quadratic foriv.

dal d¢

Having thus introduced that form, the varia{e?q[a—wﬂ is obviously nothing but

aow , and similarly, the derlvatlvg— oW iS nothing bu&aa—w.
2 0¢ oa 6yi 2 0

Substituting in the sum that we must evaluatefimee
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(aw oW awj
ala—+b_—+q—

The coefficient oty is:

E aa_w+ﬁ6_w+ ya_qJ
2\ 9 "0g 0@ )
However, if one returns to the formula&d) that definee;, &, €, g1, 02, Qs as

functions ofL, M, N then we see that this expression is equélzLJ%\é:/—. Likewise, the

coefficient ofb; is%g—\l\lﬂv, and that ot is %g—\ll\lv The sum of the terms that contain

by, c1 explicitly is therefore:

Slag tho oo

1( oW ow ow
( oL oM oN j
Finally, if we take into account the formulalb) by which one definek, M, Nthen
we see that this expression represents:
10W
201

The desired equation and the two other analogmes gesult from the last to
equations of11), which may thus be written:

AQZ:AQ+16_W
2 01
10W

16 6% = IQ+=—
(16) HO” = LQ 2 ou

ve? =yQ+=-—,
Q 2 0v

They show thatd, i, v are proportional to the direction cosines of an@pal
direction of the quadric that is representéd, v being regarded as the coordinates, and
a B yahb,c Xy, ziah, ¢ being regarded as constant) by the equation:

17 N, 1, V) = QU + 17 + V) +W(ey, &, €, 01,02, 03) = 1.
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This quadric is theolarization ellipsoid which is analogous to the one that we spoke
of in N0.263

268. — We thus find a result that is completely similar e one that we already
know in the case of infinitely small deformations, tiich must be stated here in a form
that is a little more precise since there is reagatistinguish between the initial state and
the present state of the body considered. Since thmesgd, m, n) is, as we know,
defined in the space of the present positions of thecudds, the statement is:

The same direction of a wave is capable of propagating three differentialire of
discontinuities, which are orthogonal to each other in the deformed medium.

269 — In addition, equationsl{) tell us the values of the velocity of propagation.
They are the square roots of the three roots of the iegquats relative to the quadric that
we just spoke of. In order for them to be real it isessary and sufficient that this
qguadric be a real ellipsoid.

We shall confirm that this condition is always d&t in the cases that might present
themselves.

In order to see what this circumstance is due td,dossider the case of liquids. We
have seen that the velocity of propagation then hagjulaatity dp/do for its square.
Now, the condition that this quantity be positive ishmag but the stability condition for
internal equilibrium. It expresses that when a deer@ashe volume is imposed on the
gas, it produces an increase in the pressure, i.e., geladthe internal forces of such a
nature as to oppose the modification that is so produced.

Conforming to what was established for the case oéswsthat depend upon a finite
number of parameters, we assume that it is necekgasyability that the elastic energy
actually have minima (instead of only having a null fumgtiation), or, at the least, that its
second variation must not become negative. By this\mjege shall express the stability
of the equilibrium of a fixed body in terms of all ofetipoints on its surface, in the
absence of forces, Y, Z

If we now apply the operatiodto the first variation9) then there will be two types
of terms under thé| sign: The ones that one obtains by differentiatiag &b, &, and
the ones that one obtains by differentiating theofa@\Wioa , ...

Just as it happens in all of the analogous cases in thdusabf variations, the first
category of terms gives a null sum. Indeed, one mayest it to the same
transformations as the first variation itself, whidlieg a result that is identical the one
that we obtained previouslyk, dy, dz being simply replaced b§x, &Fy, Fz Since these
latter variations are null, like the first variatjynon the surface (since its points are
assumed to be fixed) the sum in question disappears, bg wftequationsl).

What remains is the triple integral:

oW oW oW oW
(18) j j j {581 @(aj+5bl@(aj+m+5Q@(£j+5g@[aﬂ pdx dy dz
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270. — The quantity under tHf sign is a quadratic form with respectda, &b, & .
If this form is positive definite for any value af b, cthen the same is true for the
preceding integral.

The converse is not exactly validdthough the integral8) must be essentially
positive, it does not have to follow that the same tisngue for its differential element.
However, we shall see, by contrast, that they mist daly positive values whenever the

variationsds;, ... have the form:

Oa, =Aa, ob=AB, og=Ay,
(19 oa, = pa, Ob,=uB, Oc=uy,
da, =va, ob,=vB, oc=vy,

and this must be true for adyy, v, a, 5, y. In other words, whenever tldg, ... satisfy
equations'f):

(19) @1&2—&1@2:0, @1&2—&1@2:0, ceey &2&3—&3&2:0.

To that effect, we remark that the values thustemihave an interpretation that one
may immediately perceive. They coincide with tladues of the sharp variations of the
guantitiesa;, b, ¢ in a first order discontinuity that is defined ¢time wave surface
considered.

In other words, in order to pass from the pregamdition of the medium to an
infinitely close position that corresponds to tlaiations (9), it will suffice to subject
this medium to a deformation of the type that wasstdered in no56 and hasA, 4, V)
for its characteristic segment.

Having said this, we make a small portion of thdace>, whose tangent plane has
the direction cosines, S, y; pass through a particular interior point of oolics If these
guantities, when combined with three convenientigsen values of, x4, v, give values
for the expressionsl) that make the differential element df8f negative at the point
considered then one may taketo be sufficiently small for the same circumstance
occur at all of the points of that portion of theface.

Having thus choseh once and for all, we consider it to be the basz oflinderC of
heighth. If we suppose that its interior is subjectec teformation of the type that was
studied in no56, the surface whose points remain fixed be&ngnd the characteristic
segment beingA( 4, V) then the maximum displacement thus obtainedhbeilbf orderh.

It is easy to see that one may then determine e¢f@rmation of the rest of the solid in
such a manner that: 1. The points of the exteuoface remain fixed. 2. The continuity
of the displacement is conserved on the surfatcbeo€ylinderC, in other words, thadx,

oy, & do not change values for a point of that surfagpedding upon whether one

(**') Conversely, one proves that if one obtains a ipesidefinite form upon adding a linear
combination of the left-hand sides of equati@®y to the quadratic form that figures in the integd8)(
then the integral is indeed a minimum (at least whentakes it over a sufficiently restricted volume).
However, it remains for us to examine whether the sefftccondition thus formulated is equivalent to the
necessary condition that was obtained in the text.
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considers that points to be interior or exteriolQto 3. X, dy, & and their first order
partial derivativesare everywhere (outside Gj quantities that are very small of ordher

Under these conditions, the integra8), when taken over the exterior ©f will be of
orderh?. On the contrary, for the interior & (in which &, ... have essentially the
values that were determined 9)), they will be negative and of order They will thus
be negative when taken together.

In order for this to actually mean something, it mustseqnently, be the case that
the element in the integral®) should not become negative when one gaeb, G the
values 19), as we have said.

271. — If we now substitute the valued 3} for a—W,a—W a—Wthen we see

da b ' oc

08,
taking the variations of the first factor, and whictegi

thaté[aﬂj, for example, will contain two types of terms: ortbat are obtained by

oW
0&,

oW oW
03 +—0h +—0¢,
0y, ay,

and the ones that are obtained by applying the operatimthe factorsgﬂ,
gl

Now, we know for example, that:

2 2 2 2 2
5 oW :62\/;/5£l+ 0°W &, + 0 de3+ 0 W5y1+ 0 W5y2+ 0 W5y3.
og, ) 0& 0&,0¢, 0£,0€, 0£,0y, os 0y, 0 QY 4

If we consider the quadratic for¥¥(e, e, &, th, 02, &) that has been in question all

along then it is clear that the preceding expres;s%vp\i represents, provided that, g
‘91

are replaced bys, dy, respectively. One therefore has:

oW _ow AW AW 1
—=—_Jda +— +—J¢c+=a
da 0¢ ? 01/3&? 0y, P

oy 1, o¥ 1 o¥
+—p +=¢ )
&) 2 0(s) 2 o)

If one remarks that one has:

O0c = a1 day +a 0|y + ag dag,
08 = Dby oy + by doy + bz s,
08 = Cy OC1 + G2 OC, + C3 (C3,
O =by oy + ¢y oy +by & + ¢ oy + bz &Lz + €3 s,
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and we find, in summation:

Lo W (Lo oW 1o 0% 1o 0% 1. 0% 1. oW
2 0(&) 2 "0(,) 2 T0E) 2 0(n) 2 70f,) 27 70s)

=W(%&, 0, Oes, S, O, OP) -

Finally, the quantity under tH# sign in the second variation will be:
W (502 + 52 + 5a0) + SN Sk + 515+ 51 + S (5 G485 G485 §
0&, 0s, 0&,

20) +23—\:/V(5b15q+5b259+5Q5g)+ 23—\;\’ Gclatdcd atd & 3

1 2

+2‘;—W (0, O, + 0@, O, + 3 &, T 1)+ W (3, OF ,,0E 50 1,0 ,0 5.
£

3

It is this quantity that must be positive when gneesda;, i, &, the valuesk9) in
order for there to be stability.

The quantitiesds, Jdy take precisely the values g;, that were defined by formulas
(14), (15), and consequently the expressi@0)(will become identical to the left-hand
side of L7). We thus obtain the desired conclusion precisetym the stability of the
internal equilibrium it results that the velocitieEpropagation for the various waves are
real.

Moreover, if we assume that the expressigi) (nay not likewise be annulled under
the indicated condition unlesk= y=v =0 or a= = y= 0, then these velocities of
propagation always remain finite.

272. — In the case of hydrodynamics, in whidv = F(D), the element
[F'(D)d°D + F"(D)dD?] p dx dy dan the second variation will reduce to:

F"(D)(0D)? p dx dy dz

and the quantity?D reduces, as is easy to insure, to a linear coribinaf quadratic
forms that define the left-hand sides of equat{af§. The condition of stability is thus

(as we stated in nd.31) preciselyF" > 0 org—2> 0.

273 — The foregoing considerations provide a simpterpretation for the left-hand
side of equationl(/).

Indeed, replacg, y, vwith A dt, ¢ dt, vdtin formulas (9), in which we ledt denote
the differential of a parameter. Under these damb, the deformation will be infinitely
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small, and, just as we remarked in &@3 (cont.), the increases & y will be precisely

e dt, g dt Suppose, in addition, and this is obviously compatiblé tie hypotheses
that we just made, that the second derivatives, @f z— and consequently also those of
a, b, ¢ — with respect to are null. For example, le&t y, zhave the values:

X=X +Atf(a, b, c), Y=Yot+tAtf, zZ=2+ Atf,

in which f(a, b, c) represents the left-hand side of the equation forthree surface,
which is defined as we explained in 189.

The coefficient ot%/2 in the development a& will then be the quantitf1(/, x4, v)
that has occupied our attention.

If, as a consequence, we envision a small voldmaround the point considered that
we subject to the deformation that we just defined therctefficient ot%/2 in the value
for the elastic energy thus generated will be the proofyetdr with the left-hand side of
the equation for the polarization ellipsoid.

274.— We have seen above that in the case of infinitedglisdeformations of an
isotropic body there exist two types of waves, onesdt@exclusively longitudinal and
ones that are exclusively transversal.

Does this theorem persist in the case of finite dedbions?

This question may be regarded as a particular case dfeamabre general theorem.
Indeed, one knows that the optics of crystalline sdédsls us to consider and to the
exclusion of all others — elastic media that area@ not isotropic, and for which an
analogous decomposition into longitudinal and transversaésvhas meaning.

The determination of the form of the functiwvi for which this is the case is well
known when one is concerned with infinitely small defations, i.e., when one supposes
that W is a quadratic form with respect &9 g. We propose to carry out this same
determination in the general case.

The direction cosines of the wave surface in the defdrmedium are proportional to
the quantities, m, nthat are defined by the equations:

a =la +ma, + na,
(21) B =Ib,+mb, + nb,
y =lc, +mc, + nc.

It must then be the case that equatidi® @re satisfied when one replacgsy, v
with I, m, nin them. Moreover, one must suppress the first tefrtise left-hand sides in
these equations, and write:
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(22 sm=——

Since the termk), mQ, nQ (which provide the quantit®(A? + (# + /) that appears
in M) will only change the value afby a quantity that is equal @ without modifying
the principal directions.

We observe that if m, nare given by relation®{) then the quantitiek, M, N are
nothing buta, S5, . We carry out the calculation in such a manner asttoduce these
guantities, to the exclusion fm, n To that effect, we multiply equation®?), first by
ay, a, as, then byby, by, bs, and finally byc,, ¢, c;, respectively. One will then obtain:

s(al+a2m+a3n)-sL-E( 6_W+ a_qJ+ a_wj
' 2% " %m *on

s(byl +bzm+bzn) =sM :%(bl%—lr+ bza—q)+ Qa—wj

om on
s(cll +em+c n)-sN-E( 6_W+ 6_W+ a_wj
romeTe 2099 " %m  %on )
If we now replace the derivativgg—,g—w,%—wby their expressions with the aid of
m on

the derivatives taken with respectlioM, Nthen we will have (in regard to the formulas
that defineg, y):

1 oy oy oy
L==| Q+28)—+)—+),—
S 2[( 1)6L Y yZaN}
1| oW oy oy
Zly.—+A+28,)V—+y,—
2[1/3 oL ( 2)6|\/| ylaN}

SN_E[ a_l-IJ+ a_l-IJ+
2| V2 oL ylaM

sM =
oV

1+28,)— |.

o

We solve these equations 99%6—w a_LP. This solution introduces the mindgs

oL 'oM 'oN
G; of the determinant:

1+25 ), A
(23 D’=| y, 1+2s,
Yo Y 1+ 2¢,
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with respect to the elements 1 2y, respectively; the coefficients oL, sM, sNn the

&6‘4—' 1oW 10% ——are the quantltlesE— 32 Upon introducing, instead of
29L '20M 20N D*'D

the number:

values o

and upon lettingdb denote the form:
O, g )=E P’ +Esf +Esr’+2G gr + 2G 1p + 2Gs pq,

e., the form that is adjoint to the one that githe line element of the deformed
medium, then the values in question will be:

10W 1, 00
20L 2 oL
109 1, 00
20M 2 oM’
10¥ 1, 00
20N 2 ON’

and the relations that we just wrote will be satisfieid time on the condition that one
setsa, B, yequal toL, M, N,respectively.

This substitution must be applied only after performirgdifferentiations. If, on the
contrary, one immediately sets= L, =M, y= N then one will introduce too many
terms into the left-hand side as a result of theetdffitiations with respect to, S, y.
However, the values @&, e, e, 01, 02, 0z, Which only appear i, are symmetric with
respect to the two systems of quantiliesv, Nanda, S, . The terms thus introduced
will be equal to the ones that originally existed, retipely, and will have the effect of
doubling in value. We may thus replace the preceding eqsatitbim

1ow _, 0%
20L oL
(24) 10¥ _ kai
20M oM
10W _, 00
20N oN

in which W will now have the value that was obtained by replacing, ywith L, M, N
before any differentiation, i.e., by setting:

(25) ee=L% &=M% =N, gi=2MN, g=2NL, g=2M.
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Along with relations 24), this time we are concerned with identities that are
meaningful for all of the values of the independentaldesL, M, Nthat figure in them.
As one knows, these relations express the idea4thata function of®, and since the
first of these two expressions is a homogeneous polalomhifourth degree and the
second one, a homogeneous polynomial of second degreeecassarily has:

W(L? M? N% 2MN, 2LN, 2LM) =h d(L, M, N)?,

in whichh is independent df, M, N

275.— We must now demand to know what the quadratic férmmust be in order
that it reduce th®? when one replaces , g by the values in25), respectively. This
will be the case, not only ¥ is equal tchW,, when one sets:

WY, = (Ele]_+ E;e + Eze; +G191 +ngz +G3g3)2’

but also if¥ is equal to an arbitrary linear combinatiorhd, and the six forms:

26) {492%—91 46¢- 4, 4ee B
0,,-260, %4-260 GG 26

This condition is not only sufficient, but necessain order to convince oneself of
this, it suffices to express directly that the forffaurth degree that is obtained by
replacing by replacing the, g in ¥ —hW, with their values inZ5) is identically null.

276.— Having thus obtained the expression¥git remains for us to return to that of
W, for which it is clear that one therefore has @esysof second order partial differential
equations. The integration of this system is, moreagenpletely elementary, and it will
suffice for us to summarize the process.

Since the forms2g) lack terms ine’, e; gs, €1 g2 these terms must have valuesHn

that are proportional to the ones that they hawinand consequently the derivatives of
W must satisfy the relations:

o'W o'W o'W

2 E’= L EiGy = :E1Go=h.
) 02 T asay. T asay, 7
Since one has (fron2)):
2 2 2
g 1009 o 100 o 10009

2 0e *"2 9y, “72 0y,
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, . dW .
these relations show that the derlva%ve may be written:
‘91

Z_W: funct. O, 4, &, &) .

‘91
o . .. dW oW
By taking into account analogous relations that retatbe derlvatlve%— e one
‘92 ‘93
will easily verify that one may write:

g—Wza(1+2£2) (1+28) +a

1

gﬂ:a(1+253) (1+25) +a

2

g—wza(1+2£1)(1+2£2)+a3,

3

in which a is a function ofD, whereasa;, a;, ag may contain, in additiony, )5, J4.
respectively.
On may thus introduce the other terms of the f8tmn turn: for example, one will

write that the coefficient of, e; plus four times the coefficient af” gives a sum that

has the same value ¥ as in h¥ (the former form 26) is eliminated in this
combination).
One will thus easily arrive at the general expres&othe functionW, which is:

(29) {W: F(D)+‘%1(y12_482€3)+azz(y22_4£§])+ a3£y23_4€§;

+26\23(2£1 1_y2y3)+ 2331(23'4/2_1/)/1)'*' 2a12(2"g VK 2)+ P
in which theay are constants arfédis an arbitrary first degree polynomial in they (*).
It is only whenW has the preceding form that the polarization ellips@d an axis
that is normal to the wave.

277.— The hypothesis that the solid is isotropic in its naistede expresses the idea
that the properties of the body must not change whenpen®rms an orthogonal
coordinate transformation am b, ¢ The functionW that represents the elastic energy
must therefore not be modified by such a transformation.

(**) hthen has the valuii(w
D dD D

one easily recognizes, proportionalltaif the & are null, one confirms that the termspn(D) disappear

from the equation of the polarization ellipsoid, and comes back to the precisely the same expression for
the element of the second variation that was cakdlat no.271that was obtained in n@72 for the case
of liquids.

). Since the quantitQ(/4* + z# + /) of no.266-267is, as



232 CHAPTER VI

Now, under this transformation the coefficieatss, &, W, )5, )4 of the quadrigp = 1
that was introduced in n&l vary. However, as one knows, three quantities nemai
invariant: They are the coefficients of the equatios nelative to that quadric, i.e., the
expressions:

A=g+s+8&,
B=(1+2)(1+23) - )i+ (1+2) (L+2a) -+ (1+2) (1+2)-);
D?.

The isotropy of the body considered is expressed byatttethatW depends only upon
the previous three quantities.

Now, it does not in any way result from this tkiéts necessarily of the forn2§).

As a consequence, the conclusion that was establishétkfease of infinitely small
deformations does not extend to finite deformations: th@m, the waves that propagate
inside an isotropic body are not, in general, longitaldim transversal.



CHAPTER VI

THE GENERAL THEORY OF CHARACTERISTICS

§ 1. - CHARACTERISTICS AND BICHARACTERISTICS

278.— We have seen that the propagation of waves in théneat motion of a gas
is related to the properties of the characteristicssarfond order partial differential
eqguations in two independent variables.

In a completely analogous fashion, the study of wavesthree-dimensional space is
not distinct from the theory of the theory of genesdi characteristics, as Beuddf) (
showed in the case of an arbitrary number of independmmdables and extended to
systems of several unknowns.

As in the case of two variables, this theory folldvesn the discussion of the Cauchy
problem.

To fix ideas, take a second order equation that we supoaddition, to be linear
with respect to the second derivatives, in such a waytiehas the form:

€ 2R t1=0

2
in which px denotes the partial derivatiggé of the unknown functiorz with respect
to the independent variablgsandxy (which may or may not be different). We suppose
that there ara of these independent variablasx, ..., X, in such a way that the indices
i andk take the values 1, 2, .n,independently of each other.
As for aix andl, they are functions o, x, %, ..., X, and the first derivativep, p»,
..., pn Of Zwith respect toq, X, ..., X

279.— Consider tha-1-extended multiplicity- or hypersurface- that is represented
by the equation:
(2 Xn =T(Xa, X2, ...y Xn-1)-

Let Py, P, ..., Pha be the partial derivatives af with respect to, X, ..., X,a that
are deduced from equatio®)( If U is an arbitrary function of;, X, ..., Xn-1, Xo @and this
latter quantity is replaced by its value in equat@ntlenU will be a function ofk;, X,
..., X1 ONMp4. We letd denote the derivatives &f under this new hypothesis. It is
clear that they are related to the former derivatibyethe relations:

(% Bull. Soc. Math. Fr.1897, pp. 108-120.



234 CHAPTER VII

3) — =" +P

dz
(4) _:pi+|:)ipn’

dx
and, forU =px:

dp, i=12---,n-1
5 —=p, +Pp., .
©) dy, PP (j=12~~-,n

In a general manner, if we let the notatiopx.n denote the

U

derivativeaaa—za with respect to thes variables (which may or may be differert)
Xi X‘ cen )‘I

X, ..., Xn then one will have, fold = pyn:

, dp
(5) d);(h = pikh + P| pknn’

and so on for the derivatives of all orders.

279(cont.).— Having said this, we imagine that we are givenGhuchy conditions
at every point oM, 4, namely, the values afand its first derivatives. Of course, they
must satisfy the relation:
dz = pdx + p2dxe + ... +pndXx,

on My, i.e., the relations4) (in such a way that it will suffice to give and p,, in
reality).

We seek to determine the second derivatives. oThey must verify equation®)(
and it is easy to see that, in general, they valtdbtermined once one has added equation
(1). Indeed, if we first consider relatiorts),(in which the index has the valu@, then
these relations will be give us:

d
©) By =2 —Pp,.
dx

On the contrary, if we suppose thats different fromn then we will have (upon
permuting the indicelsandk):
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and, on account ob:

: dp, _, dp,
(6) Pk = P _Pk_p+PiPkpnn'

dx, dx,

All of the second derivatives are thus expressed &unction ofp,,. Finally, we
substitute these expressions into the given equatve will thus have a result of the
form:

@) Apn+K=0,
in which A andK will have the values:

n-—. n-.

(8) Ikzla'lkl:)ll:)k = aInPI +a
=2'aRP, - Z’anP.

' . [ dp, dp, dp,

8 K=Ya| - -p - n 4],

(8) Zak(dxk dxj X'a, )ﬁ

in which the notatiod) denotes a summation in which one does not givevdheen to
the indices of the variables.

Suppose thaA is different from zero. The preceding equatioli determinep,, for
us, and, as a result, all of the second-order aves.

280 — We pass on to the calculation of the thirddgives. The relation$') permit

us to calculate all of these derivatives as a fanadf onlypnnn. For this, we first make
two, then one, of the indicesk, andh equal ton. We will then have relations that are
evidently distinguished fronB] and (6' Jonly by the indexn that is added to each letter

p, and which will give us, as a consequence:

d
Pinn = ﬁ - I:)| Prnns
© i i
pikn = - — P I:)k pnnn’
dx, dx

in which one will deduce the derivatives in whiahdifferentiation index is equal toby
a third application of formulgs’ ).

On the other hand, we obtain relations between dbsired derivatives by
differentiating the given equatiot)( However, it suffices to write just one of therll

of the others reduce to the first one by means®felations), (5'). Now, if we letF
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denote the left-hand side of equatidhthen one may differentiate the equatidrr 0 on
Mn-1, since it is satisfied at each point\f_;, and one will have:

O_dfzaj-"ﬂ:?a]-",
dx ox 0x,

which shows precisely that the conditidf / dx, = O implies thatdF / dx = O for all

values of .
Now, if we differentiate equatioril) with respect to, then the result obtained will
evidently be of the form:

(10 Zaik Pin T1. =0,

in whichly is a function of the’s , as well az and only its first and second derivatives
(*. If we then compare the system of linear equati®s ((0) to the system of
equations 1), (5) then we see that they are identical, up to congtams, once each
unknownpy is replaced byi,. As a consequence, when one expresses the latter as a
function ofpnnn by means of relation®), the equation fopnn, will be:

(11) Apnnn + K]_ = 0,
in which:
] — ! dn dpl ! dpl
171 Ky = | — —p 04 _—Mn 4

is a function of theq, z, p, px. The necessary and sufficient condition for caodg ©)
and (L0) to determine the third derivatives is therefonee@more thaf # 0.

The calculation of the fourth, fifth, etc., detiv@s is completely analogous to the
foregoing. For each order, one has an unknown ithaetermined by a first-degree
equation in which the coefficient of that unknowenaiways the same quantity All of
these unknowns are thus well defined, with onlydbedition thaiA # O.

281 — One can arrive at the same result by a chahgar@able. Indeed, replacg
with the new independent variable:

Xy =X, = F (X X0 X, ).

The new equation iM,-1 will bex, = 0,and the partial differential equation, when
referred to this new system of variables, will 5é= 0. One may calculate all of the

(*® Similarly, I, will be linear with respect to thpy if the ay are independent of the first derivatives of
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successive derivatives as functionzaid 0z/dX, if the equationF’= 0 is soluble with
2

. ..0°Z
respect to the denvatnge;.
Xn

Now, if one reverts to the old variables then tlwious from the foregoing, and easy
to verify directly, that the condition:
oF'

2
(5%
0x,
thus obtained givea # 0.
One thus arrives at the same conclusion as alwélgsyever, one may, moreover,
obtain another one that is just as important. Indiged) the proof of Kowalewski, one
knows that ifz and dz/0X, are regular analytic functions ®f, x,..., X, for x| = 0,and

20

the functionF is analytic and regular with respect to the quantities figure in it, then
the problem will admit a solutionthat is analytic and regular ¥, X,..., X1, X,. This
result obviously carries over to the given system afiables. In other words, the

successive derivatives whose calculation we just inelicae the coefficients of a Taylor
development that is convergdot sufficiently small values of the arguments.

282.— Now suppose that one has the relation:

(12 A=0,
for any (°) hypersurfacé/,-.

Therefore, in order for the problem to be possiblatdeast in order for there to exist
a solutionz that admits derivatives of all orders B, it is necessary that the series of
given values ot, p, pz, ..., pn Satisfies the conditiod = 0, which may be written, upon
replacing they with their values as functions pf, as specified by4j (**):

d?z dp
13 K=>"a -P—-P
( ) za'k(d)ﬂdxk i k

dp,
d

+1=0.

dp,
~-P +2' g
dxk d)g ik pnj z n

283. — On the contrary, if one considersgaven solution of equationl) for a
moment, then the conditioh= 0 is a first-order partial differential equation kviespect
to Xn, when considered to be a function of #aex, ..., Xa.1. The multiplicities 2) that
verify this equation will be calledharacteristicof the given equation.

(**) We will not treat the case here in whishis null on just a subset M,_, (namely, on am-2-times
extended multiplicity that belongs b,_;) that corresponds to a singularity (compare ch. IV238) if K
is different from zero, and which we recall later ong.316:318) whenK is null.

2
() Of coursePy denotes the derivativd %
dx dx,
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It is important to remark that in order to construet tiharacteristics, it does not
suffice, in general, to be given just equati@h (The characteristics are defined only for
a particular integral of that equation since the coeffis depend not only on thés, but
also onz and its derivatives. The only exception is for equatidre particular form in
which the coefficientsy of the second-order terms are functions of onlyxthe

As a first-order equation, the partial differential dgqpa A = 0 itself admits
characteristics ') that are no longen-1-times extended multiplicities, blihes (one-
dimensional multiplicities) that are defined by the padly differential equations:

(14) dx = dx, :...:&:ds
O0A| [O0A OA
oP, 0P, oP, _,
which further implies:
: _ dx,
(14) dS=—3A oA oA
P17+ P27+"'+ Pn—li
oR, oP, oP _,

The lines likewise play an essential role in thespnt theory; we call them
bicharacteristics- or rays— by reason of their physical significance, as wallsgee later
on.

Any characteristic hypersurfadéd, is related to the bicharacteristics, with one of
them passing through each pointvyf.

284 — The bicharacteristics cease to be definedadasa that we exclude — at least,
for the moment: the case in whigh/ 0R is null for all values that the indéxmay take.

If one considerd;, Py, ..., Py-1 to be Cartesian coordinates and equatit®) {o
represent a surface, then, as we know, this calbecaviespond to the existence of a
multiple point on the surface in question. By aggl we say thaM,, is amultiple
characteristic,with its order of multiplicity being that of theomt (P, P2, ..., Pa-1) ON
the surfaceX?).

285 — Condition 13) already introduced the bicharacteristics. Ind¢leel coefficient
of dp,/ dx in that equation is:

(15 -2'aR+a, =

One may set:

_1oA
20P

%) See GOURSATL econs sur l'integration des équations aux dérivées partielle elnier ordre.
¢ g
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(15) oy
L= 'aik( _Pikan+|'
dx dx,

Therefore, if one is first given the distributiof values ofz on the multiplicity ),
which is assumed to be characteristid), (then condition 13) will give a linear partial
differential equation that will determin®g, and whose characteristics are the curtd} (
precisely.

286 — We return to the Cauchy problem and supposeAhatd and the condition
(13) is likewise verified. Thus, equatioi)(no longer determineg.,,. As we already
saw in the case of two variables, this quantitynoarbe assumed to be completely
arbitrary. Indeed, foA = 0 equation1) is likewise impossible or undetermined, and the
condition of possibility is:

Kl =0.

Now, if one operates on the expresgibt)for K; as we already did on the

expression fokK, i.e., if one replaces th®, with their values as functions pf, that are
obtained from ), then one will obviously find:

0: Kl :_121 dpnn%_i_ Ll’
2 dx OoP
L1 =2 A (W_ Pik pnnj+|l'

Whenpn, is considered to be a functionxaf x,, ..., X,-1 on the multiplicityMp-q, it
therefore satisfies a linear first-order partidfedential equation.

The characteristics of this latter equation arehing but the bicharacteristics that are
situated oM.

If one letsds denote the common value of the ratiad) ((in whichs is a parameter
that defines a variable point of the bicharacte)ishen equation1(6) will become:

i%—Ll:O,
2 ds

which is, as one sees, a first-order differentgaiaion inp,,, when considered to be a
function ofs.

(*% Nevertheless, one must observe that the charactenistig not be defined without being given the
pi, since they are not independent of these quantities.
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Therefore, one may tak®, arbitrarily at onlyone point of the bicharacteristic. In
other words, if we trace a multiplicityl,-, on M, that meets each bicharacteristic at one
and only one point thepn, will be arbitrary only oM,-, and not orMp_;.

Oncepnn, has been chosepann Will be determined not only by equatiohlf, but by
the conditions that relate to the fourth derivativesowNthe equations that determine
them are identical with the ones that determine threl ttherivatives, up to a term that
contains only the first and second derivatives, by remiathepix with pikn, and thepixn
with pixnn.  We will thus have a linear first-order partial difatial equation fopnnn ,
when considered oM,-1, which is derived from1(6) by the same substitution, except for
the change in the term in whigh,, is not differentiated (a term that will be linear, not
guadratic, with respect tonn); in this way,pnnn, like pan, may be chosen arbitrarily at
each point of each bicharacteristic.

It is clear that completely similar considerationsynbe applied to subsequent
derivatives of all orders.

287. — We have supposed that the equationMgr, may be solved fok, . If this
equation is taken in an arbitrary form:

(2) M(Xy, X2, ..., %) =0

then the partial derivativeR;, P,, ..., Pn-1 Of Xy with respect toq, X, ..., X1 may be
expressed as functions of the partial derivatimgess, ..., 75 of I with respect to, Xs,
.., Xn-1, Xn With the aid of the formulas:

17 p=-"" (=12 ..n1),

n

in such a way that the quanti%, which must be null in order foM,; to be
characteristic, will be?f):

(18 A:_zaikﬂiﬂk-

n
ik=1

One may, moreover, make this substitution in #mes of calculations that led us to
the equation of the characteristics. For exangmesider relationss); by means of the
substitution {7) they become:

(19 7 9P

n dXI :ﬂn pik _ﬂ-ipkn'

For arbitraryn, the same circumstance presents itself every time the left-hand
side of the equation is a linear function of theedminant:

(*° This new quantity is equal to the old one multiplied by:
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Pu B - Py
P B 0 Pa
Pau Pz = B

and its minors®).

In particular, this relates to any equation that one dedfroen an equation of the
form (1) by a contact transformation. It is obvicugriori (compare ch. IV, ndl62) that
the preceding conclusions must persist for an equatiombtained, and, similarly, that
the characteristics and the bicharacteristics are preserved byahsformation.

290 — As we saw in nol61 in the case of two variables, conditiak?) is the one
thatM,-; must verify in order for the two integrals of the equatio be mutually tangent
at all points of this multiplicity, at least when tlgisntact is not of order infinity.

Moreover, this notion is equivalent to that of wavepagation when it is applied to
the motions that may be considered as depending on oinigla anknown function.

For example, consider the motions of a gas that areedefrom a velocity potential
®. The components of velocity then depend on the first dergof that potential, and
the same is true for the pressure, from the equatin (

3 vo[P 20,1 [@ji a0 1[6&)2
o ot 2|\ odx ay 0z ) |

Suppose that two motions of this type present a discaytiob orderm (m > 2)
between them. This order will also be that of tihet flerivatives of the potential that are
discontinuous.

If X, y, z, t® are considered to be five coordinates then each aibenotions will
be represented by a surface in the space of five dimendiwossurfaces that have a
common contact of ordem. Moreover, both of them must satisfy the differentia
equation of motion, namely?:

' 0p 0 0P) O 0P) 0 00
23 —+ | p— |+—| p— |[+—| p— | =0,
(23) ot ax['o axj ay(p ayj 62['0 azj

in which o must be replaced by its value frog8).
The contact multiplicity:

(24) #(x,y,z,¥=0

(*) These equations have been studied in a general man@ousgat Bull. Soc. Math. Fr.fome
XXVII, pp. 1-34; 1899).

(*®) See, for example, KIRCHHOFMécanique 15" lesson.

(*® KIRCHHOFF, loc. cit.
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must therefore be a characteristic of that equationw, Nlee second-order terms in that
equation are:

o-Pao,

9 90D 90od 9ad)
+ + +
do

ot oxox oydy 0zoz

in such a way that we must have:

(25 (%+u%+va—+w%j :@K%j2+(%j +[%j2}
ot 0x oy 0z do|\ ox oy 0z

This equation is equivalent to formul8) (no. 240, which gives us the displacement
velocity of the wave.

The lines of reasoning by which we obtained these formulas are, moreover,
analogous, although this analogy does not seera tmimplete, since we introduced only
the velocity potential, instead of the coordinatey, z, t,which are considered to be
functions ofa, b, c, t. For example, consider equatio@®)(or (20). They say that for
two integrals that agree on the multiplidi8)) , with identity in their first derivatives, the

differences between the second derivatives aretikesquares of the products of pairs of
partial derivatives in the left-hand side ¢(2'). This fact is nothing but the one we

established in nA@7 (*.

291 — In order to apply the theory of characteristawshe study of the most general
motions of a gas, it is necessary to extend ithe dase of systems of equations, the
number of them being assumed to be equal to thdauof unknown functions. This is
a case in which the theorem of Cauchy and Kowalewghtinues to apply, at least when
one assumes, on the one had, that all of the gaensanalytic, and, on the other hand,
that one excludes certain exceptional cases (tke onwhich it is impossible to solve
with respect to the highest-order derivatives thelong to the various desired functions,
respectively) that will not occur in the problerhat will occupy our attention.

Recall that, contrary to what happens for ordirdifferential equations, the case of
several partial differential equations that numasrmany as the unknown variables is
essentially distinct from the case of one equatibms impossible to reduce the one to the
other by eliminating the one or more unknowns. ebd] one does not therefore obtain a
unique equation that would determine the remainimgnown, but a system of equations,
the discussion of which will be, from the standpafithe existence of and search for
their common solutions, more complicated than tfiahe original system.

To fix ideas, we take the case that is presentest commonly in mechanics, that of
three equations in three unknowf)s?, ¢, and we further suppose that the equations are
second order and linear in the second derivapwesf ¢, the second derivativeg of 7,
and the second derivativegof {. They may therefore be written:

(*) Nevertheless, the theory of characteristics doegiapense with the lemma of rit2, a lemma
that was implicitly assumed in what we just said.
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z a'lk p|k +z blk q|k +z Clk f +I
(26) z a'|k plk +z b|k qlk +zcik rik H' = O’

zalk Pi z i G +z Cicly H" =0,

in which a,,d,,,G..G., %Ll ,I"depend on the unknown functions, their first

derivatives (those of are denoted bgn, p2, ..., pn, those ofp by a1, @, ..., 0n, and those
of {byry, ry, ..., 1y), and the independent variables, which are ahiags's.

