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 239. – After occupying ourselves in the preceding chapter with the motion of a gas, 
based on the assumption that its motion was exclusively rectilinear, we recall the 
equations of motion in three dimensions, in other words, the equations: 
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 In chapter III, we saw that there is an apparent contradiction between these equations 
and the conditions at the wall.  However, the discussion that was presented above in the 
case of rectilinear motion shows us how this difficulty may be clarified.  The agreement 
between the two sets of conditions is maintained thanks to the production of 
discontinuities that arise on the wall and propagate into the body of the fluid.  Parallel 
waves arise each time the accelerations of arbitrary order of the wall are different from 
the ones that result from the internal equations of motion, and will be of order equal to 
that of the accelerations for which this discord is meaningful.  In the course of an 
arbitrary motion they are produced when the acceleration − or one of the derivatives of 
higher order − of the wall becomes discontinuous with respect to time. 
 We therefore study the propagation of a discontinuity in the gas upon supposing − to 
fix ideas − that it is of second order.  Since the pressure is assumed to be a function of the 
pressure, the equations of motion may be written: 
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 On either side of a second order discontinuity the components of the acceleration take 
the two sets of values: 
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and the derivatives of the density take the two sets of values: 
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 Both of them satisfy the preceding equations.  Since the components of the force are 
supposed to be continuous, if one subtracts both sides of the relations thus obtained one 
will obtain: 
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 Let λ, µ, ν be the components of the discontinuity referred to the present state, which 
is taken to be the initial state, and let θ be the velocity of propagation.  The variations of 
the acceleration will be λθ2, µθ2, νθ2.  Those of the derivatives of log 1/ρ will be given 
by formulas (63) of no. 111.  One will have, upon always denoting the direction cosines 
of the normal to the discontinuity surface S by α, β, γ: 
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 λ, µ, ν are not simultaneously null, since otherwise the discontinuity would not be of 
second order, but of third order.  Therefore if θ is different from 0 then the same is true 
for at least one of the right-hand sides of the preceding equations, and one sees that these 
right-hand sides are proportional to α, β, γ. 
 Therefore, any second order discontinuity that propagates in a gas is, from (115), 
longitudinal. 
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 On the other hand, the quantity λα + µβ + νγ, which, in the general case, represents 
the projection of the discontinuity onto the normal to the wave surface, is nothing but the 
magnitude of this discontinuity itself here, and, upon successively multiplying by α, β, γ 
one obtains the projections onto the coordinate axes, i.e., λ, µ, ν.  Equations (2) thus 
reduce to: 
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. 

 
 Therefore, the velocity of propagation of the discontinuity, when referred to the 
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dρ
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 240. – If one would like to find the velocity of propagation θ0 when referred to an 
arbitrary initial state (a, b, c) then one must divide θ by the normal dilatation of the wave 
during its passage from that state to the actual state.  Upon denoting the quadratic form 
that was introduced in no. 51 by ϕ(a, b, c), the adjoint form to ϕ by Φ, and the density in 
the initial state by ρ0, one will have (1): 
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 As for the velocity of displacement T, since it is related to θ by equation (54) in no. 
100, one has: 

(5)     T =
dp

dρ
+ uα + vβ + wγ , 

 
in which u, v, w are the components of the velocity. 
 
 
 241. – It remains for us to examine the hypothesis θ = 0.  Equations (2) then give 
λα + µβ + νγ = 0 .  In other words, the discontinuity is transversal. 
 A gas will thus support: 

  1.  Longitudinal discontinuities that propagate with the velocity
dp

dρ
. 

  2.  Stationary transversal discontinuities. 
 
 242. – We assumed, to fix ideas, that the discontinuity was of second order.  
However, the results that we just obtained persist, in that they are essential for an order n 
that is greater than 2.  Indeed, suppose – as we obviously have the right to do – that α is 
non-zero, and then differentiate equations( )′1  n − 2 times with respect to x.  Only the 

                                                
 (1 )  See the note on page ??. 
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terms that contain the partial derivatives of order n will be affected by the discontinuity.  
Now, on the right-hand side these terms are provided exclusively from the differentiation 
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refers to formulas (57), ( 7 )′5 , (63) of chap. II, one sees that the equations that one arrives 
at are nothing but relations (2), both sides of each equation being simply multiplied by 
αn−2.  Therefore, as in the foregoing, we may have, one the one had, longitudinal 

discontinuities that propagate with velocity
dp

dρ
, and, on the other hand, stationary 

transversal discontinuities. 
 Just as was the case with the Hugoniot remark, the same is true under more or less 
general conditions.  We saw above that in certain cases p may be a function of not only ρ, 
but also a, b, c:  This is the case, for example, when the gas is inhomogeneous at any 
moment, or when first order waves are produced. 
 What happens to equations( )′1  under these conditions?  One immediately sees (upon 
referring to equations( )′1 ) that they will be modified by the addition of terms (2): 
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respectively. 
 Now, they contain only first order derivatives of x, y, z with respect to a, b, c, t, and, 
as a result, they suffer no discontinuity. 
 Therefore, formulas (2) persist, with the quantity dp/dρ being, of course, replaced 
with the partial derivative of p with respect to ρ.  That derivative will therefore give the 
square of the velocity of propagation. 
 The same thing will again be true if the forces X, Y, Z depend upon the density (to the 
exclusion of its derivatives) or contain the first derivatives of x, y, z in an arbitrary 
fashion. 
 
 
 243. – We just saw that the velocity of propagation is expressed by a square root and 
is, as a consequence, given two signs.  At first, it thus seems that the sense of this 
propagation is undetermined at an arbitrary instant. 
 Meanwhile, it is somewhat obvious a priori that this sense will not be completely 
arbitrary, since it might, for example, change quickly in the course of motion.  Indeed, it 
is easy to see that for a given discontinuity θ has a perfectly well-determined sign.  
Indeed, that quantity must satisfy not only equation (3), but the compatibility conditions 
of no. 103: 
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 In the latter, it is the only unknown and is, as a result, given unambiguously since it 
appears to the first degree. 
 
 
 244. – If one has neither equations (6) nor (2), (3) then there is no compatibility.  We 
then know that the discontinuity might not remain unique, and we may propose to study 
what will be produced under these conditions.  However, before proceeding with this 
study, we must speak of the case of liquids. 
 For them, as we previously remarked (no. 136), one may not have a normal 
discontinuity since it would influence the derivatives of the density. 
 On the other hand, we shall see that only a normal discontinuity may propagate.  We 
may state this result in the following general form: 
 In a moving medium, if the components of the acceleration are equal, up to 
continuous quantities, to the partial derivatives (with respect to the actual coordinates) of 
the same everywhere continuous quantity Φ then they may propagate only normal 
(second order) discontinuities. 
 Indeed, the variations of the components of the acceleration are λθ2, µθ2, νθ2 and 

must be equal to the variations of 
x
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.  Now, since Φ is assumed to be 

continuous, they must be proportional to α, β, γ, from the lemma of no. 73.  The same is 
therefore true for λ, µ, ν if θ is non-zero. 
 One thus sees that the jump in acceleration is normal, and that this result is obtained 
without it being necessary to appeal to compatibility or any other hypothesis than the 
continuity of Φ at the instant considered. 
 Now, if we admit that there is compatibility, with a velocity of propagation that is 
non-zero, then we know that the direction of the jump in acceleration is also that of the 
characteristic segment (λ, µ, ν). 
 The lemma that we just proved may be immediately applied to the case that occupies 
us now, with the quantity Φ being p/ρ here, by virtue of equations (1). 
 We remark that whether there is no compatibility or the discontinuity is of first order 
and not second, under only the condition that the pressure be everywhere continuous, the 
preceding reasoning shows that the jump variation in the acceleration is a normal 
segment to the wave. 
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 245. – It is easy to generalize to a discontinuity of arbitrary order n.  In this case, the 

variation of the acceleration of order n depends (3) on that of the derivatives of
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Now, the (n − 2)th derivatives of p with respect to x, y, z, which may be expressed as 
functions of the derivatives of order n − 1 of the coordinates, are continuous under the 
present hypothesis, and the same is true for the other (n − 2)th derivatives of p, by virtue 
of the fundamental proposition of no. 97.  One may thus apply the preceding lemma 
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normal segment to the wave. 
 
 
 246. – Now, if one introduces the compatibility condition then one sees that the 
tangential component of the discontinuity and, as a consequence, all of the other ones are 
null if there is propagation. 
 We have therefore established that the motion of a liquid may present only 
discontinuities that are both stationary and tangential. 
 
 
 247. – The lemma that we just used is, moreover, likewise applicable to a gas, by 

taking Φ to be the quantity
dp

ρ∫
, which is a function of p.  The previously stated fact that 

any discontinuity that propagates in a gas is normal is therefore, as one sees, a 
consequence of the fact that the acceleration is derived from a potential. 
 
 
 248. – Now take, as in chap. III, a liquid in which one give the positions and the 
velocities of the various molecules, and suppose that these givens present a second order 
discontinuity along a certain surface S, which will be, as a consequence, known at each 
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are satisfied.  However, by contrast, the identical conditions are necessary, since the 
discontinuity is of second order all along S.  We thus have two given segments at each 
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point of it, whose directions are not necessarily the same.  Under these conditions, what 

will be the discontinuities that are experienced by
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 Furthermore, in order to respond to this question, we accept the hypothesis whereby 
there are no cavities created in the interior of the fluid and, as a consequence, that the two 
regions situated on either side of S remain automatically contiguous to each other for the 
duration of the motion. 
 The question is noticeably simplified by reason of the particular physical properties of 
the fluid.  Indeed, they will not preserve any trace of their initial state, as long as the 
density does not cease to be given by equation( )′3 of no. 47. 
 Furthermore, the restriction that is concerned with the choice of initial state in no. 45 
ceases to be necessary.  One may just as well substitute either of two initial states such 
that the derivatives of the coordinates of one with respect to the coordinates of the other 
present discontinuities or arbitrary singularities provided that the functional determinant 
of the old coordinates with respect to the new ones is continuous, along with its 
derivatives. 
 Now, in the present case the given positions of the molecules must obviously be 
chosen such that the density is constant. 
 Thus, whenever one has a discontinuity one may take the present state to be the initial 
state for all of the fluid, and consequently annul the segment that corresponds to the 
derivatives of index zero. 
 In order to see what the segment (λ1, µ1, ν1) that corresponds to the derivatives of 
index one will be under these conditions, we must recall that the velocities are chosen 
such that the derivative of the density with respect to time is everywhere null.  If we then 
refer to the calculation of the variation of that derivative as we did in no. 111 (cont.) (the 
considerations of no. 111 may not be invoked here since there is no compatibility) then 
we see that the segment (λ1, µ1, ν1) must be tangent to the surface S. 
 As for the acceleration, it exhibits no discontinuity (if one always avoids the case in 
which the fluid contains cavities).  Indeed, we have previously seen (no. 244) that by 
virtue of the equations of motion such a discontinuity must be normal, and, on the other 
hand, we know that it must be tangential, since otherwise it will not persist when it 
propagates, which is impossible. 
  
 
 249. – However, one may go further and confirm not only that the accelerations of all 
orders are continuous, but also that the given discontinuity does not give rise to any 
absolute discontinuity during the course of the motion. 
 In order to see this, recall the considerations of no. 244, from which it resulted that 
the jump acceleration is necessarily normal for the discontinuity considered.  This 
conclusion persists even when there is a jump in the velocity. 
 Therefore, letξ ′ ,η′be the curvilinear coordinates on the surface of the discontinuity, 
coordinates that define an arbitrary molecule of that surface that belongs to region 2.  Let 
ξ, η be the curvilinear coordinates of the molecule that is in region 1 at the instant t0, and 
which also coincide with the molecule (ξ ′ ,η′ ) in region 2 at the instant t.  ξ, η are 
functions of t for givenξ ′ ,η′ .  For these functions, the condition that the jump in 
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acceleration be normal gives two second order differential equations that are obviously 
satisfied when ξ and η are constants (4).  Moreover, this latter circumstance will 
necessarily be produced if the two derivatives dξ/dt, dη/dt are null at a given instant; we 
would like to establish this. 
 
 
 250. – It is easy to verify the existence of a motion with no absolute discontinuity by 
using simple examples of discontinuities that relate to vortices, i.e., transversal 

discontinuities that relate to the derivatives of the form
2x

a t

δ
δ δ

, … 

 For example, take a motion in two dimensions that is defined by the two conditions: 
1. Throughout the entire volume of a certain cylinder of revolution C whose axis is 
vertical it must reduce to a uniform rotation around that axis.  2.  It must have null 
molecular rotation in the rest of space.  The known methods of hydrodynamics show that 
under these conditions there exists a velocity potential that is equal to k arctan y/x, where 
k is a constant and the z-axis is C.  The velocity will then be perpendicular to the plane 
through the point (x, y) and the axis, and inversely proportional to the distance r = 

2 2x y+ .  Each point that is exterior to C will thus describe a circumference and will 

turn through an angle equal to 
2

k

r
t during a time t. 

 Moreover, in order for the velocity to be continuous at the origin of the motion the 
constant k will have to be calculated in such a manner that the angular velocity at the 
surface of the cylinder is the same as that of the interior points. 
 Under these conditions, it is clear that the interior and exterior points that are in 
contact with each other will likewise be in contact at any instant. 
 By contrast, the surface of the cylinder will obviously be the site of a first order 
discontinuity that relates to the derivatives δx/δa, …  Nonetheless, that discontinuity will 
not be physically appreciable.  It will not exist at an arbitrary instant, considered in itself, 
but will relate uniquely to the way that the positions at two different instants compare to 
each other.  In other words, a curve with a continuous tangent, such as the one that is 
represented in fig. 18, that traverses the surface of the cylinder will be replaced at the 
following instants by a curve that has the behavior that is represented in fig. 18 (cont.). 
 

 

C 

   

 

 
       Fig. 18.      Fig. 18 (cont.) 
                                                
 (4) See note III at the end of this volume. 
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 In the general case, the existence of a discontinuity of this type result from the 
foregoing considerations; we know (no. 93) that a stationary second order discontinuity 
that affects the derivatives of index one gives rise to a first order discontinuity that relates 
to the derivatives of index zero. 
 
 
 251. – Now return to the case of a gas.  Again let the givens be the positions and 
velocities of the molecules with a second order discontinuity of at all of the points of a 
surface S, with the same conditions being satisfied, except for the compatibility 
condition.  There will thus exist two segments (λ, µ, ν) and (λ1, µ1, ν1) at each of its 
points, which correspond to the derivatives of index zero and one, respectively. 
 We first take a particular case, namely, the one where the segments are all normal to 
S.  One may then determine two normal discontinuities, one of which propagates with the 
velocity θ that is given by formula (3) and the other of which propagates with the 
velocity – θ, such that superposition produces the given discontinuity. 
 Indeed, let l andl ′ be the magnitudes of these two discontinuities, and let h and k be 
the magnitudes of the given segments (λ, µ, ν) and (λ1, µ1, ν1), which are regarded as 
positive or negative according to their direction.  It is clear that one must have: 
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and that, conversely, if these two conditions are satisfied then the waves of magnitude l 
and l ′ are precisely the one that we seek. 
 
 
 252. – In order to treat the general case, it suffices to combine what we just said with 
the results that were obtained in the case of a liquid. 
 We are free to take the initial state as we like, provided that the density and its 
derivatives are continuous.  We may, moreover, make that state coincide with the actual 
state in region 1, and define it in region 2 in the following manner: 
 Consider each point M of region 2 to be defined by its normal distance Mm = δ to S 
and the position of the point m.  On the same normal to S, choose a new distance Mm0 = 
δ0.  We may obviously choose the latter as a function of the former and the position of m, 
in such a manner that if one imagines each molecule of region 2 to be transported from its 
true position M to the corresponding position M0 then the density becomes continuous, 
along with all of its derivatives.  It is the fictitious state thus obtained that we shall take to 
be the initial state.  It is clear that the segment (λ, µ, ν) will then be normal to the 
discontinuity surface. 
 On the other hand, we may decompose the segment (λ1, µ1, ν1) into its normal part 
and its tangent part.  If we first abstract from the latter then we will be reduced to the case 
that we just studied, and we find two copies of the discontinuity that propagate in the 
opposite directions with the velocity θ. 
 Furthermore, it will suffice to add the discontinuity that is produced by the tangential 
component to the segment (λ1, µ1, ν1) to these two waves; it is necessarily stationary.  
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One may apply the argument that was presented in the case of liquids to it without 
modification.  The accelerations of all order will thus remain continuous when this third 
discontinuity no longer persists.  The result that is produced will be a first order 
deformation of one of the regions with respect to the other one, just as we have been 
saying all along. 
  
 
 253. – It is in a completely analogous manner that one determines the state that is 
created at the point of contact with the wall when the normal acceleration of the wall 
disagrees with the one that results from the internal equations of motion, as we explained 
in nos. 139-140.  We must then deal with a normal discontinuity that propagates with the 

velocity θ =
dp

dρ
towards the interior of the fluid.  The magnitude l of this discontinuity 

will be determined by the condition that lθ2 be equal to the difference of the two values of 
the normal acceleration.  Having thus calculated l, all that remains for us to do will be to 
apply the formulas of ch. II to obtain the second order derivatives at the point of contact 
with the wall, since one knows the same values before the creation of the discontinuity. 
 
 
 254. – As we know, the most important results in hydrodynamics that have been 
obtained up till now relate to the conservation of vorticity, and consequently, the velocity 
potential, when it exists. 
 Now, the components of the vorticity are composed of the second order partial 
derivatives of x, y, z with respect to a, b, c, t.  One must therefore demand to know 
whether the theorems that concern them do not break down when one passes our 
discontinuity. 
 The response is negative: it immediately results from this that hydrodynamic 
discontinuities are normal.  Similarly, it will not affect the molecular rotation, whose 
variation is proportional (no. 114) to the tangential component of the discontinuity. 
 
 
 255. – Furthermore, the same fact applies (5) to the consideration of the integral ∫ u dx 
+ v dy + w dz, or circulation, which provides, as one knows (6), the simplest proof of the 
theorems that we shall discuss, which relate to the conservation of that integral in the 
course of motion when it is taken over a closed contour C. 
 The question is therefore that of knowing whether the integral in question, which 
necessarily keeps the same value as long as the contour C remains in one region or the 
motion is well defined, might change when the contour is traversed by a wave. 
 Now, during a time interval dt, the influence of one discontinuity is felt only on the 
arc s of C that exists between the two positions that are occupied by the wave at the 
                                                
 (5)  We content ourselves by summarizing the logic of this argument in a manner that is completely 
analogous to the one presented later on in note III at the end of the volume.  
 
 (6)  THOMSON, Cambridge Trans., 1869; BASSET, Hydrodynamique, t. I, pp. 70-73; DUHEM, 
Hydrodynamique, Elasticité, Acoustique, t. I, pp. 108-115; POINCARÉ, Théorie des Tourbillons, ch. I; 
APPEL, Traité de Mécanique, t. III, ch. XXXV, etc. 
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commencement and the end of that interval, arcs whose length is of order dt.  On the 
other hand, if one writes the integral in the form: 
 

(8)     
dx dy dz
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(τ being a parameter that defines a definite molecule of the curve C) then the 

expression
dx dy dz

u v w
dt dt dt

+ + will not vary sharply on the wave, since it is of second 

order.  The quantity by which it will be modified by the discontinuity at an arbitrary point 
of the arc s will therefore be of the same order as the arc itself, and the corresponding 
alteration of the integral (8) is of the same order as s2, i.e., of dt2.  Therefore, the 
derivative of that integral will be null, as when the motion is continuous. 
 The fact that this line of argument is successful is surprising, given that it does not 
involve the direction of the discontinuity, and that, from the preceding no., the actual 
result will obviously cease to be true it that direction is not normal.  However, one must 
observe (no. 247) that the orthogonality that exists between the direction of the 
discontinuity and that of the wave surface amounts to the existence of an acceleration 
potential, which was used when one established the conservation of vorticity in the 
continuous motion. 
 
 
 256. – Other than acceleration waves, one may produce, as we have seen, first order 
waves, or shock waves.  We have likewise confirmed that such waves might arise when 
the velocity of the wall does not present any sharp variation.  It is easy to establish 
equations for the propagation of such waves that are completely analogous to the ones 
that we wrote in nos. 205-209 in the case of rectilinear motion. 
 Let (λ, µ, ν) be the characteristic segment of the discontinuity, the initial state being 
the one in region 1.  The sharp variation of the velocity will be (− λθ, − µθ, − νθ).  On 
the other hand, let [p] = p2 – p1 be the variation of the pressure.  Apply the theorem of the 
quantity of motion projected onto a small cylinder that exists between a portion S of the 
wave surface at the time t and the corresponding portion of the wave surface at the 
infinitesimally neighboring instant t + dt.  Now, since this cylinder is considered in the 
state 1 of the medium, its height will be: 
 

dn = q dt, 
and its mass will be: 

ρ1 θ S dt . 
 
 We assume that S is very small, but that dt is negligible with respect to the 
dimensions of S.  Thanks to that circumstance, we may neglect the pressures that act on 
the lateral surface of our cylinder by comparison to the ones that act on the bases.  The 
effect of the forces X, Y, Z will be likewise negligible, as we saw in no. 205.  Therefore, if 
α, β, γ are the direction cosines of the normal to the wave, and they do not vary sharply, 
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then, since our cylinder passes (7) from region 2 to region 1 during the time dt, and 
consequently, from the velocity (u1 – λθ, v1 – µθ, w1 – νθ) to the velocity (u1, v1, w1) 
under the action of the opposing normal pressures p1 and p2: 
 
     ρ1 θ S dt λθ = − α[p] S dt, 
     ρ1 θ S dt µθ = − β[p] S dt, 
     ρ1 θ S dt νθ = − γ [p] S dt. 
 
 This shows us, first of all, that the discontinuity is necessarily normal.  Its magnitude l 
is: 

(9)      l = −
2

1

[ ]p

ρ θ
. 

 
 The ratio of the densities is given by formula (60) of no. 109.  If we take into account 
the fact that the discontinuity is normal and its magnitude is l then we obtain: 
 

(10)     1

2

ρ
ρ

− 1 = l . 

 
 One may eliminate l from these two equations, and one obtains: 
 

(11)    [p] = ρ1θ2 1

2

1
ρ
ρ

 
− 

 
= θ2 (ρ2 – ρ1) . 

 
 This formula corresponds to the expression (68) that was obtained in no. 207 for the 
velocity of propagation.  It nevertheless has a somewhat different form by reason of the 
fact that we have taken the initial state to be the actual state in region 1, which we did not 
do in the case of rectilinear motion. 
 
 
 257. – We must further write the equation of adiabaticity.  If we adopt Poisson’s law 
then this condition will be simply: 

1

1
m

p

ρ
= 2

2
m

p

ρ
, 

in which p1 and p2 are the two pressures. 
 If, on the contrary, we follow the path that was indicated by Hugoniot then we must 
directly write that the differential of the total work done by the pressure, when evaluated 
as we did in no. 209, has the expression: 
 
  dT = p1(u1α + v1 β + w1 γ) – p2 [(u1 − λθ) α + (v1 − λθ) β + (w1 − λθ) γ ] 

    = p2 lθ – [p] (u1α + v1 β + w1 γ) , 

                                                
 (7 )  As in no. 205, we assume that θ is positive in this argument, but the final result will be, of course, 
independent of this hypothesis. 
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and the sharp variation of the vis viva is equal to the variation of the internal energy.  

Now, this energy, which is, up to a factor of 
1

1m−
, the product of the volume with the 

pressure, has the value 1

1

p

m

θ
−

S dt in the state 1 and the value 2

1

p

m

θ
−

S dt in region 2, where 

the volume is multiplied by 1

2

ρ
ρ

. 

 We thus have (upon suppressing the factor S dt). 
 

(12)  2 2 21 1
2 1 1 1 1 2

2

[ ]( ) [( )]
2 1

p l p u v w u v w p p
m

ρ θ ρθθ α β γ
ρ

 
− + + + + + = − −  

. 