We further consider the multiplicityl,-1, on which we suppose that we are given the
values ofé, 1, ¢, and the first derivatives (or, more preciselg gh o, rn). Since theyy,
ri satisfy equations that are completely similar ®),(6),one may apply the
transformations that we performed in n@g9, 282 to the terms that contain them, and
the given equations consequently take the form pesen(), (15)):

1dp, 0A ., 1dg, B
2 dx oP 2 dx oP
,1dr, 0C fL=0,
2dxI 6P
Ldp, 04", 1dg, 0B
2 dx OP 2 dx oP
1dr, oC’
-2'= +L'=0,
2 dx 6P
Ldp, 0A" ;. 1dg, 08"
2 dx oP 2dx oP
1dr GC fL" =0
2dxI 6P

Apnn + Bqnn + Crnn -

A’pnn + B’qnn + C rnn

A"pnn + B"qnn + C"rnn -

in whichA, B, C denote the quantities:

A:z'aikpipk _z'ainpi +ann’
B:z'bikpipk _z'binpi +bnn’
C=2'¢,RR -X'c,R +c,,

and A,B,C, A, B, Care completely analogous quantities that are forfneoh the
second and third equations, and:

[ d° d’
L=2 aik(d)gdik_ |kpnj zbik(Tﬂ_qunj

(29 42
Z,Cik(w_ Pikrnj+|a
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as well as the analogous quantitied." are functions opn, o, r,, and the distribution of

values ofé, 7, {onMp-;.
Moreover, the condition for the search for theosekcderivatives to be an impossible
or undetermined problem is:

o
O

> >

(29 H =

e
W w
00

As one sees, one therefore has a partial diffelesquation that is of first order, but
sixth degree.

292 — If we first place ourselves in the most gen@ade, the one in which the
multiplicity M1 is characteristic— i.e., it verifies the equatiod = 0 — then the minors
of the determinanitl are not all null at an arbitrary point of this iplicity. This makes
the condition for the system to be indeterminatel (aot impossible) with respect pa,
On, 'n Unique, namely, a certain equation of the form:

(. dp dq dr
30 A—"+u—+y —" [+0=0,
(30 Z( ' dx ' dx g dxj

which is linear with respect to the derivativegfa,, r, taken orvi, ;.

This time, one may choose two of the three fiestivéitivesp,, ¢, rn arbitrarily at
each point of the multipliciti,-1, and then determine the third one with this coonit
However, in this case, the characteristics of its-brder linear equations thus obtained
are not in the least the analogs of the bicharatits that were always defined in the
case of just one equation. They do not coincidé tie lines that we shall encounter in
the calculation of the third derivatives, and whiefll be the true bicharacteristics.
Furthermore, the characteristics of the equation imill not be the same as those of the
equation irnp, or gy

In a word, since we stopped at the second devemthe calculation presents itself in
a very different manner depending on whether oneleialing with one or several
equations.

293 — If we assume that conditioB0Q) is verified then the solution of the syste?d)(
will be indeterminate. Ifa,B,y,a'.[,y a" 3",/ are the minors oH relative to the

element®A, B,C, A, B',C', A", B",C" respectively, in whiclz, for example, is assumed to

be different from 0, then all of the solutions bt system can be summarized by the
formula:

Pon = Pon + 0P,
(31 O = O + 0,
Fon = Ton + 10,
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in which(p?.,q2,,r2)is one of these solutions apds an arbitrary parameter.

We pass on to the third derivatives. From the pregechiculations we performed, it
will suffice to find pann, Gann, fann, Which will be given by the equations:

,1dp,, 0A _,1dq,, 0B
2dx 0B T 2dx oR
- ,1%6_0_{_ L1:O’

2 dx OP
_y1dp, 0A' s, 1d,, OB

2 dx oP 2 dx oP
— ’i%a_cl+ Li:O,

2 dx OP
_ < 1dp, 0A" _,1dq,, 0B"
2dx 0R T 2dx 0P

— 'E%£+Lf=o.
2 dx OoP

Apnnn + Bqnnn + Crnnn - z

A,pnnn + B,qnnn + C’rnnn
(32

A pnnn + B qnnn + C rnnn

in whichL, L;,L] denote the new terms that are quadrati@nin, Gun, rnn With known
coefficients. The condition of possibility for thigstem is obtained by multiplying the
first equation bya, the second one bg’, and the third one ly" it thus follows that
Pnnn, Onnns Mann disappear, with the result that:

,1dp,, 0A , 0A , OA"
Yo—lag—+a —+a"—|
2 dx oP oP oP

+Z'E% a%.}-a'a_p\,.}-a"a_p\"
(32 2dx | oP oP oP )

,1dp,,( _0A ,0A ,0A"
+Y'=——"g—+a —+a"— |
2dx { OB OB  OR

—(aL, +a'l;+a'L)) =0.

We need to substitute the values fa¥, G, i that are given by formulag®) in
this equation. It is clear that we will thus obtan (inhomogenous) linear first-order

partial differential equation i in order to determing, in which the coefficient of

do/dx is:
1 ( oA oA LAY 1. 0B 0B _ 0B
ala—+a —+a"— |+= N N Ll

2‘{”63 T op aapij 2ﬁ(ﬁapi e 'Bapij

1 oC oc' ,oC"
FIYP Yty —— |
e e
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However, from well-known identities, the conditiBin= O entails that:
ﬂal = aﬂI’ ﬂa" = aﬂ"’ yal = ayl’ ya" :ay".
We may therefore put into the factor, and the coefficient of @&Zhamely:

OA, JOK | LON 0B 0B,
alrq 4 p
R IR TR SR T

" 6B" oC oc' ,oC"
- 4+ y’_ + )

ae oP oP P’

is nothing budH/oP; .
Therefore, the characteristics of the equation ame:

dx _do __dx,
49 o ~oH T oH
oP, 0P, oP _,

in other words, they are identical to those of ¢igua29).
One obviously recovers these same lines in theegjent calculations of the higher-
order derivatives. They are the ones that wetlealbicharacteristics of the given system.

294 — The case that we now treat is that of the egpgmibf hydrodynamics, at least
as far as the propagation of discontinuities isceomed.

Indeed, as in the foregoing, it is clear, first af, that the multiplicitySy that

expresses, as was explained in 9@.the propagation of a wave in time is necessarily
characteristic of the system of equations of théiano

On the other hand, if two motions of a gaseoussniash propagate along a wave
then we know that the discontinuity that existsaesn them is normal to that wave at
each point. Therefore, if one is given one of i@ions then the values of the second
derivatives of the other one depend upon only amerown at each point, namely, the
magnitude of the discontinuity in question. Thmaants to saying that the solution of
the systemZ7) involves only one arbitrary unknown, and, as aseguence, that at least
one of the minors of the determinant+bfs different from zero.

If we take the equations of hydrodynamics in thdeEform then the independent
variables are the present coordinateg, z,and timet, and the equation fdvl,-; must be
written in the form:

#(x,y,z,x=0.
The partial differential equation that the funatip satisfies— which will give%—f as a
function ofa—¢ ?f %¢ will therefore give us the displacement velocifytlee wave.
X 0y 0z

Effectively, if one forms the determinaHtfor the Euler equations, which are four first-
order equations in four unknowns v, w, p then one comes down to equati@b)(
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o¢ , 08, 9%, 09

multiplied by a factor o{— tu—+v—/—+
ot 0x oy 0z
waves, which we shall discuss later on).
On the contrary, if we employ Lagrange variables adesthe equation fol,-; for
t, namely:
(39 t=f(a, b, 9,

2
j (which corresponds to stationary

then the characteristic equation will give us the véjoad propagation:

1

(35 = :
\/faZ + fb2 + fc2

when referred to the initial state considered. We tlurse down to formuladj of no.
240 indeed, we also have that the preceding calculatiwhen applied to equations)(

and @) of ch. Ill, give %), conforming to the formula in question, as well astita
(39):
1 dp
29 = Pt f,,f)-1=0
(29) D7 dp (far fo fo)

If the equation foM,-; is taken in the form:
(34) f(a, b, 9 =0,

without being solved fot, then one will obtain the same equation (up torémacement
of the second term with*), multiplied by the factof,?,which again corresponds to
stationary waves.

295 — Moreover, under these conditions one sees gutkethat the calculations by
which one arrives at the result are not distinatrfithe ones that were carried out in chap.
V. Indeed, one must write for the unknown in equations of the tyge' and

analogous equations fgrandz, in which the parametet will be replaced by or v.
Now, it immediately appears that one thus obtaine kinematical compatibility
conditionsthat were the object of chap. Il, and which weoadjd to the dynamical
equations of motiorff).

(®® To that effect (as we said in ntR4), one must express the derivati\g%,@,ﬂ)with the aid of
0x 0y 0z
the derivatives with respect & b, c,and, on the other hand, take into account the remark#samade in
the note on page (?).

(*) Meanwhile, we must remark that the consideratiorshap. IFV do not give the interpretation in
a form that presents the terms as all known (indepélydehthe py) and, as a consequence, does not
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296 — One will obtain the value of the velocity of propgmasuch as was given by
formula @) (no.239 upon taking the initial state to be the presenestabreover, since

the form ®(f,, f,, fo) that figures in formulg29')then reduces tof? + 2 + 2, we
immediately obtain the tangent to the bicharadierat the instant considered, namely:

da_da_da _ dt

o L \/dp(faz +f2+f2)
do

Thereforethe bicharacteristic is normal to the wave whererefd to an initial state that
coincides with the present state at the instant@midt considered.

297 — If we pass from the equations of hydrodynartacthose of elasticity then we
may likewise apply the foregoing considerationsat least when the coefficients of
elasticity are completely arbitrary. Indeed, imgeal, the directions of the discontinuities
that are compatible with a given wave surface migefin number — equal to three — and
each of them corresponds to a different velocitypmfpagation. In other words, when

one gives the characteristic multipliciSs that represents the propagation of the wave,

the direction of the discontinuity is determined/e may therefore reason as we did at
the beginning of na294

298 — Things are otherwise in the case of an isatrépidy whose deformation is
assumed to be infinitesimal. Indeed, we have $kanthe velocity of propagation in
such a body has only two possible values (instdatihree). The first corresponds to
longitudinal waves, to which we can apply all ofat/lve just said. On the contrary (with
the notations of no260), the other, which is equal td/p, agrees with the transversal
waves, andan arbitrary transversal discontinuity may theredopropagate. In other
words, if we consider equatiors) (0f no.260, equations whose determinant is:

00> -M - (L+M)a*? -(L+M)ap -(L+M)ay
(36) -(L+M)ag 007 =M —(L+M)p? -(L+M)By
-(L+M)ay -(L+M)By 0% —M —(L+M)y?

=(p8* =M)*(L+2M - pB?),

thenthe factorpé —M will be common to this determinant and all of iisaons.

permit us to find equations in which these terms intexvench as equatior3@ (no.292. There is a
lacuna in all of this that will undoubtedly be interestiadgilt.
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Moreover, just as it results from the preceding devetoypshn — and as one

2 2 2
immediately verifies — if one replaces the unknowng, v with o 5,5 27,5 ZZ and
as ac &
the quantitiesy, S5, y;, @ with:
f f, f, 1

\/fx2+fy2+f22’ \/fx2+fy2+f22’ \/fx2+fy2+f22’ \/fX2+fy2+f22’

in these linear equations then, up to terms thatimdependent of the unknowns, the
equations thus obtained are nothing but the orassaihe arrives at by substituting the
second derivatives that are derived frd) (6') — i.e., equations28) (with the equation
of the wave being= f(x, y, 3) — into the equations of motion themselves.
One therefore sees that the determimgras well as those of all of its minors,null

on transversal waves that propagate in isotropistiel bodies This is likewise obvious
for the stationary transversal waves of hydrodyanmas one confirms by performing the
calculations of n0294 without omitting these waves, i.e., on equafi®ti), and not on

the equation that is obtained by solving tfor

299 — It is therefore necessary to study, in turre gystems for which these
circumstances present themselves.

We then find ourselves in a previously excludedecéno.284) in the study of a
single equation: that of a multiple characteristitndeed, it is clear that all of the
quantitiesdH/oP; are null ).

The preceding theories are, in general, invalidaonultiple characteristic. However,
this is not the case if this characteristic nudbfiall of the minors of the determindt
and if itsrank — i.e., the number of rows and columns that mussuygpressed in the
determinant in question in order to find a minaattis different from zere- is equal to its
order of multiplicity. This is what is establishedthe work that was cited for Goursat
(*® for the case of two independent variables.

Later on (no327), we shall recover a result that is equivalerth®result that we just
obtained for the case of arbitrany However, for our present objective we will be
obliged to make an extra hypothesis.

Indeed, in the case that was envisioned in theggliag no., the double characteristics
have the same degree of generality as the othieesthem, they are defined Ipyst one
first-order partial differential equation.

We limit ourselves to the — obviously, very partar — case in which this condition is
satisfied; more exactly, the one in which all oé tminors of the determinatil are
nullified, not only on the characteristic considgrbut also on all characteristics that are
infinitely close to the first.

(*) This is because the factoé” —M figures as a square in expressi)(

(*®® Equations aux dérivées partielles du second ormg 11, notexi.
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Therefore, recall the system of equations and thesyR7) in pan, Ghn, Mn that is a
consequence of it, and suppose that the determthanhull, along with all of its minors,
and that this circumstance is true not onlyMg;, but also on all of its neighboring
characteristics.

The systemd47) will then have two conditions of possibility, but Iifety are satisfied
then the three equations that it refers to will redocegt one, which will determine,,,
for example, as a function pf, andgn,; up to a known term, one will have:

r ——ép —Eq
nn C nn C nn*

Likewise, equations3@) will have two conditions of possibility that we oltafor
example, upon multiplying the first of them Gy,and the third one by €, and adding

them, and then doing the same thing with the lastdquations and the coefficie@$ - ,
C. We thus find:

z&(c@_caij dp,, +Z’1(C"0_B_Caij da,

2" TP Jax 2\~ P “oP ) dx
51 r9C 0 oo =g
2|~ P " oP ) dx
zrl C"a_A_Cai dpnn+zy£ CnaB _CaB dqnn
2" P TP Jdax “2 " or "~ oP ) dx
s 98 98 v _eniog
2|~ P T o Jdx

(the third derivatives are eliminated by virtuetloé relations:
(37) a=a'=a"==F=F"=y=y'=y=0.

If we replacer,, with its value as a function @f,, ¢h, then we will have two partial
differential equations for them:

Z.E{C..G_A_CGA ) A(C,, aC _.0C ﬂ dp,,

2| op 9P Cl P oP )|dx

sy} cr 9B 0B _Bf.,0C_~0C"|\dGy , _,
2/ P “oPp Cl P P )|dx

1 Cna_A_Cr aA _é Cn aC _Cr aC dpnn
2 P P | dx

(39)

*3“% “wr e

syt 0B 0B _B[.,0C_0C"|\da, ,  _,
P P Cl o P )| dx
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in which we have replaced all of the terms that docootain derivatives @, ., by an
ellipsis, terms whose form is not actually important.

300.- In appearance, these equations have a much more cat@glform than the
preceding ones, since we are in the presence of twalgdifterential equations in two
unknownspnn , gan - Nevertheless, like the former they reduce to ordinbfferential
equations.

Indeed, if we take the relatidxC" = CA'into account then the coefficient d,/dx
in the first of them may be written:

1(0"6_/% AN IS j

2\ " o T op Top
However, this is nothing bu%i(AC" -CA’ 23%
20P 2 0P

Similarly, the coefficient of?ﬂin the second equatioB3§) is:
X

1(n0A 0N ,,0C_ ,0C")_ 108
2l7r Tor T or T op ) 20P

. L . ... d
(since one likewise ha&C' = CA'); meanwhile, the analogous coefﬁments—d&m—are
X
TR 20R
Now, we have supposed that the relati@® are true, not only oNl,-;, but also on
all of the infinitesimally close characteristics.This obviously demands that the
expressiong,a’',--- which are polynomials i, Py, ..., Pn-1, have a common factor

Hi, since the characteristics in question are reptedeby the equatioH; = 0. We may
therefore set:

a=HA a’=HA, a’=HUA, B=HB,  F=HB, p'=HB"
y=H:C, y=Hi, y’=HiC",

and we suppose that the quantities..., C" are not always annulled at an arbitrary point
of our characteristic.
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SinceH; is null, the derivativc%ﬁ reduces t@' aHl, and an analogous reduction
applies toa’g : oa : oa . Our equations are then written:
oP 0P 0P
Eyﬁ dp, _ﬁ'z'% ddy, +...=0,
2 O0R dx 2 0P dx
—EZ’%%+AZ’%%+...: 0.

2 OR dx 2 0P dx

Therefore, if we consider the lines &M, that are defined by the differential
equations:

dx _ dx __dx, _
(39) H. @R, T aH, U
P, OP, P,

(sis an arbitrary parameter) then we may write @uragions in the form:

3%_/1' dqm+...— 0

ds ds
—B%+A dqm +...=0.
ds ds

These are two ordinary differential equations thefinep,, andqn, as functions o§.
We may therefore reach the same general conclussradways. We may choose the
values ofpnn, Onn at a point of each of the lines that are defingdthe differential
equations 39), and these quantities will therefore be deterohin# along the line in
qguestion. These are the lines that we againfwabitharacteristicsof the system.

In the case of transversal waves that propagateisatropic solids, these
bicharacteristics are still normal to the wavesgasithe equation of the characteristics is
written:

Hl :ﬂ:tz_M(fx2+ fy2+ fzz):O'

301 — From what was said in n288§, it is clear that all of the results (such as &os
of n0s.291-293 and the ones we just obtained) continue to bentiss when the given
equation is not linear with respectp®, gk, rik . It will further suffice to differentiate
these equations once with respeckto The quantitiesy , bk, Gk will be replaced by the
derivatives of the left-hand side with respecpitQ gk, Of rk .

It is likewise clear that if the equation fd,-; is considered in the for(2') —not
having been solved fog, — then the characteristics will again be giveregyation 29).

A is replaced by the expressiob8f (no. 287); A, A',---are replaced by analogous
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expressions. The bicharacteristics will be represefiiader the hypotheses of r92)
by the equations:

dx, _  _dx,
oH,  oH,’
o, 0T,

302 — We return to the dynamical interpretation & thsults that we just obtained.

In order to present our reasoning, we adopt tiwexation that we spoke of in nb00
(cont.), i.e., that we trace the correspondingréguas if they were motions in the plane,
with the surfaces of discontinuity being replaced durves in the figures, the triply
extended multiplicities by surfaces, etc.

Consider two motions of a second-order discortynir one of ordem= 2) along a
surface, a subset of which that we denot&shyepresents the initial state, and both of
which satisfy the same system of dynamical equstiofor example, the equations of
hydrodynamics. Suppose that one is given the ipasitf the surfacé&, at an instanty.
The considerations of chapter V teach us to firduwlocity of propagation at that instant
at all points of the surface, or, what amountsy®odame thing (nd.00(cont.)), the angle

that the hypersurface&, which is related t0S as time varies, makes with the

hypersurface = tp; as a consequence, one constructs the directidh af this point.

From what we saw in chap. V (nB69-271), this direction is always real in the case of
the equations of hydrodynamics or elasticity. Tevomore of them may exist; in that
case, the compatibility conditions permit us to ase between them, as we explained in
no.243

303 — However, the considerations that were develapéke present chapter permit
us to go much further. Indeed, if one of the twations is completely known the one
that points towards the interior that relates toppgation- then we know a first-order

partial differential equation (that of the charaistigcs) thatS o must satisfy.

Now, from the general theory of partial differemtequations¥), such an equation,
when combined with the condition that is satisfiegd the surfaceS, completely
determines the hypersurface in question.

To perform this determination effectively, it saffs ¢° to possess complete
integral of the characteristic equation, i.e., (up to drig®n, upon which we do not
insist here {)) an integral that depends on three arbitrary wons (in the case that
interests us, which is the one in which the nuntf@ndependent variables is four).

(*® GOURSAT,Lecons sur l'intégration des équations aux dérivées partidligsremier ordreno.
75, pp. 189-191.

(% GOURSAT,loc. cit.

() GOURSAT,ibid., no.43, pp. 96.
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We begin with a characteristic multiplicity that rhignot only play the role of a
complete integral, but is also a bit more general, sinoentainsfour constants, namely,
the coordinates of an arbitrary poiag,(bo, Co, to) Of the spac&,. Let:

(40) H(Xl, X2, ...y Xn, P]_, Pz, ceny Pn-]_) =0

be an arbitrary first-order partial differential eqoatthat defines, as a function ok,
X2, ..., Xn1, IN WhIChPy, Py, ..., Ph—1 denote the first derivatives gf. For each system of

valueg(x?, X3,-++, X°)of X1, %, ..., X, that equation gives a relation betwen P, ...,

Pn-1. Forn = 3, the variablegi, X, X3 may be regarded as Cartesian coordinates, and the
relation betweer®; andP, that is obtained represents a cone that must be tatoydre
desired surface. In order to generalize to the geométrylonensions we may preserve
the same geometric interpretation forralhnd speak of the comethat is represented by
equation 40) at the poin©, which has the coordinateg’, xJ,---,x°).

To each direction (of the multiplicityl,-1) that is tangent to this cone along a certain
generatory — i.e., to each system of values Rt Py, ..., P-1 that satisfy the equation
for the given values of — the theory of first-order partial differential egoas teaches
us to associate a characteristiof equation 40) that has the generatgifor its tangent at
the given point. Any integral that passes thro@gland for whichPy, P», ..., Pn-1 have
the values considered at this point, necessarily corttaensntire characteristec

The integral that we consider, with Darbod),(which he called théntegral with
singular point,is nothing but the locuS of the different characteristicsthat issue from
the pointO, and correspond to the various possible directions tif obviously admit©
as a conical point whose tangent con€.islt is described by each integral that passes
throughO along the characterista

In the case for which equatiodQj is the one that defines the characteristics of an
equation, or a system such as the ones that we studid iforegoing, we give the
hypersurfaceC that hagO for its conical point the name of thlbaracteristic conoidvith
vertexO, and the con€ is called theeharacteristic conet this same vertex.

304 — Now if, in turn, the system in question is the on¢ ibgulates motion, in such
a way that the independent variablesarb, c, t,and one gives the positid of a wave

at the instantp then in order to obtain the characteristic multipficS o (fig. 19) that cuts

t = tp along the surfac& — i.e., the multiplicity that figures in the progressto$ wave —

it will suffice to take the envelope of the charadtéri conoids that have the different
points @, by, Co, to) Of the surfaces, considered at the instanht for vertices. This
envelope will have several nappes, in general;, howevein a®. 243 if there is
compatibility then the propagation takes place along jostad them, which is perfectly
determined.

(*) Mémoire sur les solutions singuliéres des équations aux dépeésiles du premier ordra)o.
2, pp. 34 Mém. des savants étrangetsXXVIl, 1880).
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Let Z be the surface (which is represented by a curvginl9) along which the
multiplicity t =t' (which is represented by a plane that is paralleHdy in fig. 19) is cut

by the characteristic conoid of vertesg,(bo, G, to). The construction of, that we just

indicated translates into geometrical language in thewimg manner:If we are given
the positionS of a wave at the instartg then in order to obtain the positi®of that

wave at an arbitrary final instant’, it suffices to take the envelope of all surfatekat

correspond to the different points of. S
When the surfac& is infinitesimal and reduces to the unique poast b, &) the

multiplicity Sp is nothing but the characteristic conoid itselfihe surfaceS is therefore

the one on which a discontinuity that is concenttah the neighborhood of the poiab,(
by, ¢o) for t =to will be distributed at the instatit

305 — The waves that we encountered in chapters
V and VI (nos. 239 271) always had a real
propagation velocity, and we were likewise led to
assume (no271) that these velocities are always
finite.

As one immediately sees upon first referring to
the case of motion in two dimensions, the condition
that the velocities be real for any direction oé th
wave amounts to demanding that the multipli¢ity
to not be a secant to the characteristic conoid géxe
_ O, and the condition that these velocities always be

Fig. 19 finite expresses that they not be tangent to itaas
consequence, they are entirely external to it.

If this condition is satisfied then it is clearaththe surfaces cannot be extended
indefinitely in any sense. In particular, the sgg2 that corresponds to the case in
which & reduces to the poif@ is always closed.

306 — Conversely, suppose we are given a
surfaceS at the time'>t. First suppose that this

surface reduces to a poidt(fig. 20), and le&, be the
surface of section of the characteristic c@nhef vertex
O of the multiplicityt’ =t. If the surface, is closed,
as we saidf), then in order to determine the motion dt=
O at the instartt it will suffice to know the motion, not
of all of the points of space, but juste ones that are
interior to 2, at the instant, . Indeed, we deduce that if

Fig. 20

(*3) If the characteristic conoid is comprised of severapes, in such a way thag is comprised of
several closed nappes, then it is necessary to coriselarost external of these nappes here, in such a way
thatC isthe nappe that is inclined towards the interadrthe characteristic that passes throkigh
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two motions coincide in the interior @i for t = to (although they might possibly be
distinct outside of that surface) then they subsequettincide in any region that is
interior to the characteristic multiplicity defined Ry, a multiplicity that is nothing but
C.

Now, if S; is an arbitrary closed surface, and no longer justirat,@zhen what we just

discussed will obviously still apply upon replacing thenioteof 2, with the domain that
replaces the various surfacasthat correspond to the different pointsShér the interior

of S;.

307. — When the coefficients 1, azz, ... (n0.278 of the highest-order derivatives are
constant, in such a way that the characteristic emqualoes not explicitly contain the
variables themselves, the characteristic cones tra¢spond to the different points of
space are all equal.

Moreover, the characteristic conoid reduces to tlaadheristic cone. Indeed, the
characteristic equation reduces to the characteristie.c Indeed, the characteristic
equation is verified when one gives constant values tof allat quantities that we have

denoted by the lette® — which areg—t,%,% here— which gives a linear function af,
o

a
b, cfort. The corresponding bicharacteristics are obvioussigt lines %), which are
nothing but the generators of the cdne

. T .at dt at
As for the characteristic multiplicities on wh|~§h,%3 % also reduce to constants,
a o

they are obviously thplane waveswhich corresponds to the case in which the surace
reduces to a plane, and for which, consequently, the Sanggis true for the surfac&;

that correspond to any final instant by means of the hypistioé the constancy of the
coefficientsa;s, ... that we adopted at the moment.

308 — When this hypothesis is satisfied, one gives theenaiwave surfacdo the
surfacez that corresponds td —t =1. Since the characteristic conoid is the envelope of
the plane waves here, the wave surface may be coediderbe the envelope of a
planeS;, such that the distance from it to the parallel @l&nthat is defined by is

equal to the velocity of propagation of a discontinuiigttfollowsS, .

On the contrary, when the coefficients of the higheler derivatives are no longer
constant, one defines the wave surface relative talamaay definite pointO by giving
these coefficients the same value everywhere they bhave atO; this amounts to
substituting the tangent comefor the characteristic conoid. The constructiort thea
just indicated in the last section remains valid, meeeo

In all of the physical treatises, the equation of theface thus generated is
constructed for the cases of gaseous media, isotrégsticemedia, and the luminous
vibrations of crystalline media. In the first two casihnis surface reduces to a sphere. In

(% It is painfully necessary to recall that in the getnyofn dimensions, one uses the term “straight
line” to refer to a one-dimensional multiplicity alomwghich then coordinates are linear functions of
another.
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the last one (which is nothing but that of an elastediomm that satisfies the particular
hypotheses of no274-276), it is of fourth degree (Fresnel wave surfaces).

309 — The definition that we just gave for the wave s@rfaermits us to confirm that
the bicharacteristics, such as the one that we intradacthe foregoing, are nothing but
theraysthat one considers in physics.

Indeed, the direction of a ray is defined to be thahefline that joins the poir to
the point of contact of the wave surface that relateghis point with the wave

considered. Now, in our four-dimensional space thispsasented by the multiplicityp

(fig, 19) which is tangent to the characteristic cor®@long the bicharacterist@O’.

To simplify, suppose that the coefficients of the higheler derivatives are constant.
The surfaces (fig. 19) will then be homothetic with respect to the p@nbn the wave
surface and the bicharacterighi©®’, which will then be a straight line that is precystie
direction of the ray, as we shall indicate in astamt.

All of what we just said persists, moreover, wiée coefficients are no longer
constant; all that is necessary is to take an ntistiat is infinitely close tdp,. The
equality of the bicharacteristics and the ray$istestablished.

310 - In their present form, the preceding considenatdo not permit us account for
all of the physical properties of rayS)( Nevertheless, they do show that these lines pla
an essential role in the propagation of motionisThfurther evidenced by the following
proposition:

Suppose we are given an initial motion that sasshe equations and a wasg(fig.

19) that propagates this motion, a wave that wiaéumore consider to be determined by
its positionS at a certain instarig. Lett' be the final instant when this wave attains a
definite poinO’. The new motion at this point will depend exclugivgbon the new
motion that the point @ig. 19), which is on the same bicharacteristic@st the instant
to.

Indeed, this is what results from the calculatitimst were done in no293, et seq.
The latter show that if we know the multiplici§s and the elements of the discontinuity

at just one poin© then these same elements will be determined gboatits of the
bicharacteristic that issues frdn

In particular, if the discontinuity exists at timstantt, only for a small portion of the
wave surface then it will exist only for a smallrpon of the surfac§, at the instant’,

namely, the one that is bounded by the same bictaistics as the first one.

311 — The result that we just stated persists ineeitdf the two previously treated
cases, namely, when the determinant does or dadwme a minor that is different from
0, respectively. However, we have assumed that ot necessary to work with the
second case since the characteristic consideredsstiee property of annulling all of the

(*®) See below, no®50-351
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minors ofH with all of the infinitely close characteristic©ur reasons will be invalid if
the characteristics that possess this property argydartones, i.e., if the generators of
the conel” that corresponds to these characteristics depend gratheneters less than
the others at an arbitrary point do. In this case, ngtpermits us to still assert the
existence of the characteristics. Such singular charsiats undoubtedly deserve to be
studied from the analytical viewpoint. They are welbwn in optics; they are what
correspond to the phenomenon adnical refraction. Contrary to what is true for
multiple characteristics in generdf)( they are not related to singularities of the sohsi
(see below, no327).

312 — The construction that was indicated in 304 further permits us to determine
the wave in circumstances that are a little morepdimated than the ones that we were
recently faced with.

For example, consider thetersectionof two
waves, i.e., the case in which two surfaces of
discontinuity S, S are originally completely
separate from each other, and then they propagate
in a gaseous medium, which we suppose, to
simplify, to be indefinite, until they cross. This
intersection defines a curvdhat obviously varies
with t. Upon once more employing the language
of four-dimensional geometry and representing the
wave surfaces by their positioBs Son the initial

state, one may say that the multipliciti&s S, are
generated by the surfacgs § ast varies and

intersect along a twice-extended multiplicity, whoset = const. sections are the
successive positions of the curive As we have done before, it is easy to represent the
analogous phenomenon in the case for which there arévamlgoordinates, y,and the
multiplicities So, S, are surfaces that are traced out in a space of thmemnsions fig.
21). A\ will then be a curve traced in that space.

During the time whets,, S, are secant and after it, the successive positionseof t

curvel will obviously give rise to new waves, which are, isemse, the continuation of
the first two. It is clear that these new charastie multiplicitiesS; , S, (fig, 21), which

represent the progress of these waves, will be detainbgethe condition that they
contain the multiplicity/\, and that they are obtained, as a consequence, aspwelf
the characteristic conoids that have the differemtga@fA for their vertices, precisely as
we explained in the case whekecorresponded tb= const. and reduced to a surf&e
Completely similar considerations apply to the intetiea of a wave with a fixed or
moving wall. The latter forms a hypersurface by the sét@ositions for the different
values oft, which will cut the wave along a multiplicit& that is of the same nature as
the one that we have always denoted by that notatioremains for us to pass a second

Fig. 21

(*®) See, for example, the note on page (?).
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characteristic (reflected wave) throuyhwhich comes about by the same construction as
the foregoing.

In this case, as in the preceding one, the multipliditys, from the way it was
obtained, external to the characteristic cone thathaabitrary point of\ for its vertex,
in such a way (compare n805) that the new waves we obtain are real.

313 — Analytically speaking, the case refraction corresponds to the case in which
the spacd=, is divided into two regions in which the equations ofgheblem will have
different forms. A wave that propagates into one ebk¢htwo regions thus encounters
their common boundary along a multiplicity, through which a characteristic of the
equations in the second region must pass. Neverthdlesagtv characteristic (refracted
wave) may be itself imaginary when the first waveeisl.

It is clear that Huyghen’s construction is only an @apion of this manner of
operation.

314 — Finally, one often considers a wave that intésséself; in other words, a
wave surface that is originally devoid of singularities acquires double lined’) in the
course of its propagation. Of course, that circumstamgst not be confused with the
phenomenon of Riemann and Hugoniot, which was studied in ch&fter general, it
does not affect the regularity of the motion.

§ 2. — EXISTENCE THEOREMS

315 - In the foregoing, we confirmed that on a charadterise derivatives of each
order lead to an indeterminacy. It does not result ttumthat there exists an infinitude
of integrals that solve the Cauchy problem, nor evetrthiese exists only one.

For the case of a second order analytic equation inidependent variables, this
fact was established by Gours&) @s a consequence of the following theorem:

Being given one analytic partial differential equation in two independenabias,
along with two concurrent analytic lines, each of which is tangent to ontheof
characteristics that issue from their point of intersection, the eéguatdmits one (and
only one) analytic integral that takes the given analytic values on thgien curves.

From this theorem, it easily follows that there exais infinitude of analytic integrals
that solve the Cauchy problem for one characteristic.

(') This is true in the general case when the curvesatieaparallel to a curv€ have double points
(even ifC has none of them) when the distance becomes sufficlange when referred to the concavity
of C.

3) Lecons sur les dérivées partielles du second otdree |, pp. 184-193.
¢
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316. — The theorem of Goursat has been generalized by Belmomit., to the
equation in an arbitrary number of variables that westéd in no278 et seq.

We shall prove the result of Beudon by adopting some hypesthbsat are a little
more general. Indeed, already in the case of twohlasgat is not necessary that tireo
lines along whicte is given be characteristics. As was shown by Picayddr linear
equations that are or are not analytic, and then Go(ff$atupon assuming that the
equations were analytic, but not necessarily linear,pgtaperty belongs to only one of
the lines in question. A problem of this type was preseimteno. 180 in the study of
rectilinear motion in a gas.

We extend the theorem of Beudon in an analogous mannerprisidering two
multiplicities of dimensiom — 1 that are not tangent to each other, and thedfinstich
is tangent to one characteristic at a point thatake to be the coordinate origin. This
property will persist, moreover (compare nt62), under a change of independent
variables, by means of which we may assume that ourhypersurfaces have the
equations¢, = 0,x,-1= 0.

On each of them, we suppose that we are given a sequieradaes ofz such that:

1) {z—w(xp %, %) forx=0
z=x(X%, %,y %4, %) for x,=0.

Of course, these values must coincide on the muitipliof dimensionn — 2) that is
common to the first two. We may then write:

(42 WX, X2, ooy X2y 0) =X( X1, X2y vy X2y 0) = Xq, X2, vy Xn—2).

Since the partial differential equation is:
F=0,

the condition thatk, = O be tangent to one characteristic is expressed2@®.by the
condition:

97 40,

0Py,

By contrast, suppose that the equation is solubleredpect t@,,-1. The condition
0F10pnn-1 = 0 amounts to assuming that the multipliditly — > that is defined by the
equationsx, = X, - 1 = 0, is not tangent to one bicharacteristic. If thatrary case is
produced then the given valugs y must verify new possibility conditions. Indeed, we
have seen that the derivative pf along one bicharacteristic may be calculated as a
function of thex, x, pi . It follows that the value thus obtained at thigiormust be
equal to the one (namelgx/dx,) that one knows directly oncg, is given on the

(**) In DARBOUX, Lecons sur la Théorie générale des surfate¥, note 1.

(*°) Equations aux dérivées partielles du second ordrié, pages 303-308.
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multiplicity M, -2 One will likewise obtain another possibility conditiby considering
the derivatives opnn, and therefore, as a consequence, for each orderiedtazn.

317.— Therefore, let the second-order equation be solvédrespect tqnn-1:

(43) pnn—]_ = F(X]_, X2, ...,Xn, Z, p]_, sy pn, p]_]_, sy pnn),

and suppose that the functins analytic and holomorphic with respect to the vaeabl
upon which it depend$?) in a domain that is composed of the values that tesables
take at the origin, since the quandfy/dp., is null at this point.

We shall prove that the functiony and y are both analytic and holomorphic around
the origin then the problem that was posed will admit one and only one holomorphic
solution.

We may, if we so desire, simplify the question by r@ty¢/ and y to being null. To
that effect, it will suffice for us to introduce, inggle ofz, the new unknown:

2’=7-yY+x+

(a1, X2, ..., Xn -2 being defined by equatiodZ?)). We may likewise, upon subtracting
from z the termax, X, - 1, wherea is a suitable constant (which diminishgg by this
constant), we may arrange thatbe null at the origin. Under these conditions, the
function F will be represented by a converging development thatbeamrdered in
powers ofz, x, pi, andpi, with the exception gb.,- 1, a development that lacks only the
constant term and the termpg, .

318 — Whether or not this transformation has been perfdsitiee givens of the
problem are known from the values of all the derivativesat the origin.

First of all, when there is not both at least oifeentiation with respect t&, and at
least one differentiation with respectxg_ 1, these values result from the differentiation
of the equations in conditiod). They are null if one takagg= y = 0.

On the one hand, agree to say that one partial deevattais anterior to the other if:

1. It has lower total order.

2. When they have the same order, it is composednef fderivations with respect
tO Xnn .

3. When they have the same order and are composect cfathe number of
derivation with respect tg,n, it has fewer derivations with respectdQ ;.

Now, let pnn - sk... (Where the indices, j, k, ... have completely arbitrary values
between 1 and) be a derivative in which one has differentiated wigpeet to botkx,
and  Xn-1. We calculate the value of that quantity by applying the

(*!') The theorem that we have in view was, as we Baig; established by Picard, independently of
the hypothesis of analyticity, for the case of twoialsles. In the case whereis greater than 2, the
extension to non-analytic givens — or rather, the questfidmowing whether this extension is possible —
presents new difficulties that have not been surmouwred now.
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operationiii ...to both sides of equatiod3). All of the derivatives that appear

ox 0% 0%
in the right-hand side will obviously be anterior to tvee that we seek, with the single
exception opnnik... However, the latter may be eliminated at the origicaoise it has the
coefficientdF/dp.,, a quantity whose initial value is null.

The right-hand side of the equation thus obtained ieefiiee composed only of
guantities that are already known if we have chokemtcarefully, which is obviously
possible, since one never passes on to the calculdtioneoderivative without having
performed all of the ones that are anterior to it.

The first conclusion is thus proved. It follows fratnthat if the problem admits one
holomorphic solution then this solution is unique.

Moreover, we remark that:

1. All of the equations that result from the diffetiation of @3) are thus utilized, in
such a way that all of these equations are verifigbdeadrigin by the system of values of
pik... that was thus calculated.

2. This calculation involves only additions and mulcation.

By virtue of this last remark, we may apply the methbdhajorant functions. We
replace the given developments f ¢, x by other ones that majorize the first ones,
respectively. If the problem, thus modified, has a holghic solution then we may
conclude that the values qfy.. that correspond to the given problem furnish a
convergent Taylor development, as well (which will reseeily satisfy the proposed
equation, from the first of the two remarks that wée jaade).

As far as the given functiongand y are concerned, we may suppose them to be null,
as was just explained. With these conditions, eachewhtwill admit as a majorant, any
function that is represented by a development whosdideats are positive.

As for the functionF, since it lacks the constant term and the terrpnin it will
admit, from a well-known remark, a majorant of tbent:

M _M(l'*' pnnj,

X + X+t X+ z+zn: P+ZIR R
i=1
R

1_

in which the sunk’ refers to all of the second derivatives with tkeeption ofpn, .

Beudon, who assumed that_ ; = 0 is a characteristic, further suppressed omdy t
term inp,-1n-1 in this expression. By reason of the presendhistterm, we must now
employ the artifice that was indicated by Goursatich consists of remarking that the
functionF is a fortiori majorized if we replace, with x,/A in the denominator, wheré
denotes an arbitrary positive number that is munblier than 1. We are thus led to the
equation:
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(44) Prn-1= M . -M (1'*' pnnj,
_x1+..-+>g1_1+);”+ Z+Z p+z R R

R

1

and the theorem will be proved if we obtain a solutmmthis equation that is null at the
origin along with its first and second derivatives, and ttegluce, when botk, = 0 and
Xn—1= 0, to functions whose developments have all positedficients.

We seek such a solution by takimtp be a function of the two variables:

(45) X=xp+Xe+ ... +X_2 Y=Ma_1+ X% .

Equation 44) will become:

2 2
Aai =-M 1+16§
oY RoY

M
+

"z w2 2 @i g
3¢ 950 Y 0¥

1-1x+ Y4 z+(n—2)ﬂ+ (1+)l)a—z+ C
R A oX oY

in which C is the numerical coefficie®@ = (n— 1)( — 2)/2.

2
The right-hand side involves a termdfz/dY?, namely, the terml\%)lzg\;. We

determineld in such a manner that this term has a coeffidieaitis much smaller than the
value of the right-hand side, namely:

R
46 A<—.
(46) v

We may then move the termdfz@Y? from the right-hand side to the left-hand, and
the equation that is obtained will have of the form

MAY) 8%z 0z 0z 9°z 9°z 9° 2
4 M1-2A1 82 xy 2 9202 020 2
47 ( R javz 1( “aX "9Y 93¢ axavaw?j

in which F; is holomorphic with respect to the variables thakepends upon around the
null values of these variables, and its developnhast coefficients that are all positive
and lack only the term #z/0Y?.

The Cauchy-Kowalewsky theorem tells us that thjisagion admits an integral that is
null and holomorphic fory = 0, as well as its derivative with respectMo If one
substitutes foiX andY their values 45) then one will have a holomorphic solution to
equation 44). This solution, and consequently, the functitret it reduces to fox, = 0
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andx, -1 = 0, has, moreover, as one shows by calculation théhaid of equatior4{)
(*3, a development with all positive coefficients, argliititial value is null, along with
that of its first and second derivatives.

The theorem is thus proved.

319 - From the preceding proposition, one easily deduded we have in mind,
namely, the existence of an infinitude of holomorphikitsans for the Cauchy problem
in the case of one characteristic.

Suppose further that the characteristic multiplicity tiee equation, = 0. We may,
in addition, suppose that the given valuez oh this multiplicity are null, along with
those ofp, and the ones that one deduces gt . Indeed, it is clear that one is
confronted with the case that is opposite to this ona lohange of unknowns of the
form:

(48) z=7'+ A+ Bx, +CX.

(A, B, C being functions okj, Xz, ..., Xa—1) Under these conditions, equati@¥8) must
be verified for anyg, Xy, ..., X,— 1, While x, andz are null, along with the; andpi .
However, the given multiplicity be a charactedstand not only tangent to a
characteristic at the origin, i.e., one must havelen these conditions, on the one hand
0F/dpnn = 0, and, on the other, equatidr6 cont.)(no.288), which reduces toF/dx, = 0
here.
This amounts to saying that any term in the developwoightcontains at least one of
the quantities:
zpp (=12, ...n
[ (,k=1,2,..n-1)
pr (h'=1,2,...n-2)

Xy Xa Pn, Ppy
as a factor.
Therefore, let the holomorphic functiogs, ¢, ... of X1, X2, ..., Xn - 2 be given
arbitrarily, and consider the holomorphic solution of emue@3) that reduces to 0 fog,
=0 and to:

(49) ¢3)¢+¢4)<+"'

for x,—1 = 0, a solution whose existence was just establishasl.edisy to confirm that no
matter what the functiongs, @,, ... are, this solution solves our Cauchy problem; i.e., in
addition to its values, those of its derivatiygsandpn, are null withx, . To that effect, it
suffices (since we are dealing with holomorphic functidosdssure that for this integral

z all of the derivatives that contain one or two dations with respect tg, are null at the
origin. Now, one verifies this without difficulty byepeating the calculations of the
preceding no. by which one obtains these derivatives, ligruhe present hypotheses.

(*?) In order to effect this calculation, it is usel&ssolve equation4) with respect t@°z/ dY?, due

to the fact that the coefficient afz/dY? in the right-hand side is null at the origin.
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The theorem is thus proved.

319(cont.) — The expressiod9) represents the most general value that may be taken
on the multiplicityx, - 1 = 0 by a holomorphic functionthat is null, along with its first
two derivatives with respect 1@ _ 1 whenx, = 0.

Now, let us pass from the calculations that we justlant the ones that they
correspond to when one does not perform the transfam@8). The values of and its
derivatives of the first two orders are no longer tiotl x, = O, but they must further
verify: 1. Equation 43). 2. The condition o@F/dp., that expresses that, = 0 is a
characteristic. 3. The conditiodg cont.), which is necessary for the existence of the
third derivatives. Conversely, these conditions areotthe ones that we have postulated
in the argument of the preceding section.

They show, as a consequence, thdistribution (on the multiplicityx= 0) of values
for pn , pon that satisfies the three conditions in question (when one gives tresvugd;,

X2, ..., Xn - 1) t0 Z) will be the same ones that correspond to the solution of the problem
that was treated in n0816-318if they coincide with the ones that one deduces from the
second conditiof41) for any point of the intersection of the two multiplicitigs=>0 and
Xn-1=0.

When the equation is linear with respect toghene maystate the same property for
a distribution of values for jpthat satisfies the same system of conditions, with the
exception 0{16 cont.) which is replaced with the equati¢h3d) (no.282). This is true
because one is reduced to the preceding statement upomidetg@m,, by means of
equation {6), combined with the condition that it coincide witle ttorresponding values

of 8°x/dx?on the intersection of the two multiplicities.

320 — The proposition that was established in3i8is not just useful in the proof of
the theorem in no319 It is, in itself, susceptible to dynamical applicato The
problem that it solves is, in particular, the one tha¢ ¢ed to when one studies the
phenomenon of the crossing of waves, as irBad.

Prior to this crossing, the fluid is divided into thregions that are animated with

distinct motions: We denote the propagation of the w&yeby the index 1, the
propagation of the wav& by 2, and the intermediate motion by the index 3.

Suppose:
1. All three of these motions are devoid of rotation.

2. The are analytic, along with the multiplicitiSs S,. The same will be true for
the multiplicity A, as well as the waveg , S; that are created, as we have seen, by the

crossing of the first two, and propagate frAwith the motions 1 and 2, respectively.
Having agreed upon these conditions, we shall show teeeage of a fourth analytic
motion that satisfies the hydrodynamical equations agrées with 1 and 2 along the

characteristics, , S, . It is by means of these conditions precisely timegt determines

the new intermediate motion that is created betwleetvio corresponding waves.
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It will suffice to calculate the velocity potentig® of the desired motion. The
function® must first satisfy equatior2g).

On the other hand, all of its first derivatives must the same as the ones that
correspond to the motions 1 and 2 Sfiand S;', respectively, since the velocity and
pressure remain continuous (the discontinuities beingnzesds to be of at least second
order).

Now, we know that there exists a holomorphic functibthat verifies equatior2@)
and takes the same values as the velocity potentiaidtion 1 orS, and the same values

as the velocity potential for motion 2 &j' .

Having thus chosen the velocity potential of the netermediate motion, one will
have continuity (upon crossi# and S; ), not only for the values of this potential, but

also for those of its derivatives, as the conditidnsup problem demand.
Indeed, the derivatives in question, which are deduced fromomd, form a

characteristic distribution o, . On the other hand, since equati@BY) is linear with

respect to the second derivatives, the stated contimdlityoe valid upon extension to
S, (by virtue of no.319cont.) if they exist at all points &.

Now, at these points it happens that one can cadcthat derivatives o with the
aid of the values of that functia$y for the motion 1, and afj for the desired motion,

values that one may consider to be given by the mo8aaasd 2, respectively. On the
other hand, as we are supposing, there will be contiaditite first derivatives for the
original three motions (compare the note on page ?).

The motion that is deduced from a velocity potentiat is calculated in the manner
that we just described will therefore satisfy alllod tonditions of the problem exactly.

321 — We now propose to generalize the proposition of 3b8-318to systems of
several unknowns. Therefore, §tr, { be one such system of unknowns. Furthermore,
consider two secant multiplicities, which we may algragsume to be given by equations
of the formx, = 0, X, - 1 = 0, the first of which is tangent to a characteritt@&t is not
multiple (no.284), and the second of which is arbitrary under the singlaition that
their intersection must not be tangent to a charatieri

We suppose that the given system is analytic and reguathremains that way under
the change of variables that we carried out in ordegpuiothe equations of our two
multiplicities into that form. Under these conditg) if we seek the values éfr, { that
annul them at the origin, along with their first and et derivatives, then we must
assume that the left-hand side of the equations areogeN®é in increasing powersxaf
X2, oy %oy & 1, &, Pis Oy Tiy Pike Oiks Tik - Moreover, if the terms ipnn, Qnn, 'nn Of these
developments are:

Apnn + Bq1n+ Cr

nn?

(50) Ap,+Bg,+Cr

nn?

A'p,+B'q,+Cr,

n?
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and if one takes into account what we said in3@d, then the coefficients, B, C, A", B',
C', A", B", C" are nothing but the initial values of the quantities i@ have denoted by
these names in n@91 The determinant, which is equal to:

A B C
A B C
A" B" C"

at the origin, must be null, singg = 0 is tangent to a characteristic. In other wownds,
may form a linear combination of our three equations, asderms of the fornb(), that
disappears completely, a combination that may replaeeob the given equations for
example, the second one.

Therefore, assume that one Bds= B" = C" = 0. The derivative@8H/0P; then reduce

to:

A B C

(51) H_x B
oR

a h ¢

in whicha;, b, ¢ denote the coefficients pk, gi, rk in the third equation. It then results
from this that:

1. The determinant${) are non-null, since our characteristic is simpfe (

2. In particular, the one that corresponds+a — 1 is different from zero, since the
intersection of our two multiplicities is not tangémnta bicharacteristic.

322 — Under these conditions, we may perform a changaurdbles such that the
two of them are replaced with the quantities:

&=AE+BY+CT

(52 {/71:,6\'5+ Bn+C¢,

or, more generally, by the quantities:

(**) If this is not true then the result that one @siat will have a much different nature, as one shows
immediately with the system:

9% _ 0
W ’ 6 1 4 M1
axs axnl//(xl’XZ! ,)% E!’] Z p q |r)+
9%& 0
—:_l//(xj_’xgu'“ix]yg!”’51piqlir)+ N1
0%.0%, 1 0%,
°n _ .
a_Xi_q)(X]_’XQ!'“iX]IE”’Z!piqyirrm( ,ﬁl !i[ )

(whereM andN are given functions of), a system that is impossible if one does not lddwée ox,; =
ON/OXq, .
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53) {A5+B/7+CZ,

A'§(+B’/7+C'Z,

whereA, B, C, A', B', C’ are arbitrary holomorphic functions that reducéid, C, A,

B', C’ at the origin.
As for the third unknown, it will be an arbitrary fuim:

GQ=WYE N, ¢ X X, .ony %),

such that one has:

A B C

(54) DEmél_|xn g clzo.
D(¢.n.{) o ou oy
0§ an o

at the origin.
Since one has:

0°&
a_xsl:Apnn+Bq1n+CI;m’
°n .
(59 axﬁl:Aﬂwn’LBqnﬁCfnn,
2
6(21:61,0 nn+6¢/qnn+6¢’ [ o4,
ox,  0x, 0x, ax,

the equality $4) expresses the idea that the third of the dexigatgs) is not expressed
with the aid of the first two, and consequentiytttiee given equations do not furnish the
expression with the aid of derivatives that containleast two differentiations with
respect to, .

323 — Suppose that this change of unknowns has glrbadn performed. The
coefficientsA, B' will then be equal to one, whig A', C, C' will be null. Consequently,
the functional determinant of the left-hand sidésur equations fopnn, Gnn, nn- 1 Will
be equal todH/0P,-; initially; i.e., it will be non-zero. One may thusolve these
equations with respect f®n, Gnn, 'nn— 1 and write them in the form:

pnn:F(Xi’gJ%Z’n’q r qu(ulz)
(56) qnn:q)(xi’§(1,7!Z1n’q’r’m< ’q ’iE)
rnn—l:LP(Xi!§(1,7!Z1pi' ’Ii.’pk ’q< ’rk )!
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in which the right-hand sides do not contgif gnn, r'nn-1, and one has:

oF :6CD:6HJ:
or or or

(57 0.
at the origin.

We shall show that in order to determine a solutiolsuch a system, one may be
given:

1. For the unknowng and 7, the Cauchy conditions, namely, the values of these
guantities and their first derivatives fay= 0.

2. For the unknowm, on the contrary, conditions that are analogous éooties in
no. 316, namely, the values of that unknown itselfxar= 0 and orx, - 1 = 0 (values that
must, of course, concur whegnandx,_ 1 are both null).

The various givens will be assumed to be analyticeoeer.

We will obviously know the values at the origin of ¢ derivatives ot in which
there is no differentiation with respect to bathandx, - 1 and the derivatives af, 77 in
which there is at most one differentiation with resptox, .

In order to calculate the remaining derivatives, wehnriclassify them in terms of
their anteriority. The definition that is adopted fome derivative being anterior to
another will be the same as before (B&8), with the additional convention that when
two derivatives of the same order are composed ofahe siumber of differentiations
with respect tox, andx, — 1, a derivative ofé or 7 will be regarded as anterior to a
derivative with respect tg.

The calculation will then be performed without diffigulby a method that is
completely similar to the one in n818 It will use all of the relations that result from
the differentiation of the given equations.

In order to prove the convergence of the developmentishthus obtained, one
further assumes that all of the initial givens (thkiea ofé, 7, 0&/ 0%, , anddn / ox, for
Xn = 0, the values of for x, = 0 andx, - 1 = 0) are null, a result that one may always
obtain by a change of unknowns.

Furthermore, since the operations that serve torothiaisuccessive derivatives at the
origin here are composed exclusively of additions andipha#tions, we may replace
the various givens of the problem by majorants. Forinii@l null givens we may
substitute other ones that are represented by developwiénisositive coefficients that
are chosen entirely at our discretion so that ttemstant terms, as well as their terms of
the first and second order are nonetheless null.

As forF, ®, W, their majorants will have the form:

nn nn nn

M —M(1+hj
1_;[2&+5+0+Z+2(H+q+r)+z’(l%+‘El+iE)J R

(the denoted by' refers to all of the second derivatives, with éxeept ofonn, Qun, e
1), or, upon further replacing, with x,/A:
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M -M [1+ﬁj.
1 } R

1—;{”2% R AV AL SONCRL EN PN CET RS

If we seek solutions that depend upon the two jiesn
X=X1+X+ ... X1, Y=AXn-1+Xn

then these solutions will be determined by the Bons:

90’6 _0’n _,0%¢
= =A
ay> ay*  ay?

M r
= —M(1+%j,
X+ +E+/7+Z+(n 2)6(‘(6’7Z)+(1+;|)6(5’;’\7(+Z)
-1 +(n—1)(n—2)62 (5+f72+5)+(n oy 1) €41+
R 2 oX oXoY
2 £ 07 2 0%¢
4 +)')(aw avzj “ 1)aY2

which will satisfy (upon further setting = (n— 1)(0 — 2)/2) whenf = n=A{.

)laZZ:
aY?
—M(1+£azij+ M
ROY . [X+j+(2)l+1){(+(n—2)g + (1+ A )7Z 6)52

1_
0°¢

oY
sl
+(n- 2)(1+)l) X3Y +(A°(2A+3)+ 1)

Now, in this latter equation # satisfies the inequality:

M2A+3) <R
M

then the term iM*¢ / 9Y* will have a coefficient whose second member is t&sn the
first one, which we may always arrange.

Furthermore, the reasoning becomes absolutelyitdmno the one that was made in
the case of only one equation, and the existeneehaflomorphic solution with positive
coefficients is established.
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324 — From this last result, one will deduce the existefi@onfinitude of solutions
to the Cauchy problem when the multipliciky = O is a characteristic. In order to
account for such a circumstance at all of the poihtseomultiplicity in question, and not
just at the origin, one must express the notion thexetlexists at each of them a linear
combination of the three given equations in which thevdeves with respect tpnn, qon,

r.n have been eliminated. If (the equations always being lwfanc in their left-hand
sides) we suppose, to fix ideas, that the maiois non-zero then this linear combination
may be substituted for the third given equation.

A completely analogous transformation will then beied out on the unknowns: In
the first two equations the derivatives with respeqitognn, rnn, When considered at an
arbitrary point of our multiplicity, will be holomorphiinctions ofx;, X2, X,-1. Upon
denoting these derivatives by, 5, C, A', B', C’, we may take the combinatiors3] to be
two of our linear combinations.

We have thus reduced our equations to the f&®) @ssuming that the conditions
(57) are verified at any point of the multiplici = O, this time. On the other hand, we
may assume, by means of a triple transformationishambalogous to4@), that the initial
givensé, 1, {, pr, th, I are null on this multiplicity, along with the valudsat one
deduces fopnn, Qun, r'an - These null values will therefore verify the ctiaohs (53),
(57), and also the conditioi32), which isoW / 0x, = 0. In other words, each termfbr
@ must contain as a factor, one of the quantities:

51/71Z1pi1q1¥ 021,2,11)
(58) i i=1,2:--n -
Pic» G » b k=12, n- (exceptr,,,
(59 {"“
r2.

Each term of! has as a factor, one of the quantitie® Er:
(60) Xon s X oy T

It easily results from this that if one takes iligal givens to be:

1. Onx,=0:¢ 1, ¢ pn, O null,

2. Onx,-1=0:¢equal to the expressioad) (no.319),
then the quantities, , Pan, Onn, n Will be identically null withx, , no matter what the
values ofg;, ¢, ... One may prove this, as in the preceding, bljofahg the same
sequence of calculations by which we obtained ticeessive derivatives.

324 (cont.) — It is clear that one may deduce consecpgefrom the foregoing that are
completely similar to the ones that were the olpjecbf no. 319 (cont.). If we put
ourselves, to simplify, in the case where the dagoatare linear with respect to the
second derivatives then we may say that if a Oistion of values forr, on the
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multiplicity x, = 0 combined with a given sequence of valueséfay, ¢, pn, g,) makes
this multiplicity characteristic and satisfies equati@®) (no.292) (the condition for the
existence of the second derivatives) then this distribution wilréeisely the one that
one obtains by solving the problem in MR23 if this coincidence is true on the
intersection of the two multiplicities x 0,%,-1 =0.

325 — Like the theorem of n0816-318, the one that we just proved in n821-323
is susceptible to a simple hydrodynamic interpretation.

We saw above how, being given the initial motion giaa and the motion of a wall,
one may obtain the initial acceleration of the neigimgppoints of this wall. The new
motion that is thus created propagates, moreover, agva whose partial differential
equation (or, what amounts to the same thing, equatjoof Q0. 240) permits us to find
the position at each instant once one has supposed thannof a fluid beyond that
wave is known (which furnishes the valueadpf

Suppose that this latter motion is analytic, alondhwite motion of the wall. The
same will then be true for the motion of the wavefamgS The motion that comes
about between that surface and the wall must therb®seich that:

1. The fluid and the wall are in constant contaet, for:

(61) U(a,b,c)=0

(the equation of the surface in the initial state) loa&

wuxy,zt)=0.

2. There is agreement along the wave between thenatian and the original one.

Take a new system of independent variables suchxthadx, are annulled — the
one, along/(a, b, ¢) = 0, and the other, along the wave.

On the other hand, perform a change of unknowns suthhindast one is replaced
by the function(x, y, z, t). We then specify:

Forxs = 0, the condition that this unknown be null.

For x4 = 0, the condition that all of the unknowns have shene values as in the
original motion, along with the first derivatives oftbhaf them, which do not reduce to O
with x; . If this is the case then the coincidence betweem thill be established for the
derivatives of the third unknown by reasoning that is cetepl similar to the one that
was made above (n@20), in such a way that that the discontinuity will iedebe of
second order, the only condition for this being thatc¢hiacidence exist at the points that
satisfy bothx; = 0 andx, = 0; i.e., that the normal velocity of the wallibéially equal to
that of the neighboring molecules of the fluid. (Ilvguffice to apply the proposition
that was stated in n@24 cont.).

The problem thus posed falls within the category that tneeted in n0323 It
remains only for us to insure that:

1. The intersection of the two multiplicitiegs (= 0, x4 = 0) is not tangent to a
bicharacteristic. — This is obvious, since that intersactorresponds tdé = const.
whenevet varies along the rays defined by the equations 029@.



THE GENERAL THEORY OF CHARACTERISTICS 273

2. IfA B, C, A, B, C have the significance that was indicated in 3@4 then one
has the inequality5d). This amounts to saying that one may not formralgoation of
the equations of the problem that makes known the secomdtader of ¢/ with respect to
X1, or, what amounts to the same thing, the expression:

oy 52x+6_z// 52y+6¢/ 0°z
ox o2 oy ot 09z ot

However, in the contrary case the discontinuitgttlis compatible with these
equations will be forced to be tangential and we know thaig not true.

The problem in analysis that we have been led to isftrerprecisely the one that
we recently solved. Moreover, the solution thus olkthiwill initially satisfy the
principle of impenetrability (i.e., that, b, c may be expressed as functionsxpy, z, t)
when the normal velocity of the wall is less tha@ ¥elocity of sound.

326. — By contrast, the problem of the crossing of wavas was treated in n@&20
under the hypothesis of a velocity potential is not, in gdn@mmediately solved by
considerations that are similar to the preceding ones.

Indeed, let two motions 1 and f#ig( 21) be given, so we seek a motion 4 that
propagates into the first two along the wavgsandS;" (fig. 21), which intersect it along
the multiplicity A.

By virtue of the preceding, we may, after performing a coievé change of
unknowns that has the effect of substituting new unkndww, ¢ for the x, vy, z
determine them by the interior equations of motion andatlf@ving conditions:

1. OnS;, A must take the same values as in the motion 1.

2. On the same multiplicity, the first derivatives& and 77 will likewise havethe
values that result from motion 1.
3. OnS;, {will take the same values as in motion 2.

From these conditions, as before, the continuitthefderivatives of upon crossing
S, will result.

However, it remains for us to establish the continoityé, 7 and all of the first

n

derivatives upon crossing, . This continuity does not in the least bit resulinfr@.
Indeed, it entails five conditions that must be vedife each point o, and the unique

differential equation that we know the existence oft@t multiplicity entails simply the
consequence that these five conditions reduce to four.

If one develops the right-hand sides of these fouditons in a Taylor series in
increasing powers df— t (upon lettingt, denote the value dfthat corresponds to the
point of A under consideration), and one equates the successiveiemsfito O then one
will have a sequence of compatibility conditions in@ilers that must be satisfied at
each point of the crossing of the two waves. Becaflifigis, the new discontinuities will
necessarily be more than two in number. For exanifpdse is dealing with a problem
of hydrodynamics, in addition to the two wa@sandS, , one must add a stationary
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discontinuity that exists along the crossing surfaee, along the projection @ onto a
planet = const.

However, one must take into account the fact that utgeconditions that we were
subject to in no312 the discontinuities that exist between motions 1 Andre not
arbitrary. Indeed, one supposes that before the produdtibe phenomenon that we are

occupied with, there existed only two waw&sandS,, and a unique motion between

them, viz., the motion 3. This amounts to saying that lom& some compatibility
conditions that are analogous to the ones that mustebéed, but relative to the

multiplicities So andS, . It remains for us to investigate whether one can dethee
same conditions foS; andS, . Moreover, this is what one confirms without diffiigu

for the second order conditions, in general.

On the other hand, this is certainly true for the @enes (of arbitrary order) with
respect to just, by virtue of the theorem to which we alluded in 260, and to which we
shall return in noten at the end of this work.

327. — We just considered the case of a characteristicatimulled the determinahit
without annulling its minors. Analogous results thdateeto the contrary hypothesis
(those of n0299) appear from it. It is clear that by means of a chavigenknowns
one may consider the given equations to be solved esect tQn, , On- 1, fnn- 1, the
expressions thus obtained for these quantities being thaththeir derivatives with
respect t@nn, rnn are null at the origin.

Under these conditions, one may give the values dhtlee unknowns ang for x, =
0, as well as those of the first two unknownsxpr,; = 0. The solution of the problem
thus posed will be studied by procedures that are compleiteliar to the ones in no.
323

We observe that this result is independent of the hypisthigat was made in n299
for the neighboring characteristics to the one undesideration {*). Of course, it
nevertheless supposes conditions of inequality thatreegous to the ones in n822,
but which no longer have the same geometric significasioee the bicharacteristics
may no longer be defined.

§ 3. — THE CASE OF LINEAR EQUATIONS

328 — Among the systems of equations that belong to thegeat that we just
considered, there is good reason to focus on the particase of linear equations. These
are the ones that one comes down to whenever ortestndy the most general motion of
a body when one restricts oneself to infinitely dmadtions.

For example, this is the case when one is conceritédthe simplest (next to the
Laplace equation) and most important of these equatamsely:

(**) The simultaneous vanishing of the minorgdafay likewise be valid only at one and only one
point of them, viz., the origin of the coordinates.
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(62)

wherea is a given number that will, by virtue of the forias that were established in the
preceding, represent the velocity of propagatiora afave in a state of motion that is
governed by that equation. This equation (wath=(dp/ dp) -, ) is the one that

equation 23) of no.290 (the equation of motion of a gas when this motlepends upon

a velocity potential) reduces to when one suppdlsas the motion differs from rest
infinitesimally, i.e., the derivatives @b are infinitely small, in such a manner that one
may neglect the terms of second order in thesetiegqsa

329 - In a general manner, one immediately perceilias there is a noteworthy
simplification to be found in the determinationtbé characteristics under the hypothesis
that the equation is linear.

Indeed, the coefficients @fi are then functions of only the independent vaeisk,

X2, ..., Xn @nd, contrary to what happens in the general casénger contain either the
unknown function or its first derivatives. It thessults (no283) that the characteristics
may be defined by abstraction from any well-defireution of the equation. In
particular, to each poin{, X, ..., X,) there corresponds a characteristic conoid that is
perfectly well-defined once one has written theagigun.

It is clear that whenever one solves one of thentary-value problems for the
equation that one poses in mechanics the formulah®e solution must involve the
characteristic conoid when it is real. Indeed,hage seen (n®06) that it suffices to be
given the elements that determine that solutiotiéninterior of the characteristic conoid
that has a definite poi@ (fig. 20) for its vertex in order to know it &

330 — When the medium considered is unbounded andsagieen the positions and
velocities of the molecules in that space at anitefinstantty the determination of the
ultimate motion leads to the Cauchy problem that were occupied with in the
preceding. The solution of that problem may beiedrout in a large number of cases.
Our intent is not to describe these solutions iti€®). We content ourselves with only
indicating the common principle upon which theytresnd which is nothing but a
generalization of the Riemann method that we redal no.171

(**) See, especially, POISSON|émoire sur l'intégration de quelque equations aux différences
partielles et particuliérement de I'équation générale du mouvedenfluides élastiqugsead to the Ac.
des Sc. on 19 July 1819); KIRCHHOFF, mécanique, lesson 23, ppZBdZeorie der Lichtstrahlen
Sitzungsberichte der K. Ak. der Wiss; 1882, pp. 641 et seans(ir by DUHEM, Ann. Ec. Norm.
supérieure, 1886) and Optik: VOLTERRA, Att. Lincei, 1892 anthAdath.; TEDONE, Att. Lincei, 1806;
LE ROUX, Ann. Ec. Norm. "8 series, t. XlI, and Journ. de Mathém., 1898-1900; d’ADHEMAMI|.B
Soc. Math. Fr. 1901 and C. R. Ac. Sc. 1902; COULON, SacPBys. et Nat. de Bordeayassimand
thesissur l'intégration des équations aux dérivées patrtielles par la métdedecharactéristiquedaris,
Hermann (1902).
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First of all, it is easy to write, in the generakeathe formula that corresponds to
relation @5) of no.171for the equation in two variables with real charasterior to the
analogous formula from potential theory). If:

(63) F(2 :Za,.kpk+Zarp+lz:0

is the given linear equation, the , thea , and thd being given functions of, x,, ...,
Xn, then an obvious sequence of integrations by parts withipess to write:

oM, oM, . M,

(69 UF(2) —zG(u) = o 6_x;+ o

upon setting:

(65) M =uY 4, B, - zZ&( 30+ au,
0 0

(66) G(u) _%amx‘ (a,u) izax (au+ lu.

Equationg(u) = 0 will be called thedjoint of the one that was proposed.

It is, moreover, clear that the preceding resultyi no means peculiar to the case of a
second order equation, and that one may obtaioritahy order of equation that is
proposed.

It further extends just as easily to a systemnadudoitrary numbep of equations in an
equal number of unknowns upon introdugmgew functionus, uy, ..., U, into theadjoint
systemby which one may multiply the left-hand sideglad given equations.

Nevertheless, we confine ourselves to the casesbfone second order equation.
Likewise, for the sake of discussion we put oulsglw the case of one equation in three
independent variables, but the reasoning will Iiéess indicated to the contrary, true for
any number of these variables.

331 — In order to solve the Cauchy problem that esldb our equation when the
unknown and its derivatives are given on a certautiplicity, we must suppose,
conforming to the preceding, that this multiplicisynot tangent to a characteristic.

In general {¥), when the Cauchy problem is posed in mathemapihgisics a more
precise condition must be verified, viz., the ohat twe already encountered in 1305
Always placing ourselves in the case of three Wwem the tangent plane to the
multiplicity in question isexterior to the characteristic cone; a plane that is paradl it
will always cut this cone in a closed curve.

A completely analogous fact is true for equatiamsnore than three independent
variables. For example, in the most important ohéhem— viz., the equation in four
variables §62) — the quadratic form that, when equated to islnes the equation of the
characteristic cone is a sum of squares that a lae same sign, except for one, which

(*®) Cf.infra, no.340.
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refers to the variablez that corresponds to the varialble Now, the Cauchy problem is
then posed precisely relative to the multiplidity 0. It is cut by the characteristic cone
or, more generallyby the characteristic conoid, which has its vertex at an arbitrary
exterior point on a closed multiplicifpamely, it is generically a sphere).

The givens relative to the interior points of thiesdd multiplicity are, as we know,
the only ones that figure in the determination of theev@f the integral at the vertex of
the conoid.

332 — Therefore, consider (in the case of three variphblesirfaces that is situated
in the manner that we just explained with respect to theackeristic conoid and along
which we are given the values of the unknown andrgsderivatives.

Let S be another surface that, along with the first oeynds a portiory of space.

If the functionu, which is a solution to the adjoint equation, is regola it then, from
Green’s theorem®(), we may write, upon multiplying by the volume element a

integrating ovefZ:

Hju]—“(z) dx dx dx
(67) = [[Mdxdx + M, dx cb+ M, dx dx

= ([ m DOG %) L PO X) v D% %) 15 4
B lD(/]li/]z) 2DM11/]2) 3D(/]li/]z) T

(where the double integral is taken o®and therf5,, successively, andy, A> denote the
curvilinear coordinates that are inscribed on these s@tage if one prefers:

(68) Hju]—"(z) dx dx dg(zﬂ{z M. cos(N ,x )}dS,

wheredS denotes the surface element®and thers, successively, and denotes the
corresponding normal that is directedt of 7. Nothing essential will change from the
foregoing if the numben of independent variables is greater than threde dnly
difficulty that will present itself will be the inbduction of the geometry efdimensions.

Instead of the surface$ and S, one will have to considen-1-fold extended
multiplicities — orhypersurfaces Formula 67) will become:

(*") See PICARDTraité d’Analyse 2" edition, t. 1, first part, Chap. IV, nos. 15 and 16, anghchia
no. 8.
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[[-+JuF(2) dx - dx

:J'J’...J’(Zl\/liqjd)lld)lz~-- i,

(67)

(where the left-hand side is arfold integral and the one on the right-hand side ia an
1-fold integral). In this formula, the quantitieg are, up to sign, the functional
determinants of any — 1 of thex; with respect to tha — 1 curvilinear coordinates;, A,
..., An—1that are chosen on the multiplicB(or ). In other words, if one draws a line
on it through each point, whesalenotes the arc length, then the quantigesre defined
by the condition that one have, for any such line:

(69) ma—xl+ﬂ26—xz+...+ma_xn:i D(Xl’XZ’lX]) .
0s 0s s D(A,A,,A 4,S)

These quantities may be considered to be the omas we denoted by this
nomenclature in nd287. They are proportional to the direction cosinéthe normal to
dS or to the partial derivatives of the left-handesiil(x;, X2, ..., X») of the equation of
the multiplicity.

If the normalN is directed into the domaif or if the functionll is positive on the

exterior of that domain and negative in its interithen the sign that one takes in
equation §7) or equationg9) is the one that makes tipequal to the direction cosines
or the partial derivatives that we just spoke pftathe sameositivefactor.

We further letA denote the expression:

(18) A=D ay 77K,

in such a way that the characteristics are definetthe equatio = 0. One will have:

1 0A
(70) Z ax 7T :__IT )

and consequently:

Zur=Ta fine{Ton - Eafcas

0z 0A 1 JudA
Y ——-=2) ——+Luz

axaq_zz 0x 077
_ 0a,

72 L= awm -5 7%

(72 D a7 §77,an

(7D
1

==u
2
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Now introduce, with d’Adhémar*), the direction whose direction cosines are
proportional to the quantitie®A / d77 , and which will be called theonormalto dS in
other words, the direction that is defined by the proposti

dy _ dx, _ _ dx _1
(73 1A 10A " 10A 1no
2671 2671 2671n

in whichs is a parameter ardis an arbitrary quantity that we may, for examplepdse

of in such a manner the largest of the rat®¥, 7a/h, ..., 7m/h — and consequently, the
largest of the ratiodx / ds, ..., dx,/ ds(*®) — has an absolute value that lies between two
finite, positive, non-zero limits (for example, if ®takesdx / ds ..., dx,/ dsto be the
direction cosines of the aforementioned direction).

From its very definition, the conormal i¥)( the conjugate diameter of the tangent
plane todSwith respect to the characteristic cone (which gesented by the tangential
equationA = 0).

It is tangent to the elemedS when that element is characteristic, and only in this
case (as one sees upon multiplying the terms of théioinac(73) by 7z, 73, ..., 7,
respectively, and then adding); it is nothing but the baxtaristic direction that is
tangent to that element.

By means of the preceding nomenclature and fornil €quation §7) may be
written:

m‘mj‘u}“(z) dx dx--- dx

7 =[S ) g a0

333 — If we wish to determine the functiorand the multiplicityS, in such a manner
that the values afl and its derivatives 08, can be eliminated from this result then first
of all we must have that if and its derivatives are non-null on that same miditip (%)

(*®) C.R. Ac. S¢11 February 1901.
(*°) At least, if one supposes that the quadratic fértias a non-zero discriminant in the domain
under consideration, and, in any case, on any simple chastct

(*°) See COULON, thesis, pp. 35.
(**) On the other handj (if it not identically null) may not be annulled at thame time as its first
derivatives orf5, unless it is characteristic. Indeed, the solution @cGhuchy problem is unique for a hon-
characteristic multiplicity. This is what we esiabkd before upon supposing that the unknown is analytic
and holomorphic. Fau continuous and differentiable up to a certain order, buainalytic, the same fact
will result from the extension (to the casendhdependent variables) of a proof of Holmgren (See note 1 at
the end of this work).

What finally remains is the case wh&es a singular multiplicity fou. However, as we shall verify
later on (n0342), this case will no longer present itself (at leastthe usual types of singularity) ¥ is
not characteristic.
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then that multiplicity must be characteristic. @r bther hand, if this is not the case then
the preceding formula will contain, on the one hand,lees ofz, and, on the other,
those of its conormal derivative, which will be erirendependent of each other since
the conormal will be exterior to the surface.