 
 As in no. 209, we must transform this equation in such a manner as to render it 
independent of the motion of the fluid.  To that effect, we only have to use the 
previously-obtained equations: 
 
     u2  = u1 – lαθ , 
     v2  = v1 – lβθ , 
     w2 = w1 – lγθ , 
 
(in which u1, v1, w1 and u2, v2, w2 are the two velocities), which give us the variation of 
the vis viva per unit mass [(u2 + v2 + w2)]. 
 Equation (12) thus becomes: 

2 2 2 2 21 1
2 1 1 1 1 2

2

[ ]( ) { 2 ( )}
2 1

p l p u v w l l u v w p p
m

ρ θ ρθθ α β γ θ θ
ρ

 
− + + + − + + = − −  

, 

 
and one sees precisely that the terms in u1α + v1β + w1γ are eliminated, by virtue of (9).  
What remains (upon dividing by θ and then eliminating l and θ2 by means of equations 
(9) and (10)) is: 

(13)   1 2

2

p p+
(ρ1 – ρ2) = 

1

1m−
(p1ρ1 – p2ρ2) , 

 
i.e., the same equation that we obtained for the case of rectilinear motion in no. 209 (the 
quantities ω1 and ω2 that appear in that section are inversely proportional to ρ1 and ρ2). 
 
 
 258. – The proof in no. 254 that acceleration waves will not alter vorticial motion 
does not apply to shock waves.  On the contrary, by conveniently modifying the 
argument of no. 255, one may prove (8) that they are capable of giving rise to vortices 
when none existed prior to their passage. 
 

___________
                                                
 (8 )  See note III at the end of the volume. 
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 259. – In this chapter, we propose to study the propagation of waves, no longer in 
liquids, but in elastic solids.  Contrary to what we did for liquids, for this study there is 
good reason to take the initial state to be no longer the present state, but a perfectly well-
defined state of the body considered called the natural state.  The initial state having been 
thus chosen, the internal tensions are functions of the components of the deformation ε1, 
ε2, ε3, γ1, γ2, γ3 that were defined in no. 51. 
 The distinction between the initial state and the present state does not have to play a 
role in the simplest case that one must study, the one in which one supposes: 1. that the 
body considered is homogeneous and isotropic; 2. that the deformations to which it is 
subjected are infinitely small. 
 In this case, the coordinates a, b, c of the initial state (i.e., natural state) essentially 
coincide with the coordinates x, y, z, t of the present state; one has: 
 
      x = a + ξ , 
      y = b + η , 
      z = c + ζ , 
 
in which ξ, η, ζ are assumed to be very small, along with their derivatives.  Reduced to 
the infinitely small terms of first order, the components of the deformation will be: 
 

(1)   
1 2 3

1 2 3

, , ,

, , .

x y z

z y x z y x

ξ η ζε ε ε

η ζ ζ ξ ξ ηγ γ γ

∂ ∂ ∂ = = = ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ = + = + = +
 ∂ ∂ ∂ ∂ ∂ ∂

 

 
 As we shall have occasion to recall a little later on, the equations of motion are 
deduced from the consideration of a certain function of the components of the 
deformation that is called the elastic energy.  In the isotropic case that we now address, 
this quantity has an expression of the form: 
 
(2)     ∫ ∫ ∫  W ρ dx dy dz 
 

( )′2  
2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3
2 2 2 2

1 2 3 1 2 3 2 3 3 1 1 2

2 ( ) (2 2 2 )

( 2 )( ) ( 4 4 4 ),

W L M

L M M

ρ ε ε ε ε ε ε γ γ γ
ε ε ε γ γ γ ε ε ε ε ε ε

 = + + + + + + + +
 = + + + + + + − − −
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in which L and M are two constants (9) such that the quadratic form W is positive definite, 
i.e., subject to the inequalities: 
 
(3)     M > 0 ,  3L + 2M > 0 . 
 
 The equations of motion may be written: 
 

(4)    

2

2

2

2

2

2

( ) ,

( ) ,

( ) ,

M L M X
t x

M L M Y
t y

M L M Z
t z

ξ σρ ξ ρ

η σρ η ρ

ζ σρ ζ ρ

 ∂ ∂= ∆ + + + ∂ ∂
∂ ∂ = ∆ + + + ∂ ∂

 ∂ ∂= ∆ + + +
∂ ∂

 

 
in which σ is the expression: 

σ =
x y z

ξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
such that 1 + σ represents the dilatation ρ0/ρ, and X, Y, Z are the given forces, which act 
on a unit mass. 
 
 
 260. – Equations (4) are, as one knows, of second order in ξ, η, ζ; they make known 
the components of the acceleration when ξ, η, ζ are given for each value of a, b, c, i.e., 
when one is given the positions of the molecules. 
 Now, experiments inform us that in order to determine the motion of an elastic body, 
one must give not only the positions and velocities of the molecules at the given instant, 
but also a set of boundary conditions, such as the motions of the different points of the 
surface of the body at every instant, or the pressures that are exerted on that surface at 
each instant. 
 Under these conditions, we again encounter the same difficulty as in the problem of 
hydrodynamics. 
 For example, we adopt the hypothesis that one gives the motion of each of the points 
of the surface.  Moreover, we know the accelerations of these points, and the values 
found for these accelerations are completely independent of the interior equations.  There 
will thus be no reason for them to agree with the ones that result from these equations.  
The contradiction is likewise more complete than the previous one, since these are the 
values of the accelerations themselves, and no longer just their normal components, 
which are given by the boundary conditions. 
 Since the present state essentially coincides with the initial state, let λ, µ, ν be the 
components of the discontinuity when referred to either of these states arbitrarily; let θ be 

                                                
 (9 )  We let L, M denote the coefficients that one usually calls λ, µ, since the latter letters are employed 
with a different significance here. 
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the velocity of propagation and let α, β, γ be the direction cosines of the normal to the 
wave surface.  In equations (4), if we replace the sharp variations of the second order by 
their values derived from the formulas of no. 103, then they become: 
 

(5)    

2

2

2

( ) ( )

( ) ( )

( ) ( ).

M L M

M L M

M L M

ρλθ λ α λα µβ νγ
ρµθ µ β λα µβ νγ
ρνθ ν γ λα µβ νγ

 = + + + +
 = + + + +
 = + + + +

 

 
 If we write these equations in the form: 
 
    (ρθ2 – M) λ = (L + M) α (λα + µβ + νγ) 
    (ρθ2 – M) µ = (L + M) β (λα + µβ + νγ) 
    (ρθ2 – M) ν = (L + M) γ (λα + µβ + νγ) 
 
then we see that they are entirely similar to equations( )′2 of the preceding chapter.  
Consequently, from what was said there, they admit two types of solutions: 

 1.  
λ
α

=
µ
β

=
ν
γ

: the discontinuity is longitudinal.  It propagation velocity will be given 

by the relation ρθ2 – M = L + M, namely: 
 

(6)     θ2 =
2M L

ρ
+

. 

 
 2.  λα + µβ + νγ = 0 : the discontinuity is transversal.  Its propagation velocity will 
be given by the relation ρθ2 – M = 0, namely: 
 

(7)     θ2 =
M

ρ
. 

 
 The two values of θ thus obtained are, moreover, real, by virtue of the inequalities 
(3). 
 Therefore, solid isotropic bodies are capable of propagating two sets of waves with 
different velocities: one set is exclusively longitudinal, and the other is exclusively 
transversal.  Just as we saw in no. 115, the former are not accompanied by any variation 
of the instantaneous molecular rotation, and the latter are not accompanied by any 
variation of the derivatives of the density. 
  
 
 261. – If, at a particular instant, there exists an arbitrary difference between the 
accelerations of the surface that are derived from the internal equations and these same 
accelerations, as derived from the boundary conditions then this will give rise to two 
waves, one of which is longitudinal and the other is transversal, corresponding to the 
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normal component and the tangential component of the segment that represents this 
difference, respectively. 
 On the other hand, if there exists a second order discontinuity along a well defined 
surface in the interior of the body at a particular moment and this discontinuity is 
absolutely arbitrary (the only restriction being the identical conditions) then it gives rise 
to four waves, one of which is longitudinal, the others of which are transversal; one 
propagates in one direction, while the others propagates in the opposite sense. 
 
 
 262. – If, instead of giving the positions of the points of the surface, one is given the 
tensions that act on those points at each instant then they may likewise have different 
values at the initial instant than the ones that were deduced from the components of the 
deformation at these same points.  Under these conditions, one will likewise produce a 
wave.  However, this time, it will be of first order, because a finite difference between the 
internal and external pressures will produce a sharp variation in the velocity.  Such waves 
have been studied by Christoffel (10).  Thanks to the hypothesis that the motions are 
infinitely small, that savant further obtained basically the same results as the ones that 
enable one to study acceleration waves. 
 
 
 263. – In the treatises on elasticity, one easily forms the equations of motion for the 
case of anisotropic bodies.  We shall not develop the results for these bodies that 
correspond to the previous ones; indeed, we shall find them in the most general case of a 
finite deformation.  Recall only that W is, moreover, a quadratic form in ε1, ε2, ε3, 
γ1, γ2, γ3, and that equations (4) are replaced by three second order equations that again 
give the projections of the acceleration as a function of the second derivatives (and also 
the first derivatives, if the body is not homogeneous) of ξ, η, ζ with respect to x, y, z. 
 In optics, when one looks for the vibratory states that satisfy the equations that we 
just wrote one confirms that to any direction of a plane wave there correspond  three 
directions of vibration, which are mutually orthogonal and are the three principal 
directions of a certain quadric or polarization ellipsoid.  One recovers precisely the same 
result when one adopt the viewpoint of Hugoniot: The calculation is completely 
analogous to the one that was presented above (no. 261), or to the one that we made 
above (no. 267). 
 
 
 264. – Now, we put aside the case of infinitely small deformations and propose to 
study elastic waves with finite deformations in a solid that is or is not isotropic. 
 The case in which such deformations exist has been envisioned by Boussinesq and 
Brillouin.  In order to write the equations of equilibrium under these conditions one again 
starts with the consideration of elastic energy, i.e., a certain triple integral of the form: 
 
(2)    ∫ ∫ ∫  W ρ dx dy dz = ∫ ∫ ∫  W ρ0 da db dc, 

                                                
 (10 )  Annali di Matematica, series II, tome VIII, pp. 193; 1877. 
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in which ρ dx dy dz = ρ0 da db dc is the mass element and W is a certain function of the 
six components ε1, ε2, ε3, γ1, γ2, γ3, of the deformation at each instant.  This function 
contains the a, b, c explicitly, possibly from somewhere else, according to whether the 
body considered is heterogeneous or homogeneous in its initial state. 
 Since the system of independent variables that is composed of time and the initial  
coordinates a, b, c is the only one that is employed in this chapter, and consequently no 
confusion should arise in that regard, it will not be necessary for us to conform to the 
convention of no. 61.  We thus denote derivatives that are taken with respect to these 
variables by the symbol ∂, the sign δ being reserved for the components of the virtual 
displacements. 
 We write that the variation of the integral (2) for any system of virtual displacements 
(dx, dy, dz) that are communicated to the various points is equal to the work that 
corresponds to the given forces (acting on a unit mass) (X, Y, Z), namely, the expression: 
 
(3)    ∫ ∫ ∫  (X δx + Y δy + Z δz) ρ dx dy dz , 
 
if the positions of the points of the surface are fixed, or to that expression, when it is 
combined with the work done by the external pressures, in the contrary case. 
 As in no. 47, let a1, b1, c1, a2, b2, c2, a3, b3, c3 be the partial derivatives of x, y, z with 
respect to a, b, c.  The variation of the integral (2) is (upon observing that the mass 
element ρ dx dy dz does not vary): 
 

(9)  
1 1 1 2 3

1 1 1 2 3

1 1

( ) ( )
.

W W W W W
a b c a c dxdy dz

a b c a c

W x W x
dx dy dz

a a b b

δ δ δ δ δ ρ

δ δ ρ

  ∂ ∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂= + +  ∂ ∂ ∂ ∂ 

∫∫∫

∫∫∫

⋯

⋯

 

 
 According to the general rules of the calculus of variations, we must transform that 
expression by an integration by parts, or, more precisely, by Green’s formula.  We thus 
have one surface integral and one new volume integral: 
  

1 1 1

2 2 2

3 3 3

.

W W W
x

a a b b c c

W W W
y

a a b b c c

W W W
z dx dy dz

a a b b c c

δ

δ

δ ρ

       ∂ ∂ ∂ ∂ ∂ ∂− + +       ∂ ∂ ∂ ∂ ∂ ∂       

      ∂ ∂ ∂ ∂ ∂ ∂+ + +      ∂ ∂ ∂ ∂ ∂ ∂      

      ∂ ∂ ∂ ∂ ∂ ∂ + + +       ∂ ∂ ∂ ∂ ∂ ∂       

∫∫∫

 

 
 In order for the sum thus obtained to be identically equal to the sum of the quantity 
(8) and the work done by pressure, it is necessary that there be equality for any δx, δy, δz, 
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for both the surface integral and the volume integral individually.  This gives us the 
internal equations of equilibrium, namely: 
 

(10)   

1 1 1

2 2 2

3 3 3

0

0

0,

W W W

a a b b c c

W W W

a a b b c c

W W W

a a b b c c

      ∂ ∂ ∂ ∂ ∂ ∂+ + =      ∂ ∂ ∂ ∂ ∂ ∂     
      ∂ ∂ ∂ ∂ ∂ ∂ + + =      ∂ ∂ ∂ ∂ ∂ ∂     
      ∂ ∂ ∂ ∂ ∂ ∂ + + =     
∂ ∂ ∂ ∂ ∂ ∂     

 

 
whereas the equality of the surface integrals will provide (upon assuming that the exterior 
pressures were given) by the boundary conditions. 
 Finally, if we would like to pass from the case of equilibrium to that of motion, we 
must only substitute the principle of virtual work for Hamilton’s principle: Moreover, this 
amounts (compare to what we said in chap. III) to making use of d’Alembert’s principle 
and introducing inertial forces into the forces X, Y, Z.  The equations on the surface will 
remain unaltered, whereas the internal equations will become: 
 

(11)   

2

2
1 1 1

2

2
2 2 2

2

2
3 3 3

0

0

0.

W W W x
X

a a b b c c t

W W W y
Y

a a b b c c t

W W W z
Z

a a b b c c t

      ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − =      ∂ ∂ ∂ ∂ ∂ ∂ ∂     
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − =      ∂ ∂ ∂ ∂ ∂ ∂ ∂     
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − =     
∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

 
 These equations are of second order, either with respect to t or with respect to a, b, c, 

since one must derive the terms
1

W

a

∂
∂

,
1

W

b

∂
∂

,
1

W

c

∂
∂

, which are certain functions of the first 

order derivatives.  If the body is homogeneous then these quantities do not contain a, b, c, 
t explicitly, and consequently the equations contain only terms of second order.  In 
addition, first order terms will enter into them in the contrary case. 
 
 
 265. - The case of hydrodynamics corresponds to the one in which W is a function of 
only density; in other words (the initial state being assumed to be homogeneous), of the 
functional determinant: 

D = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

. 
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 For W = F(D) the derivatives that were previously considered are nothing but the 
products of F(D) with the minors Ai, Bi, Ci of the previous determinant.  The expression: 
 

1 1 1

W W W

a a b b c c

     ∂ ∂ ∂ ∂ ∂ ∂+ +     ∂ ∂ ∂ ∂ ∂ ∂     
 

 
that appears in the first equation (10) is therefore written: 
 

1 1 1
1 1 1( ) ( )

A B C D D D
F D F D A B C

a b c a b c

∂ ∂ ∂ ∂ ∂ ∂   ′′+ + + + +  ∂ ∂ ∂ ∂ ∂ ∂  
. 

 
 The coefficient of F(D) is null, as is well known from the theory of multipliers (11).  
That of ( )F D′′  may be written: 
 

1 1 1A B CD D D
D

D a D b D c

∂ ∂ ∂ + + ∂ ∂ ∂ 
. 

 

 Now, this is nothing but 
D

D
x

∂
∂

, because the quantities1
A

D
, 1B

D
, 1C

D
are the partial 

derivatives of a, b, c with respect to x (x, y, z being taken to be independent variables).  
The equation: 

2

2
( )

D x
DF D X

x t

∂ ∂′′ + −
∂ ∂

= 0 

 
is identical to the first equation (1) of chap. V, by means of equation( )′3 of no. 47 and the 
relation: 
(12)     p = − 0 ( )F Dρ ′ . 

 
 
 266. – Equations (11), which make known the components of the acceleration at each 
point by means of the partial derivatives of x, y, z relative to a, b, c at this point, suggest 
some remarks that are completely similar to the ones that we made for the equations of 
hydrodynamics (no. 139-140) and for equations (4) (no. 260).  The agreement between 
the internal equations and the boundary conditions that must be established thus leads us 
once more to study the propagation of waves. 
 To that effect, we must first specify the equations of motion. 
 If we take into account the values of εi, γi that define formulas (7) of no. 51 then we 
see that one will have: 
 

                                                
 (11 )  JORDAN, Cours d’Analyse, tome III, no. 44, pp. 49. 
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(13)   

1 1 1
1 1 3 2

1 1 1
1 3 2 1

1 1 1
1 2 1 3

,

,

.

W W W W
a b c

a

W W W W
a b c

b

W W W W
a b c

c

ε γ γ

γ ε γ

γ γ ε

∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= + +

∂ ∂ ∂ ∂

 

 
 When we substitute these values into the first equation (11), differentiation will give 
two types of terms.  Indeed, in each term of the expressions that we just wrote, one may 
substitute either the first factor or the second one.  In the former case, we obtain the three 
quantities: 

2 2 2

2
1 3 2

2 2 2

2
3 2 1

2 2 2

2
2 1 3

,

,

.

x W x W x W

a a b a c

x W x W x W

a b b b c

x W x W x W

a c b c c

ε γ γ

γ ε γ

γ γ ε

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
 Once more, let λ, µ, ν be the components of a discontinuity of second order, relative 
to the initial state (which is the state (a, b, c) this time, and not the present state); let 
α, β, γ be the direction cosines of the normal to the wave, and let θ be the velocity of 
propagation.  If we consider the sharp variations of the second order derivatives that 
appear in the previous expression, and we replace them by their values found in no. 85 
then we see that the discontinuity that results from the sum of these three expressions is 
λQ, when we let Q denote the quantity: 
 

Q = 2 2 2

1 2 3 1 2 3

2 2 2
W W W W W Wα β γ βγ γα αβ
ε ε ε γ γ γ

∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
 
 267. – Now, look at the result that was just obtained when one differentiates all of the 
second factors in the expression (13).  Here, one encounters the derivatives of the 
components of the deformation with respect to a, b, c, derivatives whose variations were 
calculated in no. 113.  From what we found there, we introduce the quantities: 
 

(14)  1 2 3

1 2 3

, , ,

, , ,

e L e M e N

g M N g N L g L M

α β γ
γ β α γ β α

= = =
 = + = + = +

 

 
in which one has: 
 
(15) L = λa1 + µa2 + νa3,  M = λb1 + µbb + νb3,  N = λc1 + µc2 + νc3, 
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 The sharp variations of the derivatives of the components of the deformation may 
then be written in the simple form: 
 

    i

a

ε∂ 
 ∂ 

= αei, i

b

ε∂ 
 ∂ 

= βei, i

c

ε∂ 
 ∂ 

= γei,  

    i

a

γ∂ 
 ∂ 

= αgi, i

b

γ∂ 
 ∂ 

= βgi,  i

c

γ∂ 
 ∂ 

= γgi,  (i = 1, 2, 3). 

 

 From this, let us calculate
i

W

a ε
  ∂ ∂
  ∂ ∂  

.  One has: 

i

W

a ε
  ∂ ∂
  ∂ ∂  

 = 
2 2 2 2 2 2

1 2 3 1 1 1
1 2 3 1 1 1i i i i i i

W W W W W W
e e e g g gα

ε ε ε ε ε ε ε γ ε γ ε γ
 ∂ ∂ ∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

. 

 
 Consider the quadratic form: 
 

Ψ(e1, e2, e3, g1, g2, g3) = 
2 2 2 2

2 2
1 1 1 1 1 22 2

1 1 1 1 1 2

2 2
W W W W

e e g g g g
ε ε λ γ γ γ

∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

⋯ ⋯ ⋯ , 

 

in which the 
6 5

2

×
+ 6 = 21 products of pairs and the squares of the six quantities e, g 

appear, each of these products having as its coefficient the second derivative of W with 
respect to the variables ε or γ, respectively, and the terms thus obtained must be doubled 
(as usual) if these variables are different, i.e., if they amount to a rectangular term. 
 One immediately sees how this expression comes about. 
 Indeed, the second differential of W is: 
 

2 2
2 2 2 2

1 3 1 1 22
1 3 1 1 2

2
W W W W

d d d d dε γ ε γ γ
ε γ ε γ γ

∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂

⋯ ⋯ , 

 
and contains, on the one hand, the second differentials d2ε1, …, d2γ3, and, on the other 
hand, the first differentials dε1, …, dγ3 .  If one replaces them with e1, e2, e3, g1, g2, g3, 
respectively, in the terms that contain them then one obtains the quadratic form W. 

 Having thus introduced that form, the variation
i

W

a ε
  ∂ ∂
  ∂ ∂  

 is obviously nothing but 

2 i

Wα
ε

∂
∂

, and similarly, the derivative
i

W

a γ
 ∂ ∂
 ∂ ∂ 

is nothing but
1

2 i

W

g
α ∂

∂
. 

 Substituting in the sum that we must evaluate, we find: 
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1 1 1
1 3 2

1

2
a b c

e g g
α
 ∂Ψ ∂Ψ ∂Ψ+ + ∂ ∂ ∂ 

 

+ 1 1 1
3 2 1

1

2
a b c

g e g
β
 ∂Ψ ∂Ψ ∂Ψ+ + ∂ ∂ ∂ 

 

+ 1 1 1
2 1 3

1

2
a b c

g g e
γ
 ∂Ψ ∂Ψ ∂Ψ+ + ∂ ∂ ∂ 

. 

 
 The coefficient of α1 is: 

1 3 2

1

2 e g g
α β γ
 ∂Ψ ∂Ψ ∂Ψ+ + ∂ ∂ ∂ 

. 

 
 However, if one returns to the formulas (14) that define e1, e2, e3, g1, g2, g3 as 

functions of L, M, N then we see that this expression is equal to
1

2

W

L

∂
∂

.  Likewise, the 

coefficient of b1 is
1

2

W

M

∂
∂

, and that of c1 is 
1

2

W

N

∂
∂

.  The sum of the terms that contain a1, 

b1, c1 explicitly is therefore: 

1 1 1

1

2
a b c

L M N

∂Ψ ∂Ψ ∂Ψ + + ∂ ∂ ∂ 
. 

 
 Finally, if we take into account the formulas (15) by which one defines L, M, N then 
we see that this expression represents: 

1

2

W

λ
∂
∂

. 

 
 The desired equation and the two other analogous ones result from the last to 
equations of (11), which may thus be written: 
 

(16)    

2

2

2

1

2
1

2

1
.

2

W
Q

W
Q

W
Q

λθ λ
λ

µθ µ
µ

νθ ν
ν

 ∂= + ∂
∂ = + ∂

 ∂= + ∂

 

 
 They show that λ, µ, ν are proportional to the direction cosines of a principal 
direction of the quadric that is represented (λ, µ, ν being regarded as the coordinates, and 
α, β, γ, a, b, c, x, y, z, ai , bi , ci being regarded as constant) by the equation: 
 
(17)  Π(λ, µ, ν) = Q(λ2 + µ2  + ν2) + Ψ(e1, e2, e3, g1, g2, g3) = 1 . 
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 This quadric is the polarization ellipsoid, which is analogous to the one that we spoke 
of in no. 263. 
 
 
 268. − We thus find a result that is completely similar to the one that we already 
know in the case of infinitely small deformations, but which must be stated here in a form 
that is a little more precise since there is reason to distinguish between the initial state and 
the present state of the body considered.  Since the segment (l, m, n) is, as we know, 
defined in the space of the present positions of the molecules, the statement is: 
 The same direction of a wave is capable of propagating three different directions of 
discontinuities, which are orthogonal to each other in the deformed medium. 
 