Suppose tha§ is characteristic, and, first taking the case ohaf 3, referS to
curvilinear coordinates, one of which, is constant on the bicharacteristics, whereas the
others will define the position of a variable point on eachha&se curves, the derivatives
dx / dsall being finite and not all infinitely small, fromelconvention that was made on
h in the preceding no. Then, in the right-hand sidé7df the portion that relates &,
namely:

(75) jj{ ( d—z—z_j+ Lu% d d,

may be transformed by integration by parts into a sinmpégral:

(76) jhuz o))

that is taken along the contduin S, combined with the following one:

(77) jjz{zh—+ (dz Lﬂd/l d.

We choose the functiom in such a manner that it verifies, on each bicharati®r
the differential equation:

(78 2h%+ (ﬂ'— Lj: 0,
ds ds

which determiness by a quadrature, except for a constant factor oingt may choose
arbitrarily for each value df

All of this obviously persists for an arbitrany One will have only — 2 coordinates
A (the coordinates still being unique) and the contolirof S; will no longer be a curve,
but ann — 2-fold extended multiplicity. The integral ov8r reduces to am — 2-fold
integral:

(76) [[--[husdh, o, o,

that is taken ovef, combined with an integral that is analogous @),(which will
disappear at the moment when we determibyg the differential equatiory§).

334 - Up till now, we have allowe&, to be arbitrary. Now, suppose that one takes
S to be the characteristic conditthat has a definite poi@ for its vertex.

In this case, it results fron7§) thatu must be infinite aD. Indeed, suppose, to fix
ideas, that the parametehas been chosen on each bicharacteristic in sat@dmaer that
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it is annulled at that point. Thus, X, ..., X, must be equal to the coordinatesOofor s

= 0, no matter what the parametdisA,, ..., An» are, and their derivatives with respect
to these parameters are null as a consequence of dee ofs. The functional
determinantsz of then — 1 arbitrary coordinateswith respect to tha — 2 parameterd
ands are therefore of ordef ~2, and the same is true far as well as, if (as we have
agreed upon above) we take that quantity to be of orderegteansz .

For example, fon = 3 it is clear that if the points of a cone are repnéed by their
distance from the vertex and a parameter that defiregy¢nerator then the surface
element of the cone will contain the first of thése quantities as a factor.

If h has order greater tham then the ratiorL/h is finite atO. The quadrature to
which we are then led of the differential equati@8)( namely:

1(dn
I-R(E—L)ds:iejz%ds

u = e )
Jh

then gives an infinite result of ordgn — 2)/2.

Under these conditions, in order to apply the amedntal formula we subtract from
our volume integral the part that is immediately
close to the poin®O. If we again put ourselves in
the case oh = 3 then a small portion of the conoid
C will thus be removed, a portion that is bounde
by a curvey (fig. 22). To fix ideas, one may
assume thay is the intersection of the cono@
with a spherez with centerO and very small
radius.

S will thus have two frontiers: its intersection
I with S and the multiplicityy. It is along these
two frontiers that one must take time— 2-fold
integral (/6), which reduces to7d) by means of the
differential equationq8).

That integral is known alorng since one knows and its first derivatives.

One will thus have the expression foby a natural generalization of the Riemann
method if, the functioru being regular throughout the volume of integratiaith the
exception of a neighborhood & and the radius o tending to zero, the integra@?®),
when taken ovek, and added to the integrdlg), when taken ovey, reduces ta@y .

335 - However, things do not happen exactly that wdsor example, consider
equation 62). In the category of equations that we are eomiag at the moment it was
the first one for which the Cauchy problem was ed)\thanks to the work of Poisson and
Kirchhoff. The independent variables are thus fmunumber, the first three of which,
which represent Cartesian coordinates in ordinpags, will be called;, %, X3, whereas
we will continue to denote the fourth onetbyWe suppose th& has the equation= 0,
in such a way that one must be given conditions:
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z=f1

for t = 0, wherd andf; are known functions o, X2, X3 .
The method that is employed for expressing the valadarfx; =x7, x; =X, X3 =xJ,
t =to as a function of these givens consists of taking:

u= EF(r + at),
r

F being an arbitrary function, anddenoting the distance (in ordinary space) from the
point (x3, Xz, Xs) to the point(x’, X, X°):

r= V0 ) + (%= %)+ (%= D)7

This quantity indeed satisfies the adjoint equatiovhich is identical to the one
proposed here. It likewise verifies conditiof8) for any functionF. Indeed, on the
characteristic cone it is proportional ta,14nd it precisely such a proportionality that
suggests the differential equatiof8).

However, this function is not uniquely singulas the preceding theory demands) at

only one point of the four-dimensional space. ket is infinite forx, =x7, X =X; , X3
=x; for anyt, and not uniquely for the given valtigthat corresponds to the vert@xof
the characteristic cone. We must therefore subtiraen our volume integral, not

exclusively the immediate neighborhood of the wedéthe cone, but, for example, the
setrof points ki, Xz, X3) that satisfy the inequality:

(% =X)+ (%= X)*+(x=- R <72

Conforming to the convention of nt0O0 (cont.), that region is represented in figure
23 by the interior of a cylinder (to which it reduces if one considers only the
coordinates, X, andt, the variables having been suppressed).

On our cone, the frontierof the regionr will intercept the multiplicityy (which will
be nothing but the surface of a sphere of radwith t = to — &/a) and a multiplicityy (a
sphere of radius with t = 0) onS,

Here, since the polynomi#&l(z) has the expression:

1 0%z
F2 =Az——,
@ a’® ot?
and the characteristic conoid is:

(4= %)+ (%= %)+ (%= %) *—at—to)*= 0,
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the corresponding bicharacteristics are nothing but thergens.

Fig. 23

We thus obtain the system of curvilinear coordinateCahat is required by the
preceding argument by employing (in ordinary space) polar cwiedi with originO;
i.e., by setting:

X; =X + I sinA; cosAy, X2 =X + I Sin Ay sin A, X3 =XJ+ I COS Ay,
(OSA]_SH,' OSﬂzSZH).

We may then take=r, and we easily find that:

h:rzsin/ll
a

Under these conditions, being given the formula7@), the triple integral ovef
will, by virtue of the calculations, reduce to thauble integral:

rauz ruz
(80) [

—sinAdA d4, :HTdQ

(dQ = sinA; dA; dA; being an element of a sphere of radius 1), wisctaken over the
multiplicities I andy, successively.

The integral ovelS takes a particularly simple form when (as one espp) this
multiplicity hast = O for its equation. If we lgb(r) and¢:(r) denote the mean values for
t = 0 over a sphere with a cente(>at X0, x)and radiug of the functions andf; thatz

andoz /dt reduce to fot = 0, namely:

¢5(r):i f (X’ +rsinA, cost, x3+r siml, sid, x2+r cos, )sihdAdA
4]7_ Xl 1 2 2 1 2 *3 1 1 2

A0 =1 f (XX +rsinA, cost, x3+r sim, sid, x%+r cos, )sihdAdAa
4]7_ lxl 1 2 2 1 2 3 1 T z
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then this integral becomes:

S [u% - 22 ax g a2 [ r[F () -8 ()9t e

or, by means of an obvious integration by parts:

—Hj( %—z—j dx dx dx=

= ~4,F @) (a) + T F(E)p(e)+ 7 [ FOIr(r) +a-- (r9)Ndr

an expression in which the first termd sty F(aty) #(aty) will annihilate the integral80)
over[ precisely.

Now, if € tends to zero then the second term of the pregedipression also
becomes infinitely small, and the same is truelierintegral 80) over y; sincer?u tends
to zero withr.

Finally, consider the integral over This integral is:

Il 25 -u3 e

where the double integral is taken over the surtsca sphere of radius (¢ dQ being
the area element of that sphere). It will not hawguantity that is proportional @@ for
its a limit, but rather (sinc@u/dt has — I F(at) for its principal part) the simple integral:

—4ﬂj zF(at)dt

taken from O tdo, and forx; =x, X% =X, X3 = X .
One ultimately finds that:

0

[ F(r)[r¢5l(r)+a—(r¢(r ))}dr -[‘zF @ydt=0

However, this result simplifies considerably, tketo the fact that the functidhthat
appears in the preceding formulas is arbitraryde&d, upon exchangingandat in the
first integral, one may write:

(81) j; F(at)[t¢1(at)+%(t¢(at))— z} di=0.
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Now, it results from a classical argument from tfadculus of variations that an
equality of the form &1) might not be true for an arbitrary functiénif one does not
have for any value df

t[gu(at) +ag'(a)] + g(at) —z=0.

In particular, this is true fdr=t,, and one has:

(82 20 = p(ato) +1o [#1(alo) + ag'(alo)] -

Here, one sees that the valuezpis expressed, not as a function of all of the values
that z and 0z/0t take onS in the entire interior of the characteristic cahdiut only the
values that are taken by these quantibieshe conoid. This circumstance is due to the
particular form of equation6@) and does not present itself for a second order equation
that is taken at randor¥y.

336 — We remark that from the form itself of the solutitvat we just obtained it
results that the method might not succeed in ther@idorm that was indicated in no.
334 Indeed, it will lead to an expression for the soluiiothe form that is analogous to
the right-hand side of7d), i.e., in terms of the values afandoz/dt on the entire pa%
of Sthat is interior to the characteristic conoid.

It is true that one may indeed transform the inte@3)| ihto another one that is taken
over all ofS, but in order for this to be true it is necessary thatibtegration element
contain the derivatives afandoz/ot with respect to the coordinates that are define& on
(in other words, with respect 19, Xz, X3).

In a word, the right-hand side of formu2) is irreducible to that of7d).

Thus, there might not exist a solution to equatiéf) (that verifies the various
conditions that we postulated in r884

337. — These various results have been generalized to wnynextensive categories
of equations in the works that were cited above. Weetbrourselves by pointing out
the simplest case, that of the equation:

(83 + -

which is nothing but the analogue %2 for the case of two dimensions, and for which
the Cauchy problem (the multiplici§always verifying the conditions that were imposed
in no.334) was solved by Volterra. The functiorthat was chosen by the latter is then
the one that is deduced from the quantity:

52) The supposition that one takes the multiplitityO for Sis obviously not at all essential, and the
pp p y

preceding considerations persist, with results that anewbat less simple, for an arbitra&y
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[a242 _ 2 _
(84) log at+yat-x-%

VX%

upon changingy, X, tintox; — X, X2 =X ,t—1o.

As one sees, it admits the characteristic conoid siegular surface. However, it is
easy to see that this singularity does not compromisagpkcation of our fundamental
formula: The only part that one must subtract from ¥blume integral is again the one
that is composed of the interior of a small cylindext thas as its axis, the line:

X1 = Xlz, X2 :XZZ.
The formula 74) will then give us the simple integral:

jzdt

taken along this line from= 0 tot =ty .

It only remains for us to take the derivative of thatrgiina with respect tdp in order
to obtain the value af, .

Like the solution of equatior6®), the solution thus obtained is no longer expressible
in the form of an integral that is taken over the p&&that is situated on tteurfaceof a
characteristic conoid; the values of the givens linthe interior of this cone necessarily
figure.

By contrast, one may make several remarks concerriigy sblution that are
completely similar to those of the preceding no. and dedmn this that the method
might not succeed in the form that was described i834b

338 — Furthermore, when we are concerned with the proldlatvie just spoke of,
or the one that relates to equatiél)( the preceding considerations up till now persist in
the limiting case wheré& is characteristic. For example, one may t&ke be a
characteristic conoid, as long as one is nonetheta#ent to determinein theinterior
of the this conoid.

In this case, since the conormalSwill be tangent td5 the knowledge of the values
of z on the multiplicity in question will suffice, since implies the knowledge of the
conormal derivatives.

Thus, an integral of equatiofd) or equation&3) is well-defined in the interior of a
characteristic conoid when one gives its values ondtwaoid. In particulant cannot be
annulled on the conoifexcept for the singular case, such as, for exampdeptie that
we encountered for the expressi@4)(of the preceding nowithout being identically
null in the entire interior.

This result obviously corresponds to the one that wedf@uno.172 (ch. 1V).
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339 — We likewise remark that the method can be extendédet@ase where the
linear equation has a right-hand side, i.e., where orenger equates the left-hand side

of equation §3) to zero, but to an arbitrary given functidnof xi, Xz, ..., X, . Under

these conditions, the-fold integral that figures in left-hand side of equati@d) (will no
longer be null, but its value will be known. For equati62), this will lead to
completing formula&2) with the integral:

mgdxldxz dx,,

taken over the characteristic conoid. In the caseqofation 83), one will have to
consider, not only the double integral that is taken dwercharacteristic conoid, but also
a triple integral that is taken over the volume tkanmterior to that cone.

340 — In any case, a direct calculation will show tha¢ expressions that are
obtained by the preceding method indeed verify all of &dggiired conditions, provided
that the multiplicityS satisfies the hypotheses of 381

In this case, the solution to the Cauchy problem is @lwigys possible, regardless of
whether the givens are or are not analytic.

This is no longer true if the hypotheses of 881 are not verified, such as when the
multiplicity Scuts the characteristic cone that issues from oits points. For example,
this is the situation that presents itself in the gersatadn that was given by Kirchhoff
(** of the solution in no335or in the analogous study that was carried out by \talter
(**) on equation&3).

WheneverS takes such a forma solution to the Cauchy problem ceases to be
possible, in general That is what happened with the solutions that wgven by
Kirchhoff and Volterra: an infinitude of possibility condins appeared. In reality, in the
problems that they treated one may, as one easilyrom)fgive the Cauchy data — i.e.,
and its first derivatives — on only a subsep$inceonly z is given (as in nol80-184 of
chap. IV) on the other subset. The corresponding fe@ntSare, moreover, such that the
proof of Cauchy-Kowalewski (relative to the existencex@olution for analytic givens)
is no longer applicable.

However, just as in the case where this proof is plessilior example, in the context
of equation §2), when one takeS to be the multiplicityx; = 0 — one confirms that the
possibility of the solution to the problem ceases tabe, in general, with the analyticity
of the givens if the condition of n831is not met.

341 — We confine ourselves to the previous observations orsdhgion of the
Cauchy problem, and now study another question that is glosated to the ones that
were the object of the preceding chapter.

(*®*) Zur Theorie der LichtstrahleandOptik.

(**) Sur les vibrations des corps élastiques isotrppes6 (Acta Math. t. XVIII).
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We have confirmed that the waves by which the discotiBsupropagate in a
moving medium are nothing but the characteristics of difierential equations that
determine these motions. To that effect, we are phased within the scope of the
hypotheses that were formulated in i, and from which the quantities considered and
their various derivatives must all tend to perfectlyl\defined limits on each side of the
discontinuity.

There is reason to demand that the analogous conwuge@rsist under the contrary
hypothesis, i.e., upon assuming that there is not only emisuity between two
compatible motions, but also a singularity of one os¢hmotions in its own right, such
that one of the unknowns or its derivatives becomésite. For example, this is what
we are confronted with in the solutioddj to equation §3).

The results that we arrive at will be, moreovenpartant in that they permit us to
relate the theory of waves that we have just destiiibéhe preceding chapters to the one
that we encounter in various important branches of plygarticularly acoustics and
optics.

One then knows that, instead of considering, as we Hame, the propagation of the
motion, properly speaking, i.e., the manner by whicltommencesat the various
successive points of space, one suppose that this motoaliegady commenced and
arrived at a sort of permanent state. Under thesataons] the wave surface, as we have
envisioned it in the foregoing, is no longer applicable.weler, on the other hand, the
motion under study is not arbitrary: It is a periodgriation and the wave surface is
then the locus of points in space where the phasecdfatisn is the same. Of course, as
in the foregoing, when one varies the time the setaMensurfaces in the spakEe that
correspond to the same phase is a triply-extendedpiity that represents the progress
of the wave and permits one to define the velocity opagation.

We shall justify later on why one is led to the sama@es as in the Hugoniot theory —
namely, the characteristics — and we likewise justihe tintroduction of the
bicharacteristicsthat were defined in the present chapter as possessifignttemental
properties of theaysthat one considers in physics.

342 — Therefore assume, with Delassid,(that a given second order linear
equation:

(63 FO =D an+2anp+lz=0
ik i
possesses a solution of the form:
(895 z=2ZB(MN),
whereZ, N are regular functions by which, I mean functions that are finite, continuous,

and differentiable, — but where the functi®admits a singularity foll = 0. Substituting
that quantity, it easily follows that:

(*®) Annales Scient. de 'Ec. Norm. Sup’ series, t. XllI, pp. 357, et seq., 1896.
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(86) AZPUD+[ QEQA+MZJPm)ﬂHD[HHy:Q
0% 077

the 77 being the partial derivatives OF, andA always being defined by equatials] in
no. 287, while theF', F" are the first and second derivatives of the funcpand one
has that:

0°M
ox07T

M= a
ik

+2 a7 =) -In.

We shall not exactly leave the functiBrcompletely arbitrary: We suppose that this
function is such thaF' is infinitely large with respect t6 andF" is infinitely large with
respect toF’ for I in the neighborhood of 0. This condition is sataffer all of the
usual forms for functions of one variable that are dargat the origin, such as:

F(M) =nP (p, a non-positive integer)
F(M) =logMl,
F(M) =P log M.

Under these conditions, it is clear that the comfit of F”(I) in equation §6) must
be annulled with1. One thus has (fdi = 0):

(87) A=0

andthe singular multiplicitym = 0must be a characteristic®).
The will again be true when the desired integral is nohposed of the expression
(85) exclusively, but includes an additional arbitrary regtdam.

343 — Conversely, being given a characteristic multili€i = 0 — such that, as a
consequence the left-hand side of equation is annulledlyiimd one has:

A=TA

(where A is a new regular quantity), we propose to find a solutibtine given equation

that has the form:
(89 z=ZF(M) + z,
z being a regular function.
To fix ideas, we take:
F(r) =logll.
One will then have:

(°®) This conclusion will not be invalidated & goes to zero witlil. Indeed, in that case, it is
convenient to restart the argument by repladngth Z; = Z/IN, andF(I1) with MF().
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N—r

F"(M 1
F(my n’

As a consequence, upon assuming that the termlefF' disappear, one will have
(for I = 0) the condition:

(89) z 0Z 0A

———+M-A4)Z=0.
— OX 07T

This condition may be considered to be a firseolithear partial differential equation
that the functiorz must satisfy. It is cleaP/) thatthe characteristics of that equation
will be situated on our singular surface, and aretmng but the corresponding
bicharacteristics.

Consequently, one sees that conditi8®) (elates to the distribution of values br
itself (and not its derivatives) on the hypersuefeic= 0. If one sets, as before:

(14) dy ___d6 _ o W g
OA | [ 0A
(Mj [aﬂj

(90) ya :Zoe[ (Ads

thenZ will have the value:

whereZ, is a factor that is independentsthat one must choose arbitrarily at a point of
each characteristic, moreover.

Z having been thus chosen (and assuming that égislar, moreover), the left-hand
side of the condition89) will be annulled witd1. Consequently, it will have the form:

Mp,

‘P being a regular function.

As for the logarithmic terms, the necessary anfficeent condition for them to
disappear is obviously thdtbe itself a solution of the proposed equation.
This being the case, it will remain for us to deti@e z from the equation:

(92 Hz) =-"P.
SinceP is, as we have said, a regular function, we Ildéam the general theorem#)

that this equation admits a likewise regular sofuti
To summarize, we see that it is necessary that we:

(") Compare, n332

(°®) At least, in the case where all of the calcutatiare analytic.
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1. Choose the multliplicitil = 0 to be a characteristic, conforming to the theasém
Delassus.

2. Calculate the distribution of values #on this multiplicity by means of equation
(89), or, what amounts to the same thing, by means of far(80).

3. Find a solution to the proposed equation that takegaiues thus calculated for
=0.

4. Determine a regular functianby means of equatio®7).

We know, moreover, by this procedure, that if the catauts are analytic then the
third operation is possible in an infinitude of ways.

344 — When the number of independent variables is two teitbhmic solution thus
obtained plays a fundamental role in the study of tuaeon, and this is particularly true
in the case where the characteristics are imaginary.

One may then’{), by a change of real variables, put the equation irgdotm:

0z 0z

(92 F2=0Az+ a—+b—+cz=0,
ox oy
2 2
A denoting the Laplace symbol in two varia%§+g—yzz, while a, b, care given

functions ofx, y. Under these conditions, the characteristicsxaréy = const.x +iy =
const.

We seek a uniform solution that becomes logarithmidafipite in a neighborhood
of a given pointXo, Yo).

If we suppose thad, b, c are analytic then nothing will stop us from applying the
preceding reasoning to the multiplicities:

X=X —i(y—y) =0, X=X +i(y—y) =0;

and they will be the logarithms @f- xo —i (y — ), on the one hand, and-x, +1 (y —
Vo), on the other. They will then have the form:

Zlogx =X —i(y-w]+Z [x=X+i(y -] +z.

However, one has:

logx =% —i (y —¥)] =logr —iaw
logk =X +i(y—w)]=logr+ia

upon denoting the distance between the two poxgts/d) and &, y) by r, and the angle
that this distance makes with tikeaxis by w It is clear that the solution will not be
uniform if wdoes not indeed disappear, i.e., if one does not have:

(*°) PICARD,Traité d’Analyse
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Z' =7

Thus, we ultimately have to find a solutidrto equation 42) that is defined by the
double condition of taking given values for X, —i (y — y) = 0, and other given values
for x = x +1i (y — ¥) = 0, these values being, moreover, analytic. Thiagswe have
seen, the problem that was solved by Goursat and, farage of a much larger number
of variables, by Beudon.

We thus obtain a solution of the form:

(93 2Zlogr + 7,

i.e., one of the solutions whose existence was estathlishd”icard in the special case
wherea andb are null £%. However, we have been obliged to restrict oursetoe
equations with analytic coefficients. In regard to tl@ithough we did not make that
assumption in the developments of 843 we are now applying them in the complex
domain. On the contrary, the method of Picard, whghounded upon successive
approximations, nowhere assumes the analytic natuhe aoefficients.

Nonetheless, observe that just as it does for nahdac a, b, ¢ our method leads to
the desired result in some very general cases. Indemd), c admit derivatives up to a
certain ordeip around Xo, Yo) then the Taylor formula will be applicable to thanound
this point, i.e., one may represent them by polynon@af§ yatx, y, up to quantities that
will be of order greater thgmatx —Xo, Y —Yo .

For the moment, we then replameb, c with a, £, 1 The equation will thus admit a
solutionZ of the form 03). The result of substituting in the given equation will be a
guantity that is continuous and differentiable up to opderl. It only remains for us to
augmentz with a quantityz’ that is defined by the equation:

HZ') == F2)

an equation such that the theorems of Picdjcpermit us to find a regular solution, once
we have specified the order of differentiability.

The only question — which we will not, moreover, ventireelucidate — is that of
knowing whether this order is the highest one possiblenaine is given the hypotheses
that we made on the coefficients.

The integrals of the forn®8) play the same role in the study of equat®?) that the
function logr plays in the study of the Laplace equation. Indeedsidenthe adjoint
equation to 92), namely, the equation:

(*® ) The preceding method was obtained in an independentemadnn Hedrick {Jber den
analytischen Character der Losungen von Differentialgleichun@éttingen 1901) and myself (shetice
sur les travaux scientifiques de M. Jacques Hadapfeetruary 1901, and al€ongrés international des
Mathématiciens(Paris, 1900; Gauthier-Villars, 1902).

(**) Journal de MathématiqueS" series, tome VI, 1900; pp. 138 et seq.
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g(u) =Au - i(a\u) —i(bu) +cu=0.
0x oy

Here, the formula gives:

j [ [uF(2 - (9] dxa

_J'{ d——z——[acos(N X)+ bcos(N, y)] Z}A :

S being the frontier of the planar domains being the arc length & andN being the
normal toS
However, equatiorg(u) = 0 admits a solution of the forn®3). Suppose that it

chosen in such a manner that the coefficighisZequal to 1 at the poinky( yo) (which is
possible, because from our calculatiahss necessarily non-zero at that point) and
choose it for the function.

Upon performing the integration, on the one haong an arbitrary curvé?y Sthat
surrounds the pointxg, yo), and, on the other, a circle of very small radiasing that
point for its center, one finds exactly as in tiedry of the ordinary logarithmic
potential:

1 dz du
— | su——u—+[acos(NxX)+ bcos(Ny)] zy d= . Vo).
o S{ N VAN [ (NX) (Ny)] }1 S(Xo, Yo)

This formula is completely analogous to the orat the recalled in ch. 1 (nd). As
is that context, we obviously may deduce the foillgconsequences:

An equation(92) with analytic coefficients admits only analyticgmns.

If two solutions of an equatid®2) have analytic coefficients that are defined on one
side of a line br the other and take the same values on that Vilde the same is true of
their normal derivatives, then these functionsamalytic continuations of each other.

Finally, if one recalls that the regular temthat figures in the solutior®8) may be
modified by the addition of an arbitrary regulatusion of the proposed equation then
one will be led to determine such an additive téwmthe functionu; in such a manner
that the corresponding solution:

u=Ulogr +u

of the adjoint equation is annulled on the cont§uor in such a manner that its normal
derivative is constant thereu will then play the role of a true Green functiar the
solution of the Dirichlet problem or the Neumanolgem relative to equatio®2).

345 — One may demand to see what the calculationsmbaust performed become
when the equation has real coefficients.

(®?) Or even a system of several curves, providedtittearea that they bound includes the poigt (
Yo)-
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Therefore, suppose that the variables are chosen in aunfanner that these
characteristics are= const.y = const. The quantity:

bgr:%ﬂogux—%)—xy—x»+mgux—4y+(y—xn]

must then be replaced (up to a factor of 2) by the logaithtine productX — x)(y — ).
Now, since the characteristics are parallel toatkes, the equation has (ri64) the
form:
2
0’z +a6_z+ ba—z+ cz= 0.
oxdy 0x 0y

If it is to admit the solution:

z=Zlog [X=%)(y—-W]+z

then the functiorz, itself a solution of the equation, must verify, in &, the relations
(89) on the characteristics, which reduce to the form:

a—Z+aZ:O

oy
on the characteristic= x, and:
%2 ihz=0
0x
on the characteristig=yo .
We may further tak& = 1 forx = xo, y = Yo. We then see that the functidns none

other than the Riemann function that was defingubirl71

346 — When one passes to the case of three independdéatles, the important
solutions to consider are no longer the ones that stespoke of, but the ones that are
infinite like 1k in the environment af= 0.

This leads us to give the functiérthat was introduced in the foregoing the fdfrs
1/M. However, it is easy to see that if the given equatind the characteristit = 0 are
taken in an arbitrary manner then an integral of this tyiienot exist, in general.

In order to see this, it suffices to observe thah@expression:

2=%47
Y 1

which is singular on the multiplicityl = 0, the values that are taken Byon that
multiplicity determine only the values of the singularjpyovided that upon adding ba

regular function that is annulled withi and that consequently has the foFhZ one
modifies the expressianonly in the regular quantitg.
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Now, once the coefficient ¢ - i.e., of 2% — is annulled, thanks to a choiceldf
it remains for us to make the terms ifiii/and 1M disappear. We will thus hawao
conditions on the partial derivatives, which both dffexs we have seen, and as one
painlessly verifies directly, the distribution of vaduter Z along our multiplicityl1 = 0.
In general, these two partial differential equationt mot have common solutions that
are not identically null.

By contrast, there will exist solutions of the form:

Z
Zlogn + =,
g Mn

and this is likewise easy to deduce from what we previoustlgimed. Indeed, consider
the characteristic that we start with to be pam ¢dmily of characteristics whose general
equation is:

M(x, X2, ..., %o, A) = 0.

For each value of, we may, by the preceding method, construct the solution
Zlogl +2z .

By differentiating the expression that is thus olgdiwith respect td we will have a
new solution to the equation that may be written:

This solution will thus have precisely the form thadesnanded if one does not have
orn/oA=0.

For example, upon differentiating the solutiof8)(of no.344 with respect to, and
Yo one will obtain:

P
F+Qlogr +2z;

(P andQ being regular functions, witB(xo, Yo) = 0), which was likewise considered by
Picard ).

347. — The preceding results can be generalized to theo€asearbitrary order.
By contrast, they no longer persist if the charastierconsidered is double (n284),
I.e., if it satisfies the conditions:

(**) C.R. Ac. des Sc1891.
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Indeed, suppose that this is true, and also (as one maguslyido without
diminishing the generality) that all of the multiplieg Il = const. are characteristic, in

such a way that the quantity that was denoted abowv# isyidentically null. Then, once

the term inF' is annulled the term iR may disappear only faf = 0, at least if one has
for M =0 that:
M=0.

For example, if one také$ to be the variablg, then one must have:

an=0
in equation §3).
By contrast, if this condition is verified then it s general, possible to construct
integrals that present the indicated singularity. Thies, the equation (in two
independent variables):

2 2
Az + a—(Az)+ b—(Az+ c—a +2 GI—a + e—+2 1@— % =0
0xX 0x0y 0y 0 X y

which satisfies the preceding condition, one easily ggadvy this procedure that there
exist solutions of the form:
z=r’logr [Z + z,

which play the same role for this equation as the swlstP3) do for equation9?2).

348 — One easily extends the preceding considerations tensy®f equations. For
example, suppose we have the linear system:

dYantO B> GEtD apt) bat), g g+ h+ §=0,
©) 1Y ap+Yha+Y. dr+D dp+Y. ba+d G &+ p+ T =0,
dant gty ¢ty dptd, ParDd, b &+ m+ =0,

where, as in no291, theé, n, { are unknowns and the q, r are their first and second
derivatives.

We seek a solution that is singular on the mudtigyt 1 = O in which the principal
parts of the unknowns are:

¢==F), n=HKMN), J=ZFnN),
respectively.
Since the functioifr is assumed to verify the same hypotheses as B4®the terms
in F" must disappear, and one will have, fbr O:
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=A+HB+ZC=0,
(95 ZA+HB+ZC =0,
=A"+HB'+ZC' =0,

whereA is the expressioR ax pi px andB, C, ... are the analogous expressions that are
formed as in no291

The determinant of these equations must consequentiulb€?), in such a manner
thatthe singular multiplicity must again be a characteristic

If we place ourselves under the hypotheses of28@, where the minors of the
determinant in question are non-null, and we denotdye&sre, these minors by the
notationsa, £, y; ... then equation®p) give (forll = 0):

(96) = =ap, H = fo, Z=p,

pbeing indeterminate, by means of which the left-hand sifiéisese equations will be
null with ', and consequently of the form:

KMp, KMp, K'Mp,

K, K', K" being known regular functions.

Furthermore, leE() = log I, in such a manner that one W&s/ F' = - 1/11. The
disappearance of the singular term$inn the equation that one obtains by multiplying
the first one bya, o', @”, respectively (in order to eliminat€’) furnishes an equation
that is entirely analogous to the preceding 088),(up to the replacement of the
quantitieSpnn , gnn, r'nn With =, H, Z. Moreover, if we substitute for these latter quaadit
their values 96) then it is clear that we have an equationpithat is similar to the
equation that was obtained in r293 and to which one may apply all of the preceding
conclusions that were established relative to therlatThus, thus equation will define
the distribution of values off on the singular multiplicity and will have the
bicharacteristics of the syste®vj for its characteristics.

One will thus determine the valuessfH, Z onll = 0.

349 — In order to see whether one may obtain a solutidhd problem under these
conditions, we suppose that the transformation thadeseribed in n0322323 has been
performed. In other words, our characteristics wilhbéhing butx, = 0. Furthermore,
one of our equations will no longer contain the secontvateres with respect t&,; the
other two will contain these derivatives, the one dnlyhe termp,,, and the other, only
in the termgn, (*°).

(**) There is no reason to be preoccupied with the casdiith =, H, Z go to zero with, for the

same reason as in 2. (See the note on page (?).)

(®*®*) More exactly, in order to obtain this result one nausinge for all of the multiplicities, = const.
to be characteristic and perform a change of variab&sghlefined, not by formula§%), but by formulas
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If we group our various terms according to their ordeditiérentiability with respect
to x, alone then we may write these equations in the form:

2L ¢1[ jw[ jm[az j+¢2(5)+w2(/7)+)(2(i) 0,

a” ¢1[ jw[ jm[az j+¢2(5)+w2(/7)+)(2(i) 0,
¢1’[a—j+w5[—”j "[‘V j+¢';(f)+w';(n)+x';(5) 0,
X, 0x,

where ¢y, ¢n, x1., ¢, .4, . ¢, .9, ¢, , X, denote first order linear differential polynomials,
each one of which defines a function in which appear diffigrentiations with respect to
the variables other thaq . ¢», ¢, ..., ¥, , X, are second order differential polynomials

that are likewise devoid of differentiations with resp® x, .
We must substitute the values:

(97) E==logx, + &, n=H logx, + m, {=Zlogx,+{1
for the unknowns in the equations that we just wrote. fat®r logx, must be treated as

a constant for any differentiation with respect toaaiable other tham,, and one will
obviously obtain the result:

R et @ |+ =0,
X, X | 0x, |
99) A1 26—H+¢1(_)+w1(H)+x1(2) 420,
X, X | 0x,
%[%’(E) +gH) + X)) +

in which we have written only the termslink®> and 1%, . The vanishing of the former in

the first two equations shows thatandH must be annulled witk, ; this corresponds to
formulas ©06). Under these conditions, the vanishing of teimsl/x, in the third
equation demands that one have,[ox 0, that:

Xi(Z)=0.

(53), the functionsA, B, C, A', B', C' being equalfor any system of values foi, %, ..., X, to the
coefficientsann, ban, Con, @nns B'ony C'on-
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This is the partial differential equation that we relyefound, which determines the
distribution of values of Z on the multipliciog, = 0. If it is verified then our third
equation (which reduces to the linear combination that amstoucted in the preceding
no. here) contains no other singular terms besidesitlogee terms.

Assume that this is the case for the remaining twotemqsa Since= andH are
initially null, one has:

(99 = =X Iy, H =X, Hy,

where=; andH; are new regular functions. It then follows, upon eggato zero the
terms in 1%, (which, by means of relation89), are furnished either by the terms in,1/

or by the ones itV x?) in the first two of equation98):

=1 +)(1(Z) =0,
Hy + )(i(Z) =0.

Since Z is known fok, = 0, the two preceding relations make known the initial values of
=;andH;, i.e., ofd=/ 0x, andoH / 0x,.

If we recall that=, H, Z themselves must define a solution to the given sysiem (
order to make the logarithmic terms disappear) theneselsat we are led to determine
one such solution once we are given the values of oee tinknowns and the first
derivatives of both of them on the characterigtic 0. Now, we saw in nB23 that to
these givens we may add the valueZ oh a multiplicity that is secant to the latter.

Therefore, there exist an infinitude of solutions of fibven (97) that depend upon an
arbitrary function ofn — 1 variables and a second arbitrary functiom ef 2 variables,
sinceZ may be chosen arbitrarily at any point ofren 2- fold extended multiplicity that
is situated on our characteristic and cuts each bichasdictat one point.

350 — We are led to the waves that appear in the theopgrddic motions if we
give the functiorF the form:

F() = sinuT,
M being an arbitrary parameter.

The functionF thus chosen is holomorphic, in such a way phha always between
+1 and-1. Properly speaking, it does not fall into the catedgbay we just envisioned.
Meanwhile, — and this is one notion that acquires considerable signifie in many
physical applications of analysis — since it is alwagsila in theory, it must be regarded
as beingpractically singularwheny has large values. Indeed, it enjoys a certain number
of properties that agree with those of functions providet singularities. It is always
continuous and never offers brief variations, in the labssense of the word. However,
it meanwhile passes from the value +1 to the valuevhen its independent varialle
increases from the small quantity/ 1. It has a derivative that is never infinite, but the
values of that derivative are very large with respedhbse of the function, namely, of
orderz;, the second derivatives are likewise very large compargd etc.
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From this (restricting ourselves to the case of only wnknown), if we suppose that
equation 63) has a solution of the form%:

(100 z=Zsinu + z,

and if i is very large then if the derivatives Bf Z, andz (as well as those quantities
themselves) are not very large then one must haverthhe left-hand side of equation
(86) the terms irF", which are of order?, and the terms iff’, which are of ordeg, are
annulled separately. The first of these conditions gives

(12) A=0.

and this time this will be true for any valuetefin such a manner théte multiplicities
M = constmust be characteristics.

The terms IinF' give the condition §9) with A = 0 as a consequence, upon
introducing the bicharacteristic varialdéhat is defined by equatiot4) (no.283):
dz

(101 —Z+MZ=0.
ds

Conversely, suppose that the functidmsand Z are well-defined, the former by

equation {2) and the latter by equatiod@1). The result of substituting the product Z
sin 41 in the given equation will then reduceQ@asin /A1, upon setting:

Q=F(2).
We thus have to determizeby the equation:
(102 F(z1) =—Q sinyfl.
Now, for the various second order partial differentequations (with real

characteristics) that one must integrate (compar83®), one confirms, for the equation
whose left-hand side is:

Fo=F

(where F is a given function ofi, X, ..., %), the existence of solutions that are
represented by sums effold integrals of the form:

(103 [[-]FOG %) G(X, % % Ko %) @

(°®) Nothing essential will be modified if we replace themZ sin 21 with the suniz, sin /1 +2Z,

cos1
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where G is calculateda priori, independently of the functiof, and wheredr is an
element of then-fold or n—-1-fold extended multiplicity that is described by the point
(X4, %00 %))

In order to obtain a solution of equatidi®®) we must replac& by —Q sin 1.