 
 269. – In addition, equations (14) tell us the values of the velocity of propagation.   
They are the square roots of the three roots of the equation in s relative to the quadric that 
we just spoke of.  In order for them to be real it is necessary and sufficient that this 
quadric be a real ellipsoid. 
 We shall confirm that this condition is always satisfied in the cases that might present 
themselves. 
 In order to see what this circumstance is due to, first consider the case of liquids.  We 
have seen that the velocity of propagation then has the quantity dp/dρ for its square.  
Now, the condition that this quantity be positive is nothing but the stability condition for 
internal equilibrium.  It expresses that when a decrease in the volume is imposed on the 
gas, it produces an increase in the pressure, i.e., a change of the internal forces of such a 
nature as to oppose the modification that is so produced. 
 Conforming to what was established for the case of systems that depend upon a finite 
number of parameters, we assume that it is necessary for stability that the elastic energy 
actually have minima (instead of only having a null first variation), or, at the least, that its 
second variation must not become negative.  By this means, we shall express the stability 
of the equilibrium of a fixed body in terms of all of the points on its surface, in the 
absence of forces X, Y, Z. 
 If we now apply the operation δ to the first variation (9) then there will be two types 
of terms under the ∫∫∫ sign: The ones that one obtains by differentiating δai, δbi, δci, and 
the ones that one obtains by differentiating the factors ∂W/∂ai , … 
 Just as it happens in all of the analogous cases in the calculus of variations, the first 
category of terms gives a null sum.  Indeed, one may subject it to the same 
transformations as the first variation itself, which gives a result that is identical the one 
that we obtained previously, δx, δy, δz being simply replaced by δ2x, δ2y, δ2z.  Since these 
latter variations are null, like the first variations, on the surface (since its points are 
assumed to be fixed) the sum in question disappears, by virtue of equations (10). 
 What remains is the triple integral: 
 

(18) 1 1 3 3
1 1 3 3

W W W W
a b b c

a b b c
δ δ δ δ δ δ δ δ
       ∂ ∂ ∂ ∂⋅ + ⋅ + + ⋅ + ⋅       ∂ ∂ ∂ ∂        

∫∫∫ ⋯  ρ dx dy dz . 
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 270. – The quantity under the ∫∫∫ sign is a quadratic form with respect to δai, δbi, δci .  
If this form is positive definite for any value of a, b, c then the same is true for the 
preceding integral. 
 The converse is not exactly valid: Although the integral (18) must be essentially 
positive, it does not have to follow that the same thing is true for its differential element.  
However, we shall see, by contrast, that they must take only positive values whenever the 
variations δai, … have the form: 
 

(19)   
1 1 1

2 2 2

3 3 3

, , ,

, , ,

, , ,

a b c

a b c

a b c

δ λα δ λβ δ λγ
δ µα δ µβ δ µγ
δ να δ νβ δ νγ

= = =
 = = =
 = = =

 

 
and this must be true for any λ, µ, ν, α, β, γ.  In other words, whenever the δai, … satisfy 
equations (12): 
 
( )′19  δa1 δb2 − δb1 δa2 = 0,  δa1 δb2 − δb1 δa2 = 0, …,  δb2 δc3 − δb3 δc2 = 0 . 
 
 To that effect, we remark that the values thus written have an interpretation that one 
may immediately perceive.  They coincide with the values of the sharp variations of the 
quantities ai, bi, ci in a first order discontinuity that is defined on the wave surface 
considered. 
 In other words, in order to pass from the present position of the medium to an 
infinitely close position that corresponds to the variations (19), it will suffice to subject 
this medium to a deformation of the type that was considered in no. 56 and has (λ, µ, ν) 
for its characteristic segment. 
 Having said this, we make a small portion of the surface Σ, whose tangent plane has 
the direction cosines α, β, γ, pass through a particular interior point of our solid.  If these 
quantities, when combined with three conveniently chosen values of λ, µ, ν, give values 
for the expressions (19) that make the differential element of (18) negative at the point 
considered then one may take Σ to be sufficiently small for the same circumstance to 
occur at all of the points of that portion of the surface. 
 Having thus chosen Σ once and for all, we consider it to be the base of a cylinder C of 
height h.  If we suppose that its interior is subjected to a deformation of the type that was 
studied in no. 56, the surface whose points remain fixed being Σ, and the characteristic 
segment being (λ, µ, ν) then the maximum displacement thus obtained will be of order h.  
It is easy to see that one may then determine the deformation of the rest of the solid in 
such a manner that:  1. The points of the exterior surface remain fixed.  2. The continuity 
of the displacement is conserved on the surface of the cylinder C, in other words, that δx, 
δy, δz do not change values for a point of that surface depending upon whether one 

                                                
 (12 )  Conversely, one proves that if one obtains a positive definite form upon adding a linear 
combination of the left-hand sides of equations( )′19  to the quadratic form that figures in the integral (18) 
then the integral is indeed a minimum (at least when one takes it over a sufficiently restricted volume).  
However, it remains for us to examine whether the sufficient condition thus formulated is equivalent to the 
necessary condition that was obtained in the text. 
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considers that points to be interior or exterior to C.  3. δx, δy, δz and their first order 
partial derivatives are everywhere (outside of C) quantities that are very small of order h. 
 Under these conditions, the integral (18), when taken over the exterior of C, will be of 
order h2.  On the contrary, for the interior of C (in which δai, ... have essentially the 
values that were determined in (19)), they will be negative and of order h.  They will thus 
be negative when taken together. 
 In order for this to actually mean something, it must, consequently, be the case that 
the element in the integral (18) should not become negative when one gives ai, bi, ci the 
values (19), as we have said. 
 
 

 271. – If we now substitute the values (13) for 
i

W

a

∂
∂

,
i

W

b

∂
∂

,
i

W

c

∂
∂

then we see 

that
i

W

a
δ
 ∂
 ∂ 

, for example, will contain two types of terms: ones that are obtained by 

taking the variations of the first factor, and which give: 
 

1 3 2
i i i

W W W
a b cδ δ δ

ε γ γ
∂ ∂ ∂+ +
∂ ∂ ∂

, 

 

and the ones that are obtained by applying the operation δ to the factors 
1

W

ε
∂
∂

, … 

 Now, we know for example, that: 
 

1

Wδ
ε

 ∂
 ∂ 

=
2 2 2 2 2 2

1 2 3 1 2 32
1 1 2 1 3 1 1 1 2 1 3

W W W W W Wδε δε δε δγ δγ δγ
ε ε ε ε ε ε γ ε γ ε γ

∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

. 

 
 If we consider the quadratic form Ψ(e1, e2, e3, g1, g2, g3) that has been in question all 

along then it is clear that the preceding expression
1

1

2

W

ε
∂
∂

represents, provided that ei , gi 

are replaced by δεi , δγi , respectively.  One therefore has: 
 

i

W

a
δ ∂

∂
=

1 3 2
i i i

W W W
a b cδ δ δ

ε γ γ
∂ ∂ ∂+ +
∂ ∂ ∂

+
1 3 2

1 1 1

2 ( ) 2 ( ) 2 ( )i i ia b c
ε γ γ

∂Ψ ∂Ψ ∂Ψ+ +
∂ ∂ ∂

. 

 
 If one remarks that one has: 
 
   δε1 = a1 δa1 + a2 δa2 + a3 δa3,  
   δε2 = b1 δb1 + b2 δb2 + b3 δb3, 
   δε3 = c1 δc1 + c2 δc2 + c3 δc3, 
   δγ1 = b1 δc1 + c1 δb1 + b2 δc2 + c2 δb2 + b3 δc3 + c3 δb3 , 

… 
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and we find, in summation: 
 

1 2 3 1 2 3
1 2 3 1 2 3

1 1 1 1 1 1

2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
δε δε δε δγ δγ δγ

ε ε ε γ γ γ
∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ+ + + + +

∂ ∂ ∂ ∂ ∂ ∂
 

= Ψ(δε1, δε2, δε3, δγ1, δγ2, δγ3) . 
 

 Finally, the quantity under the ∫∫∫ sign in the second variation will be: 
 

(20) 

2 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3

1 2 3

1 1 2 2 3 3 1 1 2 2 3 3
1 2

1 1 2 2 3 3 1 2 3 1 2 3
3

( ) ( ) ( )

2 ( ) 2 ( )

2 ( ) ( , , , , , ).

W W W
a a a b b b c c c

W W
b c b c b c c a c a c a

W
a b a b a b

δ δ δ δ δ δ δ δ δ
ε ε ε

δ δ δ δ δ δ δ δ δ δ δ δ
γ γ

δ δ δ δ δ δ δε δε δε δγ δγ δγ
γ

∂ ∂ ∂+ + + + + + + + ∂ ∂ ∂
 ∂ ∂+ + + + + + ∂ ∂
 ∂+ + + + Ψ

∂

 

 
 It is this quantity that must be positive when one gives δai, δbi, δci, the values (19) in 
order for there to be stability. 
 The quantities δεi, δγi take precisely the values ei, gi, that were defined by formulas 
(14), (15), and consequently the expression (20) will become identical to the left-hand 
side of (17).  We thus obtain the desired conclusion precisely: from the stability of the 
internal equilibrium it results that the velocities of propagation for the various waves are 
real. 
 Moreover, if we assume that the expression (20) may not likewise be annulled under 
the indicated condition unless λ =  µ =ν = 0 or α =  β =  γ = 0, then these velocities of 
propagation always remain finite. 
  
 
 272. – In the case of hydrodynamics, in which W = F(D), the element 

2 2[ ( ) ( ) ]F D D F D Dδ δ′ ′′+ ρ dx dy dz in the second variation will reduce to: 
 

2( )( )F D Dδ′′ ρ dx dy dz 
 
and the quantity δ2D reduces, as is easy to insure, to a linear combination of quadratic 
forms that define the left-hand sides of equations( )′19 .  The condition of stability is thus 

(as we stated in no. 131) precisely F ′′ > 0 or 
dp

dρ
> 0 . 

 
 
 273. – The foregoing considerations provide a simple interpretation for the left-hand 
side of equation (17). 
 Indeed, replace λ, µ, ν with λ dt, µ dt, ν dt in formulas (19), in which we let dt denote 
the differential of a parameter.  Under these conditions, the deformation will be infinitely 
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small, and, just as we remarked in no. 113 (cont.), the increases in εi, γi will be precisely 
ei dt, gi dt.  Suppose, in addition, and this is obviously compatible with the hypotheses 
that we just made, that the second derivatives of x, y, z – and consequently also those of 
ai, bi, ci – with respect to t are null.  For example, let x, y, z have the values: 
 

x = x0 + λ t f(a, b, c),  y = y0 + λ t f,  z = z0 + λ t f , 
 
in which f(a, b, c) represents the left-hand side of the equation for the wave surface, 
which is defined as we explained in no. 80. 
 The coefficient of t2/2 in the development of W will then be the quantity Π(λ, µ, ν) 
that has occupied our attention. 
 If, as a consequence, we envision a small volume dτ around the point considered that 
we subject to the deformation that we just defined then the coefficient of t2/2 in the value 
for the elastic energy thus generated will be the product of ρ dτ with the left-hand side of 
the equation for the polarization ellipsoid. 
 
 
 274. – We have seen above that in the case of infinitely small deformations of an 
isotropic body there exist two types of waves, ones that are exclusively longitudinal and 
ones that are exclusively transversal. 
 Does this theorem persist in the case of finite deformations? 
 This question may be regarded as a particular case of another more general theorem.  
Indeed, one knows that the optics of crystalline solids leads us to consider − and to the 
exclusion of all others – elastic media that are or are not isotropic, and for which an 
analogous decomposition into longitudinal and transversal waves has meaning. 
 The determination of the form of the function W for which this is the case is well 
known when one is concerned with infinitely small deformations, i.e., when one supposes 
that W is a quadratic form with respect to ei, gi.  We propose to carry out this same 
determination in the general case. 
 The direction cosines of the wave surface in the deformed medium are proportional to 
the quantities l, m, n that are defined by the equations: 
 

(21)    
1 2 3

1 2 3

1 2 3

,

,

.

la ma na

lb mb nb

lc mc nc

α
β
γ

= + +
 = + +
 = + +

 

 
 It must then be the case that equations (16) are satisfied when one replaces λ, µ, ν 
with l, m, n in them.  Moreover, one must suppress the first terms of the left-hand sides in 
these equations, and write: 
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(22)    

1

2
1

2
1

.
2

sl
l

sm
m

sn
n

∂Ψ = ∂


∂Ψ = ∂
∂Ψ = ∂

 

 
 Since the terms lQ, mQ, nQ (which provide the quantity Q(λ2 + µ2 + ν2) that appears 
in Π) will only change the value of s by a quantity that is equal to Q without modifying 
the principal directions. 
 We observe that if l, m, n are given by relations (21) then the quantities L, M, N are 
nothing but α, β, γ.  We carry out the calculation in such a manner as to introduce these 
quantities, to the exclusion of l, m, n.  To that effect, we multiply equations (22), first by 
a1, a2, a3, then by b1, b2, b3, and finally by c1, c2, c3, respectively.  One will then obtain: 
 

   s (a1l + a2 m + a3 n) = sL = 1 2 3

1

2
a a a

l m n

∂Ψ ∂Ψ ∂Ψ + + ∂ ∂ ∂ 
 

   s (b1l + b2 m + b3 n) = sM = 1 2 3

1

2
b b b

l m n

∂Ψ ∂Ψ ∂Ψ + + ∂ ∂ ∂ 
 

   s (c1l + c2 m + c3 n) = sN = 1 2 3

1

2
c c c

l m n

∂Ψ ∂Ψ ∂Ψ + + ∂ ∂ ∂ 
. 

 

 If we now replace the derivatives
l

∂Ψ
∂

,
m

∂Ψ
∂

,
n

∂Ψ
∂

by their expressions with the aid of 

the derivatives taken with respect to L, M, N then we will have (in regard to the formulas 
that define εi, γi): 

     sL = 1 3 2

1
(1 2 )

2 L M N
ε γ γ∂Ψ ∂Ψ ∂Ψ + + + ∂ ∂ ∂ 

 

     sM = 3 2 1

1
(1 2 )

2 L M N
γ ε γ∂Ψ ∂Ψ ∂Ψ + + + ∂ ∂ ∂ 

 

     sN = 2 1 3

1
(1 2 )

2 L M N
γ γ ε∂Ψ ∂Ψ ∂Ψ + + + ∂ ∂ ∂ 

. 

 

 We solve these equations for
L

∂Ψ
∂

,
M

∂Ψ
∂

,
N

∂Ψ
∂

.  This solution introduces the minors Ei, 

Gi of the determinant: 

(23)    D2 = 
1 3 2

3 2 1

2 1 3

1 2

1 2

1 2

ε γ γ
γ ε γ
γ γ ε

+
+

+
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with respect to the elements 1 + 2 εi, γi, respectively; the coefficients of sL, sM, sN in the 

values of
1

2 L

∂Ψ
∂

,
1

2 M

∂Ψ
∂

,
1

2 N

∂Ψ
∂

are the quantities
2
iE

D
,

2
iG

D
.  Upon introducing, instead of s, 

the number: 

h = 
2D

s
, 

and upon letting Φ denote the form: 
 

Φ(p, q, r) = E1 p
2 + E3 q

2 + E3 r
2 + 2 G1 qr + 2 G1 rp + 2 G3 pq , 

 
i.e., the form that is adjoint to the one that gives the line element of the deformed 
medium, then the values in question will be: 
 

      
1

2 L

∂Ψ
∂

=
1

2
k

L

∂Φ
∂

, 

      
1

2 M

∂Ψ
∂

=
1

2
k

M

∂Φ
∂

, 

      
1

2 N

∂Ψ
∂

=
1

2
k

N

∂Φ
∂

, 

 
and the relations that we just wrote will be satisfied this time on the condition that one 
sets α, β, γ equal to L, M, N, respectively. 
 This substitution must be applied only after performing the differentiations.  If, on the 
contrary, one immediately sets α = L, β = M, γ = N then one will introduce too many 
terms into the left-hand side as a result of the differentiations with respect to α, β, γ.  
However, the values of e1, e2, e3, g1, g2, g3, which only appear in Ψ, are symmetric with 
respect to the two systems of quantities L, M, N and α, β, γ.  The terms thus introduced 
will be equal to the ones that originally existed, respectively, and will have the effect of 
doubling in value.  We may thus replace the preceding equations with: 
 

(24)     

1

2
1

2
1

2

k
L L

k
M M

k
N N

∂Ψ ∂Φ = ∂ ∂


∂Ψ ∂Φ = ∂ ∂
∂Ψ ∂Φ = ∂ ∂

 

 
in which Ψ will now have the value that was obtained by replacing α, β, γ with L, M, N 
before any differentiation, i.e., by setting: 
 
(25)  e1 = L2,   e2 = M2,   e3 = N2,   g1 = 2MN,   g2 = 2NL,   g3 = 2LM. 
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 Along with relations (24), this time we are concerned with identities that are 
meaningful for all of the values of the independent variables L, M, N that figure in them.  
As one knows, these relations express the idea that Ψ is a function of Φ, and since the 
first of these two expressions is a homogeneous polynomial of fourth degree and the 
second one, a homogeneous polynomial of second degree, one necessarily has: 
 

Ψ(L2, M2, N2, 2MN, 2LN, 2LM) = h Φ(L, M, N)2 , 
 
in which h is independent of L, M, N. 
 
 
 275. – We must now demand to know what the quadratic form Ψ must be in order 
that it reduce to hΦ2 when one replaces ei , gi by the values in (25), respectively.  This 
will be the case, not only if Ψ is equal to hΨ0, when one sets: 
 

Ψ0 = (E1e1 + E2 e2 + E3 e3 + G1 g1 + G2 g2 + G3 g3)
2 , 

 
but also if Ψ is equal to an arbitrary linear combination of hΨ0 and the six forms: 
 

(26)  
2 2 2

2 3 1 3 1 2 1 2 3

2 3 1 1 3 1 2 2 1 2 3 3

4 , 4 , 4 ,

2 , 2 , 2 .

e e g e e g e e g

g g e g g g e g g g e g

 − − −
 − − −

 

 
 This condition is not only sufficient, but necessary.  In order to convince oneself of 
this, it suffices to express directly that the form of fourth degree that is obtained by 
replacing by replacing the ei, gi in Ψ – hΨ0 with their values in (25) is identically null. 
 
 
 276. – Having thus obtained the expression for Ψ, it remains for us to return to that of 
W, for which it is clear that one therefore has a system of second order partial differential 
equations.  The integration of this system is, moreover, completely elementary, and it will 
suffice for us to summarize the process. 
 Since the forms (26) lack terms in 2

1e , e1 g3, e1 g2 these terms must have values in Ψ 

that are proportional to the ones that they have in Ψ0, and consequently the derivatives of 
W must satisfy the relations: 
 

(27)   
2

2
12

1

:
W

E
ε

∂
∂

=
2

1 3

W

ε γ
∂

∂ ∂
: E1G1 =

2

1 2

W

ε γ
∂

∂ ∂
: E1G2 = h . 

 
 Since one has (from (23)): 
 

E1 =
2

1

1 ( )

2

D

ε
∂

∂
,  G3 =

2

3

1 ( )

2

D

γ
∂

∂
,  G2 =

2

2

1 ( )

2

D

γ
∂
∂

, 
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these relations show that the derivative
1

W

ε
∂
∂

may be written: 

    
1

W

ε
∂
∂

= funct. (D, γ1, ε2, ε3) . 

 By taking into account analogous relations that relate to the derivatives
2

W

ε
∂
∂

,
3

W

ε
∂
∂

, one 

will easily verify that one may write: 
 

    
1

W

ε
∂
∂

= a (1 + 2ε2) (1 + 2ε3) + a1 

    
2

W

ε
∂
∂

= a (1 + 2ε3) (1 + 2ε1) + a2 

    
3

W

ε
∂
∂

= a (1 + 2ε1) (1 + 2ε2) + a3 , 

 
in which a is a function of D, whereas a1, a2, a3 may contain, in addition, γ1, γ2, γ3, 
respectively. 
 On may thus introduce the other terms of the form Ψ, in turn: for example, one will 
write that the coefficient of e2 e3 plus four times the coefficient of 21g  gives a sum that 

has the same value in Ψ as in hΨ (the former form (26) is eliminated in this 
combination). 
 One will thus easily arrive at the general expression for the function W, which is: 
 

(28)  
2 2 2

11 1 2 3 22 2 3 1 33 3 1 2

23 1 1 2 3 31 2 2 3 1 12 3 3 1 2

( ) ( 4 ) ( 4 ) ( 4 )

2 (2 ) 2 (2 ) 2 (2 ) ,

W F D a a a

a a a P

γ ε ε γ ε ε γ ε ε
ε γ γ γ ε γ γ γ ε γ γ γ

 = + − + − + −
+ − + − + − +

 

 
in which the aik are constants and P is an arbitrary first degree polynomial in the εi, γi (

13). 
 It is only when W has the preceding form that the polarization ellipsoid has an axis 
that is normal to the wave. 
  
 
 277. – The hypothesis that the solid is isotropic in its natural state expresses the idea 
that the properties of the body must not change when one performs an orthogonal 
coordinate transformation on a, b, c.  The function W that represents the elastic energy 
must therefore not be modified by such a transformation. 

                                                

 (13 )  h then has the value1 ( )d F D

D dD D

′ 
 
 

.  Since the quantity Q(λ2 + µ2 + ν2 ) of no. 266-267 is, as 

one easily recognizes, proportional to Ψ if the aik are null, one confirms that the terms in ( )F D′′ disappear 
from the equation of the polarization ellipsoid, and one comes back to the precisely the same expression for 
the element of the second variation that was calculated in no. 271 that was obtained in no. 272 for the case 
of liquids. 
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 Now, under this transformation the coefficients ε1, ε2, ε3, γ1, γ2, γ3 of the quadric ϕ = 1 
that was introduced in no. 51 vary.  However, as one knows, three quantities remain 
invariant: They are the coefficients of the equation in s relative to that quadric, i.e., the 
expressions: 
 
  A = ε1 + ε2 + ε3, 
  B = (1 + 2ε2) (1 + 2ε3) − 2

1γ + (1 + 2ε3) (1 + 2ε1) − 2
2γ + (1 + 2ε1) (1 + 2ε3) − 2

3γ  

  D2 . 
 
The isotropy of the body considered is expressed by the fact that W depends only upon 
the previous three quantities. 
 Now, it does not in any way result from this that W is necessarily of the form (28). 
 As a consequence, the conclusion that was established for the case of infinitely small 
deformations does not extend to finite deformations.  For them, the waves that propagate 
inside an isotropic body are not, in general, longitudinal or transversal. 
 
 
 

_________ 



 

CHAPTER VII 
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THE GENERAL THEORY OF CHARACTERISTICS 
_________ 

 
 

§ 1. – CHARACTERISTICS AND BICHARACTERISTICS 
 
 278. – We have seen that the propagation of waves in the rectilinear motion of a gas 
is related to the properties of the characteristics of second order partial differential 
equations in two independent variables. 
 In a completely analogous fashion, the study of waves in a three-dimensional space is 
not distinct from the theory of the theory of generalized characteristics, as Beudon (14) 
showed in the case of an arbitrary number of independent variables and extended to 
systems of several unknowns. 
 As in the case of two variables, this theory follows from the discussion of the Cauchy 
problem. 
 To fix ideas, take a second order equation that we suppose, in addition, to be linear 
with respect to the second derivatives, in such a way that one has the form: 
 
(1)     

,
ik ik

i k

a p l+∑ = 0 

 

in which pik denotes the partial derivative
2

i k

z

x x

∂
∂ ∂

of the unknown function z with respect 

to the independent variables xi and xk (which may or may not be different).  We suppose 
that there are n of these independent variables x1, x2, …, xn, in such a way that the indices 
i and k take the values 1, 2, …, n independently of each other. 
 As for aik and l, they are functions of z, x1, x2, …, xn and the first derivatives p1, p2, 
…, pn of z with respect to x1, x2, …, xn. 
 
 
 279. – Consider the n−1-extended multiplicity − or hypersurface – that is represented 
by the equation: 
(2)     xn = f(x1, x2, …, xn-1). 
 
 Let P1, P2, …, Pn−1 be the partial derivatives of xn with respect to x1, x2, …, xn-1 that 
are deduced from equation (2).  If U is an arbitrary function of x1, x2, …, xn-1, xn and this 
latter quantity is replaced by its value in equation (2) then U will be a function of x1, x2, 
…, xn−1 on Mn−1.  We let d denote the derivatives of U under this new hypothesis.  It is 
clear that they are related to the former derivatives by the relations: 
 

                                                
 (14) Bull. Soc. Math. Fr., 1897, pp. 108-120. 
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(3)   ,
n

i
ii x

P
xdx

d

∂
∂+

∂
∂=   (i = 1, 2, …, n-1). 

 
 For the function z one will therefore have: 
 

(4)   ,nii
i

pPp
dx

dz +=  

 
and, for U = pk : 
 

(5)    ,kniik
i

k pPp
dx

dp
+=   .

,2,1

1,,2,1









=
−=

nj

ni

⋯

⋯
 

 
 In a general manner, if we let the notation pik…h denote the 

derivative
i j h

z

x x x

µ∂
∂ ∂ ∂⋯

with respect to the µ variables (which may or may be different) xi, 

xj, …, xh then one will have, for U = pkh: 
 

)(5′   ,knniikh
i

kh pPp
dx

dp
+=  

 
and so on for the derivatives of all orders. 
 