Supposing that the functio@andG satisfy conditions that are analogous to those of
Dirichlet, | would like to say that their total variati¢tf) over an arbitrary finite line does
not become greater than these functions themselvhs.thEory of trigonometric series
(°® then tells us that an integral of the forb®®, when taken over the functidG sin
M, is very small with respect to the values of Q and the orderof Q/

Finally, suppose th& = F(Z) has the same order of magnitud&atself. One then

sees that of the two terms of the expressifi)( the latter is very small with respect to
the former. Under these conditions, the solution thezereduces approximately to the
productZ sin 1.

That quantity proves, from its form itself, that pei® oscillations become more
rapid asy becomes greater, and the points with correspondingplazas situated on the
surfaced1 = const., i.e., on the characteristics.

351 — Now, return to the determination&6f Oncell has been choses,is subject
to the differential equatiorl(Q1).

Now, this only tells us the mutual ratios of the valagZ at the various points of the
same bicharacteristic. It does not establish anyisaldetween the values that are taken
by this function on various bicharacteristics.

For example, suppose we are given an arbitrary regfiondimensional space and
consider the set of bicharacteristics that travdraeregion. This is what one might call
a pencil of bicharacteristics.Nothing prevents us from supposing tHais non-zero on
the bicharacteristics of the pencil and null everywhere else.

From the foregoing, the bicharacteristics are theoigely the only lines that possess
this property.

Now, from this, we recognize precisely the essenti@racter by which the rays
intervene physically. It corresponds, moreover, to rigawdt least one property of the
solution 00 thatu is very large, and consequently, tkats very small. Indeed, this is
the case for oscillations that are extremely rapigth as luminous vibrations, for which
the propagation by rays is the neatest.

One must nevertheless observe that in the regioreyewh varies rapidly the
conclusions will be modified sina will cease to be negligiblaiffraction).

(") JORDAN,Cours d’Analyse2" edition, tome 1, nd7, pages 54 et seq.

(%) JORDAN,Ibid., tome II, ch. IV; PICARDTraité d’Analyse 2" edition, tome I, 2 part, ch. IX.
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ON THE CAUCHY PROBLEM AND CHARACTERISTICS

While we established (in chap. VI) that if two integsatfaces of the same Monge-
Ampére equation are tangent all along a line, which may bala characteristic, our
proof remains incomplete in one aspect: we have, in ¢emitted the case in which the
contact is of infinite order. There is thereforesma to demand that, likewise on
considering non-analytic solutions, the Cauchy problem fe@d#r determined whenever
the sequence of given values is not characteristicondf is concerned with a linear
equation with analytic and holomorphic coefficients tkiea solution has been obtained
in a manner that is as general as possible by Holm§¥emot only for a second order
equation, but also for a linear system in an arbitramlver of equations.

Such a system may, as one knows, always be reduaedoton in which all of the
equations are of first order. Moreover, if the muitiples x = const. are not
characteristic then these equations are soluble wsgfeot to the derivatives relativexp
in such a way that they have the form:

@ A= -3 A )TE-S B (9720 (=120,

in which the quantitied\, By are analytic and holomorphic functions»oéndy. If the
given lineL (on whichz, z, ..., z, are annulled) is not tangent to a characteristiba
point O, in whose vicinity we propose to study the syst#nfunctionz, then one may
assume that thg-axis is tangent at this point, since the equatmmeserve their previous
form.

One may, by an obvious transformation, alwaysuwselthe case in which there is an
inflection point atO, and assume consequently that the convexity ofioeichanges at a
side that is determined by tleaxis; the choice of side is up to us. Supposéxtoleas,
that we have chosen the one with posikyer the right side.

The adjoint system td) is:

() :%—;%(Ak,uk)—g B,y =0

or:
u

@ 09 =5~ A TS A =0

X

(°°) Ofversigt af Kongl. Vetenshaps. Akad. FérhaBdlanuary 1904, pp. 91-103.
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©) ,@i:—Bki—%-
oy

With the given system, this gives rise to the idgntit

(4) jj{iZ[uif-i(zH 7G( L)]} dxdz=j[i24u dy—; Aug d},

in which the double integral extends over an arbitrary afélaexy-plane, and the simple
integral is along the contour of this area.

The functiongB will be, like theA andB, analytic and holomorphic, and consequently
developable into a Taylor series that is ordered in poafexs— %, y — \, wherexo, Yo
denote the coordinates of an arbitrary point r@ar Moreover, the associated radii of
convergence’f) of these developments do not go below a certain fiieitl When the
point (Xo, Yo) varies in a neighborhood @. Since the corresponding functions remain
finite, any of the developments in question will admib@jorizing series of the form:

M

(5) ,
[1_X—Xoj(1_y—,yoj
r r

in whichM, r,r" are independent o, Yo.

Under these conditions, if we give the values oh the linex = xp, namely,u; = fi(y),
these values being analytic and holomorphic and their @@wvents in powers of — yp
admitting the common majorizing series:

_P
1_ y_ yO
R

(6)

(P, Rconstant), then a classical argument relating togpdifferential equations gives us
('Y the existence of a holomorphic solution to thstsm ) that takes the given values
on the linex =x,. Moreover, the developments of the functiartius obtained converge
for:

x=%<p Y-W<p,

p, p'depend oM, r, r', R, but not onP. Indeed, one may give the latter quantity an

arbitrary value upon multiplying the valuggy) by the same factor, which one finds in
the values of the unknowns, and which does not fyakeé radii of convergence of their

(") See BOREL. tecons sur les séries a termes positipes 86.

(") JORDAN. —Cours d’Analyset. lll, chap. lll. — GOURSAT,Lecons sur l'intégration des
operations dérivées partielles du premier ordpe,2-8.
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developments. For exampje,0' might be greater than the values that they would take if
one replaced all of th&y, Bk by the function%) and all of thd; by the function:

_ 1
1_ y_ yO
R

(a case in which these values may be easily writegce theu are then obtained by
direct integration).
ChooseR arbitrarily, which will permit us to calculaje o', sinceM, r, r' are known.

Finally, givexy a value that is lower in absolute value tlmaand such that the line= xg
intercepts our line at the endpoints of anR¥PC(fig. 24) that is completely situated in the
domain in which the preceding considerations ahe.va
Now suppose that the systeft) @dmits a solution
such that all of the are null on the arc, that solution
being defined in the neighborhood of that arc, and, y
particular, in the entire region between that ard #s
chord. We apply formuladf to the contour of the area P’
thus defined by taking to be the functions whose
existence we just assumed.
As for theu, they will be defined in the following O
manner: LetF(y) be the sequence of values that are
taken byz along the line segment. We may find (for

each value of) a polynomialfi(y) that has, withF;, a P
differenceg; that is everywhere lower in absolute value \
than a numbet that is small as one desires.

We take they to be a solution of the adjoint system Fig. 24

such that theu; reduce tofi(y) on the line. Since
obviously the polynomials may always be regardeddmitting majorants of the form
(6), theu; will exist and will be analytic and holomorphicati of our integration area.

In the right-hand side o#l, the integral over the aRP will be null, since all of the
are annulled along that arc. On the chorB®f, sincedx is null the integration element
reduces to:

2uzdy=dy) Ff :dy[z F+> F¢ }

Letl be the integrajl[ZE(y)z} dy, H, the maximum of the modulus Bf, andl, the

length ofPP. It is clear that the integral considered wilfeli from | by a quantity that
is less thameH|. It may therefore be null only if one has:

nHI
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Since¢ is arbitrarily small, one may always assume that itiegjuality is satisfied,
and consequently the formula will lead to a contradictialess one does not have O;
i.e., unless not all of thié are identically null. 1t must therefore be the cted one has:

Z1=2=..=72,=0,

at least everywhere to the right bf since the abscissg is arbitrary, except for the
condition thatx < p.

In order to establish the same conclusion for the pamthe left oL, it will suffice
to modify the sense of the convexity of that line by ange of variables.

The foregoing argument may be generalized to the chae arbitrary number of
variables. If one has, for example, three of thivan the Cauchy givens will relate to a
surface, on which it will suffice to give (by a changevafiables) curvatures that are of
the same sign and different from zero.

On the other hand, one may reduce the case of aragyl®juation to that of a linear
equation by means of the following lemma:

Let Hx, X2, ..., Xm) be a function that admits continuous partial derivatives up to a
certain order p in a certain domain. If,y>, ..., ym denote a new sequence of variables
that are the same in number as the former one then the difference:

F(yl, y21 saay ym) - F(Xl, X2, caay Xm)
may be put into the form:

(Y1—=X1) @1+ (Y2 —X%) @2+ ... +(Ym—Xm) Pm,

in which ¢1, @, ..., §m denote functions of1 XXz, ..., Xm, Wi, Y2, ..., Ym that are
continuous, along with all of their derivatives up to orderh —

In order to prove this proposition, one begins by assgrithiatm = 1. One verifies
without difficulty that for anF that is continuous, along with all of its figstderivatives,
the function:

F(yl) - F(Xl)

Yi™X%X

is continuous, as well as its partial derivativethwespect tog andy;, up to ordep — 1.
In order to pass to the general case, it will isaffto apply the conclusion thus
obtained to each of the terms in the sum:

[F(y1, X2, X3, ..., Xm) — F(X1, X2, X3, ..., Xm)]
+ [F(Y1, Y2, X3, «..y Xm) — F(Y1, X2, X3, ..., Xm)] + ...
+[F(yn Y2, -, Ym) = F(Yn Y2, -0y Yme1, Xm)] -

If F is analytic, as well, then the same thing willthee for @i, @, ..., ¢m.
Forxi =yi, X2=V¥2, ..., Xm = ¥Ym, these functions obviously have the value:
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_0oF

"o (=12 ..m.

(7) 7

Having said this, let:
8 FQ=Fxy,z2p,q,r1,8)t=0
be a second order partial differential equation thanhdef as a function ok andy, and

let zand Z= z + dz be two integrals of that equation that coincide alaridp their
derivatives all along a certain like One will have:

Fz+u=F2=0.
From the preceding lemma, the relation:

ou 0%u 0%u 0%u
—, , St , B -F(x,vy,z,p,0,r,s)EOQ
ady 90X 9xdy a;?j .y 2P q.rs)

ou
F(x,y,z+ u p+&, ot

may be put into the form:

2 2 2
©) adUiop0U 0, 5q0U, 50Uy =0,
ox oxoy 0y ox 0y

in which a, b, ..., fare continuous differentiable functions xfy, of z, u and their
derivatives; i.e. (ifz andu are themselves assumed to be differentiable up totaircer
order), continuous differentiable functionsxadndy.

All of this therefore amounts to knowing whether tive¢ar equation it may admit
a null integral, along with its first and second detxes all along a particular linke
without being identically null — or, at least, in allaoregion surrounding.

We remark that at any point wheteis null, along with its first and second
derivatives, one has, from relationd: (

(10 a:a_F’ 2:):6_F, C:a_F,

in such a way that at such a point the characterisfiegjuation 9) are tangent to those
of the proposed ones.

The question will be resolved, moreover, by Holmgreméthod of proof if equation
(9) has analytic coefficients. However, we must reguane that same thing will be true
if F itself is analytic. Indeed, as we saw at the begmnwe must assume that the
integralsz andz'do not possess this property, which will not, moreoeentain the
coefficientsa, b, ¢ ...

It will therefore be necessary to extend the Hokngargument to non-analytic linear
equations. That extension has been made in only oneigagdenow: the one in which
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the characteristics of the equatid@) ¢ and consequently those of the given equation —
are real and distinct. Indeed, since the argument ofind applies in this case, the
Riemann function may always be constructed by the methbdsuccessive
approximationsf). Our conclusion is therefore proved.

("*) PICARD, in DARBOUX,Lecons sur la théorie des surfacesne IV.



NOTE II

ON SLIPS IN FLUIDS

In chap. V, we saw that, other than waves (which @t in compressible fluids),
arbitrary fluids — compressible or not — may present stationary disaatige. One
knows, moreover, that they may &bsolute i.e., that two portions of the fluid may slip
over each other in the manner of two different bodies.

Ever since Helmholtz, who was the first to draw dibento that category of motion
("), they have played an important role in several hydrathjcal theories. Their
existence is invoked in order to explain various paradoxicalimstances, such as the
flow of liquids in the presence of angular walls, leg tesult that is known by the name of
the d’Alembert paradoxthe absence of resistance presented to a liquid bidatlsat is
symmetric with respect to a plane perpendicular to ttee@ibon of motion).

Nevertheless, all such explanations suffer a comotgeaction, to which we have
already alluded in the text (ch. V). Indeed, the sy tve just spoke of are possible, in
the sense that nothing (in the absence of viscosity) egpibeirpersistenceonce they
are produced between two arbitrary regions of the fluitbwever, we have seen that
their creation is impossible, at least, under the conditions thabmal hydrodynamics
demands.

If the slip velocity on a slip surface is null at a gaitar point at the instarg then it
will remain null between the same molecules for agrlinstant.

It is nevertheless essential to take into accowntehtriction that we have made on
our statement for a moment. Indeed, one recallsithie study of natural fluids there
are cases that elude the argument that we shall preseogé everything rests upon
classical equations of hydrodynamics such as we wrot@ dothis text (ch. 1l and V),
and consequently nothing precludes the production of absolstentinuities in the
course of motion.

They are the ones in which although the pressure vanisingses are momentarily
created in the fluid mass considered. In general, tbagities appear near eddies in
which the molecules that belong to the differentargimix together in such a way that it
becomes impossible to assume the hypothesis of cagtofuno. 45 at any point.

What we shall therefore prove is simply that sucmaudarity (or all other analogous
ones, provided that the hypothesis that served as tlie foagational hydrodynamics
ceases to be valid¥), is necessary in order for a slip to be produced iarhitrary time
interval of motion if it did not exist before thaténval.

(") Monatsber. der Berl. Ac. der Wissens@3 April 1868.

(") The general equations of hydrodynamics are likemisdified in the case of friction. However,
they may no longer be invoked in order to explain thatme of slips because they have the opposite
effect of destroying that which made them exist to begih. wi
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The proof rests upon the fact that was stated irR#dthat (under the fundamental
hypotheses in question) to each instant of a relatigetls¢ acceleration jump is normal
to the surfac& along which the discontinuity is defined.

We propose to construct the differential equations thatess this condition.

Recalling the same notations as in 249 we let & 17 denote the curvilinear
coordinates orS, which is regarded as being in its initial st&e The Cartesian
coordinate, y, zof a molecule ofS that belongs to the regioh will be functions of
& n, and timet:

x=x(&,n,1),
1 y=¥(.n,1),
z=2%¢,n,1).

The same will be true for the coordinates/, Z of a molecule that belongs to region
2. However, the expressions will be different intive cases. Since there is a slip along
Sthe molecule in region 1 that has the curvilineaordinate<, 7 in the initial state will
have, at the instant the coordinates in region 2 that wétg' in the initial state (which
are generally different from the former coordinates & andy’ are given therf and 7
will be functions oft, and it will suffice to substitute them in equao() in order to
describe the motion of the moleculé,(y, 2).

These are the functions that we must study.

The acceleration of the molecube, , 2 will be obtained by twice differentiating
formulas () with respect td, without varyingé ands; it will have the components:

9°x 0%y 0%z

ot2 ' at? ' ot?

On the contrary, the acceleration of the mole¢uley, Z) is obtained by substituting
&, n for their values as functions tfit will have the components:

di? o> 9f d? adn d? af2\ di) afdn dt dt o
2 2

+2 IX £+2 97X

a&dt dt  ~andt dt

2 2 2 2 2 2 2 2 2

d’x _o°x, ox &€ ax dn o d,‘j 40 0°X & 00 f_qj
dt
d7

dt dt

2 2
0y dé , 0y &7
a&dt dt o dt dt

d’y _o%y oy d%  dy d2/7+62y[jj2+2 aZy_ef;cuﬁ{_djz
dZ o7 of dt on d o0&’ 0F0n dt dt o’
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d*Z 0’z 9z f¢ 9z dp, 0° dj2+2 0’z 8 .l 9’ f_ajf
d€ o 0Z dt on dt 0 0éan dt dt an’\ d
o Oz dE 0%z oy
oFdt dt  “opdt dt

In order to obtain the components of the accelergtimp on the right-hand side of

2 2 2
these expressions, it will suffice to shift the tegn% 0y g 5

say that the segment thus obtained is normSIllp saylng that it is perpendicular to the

two directions:
This gives the two relations:
dt? Z[ j dt® Z[Z;gﬁ ( OE) z(gfngzj
e[ 2
22 e P om0
w2l (o) (3] 257
ifi?i(ﬁf,a?aﬁ (&) =57)
225 2 5 o)
in which the}. signs signify that one must replagevith y, and there in the partial

derivatives and then add the three expressions thusiettai
Here, we see the introduction of the coefficients:

3 E = Z[g—?j - Z[S? g;j ©* Z[Z—;j ’

of the linear element:

to the left-hand side. We

(2)
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E d& + 2F dédn + G drf?

of the surfaceS at the instant considered. They are the ones that r@zseshe
coefficients of the second derivativesédnd /7 in the preceding equations.
On the other hand, their partial derivatives permittaieexpress the coefficients

of( j : dfdﬂ ( j , hamely:
dt dt dt \ dt

ox 0°x _10E ox 9°x _10E %azx _OF _ 16_6
0508 20¢" Afacan 207 o0fan> an 209&’
ox 0°x _0F 10G ox 9°x _10G 0x 0°x _10G
AEon> an 208’ “onofon 209¢& anon® 2dn’

They likewise permit us to express two of the toeints ofd—g (31’7 those md—ln

the first equation:
2
22ax 0°x _OE

9fafat ot
and those O%in the second one:

ox 0°x 3G

anonot ot

However, the same is not true for the remaining taefficients:

oX 0°X oX 0°X

(4) Y : — :
éonot an oot

Their sum may be calculated only with the aidh# toefficients J); it is equal to
oF/ot.

It is, moreover, evident priori, that one must introduce a distinct element of the
form of the surfac&in equations?). Indeed, the motion of a moleciie, y, Z) may be
regarded as the resultant of the motior§otfaken in region 1 (i.e., that of the molecule
(x, y, 2), and the motion di,y,Z) with respect toxX, y, 3. The former of these
motions may be regarded as the driving motion doedlatter as the relative motion.
Now, one knows that in the theory of relative mosipaccelerations do not compose
linearly as the velocities do. If, for exampleg ttiriving motion is that of a rigid system
then one will have to take into account the comgletary Coriolis acceleration, which
depends upon the instantaneous rotation of thersysOne must therefore attend to the
intervention of a rotation of the type that is mnetdy in question, and likewise the
Coriolis theorem that we just alluded to in ordeiirtdicate that part of the rotation that
will truly play a role. Indeed, if the rotation question is tangent 1§ since the same is
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true of the relative velocity, then the Coriolis elecation (if one assumes that it is
applicable) will give a normal complementary accelerat As we are only interested in
the vanishing of théangentialcomponents of the acceleration jump, we will need to use
only the normal component of the rotation.

It is easy to see that things happen essentially thys W suffices to decompose the
motion ofSinto a pure deformation and a rotation, as we did instband62. It is true
that instead of a spatial deformation, here we omlyeha deformation of the surface.
However, in order to reduce the latter case to thexdorone it suffices to imagine that
the surfaces drags along its normals such that they displace likd tiges. One may
then say, upon letting the symbdldenote the differentials that correspond to the
displacements in space at the instant considereageittiv, wdenote the components of
the velocity of the pointx, y, 2, and lettingg denote a quadratic form dx, dy, dzhat
the equations of n&2 may be written in the form:

1 0¢
u=— +q dx —rdy,
20(dx) | y
0¢
== +rdx—pdy,
20(dy) P
1 0¢
=———+pdx—qd
20(dz) P XTA
(u:%,v:g,w:%).
ot ot ot
Consequently, upon takingx, dy, dzto be proportional tg5 Oy 0z and then
’ e 0 08 0’
to%,ﬂ,z, in turn, one will have:
on on on

u_ox 1 0 0z 0y

06 9fat 2 (ox) o0& o0&
¢

ov_ 9’y _1 0¢ ox 0z

= = == + p—

o0& oot 26 oy 0é ¢

2

w_d'z 1 0p 3y oo

0& oot 26% o0& o0&’
¢

along with analogous equations in whi€ls replaced withy.
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Now, multiply the first three of the equatlons%y oy 62 respectively, then the
on on

last three byéa% g? gf and subtract the sum of the latter three products flee sum
of the former three. The terms that depend upon theatiges ofg are eliminated, and
what remains is:

p q r
ox 0°x X 0°x ox 0y 0z

PI2 P I2 2 & 24 - orJEG-F,
don oéat 0¢ dnoat 0§ 0& o€
ox oy o0z
on on on

in which R denotes the normal component of the rotatmry( 1.
Thus equation2j may finally be written:

d_%:Fd_mz{a_E(%z+26_E§ﬂ+(za_F_a_Gj(ﬂﬂ

dt’ dt® 2| oé an dt dt | on o)\ dt
6_E£+( 2Rjﬁ=0,
ot dt ot dt

(5)

Fdzagdeza_F_G_EJ(ﬁf 6_G§L_G( @”
dt? dt> 2| o0& an )\ dt & dt dt an\ dt
+(aF oo jdf ,0G d7 _

ot dt ot dt

When the surfac8is fixed, along with the molecules of the region 1 Hra situated
on that surface, the two equations that we just oldai@uce to the ones that define the
motion of a point o5 in the absence of accelerating forces; this is obwaopisori since
the latter are obtained by expressing the fact thadbeleration is normal.

In any case, if the motion of the medium 1 is gitleen that of the molecule, vy, Z
is determined by equationS)( which are of the same form as the equationsyn&nhics
with two degrees of freedom, in the sense thatsteond derivatives of and ;7 are
expressed by polynomials of second degree in thederivatives F).

On the other hand, since equatioBsare always soluble with respect to these second
derivatives (sincEG — F is always positive) and admit the solutigre const.,77 =

(") If one substitutes a portion of the fluid with a salidll that is animated with the same motion
then the motion of the molecules of the fluid part widt change. Of course, it results from this that
equations §) are applicable to the surface motion of a fluid tedbaunded by an arbitrary wall. This is
true only in the case in which the motion of thatlweathe one that it takes on when one assumes that th
fluid has the same nature as the medium that it touclieis aabject to the pressures of that medium.
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const., it results from general theorems that rdlatdifferential equations thaf and
are forced to be constant if their derivatives are null at somequéat arbitrary instant
to, I.e., if there is no point at which the velocity jumps at thstiaint.

Moreover, this will be the case either at all poiotghe surfaces — in which case,
there will not be an absolute discontinuity, — or ortlgertain points of that surface, in
which case, the molecules of region 1 that are situatdtese points will coincide with
the corresponding molecules of region 2 for all ofgshlkesequent motion.
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ON THE VORTICES PRODUCED BY SHOCK WAVES

In nos.254-255 we established that the presence of second order disaibies does
not invalidate the classical theorems of hydrodynamiat riflate to the conservation of
the velocity potential or vortices. We propose to stigate the effect that is produced in
that regard when the discontinuity that is propagated fissb order. To that effect, we
employ the integral:

Judx+vdy+wdz

or circulation, which is taken around a closed contGur
This contour being entirely arbitrary, we may
suppose, to simplify, that during the instants when it 1
traverses the wave surface it only encounters that
surface at two points. A
Therefore, letA, B be those two points at
particular instant. Take the initial state to be the state
of region 1 at that instant. Furthermore,AeB be A
the initial positions of the points of contact at the C
instantt + dt. These points will be determined by the
new wave surfac;, which is situated at a distanée Fig. 25

dt from the first onex,.

In order to evaluate how much the circulation esmuring the interval timet, we
consider separately:

1. The two arcBA,A' B (fig. 25), the former of which belongs to region 1 durihg
interval of time considered and the latter of whagliongs to region 2.

2. The two little arc&A', B'Bthat pass from one state to the other during thedi.

We start with the simplest case: the one in wioiolh does not take into account the
Hugoniot objection, and which, consequently, thespure and the density are related by
Poisson’s law, or, more generally, by a relaticat thas the formi@) of no.131

The variation relative to the aBA is given by the classical considerations thateserv
to establish the vorticity theorerff). It is equal to the product df by the difference of
the values that the quantity:

(1) Q

2 P

(") KIRCHHOFF, Mécanique 15" lesson.
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takes at the point& andB, in whichV is the ponderable force potential and the term that
we denote by P is, as one knows, a function @lunder our present hypotheses.
Likewise, the variation of the integral, when takdang the ard'B', is the product
of dt with the difference of the values that the quar@tiakes at the poin® andA'.
The sum of these two terms gives (upon supposing thaotitewr is traversed in the
sense oA'B'BA):

(2 dt (Qa—Qe +Qz —Qy) =dt[Qa—Q,+ (Qs — Qy)]

in which one may abstract the tek¥mn each of the differenc&d. — Q,, Qs — Qg , Since

it is continuous during the passage of the wave.

We now occupy ourselves with the part that relatebeacarcAA . Let X, yi, z1, U,
vi, Wi be the coordinates and the components of the velati#ypoint of that arc in the
state 1; let,, Yo, 2, Uz, V2, Wo be the same quantities when considered in the state®. On
will have:

N

u,=u-A1
(3) V, =V, ~ 116,

W, =W, —V

N

and, from formulas9) of no.55:

dx, = dx + A(a dx+ B dy+y d2,
(4) dy, = dy, + u(a dx+ g dy+y d,
dz, = dz+v(a dx+ S dy+y dg,

in which A, u, v, @always denote the components of the discontinuitithe velocity of
propagation when referred to the initial state (i.e,dtate of region 1) ang £, ydenote
the direction cosines of the normal to the wave.

It then follows, upon multiplying the quantitie?) by the quantities4), respectively,
that:

dX +Vvodyp +Wodz =u;dxg +vidys +widz — (A dx + pdy; + vdz)
+Auw+uvi+vw) (adx + Sdy + ydz)
-+ £+ O(adx + Bdy + ydz) .

Sincedt is regarded as infinitely small the integrals that aken along the amsA,
for example, reduce to the corresponding differentidlse differential & dx, + Sdy; + y
dz, which is the normal projection of the a&é&', is nothing buté dt, the distance
between the two wave surfaces in the initial stalbe expressionl u; + /v + Vwy
reduces to the preceding one if we repldcg, v by their valuesa, 15, 1y (in whichl is
the magnitude of the discontinuity). It will be eqt@l & dt, whereast u; + vy + vwy
will representlv,,(in which,v,,denotes, as in ndl03 the normal component of the

velocity in state 1). The variation of the integielative toAA will therefore be:
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Up dxg +vi dys +wy dz — (U2 dxe + Vo dys + W d2)
=16{l+1)8& —Vln} dt,

The integral relative tBB will be an analogous expression, but taken with the
opposite sign.
However, in expressior2Y we may also evaluate the difference of the values o
2+ 2+
uat the point#A andA’ (or at the point8 andB") with the aid of formulas3).

One must therefore have, as in 867

> = 16v, ———.

{u2+v2+vvz} 1°6
2

The total variation of the circulation, i.e., them of the expressiong)(and &), will
then be equal to the productdifwith the quantity:

6) P2—P1+I6?(|§+1j,

relative to the poin&, minus the analogous quantity relative to the {pBin
Now use the formulas:

1=£i_
2
|=—_1
p6

(P2 = po),

of no.256. The quantity) becomes:

7) N=pP,-P, _u(ijL_lj.
2 \p p,

Under these conditions, it is clear that wheneber contourC completely passes
through region 1 the circulation along the contallt be augmented by the curvilinear
integral:

6) [nat,

in whicht represents the instant at which an arbitrary poirthe contour traverses the
wave, and the corresponding quanfitys calculated at the moment of this passage.
Suppose that the contodris very small and very close to a particular p&nf the
surfaceS. Refer it to three rectangular ax@s, On, OC¢, the first two of which are
tangent toS at O and the third of which is normal and directed todgaregion 2.t will
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then be a function of, 7, ¢, and the same will be true Bf The integral§) may then be
written:

© jn[ﬂ £+ ant —dzj

One knows that in order to obtain the componentsoaficity it suffices to apply
Stokes'’s theorem to the circulation along a closedozwnn such a manner that it then
takes the form:

(10) J‘L [p cosh, & + g cosh, ) +r cosh, Q)] d=

(in which X is an arbitrary surface that contains the contour anbdounded by the
contour, and is the normal to an arbitrary point BbYf; the quantitiep, g, rwill then be
the desired components. On will thus obtain additicoahponent$. q, r of vorticity
that are produced by the passage of the wave upon makingnieecalculations on the
integral @); one thus obtains:

“on\ o7 ) a¢\ an) D!.0)
_D(M,Y)
D({,¢$)
_D(N,Y)
D($.n)

Finally, if we take into account the fact thatstlwontour is infinitely close to the

origin then we must makgez;:g—,t]: 0 (since theé and 7 axes are tangent td)

and(;)—;:%. Hence, we finally have the desired formulas:
_1an
éon
10
11 ==
(11) 9=-53 ;
r=0.

&and 7 may be considered to be the curvilinear coordsatethe surfac& where
an arbitrary point that is close @ may be substituted for its projection onto theytar
plane atO. The values op andg then depend uniquely upon the distribution of ealu
of M onS It then results from formulad®) thata shock wave always creates vortices
by its passage if the quantityyis not constant on the wave at each instant.
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It clear, moreover, thdldl will not be constant on any randomly chosen wavéeast
when the relationship between pressure and densitytisuah that this quantity is
identically null. However, this will be true, as iasy to assure, only in the case that we
spoke of in no144, where 1pis a linear function op.

In the foregoing, we have assumed the exactnessisgdPs law. If one takes the
viewpoint of Hugoniot then the question loses all intetestause the vorticity, after
having been modified at the moment of passage of the, wmaNeontinue to be altered
in the continuous motion that follows. In fact, theantityk that figures in the relation:

p=hg"

will become variable after the discontinuity, the qutgrdp/o will cease to be an exact
differential, and the general theory of vortices wéhse to be applicable.

It is, moreover, also easy to calculate the inst@dus variation of the vorticity in
this case. One must nevertheless observe that thentaseous variation must be
combined with another continuous one. If we thus consatealways, our conto@ as
taking a certain timg to traverse the wave (which is, moreover, smading with the
dimensions ofC) then the variation of the circulation alothat will be produced
during the timer will be the combined effect of the two cases thafjuge spoke of, and
not just that of the instantaneous variation.

However, it is easy to discern the term that is glediby the latter, and which is due
to the continuous variation. Indeed, the latter ipmlier> 7, whereZ is the area that is
bounded by the contou€. It will thus be infinitely small with respect to eh
instantaneous variation, which has the ordex.of

In the expressiofl — Mg, which has always given us the elementary variatiche
circulation, up to a factadt, only one category of terms must be modified: the $arP.
Their totality 1 — P2)a — (P2 — P1)s must obviously be replaced by the difference of the
values that one obtains by the intedrap/o when one takes it fror to B on the part of
the contoulC that is situated in the state 1 or the part thsitisted in the state 2.

Let the surfac& be bounded by the conto@; and suppose, to fix ideas, that it is
constantly composed of the same molecules.olled the lineBA, along whichx cuts the
wave surfaces at the timet. We replace the difference of the two integrals tiratust
spoke of by the expression:

(12 L(‘L—Q—%}

Having done this, we alter the difference in question by atdquaf orderZ. When
this quantity is used in the integral oteduring the time intervat the result will be of
order 7, which must be negligible, from what we said above.

Let s be a parameter that corresponds to a variable poiataml increases fro to
A, for example, the arc length efwhen measured from the poidt We may take as
curvilinear coordinates ol the instantt when an arbitrary molecule of that surface is
reached by the wave and the value tifat is determined by the position of that molecule
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on the corresponding ling From the hypotheses that were made on the posititreo
én-plane, one will have, approximately:

%:O aZ—

13 , 22 =0,
(13 0s ot
and this will be true at any point of S and any instatitat is later, but by a sufficiently
small quantity, than the time intervaland consequently the arBawhich is completely
situated in region 1, will be infinitely close to thawve).

On the other hand, the integral of the quanti®),(when taken ovet, is obviously:

(19 | jz[i%——”—plj dsdt

Sincep; andp; are determined for each molecule (at the moment «lagasacross
the wave, as before) and are consequently functionseo€dbrdinates, 1, { of that

4

molecule at the instamt, one will have (sinc%—z 0):
S

op _0p 0¢ , on 01 (i=1,2)
ds 0F ds dn 0s T

If we substitute these values in the integda) (then it will suffice to employ the
relations:

o0& d> on d>
—ds dt=—- —cosf, 1), —Lds dt=—- —cosf, &),
0s 7 0. 7) 0s g 0.9

which result from equationd ), in order to put them into the form(), in which the

coefficient cosq, &) isi[i%——la—pljand cosf, ) is —i[i%——la—plj. One
6\ p, 0n p on 0\ p, 0§ p, 0§

thus has:

pcllilop_1on_0/p-n _1+_1H
6\p,0n pon on 2 (p p,

q=—1/ 10, 10 _0 | p,- n[_u_lj
6|p, 06 p o 0| 2 (o p,

r=0,

in which one must suppose that p., o1, andp, are related by the dynamical adiabatic
relation @3) of no.257. This relation will, moreover, permit us to put theeceding
formulas into the form:
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L madk midk
P (m—l)e(p 2 o P 6/7j
___R T25|09k2_T15|09k1
(m-1)86 on on
_ 1 ma 0k, a0k
q (m—1)8('02 Y P afj
_ R T25|09k2_T15|09k1
(m-1)8 & ¢

in whichT,, T, are the two absolute temperatures, as long as one has:

k]_:%, kZ:LZm,
Py P,

andR denotes the constant that figures in the rightéhaide of equatio(b) in no.125



NOTE IV

ON REFLECTION IN THE CASE OF A FIXED PISTON

We saw in chapter IV (ndl80 that if we desire to take into account both the pre-
existing motion of the gas (this motion being arbityayd the motion of the piston one
is led to a problem that is very different from theeahat corresponds to the case in
which only the initial motion is involved, and which has achn greater degree of
difficulty, thanks to the circumstance that one mdstermine a solution to the Euler
equation (equatiord4@), no.175 in terms of givens that relate to a an unknown ime
the én-plane.

Meanwhile, there is a particular case that is theegtken to this, and in which the
problem is solved without difficulty: the case in whicle thiston is immobile (or, more
generally, animated with a uniform motion).

Indeed, one will then have that the quantity (£ + #)/2 is null (or constant) at the
extremity of the tube (for exampla= 0).

On the other hand, whenis constant ang is only constant initially one always has
=ut

Under these conditionhie quantity z that is defined by form&0) of no. 170 will
be null.

We thus have to determine a solutibto the Euler equation under the following
conditions:

1. x will be null for £+ =0 (or foré + 17 equal to a given constant)2

2. The values of will be known on a certain characteristic= const., namely, the
wave for which the desired motion agrees with the gimgial motion, namely:

n=1o.

We said above (chap. VII) that such a problem is posaitdewell-defined provided
that the preceding givens agree at the point of &glane that is common to the
preceding two lines, i.e., when one givgshe valuer, and gives¢ the valueé, = 2v —
TJo-

In order to find the solution, trace out the secondatharistic & = & that passes
through the same point, and which is nothing but the synumenage of the first one
with respect to the straight lifethat is represented by the equatifohn 7 = 2v. Consider
the solutiorz of the Euler equation that takes the given valuegyfers, and values that
are equal, but with opposite signs, to the latter whené, . By this, | intend to imply
that z will have a value at the poin&y #) that is equal and opposite in sign to the one
that it takes at the point{2 7, r70) that is symmetric to the preceding one with resfect
A.
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From what we saw in nd.72 if we therefore give the valuedor é = &, on the one
hand, and, on the other, fgr= 175, then we determine an integral of the Euler equation.

Now, it is clear that this integral takes values tr@ equal and of opposite sign at
two arbitrary symmetric points, with respect 19 i.e., whose coordinates 77;',17" are
coupled by the relations:

oven
) {f n

n=22-¢.

Indeed, the transformation thus defined does mainge the partial differential
equation, but changes the signs of the initial ggve Since they change sign when one
passes from one side Afto the other, the integralis null onA. They represent the
desired solutionthe solution that one determines by formdi@ ©f no.172

It is easy to exhibit the phenomenon of reflectiorthe calculations that we just
carried out. Indeed, lat,a be the values that are taken byand w by means of the

formulas 27) of no.170 when one giveg the value’ and givesy the valuer’. The
transformation 1) that we have written will, for some instant, @spond to:

u=2vr—-u, «=w.

Since the new value a@fis Z = — z, the new values of :g—z, t :%, and ofx = aa

w ou
+ ut —z will be:

2 a=-a, t'=t
©) W = t—x.

Therefore, if the initial state of the given fluglassumed to correspondae O then
we consider a completely similar fluid mass totfilé regiora < 0, and we impress upon
this second medium a motion such that by meanslations 2) one obtains3), and the
totality of the real fluid and the fictitious onalMform a single mass whose motion will
satisfy the partial differential equation. Thistioo, which is calculated by starting with
the initial state of the given fluid, as was expé&l in no.179 will itself satisfy the
conditionx= vt for a = 0, in such a way that we may suppress the pistmler these
conditions.

Now, each molecule of the fictitious fluid is, & arbitrary instant, symmetric to the
corresponding molecule of the real fluid with redpe the barrier.

Of course, the solution thus obtained may be stiltbgethe difficulty that was pointed
out at the end of ndl79, and gives rise to the singularities that weresaered in nos.
194, and following.



Translator’'s notes

Since this book is now over one hundred years old,ntare necessary than usual to
justify why it would continue to be of interest in thereumt era, especially in light of how
much the mathematics, physics, and engineering thatingetta its subject matter has
advanced, if not exploded, since it was written. Tlueegfin these notes concerning the
translation, we shall first define the historical @tof the book’s original conception
and then point out the continuing influence that it hadhensubsequent advances in the
study of waves, in both the physical sense of that terdhthe mathematical one. After
that, some observations will be made about the maiaride individual chapters that
might make that material more meaningful to modern resader

8 1. Biographical sketch Jacques Hadamard began his long and prolific life on
December 5 of 1865 in the town of Versailles outsideasisP His father, Amédeé, was
a schoolteacher at the lodatéewhose career as a schoolteacher was not entiedies
as the family did not stay in Versailles, but moved smvémes during Jacques’s
childhood.

Jacques’s mother, Claire-Marie-Jeanne, supplementedintbene of Amédeé by
teaching piano. Although she was somewhat infamous ashdmy students for her
strictness — indeed, some students were reputed to havesbeenwveeping as they
ascended the stairs to her apartment — her students dithetess include such
celebrated musical figures as the composer Paul Dukas.

Jacques got most of his early schooling atliyeee Louis-le-Grandh Paris, where
his father eventually taught after Versailles. Intengdg, despite Jacque’s distinctions in
adulthood as a world-renowned mathematician, in his ahadhe apparently detested
his arithmetic studie§’. Indeed, one of his mathematics teachers latehercelebrated
mathematician Emile Picard, admitted that as a ybathimself only did his geometry
homework to avoid punishment! Nevertheless, young Jacques haus eventually
learned to focus on his studies, since he generally pitcednear the top of his school
in his tests in numerous subjects, and was actually tearsyahead of his other
classmates when he graduated.

As a result of this superior scholasticism, he wag ablget accepted at both the
prestigious and highly competitivEcole Polytéchniquewhich was more oriented
towards educating engineers, and Buoele Normale Supérieuravhich provided a more
philosophically-inclined education for future professors aneérotitachers. He chose to
enter the later institution, along with such distinguisfeiow students as Paul Painlevé,
Ernest Vessiot, and Eugene Cosserat. His teachensda@tclsome of the legendary
figures of French mathematics, such as Charles Her@eamjlle Jordan, Pierre Bonnet,
Gaston Darboux, Henri Poincaré, Paul Appell, PierreebyhEdouard Goursat, and the
aforementioned Picard. Hadamard completed a doctasistentitledEssai sur I'étude

"However, it is somewhat dubious that his daughter Janguehs being completely serious when she
later insisted that he never learned to count past fauafter that, there was just..”)!
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des fonctions données par leur developpement de Tiayl®92 and defended it before a
committee that was composed of Hermite, Picard, ams$ Jaubert.

In that same year, he married Louise-Anne Trénel,stenged married to her for the
remaining sixty-eight years of her life until her deah July 6 of 1960. Her contribution
to his life was inestimable, since this otherwise prolfntributor to the literature of
mathematics was nonetheless hopeless at putting his teadmlin on paper and would
dictate his research to Louise, while replacing allhef équations with the generic term
“poum” which he would fill in later. Moreover, his legendary atismindedness
included the fact that he was equally hopeless at dressimgehi and could not tie a
proper knot in his tie.

Jacques and Louise had five children, in the form of teoes, Pierre, Etienne, and
Mathieu, and two daughters, Cécile and Jacqueline. Howeeglamard’'s family life
was touched by tragedy during both World Wars, the fifstvlnich took the lives of
Pierre and Etienne, while the Second World War tookdhitathieu.

Hadamard’s career as a college professor began withusasioort-lived tutoring
appointments, and he mostly taught at the university ofl@&urx until 1897, when he
began with the faculty at th@ollége de Francewhich is where he taught when this book
was written. Later on, he accepted a position aEttwe Polytéchniquén 1912, and in
that same year was inducted as a member of the prestifiemsh Académie des
Scienceswhen the death of Poincaré created an opening fowr aneenber.

At a personal level, Hadamard had a special talentafogulages, and even felt
considerable pride in the fact that after teaching a seratnarSpanish university for a
semester, he had succeeded in giving his last lecture insBphaving learned enough of
that language over the course of the seminar. Spendinghtdhood in a musical
environment translated into the fact that as an adulhdieonly enjoyed playing the
violin, but also had an informal home orchestra Smhetimes included his colleagues,
such as Einstein. One of Hadamard’s other academiopadsesides mathematics was
botany, and he was known to have inadvertently abaxddome of his own children on a
glacier while absorbed in the collection of specimenst Sseme years, he was also quite
passionate about the politics of the Dreyfus affair.

In addition to Einstein, Hadamard’s colleagues and acaueies included not only
mathematicians and physicists, but also philosophergalitical leaders from all over
the world. The mathematicians represented some omts distinguished figures in
their respective countries, and included the Russians,efAi@rimogorov, Alexander
Liapunov, Vladimir Steklov, and Pavel Alexandrov, tk&lians Francesco Tricomi and
Vito Volterra, the Germans David Hilbert and Felix Kleithe Americans Norbert
Wiener and George Birkhoff, the Englishman G. H. Haashg the Swede Gdsta Mittag-
Leffler. Along with the French mathematicians menéd in the context of Hadamard's
education, he was also acquainted with Henri Lebesgue adcé AVeil, as well as the
physicist Paul Langevin. His non-mathematical assoastincluded the French poet
Paul Valéry, the French sociologist Emile Durkhemnd he was once introduced to
prime minister Pandit Jawaharlal Nehru of India.

Hadamard’s influence on the mathematics and mathdenraithat followed him was
incommensurable. For instance, his first student was B&almiechet, who eventually
went on to be one of the founders of functional ysial The mathematician Laurent
Schwartz, who did much to define the theory of distrimgj conceded his debt to the
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influence of Hadamard, as did Emile Borel, who had baestudent at thdé=cole
Polytechniquesome five years behind Hadamard.

The methods of the present work by Hadamard were anaemiluence on much of
the work that was done on wave theory later on, siheg served to define the most
useful way of characterizing a wave mathematically +melg, as a propagating
discontinuity in the kinematical variables at somesley differentiability— as well as
showing that such discontinuities could propagate onlygalmoharacteristic curves in
characteristic hypersurfaces. The provenance of mangecudast publications on the
subject of waves, especially those of the French satfopartial differential equations,
includes this work either explicitly or implicitly. Waeahall note some of those
publications in the process of discussing the materidbgmd in this book.

The evolution of Hadamard as a mathematician can blpaseen from a list of the
books that he published:

1898 Lecons de géométrie élémentaire: géométrie plane.

1901 La série de Taylor et son prolongement analytique
Lecons de géométrie élémentaire: géométrie dans I'espace

1903 Lecons sur la propagation des ondes et les équations de I
hydrodynamique

1910 Lecons sur le calcul des variations

1922 Lectures on Cauchy’s Problem in Linear Partial Differential Equations

1926 Cours d’analyse de I'Ecole Polytechnigfwe 1)

1930 Cours d’analyse de I'Ecole Polytechnigfe 2)

1945 The Psychology of Invention in the Mathematics Field

1965 La théorie des équations aux dérivées partideslished posthumously)

Hadamard published over four hundred research papers odigacde mathematical
topics as analytic function theory, number theory, geéoméhe calculus of variations,
and partial differential equations, as well as on ®pic physics such as mechanics,
hydrodynamics, elasticity, and waves. Consequentlydsgesometimes characterized as
a “universal mathematician,” in the sense of a mathema who could make
contributions to all of the branches of mathematies wWere important in his era; indeed,
the period that followed the turn of the Nineteenth Cenivas probably the last point in
history when such an achievement was still humanlyilpessHowever, one can see that
the study of partial differential equations occupied ft@al position in his research for
more than sixty years.

Jacques Hadamard died on October 17 of 1963, two months$hdstninety-eighth
birthday and three years after the passing of his w&angely, for all of his prolific
contributions, international renown, celebrity acqtemees, and honorary distinctions,
the family tomb aPére Lachaiseemetery in Paris does not include an inscription fer hi
name. Similarly, no street in the Latin Quarterrbdais name, and it was more than
thirty years after his death before a biography appearedhap® the most lasting
monument to his place in the history of mathematids have to be the legacy of his
contributions to the foundations of modern mathematicwdny of publications such as
the present one.
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8 2. The writing of this book. As one can see from the timeline of Hadamard’s
books that was given above, the publication of this vearrke at a rather early point in
his mathematical career, certainly as far as his subseguork on partial differential
equations was concerned.

The inspiration for the study of the title topic lftseame from lectures of Pierre
Duhem on hydrodynamics, elasticity, and acoustics that gigen during the years 1890
and 1891 while Hadamard was at the College de France.os$e tactures, Hadamard
was exposed to the fundamental work that had been déoe by Riemann, Christoffel,
Rankine, and Hugoniot on the propagation of shocks in elasgdia, such as
compressible gases.

Consequently, Hadamard gave a series of lectures anatematical aspects of the
subject during the academic years from 1898 to 1900. A prelimieport on this work
“Sur la propagation des ondes” was published inBiketin de la Société Matematique
de Francein 1901 prior to the publication of this book.

Now, shock waves pertain to discontinuities in theoe®y of a wave across a
surface. Hence, it is easy to see how this conceptdwsudgest the generalization to
discontinuities in other derivatives across surfacegsh as discontinuities in the
acceleration, and this is one of the innovationstthiatbook introduced.

The fact that such kinematical discontinuities propagébng bicharacteristics was
established in the last chapter of this book, which Had&aéer regarded as something
of a preliminary sketch of the more mathematically mgs treatment that he gave the
subject in his subsequent Yale lectures on the Cauchy prablé&22. Hence, one can
regard that later, primarily analytical, work on part@ifferential equations as a
complementary continuation to the present work, amdas superseding replacement,
since the present book is more concerned with establishindptimelations of wave
theory in continuum mechanics, not analysis. As Haddupaints out in the Preface, his
main intention was “to study how boundary conditiontugrice the motion of a fluid.”

Another historical aspect of this book that is ndirely self-evident from reading it
is the fact that before the book was written theheaiatical study of partial differential
equations had not yet matured into a particularly organizgdrous state. Rather, it
existed primarily in the form of descriptions of the noeth of solution for various
particular partial differential equations that grew ouspécific problems in physics that
seemed, at the time, otherwise unrelated. Hencewthis also served to address for the
first time the problem of developing the theory of partdferential equations more
generally as a problem in mathematical analysis, asased set of problems in applied
mathematics.

In his 1960 work on the classical field theories, thattnmdkiential figure of modern
continuum mechanics, Clifford Truesdell, listed what bastdered to be the principal
achievements of Hadamard with the publication of this book:

1. The basic lemma that distinguishes between the afiuijpy conditions for a
kinematical variable at a discontinuity surface in gahend the compatibility conditions
for particular cases.

2. The recognition that there is more than one typecarhpatibility, such as
geometric, kinematic, dynamic, energetic, and matefaihough this book only
addresses the first two).
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3. The classification of kinematical singularity sugaand the construction of a
general theory of such things.

4. The calculation of exact wave speeds in the oadmite elastic strains, when
previously they were calculated only for infinitesimahsts. Moreover, he proved that
they are all real and non-vanishing iff the equation®adilibrium for the strain are
“strongly elliptic” partial differential equations (& sense that we will clarify later).

5. The proof that “weakly singular” surfaces in gas dycangtill preserve the
circulation of the velocity vector field. Consequentdych waves do not invalidate the
theorem of Lagrange and Cauchy on velocity potentials.

6. The proof that an oblique shock wave in a gas generatiies.

7. The first rigorous definition and analysis of stapiiih the context of elastic
strains, along with the proof that when an elastic ioradis in a state of stable
equilibrium the inequality that defines strong ellipticityish still hold, except that one
must replace thex” with a “>".

8 3. Notes on Chapter I.1t is almost a tradition of the pure mathematics iwwmity
that the introductory chapter of any research monograptomposed of specialized
results that are not used until much later in the staialy,this book is no exception to that
rule. Indeed, there is no loss of comprehension imheg one’s reading of the work
with Chapter I, since the theorems of chapter | ased only occasionally in the
remainder of the book.

The theorems of this chapter are primarily concernéld the Neumann problem for
the Laplace equation, so their relationship with the problof wave motion is somewhat
peripheral and largely based in the consideration of stgheave solutions to wave
equations.

In a paper that he wrote in 1902, Hadamard introduced theepb of a well-posed
boundary-value of Cauchy problem for a partial differer@@lation, by requiring that a
well-posed problem admit a unique solution that depends conshuaipon the
boundary or Cauchy data. The problems concerning ellipti@pdifferential equations
that are well-posed in the Hadamard sense are generaligéxy-value problems.

TheDirichlet probleminvolves finding a solutiopto the Laplace equation:

. 0° .
0=Ap=0" FVEWE ihj=1,...,n

in a regionV O R" with boundarydV when one is given the values of that solution on the

boundary. By comparison, tideumann problenmvolves being given the values of the
normal derivative of the solution on the boundary. Witienboundary in question has
more than one connected component it is also possibiefioe mixed — oRobin —
boundary-value problems.

The Dirichlet problem is often the most natural probkenpose in the context of
electrostatics, since one can measure electric pdtetiti@rences directly in the
laboratory. However, in hydrodynamics, the solutioat tone is often seeking takes the
form of avelocity potentiglso since it is more natural to know the value ofjitdient—
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namely, the velocity vector field — on a boundary, oeesshow the Neumann problem
might be relevant to the subject of the present tome.

Furthermore, as long @&/ divides the space into two distinct components that ca
identified as an “interior” region and an “exteriomi&@ one can distinguish between the
interior boundary-value problem and tagterior problem. That is, one proposes to find
a function that is defined on the chosen region thafies the given partial differential
equation and agrees with a given function that is defametthe boundary.

A key result in the study of boundary-value problems fer lthplace equations is
Green’s formula:

jv (UAV-\AY) dV= jav (u.v—v U dS,

which is valid for any pair o€? functionsu andv onV. In this expressiony, = n' du /
ax andv, =n' v / OX represent the directional derivatives of the fiomgu andv in the
direction of the unit normai to the boundary hypersurface.

One then looks for undamental solutiop(X, y) to the Laplace equation, which then
satisfies, by definition:

AYXY) == AX=Y).

We point out that since the Dirac “delta functiafix —y) is not really a function, but the
mythical kernel of the evaluation functional, th@yoway that this equation is rigorously
defined is if bothy and o are defined as two-point distributions. Howew@nce this
rapidly leads away from the presentation that vegiin the book under discussion, we
refer the curious to more modern literature on lauy-value problems, such as
Stakgold [1967].

Hence, if one assumes thasatisfies the Poisson equation\dr i.e.,Au = p— andv
= yis a fundamental solution then Green’s formulasathe form:

u) == [, vix p(y dv-, y)u(y)ogs+j YU (), S

For a harmonic functiom, the source functiop vanishes, along with the first
integral. The second integral is referred to amgle-layer surface potentialhile the
final one is referred to asdmuble-layer surface potential

Since one generally cannot specify botAndu, on the same boundary components,
one then makes one or the other integral vanisplegifying the boundary behavior of
the fundamental solutiop In the case of the Dirichlet problem, one isegiu ondV so
in order to make the integral involving vanish, one specifies thgimust vanish oaV.
The resulting fundamental solution, which is deddig G(x, y), is then called th&reen
functionfor this boundary-value problem. The solutiorthie Dirchlet problem is then
given by:

= -, 2

——u(y)d,s.
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By comparison, for the Neumann problem one is gieln dV so one needs to
make the other integral vanish, and one does this by gpecthatd)y/ an, must vanish
on the boundary. Such a fundamental solution is thigdcaNeumann functigrwhich
one denotes bi(x, y), and the solution to the Neumann problem then becomes:

ue) = [ N Y(Y g €

Note that finding a fundamental solution still amts to a boundary-value problem in
the Laplace equation, so in a sense there is onhguch of a simplification. However, it
turns out that the coefficienty of the generalized Laplacian operaghro?/dxox are
intimately based in the geometry of the space siheg are the inverse matrices to the
components of the metric tensor fiegdd= gj dX dX on it. Indeed, the fundamental
solutions that one usually encounters in potetitbry (such as Duff [1950]) are usually
constructed from the geodesic distance funcé{@ny) that is associated with that metric,
at least locally. That is(X, y) equals the minimum length of the geodesics (@ngtnse
of paths whose velocity vector fields are pardllehslated) that connegtto y. Hence,
since not every pair of points in a more generaniinnian manifold can be connected
by at least one geodesic, one sees why such awctish is usually only local in scope.

In the case of electrostatics or Newtonian gravatcs in three spatial dimensions,
the fundamental solution is proportional to(%/y), wherer(x, y) = [(X —y")? + (¢ —y?)?
+0¢ = y)?*2, which represents the potentialyalue to a unit charge or mass<atvhen
one ignores the constitutive properties of the onedi

8 4. Notes on Chapter Il. The contents of this chapter constitute the fomelatal
basis for the remainder of the topics presentdatiarbook, namely, the mathematical and
physical nature of the compatibility conditions tthaust be satisfied by a wave
propagating in an elastic medium when that wavdefined by a jump discontinuity in
some kinematical derivative across a discontinytyersurface.

Section 1 of the chapter begins with a brief sumymaf the kinematics of
deformation in continuum mechanics. For the béméimodern readers, we now present
the form that such a summary might take nowadays.

One begins by mathematical characterizing two etgary physical notions: an

(extended material) objed and amediumM. Although there are many possible ways
of axiomatizing both concepts, the one that wel slmose is that of making the medium
M take the form of the vector spdteR", and the object® take the form of a

differentiable (non-singular) cubik-chain inM. That is,© is composed of a finite

numberN of embedded-dimensional cubes;: 1X - M, @, ...,ad) — g(@, ...,d"), i =
1, ..., N that are “attached” to each other along their blauies in a specified way. In
particular, we are assuming that the mapsare one-to-one, differentiable, and have a

"8 Although this vector space could be generalized to a eliffetble manifold, since the material in the
book under discussion is primarily non-relativistic angtlilian in character, it would be something of a
needless distraction to pursue that direction of inquityhe present context. However, we shall still make
occasional remarks about the use of manifold techniques generally in what follows.
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differentiable inverse when restricted to their imagEer practical purposes, the values
of k will usually be 1, 2, and 3, which corresponds to filamesusfaces, and volumes.
Rather than go into the details of the aforementiomestcuction, from now on, we will
simply confine our attention to the individuklcubes inM; i.e., N = 1. When the
extended material object in question is a fluid, suchstseam in a given channel, tke
cubes can be thought of as “fluid cells.”

In point mechanics, the object in question would beethbedding of a single point
in M in the static case and a time interival [0, 1] in the dynamic case.

Since we are restricting ourselvesMo= R", withn = 2, 3, or 4, we can express the
embedding of &-cube as a set of functional equations of the form:

X=xX@,..a), i=1,..n,

in which the functions are continuously differentialdesbme specified order.

We shall regard each individual embedding of an obj@eh M as astate of the
object. In order to define a finite deformation of tlhgeot, we then need two states: an
initial state Op and a final state);, which we then characterize by the embeddings

x(a, -, d)andx (a, -, d), respectively. Often, the initial state takes thenf of a

“natural”’ state, which might be characterized by aestéditstress equilibrium, but as long
as one deals only with changes in physical propertieseleetthe initial and final states,
it is not always necessary to start with the equilibrstate.

A finite deformatiornof the objectO, to the objectO); is then a diffeomorphismh Og

- O X x (X, ®),i=1,..,n. Thatisfis invertible, continuously differentiable,
and has a continuously differentiable inverse.
Since we already have the expressed as functions of thk ..., &, we can also

characterize the deformed coordinates functions of the forxj(a’,---,d). One can
then distinguish two different ways of characterizihg deformation: théagrangian
picture, which regards the coordinat&s as the fundamental ones, and thelerian

picture, which regards the coordinat&s as fundamental. The Lagrangian picture is

more convenient in solid mechanics, where one can sifdak initial state as being the
“natural’” state of the object, i.e., the state in ehi® external forces or moments are
present, while the Eulerian picture is more convenienluid mechanics, where the
natural state is not as well-defined, so one essentimks thepresent stateas a
reference.

As long as the manifoltl is a vector space, one can define displacement vector

field that is defined by the deformatibto be the following vector field o®:
u' (%)= x(%) = %.

One can also think of it as a vector field parameterizethéyeference coordinates |
=1, ...,kof the object itself:
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ui(al,...,d‘):xi(al,...,d‘)— ){)(é’, é)

Corresponding to the two formulations, one can dmmsitwo sets of partial
derivatives for the displacement vector field, namely:

ou _ ox o
da® 0a° o9a’’
and:
M _0% 5,
0% 0%

which refer to the differential of the embedding ance tdifferential of the
diffeomorphism, respectively. The first set of partiativatives has the advantage that it

is more intrinsic to the way that the deformation appdarthe points ofD, but the

second set has the advantage that it allows one poesx the differential of the
deformation in the form:

6_)(1:5 +a—u..

% 0%

Although one often regards the second term in the swan adinitesimal perturbation of
the identity deformation, at this point, that approximats not necessary. From now on,
we write that term in the formy; and refer to it as thdisplacement gradientlthough

we have implicitly lowered the upper index using the Elimfi metric onR", which is
customary in non-relativistic continuum mechanics.
The displacement gradient can then be decomposea istin of a matrix of trace

[0}
type, a traceless symmetric magix and an anti-symmetric matré; :

Uij = Ag; +¢ + &,
in which:

. [0}
A=3Tru=3ui, g =3(uj+u) - Aq, & =3 (Uij = Uyy).
. . - . - . - - 0 . . - . -
The scalait is called thenfinitesimal dilatation the matrixg; defines thenfinitesimal
(volume-preserving) shealand the matrixd; gives theinfinitesimal rotationthat is
associated with the deformation; we shall denote thexm&(u;; + u;;) by g; .

In order to measure the deformation of an object due thiffeomorphism, one
introduces the concept of strain, which presumes thdeexs of a metric on the
manifoldM. Since we are dealing with the non-relativistic aaddadamard’s book, it is

sufficient to regardM asR" with the Euclidian metria}, dX dx; this has the advantage
that one does not have to deal with the issue of whéthemetric orM “changes” from
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point to point independently of the objects embedded irwltich necessitates the
introduction of a connection and the consideratiotsourvature.

Generally, strain is only introduced in the Lagrangiaupe, since fluid media do
not support strains; one can, however, make correspougifgitions in the Eulerian
picture, though. The basic idea in measuring the deformafian object is to compare
the metricg; that is defined on the initial state by restrictionhwihe metric that one
obtains by “pulling back” the metric, which also has¢heponents); , on the final state
along the deformatioh This gives th&€auchy-Green finite strain tensor:

% 0% _
2E|J 6)(0 axéé_ dj = ZQ] +qur

The matrixe; is then the same as above, and is also referresitteemfinitesimal strain
tensor. Note that the strain is indifferent to the rotatiopart of the deformation, along
with the addition of a spatially homogeneous displacgmector field. That is, rigid
motions of an object do not produce strains. However,sthould note that, so far, we
have not specified that the deformation does not involvenlammogeneous rotation —
I.e., torsion.

If one wishes to go from statics to dynamics, onetnmisoduce the concept of

motion, which we take to mean a one-parameter fa@ilyt [J [0, 1] of deformations

such that®, and O, represent the initial and final state in the familjhe family is also

assumed to be continuously differentiable to some spdwfder, as well. Note that our
previous choice of objects in the form of differentidkleubes is entirely consistent with
this expansion of scope, as long as one regards themadtak-cube as &+1-cube. We
shall add the time parameter as tffec@ordinate of the cube. Furthermore, we shall

make the non-relativistic assumption thét=R x R", which amounts to the Newtonian

assumption that time works the same way for everyo@e;the time coordinateis not
deformed along with the spatial ones. Hence, a magkestthe functional form:

t=to+At, X=X X).

From this, we can associate@elocityvector field on the image of thea1-cubeO; by
way of the partial time derivative:
; 6x
V(t, X
(t, X) = R

This can also be parameterized in terms,af( ..., &) by expressing the as functions
of (t, &, ...,a").

One can analogously define theelocity gradient by the partial derivatives
ov' /da’ orov' /90X, in which we can includeas a coordinate in either case. Hence, the
temporal part of the velocity gradient becomeditiear acceleration of the deformation.
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One can also decompose the velocity gradient, in tira % , into the sum of a

(o]
tracelike matrix, a traceless symmetric magrixand an anti-symmetric org;:

Vij =P+ &+,
in which:

p=iv;, & =3(vij+vi) - 04, ay =1 (Vij — Vi),

[0}
This time, we refer t as therate of dilatation & as therate of (volume-preserving)

(o]
shear and andwy as thevorticity of the deformation; we can also refergoas therate of

strain. It is no longer necessary to distinguish betweentefi deformations and
infinitesimal ones, since all objects obtained by ddfgiation will be infinitesimal in
character, although in the finite case one will haveatovehether the resulting tensor is
defined on the initial state or the present state..

In fluid media, which do not support strains, one ususthyts with the flow velocity
vector fieldv(t, X) in the space of the motion. The flow is said ¢drtotational if the
vorticity vanishes. In that event, the velocity vedteld (or really, thecovelocity 1-form
v = v dX) will admit a global velocity potentigpwhenM is simply connecte®. Hence,

v will be the gradient of
v=0Ua@

WhenM is not simply connected; will admit velocity potentials that are defined
only in some neighborhood of each point, since everytmdiany manifold will have a
simply connected neighborhood.

Section 2 of this chapter is concerned with the naifikinematical discontinuities in
the form of jump discontinuities in some level ofm&matical derivative across a
particular hypersurface. This material is essentialltof the material that follows in the
book, since it is in this context that Hadamard giveig@ous definition to the notion of
a wave itself.

As Hadamard describes the provenance of the topicsdttion was based in earlier
work of Riemann, Christoffel, and Hugoniot. In 1860, Riemastablished the main
results on compatibility conditions associated with thscontinuity in case of shock
waves in one-dimensional gases, where a shock wavesesyis a discontinuity in the
velocity vector field. In 1877, Christoffel extended thessuits to three dimensions, and
in 1887, Hugoniot, apparently unaware of the work of RiemadnCinmistoffel, made a
more general study for higher-order discontinuitiesylmch he explicitly introduced the
idea that the conditions obtained represented compatibdipditions for the
discontinuities.

" A topological space is callesimply connectedvhen every continuous loop in that space can be
continuously deformed to a constant loop; i.e. to soanet jpf the space. For instance, any vector space is
simply connected, but all that it takes to render a plaomesimply connected is to remove a single point
from it.
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Since the discontinuities are assumed to be defingdom an isolated hypersurfae
in M, one representS by the zero hypersurface of some continuously diffeablei
functionf: _

f(t, X) = 0.

This hypersurface is, moreover, assumed to diMdmto two disjoint regiondv; and
M, which one may regard as the disturbed and undisturbedsegio

The class of function® on M that one considers are functions that are smooth on
both componentM; andM, and approach finite limit®;(x) and®(x) on the pointx [
S Hence, thgump discontinuityn ® acrossS:

[®](X) = P2A(x) = P1(X)

defines a smooth function & Hence, even though the singularity is in the function
and not the surfacg nowadays one refers $as asingular surface.
This same process of definition can be applied topthéal derivatives ofp in an

analogous manner:
ox ox |, [oX |

One finds that the jump in any derivative is not arbjtrut must satisfgeometrical
compatibility conditionghat are based in the assumption that the jun® i smoothly
distributed acros$ and not only over some lower-dimensional subset, suehset of
isolated points or curves. One sees that this willcdee iff there is no jump in the
specified derivative when you go from one poinS¢b another.

Here, it helps to know that nowadays (cf., e.g., Truesohel Toupin [1960]) the
discussion in no72 of Hadamard’s book gets phrasedHedamard’s lemmalif ® is
smooth on either side & and its restriction t& is smooth then for any continuously
differentiable curved(s) onSthe derivative of eithe; or @, alongx(s) with respect to
sis the directional derivative one usually computes:

do,, _ d¥ 0P,
ds ds ax

(The only analytical detail to be resolved in this is gassage to the one-sided limits on
either side of)

By taking the difference of these latter two equatioose finds the useful
consequence that the derivative @ vith respect te is also the tangential projection of
[0P/oX]:

A9 o= Wo,.
ds

That is, the derivative of the jump equals the jumphefderivative.
One can extend this result to partial derivatives wisipeet to any coordinate system
& a=1, .., dmSonS
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o[P] _ X [q)i]{ax cbi-
ag(a ag(a , ag(a ’
This has the immediate consequence thét i continuous acrosS— so fp] = 0 — then
since all of the vectors that are described byctw@rdinate derivatives will be tangent to
S one must conclude that any jump discontinuitydn] will have to be normal t& of
course, this is consistent with the notion that gatibility is based in the assumption that
the jump discontinuities o® are smoothly distributed acroSs

Although Hadamard does not mention the fact irbbisk, one can solve the previous
formula for [®;] by projecting it into its normal and tangentiaheponents:

, 0X 9[®]
08" 08"

[@]=[n'®, i +d

in which we have introduced the unit normal vedield n' =f; / [|f; || toSand the metric
tensor for it (i.e., the first fundamental form):
. oX ox
Gab —5” a_faa_fb’
the matrixgab is then the inverse to this matrix.
With this formula, we see that whe®][= O there must be a functiohon S such

that:
[aﬁ} =An;,
ox

A= @].

namely:

Apparently, this result had been previously obtaid®y Maxwell in the context of
electromagnetism, although Hadamard does not metttie fact.

This same logic can be applied to all higher-orderivatives analogously if one
assumes that the derivatives up to the specifietvaleve are continuous across
Hadamard defines tharder of a discontinuity to be the smallest order ofiddive that
exhibits a discontinuity, and ititmdex to be the order smallesime derivative that is
discontinuous.

For instance, if the first derivative to have anp discontinuity is in second order
then one has the compatibility condition:

2 . .
a.CD. :)lnin,-, )l:[n' n'CD,i,,-].
ox'ox
In § 3 of this chapter, Hadamard introduces thigonoof kinematical compatibility
conditions in addition to the purely geometrical ones of pinevious section. They are
based in the fact that, so far, there is nothintheprevious compatibility conditions for
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a discontinuity that would prevent the two regionsnfralrifting apart in time or
intermingling with each other. Hence, one would probablghwto add this further
constraint, although, one would probably still wish towlfor sliding contact &

This restriction would imply that the normal compotgeof the kinematical variables
must be continuous acroSs Hence, discontinuities can appear only in the tandentia
components.

One can then distinguish two types of discontinuyrfaces: stationary
discontinuities,for which the functionf = f(X) that definesS is independent of, and
propagating discontinuitiesfor which f = f(t, X) depends on. More commonly, one
refers to the propagating discontinuitiesaas/es

One notes that the stated conditions on the noderalatives work only for the case
of stationary discontinuities. For a wave, the fiostler of derivatives in which a
discontinuity can appear must have index O; that is,tiine derivatives must be
continuous. An example of a stationary discontineityorder one is given byortex
sheetswhich are surfaces across which the flow velocity setield of a moving fluid
has a jump in its transverse components.

Previously, for the case of waves, Hugoniot had calledrthtions in both regiorid;
andM; (kinematically)compatibleiff Sremains unique for all By this, he meant that if
the intersection ofS with the constant hyperplane consists of a single connected
component for one value dthen this will be true for all others; i.e., it wilbt undergo
any “topology-changing processes.” As pointed out in Jae# and Toupin [1960],
kinematically incompatible motions do not have to resu# splitting of the one surface
into more than one surface, but might also involve disappearance of the surface.
Hence, the latter authors regard kinematical compiyilais involving the persistence of
the surface, and therefore the discontinuity itselfime.

One finds that propagating discontinuities can neveg gse to a discontinuity of
order zero. Hence, the discontinuous kinematical deresfor a wave must be time
derivatives. When the discontinuity is in the norncaimponent of the first time
derivative, one refers to the wave ashock waveand when it is in the second time
derivative, one calls it aacceleration wave A common way of producing acceleration
waves is by means of forcing functions that take tin fof impulse or step functions in
time. Kinematical compatibility also implies that onannot have one derivative of
index 0 being discontinuous without all other derivativésttee same order being
discontinuous, as well. _

WhenSis defined implicitly by a level hypersurface for a fliiontsuch ag(t, x), one
can define itslowness covectdo have the components:

which makes;s,=f,, 4= 0, ...,n so the slowness covector is collinear with the nbrma
covector.

The speed of propagatiomf S is one over the norm of the spatial pariof its
slowness covector:
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R
‘\/f112+...+f’§ .

Hadamard points out that using this definitionvomeans that one will generally
obtain different values fov depending upon whether one uses spatial coordinatés for
that pertain to the initial or the present stat&ofThe difference between them is then
due to the relative velocity of displacement of the.twOf course, this “addition of
velocities” is valid only in the context of non-relastic motion, so, for instances
cannot represent a moving electromagnetic wave surface.

One defines theelocityvector fieldv’, =0, 1, ...,n of Sto be:

V=1, V=vn' = ||fi [P f. f;
with the unit normal vector field' as above. This makes:

fof f
sV =1+svV=1- L+ =0,
fo Il If

and the velocity vector field o is tangential toS at least when one looks &tas a
hypersurface in spacetime. However, when one regards ttial gatss andV' at a
particular instant of, one sees thatV' = -1, so the velocity can have parts that are both
normal and tangential t8

Since the time componenf is always equal to unity, it cannot suffer any
discontinuities, and one finds that when there jsnap discontinuity ¥] in the spatial
part of the velocity, the last formula implies, byosaction, that:

fi[V]=0

That is, the jump in the velocity must be tangentabt One similarly deduces that any
jump in acceleration must also be tangential.
In addition to its implicit definition by means ffthe moving singular surfac(or

at least a portion of it) can also be defined expjidy embedding some subsBtin Rx

R"™?, which we parameterize by the coordinatesd), | = 1, ..., n-1; as pointed out

above, the coordinates might possibly represent the coordinates of the irstatle ofS
att = 0. Hence, the points &will have coordinates of the form, (t, a)). The fact
that we are assuming an embedding implies that therdifial (i.e., Jacobian) matmax
/ 8a' has maximal rank — 1.

One can define theisplacement(or convected, material, etc.) derivative of any
function® on Swith respect td to be its total derivative:

dcb 6£ 6_x6£_¢t+u¢“
dt ot ot ox
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which is also the directional derivative ®fin the direction (1ui). This time, we have
defined the velocity vector field of Sby:

=1, d:a—x, =1, ...n
ot

Suppose thab is defined by both a functiohand an embedding, X (t, a)), so we
havef(t, X(t, @')) = 0. Taking the displacement derivativefpfvhich must necessarily
vanish, gives:

0=f+ufi=f,u.

Since we also have thiy V. vanishes, this gives us tHatu = f; V, but we cannot
actually conclude that =V, since they could differ by a vector tangent to theiajaart
of S Hence, we only have that the normal componentsafdy' agree; i.e.u" =v.

Now, if @ is singular acrosS, an application of the Hadamard lemma gives:

d _ it
a[q’] =[@d +u @],

so if® is continuous acrossthen this gives:
[Pl=-U[®]=-u[n D],

which makes the discontinuity in the time derivativefoéqual to the projection of the
discontinuity in the gradient in the directionuf
By iteration, one obtains:

[Pl =-U[P]=-tn [T D],
etc. _
In particular, wher = X for a choice of, one has:

oxX | __ "X | _ k.
{E}— U, N, {at"}_( Up)" N.

This shows what Hadamard concludes in this section: Ariatieal discontinuity is
completely determined by the knowledge of only the nurapand the unit vectan'.

One can also apply Hadamard's lemma to the compondntBeodeformation
gradientu'; . In particular, one can derive compatibility condisofor the jumps in
dilatation, shear, and rotation that follow from thigcontinuities inu' acrossS.

One starts with the fact that if the displacemeattor field has a first-order
discontinuity acrosS then for each the jump pu' / dxX] will be a normal vector t& In

fact:
— | =n'n,
ox! !
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where the unit vecton' is defined by the jump i:
A= -1/u, [V].

Hence, taking the trace of the above equation giveghas the jump in the
infinitesimal dilatations is:

o | =\
Y] IR

that is, it is the cosine of the angle between the tnit vectors. This means that a
transverse (i.e., tangential) jumpviwill not affect the dilatation.
This makes the finite dilatation take the form:

A=1+g=1- Dl
V

Although one can express this as a ratio of densitiese sve are still concerned with
only kinematics, it would be slightly premature to imluge dynamical considerations,
such as mass, at this point.

The jump in the infinitesimal shear takes the form:

2lp] = An +7n,
and the jump in the infinitesimal rotation takes therfor
2[G] =nn, - = gk (Nxn), .

Thus, longitudinal (i.e., normal) jumpswwill not affect the infinitesimal rotation.

One derives analogous results for the jump in the irglgecadient relative to the
jump in the acceleration vector.

In the general case when the motions in two regiorghtrmot be compatible,
Hadamard says that when the tendency is for the regaoimierpenetrate one calls the
discontinuity positive or compressiveand when they tend to separate, he calls them
negativeor dilative.

This clearly relates to the jump in the normal comporenthe velocities or
accelerations of the two regions, depending upon the orfiegheo discontinuity.
Furthermore, one essentially looks at the sign ofsttedar product of the jump vector
field with the normal vector field t&8 If the sign is negative then the normal component
of the jump is oppositely directed to the normal vedteld and the discontinuity is
compressive; conversely, if the sign of the scalar prodsicpositive then the
discontinuity is dilative. (One notes that thensigpf the scalar product are then opposite
to the sign of the discontinuity in both cases.)