 
 279 (cont.). −  Having said this, we imagine that we are given the Cauchy conditions 
at every point of Mn−1, namely, the values of z and its first derivatives.  Of course, they 
must satisfy the relation: 

dz = p1dx1 + p2 dx2 + … + pn dxn 
 
on Mn−1, i.e., the relations (4) (in such a way that it will suffice to give z and pn, in 
reality). 
 We seek to determine the second derivatives of z.  They must verify equations (5), 
and it is easy to see that, in general, they will be determined once one has added equation 
(1).  Indeed, if we first consider relations (5), in which the index k has the value n, then 
these relations will be give us: 
 

(6)      .nni
i

n
in pP

dx

dp
p −=  

 
 On the contrary, if we suppose that k is different from n then we will have (upon 
permuting the indices i and k): 
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,ink
k

i
ik pP

dx

dp
p −=  

and, on account of (6): 

)(6′     .nnki
k

n
k

k

i
ik pPP

dx

dp
P

dx

dp
p +−=  

 
 All of the second derivatives are thus expressed as a function of pnn .  Finally, we 
substitute these expressions into the given equation; we will thus have a result of the 
form: 
(7)     Apnn + K = 0, 
 
in which A and K will have the values: 
 

(8)   







+∑′−∑′=

+−= ∑ ∑
−

=

−

=

,

1

1,

1

1
,

nniinkiik

n

ki

n

i
nniinkiik

aPaPPa

aPaPPaA
 

 

)(8′   ,l
dx

dp
a

dx

dp
P

dx

dp
aK

i

n
in

i

n
k

k

i
ik +∑′+








−∑′=  

 
in which the notation ′∑ denotes a summation in which one does not give the value n to 
the indices of the variables. 
 Suppose that A is different from zero.  The preceding equation will determine pnn for 
us, and, as a result, all of the second-order derivatives. 
 
 
 280. – We pass on to the calculation of the third derivatives.  The relations( )′5 permit 
us to calculate all of these derivatives as a function of only pnnn .  For this, we first make 
two, then one, of the indices i, k, and h equal to n. We will then have relations that are 
evidently distinguished from (6) and )(6′ only by the index n that is added to each letter 
p, and which will give us, as a consequence: 
 

(9)   










+−=

−=

,

,

nnnki
i

nn
k

k

nn
ikn

nnni
i

nn
inn

pPP
dx

dp
P

dx

dp
p

pP
dx

dp
p

 

 
in which one will deduce the derivatives in which no differentiation index is equal to n by 
a third application of formula ).(5′  
 On the other hand, we obtain relations between the desired derivatives by 
differentiating the given equation (1).  However, it suffices to write just one of them.  All 
of the others reduce to the first one by means of the relations (5), (5′′′′).  Now, if we let F 
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denote the left-hand side of equation (1) then one may differentiate the equation F = 0 on 

Mn−1, since it is satisfied at each point of Mn−1, and one will have: 
 

0 =
i

d

dx

F
= i

i n

P
x x

∂ ∂+
∂ ∂
F F

, 

 
which shows precisely that the condition dF / dxn = 0 implies that dF / dxi = 0 for all 

values of i . 
 Now, if we differentiate equation (1) with respect to xn then the result obtained will 
evidently be of the form: 
(10)     ∑ =+ ,01lpa iknik       

 
in which l1 is a function of the x’s , as well as z and only its first and second derivatives 
(15).  If we then compare the system of linear equations (9), (10) to the system of 
equations (1), (5) then we see that they are identical, up to constant terms, once each 
unknown pik is replaced by pikn .  As a consequence, when one expresses the latter as a 
function of pnnn by means of relations (9), the equation for pnnn will be: 
 
(11)     Apnnn + K1 = 0, 
in which: 

)( 11 ′    K1 = 1
in nn nn

ik k ik
k i i

dp dp dp
a P a l

dx dx dx

 
′ ′∑ − +∑ + 

 
 

 
is a function of the xi, z, pi, pik .  The necessary and sufficient condition for conditions (9) 
and (10) to determine the third derivatives is therefore once more that A ≠ 0. 
 The calculation of the fourth, fifth, etc., derivatives is completely analogous to the 
foregoing.  For each order, one has an unknown that is determined by a first-degree 
equation in which the coefficient of that unknown is always the same quantity A. All of 
these unknowns are thus well defined, with only the condition that A ≠ 0. 
 
 
 281. – One can arrive at the same result by a change of variable.  Indeed, replace xn 
with the new independent variable: 
 

).,,,( 121 −−=′ nnn xxxfxx ⋯  
 
 The new equation in Mn−1 will be ,0=′nx and the partial differential equation, when 

referred to this new system of variables, will be F′ = 0.  One may calculate all of the 

                                                
 (15) Similarly, l1 will be linear with respect to the pik if the aik are independent of the first derivatives of 
z. 
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successive derivatives as functions of z and / nz x′∂ ∂  if the equation F′ = 0 is soluble with 

respect to the derivative .
2

2

nx

z

′∂
∂

 

 Now, if one reverts to the old variables then it is obvious from the foregoing, and easy 
to verify directly, that the condition: 

2

2
n

z

x

′∂
 ∂∂  ′∂ 

F ≠ 0 

thus obtained gives A ≠ 0. 
 One thus arrives at the same conclusion as always.  However, one may, moreover, 
obtain another one that is just as important.  Indeed, from the proof of Kowalewski, one 
knows that if z and / nz x′∂ ∂  are regular analytic functions of x1, x2,…, xn−1 for ,0=′nx and 

the function F′ is analytic and regular with respect to the quantities that figure in it, then 

the problem will admit a solution z that is analytic and regular in x1, x2,…, xn−1, .nx′   This 

result obviously carries over to the given system of variables.  In other words, the 
successive derivatives whose calculation we just indicated are the coefficients of a Taylor 
development that is convergent for sufficiently small values of the arguments. 
 
 
 282. – Now suppose that one has the relation: 
 
(12)     A = 0, 
for any (16) hypersurface Mn−1. 
 Therefore, in order for the problem to be possible, or at least in order for there to exist 
a solution z that admits derivatives of all orders on Mn−1, it is necessary that the series of 
given values of z, p1, p2, …, pn satisfies the condition K = 0, which may be written, upon 
replacing the pi with their values as functions of pn, as specified by (4) (17): 
 

(13) .0
2

=+∑′+







−−−∑′= l

dx

dp
apP

dx

dp
P

dx

dp
P

dxdx

zd
aK

i

n
innik

i

n
k

k

n
i

ki
ik  

 
 
 283. – On the contrary, if one considers a given solution of equation (1) for a 
moment, then the condition A = 0 is a first-order partial differential equation with respect 
to xn , when considered to be a function of the x1, x2, …, xn-1.  The multiplicities (2) that 
verify this equation will be called characteristics of the given equation. 

                                                
 (16) We will not treat the case here in which A is null on just a subset of Mn−1 (namely, on an n−2-times 
extended multiplicity that belongs to Mn−1) that corresponds to a singularity (compare ch. IV, no. 233) if K 
is different from zero, and which we recall later on (nos. 316-318) when K is null. 
 

 (17) Of course Pik denotes the derivative .
2

ki

n

dxdx

xd  
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 It is important to remark that in order to construct the characteristics, it does not 
suffice, in general, to be given just equation (1).  The characteristics are defined only for 
a particular integral of that equation since the coefficients depend not only on the x’s, but 
also on z and its derivatives.  The only exception is for equations of a particular form in 
which the coefficients aik of the second-order terms are functions of only the x’s. 
 As a first-order equation, the partial differential equation A = 0 itself admits 
characteristics (18) that are no longer n−1-times extended multiplicities, but lines (one-
dimensional multiplicities) that are defined by the ordinary differential equations: 
 

(14)    ,

1

1

2

2

1

1 ds

P

A

dx

P

A

dx

P

A

dx

n

n =










∂
∂

==










∂
∂

=










∂
∂

−

−⋯  

which further implies: 

)( 41 ′     .

1
1

2
2

1
1

−
− ∂

∂++
∂
∂+

∂
∂

=

n
n

n

P

A
P

P

A
P

P

A
P

dx
ds

⋯

 

 
 The lines likewise play an essential role in the present theory; we call them 
bicharacteristics − or rays − by reason of their physical significance, as we shall see later 
on. 
 Any characteristic hypersurface Mn−1 is related to the bicharacteristics, with one of 
them passing through each point of Mn−1. 
 
 
 284. – The bicharacteristics cease to be defined in a case that we exclude – at least, 
for the moment: the case in which/ iA P∂ ∂  is null for all values that the index i may take. 

 If one considers P1, P2, …, Pn−1 to be Cartesian coordinates and equation (12) to 
represent a surface, then, as we know, this case will correspond to the existence of a 
multiple point on the surface in question.  By analogy, we say that Mn−1 is a multiple 
characteristic, with its order of multiplicity being that of the point (P1, P2, …, Pn−1) on 
the surface (12). 
 
 
 285. – Condition (13) already introduced the bicharacteristics.  Indeed, the coefficient 
of dpn / dxi in that equation is: 

(15)    ik k ina P a′−∑ +  = 
1

2 i

A

P

∂−
∂

. 

 One may set: 

                                                
 (18) See GOURSAT, Leçons sur l’integration des équations aux dérivées partielle du premier ordre. 
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)( 51 ′    













+







−∑′=

+
∂
∂

∑′−=

.

,
2
1

2

lpP
dxdx

zd
aL

L
P

A

dx

dp
K

nik
ni

ik

ii

n

 

 
 Therefore, if one is first given the distribution of values of z on the multiplicity (2), 
which is assumed to be characteristic (19), then condition (13) will give a linear partial 
differential equation that will determine pn , and whose characteristics are the curves (14), 
precisely. 
 
 
 286. −  We return to the Cauchy problem and suppose that A = 0 and the condition 
(13) is likewise verified.  Thus, equation (7) no longer determines pnn .  As we already 
saw in the case of two variables, this quantity cannot be assumed to be completely 
arbitrary.  Indeed, for A = 0 equation (11) is likewise impossible or undetermined, and the 
condition of possibility is: 

K1 = 0. 
 
 Now, if one operates on the expression( )′11 for K1 as we already did on the 
expression for K, i.e., if one replaces the pin with their values as functions of pnn that are 
obtained from (6), then one will obviously find: 
 

(16)    













+







−∑′=

+
∂
∂

∑′−==

.

,
2
1

0

1

2

1

11

lpP
dxdx

pd
aL

L
P

A

dx

dp
K

nnik
ki

n
ik

ii

nn

 

 
 When pnn is considered to be a function of x1, x2, …, xn−1 on the multiplicity Mn−1, it 
therefore satisfies a linear first-order partial differential equation. 
 The characteristics of this latter equation are nothing but the bicharacteristics that are 
situated on Mn−1. 
 If one lets ds denote the common value of the ratios (14) (in which s is a parameter 
that defines a variable point of the bicharacteristic) then equation (16) will become: 
 

,0
2

1
1 =− L

ds

dpnn  

 
which is, as one sees, a first-order differential equation in pnn , when considered to be a 
function of s. 

                                                
 (19) Nevertheless, one must observe that the characteristics may not be defined without being given the 
pi , since the aik are not independent of these quantities. 
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 Therefore, one may take pnn arbitrarily at only one point of the bicharacteristic.  In 
other words, if we trace a multiplicity Mn−2 on Mn−1 that meets each bicharacteristic at one 
and only one point then pnn will be arbitrary only on Mn−2 and not on Mn−1. 
 Once pnn has been chosen, pnnn will be determined not only by equation (11), but by 
the conditions that relate to the fourth derivatives.  Now, the equations that determine 
them are identical with the ones that determine the third derivatives, up to a term that 
contains only the first and second derivatives, by replacing the pik with pikn, and the pikn 
with piknn.  We will thus have a linear first-order partial differential equation for pnnn , 
when considered on Mn−1, which is derived from (16) by the same substitution, except for 
the change in the term in which pnnn is not differentiated (a term that will be linear, not 
quadratic, with respect to pnnn); in this way, pnnn , like pnn , may be chosen arbitrarily at 
each point of each bicharacteristic. 
 It is clear that completely similar considerations may be applied to subsequent 
derivatives of all orders. 
 
 
 287. – We have supposed that the equation for Mn−1 may be solved for xn .  If this 
equation is taken in an arbitrary form: 
 

)(2′      Π(x1, x2, …, xn) = 0 
 
then the partial derivatives P1, P2, …, Pn−1 of xn with respect to x1, x2, …, xn-1 may be 
expressed as functions of the partial derivatives π1, π2, …, πn of Π with respect to x1, x2, 
…, xn−1, xn with the aid of the formulas: 
 

(17)    ,
n

i
iP

π
π

−=  (i = 1, 2, …, n−1), 

 
in such a way that the quantity A, which must be null in order for Mn−1 to be 
characteristic, will be (20): 

(18)     ∑
=

=
n

ki
kiikaA

1,

.ππ  

 
 One may, moreover, make this substitution in the series of calculations that led us to 
the equation of the characteristics.  For example, consider relations (5); by means of the 
substitution (17) they become: 

(19)    .kniikn
i

k
n pp

dx

dp πππ −=  

 
 For arbitrary n, the same circumstance presents itself every time that the left-hand 
side of the equation is a linear function of the determinant: 

                                                

 (20) This new quantity A is equal to the old one multiplied by 2
n

π . 
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and its minors (21). 
 In particular, this relates to any equation that one deduces from an equation of the 
form (1) by a contact transformation.  It is obvious a priori (compare ch. IV, no. 162) that 
the preceding conclusions must persist for an equation so obtained, and, similarly, that 
the characteristics and the bicharacteristics are preserved by the transformation. 
 
 
 290. – As we saw in no. 161 in the case of two variables, condition (12) is the one 
that Mn−1 must verify in order for the two integrals of the equation to be mutually tangent 
at all points of this multiplicity, at least when this contact is not of order infinity. 
 Moreover, this notion is equivalent to that of wave propagation when it is applied to 
the motions that may be considered as depending on only a single unknown function. 
 For example, consider the motions of a gas that are derived from a velocity potential 
Φ.  The components of velocity then depend on the first derivatives of that potential, and 
the same is true for the pressure, from the equation (22): 
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 Suppose that two motions of this type present a discontinuity of order m (m ≥ 2) 
between them.  This order will also be that of the first derivatives of the potential that are 
discontinuous. 
 If x, y, z, t, Φ are considered to be five coordinates then each of the two motions will 
be represented by a surface in the space of five dimensions, two surfaces that have a 
common contact of order m.  Moreover, both of them must satisfy the differential 
equation of motion, namely (23): 
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in which ρ must be replaced by its value from (23). 
 The contact multiplicity: 
(24)     ϕ(x, y, z, t) = 0 

                                                
 (21) These equations have been studied in a general manner by Goursat (Bull. Soc. Math. Fr., tome 
XXVII, pp. 1-34; 1899). 
 
 (22) See, for example, KIRCHHOFF, Mécanique, 15th lesson. 
 
 (23) KIRCHHOFF, loc. cit. 
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must therefore be a characteristic of that equation.  Now, the second-order terms in that 
equation are: 

,
2
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in such a way that we must have: 
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This equation is equivalent to formula (5) (no. 240), which gives us the displacement 
velocity of the wave. 
 The lines of reasoning by which we obtained these two formulas are, moreover, 
analogous, although this analogy does not seem to be complete, since we introduced only 
the velocity potential, instead of the coordinates x, y, z, t, which are considered to be 
functions of a, b, c, t.  For example, consider equations (20) or (20′).  They say that for 
two integrals that agree on the multiplicity( )′2 , with identity in their first derivatives, the 
differences between the second derivatives are like the squares of the products of pairs of 
partial derivatives in the left-hand side of ).(2′  This fact is nothing but the one we 
established in no. 97 (24). 
 
 
 291. – In order to apply the theory of characteristics to the study of the most general 
motions of a gas, it is necessary to extend it to the case of systems of equations, the 
number of them being assumed to be equal to the number of unknown functions.  This is 
a case in which the theorem of Cauchy and Kowalewski continues to apply, at least when 
one assumes, on the one had, that all of the givens are analytic, and, on the other hand, 
that one excludes certain exceptional cases (the ones in which it is impossible to solve 
with respect to the highest-order derivatives that belong to the various desired functions, 
respectively) that will not occur in the problems that will occupy our attention. 
 Recall that, contrary to what happens for ordinary differential equations, the case of 
several partial differential equations that number as many as the unknown variables is 
essentially distinct from the case of one equation.  It is impossible to reduce the one to the 
other by eliminating the one or more unknowns.  Indeed, one does not therefore obtain a 
unique equation that would determine the remaining unknown, but a system of equations, 
the discussion of which will be, from the standpoint of the existence of and search for 
their common solutions, more complicated than that of the original system. 
 To fix ideas, we take the case that is presented most commonly in mechanics, that of 
three equations in three unknowns ξ, η, ζ, and we further suppose that the equations are 
second order and linear in the second derivatives pik of ξ, the second derivatives qik of η, 
and the second derivatives r ik of ζ.  They may therefore be written: 

                                                
 (24) Nevertheless, the theory of characteristics does not dispense with the lemma of no. 72, a lemma 
that was implicitly assumed in what we just said. 
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in which , , , , , ; , ,ik ik ik ik ika a c c c l l l′ ′ ′′ ′ ′′⋯ depend on the unknown functions, their first 

derivatives (those of ξ are denoted by p1, p2, …, pn, those of η by q1, q2, …, qn, and those 
of ζ by r1, r2, …, rn), and the independent variables, which are always the x’s. 
 We further consider the multiplicity Mn−1, on which we suppose that we are given the 
values of ξ, η, ζ, and the first derivatives (or, more precisely, the pn, qn, rn).  Since the qik, 
r ik satisfy equations that are completely similar to (6), ),(6′ one may apply the 
transformations that we performed in nos. 279, 282 to the terms that contain them, and 
the given equations consequently take the form (compare (7), (15)): 
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in which A, B, C denote the quantities: 
 

,nniinkiik aPaPPaA +∑′−∑′=  

,nniinkiik bPbPPbB +∑′−∑′=  

,nniinkiik cPcPPcC +∑′−∑′=  
 
and , , , , ,A B C A B C′ ′ ′ ′′ ′′ ′′ are completely analogous quantities that are formed from the 
second and third equations, and: 
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as well as the analogous quantities,L L′ ′′are functions of pn, qn, rn, and the distribution of 

values of ξ, η, ζ on Mn−1. 
 Moreover, the condition for the search for the second derivatives to be an impossible 
or undetermined problem is: 

(29)    .0=
′′′′′′
′′′=

CBA

CBA

CBA

H  

 
 As one sees, one therefore has a partial differential equation that is of first order, but 
sixth degree. 
 
 
 292. – If we first place ourselves in the most general case, the one in which the 
multiplicity Mn−1 is characteristic − i.e., it verifies the equation H = 0 − then the minors 
of the determinant H are not all null at an arbitrary point of this multiplicity.  This makes 
the condition for the system to be indeterminate (and not impossible) with respect to pn, 
qn, rn unique, namely, a certain equation of the form: 
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which is linear with respect to the derivatives of pn, qn, rn taken on Mn−1. 
 This time, one may choose two of the three first derivatives pn, qn, rn arbitrarily at 
each point of the multiplicity Mn−1, and then determine the third one with this condition.  
However, in this case, the characteristics of the first-order linear equations thus obtained 
are not in the least the analogs of the bicharacteristics that were always defined in the 
case of just one equation.  They do not coincide with the lines that we shall encounter in 
the calculation of the third derivatives, and which will be the true bicharacteristics.  
Furthermore, the characteristics of the equation in rn will not be the same as those of the 
equation in pn or qn . 
 In a word, since we stopped at the second derivatives the calculation presents itself in 
a very different manner depending on whether one is dealing with one or several 
equations. 
 
 
 293. – If we assume that condition (30) is verified then the solution of the system (27) 
will be indeterminate.  If , , , , , , , ,α β γ α β γ α β γ′ ′ ′ ′′ ′′ ′′ are the minors of H relative to the 

elements ,,,,,,,,, CBACBACBA ′′′′′′′′′ respectively, in which α, for example, is assumed to 
be different from 0, then all of the solutions of that system can be summarized by the 
formula: 
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in which ),,( 000

nnnnnn rqp is one of these solutions and ρ is an arbitrary parameter. 

 We pass on to the third derivatives.  From the preceding calculations we performed, it 
will suffice to find pnnn , qnnn , rnnn , which will be given by the equations: 
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in which 1 1 1, ,L L L′ ′′ denote the new terms that are quadratic in pnn , qnn , rnn with known 

coefficients.  The condition of possibility for this system is obtained by multiplying the 
first equation by α, the second one by ,α ′  and the third one by ;α ′′  it thus follows that 
pnnn , qnnn , rnnn disappear, with the result that: 
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 We need to substitute the values for pnn , qnn , rnn that are given by formulas (31) in 
this equation.  It is clear that we will thus obtain an (inhomogenous) linear first-order 
partial differential equation in ρ in order to determine ρ, in which the coefficient of 
dρ /dxi is: 










∂
′′∂′′+

∂
′∂′+

∂
∂+









∂
′′∂′′+

∂
′∂′+

∂
∂

iiiiii P

B

P

B

P

B

P

A

P

A

P

A ββββαααα
2

1

2

1
 










∂
′′∂′′+

∂
′∂′+

∂
∂+

iii P

C

P

C

P

C γγγγ
2

1
. 

 



CHAPTER VII 

 

246 

 However, from well-known identities, the condition H = 0 entails that: 
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We may therefore put α into the factor, and the coefficient of  1/2α, namely: 
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is nothing but ∂H/∂Pi . 
 Therefore, the characteristics of the equation in ρ are: 
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in other words, they are identical to those of equation (29). 
 One obviously recovers these same lines in the subsequent calculations of the higher-
order derivatives.  They are the ones that we call the bicharacteristics of the given system. 
 
 
 294. – The case that we now treat is that of the equations of hydrodynamics, at least 
as far as the propagation of discontinuities is concerned. 
 Indeed, as in the foregoing, it is clear, first of all, that the multiplicity S0 that 

expresses, as was explained in no. 96, the propagation of a wave in time is necessarily a 
characteristic of the system of equations of the motion. 
 On the other hand, if two motions of a gaseous mass both propagate along a wave 
then we know that the discontinuity that exists between them is normal to that wave at 
each point.  Therefore, if one is given one of the motions then the values of the second 
derivatives of the other one depend upon only one unknown at each point, namely, the 
magnitude of the discontinuity in question.  This amounts to saying that the solution of 
the system (27) involves only one arbitrary unknown, and, as a consequence, that at least 
one of the minors of the determinant of H is different from zero. 
 If we take the equations of hydrodynamics in the Euler form then the independent 
variables are the present coordinates x, y, z, and time t, and the equation for Mn−1 must be 
written in the form: 

ϕ(x, y, z, t) = 0. 
 

 The partial differential equation that the function ϕ satisfies − which will give
t∂

∂ϕ
as a 

function of
zyx ∂

∂
∂
∂

∂
∂ ϕϕϕ

,, − will therefore give us the displacement velocity of the wave.  

Effectively, if one forms the determinant H for the Euler equations, which are four first-
order equations in four unknowns u, v, w, ρ then one comes down to equation (25), 
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multiplied by a factor of 
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(which corresponds to stationary 

waves, which we shall discuss later on). 
 On the contrary, if we employ Lagrange variables and solve the equation for Mn−1 for 
t, namely: 
(34)     t = f(a, b, c), 
 
then the characteristic equation will give us the velocity of propagation: 
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when referred to the initial state considered.  We thus come down to formula (4) of no. 
240; indeed, we also have that the preceding calculations, when applied to equations (1) 
and (3) of ch. III, give (25), conforming to the formula in question, as well as relation 
(35): 
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 If the equation for Mn−1 is taken in the form: 
 

)( 43 ′      f(a, b, c) = 0, 
 
without being solved for t, then one will obtain the same equation (up to the replacement 
of the second term with ),2

tf multiplied by the factor ,2
tf which again corresponds to 

stationary waves. 
 
 
 295. – Moreover, under these conditions one sees quite well that the calculations by 
which one arrives at the result are not distinct from the ones that were carried out in chap. 
V.  Indeed, one must write x for the unknown in equations of the type ),( 02 ′ and 

analogous equations for y and z, in which the parameter λ will be replaced by µ or ν.  
Now, it immediately appears that one thus obtains the kinematical compatibility 
conditions that were the object of chap. II, and which we adjoined to the dynamical 
equations of motion (26). 

                                                
 (25) To that effect (as we said in no. 124), one must express the derivatives , ,

p p p

x y z

∂ ∂ ∂
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with the aid of 

the derivatives with respect to a, b, c, and, on the other hand, take into account the remark that was made in 
the note on page (?). 
 
 (26) Meanwhile, we must remark that the considerations of chap. II−V do not give the interpretation in 
a form that presents the terms as all known (independently of the pik) and, as a consequence, does not 
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 296. – One will obtain the value of the velocity of propagation such as was given by 
formula (3) (no. 239) upon taking the initial state to be the present state; moreover, since 
the form Φ(fa, fb, fc) that figures in formula )( 92 ′ then reduces to ,222

cba fff ++ we 
immediately obtain the tangent to the bicharacteristic at the instant considered, namely: 
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Therefore, the bicharacteristic is normal to the wave when referred to an initial state that 
coincides with the present state at the instant and point considered. 
 
 
 297. – If we pass from the equations of hydrodynamics to those of elasticity then we 
may likewise apply the foregoing considerations − at least when the coefficients of 
elasticity are completely arbitrary.  Indeed, in general, the directions of the discontinuities 
that are compatible with a given wave surface are finite in number – equal to three – and 
each of them corresponds to a different velocity of propagation.  In other words, when 
one gives the characteristic multiplicity S0 that represents the propagation of the wave, 

the direction of the discontinuity is determined.  We may therefore reason as we did at 
the beginning of no. 294. 
 
 
 298. – Things are otherwise in the case of an isotropic body whose deformation is 
assumed to be infinitesimal.  Indeed, we have seen that the velocity of propagation in 
such a body has only two possible values (instead of three).  The first corresponds to 
longitudinal waves, to which we can apply all of what we just said.  On the contrary (with 
the notations of no. 260), the other, which is equal to M/ρ, agrees with the transversal 
waves, and an arbitrary transversal discontinuity may therefore propagate.  In other 
words, if we consider equations (5) of no. 260, equations whose determinant is: 
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then the factor ρθ2 – M will be common to this determinant and all of its minors. 

                                                                                                                                            
permit us to find equations in which these terms intervene, such as equation (30) (no. 292).  There is a 
lacuna in all of this that will undoubtedly be interesting to fill. 
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 Moreover, just as it results from the preceding developments – and as one 

immediately verifies – if one replaces the unknowns λ, µ, ν with ,,,
2
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ttt δ
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the quantities α, β, γ, θ with: 
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in these linear equations then, up to terms that are independent of the unknowns, the 
equations thus obtained are nothing but the ones that one arrives at by substituting the 
second derivatives that are derived from (6), (6′) − i.e., equations (28) (with the equation 
of the wave being t = f(x, y, z)) − into the equations of motion themselves. 
 One therefore sees that the determinant H, as well as those of all of its minors, is null 
on transversal waves that propagate in isotropic elastic bodies.  This is likewise obvious 
for the stationary transversal waves of hydrodynamics, as one confirms by performing the 
calculations of no. 294 without omitting these waves, i.e., on equation),( 43 ′ and not on 
the equation that is obtained by solving for t. 
 
 
 299. – It is therefore necessary to study, in turn, the systems for which these 
circumstances present themselves. 
 We then find ourselves in a previously excluded case (no. 284) in the study of a 
single equation: that of a multiple characteristic.  Indeed, it is clear that all of the 
quantities ∂H/∂Pi are null (27). 
 The preceding theories are, in general, invalid on a multiple characteristic.  However, 
this is not the case if this characteristic nullifies all of the minors of the determinant H, 
and if its rank − i.e., the number of rows and columns that must be suppressed in the 
determinant in question in order to find a minor that is different from zero − is equal to its 
order of multiplicity.  This is what is established in the work that was cited for Goursat 
(28) for the case of two independent variables. 
 Later on (no. 327), we shall recover a result that is equivalent to the result that we just 
obtained for the case of arbitrary n.  However, for our present objective we will be 
obliged to make an extra hypothesis. 
 Indeed, in the case that was envisioned in the preceding no., the double characteristics 
have the same degree of generality as the others; like them, they are defined by just one 
first-order partial differential equation. 
 We limit ourselves to the – obviously, very particular − case in which this condition is 
satisfied; more exactly, the one in which all of the minors of the determinant H are 
nullified, not only on the characteristic considered, but also on all characteristics that are 
infinitely close to the first. 

                                                
 (27) This is because the factor ρθ2 – M figures as a square in expression (36). 
 
 (28) Equations aux dérivées partielles du second ordre, tome II, note xi. 
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 Therefore, recall the system of equations and the system (27) in pnn , qnn , rnn  that is a 
consequence of it, and suppose that the determinant H is null, along with all of its minors, 
and that this circumstance is true not only on Mn−1, but also on all of its neighboring 
characteristics. 
 The system (27) will then have two conditions of possibility, but if they are satisfied 
then the three equations that it refers to will reduce to just one, which will determine rnn , 
for example, as a function of pnn and qnn; up to a known term, one will have: 
 

.nnnnnn q
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 Likewise, equations (32) will have two conditions of possibility that we obtain, for 
example, upon multiplying the first of them by,C ′′ and the third one by – C, and adding 

them, and then doing the same thing with the last two equations and the coefficients ,C ′′ − 
C.  We thus find: 
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(the third derivatives are eliminated by virtue of the relations: 
 
(37)   ).0=′′=′==′′=′==′′=′= γγγβββααα  
 
 If we replace rnn with its value as a function of pnn , qnn then we will have two partial 
differential equations for them: 
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in which we have replaced all of the terms that do not contain derivatives of pnn, qnn by an 
ellipsis, terms whose form is not actually important. 
 
 
 300. – In appearance, these equations have a much more complicated form than the 
preceding ones, since we are in the presence of two partial differential equations in two 
unknowns pnn , qnn .  Nevertheless, like the former they reduce to ordinary differential 
equations. 
 Indeed, if we take the relationAC CA′′ ′′= into account then the coefficient of dpnn/dxi 
in the first of them may be written: 
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(since one likewise has );ACCA ′=′  meanwhile, the analogous coefficients of
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 Now, we have supposed that the relations (37) are true, not only on Mn−1, but also on 
all of the infinitesimally close characteristics.  This obviously demands that the 
expressions ,,, ⋯αα ′  which are polynomials in P1, P2, …, Pn−1, have a common factor 
H1, since the characteristics in question are represented by the equation H1 = 0.  We may 
therefore set: 
 
 α = H1A, α′ = H1A′,   α″ = H1A″, β = H1B,  β′ = H1B′,  β″ = H1B″, 
 γ = H1C, γ′ = H1C′,  γ″ = H1C″, 
 
and we suppose that the quantities A, …, C″ are not always annulled at an arbitrary point 
of our characteristic. 
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 Since H1 is null, the derivative
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applies to ,
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  Our equations are then written: 
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 Therefore, if we consider the lines on Mn−1 that are defined by the differential 
equations: 
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(s is an arbitrary parameter) then we may write our equations in the form: 
 

nn nndp dq

ds ds
′− +⋯B A = 0, 

nn nndp dq

ds ds
− + +⋯B A = 0. 

 
 These are two ordinary differential equations that define pnn and qnn as functions of s.  
We may therefore reach the same general conclusions as always.  We may choose the 
values of pnn, qnn at a point of each of the lines that are defined by the differential 
equations (39), and these quantities will therefore be determined all along the line in 
question.  These are the lines that we again call the bicharacteristics of the system. 
 In the case of transversal waves that propagate in isotropic solids, these 
bicharacteristics are still normal to the waves, since the equation of the characteristics is 
written: 

.0)( 2222
1 =++−= zyxt fffMfH ρ  

 
 
 301. – From what was said in no. 288, it is clear that all of the results (such as those 
of nos. 291-293, and the ones we just obtained) continue to be essential when the given 
equation is not linear with respect to pik , qik , rik .  It will further suffice to differentiate 
these equations once with respect to xn .  The quantities aik , bik , cik will be replaced by the 
derivatives of the left-hand side with respect to pik , qik , or r ik . 
 It is likewise clear that if the equation for Mn−1 is considered in the form −′)(2 not 
having been solved for xn – then the characteristics will again be given by equation (29).  
A is replaced by the expression (18) (no. 287); , ,A A′ ′′⋯are replaced by analogous 
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expressions.  The bicharacteristics will be represented (under the hypotheses of no. 292) 
by the equations: 
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 302. – We return to the dynamical interpretation of the results that we just obtained. 
 In order to present our reasoning, we adopt the convention that we spoke of in no. 100 
(cont.), i.e., that we trace the corresponding figures as if they were motions in the plane, 
with the surfaces of discontinuity being replaced by curves in the figures, the triply 
extended multiplicities by surfaces, etc. 
 Consider two motions of a second-order discontinuity (or one of order m ≥ 2) along a 
surface, a subset of which that we denote by S0, represents the initial state, and both of 
which satisfy the same system of dynamical equations − for example, the equations of 
hydrodynamics.  Suppose that one is given the position of the surface S0 at an instant t0.  
The considerations of chapter V teach us to find the velocity of propagation at that instant 
at all points of the surface, or, what amounts to the same thing (no. 100 (cont.)), the angle 
that the hypersurface S0, which is related to S0 as time varies, makes with the 

hypersurface t = t0; as a consequence, one constructs the direction of S0 at this point.  

From what we saw in chap. V (no. 269-271), this direction is always real in the case of 
the equations of hydrodynamics or elasticity.  Two or more of them may exist; in that 
case, the compatibility conditions permit us to choose between them, as we explained in 
no. 243. 
 
 
 303. – However, the considerations that were developed in the present chapter permit 
us to go much further.  Indeed, if one of the two motions is completely known − the one 
that points towards the interior that relates to propagation − then we know a first-order 
partial differential equation (that of the characteristics) that S 0 must satisfy. 

 Now, from the general theory of partial differential equations (29), such an equation, 
when combined with the condition that is satisfied by the surface S0, completely 
determines the hypersurface in question. 
 To perform this determination effectively, it suffices (30) to possess a complete 
integral of the characteristic equation, i.e., (up to a restriction, upon which we do not 
insist here (31)) an integral that depends on three arbitrary constants (in the case that 
interests us, which is the one in which the number of independent variables is four). 

                                                
 (29) GOURSAT, Leçons sur l’intégration des équations aux dérivées partielles du premier ordre, no. 
75, pp. 189-191. 
 
 (30) GOURSAT, loc. cit. 
 
 (31) GOURSAT, ibid., no. 43, pp. 96. 
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 We begin with a characteristic multiplicity that might not only play the role of a 
complete integral, but is also a bit more general, since it contains four constants, namely, 
the coordinates of an arbitrary point (a0, b0, c0, t0) of the space E4.  Let: 
 
(40)    H(x1, x2, …, xn, P1, P2, …, Pn-1) = 0 
 
be an arbitrary first-order partial differential equation that defines xn as a function of x1, 
x2, …, xn-1, in which P1, P2, …, Pn−1 denote the first derivatives of xn .  For each system of 
values 0 0 0

1 2( , , , )nx x x⋯ of x1, x2, …, xn, that equation gives a relation between P1, P2, …, 

Pn−1.  For n = 3, the variables x1, x2, x3 may be regarded as Cartesian coordinates, and the 
relation between P1 and P2 that is obtained represents a cone that must be tangent to the 
desired surface.  In order to generalize to the geometry of n dimensions we may preserve 
the same geometric interpretation for all n and speak of the cone Γ that is represented by 
equation (40) at the point O, which has the coordinates ).,,,( 00

2
0
1 nxxx ⋯  

 To each direction (of the multiplicity Mn−1) that is tangent to this cone along a certain 
generator γ  – i.e., to each system of values for P1, P2, …, Pn−1 that satisfy the equation 
for the given values of x – the theory of first-order partial differential equations teaches 
us to associate a characteristic c of equation (40) that has the generator γ for its tangent at 
the given point.  Any integral that passes through O, and for which P1, P2, …, Pn−1 have 
the values considered at this point, necessarily contains the entire characteristic c. 
 The integral that we consider, with Darboux (32), which he called the integral with 
singular point, is nothing but the locus C of the different characteristics c that issue from 
the point O, and correspond to the various possible directions of γ.  It obviously admits O 
as a conical point whose tangent cone is Γ.  It is described by each integral that passes 
through O along the characteristic c. 
 In the case for which equation (40) is the one that defines the characteristics of an 
equation, or a system such as the ones that we studied in the foregoing, we give the 
hypersurface C that has O for its conical point the name of the characteristic conoid with 
vertex O, and the cone Γ is called the characteristic cone at this same vertex. 
 
 
 304. – Now if, in turn, the system in question is the one that regulates motion, in such 
a way that the independent variables are a, b, c, t, and one gives the position S0 of a wave 
at the instant t0 then in order to obtain the characteristic multiplicity S 0 (fig. 19) that cuts 

t = t0 along the surface S0 – i.e., the multiplicity that figures in the progress of this wave – 
it will suffice to take the envelope of the characteristic conoids that have the different 
points (a0, b0, c0, t0) of the surface S0 considered at the instant t0 for vertices.  This 
envelope will have several nappes, in general; however, as in no. 243, if there is 
compatibility then the propagation takes place along just one of them, which is perfectly 
determined. 

                                                                                                                                            
 
 (32) Mémoire sur les solutions singuliéres des équations aux dérivées partielles du premier ordre, no. 
2, pp. 34 (Mém. des savants étrangers, t. XXVII, 1880). 
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Fig. 19 
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 Let Σ be the surface (which is represented by a curve in fig. 19) along which the 
multiplicity tt ′= (which is represented by a plane that is parallel to t = t0 in fig. 19) is cut 
by the characteristic conoid of vertex (a0, b0, c0, t0).  The construction of S0 that we just 

indicated translates into geometrical language in the following manner: If we are given 
the position S0 of a wave at the instant t0 then in order to obtain the position0S′ of that 

wave at an arbitrary final instant ,t ′  it suffices to take the envelope of all surfaces Σ that 
correspond to the different points of S0 . 
 When the surface S0 is infinitesimal and reduces to the unique point (a0, b0, c0) the 
multiplicity S0 is nothing but the characteristic conoid itself.  The surface S is therefore 

the one on which a discontinuity that is concentrated in the neighborhood of the point (a0, 
b0, c0) for t = t0 will be distributed at the instant.t ′   
 
 

 305. – The waves that we encountered in chapters 
V and VI (nos. 239, 271) always had a real 
propagation velocity, and we were likewise led to 
assume (no. 271) that these velocities are always 
finite. 
 As one immediately sees upon first referring to 
the case of motion in two dimensions, the condition 
that the velocities be real for any direction of the 
wave amounts to demanding that the multiplicity t = 
t0 not be a secant to the characteristic conoid of vertex 
O, and the condition that these velocities always be 
finite expresses that they not be tangent to it; as a 

consequence, they are entirely external to it. 
 If this condition is satisfied then it is clear that the surface S cannot be extended 
indefinitely in any sense.  In particular, the surface Σ that corresponds to the case in 
which S0 reduces to the point O is always closed. 
 
 
 306. – Conversely, suppose we are given a 
surface 0S′ at the time .tt >′  First suppose that this 

surface reduces to a point O (fig. 20), and let Σ0 be the 
surface of section of the characteristic cone C of vertex 
O of the multiplicity .tt =′   If the surface Σ0 is closed, 
as we said (33), then in order to determine the motion at 
O at the instantt′ it will suffice to know the motion, not 
of all of the points of space, but just the ones that are 
interior to Σ0 at the instant t0 . Indeed, we deduce that if 

                                                
 (33) If the characteristic conoid is comprised of several nappes, in such a way that Σ0 is comprised of 
several closed nappes, then it is necessary to consider the most external of these nappes here, in such a way 
that C is the nappe that is inclined towards the interior of the characteristic that passes through Σ0. 
 

 

Fig. 20 
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two motions coincide in the interior of Σ0 for t = t0 (although they might possibly be 
distinct outside of that surface) then they subsequently coincide in any region that is 
interior to the characteristic multiplicity defined by Σ0, a multiplicity that is nothing but 
C. 
 Now, if 0S′  is an arbitrary closed surface, and no longer just a point, then what we just 

discussed will obviously still apply upon replacing the interior of Σ0 with the domain that 
replaces the various surfaces Σ0 that correspond to the different points of0S′ or the interior 

of 0S′ . 
 

 307. – When the coefficients a11, a22, … (no. 278) of the highest-order derivatives are 
constant, in such a way that the characteristic equation does not explicitly contain the 
variables themselves, the characteristic cones that correspond to the different points of 
space are all equal. 
 Moreover, the characteristic conoid reduces to the characteristic cone.  Indeed, the 
characteristic equation reduces to the characteristic cone.  Indeed, the characteristic 
equation is verified when one gives constant values to all of that quantities that we have 

denoted by the letters Pi  − which are , ,
dt dt dt

da db dc
here − which gives a linear function of a, 

b, c for t.  The corresponding bicharacteristics are obviously straight lines (34), which are 
nothing but the generators of the cone Γ. 

 As for the characteristic multiplicities on which , ,
dt dt dt

da db dc
also reduce to constants, 

they are obviously the plane waves, which corresponds to the case in which the surface S0 
reduces to a plane, and for which, consequently, the same thing is true for the surfaces0S′  
that correspond to any final instant by means of the hypothesis of the constancy of the 
coefficients a11, … that we adopted at the moment. 
 
 
 308. – When this hypothesis is satisfied, one gives the name of wave surface to the 
surface Σ that corresponds to .1=−′ tt   Since the characteristic conoid is the envelope of 
the plane waves here, the wave surface may be considered to be the envelope of a 
plane 0S′ , such that the distance from it to the parallel plane S0 that is defined by O is 

equal to the velocity of propagation of a discontinuity that follows S0 . 
 On the contrary, when the coefficients of the higher-order derivatives are no longer 
constant, one defines the wave surface relative to an arbitrary definite point O by giving 
these coefficients the same value everywhere that they have at O; this amounts to 
substituting the tangent cone Γ for the characteristic conoid.  The construction that we 
just indicated in the last section remains valid, moreover.  
 In all of the physical treatises, the equation of the surface thus generated is 
constructed for the cases of gaseous media, isotropic elastic media, and the luminous 
vibrations of crystalline media.  In the first two cases, this surface reduces to a sphere.  In 
                                                
 (34) It is painfully necessary to recall that in the geometry of n dimensions, one uses the term “straight 
line” to refer to a one-dimensional multiplicity along which the n coordinates are linear functions of 
another. 
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the last one (which is nothing but that of an elastic medium that satisfies the particular 
hypotheses of nos. 274-276), it is of fourth degree (Fresnel wave surfaces). 
 
 
 309. – The definition that we just gave for the wave surface permits us to confirm that 
the bicharacteristics, such as the one that we introduced in the foregoing, are nothing but 
the rays that one considers in physics. 
 Indeed, the direction of a ray is defined to be that of the line that joins the point O to 
the point of contact of the wave surface that relates to this point with the wave 
considered.  Now, in our four-dimensional space this is represented by the multiplicity S0 

(fig, 19) which is tangent to the characteristic conoid C along the bicharacteristic .OO ′  
 To simplify, suppose that the coefficients of the higher-order derivatives are constant. 
The surface S (fig. 19) will then be homothetic with respect to the point O on the wave 
surface and the bicharacteristic ,OO ′ which will then be a straight line that is precisely the 
direction of the ray, as we shall indicate in an instant. 
 All of what we just said persists, moreover, when the coefficients are no longer 
constant; all that is necessary is to take an instant t′ that is infinitely close to t0.  The 
equality of the bicharacteristics and the rays is thus established. 
 
 
 310. – In their present form, the preceding considerations do not permit us account for 
all of the physical properties of rays (35).  Nevertheless, they do show that these lines play 
an essential role in the propagation of motion.  This is further evidenced by the following 
proposition: 
 Suppose we are given an initial motion that satisfies the equations and a wave S0 (fig. 
19) that propagates this motion, a wave that we furthermore consider to be determined by 
its position S0 at a certain instant t0.  Let t ′  be the final instant when this wave attains a 
definite point .O′   The new motion at this point will depend exclusively upon the new 
motion that the point O (fig. 19), which is on the same bicharacteristic asO′ at the instant 
t0. 
 Indeed, this is what results from the calculations that were done in nos. 293, et seq.  
The latter show that if we know the multiplicity S0 and the elements of the discontinuity 

at just one point O then these same elements will be determined at all points of the 
bicharacteristic that issues from O. 
 In particular, if the discontinuity exists at the instant t0 only for a small portion of the 
wave surface then it will exist only for a small portion of the surface0S′  at the instant t ′ , 
namely, the one that is bounded by the same bicharacteristics as the first one. 
 
 
 311. – The result that we just stated persists in either of the two previously treated 
cases, namely, when the determinant does or does not have a minor that is different from 
0, respectively.  However, we have assumed that it is not necessary to work with the 
second case since the characteristic considered shares the property of annulling all of the 

                                                
 (35) See below, nos. 350-351. 
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minors of H with all of the infinitely close characteristics.  Our reasons will be invalid if 
the characteristics that possess this property are particular ones, i.e., if the generators of 
the cone Γ that corresponds to these characteristics depend on the parameters less than 
the others at an arbitrary point do.  In this case, nothing permits us to still assert the 
existence of the characteristics.  Such singular characteristics undoubtedly deserve to be 
studied from the analytical viewpoint.  They are well known in optics; they are what 
correspond to the phenomenon of conical refraction.  Contrary to what is true for 
multiple characteristics in general (36), they are not related to singularities of the solutions 
(see below, no. 327). 
 
 
 312. – The construction that was indicated in no. 304 further permits us to determine 
the wave in circumstances that are a little more complicated than the ones that we were 
recently faced with. 

 For example, consider the intersection of two 
waves, i.e., the case in which two surfaces of 
discontinuity S, S′ are originally completely 
separate from each other, and then they propagate 
in a gaseous medium, which we suppose, to 
simplify, to be indefinite, until they cross.  This 
intersection defines a curve l that obviously varies 
with t.  Upon once more employing the language 
of four-dimensional geometry and representing the 
wave surfaces by their positions0 0,S S′ on the initial 

state, one may say that the multiplicities S0, 0′S  are 

generated by the surfaces0 0,S S′  as t varies and 

intersect along a twice-extended multiplicity Λ, whose t = const. sections are the 
successive positions of the curve l.  As we have done before, it is easy to represent the 
analogous phenomenon in the case for which there are only two coordinates x, y, and the 
multiplicities S0, 0′S  are surfaces that are traced out in a space of three dimensions (fig. 

21).  Λ will then be a curve traced in that space. 
 During the time when S0, 0′S  are secant and after it, the successive positions of the 

curve l will obviously give rise to new waves, which are, in a sense, the continuation of 
the first two.  It is clear that these new characteristic multiplicities 0′′S , 0′′′S (fig, 21), which 

represent the progress of these waves, will be determined by the condition that they 
contain the multiplicity Λ, and that they are obtained, as a consequence, as envelopes of 
the characteristic conoids that have the different points of Λ for their vertices, precisely as 
we explained in the case where Λ corresponded to t = const. and reduced to a surface S0. 
 Completely similar considerations apply to the intersection of a wave with a fixed or 
moving wall.  The latter forms a hypersurface by the set of its positions for the different 
values of t, which will cut the wave along a multiplicity Λ that is of the same nature as 
the one that we have always denoted by that notation.  It remains for us to pass a second 

                                                
 (36) See, for example, the note on page (?). 
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characteristic (reflected wave) through Λ, which comes about by the same construction as 
the foregoing. 
 In this case, as in the preceding one, the multiplicity Λ is, from the way it was 
obtained, external to the characteristic cone that has an arbitrary point of Λ for its vertex, 
in such a way (compare no. 305) that the new waves we obtain are real. 
 
 
 313. – Analytically speaking, the case of refraction corresponds to the case in which 
the space E4 is divided into two regions in which the equations of the problem will have 
different forms.  A wave that propagates into one of these two regions thus encounters 
their common boundary along a multiplicity Λ, through which a characteristic of the 
equations in the second region must pass.  Nevertheless, this new characteristic (refracted 
wave) may be itself imaginary when the first wave is real. 
 It is clear that Huyghen’s construction is only an application of this manner of 
operation. 
 
 
 314. – Finally, one often considers a wave that intersects itself; in other words, a 
wave surface that is originally devoid of singularities and acquires double lines (37) in the 
course of its propagation. Of course, that circumstance must not be confused with the 
phenomenon of Riemann and Hugoniot, which was studied in chapter IV; in general, it 
does not affect the regularity of the motion. 
 