This definition of the sign of a discontinuity is amngless in the case of stationary
discontinuities, which are neither compressive natigi.
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When a first-order discontinuity satisfies the kimical compatibility conditions,
one can relate the sign of the discontinuity tojtimp [£] in the infinitesimal dilation, as
one might suspect. It is negative for a compressiveodigwity and positive for a
dilative one, so again the sign convention of thend&fn is opposite to the natural one.
One finds that the tendency of a compressive (dilate&n.) discontinuity is to make its
motion evolve into the region of lower (higher, restepsity.

One can obtain analogous conditions for higher-ordepdisuities.

Hadamard concludes this section with some remarks osptlteng of one singular
surface into two singular surfaces that move in oppaditections in the case of
incompatible motion.

In 8 4, he points out that, so far, the compatibilityydiions involved relations
between discontinuities of orderand derivatives of other things that were also oforde
n. The question arises whether one might find relatmtga/een discontinuities of order
n and derivatives of things of order higher than In particular, one might consider
higher derivatives of the functidrthat defines the hypersurfage

One finds that nowadays it would be more illuminatirng donsider how the
differential geometry of the surfa&affected the compatibility relations for its motion.
For instance, in addition to the normal vector fieldttls defined by the gradient (or
differential) off and the first fundamental form that one obtains ftberestriction of the
background metric on the ambient space, one could alsideorthe second fundamental
form that derives from the “covariant” derivative tbie normal vector field, using the
Levi-Civita connection that is obtained from the firstndamental form, and the
curvature of that connection, which pertains to theseécovariant derivative operator.

We will not go further in these directions herecsithey rapidly leave the scope of
Hadamard'’s treatise, but one can confer more modern mok®ntinuum mechanics
that also treat the problem of compatibility, such Trukksde Toupin [1960], Thomas
[1961], and Eringen [1962].

8 5. Notes on Chapter Ill. The basic content of the third chapter of Hadamard’s
book is a summary of elementary hydrodynamics, as hendst to use it in the
subsequent chapters. As he does not introduce any persomations of his own in
this chapter, one understands that it is included largelhéosake of completeness in the
presentation. He also defines a problem that eventuadlivess into the more general
mathematical theory of characteristics, namely, gr@blem of whether one can derive
the values of the initial acceleration on a Cauchy sarf@hen one is given the Cauchy
data — viz., the initial position and normal velocitytioé surface.

In the first section of this chapter, Hadamard discugsesssues that are associated
with the equations of motion for moving fluids and the at@un of state that must be
added to make the system of equations well-determined.

Equations of motion in mechanics can be derived by mgarwith various
fundamental hypotheses. The two most common oneskmeck (or conservation) laws
and variational principles.

The concept of a balance law assumes the generabtaseopen system and then
expresses the time rate of change of the total vdlseroe system parameter in terms of
a sum of incoming and outgoing flow rates, suitably sigrigg contrast, the concept of a
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conservation law assumes the more idealized case aidsad system in which the
incoming and outgoing rates vanish, so the equation of caiger takes the form of the
vanishing of a time derivative or, equivalently, some algiebrtondition on the quantity
that is conserved. One sees that there is a glifideence between the steady state of an
open system, which means that the incoming sum equalsutigwing sum, and the
equilibrium state of a closed system, which says thaifahe incoming and outgoing
rates vanish.

In the case of the mechanical systems of interesthé present book the state
variables of the system consist of the total massatatllinear momentum. The balance
laws then consist of conservation of total miks (assuming no mass is coming in or
going out):

dM

tot —

dt

and Newton’s second law of motion:

tOt
Z comp ZFtens'

That is, the time derivative of the total momenté&m is the sum of the forces of
compression minus the sum of the forces of tensioh.coOrse, for a point mass, the
distinction between a compression and tension is mefahiogly for a given force
vector, since it amounts to a change to the opposéetdin.

When the system in question is a fluid that is confimedaime region of space, the
total quantities must resolve into integrals of densitiegach case: The total mass
resolves to a mass densjit, X), and the total linear momentum resolves to a linear
momentum density/(t, X), whereV represent the components of the flow velocity
vector field. The forces, however, take two formdklarcesf'(t, X), which act on the
mass elements of the fluid independently of the fluidoprties, and pressugt, X),
which acts on the mass element as a consequencerdigioring fluid elements. The
most common examples of bulk forces are gravity anctredeor magnetic forces that
might act on charged fluids, such as electrolytes andhplsis

As mentioned previously, one has two ways of defining time tderivative: the
Lagrangian description and the Eulerian one. In thedragan picture, the motion takes
the formx = X(t, &), where the componen# coordinatize the initial state, and the time
derivatives are simply the partial derivatives with resped¢. Hence, the equations of
motions take the form:

X oV
a, p@),  pi=fi-p;.

(t.a)

The Eulerian picture, which is more convenient thee purposes of modeling fluid
motion, follows the present state of a fluid ceb, each point of the fluid lies on a path
line X(t) and the appropriate time derivatives are the eoted (material, Lie, total, etc)
derivatives:

d_o, ,0
+

dt ot ox



Translator’s notes 343

The equations of motion are then:

do dv
EO M = y C)_' = i i
( ) dt dt P

So far, either of these systems represents four eqagiOM,) or (EOME) for five
unknowns, namelyx, o, p. Hence, one must append another equation to make the
system well-determined, and this supplemental equationlydaéks the form of an
equation of statéor the fluid itself, which might take the forms:

P =pp) or  F(po,p) =0.

In the first case, one now refers to such a fluidastropic.

The determination of an equation of state for a medsubasically a thermodynamic
problem, since one usually settles on a form for this éguaby first making
thermodynamic assumptions about the gas in question. re Mgenerally, the
thermodynamic state of the gas at a point can beideddy the (intensive) variables of
pressurg, temperaturd, specific volumer or densityp = 1A, specific internal energy
and specific entropg, which are all function oft(a) in the pipe. In general, an equation
of state amounts to a choice of hypersurface in the fimeqsional region of the space
of all (p, T, p, & 9 that is defined by the bounds that one places on eacticphy
variable. Hence, the equation of state at issue igl@teassumes that the temperature,
specific internal energy, and specific entropy areseittonstant throughout the motion or
do not affect the relationship between pressure and density.

The simplest example of an equation of state isrgbyeanincompressible fluidfor
which:

P=/ ( = constant).

The equation of state for an ideal gas is given bydftar's lawp = Kp =K'/« which
is a special case of the more general Poisson law:

p(o) =Kd"=K'&",

which is also referred to as tReisson adiabatic.Such an equation of state comes about
when one considers a gas with vanishing heat conductivitywbigh contracts or
expands adiabatically (i.e., with no change in heaterwhunder isothermal conditions
The exponenin is called theadiabatic index(see Landau and Lifschitz [1987]) and is
equal to the rati@, / ¢, of the specific heat of the gas at constant pressutteetspecific
heat of the gas at constant volume. For a monoatgascit equals 5/3 and for diatomic
gases, it equals 7/5, but in any case, it is greater thadolvadays, one also refers to
gases that obey this law jslytropic.

In general, the implicit form of an equation of statk then be:

F(o,p, T)=0.
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The assumption th&t is not also a function of the velocity, or any highmematical
variables is equivalent to the existence of thermodyog@uientialgfor the forcefi —p; ,
which is the difference between an external forcem@l and the pressure:

ax) =[ po(t. p)av,

for some appropriate functiah.

From the variational principle that the variatiminthis thermodynamic potential must
vanish for every “acceptable” variation of the statf the fluid cell, one derives the
equation of state:

_ L, 00
p=p '

From the preceding remarks, the question ariseztheh the relatiop = Ag™ must
necessarily follow from an equation of state of them F(p, p, T) = 0 under the
assumption of adiabatic compression or relaxatldadamard gives a demonstration that
thermodynamic consideration involving the specifieat of the fluid show that the
existence of a thermodynamic potential does indstablish that outcome.

However, his argument excluded the possibilityt tiwe velocity might have jump
discontinuities inside the gas, which was neces&aryhe definition of the variation of
kinetic energy.

If the fluid is neither incompressible nor an ibgas then one wonders if one can still
use the equation of stafe= AgJ" under Duhem’s assumption of the existence of a
thermodynamic potential. This question can be lvesoin the affirmative when the
velocity is continuous, and under the general apsiom in the isothermal case that the
pressure is an increasing function of density; #msounts to the statement that the
equilibrium state of the fluid is stable.

In the second section of this chapter Hadamardeadds the issue of initial and
boundary conditions for the system of partial ddfgial equations that dictate the time
evolution of the fluid state. Indeed, one sees #irace fluids are usually confined to
pipes and channels (but not, for instance, in thee cof interstellar gases), one must
define boundary conditions for the state varial@esn in the case of the Cauchyor
initial value — problem, in which one defines the initial (i.e5 tp) values of the state
variables and their time derivatives.

The boundary surfaces can be both fixed and mpwagone must assume that the
equation of the boundaries and their motions avergi. Further, one assumes that the
pressure is given on these surfaces.

The problem arises: Can one derive the initialealof the acceleration from the
Cauchy data and the equations of motion or canitf@mation be specified arbitrarily?
Indeed, this is a question of fundamental impoant the eyes of the theory of
characteristics, which the book eventually converige In particular, one assumes that
one is given:

1. The forces that act on the fluid.

2. The points of the initial surface and theiroatiies.

3. The motion of the walls and the initial pregsuon the free surfaces, along with
their time derivatives.
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One first finds that there is a fundamental diffeezbetween the special cases of a
liquid — i.e., an incompressible fluid — and a gas, or cossfse one. In the
incompressible case, the equations of motion simplify to

i av
v‘i:O, —==-p; +f.
: P at P,

The first one now says that the flow generated bywvélecity vector field must be
volume-preserving, not just mass density-preserving.

Taking the divergence of both sides of the second eaquiatiole inverting the order
of time and space differentiation, gives:

Ap = fi,i .

Of course, the resulting equation is simply Poissomnjsagon for the pressure
function. As Hadamard points out, if one is givenritbemal derivativedp/dnof p on the
boundaries then this defines a Neumann problem. Hencesaoneesort to the methods
of chapter | to solve it. However, this assumes @s®ary and sufficient condition of
possibility, namely, that the second time derivativerof elementary fluid volume must
be zero.

Once one has solved the Neumann problem pfoone can deduce the initial
acceleration from the equations of motion.

Once again, the argument presented by Hadamard assunteghéhanitial
accelerations are continuous over the initial surfaldence, one wonders if the results
remain valid for the discontinuous case of acceleratiaves. One finds that as long as
one assumes that the singular surface satisfies dhgpatibility conditions, nothing
changes, although this still assumes the continuitthefinitial velocity and its initial
gradient. Hadamard promises to return to the questiowhether this restriction is
necessary in chapter V.

When there is a free surface, along with fixed surfaitesproblem of solving fop
becomes a mixed problem; one specifiem the free surface angp/dnon the wall. One
also assumes that the pressure is positive. Henceisanéng out the possibility of
“cavitation,” which involves the formation of bubblese(j topological “point defects”) in
the fluid in regions of negative pressure.

When one is concerned with a gas, matters are somewhatimrolved. If one uses
the equation of state for density as a function ofqumesthen, since the initial density is
given, the equations of motion give the initial accaiens. _

Now, say the initial surface is given by an equatiothefformf(t, X) = 0. Two time
differentiations give an equation of the form:

2
0=fx +(i+\)‘j f.
’ at o

However, this represents a constraint on the inadeleration that contradicts the
freedom to deduce it independently of the choice of surface.
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In the chapters that follow Hadamard proposes to attetoptresolve this
contradiction.

8 6. Notes on Chapter IV. In this chapter, Hadamard first discusses the Riemann
method for modeling the propagation of discontinuity wave®ne-dimensional gas
dynamics and then discuss the form that Hugoniot gabg ithaking more definitive
thermodynamic assumptions about the gas in question.

The general picture that recurs throughout the chaptkatif a gas in a cylindrical
pipe that is closed at each end by means of pistonsdhdie given pre-assigned motions
that serve as the sources of disturbances in the gasply left stationary, so they might
serve as potential sources of reflection for the wabat propagate. The longitudinal
dimension of the pipe is described by the varighlehich ranges from O to the lendth
of the pipe.

In order to make the problem essentially one-dimenkicov®e assumes that the
dynamical variables of densiiy and pressur@ are constant across any perpendicular
cross-section of the pipe, although they may stilyweith a, as well as timé The wave
function at issue is defined by the positi§t) a) of a molecule of the gas that started out
at the positiora whent was 0; one then sees thd®D, a) = a. Equivalently, one could
consider the displacemeaft, a) = x(t, a) — a to be the wave function, as long the first
partial derivativeu, = X, — 1 did not enter explicitly. One can also introduce th
dilatation aft, @) = p/ = 0x / 0a, which allows one to equate a dynamical variable with
a kinematical one.

The one-dimensional equation of motion for the gatherabsence of external forces,
takes the general form:

R L 1op_

o’ ,00 oa

In order to proceed, one must be more specific abautngture of the gas. In
particular, one must specify an equation of spatep(p). One can also express this as a
differentiable functiorp = p(«), which one restricts to be monotone dgddw> 0.

By the chain rule:

op_0¢ aa)6¢ 6¢ +4(a a)) X
oa aa) da dw da 6

in which we are allowing(' to vary alonga, and the equation of motion becomes:

9%x 62x a9
-c*(a,w
ot (a ) oa

in which we are deviating slightly from Hadamardatation by denoting the speed of
propagation with &, instead of av.

Ha =-¢@ Jdm.
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Since w is itself a partial derivative of, one sees that the equation of motion is
generally a nonlinear one-dimensional wave equation.thé years since Hadamard
wrote this book, much progress has been made in elalwpatithe general theory of
nonlinear one-dimensional wave equations, as well as theenaf various specific cases
that grew out of fundamental problems in continuum mecbkaniClearly, wherK' is
assumed to be constant alaygeverything comes down to the natureafs a function of
a which then reverts to the thermodynamical naturbefas.

In 8 1, Hadamard treats the simplest case, wheseconstant, along witK'. (His
notation forc is &, in this case.) The resulting wave equation is linedrcam be solved
in the general form given by d’Alembert:

X(t, &) = 1[fy(a + ct) + fx(a— ct)],

in which the function$; andf, can be determined by specifying the Cauchy sgt) =
x(0, @) and px/dt]o(a) = [0x/dt](0, a). They represent travelling waves whose shape is
defined by the initial functiong(a) andf,(a) that travel with constant speed in tha
direction forf; and the +a direction forfa.

Something that Hadamard returns to throughout this chapaérnst not commonly
discussed in the modern treatments of gas dynamics is bieegrgc picture of any

solution x(t, @) to the wave equation as defining a surfac&inthat one obtains by

considering all points of the forny, @, x(t, @)) such that anda are constrained by the
physical considerations; e.¢y= 0, a [J[0, I].

In addition to initial values, we might also reatstlly wish to specify théoundary
conditions onx, in the form of specifying the time functiomt, 0) andx(t, a). For
instance, one of the pistons — say, the orge=at — might be held stationary (s, a) =
0) and one aa = 0 might be given a specified motion as a meangriginating the
disturbance that propagates away from it. Hence, weeaally dealing with something
slightly different from the Cauchy problem, namelye thnixed initial-boundary value
problem.

The question that eventually leads one to considethbery of characteristics of
wave equations more generally is the problem of wheteeinitial value §*x/0t%]o(a) of
the acceleration can be determined uniquely when onevas gne equation of motion
and a set of Cauchy data. The well-known answer tsthiis possible iff the Cauchy
data is not specified on a characteristic curve irbtipane. For the elementary case at
hand, these are the pairs of lines that are defined lyrdlary differential equations:

That is, whert is constant the characteristics are the Ik{s= a £ ct that figured in the
d’Alembert solution; hence, the functiohsandf, must be constant on the characteristic
lines. Geometrically, this means that the surfaceme@fby these solutions will be
cylinders that are generated by the lines{ ct, 0) and {, ct, 0), respectively.

One is cautioned that in spatial dimensions higher din@the characteristic equation
that defines the characteristic hypersurface will beirst-drder partial differential
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equation, not a first order ordinary one. This is furtbenfused by the fact that the
bicharacteristic curves that represent the rays of gegamal optics — or geometrical

acoustics, in the present case — must lie in the chassictéypersurface. Hence, in the
one-dimensional case, the characteristic hypersudadethe bicharacteristic curves are
essentially the same thing; we shall return to thauindiscussion of the final chapter.

A subtle and powerful link between characteristicd ahe propagation of
discontinuities is given by the fact that discontimsitin the initial acceleration can only
exist across characteristics. Consequently, discatiisucan propagate only along
characteristics. In terms of the motion of the,ghs&s means that acceleration waves
must propagate with the characteristic speed

If one uses the d’Alembert solution f&r one can express the jumps in the partial
derivatives of the dilatatiodx/0a in terms off; andf,:

0°x | _ 0°x | _ _
{@}_[fl] +H 1], {awa}-c([ f-11 .

and solving forf f,] gives:

ERLE
da c| dtda

If the jump discontinuity is iff f,] then this must vanish, so:

9°x | _ 9°x
=—-C —2 .
otoa oa
In 8 2, Hadamard comes back to the more general casasibotK’, non-constant.
From the equation of motion, one gets the compatibddgdition for an acceleration

wave.
ot? da? |’

The characteristics are still defined by the samenargidifferential equation, butis
not assumed to be a constant functiont,od)( so the characteristic curves do not have to
be straight lines, anymore.

Furthermore, the surface R¥ that a solution defines does not have to be a cylinder,

but will be, more generally, developable surfac®. Such a surface is the envelope of
some one-parameter family of planes, such as a cylordercone. Except for these two
examples, every other developable surface can be refmésan theéangent surfacdo

8 Although numerous modern treatments of the geometrpuofaces exist, a reference on

developable surfaces that is perhaps closer in spirbigaliscussion of Hadamard is the older one by
Eisenhart [1940]. In particular, the term “edge of regoeSsseems to be an older terminology.
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some differentiable curve. That is, it is the surfda is swept out by the tangent line as
it moves along the curve. Generally, such surfacdshanle two sheets, one of which is
swept out by the forward ray and the other of whickwept out by the backward ray.
They intersect along the curve itself, which was oederred to as thedge of regression
of the surface, since a transverse planar sectittrecfurface would appear to be a cusp.

If a second-order discontinuity does not satisfy tbematibility conditions above
then it will tend to split into a pair of discontinies that separate from each other with
speeds of- c. One must note that acceleration waves are ndilpesn fluid media,
only stationary second-order discontinuities.

The Riemann problem for one-dimensional gas dynamitt®ers defined by starting
with the present physical scenario and assuming thatgése is kept at constant
temperature, with a pressure that varies with length bylway of the density, and that
as one crosses a second-order discontinuity the enmbfdpg gas remains constant. One
then poses the Cauchy problem for the nonlinear wave equttat we have been
considering.

The method that Riemann used to solve the problem thesdpmvolved the
introduction of new coordinates for the wave functiags,well as transforming the wave
function itself, in such a way that the resultingnicof the wave equation is linear and the
Cauchy problem can be solved by the method of Green dunscti

In order to get a better sense for the nature oftthrsformation, one must return to
the geometry of the solution to the generalized wavet@guas a surface in the space of
variables {;, a, X) and extend this to the space of variabtes,(x, u, . For a solution,
one not only hax = x(t, a), but one also has(t, a) = x, aft, @) = X , in which the
subscripts refer to partial differentiation. This fid@rensional space projects onto the

two-dimensional space of atl @) in the usual wayR®> — R?, (t, a, X, U, @) — (t, a), So a

solution represents a “section” of this projection, Wwhiee may write in the formt,(a,
X(t, @), u(t, @), «ft, a)), namely, a section of the form &, x(t, a), x(t, a), X(t, a)).

It happens that nowadays the general theory of spacéiseoform of this five-
dimensional space in question has developed considerably gie time of Hadamard,
based on notions that were first suggested by Charles Edmasim the 1930’s, and
which go by the name of the geometryeifmanifolds(see Saunders [1989]). In the case
at hand the relevant definition is that ot-get of a differentiable function, such &son

R® at a point ofR% By definition, the 1-jef*f of f at x 0 R? is the set of all

differentiable functions that are defined in some neigibod ofx and have the same
values ag at x, along with the same values of their partial deivest. A section of the
formjY(t, @) = (t, a, f(t, &), fi(t, @), fa(t, a)) is referred to as thé-jet prolongationof the

differentiable functiorf onR? to a section of the aforementioned projection. Hewe

not all sections of that projections are representablé-@¢$ prolongations, only the
integrableones, by definition.
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The way that all of this relates to partial diffaiieh equations is that one can
represent a first order partial differential equationtfee functionx as a hypersurface in

RR® (i.e., the space of 1-jets of differentiable funcsimmR?) for some functiorr &

F(t,a, x, u, & =0.

A solutionto this partial differential equation is then a diffeiiable functionx(t, a) on
R? whose 1-jet prolongatiofif mapsR? into this hypersurface.

One can represent a second-order partial differesiadtion for the functior as a
system of first-order partial differential equations®h For instance, the wave equation
we are considering becomes the system of four equations:

oXx _ ox _ ou L,O0w_ Jw O0u _
—=u, — = ——cc—=0 - — =
ot fda ot fda ot oOa

the last of which is redundant, as it can be obtainedifigrentiating the first two. This
system can be put into the standard “conservation lawh fihat one often encounters
nowadays (see, e.g., Jeffrey and Taniuti [1964]):

Xi—AXa =0,

2
x={", a=|2 |
w 1 0
One notes that the eigenvaluestakill be * ¢, while the corresponding eigenvectors will
be along the lines generatedby ca respectively.

Now, let us return to the Riemann method of solutamtlie Cauchy problem. One
introduces th&kiemann variables (i.e., the Riemann invariants):

by setting:

{=u+y, n=u-=yx,
in which:

x=l—

o 92,
(@) * pc’

one also encounters the notatibrs u + y.
Since one has:

[i+(uic)i} J.=0
ot oa

8. 5ome good references on the subject of how jet nidsifelate to differential equations, both
ordinary and partial are Olver [1993] and Arnol’d [1988].
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one sees that the Riemann variables are constantsionpée wavehat propagates to the
left in the case of the positive sign and to thetrighthe opposite case. Such a wave
takes the form:

x=f(v) + (v o)t

for a suitable functiorf(v). Hence, they generalize the d’Alembert solutionsthe
nonlinear case.

In order to convert the wave equation into Riemanrabées, one must also perform
alLegendre transformatioan the wave function by defining:

Z(u, @ =ut+ aa—x.

Hence, one can regard the pair of variable«) as thecanonicallyconjugate variables
to the pair {, @), in the same way that conjugate momenta are assbewtegeneralized
coordinates in Hamilton mechanics. Once again, tms isoincidence, and relates to the

fact that the aforementioned first-order partial d#feial equation onR®> has

characteristic equations that reduce to the Hamilton teosafor the Hamiltonian
functionF when it does not depend upbexplicitly. We shall clarify these remarks later
when we discuss Chapter VII, as they bear upon theenafunicharacteristic curves.

Geometrically, we are replacing the representatiom whve function as a surface in
the space of allt(a, x) with a subset of the space of al] (4 zZ). However, one must be
careful since the transformation does not have todakaface in the space of4, x) to
another surface in the space § 2). It can map some developable surfaces to curves by
projecting all of the points along a generating line it of the resulting curve iru(

a 2)-space. Physically, the points of the edge of regnedsiothe developable surface
in (t, @, X)-space represent the point in time when a later wavedakes an earlier one;
this is, of course, possible only when the speed of propagatnot constant.

However, the Legendre transformation can sometimesée to remove singularities
in the surface. This does not work for an edge of regnesiough; it amounts to a non-
removable singularity.

One sees that the resulting Cauchy problemujnef z)-space might very well be
inequivalent to the original one in, @, x)-space. As Hadamard points out, Hugoniot
only solved the problem in the case where the gas in quests initially at rest; i.e., its
flow velocity u was initially zero.

After converting to Riemann variables and performing gelbelre transformation the
nonlinear wave equation now takes the linear form:

0%z 0z 0z
o0éou e )[65 anj

with:

f2x(e] :2% .
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One can then solve the Cauchy problem for the funaiby the method of Green
functions, in principle.

The cases that were treated by Hadamard involved gaaesleyed the Poisson
adiabatic and its special case of Mariotte’s law.thie former case, the Green function
involved hypergeometric functions, while in the lattemvtolved Bessel functions.

One finds that there is no symmetry in the naturthefsolutions that one obtains by
using an initial compressive pulse of the piston versugsitial decompressive pulse. In
particular, an extremely fast compressive pulse can peo@ushock wave, but an
extremely fast decompression can lead to “cavitation,the formation of a partial
vacuum between the piston and the gas. By definitiamgnapressive pulse produces a
compression wavehile a decompressive pulse producearafaction wave

In the third section of this chapter Hadamard focusesnamportant consequence of
the work that was done by Riemann and later Hugoniot, wigchalls “the Riemann-
Hugoniot phenomenon.” What it represents, as a nathealgmenon, is the possibility
that when two consecutive acceleration waves in a gasewpeed of wave propagation
IS not constant are moving in such a manner that the dateiovertakes the earlier one
they can combine to produce a shock wave. That is, twwingn second-order
discontinuities can combine to produce a moving first-ordeodtsuity. Indeed, this is
essentially how the expanding shock wave forms in atosion. Hence, there is ample
experimental evidence for the phenomenon.

The point of departure between the earlier work of Riemand the later work of
Hugoniot was in the thermodynamical assumptions abogabe Riemann assumed that
there is no change in the entropy of the gas fromsihe of the discontinuity to the
other, while Hugoniot assumed that there would be an isergaentropy. Although
both theories produced qualitatively correct resultsagseimption of Hugoniot proved to
be more consistent with experimental measurements.

In order to describe this scenario mathematicallyjana@ard first considers the case
of a gas that is initially at rest and has a constahte forc. The piston that initiates the
wave in the pipe is given a differentiable motiyit). The resulting motiox(t, a) is

differentiable and single-valued, but if one consideraithex:: R - R, a — x(t, a) for

each value of, then one finds that it is locally invertible iff tiddatation cw= 0x/0a does
not vanish anywhere; equivalently, the dilatation cammainge sign. The first time that
wvanishes will be at the point of contact with the pisto

Whenc is not constant, but varies witdy the situation is more complicated. To
begin with, one must choose an equation of state. chh&e that Riemann made was
based on the Poisson adiabatic. Consequemthgnishes only i€ is infinite.

In this situation one can have two types of singué&sitpoints wherevvanishes and
points along the edge of regression of the developablacauttiat represents the solution
X(t, @) in the space oft(a, X). At such points, as mentioned above, one is dealirfgavit
later wave overtaking a previous one. If one is usimgRbisson law then the fastest
waves are the ones that are compressed the most.

Hence, assume thgt(«) is decreasing (i.ex'(«) < 0). This implies that the piston
must have a positive acceleration, which says that isr#gealing with compression
waves. If the piston had a negative acceleration thas would be dealing with
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rarefaction waves, which cannot cross each otheramanner that is intended. One
finds that when the successive compression waves ictershock wave is produced.
Riemann’s compatibility conditions for the shock waweravthen:

Kinematical: {i] = -4,
Dynamical:  p] = + c[u],

in whichu is the velocity of the wave. These, in turn wergeobon:

[u]® == Lo [Pl o,

which followed from the Poisson adiabatic. This inclutiesl basic assumption that the
entropy did not change across the shock discontinuity.
From the above, one sees that the speed of propagatidse obtained from:

oo [P
Polcd
Hugoniot’s objection to the foregoing was based in themasion that compression
and dilatation makes the Poisson adiabatic inappropoatiee problem. Instead of the

Poisson lawp,aJ"= p,a)’ for polytropic gases, where the subscripts refereosetiues on
either side of the singular surface, he introducedriéngkine-Hugoniot adiabatic:

&—&=5(p1+p)(U1 —p) = ﬁ (Prd —p2a3),

in which ¢ represents the specific internal energy of the gdss adiabatic results in an
increase of the entropy across the discontinuity dsal laads to th&ankine-Hugoniot
compatibility conditions for a shock wave:

[V° =~ [Alu], [Pl = - [AIV,

in whichv = 1/pis the specific volume of the gas.

One finds that the numerical agreement between #@rythand the experiments is
much better when one uses the Hugoniot adiabatic insteld BPisson one.

If one considers the opposite phenomenon to the Rieidagaoniot phenomenon,
namely, a single shock wave splitting into a pair aiedéeration waves, one finds that this
is only possible if the initial shock wave is dilatignce the Riemann-Hugoniot process
produces a compressive one.

An elementary form of the problem that we have comsigemore generally is:
Suppose that the gas is initially at rest and the pistgiven a uniform rectilinear motion
Xo(t) = Vt, with V constant. Find the resulting motion of the gas.

As Hadamard points out, Sébert and Hugoniot showed thasalaion follows
directly as long one satisfies compatibility condigofior the motion of the piston that
take form:



354 Lessons on wave propagation and the equations of lypanoits
Kinematical: V +c(w-1) =0,
Dynamical: p—po=mcV,

p_(m+)-(m-Dw
P, (M+Dw—-(m-1)

If Vis given, instead gf, thenc is unknown, but it can be solved from the comphttb
conditions. One needs to hgve 0, which is always true whanis positive, but iV is
negative then one must have p/(V), soV? < 200/ (M — 1))

The remainder of this chapter is primarily conegrmvith the solution of the present
problem by means of series expansions in fractipoaders ot.

8 7. Notes on Chapter V. Since this chapter represents the extensioneobtte-
dimensional analysis of the previous chapter to mhere realistic case of three-
dimensional gases, the fact that it occupies leasesin the book is due to the fact that, in
effect, all one must address is the fact that whee extends from a singular point
moving on a line to a singular surface moving iace one must mostly deal with the
contributions that the transverse dimensions malkbed same results.

First, one returns to the equations of motiorhie¢-dimensional forf¥:

— ==X i=1,2,3.

As was shown in the previous chapter, any conbetween the Cauchy data and
these equations can be resolved by the existen@e seicond-order discontinuity that
propagates along characteristic curves. Howeterektension of characteristic curves
to three-dimensional characteristic hypersurfasesot discussed until the final chapter
of the book.

As usual, the gas is assumed to be barotropip,=sp(0). The equations of motion
then take the form:

dpdlnp_, 0°%
dp ox Y o

Now assume that one has a singular hypersuBaceer whichd®x; / t*> anddp / dx;
have finite jump discontinuities. Assuming thag ¥a anddp/ dp are continuous across
S the equations of motion then give the compatibdonditions:

8 One notices that a recurring drawback to the matheatditerature of the era in which this book was
written was the fact that the symbolic representatifosystems of differential equations had yet to benefit
from the introduction of a few well-chosen dimensianaglices, so one generally had to deal with notation
that appeared rather redundant by modern standards.
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@{alna/p)} _ {azﬂ

dp| ox o2 |
Let A ,i =1, 2, 3 represent the components of the discontiimuitiye acceleration in
the form:
2
|:a ); }: CZ/]i .
ot
If ny ,1 =1, 2, 3 are the components of the unit norméad then the compatibility

conditions give:

d
d_f) (/]j n,-) n = CZ/]i .

Presumably, thd; do not vanish identically, so if the speed of propagatices dmwt
vanish either then one finds that the latter formutal#ishes the fact that a propagating
discontinuity in a gas must be longitudinal with a spibed satisfies® = dp/ dp. On the
other hand, ifc = 0 then one must have thatn = 0, which says that a stationary
discontinuity must be transversal.

Hadamard then shows that the same thing is true foorttinuities of higher order,
as well. That is, the propagating ones are longitudindl have a speed given by the
second order expression, while the stationary onesaargverse.

Furthermore, he points out that one can consider gereral equations of state, such
as ones where the pressure is inhomogeneous in space.maihealteration to the
analysis is that one must replace the total derivaifveressure with respect to density
with a partial derivative.

Now, since the expression foris quadratic, it really allows for the propagation of
waves in two directions, not just the one. Howewe idea behind kinematic
compatibility was that if one had such compatibility thee &ctual motion 0% would
have to have one sign or the other. Converselharabsence of compatibility it would
be possible fo6to split into two surfaces moving in opposite direction$hwpeed:.

In order to examine this possibility, Hadamard first sders the more restrictive
case of liquids, which cannot have normal discontiesitwithout that affecting the
derivatives of the density. Now, if there were noraeleration waves then a sufficient
condition for the existence of normal second orderashinuities would be the existence
of an acceleration potentidl, which then obeys the defining condition tBavdx; = 9
/ t%. Although it not necessary to assume compatibilityhiain this result, nonetheless,
when there is compatibility, it gives a consistent itesih any event, if an acceleration
wave exists then it must be normal. Furthermore, tsigts for higher order
discontinuities and when there is compatibility one fitidg any discontinuities that are
tangential tdS must be stationary. Therefore, since normal discoities cannot exist in
liquids, one ultimately concludes that the only kind thag can consider is the stationary
transverse kind.

Now consider a singular surfag&n a liquid, across which one is giv@leaaf]
and P> / at da], but one wishes to derive the valuesak{/ dt’]. One does not assume
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compatibility, but one does still assume that thereoiscavitation in the liquid, so the
regions of the liquid do not separate&Sisplits into two propagating surfaces. One must
conclude thatd® / 0] vanishes- i.e., the acceleration is continuous acr8sssince
any separation ofS would have to involve normal discontinuities, but tbaly
discontinuities that can exist are transverse, which ntradiction. One can again
extend this result to higher-order time derivatives; ¥y must be continuous.

Hadamard points out that this conclusion remains tren evhen the first time
derivative — i.e., the velocity — is discontinuous, whighhe case for shock waves and
vortex sheets, which are the stationary manifestati@uch discontinuities.

Recall that the vorticity tensor for a flow velgcis the anti-symmetric part of the
velocity gradientay = 1/2{; — v;;), which is the time derivative of the infinitesimal
rotation &, = 1/2(;; — uj;) of the displacement vector field . In the present case, one
hasu; = dx / da . Hence, vorticity is related to the second-orderigdaderivatives of
the formd®x / 0t da;. Hadamard then definesvarticial discontinuityto be a transversall
discontinuity of the formd?; / ot 0], which makes it a second-order discontinuity of
index one.

Hadamard gives an example of a uniformly rotating dishjch has a jump
discontinuity Px; / 0t] in the velocity vector field at its rim. Inside thesdl there is a
velocity potential of the fornp= k&, wherek is a constant and tah = y/x

From a previous result in n83, it follows that a second-order discontinuity of order
one should produce first order discontinuities of ordemo.ze That is, a vorticial
discontinuity should produce discontinuities in the defation gradient.

Next, Hadamard returns to the case of a gaseous méadiwimch one has a second-
order discontinuity across a hypersurf&dut one does not assume compatibility. He
then shows that normal waves must be produced. Firstidws this in the case where
the derivatives of index zero are normal§oand then in the general case, by drawing
upon the previous result concerning liquids that transverseomlinuities must be
stationary.

Considering that the book was written in 1903, Hadamardredséhat up to that
point in the history of hydrodynamics, the most impdrtaathematical advances seemed
to be related to the conservation of vorticity amduwtation along fluid flows that had
been investigated by Helmholtz and Lord Kelvin. For instarmne might confer the
definitive treatise of Poincaré [1893] on the subject aferotheory in that era.

By definition, if yis a loop in a moving fluid with a flow velocity vectbeld 83\/i(x,-)
then thecirculation of v; aroundyis defined to be the loop integral:

WE jyvidx'.

8 Actually, the most mathematically precise way of désug thev; is to call them the components of
the covelocity 1-fornv = v; dX, which is then a covector field, not a vector fielthis is because the best
way of defining integrals over curvilinear regions i@ is in terms of exterior differential forms.
However, the distinction between vector fields and cavdatlds only becomes unavoidable in relativistic
continuum mechanics, where one raises and lowers inditesa less trivial metric tensor field than the
Euclidian one that non-relativistic continuum mechamissumes. Hence, as mentioned above, we shall
not give into the temptation to drift too far frometBubject of the treatise in question by discussing those
modern aspects of the theory, except casually.
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The Kelvin circulation theorem (see, e.g., Saffman [1P83}ys that this circulation is
conserved along the flow.

Several questions then arise concerning the effect mfvanishing vorticity on the
validity of the results above. One finds that thearexistence of non-vanishing vorticity
does not affect their validity since propagating hydrodynalmitscontinuities are
normal, not transverse. Similarly, the conservatbrirculation is not affected by the
presence of a singular surface for a wave since thelatien integral involves only first-
order derivatives. One can conclude from this that acatbn waves cannot produce
vortices, which is an important consequence in the efyegdrodynamics.

Hadamard then considers the way that the earlieusbgmn of shock waves needs to
be modified in order to account for the extra spatialegisions. One finds that the one-
dimensional compatibility condition®][ = — o [ &, where m(a) is the initial density
and w= dx / da now take the form:

[p] ni =— o % A,

in which p; is the density in the region that precedes the singuldace; i.e., the
undisturbed region. The difference in form is due tofdéloe that in the one-dimensional
case one was assuming that the initial state of thevgasts present state, while in the
three-dimensional case this was no longer assumed.

Nevertheless, the Hugoniot adiabatic remains unchangedhdyexpansion of
dimension. Consequently, contrary to the previous nostende result for vortices in
the context of acceleration waves, one finds thatlslwaves are indeed capable of
producing vortices. This is another deep consequence ohtdada analysis in the eyes
of hydrodynamics, and he defers its actual proof to an appen

8 8. Notes on Chapter VI. The primary objective of this chapter is to apply the
methods that were previously defined in general to wavegtbpagate in elastic media.
Here, there is a considerable difference in the trastimethe subject depending upon
whether one is concerned with infinitesimal deformagior finite ones. This essentially
amounts to the statement that if a medium that supploetpropagation of waves is
regarded as a spatial distribution of oscillators thernetl®e a considerable difference
between the behavior of linear oscillators, which gdhlye@pear when one makes
small-amplitude approximations, and nonlinear oscillatordspse behavior is already
quite complicated.

Elastic media, which include some solid media as velinast compressible fluids,
are considerably more involved in terms of their meclamcoperties than the fluid
media that were treated up to this point in the boostr dfe thing, there is generally a
distinguished state of the medium that is defined by ¢odibrium state of the body in
the absence of applied loads. Hence, since the spiiastic deformation is related to
the idea that the work done deforming an elastic bodgngptetely reversible and path-
independent, one can introduce the potential energy ofdtg &nd characterize the
equilibrium state as a state of minimum energy.

Interestingly, as Volterra showed in 1907, the equiliristate does generally not
have to be a state of vanishing strain or stresspudtin that is true when the body is
simply connected. For instance, if you bend a cylindricdlinbo a torus and fuse the
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end faces together then when you remove all extevadslthe resulting body will be in

equilibrium, even though it has it is in a state ofi+vanishing strain. However, not all

non-simply connected bodies must be in a state ofvaorshing strain, as the example of
an initially unstrained elastic sheet with a hole gaacout of it shows, if one ignores the
strain that is introduced by the act of punching the hole..

It is customary to use the equilibrium state —natural state — of the body as a
reference configuration for the sake of defining coordirgtgtems, rather than the
present state. Hence, one generally addresses thendator of elastic bodies in terms
of the Lagrangian formalism. One can also attribbieto the fact that the fundamental
object in elasticity is the displacement vectordfial that is defined by a deformation,
rather than the velocity vector fieldof a fluid flow. Another consequence of using the
Lagrangian viewpoint is that one can use partial tierévdtives instead of the convected
ones.

In the approximation of infinitesimal deformations thstidiction between initial and
present state is moot and the Eulerian viewpoint agrads the Lagrangian one.
Furthermore, one usually derives linear systems of palifi@rential equations in that
approximation, so the analysis is generally simpldence, most of the empirical data
that is catalogued for elastic materials in handbooksiented towards their properties
under small deformations. The properties of elastic maddeas one goes beyond the
linear limit become increasingly complex and phenortwgcal in character. Generally,
linear elasticity first turns into nonlinear elasticigtil one reaches the yield point of the
material, after which elastic deformation turns intosptadeformation, and eventually
concludes with fracture. However, no general expredsinthis behavior seems even
possible, and one sometimes approximates it with idekalmedels of elastic-plastic
behavior, such as piecewise linear functions or patyats.

When an infinitesimal straig; on a bodyB [ R® produces an infinitesimal stregs,

one calls the function on the body: )
W(x;, &) = 0’ g

the deformation energy densityits integral oveB gives the total work done deforming
the body. ) o

A functional relationshipd® = ¢ (X, g;) is called aconstitutive lawor response
functionfor the material thaB is composed of. If one ha¥ to begin with then one can
also obtain this relationship from the definition:

However, nowadays this possibility is not regarded asnth& general response function
and when this is the case, one calls the mediyperelastic(see Truesdell [1961]).
Hence, one must keep in mind that the media that Hadatmeaited fell into this
category.

Most commonly in practice, one considers linear gutste laws of the form:

G = Cij(X) aa .
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When the function€j(x) are constants, one calls the maten@ahogeneoysas well as
linear. The deformation energy density then beconwsdratic form that is defined by
the part of the tensoE = Cyq dX O d¥ O dxX* O dX that is symmetric in the paiy,
symmetric in the paikl, and symmetric under the exchange of these two indes. pai
Such a deformation energy densftymust necessarily be homogeneous of degree two in
the infinitesimal strain. By Euler's theorem on h@®neous functions, one then must
have:

10w 1

1
W=>-"—g :E Gj € ZE Ciw 6j &d.

A particular type of material that gets a lot titation is that of arsotropic material,
for which the componentS;.(x) are invariant under the transformations thateafiem
rotations of the ambient space. In such a casehas a constitutive law of the form:

gi=pHe+Ae«q,

in which the functiongl, &, when they are constant, are calledlthené constantsf the
material and can be related to tabulated data, asithe Young modulus and the shear
modulus for the material.

A fluid medium is characterized by the fact thaisiisotropic and does not support
strains or shearing stress. Hence, in the abs&ingscosity the stress tensor reduces to
the pressure times the identity matrix:

g =pg .

However, viscosity couples a shearing stress todateeof deformatioe; / ot, which is
also the infinitesimal strain in the flow velocikgctor field.
In the isotropic case, the quadratic form defibg@ijq takes the form:

Wej] = ué g + A (e)>

The equations of motion for a time-parameterizeaily of deformations, which is
then described by a time-varying displacement veftedd ui(t, x), are derived from the
balance law for linear momentum — i.e., Newton'sos®l law of motion — and take the
form:

’u _
P =ittt

in whichf;j represents the external forces acting on the pafB, while the divergence
of the stress tensor gives the force that actssdmoundary surface.
In the linear, isotropic, homogeneous case tlkisséhe form:

2
°u

0°U.
o2 = HBU + (A + 1) =

OX'0x

Yo,
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Customarily (see, e.g., Landau and Lifschitz [1959]), onewades this equation in
the unforced case into a pair of linear wave equatioat dascribe longitudinal and
transverse waves:

’u o’u
L-cAy=0, L—-c’Au=0,
ot L ot’ .
in which the speeds of propagation are defined by:

2
C = ””, o= #.
\ p \p

The longitudinal wave is coupled to the infinitesimdatdtion by way of1, so it is a
compression wave. However, the transverse waweuled to only the shear part of the
infinitesimal strain, so it is a shear wave.

Since none of the material parametgrd, or i are negative, both of the propagation
speeds are real numbers.

A complete statement of a problem regarding the matdioB generally involves
specifying not only the Cauchy data at some initial fpo@t, but also the boundary data
for 0B. For instance, one might specify a particular surfaoton— independent of the
motion that it gets from solving the Cauchy problem — ohges a given external
pressure that acts on the boundary surface.

Of course, this implies the possibility that the spedi boundary data might be
inconsistent with the data that one derives from the temsaof motion, such as a
disagreement between the values of the surface aaeter However, this is exactly the
sort of situation that Hadamard has been addressindoalj,aso in such a case one
regard9)B as a singular surface.

Let A = [0y / 0t%] be the components of a jump discontinuity in theetgration
acrossoB, while n; are the components of the unit normal to that surfacegc is the
speed of propagation.

From the equations of motion, one derives a compi&ilifjuation for this jump:

(0 = A=A+ @A n) n.

One can then distinguish two types of solutions toetleegiations: the longitudinal ones,
for which the jump in the acceleration is norm&l £ an;), and for which the speed of
propagation i, as above, and the transverse solutions, for wheluthp is tangential
to 0B (4; n; = 0) and makes; take on the previously-described value. A more general
discontinuity can be decomposed into a normal and teass\part, which then produce
longitudinal and transverse waves independently, due toneerity of the equations of
motion.

Hence, the results of compatibility considerations jtonp discontinuities in the
acceleration on the boundary surface are entirely stemsi with the more general
discussion that pertained to simply the form of the egusibf motion.

One finds that the longitudinal waves have constannite$imal rotation — i.e.,
vanishing vorticity — while the transverse waves havesteon density gradient.
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If the singular surface is internal Bthen, as Hadamard asserts, there will be one
longitudinal wave and three transverse ones.

Previously, Christoffel showed that a discontinuitythe stress across the boundary
surface would not produce an acceleration wave, butck sthave.

Hadamard does not treat the case of anisotropic elagtitia in the infinitesimal
case, but returns to it later in the context of firdeformations. The usual modern
treatment (Landau and Lifschitz [1959] or Brekhovskikh anchdBarov [1994]) of
waves in anisotropic media in the regime of small #&oggs — i.e., infinitesimal
deformations — is entirely analogous to the Fresnel sisabf the dispersion law for the
propagation of electromagnetic waves in crystal opties (@ndau, et al. [1984] or Born
and Wolf [1980]), except that electromagnetic waves ddawe longitudinal modes; we
shall return to this subject shortly.

If one wishes to pose the problem of determining theiomodf an anisotropic
deformable bod¥ when one considers the deformations to be finite therfirst thing
that one must address is the choice of formulation,, \iagrangian or Eulerian.
Customarily, in elasticity one chooses the Lagrangiawpoint by regarding the natural
state as the reference configuration Brand describing its points by means of the
coordinatesy , i = 1, 2, 3. The points @& as it moves through space are then defined by
spatial coordinates(t, &), such that for each value the correspondence between each
a andx(t, &) is invertible, as well as the Jacobian madix/ 0a; of the transformation.
Indeed, one deals primarily wit(t, ) anda; = da; / 9.

In order to obtain the equations of motion for firdkeformation, Hadamard chooses
to employ a variational formulation of those equai@s the Euler-Lagrange equations
for an appropriate action functional. First, he degitlee equations of static equilibrium
from using the deformation energy dendiMx;, a;, a;) as the Lagrangian density for the
action functional

dal= [ \W(x. 2. 3) dxdyd,

so the action that is associated with the defoomats the total work done by the
deformation. Clearly, this assumes that the nwtahat B is compressed of is
hyperplastic.

Thefirst variation functionaldy.] for this action functional takes a variati@g; of
the natural state, which is best regarded as awvietd onB to the number:

[ OW AW c
ﬂ@l] —J'B(chqjdxdydﬁ JﬁB{aa ﬁj 3,
in which:
é\N:c')W_ J0 oW
03 03 0a 03

is thevariational derivativeof W with respect t@ .

An extremal of the action functional is a stabmfigurationa(x;) that makes the first
variation functional vanish for any variatiode; that satisfies some set of boundary
conditions that usually have the effect of makihg boundary integral vanish. The
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necessary and sufficient condition for a static configan to be an extremal is then the
vanishing of the variational derivative, which gives Ehder-Lagrange equations:

oW

E2

Hadamard restrict8V to be spatially homogeneous, 8@/ / 0a; vanishes, and the
equations of static equilibrium become:

_0 oW _dg;
aa,. aq]. oa,

J

In order to go from elastostatics to elastodynamies,then uses d’Alembert’s
principle, which amounts to saying that dynamic extlen@e static extremals in
spacetime when one includes the “inertial forcEs™— 0% / dt?, which gives the
equations of motion:

2
p %299
ot®  0a

Hadamard then verifies that these equations produce thedyydmical equations of
motions that he previously treated by usMg= W(det a;) = W(D) and setting the
pressure equal to -0, dW/ dD.

We shall summarize the general flow of ideas in theaneder of the chapter as they
were explained later in Truesdell [1961].

Consider a singular surfacin a body, which can be a boundary or an internal
surface, and whose unit normal vector fielchis Assume that there is a second-order
discontinuity in the kinematical state acr&s

The jumps § ;] and [4%] must then satisfy kinematical compatibility conditions

[a%i] = &? & &y e, ESEXT‘a
for some vector® and scalac. If one recognizes that the differential ma to the
deformation can be used to pull back components of caged@tom the initial (i.e.,

reference) state to the present state then oneefared; = a°; n, to be the components
of the unit normal relative to the present state aeditbt condition takes the form:

[aa,i,-] = nn.
One also assumes a dynamical compatibility conditawrthie jump in the Cauchy
stress tensaf®
[tab] np = 0.

The stress tensor that one uses in the presenissthgetwo-point tensor:
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Te@% X@) =/ pt° Xy,

that one calls th@iola-Kirchhoff tensor(in addition to the references by Truesdell, see
also de Veubeke [1979]). In this definitigp is the mass density of the object in the
reference state, whileis its mass density in the present state.

One then expresses the constitutive law in the Bfm T%(a%;, en), in whichea, A =
1, 2, 3 is an orthonormal triad at each point of the deddrstate. This puts Cauchy’s
law of motion (balance of momentum) into the form:

Tia,i +ﬂ)fa:ﬂ)[aa]-
Define the fourth-rank tensor field:

™ _oT,
AabJ(X ,an eA) = aab .

g

The equations of motion then take the form:

i oT? a
AV + aelb e+ mof* = p[a].

A

If one assumes that the only variables that experianoenp discontinuity acrosS are
the second-order kinematical ones above then when theatioiity conditions are
applied to this equation, one ultimately deduces the faflgwropagation conditiorfor

the vectora™

Q%(n)a” = ;P

in which we have defined: )
Qan(n) = AarWaP; &% ny 1y .

If we understand thab,;P?= A,,MaP; a%; are the component,,” pulled back to the
initial state then we can say that:

Qan(n) = Aar®ny ny, .

One refers to the tensor fie@(n) = Q.y(n) daf O da® as theacoustic tensor fieldor n.
The symmetric part o(n), namelyQar)(n) da’da” defines a quadratic form di®
and has an associated ellipsoid defined by:

Qup(n) 1P =1

that one calls thpolarization ellipsoid which is analogous to the one that one defines in
electromagnetism as a consequence of Fresnel analysis
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In the case of hyperelastic materials, which are ties that Hadamard is concerned
with, the componentQa.(n) are automatically symmetric. Hence, the eigenvabfes
Q%(n) are real and there exists at least one orthonammadl of eigenvectors fo@%(n).

If we return to the propagation condition above thensee that it simply says that
must be one of those eigenvectors and the correspondintyaige isonc?.

Hadamard then asserts that is the desired extensihe oésult that was established
for infinitesimal deformations of isotropic media, whi Truesdell [1961] calls the
Fresnel-Hadamard theoremFor each wave normal vectorthat lies on the polarization
ellipsoid there are three mutually orthogonal diredibn A = 1, 2, 3 in which second
order discontinuities can propagate, namely, the prindipattions of that ellipsoid, and
the eigenvalues that correspond to the eigenvectors areribygortional to the squares of
the propagation speeds in those principal directions.

Hence, in order for these speeds to be real the eilgesvenust be positive; in other
words, the quadratic forr@(n) must be positive-definite. This condition has much
deeper physical ramifications.

We point out that, in general, the principal axes far &coustic tensor — i.e., the
acoustic axes- are distinct from the principal axes for the stramstress tensors.
However, this is the case in an isotropic medium, asda aesult, one sees that a
principal wave must be either transverse or longitudima not a combination of both.

In the case of liquids;? = dp / dp, which is positive iff the equilibrium state of the
fluid is stable. Hence, one suspects that the issueias=b with the reality of the
polarization ellipsoid is the stability of the equiliom state of the deformable body.

In the case of anisotropic solid media, the stabdityquilibrium is more involved
than it is for fluids. In particular, one needsctimsider the second variation of the action
functional, since equilibrium state itself is obtairfedm the first variation. One can
think of this situation as a sort of infinite-dimensionahlogue of the situation that one
considers in the study of critical points of differahtiunctions of a finite number of
variables, although in practice that analogy is more sically probative than
computationally useful.

When Duhem [1905] published his own work on elastic stabhigysuspected that
the discussion that Hadamard gave to elastic stabditlyflaws in the proof of his basic
result. However, in 1946 Cattaneo gave a rigorous probtdmirmed it.

The Legendre sufficient condition for an extrenmabe a (weak) local minimum of
the action functional is that the quadratic form defity the Hessia@®W / da; day be
positive definite. However, the real issue is the pasitefiniteness of the second
variation functional¥g &gy , ], as a quadratic form on the infinite-dimensional vector
space of variations, such @g; and d%a; . Hence, one must regard this problem as
defining a strong minimum, since the positive-definitenes this functional does not
have to imply the positive-definitenessadtV / 0a; daw , although the converse is true.

One can easily convert the HessidW / da; day to one of the fornd*W / de; deq ,
which then gives a quadratic form of the form:

Sl Bl :% &y G+ W[ &, &l
i 0 &
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whose positive-definiteness gives the desired stabilindition.
Truesdell asserts that this is equivalent to the tiondi

A(ab)(ij) |2 Ib Ai AJ_ >0 for all Ia, Ai,

which he callsstrong ellipticity since it isintimately related to the symbol of the
nonlinear differential operator that defines the equatmiequilibrium for finite strains.
This is the clarification of one his remarks in theosetsection of these notes that was
previously promised.

Strong ellipticity can also be expressed in the form:

Qup(n) 121°>0 for alln, 1.

Hence, it is equivalent to the positive-definitenesthefacoustic tensor for all As one
corollary, one sees that strong ellipticity is a sight condition for the reality of the
speeds of propagation, and another says that this is alku@yim any isotropic material.

Hadamard shows that this is indeed consistent with theotdynamical condition
when one substitutes the simplifying expressions thahipexd that case.

He then returns to an earlier question that was pasdtid propagation of waves that
involve finite deformations in isotropic media. He prede by analogy with the Fresnel
analysis in crystal optics for anistropic media. Hegvewhen he reduces to the isotropic
case, he obtains a negative result for the propodetsan. That is, unlike waves of
infinitesimal deformations, waves of finite deformasan isotropic media are not solely
longitudinal or transverse in general, but a combinagidooth.

8 9. Notes on Chapter VII. This chapter is concerned with the theory of
characteristics for hyperbolic second order partiakeddffitial equations. As Hadamard
pointed out later in his Yale lectures [1922], the issussudsed in this chapter defined
the starting point for that subsequent examination ofGaachy problem in a purely
mathematical context, rather than in the contexdasftinuum mechanics that the present
monograph centers around.

Since Hadamard had previously discussed the role ohdiesistic curves in the
chapter on one-dimensional gas dynamics, the firsioseof this chapter represents the
extension of that study to spaces of higher dimensiomsjtish one, hamely, dimension
n.

The appearance of characteristic hypersurfaces isatgiyrelated to the existence
and uniqueness of solutions to the Cauchy problem, so wetpats@roblem in the
presentn-dimensional case for quasilinear second-order partialrdiffel equations in
scalar functions. However, many of the key notions loa generalized to higher-order
partial differential equations and vector-valued funwio(see, e.g., John [1982] or
Folland [1976]).

A quasilinear second-order partial differential equaitioa scalar functiom on some

regionV in R" takes the form:
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*) 0=a'(x,uy) + f(X, uy),

i

0%u
X' 0x

in which the functiorf(xk, u, uy) need not be linear inu(uy). Note that the symmetry of
a’ in its indices must follow naturally from the syratry of mixed partial derivatives.

Suppose that one is given a hypersurfadge R", which we express by making the

coordinate system that we use be one that is adldptéhe function that defines the
hypersurface; i.e.:
X" = X0, LX),

Now, suppose that we are given a functigrmnS. As long as one is assuming that
Up is at leasC' on'S, one sees that the tangential derivati¥gs = 1, ...,n — 1 ofu, are
uniquely defined by a choice a§, so the only undetermined first derivative that be
defined arbitrarily must be the normal derivatiug . Hence, the Cauchy data for the
Cauchy problem that is defined by our quasilineatial differential equation above on
the Cauchy hypersurface — namely, {i, u} — is the analogue of the corresponding
initial-value problem for each point &had we defined a system of ordinary differential

equations, namely: Givam andug, onS, find au onR" (or, at least, some neighborhood

of §) that satisfies the partial differential equatinrquestion and agrees with the Cauchy
data ornS

When one goes to the next level of differentigtiome sees that if is assumed to be
at leastC? then, similarly, the tangential second derivativgs, j = 1, ...,n— 1 are all
uniquely determined by the choicewf and cannot be assigned arbitrarily. The question
then arises whether the second partial derivativeandu,, can be determined arbitrarily
when one also assumes that the differential equdtip is in effect, along with the
Cauchy data of. )

First, one sees that the functiai®, u, u) and f(X* u, u) are uniquely determined

when one setg" =x*, u = u(X), u = u (x). We expand the highest-order term in
equation (*) to: _ )
ann Unn + 28.'” Uin + aIJ u”

Furthermore, org, one also has that singeis a function of the remaining coordinates,
one must have:

oy, _ 0%y, LOX 0%y, oy, _ 0%y, LOx" X" 9%,
Ox"0X  9x"9%, 0%, OXdX’ OXOx  Ox0x, 0% 0% dROR

If we introduce the notatiol§; = X"/ 9, i = 1, ...,n — 1 then the leading-order terms in
(*) take the form:

U, . . 0°U,
_+ _0_
XN 0N

(@™ + 22" K; +a'K; K;) Ugn + 2a"
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Hence, ifup is consistent with the differential equation then oae solve foug,, as long
as one does not have: _ )
0=a"+ 23" Ki +8.”Ki Kj.

This can also be regarded as a partial differential emudoir X"; i.e., a compatibility
condition on the Cauchy hypersurfa8e When this condition is satisfied, one refers to
the hypersurfac& as acharacteristic hypersurface.

Now, one can regard th§ as inhomogeneous coordinates for the projective space

RP"! and introduce the homogeneous coordinates by wiy ok / k., wherek, # 0 so
the characteristic equation takes the form:

ak,k,=0, uv=1 ..,n

The character of this hypersurface depends upon the @racddhe symmetric real
matrix &, which one calls therincipal symbolof the second-order partial differential
operator that we are considering. By Sylvester’s priea@pinertia, there is a matrik”
that makesT#T; & = diagF-1, ..., -1, +1, ..., +1] withp negative signs and positive
ones; one then calls the ordered pajgf thesignature typef &, while thesignatureis
defined to bey —p.

Whena"" is either positive definiteg(= 0) or negative definitgp(= 0) the only real
solution to the characteristic equation is 0. In sadase — namely, theliptic case —
one can always compute,, from the given data.

Whena"" has a_orentziansignature type, so eithpr=1,g=n-1orp=n-1,q=

1, the hypersurface takes the form of a generalized iodR& since the line through any

point on the hypersurface and the origin will be comtaiim that hypersurface. The
shape of its spatial generator®P" will take the form of an ellipsoid whem= 4. If

one regards the homogeneous coordingtes describing points of the cotangent bundle
TM in a local coordinate system( k,) then when the signature type af’ is
Lorentzian the characteristic equation that it defivess either describe a hypersurface in
T'M when the functiong"(x*, k,) are allowed to vary freely, and which Hadamard calls
the characteristic conoidor a hypersurface in each cotangent space when onexfixes
and he calls this theharacteristic conéatx).

Hadamard singles out the case of a symbol witlitiple characteristicaas being
associated with points whee&" (X, k,) does not have maximal rank, which is then the
parabolic case. For instance, each componergdfx”, k,) might be itself a quadratic
form &} (x)k.k; whose vanishing defines a conoidTitM, as well. The zero locus of
a’(¥, k,) could then consist of intersecting cones in each cotarggae or a more
elaborate self-intersecting quartic, which is analogouséosituation one encounters in
Fresnel analysis that leads birefringence (double refraction) oiconical refraction
respectively (see, e.g., Landau, et al, [1984] or Born and \2280]). However, in that
analysis the componerg&”(x) of the quartic form come about from a slightly eitnt,
but related, procedure to that of simply taking the princgyanbol of the differential
operator in question.
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The symbol of the second-order quasilinear differeofi@rator considered defines a
generally nonlinear first-order partial differential eaomat

S as
Hv o =
9" (N5

In this formulation, we are assuming that our secondrodiféerential operator is
hyperbolic, so we have changed our notation for the casfts of the leading term from
a’ to ¢, and we are assuming that they do not depend explicitly upcdrhe equation
that we have defined on spacetime manifdids a homogeneous form of the Hamilton-
Jacobi equation, and when one restricts it to a spatlaanifold by considering only
stationary wave functions one obtains déilenalequation of geometrical optics.

The function§(x) onM is called thephase functiorfor the wave functiom(x”) that
solves our wave equation. This is because the wayotl@tassociates the latter first-
order partial differential equation with the originatsed-order differential equation (*)
is by way of thegeometrical opticsaapproximation, which we will discuss later in the
context of linear wave equations.

We define the functioR(x*, ko) onT M by way of:

F(X5, ko = 20X, kdkuky .

The functionF can be regarded as a Hamiltonian function on the Epesee that is
defined byT M, and its associated canonical equations are:

V| dk K
ar = o=k

These equations are a specialized form of the chastterquations for the first-
order partial differential equatioR(x*, Sx) = 0. For a more general equatidh,is a
function onJ*(M, R) with the local formF(x*, u, u,) and the resulting characteristic
equations are:

H k
di:a_l:, %:GF k,u d‘u:—(aF +6_ij
dr ok, dr ok, dr

ox* ou ”

As one sees, these equations reduce to the previousvieent does not depend upan
as long as:
oF dx*

0=—ky =——ki.
ok, " dr

In the case o that we defined above, this expression takes the formy0kg k., which
amounts to restricting, to be a characteristic covector. This has the effesaying that
the velocity vector for the motion of the wave mustthagent to the characteristic
hypersurface, which forces the characteristic curves ia It.
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Since we are now using the word “characteristic’'wo different senses, in order to
avoid ambiguity, Hadamard suggests using the tdsitharacteristics for the
characteristiccurvesof the first-order partial differential equation thatdefined by the
characteristichypersurfaceof the original second-order ane When space is one-
dimensional, the situation is confused further by the tlaat the hypersurfaces are also
curves. In optics, the characteristic hypersurfacegsept elementary propagating wave
fronts at each point d¥l, such as expanding spheres, while the bicharacteristesur
represent the light rays that come about in the ge@rakbptics approximation.

Since the recurring theme of this book is that wawves lzest mathematically
represented by propagating discontinuities, one findsttieatelevance of characteristics
and bicharacteristics to discontinuities is based ia fact that a second-order
discontinuity in a wave function across a singular hypdace represents a non-
uniqueness in its second derivatives across that hypersuHaseever, as we have seen,
the only way that this is possible is when the hypersaris characteristic. One then has
the corollary that discontinuities must propagate @ldcharacteristics. Hence, the
association of propagating second-order discontinuities watves seems quite natural.
It is also a consequence of the kinematical compagibdi@nditions, which make the
discontinuity transverse to the singular hypersurfacetiag velocity normal to it.

As Hadamard points out, an important class of transdtions is defined by wave
motion, namelycontact transformationsPrimarily, they take solutions of the Hamilton-
Jacobi equation to other solutions. If one thinks of tlie(pak) 0 T'M as representing a
hyperplane in the tangent spacexatviz., the hyperplank(v) = 0 — then one sees that if
this hyperplane is tangent to a wave hypersurface, whichowee referred to asrst-
order contact then one sees that contact transformations take pigpess tangent to the
characteristic hypersurface to other such hyperplanesice;iehey must preserve the
characteristic hypersurface, as well as the bicharatitecurves.

When Hadamard applies the method of characteristicsvaees in gases and
compressible fluids he deduces consistent conclusioaisif tithe discontinuity is normal
to the (spatial) wave surface then the wave surfacst rha characteristic and the
bicharacteristics must be normal to that wave surfdos assumes that one is using the
Eulerian viewpoint for the dynamical model). In the cathree-dimensional elasticity,
he finds that in an anisotropic medium, a given waveasaris compatible with three
types of discontinuities: one normal and two transvevees, while in an isotropic
medium, there is one normal type and one transvgpse t

In the second section of Chapter VII, Hadamard focaseapplying the methods of
characteristics to the problem of proving the actual emcs of solutions to the Cauchy
problem. Prior to the publication of his book, existen@®fs for restricted cases of the
Cauchy problem had been known to Cauchy, Kowalé¥/skdoursat, and Beudon.

The Cauchy-Kowalevski theorem asserted the existeneeurfique local solution
about each point of a non-characteristic Cauchy hypecsuvidaen the Cauchy data, as
well as the coefficients of the differential equatiovere analytic. What Goursat had
shown was that when one is given an analytic padifédrential equation for a scalar
functionu(x, y) of two independent variablesy:

8 Since there are numerous alternate spellings ofakisiame, we defer to the argument of Fritz John

[1982], who points out that the spelling that Sonja Kowalelekself used in the papers that she submitted
to theActa Mathematicavas the one we have chosen.
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F(Xa y, ul uX ] UYl uXXl qua uyy) = 01

i.e., F is analytic, and two intersecting curvgs )5 that are tangent to the characteristic
curves through the point of intersection then if onevsmanalytic Cauchy data faron
both characteristics there will be a unique solutioto this variation of the Cauchy
problem.

A corollary to this is the fact thatufis given ononly oneof the characteristic curves
then there will be an infinitude of solutions, which suggeghat breaks down when the
Cauchy problem is defined upon a characteristic initial hypfse.

What Beudon contributed was the extension of thisltrésuhe case of an arbitrary
finite number of independent variables; i.e.:

F(Xi, u, ui, u;) = 0.

One must then consider two intersecting initial hypeema$ that are tangent to the
characteristic hypersurfaces at the curve of intesecti

Hadamard then proposes to prove Beudon’'s result under lititglys weaker
hypothesis that only one of the initial hypersurfacesdee® be characteristic. He
deduces an analogous result that includes the corollarywtian the Cauchy data is
defined upon a characteristic initial hypersurface theteb&ian infinitude of solutions
to the Cauchy problem.

He applies his result to various problems in hydrodynarsiesh as the crossing of
irrotational waves, which then admit velocity potestial One can then obtain the
resulting motion after the crossing in the case whenstave surfaces are analytic, along
with the motion of the fluid.

Next, Hadamard generalizes his existence result t@dbe of systems of second-
order partial differential equations for vector-valued/@véunctionsu®(x):

FoOd,ut, g7, )= 0, ab=1,2 3.

He then applies this to the initial-value problem in gasadhics in which both the
initial motion of the gas and the motion of the bougpdaat encloses it are given. One
also assumes that the fluid and the wall are in cahstantact and that the new motion of
a wave agrees with the original one. As long as tleegattion of the wave with the wall
iS not tangent to a bicharacteristic, one can deterrtfireresulting wave uniquely.
However, the method does not apply to the crossing oésvawvthis case.

In the final section of this chapter, Hadamard examihesfdrm that the analysis
takes when one restricts oneself to linear second-qguderal differential operators,
which then take the form:

L=a (9=2—+ B33+ ¢ 3.
ox'ox’ oxX

For the case where the operdtas the d’Alembertian operator:
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solutions to the stationary initial-boundary-vapreblem had been found by Poisson and
Kirchhoff. One seeks solutions of the form:

u(t, X) = T #x),
which converts the linear wave equatidru = 0 into the pair of equations:

d*T
dt?

+afT =0, Ap+ (ac)’p=0,

when one introduces the separation constantvhich then represents the frequency of
the elementary oscillators that define the waveiamad
The first of these equations can be solved by#weof sinusoidal functions:

T(t) =",

The second is a spatial second-order partialréifittal equation that one refers to as
the Helmholtz equation Its solutiongessentially defines the shape of the wave envelope
for the motion. The operator that defines it i§-adjoint for the Euclidian metric on the
spatial manifold; hence, it is elliptic. One cdrent solve the Dirichlet or Neumann
problems for it by the method of Green or Neumamncfions. However, one must
observe that the only way that one can specify tiettboundary values of the functign
and its normal derivative is when these two dat armpatible, as one might obtain
when they are derived from the original Cauchy dgtaeparation of variables.

Kirchhoff's solution to the problem amounted taaihing the Neumann function for
the d’Alembertian operator in spherical coordinatethe form:

eik(r—ct)

N(X, ¥) = =Xy = 1K =Y+ 6 =Y HC -y

r

This is where physics usually introduces gemetrical optics approximatioas a
way of simplifying the solution of the Cauchy pretsl for wave motion, while one
generally refers to the explicit solution for thawe functioru aswave optics.

One first looks for all separable wave functions:

u(t, X) = AX)est,

in which A(X) is called themplitude functiorfor u and(t, X) is itsphase function.
This converts the d’Alembertian ofinto:

Ou=g"[Aw-AS,S, +i(AuS, +AsS, +ASw)] €5
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One further restricts the class of wave functionsthy approximation that the
amplitude must vary slowly in space compared to the aatehich S varies, which
amounts to amall-wavelengtltor high-frequency) approximation; in practice, one might
simply assume that the amplitude is constant. This appadion has the effect of
eliminating all derivatives 0A. As long as one also assumes that:

0=0S=K,

which is a sort of incompressibility condition on tbevector fieldk, , one can replace
the linear wave equation farwith the Hamilton-Jacobi equation f&r

0=¢"S.S, ;

again, it would be sufficient to assume that the frequamc wave number of the wave
are constant.
The resulting bicharacteristic equations:

dx* _ dk «
E:g"k,/:k'”, d_;[:_%g/‘/ykkk/h

can be combined into a single system of second-orderaoydilifferential equations:

2.1
d”x +{’u}x"x”20,

d& |kA

in which we have introduced tl@hristoffelsymbols:

{/5]} =39"(Gaxr + Gtk — Gi ) -

At the present stage of history, the geometrical S@amte of these equations is well-
known to differential geometry and physics alike: They #Hre equations for the
geodesics that are associated with the Lorentzian avgtriby way of theLevi-Civita
connectionthat it defines. Geodesics can be regarded as the espaed analogues of
the straight lines that one finds in Euclidian spaceswaich the Christoffel symbols
will vanish.

When one combines this fact with the fact that theaisl vector fieldk” will always
have to be characteristic — or null — one seestligabicharacteristic curves, as light rays,
will represent null geodesics.

The reason that we are using the syndb@r our curve parameter instead ofs
simply that in the eyes of general relativity, thefedéntial incrementr of the proper
time parameter must always be null — i.eg,, k“ k" — on light rays, so one must use
some other parameter if one is to define non-degenayhteays. The usual choice is to
makes one of the class @lffine parameterizationsvhich then differ by the replacement
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of s with as + b, with a # 0 andb constants. Affine parameters are characterizeddy th
fact that they will put the geodesic equation into thenfaescribed above, while any
other parameterization will introduce a non-zero cbuation to the right-hand side of the
geodesic equation.

The geometrical optics approximation is generally mbea tadequate for the most
elementary problems of optics involving visible light wiavegths, such as describing
reflection, refraction, and even dispersion in opt&atems. However, it breaks down
when one goes to radio frequencies, whose associatedewgties can be in the meters
and more, and more to the point — when one considers the effectifrhction on
wave motion. These effects usually come about wheresvaf a certain wavelength
pass through slits or edges whose characteristic diorensire comparable to those
wavelengths and amount to the appearance of non-zetanlighsities inside the shadow
of the obstacle. Traditionally, they are treatedalymptotic series expansions of the
wave functions, in which the geometrical optics approkmnarepresents the leading-
order term and successive terms introduce the diffracborections. Since Hadamard
did not mention this topic in his book, we shall, howesgeispend our commentary with
that brief observation.

8 10. Notes on the appendixedn general, the notes at the end of this book take up
some of the open issues in the main body of the texar istance, some of the
conjectures in earlier chapters could not be rigorouslygaraintil material in the later
chapters had been introduced.

In Note I, Hadamard returns to a statement that atabkshed in the final chapter on
characteristics that if two integral surfaces to $aene Monge-Ampére equation are
tangent along a line then that line must be a charsiiteline. He points out that the
proof used breaks down when the intersection has higher-oontact than one.

This observation then gives way to a generalizatioe®fiCauchy problem in which
the Cauchy data include higher-order derivatives. The questibe resolved is: Under
what conditions will this generalized Cauchy problem adnuhigue solution assuming
that the Cauchy data is not characteristic? This sigmests a generalization of the
Cauchy-Kowalevski theorem must be posed.

About the same point in time when Hadamard first puldisines book, Holmgren
[1904] established his uniqueness theorem (cf., e.g., John [198&nd- [1976], or
Hormander [1969]), which stated, in effect, that whenisrmncerned a linear system of
analytic first-order partial differential equations thely C*, but not analytic, solution to
the Cauchy problem with vanishing Cauchy data that is definesbime initial Cauchy
hypersurface is the null solution.

Hence, the bulk of the material that is discussetfli;Note is concerned with giving
Hadamard's proof of Holmgren’s theorem.

In Note Il, Hadamard returns to the study of statiomsgontinuities in fluids that he
briefly introduced in Chapter V.

In order zero, one is concerned with discontinuiiilessome function, such as
position. Hadamard refers to such position discontesiias “slips” glissements
although nowadays it is more common to call themears. In order one, stationary
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discontinuities in the velocity vector field acrossiagular surface are referred to as
vortex sheets.

Up to the point in question in Chapter V, nothing obstruthedpersistence of fluid
shears in the absence of viscosity, but their actuatiorewould have been impossible
under the assumptions that had been made. Hence, Haddefamred the discussion of
the assumptions under which fluid shears could be creatbdtappendix.

His basic observation is that nothing in the equations aifom of hydrodynamics
forbids the existence of discontinuous solutions. Inddezlcavitation that occurs near
vortices, such as propellers, suggests that such solwibcas naturally.

The primary purpose of this Note is to establish thaftat@gon is a necessary
condition for the creation of fluid shears. The profounded on the fact that at each
instant in the motion of a fluid shear the jump in a@@lon across a singular surface is
normal.

In Note Ill, Hadamard returns to a previous observatinrs.(254-255) that the
existence of second-order discontinuities does not invelite classical theorems of
vorticity, such as the conservation of circulatior avelocity potential, to give a more
rigorous proof of that assertion.

As a corollary, he shows that it is entirely possifibir shock waves to produce
vortices, at least when one assumes the Poissabadii Recall that this result was
regarded as one of the fundamental lasting contributioms this book in the opinion of
Truesdell.

When one uses the more physically realistic Hugoni@batic, the quantitgp/p is
not longer an exact differential, and the basic apsioms that the classical theory of
vortices rests upon are no longer valid.

Finally, in Note IV the Hadamard returns to a questiat trad been left open in
Chapter IV, namely: What happens to the initial/lboundaiye problem when one
includes both the initial motion of the gas in a pipewad as the initial motion of a
piston, instead of only the initial motion of the ga®lit?

Hadamard points out that the problem could be solved Wirectat least one
physically useful case, namely, the case in which istempis assumed to exhibit uniform
rectilinear motion, such as a fixed piston. The softwhich involved the use of results
that were not obtained until Chapter VII, then includeslgbssibility of reflection of the
wave from the fixed piston.
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