 
§ 2. – EXISTENCE THEOREMS 

 
 315. – In the foregoing, we confirmed that on a characteristic the derivatives of each 
order lead to an indeterminacy.  It does not result from this that there exists an infinitude 
of integrals that solve the Cauchy problem, nor even that there exists only one. 
 For the case of a second order analytic equation in two independent variables, this 
fact was established by Goursat (38) as a consequence of the following theorem: 
 Being given one analytic partial differential equation in two independent variables, 
along with two concurrent analytic lines, each of which is tangent to one of the 
characteristics that issue from their point of intersection, the equation admits one (and 
only one) analytic integral that takes the given analytic values on the two given curves. 
 From this theorem, it easily follows that there exist an infinitude of analytic integrals 
that solve the Cauchy problem for one characteristic. 
 
 

                                                
 (37) This is true in the general case when the curves that are parallel to a curve C have double points 
(even if C has none of them) when the distance becomes sufficiently large when referred to the concavity 
of C. 
 
 (38 )  Leçons sur les dérivées partielles du second ordre, tome I, pp. 184-193. 
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 316. – The theorem of Goursat has been generalized by Beudon, loc cit., to the 
equation in an arbitrary number of variables that was treated in no. 278, et seq. 
 We shall prove the result of Beudon by adopting some hypotheses that are a little 
more general.  Indeed, already in the case of two variables it is not necessary that the two 
lines along which z is given be characteristics.  As was shown by Picard (39) for linear 
equations that are or are not analytic, and then Goursat (40), upon assuming that the 
equations were analytic, but not necessarily linear, this property belongs to only one of 
the lines in question.  A problem of this type was presented in no. 180 in the study of 
rectilinear motion in a gas. 
 We extend the theorem of Beudon in an analogous manner, by considering two 
multiplicities of dimension n – 1 that are not tangent to each other, and the first of which 
is tangent to one characteristic at a point that we take to be the coordinate origin.  This 
property will persist, moreover (compare no. 162), under a change of independent 
variables, by means of which we may assume that our two hypersurfaces have the 
equations xn = 0, xn – 1 = 0. 
 On each of them, we suppose that we are given a sequence of values of z such that: 
 

(41)  1 2 1

1 2 1 1

( , , , ) for 0

( , , , , ) for 0.
n n

n n n

z x x x x

z x x x x x

ψ
χ

−

− −

= =
 = =

⋯

⋯
 

 
 Of course, these values must coincide on the multiplicity (of dimension n – 2) that is 
common to the first two.  We may then write: 
 
(42)  ψ(x1, x2, …, xn – 2, 0) = χ( x1, x2, …, xn – 2, 0) = ϖ( x1, x2, …, xn – 2). 
 
 Since the partial differential equation is: 
 

F = 0, 

 
the condition that xn = 0 be tangent to one characteristic is expressed (no. 288) by the 
condition: 

nnp

∂
∂
F ≠ 0. 

 
 By contrast, suppose that the equation is soluble with respect to pnn − 1 .  The condition 
∂F/∂pnn−1 = 0 amounts to assuming that the multiplicity Mn – 2 that is defined by the 

equations xn = xn – 1 = 0, is not tangent to one bicharacteristic.  If the contrary case is 
produced then the given values ψ, χ must verify new possibility conditions.  Indeed, we 
have seen that the derivative of pn along one bicharacteristic may be calculated as a 
function of the x, xi , pi .  It follows that the value thus obtained at the origin must be 
equal to the one (namely, ∂χ/∂xn) that one knows directly once pn is given on the 
                                                
 (39 )  In DARBOUX, Leçons sur la Théorie générale des surfaces, t. IV, note 1. 
 
 (40 )  Equations aux dérivées partielles du second ordre, t. II, pages 303-308. 
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multiplicity Mn – 2.  One will likewise obtain another possibility condition by considering 
the derivatives of pnn, and therefore, as a consequence, for each order of derivation. 
 
 
 317. – Therefore, let the second-order equation be solved with respect to pnn − 1 : 
 
(43)  pnn − 1  = F(x1, x2, …, xn, z, p1, …, pn, p11, …, pnn), 
 
and suppose that the function F is analytic and holomorphic with respect to the variables 
upon which it depends (41) in a domain that is composed of the values that these variables 
take at the origin, since the quantity ∂F/∂pnn is null at this point. 
 We shall prove that if the function ψ and χ are both analytic and holomorphic around 
the origin then the problem that was posed will admit one and only one holomorphic 
solution. 
 We may, if we so desire, simplify the question by reducing ψ and χ to being null.  To 
that effect, it will suffice for us to introduce, in place of z, the new unknown: 
 

z′ = z – ψ + χ + ϖ, 
 
(ϖ(x1, x2, …, xn – 2) being defined by equation (42)).  We may likewise, upon subtracting 
from z the term axn xn – 1, where a is a suitable constant (which diminishes pnn by this 
constant), we may arrange that F be null at the origin.  Under these conditions, the 
function F will be represented by a converging development that can be ordered in 
powers of z, xi, pi, and pik, with the exception of pnn − 1, a development that lacks only the 
constant term and the term in pnn . 
 
 
 318. – Whether or not this transformation has been performed, the givens of the 
problem are known from the values of all the derivatives of z at the origin. 
 First of all, when there is not both at least one differentiation with respect to xn and at 
least one differentiation with respect to xn – 1, these values result from the differentiation 
of the equations in condition (41). They are null if one takes ψ = χ = 0. 
 On the one hand, agree to say that one partial derivative of z is anterior to the other if: 
 1.  It has lower total order. 
 2.  When they have the same order, it is composed of fewer derivations with respect 
to xnn . 
 3.  When they have the same order and are composed of the same number of 
derivation with respect to xnn, it has fewer derivations with respect to xn – 1. 
 Now, let pnn – 1ijk… (where the indices i, j, k, … have completely arbitrary values 
between 1 and n) be a derivative in which one has differentiated with respect to both xn 
and xn–1.  We calculate the value of that quantity by applying the 

                                                
 (41 )  The theorem that we have in view was, as we have said, established by Picard, independently of 
the hypothesis of analyticity, for the case of two variables.  In the case where n is greater than 2, the 
extension to non-analytic givens – or rather, the question of knowing whether this extension is possible – 
presents new difficulties that have not been surmounted up till now. 
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operation
i j kx x x

∂ ∂ ∂
∂ ∂ ∂

…to both sides of equation (43).  All of the derivatives that appear 

in the right-hand side will obviously be anterior to the one that we seek, with the single 
exception of pnnijk…  However, the latter may be eliminated at the origin because it has the 
coefficient ∂F/∂pnn, a quantity whose initial value is null. 
 The right-hand side of the equation thus obtained is therefore composed only of 
quantities that are already known if we have chosen them carefully, which is obviously 
possible, since one never passes on to the calculation of one derivative without having 
performed all of the ones that are anterior to it. 
 The first conclusion is thus proved.  It follows from it that if the problem admits one 
holomorphic solution then this solution is unique. 
 Moreover, we remark that: 
 1.  All of the equations that result from the differentiation of (43) are thus utilized, in 
such a way that all of these equations are verified at the origin by the system of values of 
pijk… that was thus calculated. 
 2.  This calculation involves only additions and multiplication. 
 By virtue of this last remark, we may apply the method of majorant functions.  We 
replace the given developments of F, ψ, χ by other ones that majorize the first ones, 
respectively.  If the problem, thus modified, has a holomorphic solution then we may 
conclude that the values of pijk… that correspond to the given problem furnish a 
convergent Taylor development, as well (which will necessarily satisfy the proposed 
equation, from the first of the two remarks that we just made). 
 As far as the given functions ψ and χ are concerned, we may suppose them to be null, 
as was just explained.  With these conditions, each of them will admit as a majorant, any 
function that is represented by a development whose coefficients are positive. 
 As for the function F, since it lacks the constant term and the term in pnn, it will 
admit, from a well-known remark, a majorant of the form: 
 

1 2
1

1

1

nn
n

n i ik
i

pM
M

R
x x x z p p

R
=

 − + 
   + + + + + +  − 
 
  

′Σ∑⋯

, 

 
in which the sum Σ′ refers to all of the second derivatives with the exception of pnn . 
 Beudon, who assumed that xn – 1 = 0 is a characteristic, further suppressed only the 
term in pn − 1 n − 1 in this expression.  By reason of the presence of this term, we must now 
employ the artifice that was indicated by Goursat, which consists of remarking that the 
function F is a fortiori majorized if we replace xn with xn/λ in the denominator, where λ 
denotes an arbitrary positive number that is much smaller than 1.  We are thus led to the 
equation: 
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(44)  pnn – 1 = 

1 1

1

1

nn

n
n i ik

pM
M

x R
x x z p p

R
λ−

 − + 
   + + + + + + 

− 
 
 

′Σ∑⋯

, 

 
and the theorem will be proved if we obtain a solution for this equation that is null at the 
origin along with its first and second derivatives, and they reduce, when both xn = 0 and 
xn – 1 = 0, to functions whose developments have all positive coefficients. 
 We seek such a solution by taking z to be a function of the two variables: 
 
(45)   X = x1 + x2 + … + xn – 2, Y = λxn – 1 + xn . 
 
 Equation (44) will become: 
 

2

2

z

Y
λ ∂

∂
 = 

2

2

1
1

z
M

R Y

 ∂− + ∂ 
 

+
2 2 2

2
2 2

1
1 ( 2) (1 ) (1 )( 2) (1 )

M

Y z z z z z
X z n C n

R X Y X X Y Y
λ λ λ

λ
 ∂ ∂ ∂ ∂ ∂− + + + − + + + + + − + + ∂ ∂ ∂ ∂ ∂ ∂ 

, 

 
in which C is the numerical coefficient C = (n – 1)(n – 2)/2. 

 The right-hand side involves a term in ∂2z/∂Y2, namely, the term,
2

2
2

M z

R Y
λ ∂

∂
.  We 

determine λ in such a manner that this term has a coefficient that is much smaller than the 
value of the right-hand side, namely: 
 

(46)     λ < 
R

M
. 

 
 We may then move the term in ∂2z/∂Y2 from the right-hand side to the left-hand, and 
the equation that is obtained will have of the form: 
 

(47)  
2

21
M z

R Y

λλ ∂ −  ∂ 
=

2 2 2

1 2 2, , , , , , ,
z z z z z

F X Y z
X Y X X Y Y

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

, 

 
in which F1 is holomorphic with respect to the variables that it depends upon around the 
null values of these variables, and its development has coefficients that are all positive 
and lack only the term in ∂2z/∂Y2 . 
 The Cauchy-Kowalewsky theorem tells us that this equation admits an integral that is 
null and holomorphic for Y = 0, as well as its derivative with respect to Y.  If one 
substitutes for X and Y their values (45) then one will have a holomorphic solution to 
equation (44).  This solution, and consequently, the functions that it reduces to for xn = 0 
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and xn – 1 = 0, has, moreover, as one shows by calculation with the aid of equation (47) 
(42), a development with all positive coefficients, and its initial value is null, along with 
that of its first and second derivatives. 
 The theorem is thus proved. 
 
 
 319. – From the preceding proposition, one easily deduces what we have in mind, 
namely, the existence of an infinitude of holomorphic solutions for the Cauchy problem 
in the case of one characteristic. 
 Suppose further that the characteristic multiplicity has the equation xn = 0.  We may, 
in addition, suppose that the given values of z on this multiplicity are null, along with 
those of pn and the ones that one deduces for pnn .  Indeed, it is clear that one is 
confronted with the case that is opposite to this one by a change of unknowns of the 
form: 
 
(48)    z = z′ + A + Bxn +

2
nCx . 

 
(A, B, C being functions of x1, x2, …, xn – 1)  Under these conditions, equation (43) must 
be verified for any x1, x2, …, xn – 1, while xn and z are null, along with the pi and pik . 
 However, the given multiplicity be a characteristic, and not only tangent to a 
characteristic at the origin, i.e., one must have, under these conditions, on the one hand 
∂F/∂pnn = 0, and, on the other, equation (16 cont.)(no. 288), which reduces to ∂F/∂xn = 0 
here. 
 This amounts to saying that any term in the development of F contains at least one of 
the quantities: 
     z, pi (i = 1, 2, …, n) 
     pik (i, k = 1, 2, …, n − 1) 
     pnh′ (h′ = 1, 2, …, n − 2) 
     2

nx , xn pnn, 
2
nnp  

as a factor. 
 Therefore, let the holomorphic functions ϕ3, ϕ4, … of x1, x2, …, xn – 2 be given 
arbitrarily, and consider the holomorphic solution of equation (43) that reduces to 0 for xn 
= 0 and to: 
(49)    2 4

3 4n nx xϕ ϕ+ +⋯  

 
for xn – 1 = 0, a solution whose existence was just established.  It is easy to confirm that no 
matter what the functions ϕ3, ϕ4, … are, this solution solves our Cauchy problem; i.e., in 
addition to its values, those of its derivatives pn and pnn are null with xn .  To that effect, it 
suffices (since we are dealing with holomorphic functions) to assure that for this integral 
z all of the derivatives that contain one or two derivations with respect to xn are null at the 
origin.  Now, one verifies this without difficulty by repeating the calculations of the 
preceding no. by which one obtains these derivatives, but under the present hypotheses. 

                                                
 (42 )  In order to effect this calculation, it is useless to solve equation (47) with respect to ∂2z/ ∂Y2, due 
to the fact that the coefficient of ∂2z/ ∂Y2 in the right-hand side is null at the origin. 
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 The theorem is thus proved. 
 
 
 319 (cont.) – The expression (49) represents the most general value that may be taken 
on the multiplicity xn – 1 = 0 by a holomorphic function z that is null, along with its first 
two derivatives with respect to xn – 1 when xn = 0. 
 Now, let us pass from the calculations that we just made to the ones that they 
correspond to when one does not perform the transformation (48).  The values of z and its 
derivatives of the first two orders are no longer null for xn = 0, but they must further 
verify: 1. Equation (43).  2. The condition on ∂F/∂pnn that expresses that xn = 0 is a 
characteristic.  3.  The condition (16 cont.), which is necessary for the existence of the 
third derivatives.  Conversely, these conditions are the only ones that we have postulated 
in the argument of the preceding section. 
 They show, as a consequence, that a distribution (on the multiplicity xn = 0) of values 
for pn , pnn that satisfies the three conditions in question (when one gives the values y(x1, 
x2, …, xn − 1) to z) will be the same ones that correspond to the solution of the problem 
that was treated in nos. 316-318 if they coincide with the ones that one deduces from the 
second condition (41) for any point of the intersection of the two multiplicities xn = 0 and 
xn – 1 = 0. 
 When the equation is linear with respect to the pik one may state the same property for 
a distribution of values for pn that satisfies the same system of conditions, with the 
exception of (16 cont.), which is replaced with the equation (13) (no. 282).  This is true 
because one is reduced to the preceding statement upon determining pnn by means of 
equation (16), combined with the condition that it coincide with the corresponding values 
of 2 2/ nxχ∂ ∂ on the intersection of the two multiplicities. 

 
 
 320. – The proposition that was established in no. 318 is not just useful in the proof of 
the theorem in no. 319.  It is, in itself, susceptible to dynamical applications.  The 
problem that it solves is, in particular, the one that one led to when one studies the 
phenomenon of the crossing of waves, as in no. 312. 
 Prior to this crossing, the fluid is divided into three regions that are animated with 
distinct motions: We denote the propagation of the wave S0 by the index 1, the 

propagation of the wave0′S by 2, and the intermediate motion by the index 3. 

 Suppose: 
 1.  All three of these motions are devoid of rotation. 
 2.  The are analytic, along with the multiplicities S0, 0′S .  The same will be true for 

the multiplicity A, as well as the waves0′′S , 0′′′S that are created, as we have seen, by the 

crossing of the first two, and propagate from A with the motions 1 and 2, respectively. 
 Having agreed upon these conditions, we shall show the existence of a fourth analytic 
motion that satisfies the hydrodynamical equations and agrees with 1 and 2 along the 
characteristics0′′S , 0′′′S .  It is by means of these conditions precisely that one determines 

the new intermediate motion that is created between the two corresponding waves. 
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 It will suffice to calculate the velocity potential Φ of the desired motion.  The 
function Φ must first satisfy equation (23′). 
 On the other hand, all of its first derivatives must be the same as the ones that 
correspond to the motions 1 and 2 on 0′′S and 0′′′S , respectively, since the velocity and 

pressure remain continuous (the discontinuities being assumed to be of at least second 
order). 
 Now, we know that there exists a holomorphic function Φ that verifies equation (23′) 
and takes the same values as the velocity potential for motion 1 on 0′′S and the same values 

as the velocity potential for motion 2 on 0′′′S . 

 Having thus chosen the velocity potential of the new intermediate motion, one will 
have continuity (upon crossing0′′S  and 0′′′S ), not only for the values of this potential, but 

also for those of its derivatives, as the conditions of our problem demand. 
 Indeed, the derivatives in question, which are deduced from motion 1, form a 
characteristic distribution on 0′′S .  On the other hand, since equation (23′) is linear with 

respect to the second derivatives, the stated continuity will be valid upon extension to 

0′′S (by virtue of no. 319 cont.) if they exist at all points of Λ. 

 Now, at these points it happens that one can calculate the derivatives of Φ with the 
aid of the values of that function S0 for the motion 1, and on0′′S for the desired motion, 

values that one may consider to be given by the motions 3 and 2, respectively.  On the 
other hand, as we are supposing, there will be continuity of the first derivatives for the 
original three motions (compare the note on page ?). 
 The motion that is deduced from a velocity potential that is calculated in the manner 
that we just described will therefore satisfy all of the conditions of the problem exactly. 
 
 
 321. – We now propose to generalize the proposition of nos. 316-318 to systems of 
several unknowns.  Therefore, let ξ, η, ζ be one such system of unknowns.  Furthermore, 
consider two secant multiplicities, which we may always assume to be given by equations 
of the form xn = 0, xn – 1 = 0, the first of which is tangent to a characteristic that is not 
multiple (no. 284), and the second of which is arbitrary under the single condition that 
their intersection must not be tangent to a characteristic. 
 We suppose that the given system is analytic and regular and remains that way under 
the change of variables that we carried out in order to put the equations of our two 
multiplicities into that form.  Under these conditions, if we seek the values of ξ, η, ζ that 
annul them at the origin, along with their first and second derivatives, then we must 
assume that the left-hand side of the equations are developable in increasing powers of x1, 
x2, …, xn, ξ, η, ζ, pi, qi, r i, pik, qik, r ik .  Moreover, if the terms in pnn, qnn, rnn of these 
developments are: 
 

(50)    

,

,

,

nn nn nn

nn nn nn

nn nn nn

Ap Bq Cr

A p B q C r

A p B q C r

+ +
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and if one takes into account what we said in no. 301, then the coefficients A, B, C, A′, B′, 
C′, A″, B″, C″ are nothing but the initial values of the quantities that we have denoted by 
these names in no. 291.  The determinant H, which is equal to: 
 

A B C

A B C

A B C

′ ′ ′
′′ ′′ ′′

 

 
at the origin, must be null, since xn = 0 is tangent to a characteristic.  In other words, we 
may form a linear combination of our three equations, such as terms of the form (50), that 
disappears completely, a combination that may replace one of the given equations − for 
example, the second one. 
 Therefore, assume that one has A″ = B″ = C″ = 0.  The derivatives ∂H/∂Pi then reduce 
to: 

(51)     
i

H

P

∂
∂

=

i i i

A B C

A B C

a b c

′ ′ ′ , 

 
in which ai, bi, ci denote the coefficients of pik, qik, r ik in the third equation.  It then results 
from this that: 
 1.  The determinants (51) are non-null, since our characteristic is simple (43). 
 2.  In particular, the one that corresponds to i = n – 1 is different from zero, since the 
intersection of our two multiplicities is not tangent to a bicharacteristic. 
 
 
 322. – Under these conditions, we may perform a change of variables such that the 
two of them are replaced with the quantities: 
 

(52)    1

1 ,

A B C

A B C

ξ ξ η ζ
η ξ η ζ

= + +
 ′ ′ ′= + +

 

 
or, more generally, by the quantities: 

                                                
 (43 )  If this is not true then the result that one arrives at will have a much different nature, as one shows 
immediately with the system: 

2

1 22

2

1 2
1 1

2

1 22

( , , , , , , , , , ) ,

( , , , , , , , , , ) ,

( , , , , , , , , , , , , )

n i i i
n n

n i i i
n n n

n i i i ik ik ik
n

x x x p q r M
x x

x x x p q r N
x x x

x x x p q r p q r
x

ξ ψ ξ η ζ

ξ ψ ξ η ζ

η ξ η ζ

− −

 ∂ ∂= + ∂ ∂
 ∂ ∂ = +∂ ∂ ∂
 ∂
 = Φ

∂

⋯

⋯

⋯

 

(where M and N are given functions of x), a system that is impossible if one does not have ∂M / ∂xn–1 = 
∂N/∂xn . 
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(53)    
,

,

ξ η ζ
ξ η ζ

+ +
 ′ ′ ′+ +

A B C

A B C
 

 
where A, B, C, A′, B′, C′ are arbitrary holomorphic functions that reduce to A, B, C, A′, 
B′, C′  at the origin. 
 As for the third unknown, it will be an arbitrary function: 
 

ζ1 = ψ(ξ, η, ζ, x1, x2, …, xn), 
such that one has: 

(54)   1 1 1( , , )

( , , )

D

D

ξ η ζ
ξ η ζ

=

A B C

A B C

ψ ψ ψ
ξ η ζ

′ ′ ′
∂ ∂ ∂
∂ ∂ ∂

≠ 0. 

at the origin. 
 Since one has: 
 

(55)  

2
1

2

2
1

2

2
1

2

,

,

,

nn nn nn

n

nn nn nn
n

nn nn nn

n n n n

Ap Bq Cr
x

A p B q C r
x

p q r
x x x x

ξ

η

ζ ψ ψ ψ

 ∂ = + + ∂
∂ ′ ′ ′= + + ∂
∂ ∂ ∂ ∂
 = + + +

∂ ∂ ∂ ∂
⋯

 

 
the equality (54) expresses the idea that the third of the derivatives (55) is not expressed 
with the aid of the first two, and consequently that the given equations do not furnish the 
expression with the aid of derivatives that contain at least two differentiations with 
respect to xn . 
 
 
 323. – Suppose that this change of unknowns has already been performed.  The 
coefficients A, B′ will then be equal to one, while B, A′, C, C′ will be null.  Consequently, 
the functional determinant of the left-hand sides of our equations for pnn, qnn, rnn – 1 will 
be equal to ∂H/∂Pn−1 initially; i.e., it will be non-zero.  One may thus solve these 
equations with respect to pnn , qnn , rnn – 1 and write them in the form: 
 

(56)   

1

( , , , , , , , , , )

( , , , , , , , , , )

( , , , , , , , , , ),

nn i i i i ik ik ik

nn i i i i ik ik ik

nn i i i i ik ik ik

p F x p q r p q r

q x p q r p q r

r x p q r p q r

ξ η ζ
ξ η ζ
ξ η ζ−

=
 = Φ
 = Ψ
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in which the right-hand sides do not contain pnn, qnn, rnn − 1, and one has: 
 

(57)     
nn

F

r

∂
∂

=
nnr

∂Φ
∂

=
nnr

∂Ψ
∂

= 0.   

at the origin. 
 We shall show that in order to determine a solution to such a system, one may be 
given: 
 1.  For the unknowns ξ and η, the Cauchy conditions, namely, the values of these 
quantities and their first derivatives for xn = 0. 
 2.  For the unknown z, on the contrary, conditions that are analogous to the ones in 
no. 316, namely, the values of that unknown itself on xn = 0 and on xn – 1 = 0 (values that 
must, of course, concur when xn and xn – 1 are both null). 
 The various givens will be assumed to be analytic, moreover. 
 We will obviously know the values at the origin of all the derivatives of ζ in which 
there is no differentiation with respect to both xn and xn – 1 and the derivatives of ξ, η in 
which there is at most one differentiation with respect to xn . 
 In order to calculate the remaining derivatives, we further classify them in terms of 
their anteriority.  The definition that is adopted for one derivative being anterior to 
another will be the same as before (no. 318), with the additional convention that when 
two derivatives of the same order are composed of the same number of differentiations 
with respect to xn and xn – 1, a derivative of ξ or η will be regarded as anterior to a 
derivative with respect to ζ. 
 The calculation will then be performed without difficulty by a method that is 
completely similar to the one in no. 318.  It will use all of the relations that result from 
the differentiation of the given equations. 
 In order to prove the convergence of the development that is thus obtained, one 
further assumes that all of the initial givens (the values of ξ, η, ∂ξ / ∂xn , and ∂η / ∂xn for 
xn = 0, the values of ξ for xn = 0 and xn – 1 = 0) are null, a result that one may always 
obtain by a change of unknowns. 
 Furthermore, since the operations that serve to obtain the successive derivatives at the 
origin here are composed exclusively of additions and multiplications, we may replace 
the various givens of the problem by majorants.  For the initial null givens we may 
substitute other ones that are represented by developments with positive coefficients that 
are chosen entirely at our discretion so that their constant terms, as well as their terms of 
the first and second order are nonetheless null. 
 As for F, Φ, Ψ, their majorants will have the form: 
 

1
1

1 ( ) ( )

nn

i i i i ik ik ik

rM
M

Rx p q r p q r
R

ξ η ζ

 − + 
  − + + + + + + + + +

 
′Σ∑ ∑

 

 
(the denoted by Σ′ refers to all of the second derivatives, with the except of pnn , qnn , rnn–

1), or, upon further replacing xn with xn /λ: 
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1

1

1
1

1 ( ) ( )

nn
n

n
i i i i ik ik ik

i

rM
M

Rx
x p q r p q r

R
ξ η ζ

λ

−

=

 − + 
   − + + + + + + + + + + 
 

′Σ∑ ∑
. 

 
 If we seek solutions that depend upon the two quantities: 
 

X = x1 + x2 + … + xn – 1, Y = λxn − 1 + xn  
 
then these solutions will be determined by the equations: 
 

2

2Y

ξ∂
∂

=
2

2Y

η∂
∂

=
2

2Y

ζλ ∂
∂

 

 =

2 2

2

2 2 2
2 2

2 2 2

1
( ) ( )

( 2) (1 )

1 ( 1)( 2) ( ) ( )
1 ( 2)(1 )

2

( ) ( 1)

nnrM
M

RY
X n

X Y

n n
n

R X X Y

Y Y Y

ξ η ζ ξ η ζξ η ζ λ
λ

ξ η ζ ξ η ζλ

ξ η ζλ λ λ

 − + 
   ∂ + + ∂ + ++ + + + + − + + ∂ ∂ 
 − − ∂ + + ∂ + +− + + − + ∂ ∂ ∂ 
  ∂ ∂ ∂+ + + + +  ∂ ∂ ∂  

, 

 
which will satisfy (upon further setting C = (n – 1)(n – 2)/2) when ξ = η = λζ: 
 

2

2Y

ζλ ∂
∂

= 

 
2

2 2

2

2 2
2

2

1
1

(2 1) ( 2) (1 )
1

1

( 2)(1 ) ( (2 3) 1)

M
M

R Y Y
X n C

X Y X

R
n

X Y Y

ζ
ζ ζ ζλ ζ λ

λ

ζ ζλ λ λ

 ∂− + + ∂   ∂ ∂ ∂  + + + + − + + +  ∂ ∂ ∂  −  
 ∂ ∂ + − + + + +  ∂ ∂ ∂  

. 

 
 Now, in this latter equation if λ satisfies the inequality: 
 

λ(2λ + 3) < 
R

M
 

 
then the term in ∂2ζ / ∂Y2 will have a coefficient whose second member is less than the 
first one, which we may always arrange. 
 Furthermore, the reasoning becomes absolutely identical to the one that was made in 
the case of only one equation, and the existence of a holomorphic solution with positive 
coefficients is established. 
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 324. – From this last result, one will deduce the existence of an infinitude of solutions 
to the Cauchy problem when the multiplicity xn = 0 is a characteristic.  In order to 
account for such a circumstance at all of the points of the multiplicity in question, and not 
just at the origin, one must express the notion that there exists at each of them a linear 
combination of the three given equations in which the derivatives with respect to pnn , qnn , 
rnn have been eliminated.  If (the equations always being holomorphic in their left-hand 
sides) we suppose, to fix ideas, that the minor α″ is non-zero then this linear combination 
may be substituted for the third given equation. 
 A completely analogous transformation will then be carried out on the unknowns: In 
the first two equations the derivatives with respect to pnn, qnn, rnn, when considered at an 
arbitrary point of our multiplicity, will be holomorphic functions of x1, x2 ,  xn – 1.  Upon 
denoting these derivatives by A, B, C, A′, B′, C′, we may take the combinations (53) to be 

two of our linear combinations. 
 We have thus reduced our equations to the form (56), assuming that the conditions 
(57) are verified at any point of the multiplicity xn = 0, this time.  On the other hand, we 
may assume, by means of a triple transformation that is analogous to (48), that the initial 
givens ξ, η, ζ, pn , qn , rn are null on this multiplicity, along with the values that one 
deduces for pnn , qnn , rnn .  These null values will therefore verify the conditions (53), 
(57), and also the condition (32), which is ∂Ψ / ∂xn = 0.  In other words, each term of F or 
Φ must contain as a factor, one of the quantities: 
 

(58)  
1

, , , , , ( 1,2, , )

= 1,2, ,
, , (except 

1,2, , 1

i i i

ik ik ik nn

p q r i n

i n
p q r r

k n

ξ η ζ

−

=


 
  = −  

⋯

⋯

⋯

 

(59)  2.
n

n

x

r





 

 
 Each term of Ψ has as a factor, one of the quantities (58) or: 
 
(60)    2

nnx , xn, rnn, 
2

nnr . 

 
 It easily results from this that if one takes the initial givens to be: 
 1.  On xn = 0: ξ, η, ζ, pn, qn null, 
 2.  On xn – 1 = 0: ξ equal to the expression (49) (no. 319), 
then the quantities rn , pnn , qnn , rnn will be identically null with xn , no matter what the 
values of ϕ1, ϕ2, … One may prove this, as in the preceding, by following the same 
sequence of calculations by which we obtained the successive derivatives. 
 
 
 324 (cont.) – It is clear that one may deduce consequences from the foregoing that are 
completely similar to the ones that were the objective of no. 319 (cont.).  If we put 
ourselves, to simplify, in the case where the equations are linear with respect to the 
second derivatives then we may say that if a distribution of values for rn on the 
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multiplicity xn = 0 (combined with a given sequence of values for ξ, η, ζ, pn , qn) makes 
this multiplicity characteristic and satisfies equation (30) (no. 292) (the condition for the 
existence of the second derivatives) then this distribution will be precisely the one that 
one obtains by solving the problem in no. 323 if this coincidence is true on the 
intersection of the two multiplicities xn = 0, xn − 1 = 0. 
 
 
 325. – Like the theorem of nos. 316-318, the one that we just proved in nos. 321-323 
is susceptible to a simple hydrodynamic interpretation. 
 We saw above how, being given the initial motion of a gas and the motion of a wall, 
one may obtain the initial acceleration of the neighboring points of this wall.  The new 
motion that is thus created propagates, moreover, as a wave whose partial differential 
equation (or, what amounts to the same thing, equation (4) of no. 240) permits us to find 
the position at each instant once one has supposed that motion of a fluid beyond that 
wave is known (which furnishes the value of ρ). 
 Suppose that this latter motion is analytic, along with the motion of the wall.  The 
same will then be true for the motion of the wave surface S.  The motion that comes 
about between that surface and the wall must therefore be such that: 
 1.  The fluid and the wall are in constant contact, i.e., for: 
 
(61)     ψ0(a, b, c) = 0 
 
(the equation of the surface in the initial state) one has: 
 

ψ(x, y, z, t) = 0. 
 
 2.  There is agreement along the wave between the new motion and the original one. 
 Take a new system of independent variables such that x3 and x4 are annulled – the 
one, along ψ0(a, b, c) = 0, and the other, along the wave. 
 On the other hand, perform a change of unknowns such that the last one is replaced 
by the function ψ(x, y, z, t).  We then specify: 
 For x3 = 0, the condition that this unknown be null. 
 For x4 = 0, the condition that all of the unknowns have the same values as in the 
original motion, along with the first derivatives of both of them, which do not reduce to 0 
with x3 .  If this is the case then the coincidence between them will be established for the 
derivatives of the third unknown by reasoning that is completely similar to the one that 
was made above (no. 320), in such a way that that the discontinuity will indeed be of 
second order, the only condition for this being that this coincidence exist at the points that 
satisfy both x3 = 0 and x4 = 0; i.e., that the normal velocity of the wall be initially equal to 
that of the neighboring molecules of the fluid.  (It will suffice to apply the proposition 
that was stated in no. 324 cont.). 
 The problem thus posed falls within the category that was treated in no. 323.  It 
remains only for us to insure that: 
 1.  The intersection of the two multiplicities (x3 = 0, x4 = 0) is not tangent to a 
bicharacteristic. – This is obvious, since that intersection corresponds to t = const. 
whenever t varies along the rays defined by the equations of no. 296. 
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 2.  If A, B, C, A′, B′, C′ have the significance that was indicated in no. 324 then one 
has the inequality (54).  This amounts to saying that one may not form a combination of 
the equations of the problem that makes known the second derivative of ψ with respect to 
x1 , or, what amounts to the same thing, the expression: 
 

2 2 2

2 2 2

x y z

x t y t z t

ψ δ ψ δ ψ δ
δ δ δ

∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 However, in the contrary case the discontinuity that is compatible with these 
equations will be forced to be tangential and we know that this is not true. 
 The problem in analysis that we have been led to is therefore precisely the one that 
we recently solved.  Moreover, the solution thus obtained will initially satisfy the 
principle of impenetrability (i.e., that a, b, c may be expressed as functions of x, y, z, t) 
when the normal velocity of the wall is less than the velocity of sound. 
 
 
 326. – By contrast, the problem of the crossing of waves that was treated in no. 320 
under the hypothesis of a velocity potential is not, in general, immediately solved by 
considerations that are similar to the preceding ones. 
 Indeed, let two motions 1 and 2 (fig. 21) be given, so we seek a motion 4 that 
propagates into the first two along the waves 0′′S and 0′′′S  (fig. 21), which intersect it along 

the multiplicity A. 
 By virtue of the preceding, we may, after performing a convenient change of 
unknowns that has the effect of substituting new unknown ξ, η, ζ for the x, y, z, 
determine them by the interior equations of motion and the following conditions: 
 1.  On 0′′S , λ must take the same values as in the motion 1. 

 2.  On the same multiplicity, the first derivatives of ξ and η will likewise have the 
values that result from motion 1. 
 3.  On 0′′S , ζ will take the same values as in motion 2. 

 From these conditions, as before, the continuity of the derivatives of ζ upon crossing 

0′′S will result. 

 However, it remains for us to establish the continuity of ξ, η and all of the first 
derivatives upon crossing 0′′′S .  This continuity does not in the least bit result from 3.  

Indeed, it entails five conditions that must be verified at each point of 0′′′S and the unique 

differential equation that we know the existence of on that multiplicity entails simply the 
consequence that these five conditions reduce to four. 
 If one develops the right-hand sides of these four conditions in a Taylor series in 
increasing powers of t – t0 (upon letting t0 denote the value of t that corresponds to the 
point of Λ under consideration), and one equates the successive coefficients to 0 then one 
will have a sequence of compatibility conditions in all orders that must be satisfied at 
each point of the crossing of the two waves.  Because of this, the new discontinuities will 
necessarily be more than two in number.  For example, if one is dealing with a problem 
of hydrodynamics, in addition to the two waves0′′S and 0′′′S , one must add a stationary 
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discontinuity that exists along the crossing surface, i.e., along the projection of Λ onto a 
plane t = const. 
 However, one must take into account the fact that under the conditions that we were 
subject to in no. 312 the discontinuities that exist between motions 1 and 2 are not 
arbitrary.  Indeed, one supposes that before the production of the phenomenon that we are 
occupied with, there existed only two waves S0 and 0′S , and a unique motion between 

them, viz., the motion 3.  This amounts to saying that one has some compatibility 
conditions that are analogous to the ones that must be verified, but relative to the 
multiplicities S0 and 0′S .  It remains for us to investigate whether one can deduce the 

same conditions for 0′′S and 0′′′S .  Moreover, this is what one confirms without difficulty 

for the second order conditions, in general. 
 On the other hand, this is certainly true for the derivatives (of arbitrary order) with 
respect to just t, by virtue of the theorem to which we alluded in no. 240, and to which we 
shall return in note m at the end of this work. 

 
 
 327. – We just considered the case of a characteristic that annulled the determinant H 
without annulling its minors.  Analogous results that relate to the contrary hypothesis 
(those of no. 299) appear from it. It is clear that by means of a change of unknowns 
one may consider the given equations to be solved with respect to pnn , qnn – 1, rnn − 1, the 
expressions thus obtained for these quantities being such that their derivatives with 
respect to qnn , rnn are null at the origin. 
 Under these conditions, one may give the values of the three unknowns and rn for xn = 
0, as well as those of the first two unknowns for xn – 1 = 0.  The solution of the problem 
thus posed will be studied by procedures that are completely similar to the ones in no. 
323. 
 We observe that this result is independent of the hypothesis that was made in no. 299 
for the neighboring characteristics to the one under consideration (44).  Of course, it 
nevertheless supposes conditions of inequality that are analogous to the ones in no. 322, 
but which no longer have the same geometric significance, since the bicharacteristics 
may no longer be defined. 
 
 

§ 3. – THE CASE OF LINEAR EQUATIONS 
 
 
 328. – Among the systems of equations that belong to the category that we just 
considered, there is good reason to focus on the particular case of linear equations.  These 
are the ones that one comes down to whenever one must study the most general motion of 
a body when one restricts oneself to infinitely small motions. 
 For example, this is the case when one is concerned with the simplest (next to the 
Laplace equation) and most important of these equations, namely: 

                                                
 (44 )  The simultaneous vanishing of the minors of H may likewise be valid only at one and only one 
point of them, viz., the origin of the coordinates. 
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(62)    
2

2 2

1

a t

∂ Φ
∂

= ∆Φ, 

 
where a is a given number that will, by virtue of the formulas that were established in the 
preceding, represent the velocity of propagation of a wave in a state of motion that is 
governed by that equation.  This equation (with a2 =

0
( / )dp d ρ ρρ = ) is the one that 

equation (23′) of no. 290 (the equation of motion of a gas when this motion depends upon 
a velocity potential) reduces to when one supposes that the motion differs from rest 
infinitesimally, i.e., the derivatives of Φ are infinitely small, in such a manner that one 
may neglect the terms of second order in these equations. 
 
 
 329. – In a general manner, one immediately perceives that there is a noteworthy 
simplification to be found in the determination of the characteristics under the hypothesis 
that the equation is linear. 
 Indeed, the coefficients of aik are then functions of only the independent variables x1, 
x2, …, xn and, contrary to what happens in the general case, no longer contain either the 
unknown function or its first derivatives.  It then results (no. 283) that the characteristics 
may be defined by abstraction from any well-defined solution of the equation.  In 
particular, to each point (x1, x2, …, xn) there corresponds a characteristic conoid that is 
perfectly well-defined once one has written the equation. 
 It is clear that whenever one solves one of the boundary-value problems for the 
equation that one poses in mechanics the formula for the solution must involve the 
characteristic conoid when it is real.  Indeed, we have seen (no. 306) that it suffices to be 
given the elements that determine that solution in the interior of the characteristic conoid 
that has a definite point O (fig. 20) for its vertex in order to know it at O. 
 
 
 330. – When the medium considered is unbounded and one is given the positions and 
velocities of the molecules in that space at a definite instant t0 the determination of the 
ultimate motion leads to the Cauchy problem that we were occupied with in the 
preceding.  The solution of that problem may be carried out in a large number of cases.  
Our intent is not to describe these solutions in detail (45).  We content ourselves with only 
indicating the common principle upon which they rest, and which is nothing but a 
generalization of the Riemann method that we recalled in no. 171. 

                                                
 (45 )  See, especially, POISSON, Mémoire sur l’intégration de quelque equations aux différences 
partielles et particuliérement de l’équation générale du mouvement des fluides élastiques (read to the Ac. 
des Sc. on 19 July 1819); KIRCHHOFF, mécanique, lesson 23, pp. 314; Zur Theorie der Lichtstrahlen, 
Sitzungsberichte der K. Ak. der Wiss; 1882, pp. 641 et seq. (transl. by DUHEM, Ann. Ec. Norm. 
supérieure, 1886) and Optik: VOLTERRA, Att. Lincei, 1892 and Acta Math.; TEDONE, Att. Lincei, 1806; 
LE ROUX, Ann. Ec. Norm.  3rd series, t. XII, and Journ. de Mathém., 1898-1900; d’ADHÉMAN, Bull. 
Soc. Math. Fr.  1901 and C. R. Ac. Sc. 1902; COULON, Soc. Sc. Phys. et Nat. de Bordeaux, passim and 
thesis sur l’intégration des équations aux dérivées partielles par la méthode des charactéristiques, Paris, 
Hermann (1902). 
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 First of all, it is easy to write, in the general case, the formula that corresponds to 
relation (35) of no. 171 for the equation in two variables with real characteristic (or to the 
analogous formula from potential theory).  If: 
 
(63)    F(z) =

,
ik ik i i

i k i

a p a p lz+ +∑ ∑  = 0 

 
is the given linear equation, the aik , the ai , and the l being given functions of x1, x2, …, 
xn, then an obvious sequence of integrations by parts will permit us to write: 
 

(64)   uF(z) – zG(u) = 1 2

1 2

n

n

MM M

x x x

∂∂ ∂+ + +
∂ ∂ ∂

⋯ , 

upon setting: 

(65)   Mi = ( )ik k ik i
k h k

u a p z a u a uz
x

∂− +
∂∑ ∑ , 

(66)   G(u) =
2

,

( ) ( )ik i
i h ii k i

a u a u lu
x x x

∂ ∂− +
∂ ∂ ∂∑ ∑ . 

 
 Equation G(u) = 0 will be called the adjoint of the one that was proposed. 

 It is, moreover, clear that the preceding result is by no means peculiar to the case of a 
second order equation, and that one may obtain it for any order of equation that is 
proposed. 
 It further extends just as easily to a system of an arbitrary number p of equations in an 
equal number of unknowns upon introducing p new function u1, u2, …, un into the adjoint 
system, by which one may multiply the left-hand sides of the given equations. 
 Nevertheless, we confine ourselves to the case of just one second order equation.  
Likewise, for the sake of discussion we put ourselves in the case of one equation in three 
independent variables, but the reasoning will be, unless indicated to the contrary, true for 
any number of these variables. 
 
 
 331. – In order to solve the Cauchy problem that relates to our equation when the 
unknown and its derivatives are given on a certain multiplicity, we must suppose, 
conforming to the preceding, that this multiplicity is not tangent to a characteristic. 
 In general (46), when the Cauchy problem is posed in mathematical physics a more 
precise condition must be verified, viz., the one that we already encountered in no. 305.  
Always placing ourselves in the case of three variables, the tangent plane to the 
multiplicity in question is exterior to the characteristic cone; a plane that is parallel to it 
will always cut this cone in a closed curve. 
 A completely analogous fact is true for equations in more than three independent 
variables.  For example, in the most important one of them − viz., the equation in four 
variables (62) – the quadratic form that, when equated to 0, furnishes the equation of the 
characteristic cone is a sum of squares that all have the same sign, except for one, which 
                                                
 (46 )  Cf. infra, no. 340. 
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refers to the variable π4 that corresponds to the variable t.  Now, the Cauchy problem is 
then posed precisely relative to the multiplicity t = 0.  It is cut by the characteristic cone 
or, more generally, by the characteristic conoid, which has its vertex at an arbitrary 
exterior point on a closed multiplicity (namely, it is generically a sphere). 
 The givens relative to the interior points of this closed multiplicity are, as we know, 
the only ones that figure in the determination of the value of the integral at the vertex of 
the conoid. 
 
 
 332. – Therefore, consider (in the case of three variables) a surface S that is situated 
in the manner that we just explained with respect to the characteristic conoid and along 
which we are given the values of the unknown and its first derivatives. 
 Let S1 be another surface that, along with the first one, bounds a portion T of space.  

If the function u, which is a solution to the adjoint equation, is regular on it then, from 
Green’s theorem (47), we may write, upon multiplying by the volume element and 
integrating over T: 

 

(67)  

1 2 3

1 2 3 2 3 1 3 1 2

2 3 3 1 1 2
1 2 3 1 2

1 2 1 2 1 2

( )

( , ) ( , ) ( , )
.

( , ) ( , ) ( , )

u z dx dx dx

M dx dx M dx dx M dx dx

D x x D x x D x x
M M M d d

D D D
λ λ

λ λ λ λ λ λ




 = + +


 = ± + + 
 

∫∫∫

∫∫

∫∫

F

 

 
(where the double integral is taken over S and then S1, successively, and λ1, λ2 denote the 
curvilinear coordinates that are inscribed on these surfaces); or, if one prefers: 
 

(68)  1 2 3( )u z dx dx dx∫∫∫ F = cos( , )i i
i

M N x dS
 
 
 
∑∫∫ , 

 
where dS denotes the surface element on S and then S1, successively, and N denotes the 
corresponding normal that is directed out of T.  Nothing essential will change from the 
foregoing if the number n of independent variables is greater than three.  The only 
difficulty that will present itself will be the introduction of the geometry of n dimensions.  
Instead of the surfaces S and S1, one will have to consider n–1-fold extended 
multiplicities – or hypersurfaces.  Formula (67) will become: 
 

                                                
 (47 )  See PICARD, Traité d’Analyse, 2nd edition, t. 1, first part, Chap. IV, nos. 15 and 16, and chap. V, 
no. 8. 
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(67′)   
1 2

1 2 1

( ) n

i i n
i

uF z dx dx dx

M d d dπ λ λ λ −



  =  

 

∫∫ ∫

∑∫∫ ∫

⋯ ⋯

⋯ ⋯
 

 
(where the left-hand side is an n-fold integral and the one on the right-hand side is an n – 
1-fold integral).  In this formula, the quantities πi are, up to sign, the functional 
determinants of any n − 1 of the xi with respect to the n – 1 curvilinear coordinates λ1, λ2, 
…, λn – 1 that are chosen on the multiplicity S (or S1).  In other words, if one draws a line 
on it through each point, where s denotes the arc length, then the quantities πi are defined 
by the condition that one have, for any such line: 
 

(69)  1 2
1 2

n
n

xx x

s s s
π π π ∂∂ ∂+ + +

∂ ∂ ∂
⋯ = 1 2

1 2 1

( , , , )

( , , , , )
n

n

D x x x

D sλ λ λ −

± ⋯

⋯
. 

 
 These quantities may be considered to be the ones that we denoted by this 
nomenclature in no. 287.  They are proportional to the direction cosines of the normal to 
dS, or to the partial derivatives of the left-hand side Π(x1, x2,  …, xn) of the equation of 
the multiplicity. 
 If the normal N is directed into the domain T, or if the function Π is positive on the 

exterior of that domain and negative in its interior, then the sign that one takes in 
equation (67) or equation (69) is the one that makes the πi equal to the direction cosines 
or the partial derivatives that we just spoke of, up to the same positive factor. 
 We further let A denote the expression: 
 

(18)    A = ∑ aik πi πk , 
 
in such a way that the characteristics are defined by the equation A = 0.  One will have: 
 

(70)    ∑ aik πi =
1

2 i

A

π
∂
∂

, 

and consequently: 
 

(71)  

( )

1 1

2 2

i i ik k i i k ik
i ik i iki i

i i i i

z
M u a a z a u

x x

z A u A
u z Luz

x x

π π π π

π π

  ∂ ∂ = + −   ∂ ∂   


∂ ∂ ∂ ∂ = − +
 ∂ ∂ ∂ ∂

∑ ∑ ∑ ∑

∑ ∑
 

(72)    L = ∑ aik πi  − ik
i

k

a

x
π ∂

∂∑ . 
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 Now introduce, with d’Adhémar (48), the direction whose direction cosines are 
proportional to the quantities ∂A / ∂πi , and which will be called the conormal to dS; in 
other words, the direction that is defined by the proportions: 
 

(73)   1

1

1
2

dx
A

π
∂
∂

= 2

2

1
2

dx
A

π
∂
∂

= … =
1
2

n

n

dx
A

π
∂
∂

=
1

ds
h

, 

 
in which s is a parameter and h is an arbitrary quantity that we may, for example, dispose 
of in such a manner the largest of the ratios π1/h, π2/h, …, πn/h – and consequently, the 
largest of the ratios dx1 / ds, …, dxn / ds (49) – has an absolute value that lies between two 
finite, positive, non-zero limits (for example, if one takes dx1 / ds, …, dxn / ds to be the 
direction cosines of the aforementioned direction). 
 From its very definition, the conormal is (50) the conjugate diameter of the tangent 
plane to dS with respect to the characteristic cone (which is represented by the tangential 
equation A = 0). 
 It is tangent to the element dS when that element is characteristic, and only in this 
case (as one sees upon multiplying the terms of the fractions (73) by π1, π2, …, πn, 
respectively, and then adding); it is nothing but the bicharacteristic direction that is 
tangent to that element. 
 By means of the preceding nomenclature and formula (71), equation (67′) may be 
written: 
 

(74)  
1 2

1 2 1

( )

.

n

n

u z dx dx dx

dz du
h u z Luz d d d

ds ds
λ λ λ −



   = − +   

  

∫∫∫ ∫

∫∫ ∫

⋯ ⋯

⋯ ⋯

F

 

 
 
 333. – If we wish to determine the function u and the multiplicity S1 in such a manner 
that the values of u and its derivatives on S1 can be eliminated from this result then first 
of all we must have that if u and its derivatives are non-null on that same multiplicity ( 51) 
                                                
 (48 )  C. R. Ac. Sc., 11 February 1901. 
 (49 )  At least, if one supposes that the quadratic form A has a non-zero discriminant in the domain 
under consideration, and, in any case, on any simple characteristic. 
 
 (50 )  See COULON, thesis, pp. 35. 
 
 (51 )  On the other hand, u (if it not identically null) may not be annulled at the same time as its first 
derivatives on S1 unless it is characteristic.  Indeed, the solution to the Cauchy problem is unique for a non-
characteristic multiplicity.  This is what we established before upon supposing that the unknown is analytic 
and holomorphic.  For u continuous and differentiable up to a certain order, but not analytic, the same fact 
will result from the extension (to the case of n independent variables) of a proof of Holmgren (See note 1 at 
the end of this work). 
 What finally remains is the case where S1 is a singular multiplicity for u.  However, as we shall verify 
later on (no. 342), this case will no longer present itself (at least for the usual types of singularity) if S1 is 
not characteristic. 
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then that multiplicity must be characteristic.  On the other hand, if this is not the case then 
the preceding formula will contain, on the one hand, the values of z, and, on the other, 
those of its conormal derivative, which will be entirely independent of each other since 
the conormal will be exterior to the surface. 
 Suppose that S1 is characteristic, and, first taking the case of of n = 3, refer S1 to 
curvilinear coordinates, one of which, λ, is constant on the bicharacteristics, whereas the 
other s will define the position of a variable point on each of these curves, the derivatives 
dxi / ds all being finite and not all infinitely small, from the convention that was made on 
h in the preceding no.  Then, in the right-hand side of (74) the portion that relates to S1, 
namely: 

(75)    
dz du

h u z Luz d ds
ds ds

λ  − +  
  

∫∫ , 

 
may be transformed by integration by parts into a simple integral: 
 

(76)     huz dλ∫  

 
that is taken along the contour Γ in S1, combined with the following one: 
 

(77)    2
du dh

z h u L d ds
ds ds

λ  + −  
  

∫∫ . 

 
 We choose the function u in such a manner that it verifies, on each bicharacteristic, 
the differential equation: 

(78)    2
du dh

h u L
ds ds

 + − 
 

= 0 , 

 
which determines u by a quadrature, except for a constant factor that one may choose 
arbitrarily for each value of t. 
 All of this obviously persists for an arbitrary n.  One will have only n – 2 coordinates 
λ (the coordinate s still being unique) and the contour Γ of S1 will no longer be a curve, 
but an n – 2-fold extended multiplicity.  The integral over S1 reduces to an n – 2-fold 
integral: 

(76′)    1 2 2nhus d d dλ λ λ −∫∫ ∫⋯ ⋯  

 
that is taken over Γ, combined with an integral that is analogous to (77), which will 
disappear at the moment when we determine u by the differential equation (78). 
 
 
 334. − Up till now, we have allowed S1 to be arbitrary.  Now, suppose that one takes 
S1 to be the characteristic conoid C that has a definite point O for its vertex. 
 In this case, it results from (78) that u must be infinite at O.  Indeed, suppose, to fix 
ideas, that the parameter s has been chosen on each bicharacteristic in such a manner that 
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it is annulled at that point.  Thus, x1, x2, …, xn must be equal to the coordinates of O for s 
= 0, no matter what the parameters λ1, λ2, …, λn−2 are, and their derivatives with respect 
to these parameters are null as a consequence of the order of s.  The functional 
determinants πi of the n − 1 arbitrary coordinates x with respect to the n − 2 parameters λ 
and s are therefore of order sn − 2, and the same is true for L, as well as h, if (as we have 
agreed upon above) we take that quantity to be of order greater than πi . 
 For example, for n = 3 it is clear that if the points of a cone are represented by their 
distance from the vertex and a parameter that defines the generator then the surface 
element of the cone will contain the first of these two quantities as a factor. 
 If h has order greater than πi then the ration L/h is finite at O.  The quadrature to 
which we are then led of the differential equation (78), namely: 
 

u = 
1

2
dh

L ds
h dse
 − − 
 ∫

= 21 L
ds

he
h

∫ , 

 
then gives an infinite result of order s(n – 2)/2. 
 Under these conditions, in order to apply the fundamental formula we subtract from 
our volume integral the part that is immediately 
close to the point O.  If we again put ourselves in 
the case of n = 3 then a small portion of the conoid 
C will thus be removed, a portion that is bounded 
by a curve γ (fig. 22).  To fix ideas, one may 
assume that γ is the intersection of the conoid C 
with a sphere Σ with center O and very small 
radius. 
 S1 will thus have two frontiers: its intersection 
Γ with S and the multiplicity γ.  It is along these 
two frontiers that one must take the n − 2-fold 
integral (76), which reduces to (74) by means of the 
differential equation (78). 
 That integral is known along Γ since one knows z and its first derivatives. 
 One will thus have the expression for z by a natural generalization of the Riemann 
method if, the function u being regular throughout the volume of integration, with the 
exception of a neighborhood of O, and the radius of Σ tending to zero, the integral (67′), 
when taken over Σ, and added to the integral (76′), when taken over γ, reduces to z0 . 
 
 
 335. - However, things do not happen exactly that way.  For example, consider 
equation (62).  In the category of equations that we are envisioning at the moment it was 
the first one for which the Cauchy problem was solved, thanks to the work of Poisson and 
Kirchhoff.  The independent variables are thus four in number, the first three of which, 
which represent Cartesian coordinates in ordinary space, will be called x1, x2, x3, whereas 
we will continue to denote the fourth one by t.  We suppose that S has the equation t = 0, 
in such a way that one must be given conditions: 
 

 

Σ 

O 

γ 

C 

Γ S 

Fig. 22 
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z = f 
z

t

∂
∂

= f1 

 
for t = 0, where f and f1 are known functions of x1, x2, x3 . 
 The method that is employed for expressing the value of z for x1 =

0
1x , x2 =

0
2x , x3 =

0
3x , 

t = t0 as a function of these givens consists of taking: 
 

u = 
1

r
F(r + at), 

 
F being an arbitrary function, and r denoting the distance (in ordinary space) from the 
point (x1, x2, x3) to the point 0 0 0

1 2 3( , , )x x x : 

 

r = 0 2 0 2 0 2
1 1 2 2 3 3( ) ( ) ( )x x x x x x− + − + − . 

 
 This quantity indeed satisfies the adjoint equation, which is identical to the one 
proposed here.  It likewise verifies condition (78) for any function F.  Indeed, on the 
characteristic cone it is proportional to 1/r, and it precisely such a proportionality that 
suggests the differential equation (78). 
 However, this function is not uniquely singular (as the preceding theory demands) at 
only one point of the four-dimensional space.  Indeed, it is infinite for x1 =

0
1x , x2 =

0
2x , x3 

= 0
3x  for any t, and not uniquely for the given value t0 that corresponds to the vertex O of 

the characteristic cone.  We must therefore subtract from our volume integral, not 
exclusively the immediate neighborhood of the vertex of the cone, but, for example, the 
set τ of points (x1, x2, x3) that satisfy the inequality: 
 

0 2 0 2 0 2
1 1 2 2 3 3( ) ( ) ( )x x x x x x− + − + − < z2. 

 
 Conforming to the convention of no. 100 (cont.), that region is represented in figure 
23 by the interior of a cylinder σ (to which it reduces if one considers only the 
coordinates x1, x2, and t, the variable x3 having been suppressed). 
 On our cone, the frontier σ of the region τ will intercept the multiplicity γ (which will 
be nothing but the surface of a sphere of radius ε with t = t0 – ε/a) and a multiplicity γ′ (a 
sphere of radius ε with t = 0) on S. 
 Here, since the polynomial F(z) has the expression: 

 

F(z) = ∆z –
2

2 2

1 z

a t

∂
∂

, 

and the characteristic conoid is: 
 

0 2 0 2 0 2
1 1 2 2 3 3( ) ( ) ( )x x x x x x− + − + − − a2(t − t0)

 2 = 0, 



THE GENERAL THEORY OF CHARACTERISTICS 

 

283 

 
the corresponding bicharacteristics are nothing but the generators. 

 

Fig. 23 

O 

Γ 

C 

S 
γ′ 

γ 

σ 

 
 
 We thus obtain the system of curvilinear coordinates on C that is required by the 
preceding argument by employing (in ordinary space) polar coordinates with origin O; 
i.e., by setting: 
 

x1 =
0
1x + r sin λ1 cos λ2, x2 =

0
2x + r sin λ1 sin λ2, x3 =

0
3x + r cos λ1, 

(0 ≤ λ1 ≤ π, 0 ≤ λ2 ≤ 2π). 
 
 We may then take s = r, and we easily find that: 
 

h =
2

1sinr

a

λ
. 

 
 Under these conditions, u being given the formula (79), the triple integral over S1 
will, by virtue of the calculations, reduce to the double integral: 
 

(80)   
2

1 1 2sin
r uz

d d
a

λ λ λ∫∫ =
2r uz

d
a

Ω∫∫  

 
(dΩ = sin λ1 dλ1 dλ2 being an element of a sphere of radius 1), which is taken over the 
multiplicities Γ and γ, successively. 
 The integral over S takes a particularly simple form when (as one supposes) this 
multiplicity has t = 0 for its equation.  If we let ϕ(r) and ϕ1(r) denote the mean values for 
t = 0 over a sphere with a center at0 0 0

1 2 3( , , )x x x and radius r of the functions f and f1 that z 

and ∂z / ∂t reduce to for t = 0, namely: 
 

 ϕ(r) = 0 0 0
1 1 2 2 1 2 3 1 1 1 2

1
( sin cos , sin sin , cos )sin

4
f x r x r x r d dλ λ λ λ λ λ λ λ

π
+ + +∫∫  

 ϕ1(r) = 0 0 0
1 1 1 2 2 1 2 3 1 1 1 2

1
( sin cos , sin sin , cos )sin

4
f x r x r x r d dλ λ λ λ λ λ λ λ

π
+ + +∫∫ , 
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then this integral becomes: 

1 2 32

1 z u
u z dx dx dx

a t t

∂ ∂ − ∂ ∂ 
∫∫∫ =

0

12

4
[ ( ) ( ) ( ) ( )]

at
r F r r aF r r dr

a ε

π ϕ ϕ′−∫ , 

 
or, by means of an obvious integration by parts: 
 

  1 2 32

1 z u
u z dx dx dx

a t t

∂ ∂ − ∂ ∂ 
∫∫∫ = 

= 
0

0 0 0 12

4 4
4 ( ) ( ) ( ) ( ) ( )[ ( ) ( ( ))]

at d
t F at at F F r r r a r r dr

a a drε

πε ππ ϕ ε ϕ ε ϕ ϕ− + + +∫ , 

 
an expression in which the first term − 4πt0 F(at0)ϕ(at0) will annihilate the integral (80) 
over Γ precisely. 
 Now, if ε tends to zero then the second term of the preceding expression also 
becomes infinitely small, and the same is true for the integral (80) over γ, since r2u tends 
to zero with r. 
 Finally, consider the integral over σ.  This integral is: 
 

2u z
z u d dt

r r
ε∂ ∂ − Ω ∂ ∂ 

∫∫∫ , 

 
where the double integral is taken over the surface of a sphere of radius ε (ε2 dΩ being 
the area element of that sphere).  It will not have a quantity that is proportional to z0 for 
its a limit, but rather (since ∂u/∂t has – 1/r2 F(at) for its principal part) the simple integral: 
 

4 ( )zF at dtπ− ∫  

 
taken from 0 to t0, and for x1 = 0

1x , x2 = 0
2x , x3 = 0

3x . 

 One ultimately finds that: 
 

0 0

10 0

( )
( ) ( ( )) ( )

at tF r d
r r a r r dr zF at dt

a dr
ϕ ϕ + −  

∫ ∫ = 0. 

 
 However, this result simplifies considerably, thanks to the fact that the function F that 
appears in the preceding formulas is arbitrary.  Indeed, upon exchanging r and at in the 
first integral, one may write: 
 

(81)   
0

10
( ) ( ) ( ( ))

t d
F at t at t at z dt

dt
ϕ ϕ + −  

∫  = 0 . 
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 Now, it results from a classical argument from the calculus of variations that an 
equality of the form (81) might not be true for an arbitrary function F if one does not 
have for any value of t: 

t[ϕ1(at) + aϕ′(at)] + ϕ(at) − z = 0 . 
 
 In particular, this is true for t = t0, and one has: 
 
(82)   z0 = ϕ(at0) + t0 [ϕ1(at0) + aϕ′(at0)] . 
 
 Here, one sees that the value of z0 is expressed, not as a function of all of the values 
that z and ∂z/∂t take on S in the entire interior of the characteristic conoid, but only the 
values that are taken by these quantities on the conoid.  This circumstance is due to the 
particular form of equation (62) and does not present itself for a second order equation 
that is taken at random (52). 
 
 
 336. – We remark that from the form itself of the solution that we just obtained it 
results that the method might not succeed in the original form that was indicated in no. 
334.  Indeed, it will lead to an expression for the solution in the form that is analogous to 
the right-hand side of (74), i.e., in terms of the values of z and ∂z/∂t on the entire part S0 
of S that is interior to the characteristic conoid. 
 It is true that one may indeed transform the integral (82) into another one that is taken 
over all of S0, but in order for this to be true it is necessary that the integration element 
contain the derivatives of z and ∂z/∂t with respect to the coordinates that are defined on S 
(in other words, with respect to x1, x2, x3). 
 In a word, the right-hand side of formula (82) is irreducible to that of (74). 
 Thus, there might not exist a solution to equation (62) that verifies the various 
conditions that we postulated in no. 334. 
 
 
 337. – These various results have been generalized to some very extensive categories 
of equations in the works that were cited above.  We content ourselves by pointing out 
the simplest case, that of the equation: 
 

(83)    
2 2 2

2 2 2 2
1 2

1z z z

x x n t

∂ ∂ ∂+ −
∂ ∂ ∂

= 0, 

 
which is nothing but the analogue to (62) for the case of two dimensions, and for which 
the Cauchy problem (the multiplicity S always verifying the conditions that were imposed 
in no. 334) was solved by Volterra.  The function u that was chosen by the latter is then 
the one that is deduced from the quantity: 
 

                                                
 (52 )  The supposition that one takes the multiplicity t = 0 for S is obviously not at all essential, and the 
preceding considerations persist, with results that are somewhat less simple, for an arbitrary S. 
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(84)    
2 2 2 2

1 2

2 2
1 2

log
at a t x x

x x

 + − −
 
 + 

 

 
upon changing x1, x2, t into x1 − 2

1x , x2 − 2
2x  , t − t0 . 

 As one sees, it admits the characteristic conoid as a singular surface.  However, it is 
easy to see that this singularity does not compromise the application of our fundamental 
formula: The only part that one must subtract from the volume integral is again the one 
that is composed of the interior of a small cylinder that has as its axis, the line: 
 

x1 = 2
1x , x2 = 2

2x . 

 
 The formula (74) will then give us the simple integral: 
 

z dt∫  

 
taken along this line from t = 0 to t = t0 . 
 It only remains for us to take the derivative of that quantity with respect to t0 in order 
to obtain the value of z0 . 
 Like the solution of equation (62), the solution thus obtained is no longer expressible 
in the form of an integral that is taken over the part of S that is situated on the surface of a 
characteristic conoid; the values of the givens in all the interior of this cone necessarily 
figure. 
 By contrast, one may make several remarks concerning this solution that are 
completely similar to those of the preceding no. and deduce from this that the method 
might not succeed in the form that was described in no 334. 
 
 
 338. – Furthermore, when we are concerned with the problem that we just spoke of, 
or the one that relates to equation (62), the preceding considerations up till now persist in 
the limiting case where S is characteristic.  For example, one may take S to be a 
characteristic conoid, as long as one is nonetheless content to determine z in the interior 
of the this conoid. 
 In this case, since the conormal to S will be tangent to S, the knowledge of the values 
of z on the multiplicity in question will suffice, since it implies the knowledge of the 
conormal derivatives. 
 Thus, an integral of equation (62) or equation (83) is well-defined in the interior of a 
characteristic conoid when one gives its values on that conoid.  In particular, it cannot be 
annulled on the conoid (except for the singular case, such as, for example, the one that 
we encountered for the expression (84) of the preceding no.) without being identically 
null in the entire interior. 
 This result obviously corresponds to the one that we found in no. 172 (ch. IV). 
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 339. – We likewise remark that the method can be extended to the case where the 
linear equation has a right-hand side, i.e., where one no longer equates the left-hand side 
of equation (63) to zero, but to an arbitrary given function F of x1, x2, …, xn .  Under 

these conditions, the n-fold integral that figures in left-hand side of equation (74) will no 
longer be null, but its value will be known.  For equation (62), this will lead to 
completing formula (82) with the integral: 
 

1 2 3dx dx dx
r∫∫∫
F

, 

 
taken over the characteristic conoid.  In the case of equation (83), one will have to 
consider, not only the double integral that is taken over the characteristic conoid, but also 
a triple integral that is taken over the volume that is interior to that cone. 
 
 
 340. – In any case, a direct calculation will show that the expressions that are 
obtained by the preceding method indeed verify all of the required conditions, provided 
that the multiplicity S satisfies the hypotheses of no. 331. 
 In this case, the solution to the Cauchy problem is thus always possible, regardless of 
whether the givens are or are not analytic. 
 This is no longer true if the hypotheses of no. 331 are not verified, such as when the 
multiplicity S cuts the characteristic cone that issues from one of its points.  For example, 
this is the situation that presents itself in the generalization that was given by Kirchhoff 
(53) of the solution in no. 335 or in the analogous study that was carried out by Volterra 
(54) on equation (83). 
 Whenever S takes such a form, a solution to the Cauchy problem ceases to be 
possible, in general.  That is what happened with the solutions that were given by 
Kirchhoff and Volterra: an infinitude of possibility conditions appeared.  In reality, in the 
problems that they treated one may, as one easily confirms, give the Cauchy data – i.e., z 
and its first derivatives – on only a subset of S, since only z is given (as in no. 180-184 of 
chap. IV) on the other subset.  The corresponding forms for S are, moreover, such that the 
proof of Cauchy-Kowalewski (relative to the existence of a solution for analytic givens) 
is no longer applicable. 
 However, just as in the case where this proof is possible – for example, in the context 
of equation (62), when one takes S to be the multiplicity x1 = 0 – one confirms that the 
possibility of the solution to the problem ceases to be true, in general, with the analyticity 
of the givens if the condition of no. 331 is not met. 
 
 
 341. – We confine ourselves to the previous observations on the solution of the 
Cauchy problem, and now study another question that is closely related to the ones that 
were the object of the preceding chapter. 

                                                
 (53 )  Zur Theorie der Lichtstrahlen and Optik. 
 
 (54 )  Sur les vibrations des corps élastiques isotropes, no. 6 (Acta Math. t. XVIII). 
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 We have confirmed that the waves by which the discontinuities propagate in a 
moving medium are nothing but the characteristics of the differential equations that 
determine these motions.  To that effect, we are thus placed within the scope of the 
hypotheses that were formulated in no. 71, and from which the quantities considered and 
their various derivatives must all tend to perfectly well-defined limits on each side of the 
discontinuity. 
 There is reason to demand that the analogous conclusions persist under the contrary 
hypothesis, i.e., upon assuming that there is not only a discontinuity between two 
compatible motions, but also a singularity of one of these motions in its own right, such 
that one of the unknowns or its derivatives becomes infinite.  For example, this is what 
we are confronted with in the solution (84) to equation (83). 
 The results that we arrive at will be, moreover, important in that they permit us to 
relate the theory of waves that we have just described in the preceding chapters to the one 
that we encounter in various important branches of physics, particularly acoustics and 
optics. 
 One then knows that, instead of considering, as we have done, the propagation of the 
motion, properly speaking, i.e., the manner by which it commences at the various 
successive points of space, one suppose that this motion has already commenced and 
arrived at a sort of permanent state.  Under these conditions, the wave surface, as we have 
envisioned it in the foregoing, is no longer applicable.  However, on the other hand, the 
motion under study is not arbitrary: It is a periodic oscillation and the wave surface is 
then the locus of points in space where the phase of oscillation is the same.  Of course, as 
in the foregoing, when one varies the time the set of wave surfaces in the space E4 that 
correspond to the same phase is a triply-extended multiplicity that represents the progress 
of the wave and permits one to define the velocity of propagation. 
 We shall justify later on why one is led to the same waves as in the Hugoniot theory – 
namely, the characteristics – and we likewise justify the introduction of the 
bicharacteristics that were defined in the present chapter as possessing the fundamental 
properties of the rays that one considers in physics. 
 
 
 342. – Therefore assume, with Delassus (55), that a given second order linear 
equation: 
 
(63)   F(s) = 

,
ik ik i i

i k i

a p a p lz+ +∑ ∑  = 0 

 
possesses a solution of the form: 
(85)     z = ZB(Π), 
 
where Z, Π are regular functions − by which, I mean functions that are finite, continuous, 
and differentiable, – but where the function F admits a singularity for Π = 0.  Substituting 
that quantity, it easily follows that: 
 

                                                
 (55 )  Annales Scient. de l’Ec. Norm. Sup., 3rd series, t. XIII, pp. 357, et seq., 1896. 
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(86)  AZF″(Π) + 
i i i

Z A
MZ

x π
 ∂ ∂ + ∂ ∂ 
∑ F′(Π) + F(Z) ⋅ F(Π) = 0, 

 
the πi being the partial derivatives of Π, and A always being defined by equation (18) in 
no. 287, while the F′, F″ are the first and second derivatives of the function F, and one 
has that: 

M = 
2

,
ik i i

i k ii i

a a
x

π
π

∂ Π +
∂ ∂∑ ∑ = F(Π) – lΠ. 

 
 We shall not exactly leave the function F completely arbitrary: We suppose that this 
function is such that F′ is infinitely large with respect to F and F″ is infinitely large with 
respect to F′ for Π in the neighborhood of 0.  This condition is satisfied for all of the 
usual forms for functions of one variable that are singular at the origin, such as: 
 
     F(Π) = Πp (p, a non-positive integer) 
     F(Π) = log Π, 
     F(Π) = Πp log Π. 
 
 Under these conditions, it is clear that the coefficient of F″(Π) in equation (86) must 
be annulled with Π.  One thus has (for Π = 0): 
 
(87)     A = 0 
 
and the singular multiplicity Π = 0 must be a characteristic (56). 
 The will again be true when the desired integral is not composed of the expression 
(85) exclusively, but includes an additional arbitrary regular term. 
 
 
 343. – Conversely, being given a characteristic multiplicity Π = 0 – such that, as a 
consequence the left-hand side of equation is annulled with Π, and one has: 
 

A = ΠA 

 
(where A is a new regular quantity), we propose to find a solution of the given equation 

that has the form: 
(88)     z = ZF(Π) + z1, 
z1 being a regular function. 
 To fix ideas, we take: 

F(Π) = log Π. 
 One will then have: 

                                                
 (56 )  This conclusion will not be invalidated if Z goes to zero with Π.  Indeed, in that case, it is 
convenient to restart the argument by replacing Z with Z1 = Z/Π, and F(Π) with ΠF(Π). 
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( )

( )

F

F

′′ Π
′ Π

= − 1

Π
. 

 
 As a consequence, upon assuming that the terms of order F′ disappear, one will have 
(for Π = 0) the condition: 

(89)    
i i

Z A

x π
∂ ∂
∂ ∂∑ + (M – A)Z = 0 . 

 
 This condition may be considered to be a first order linear partial differential equation 
that the function Z must satisfy.  It is clear (57) that the characteristics of that equation 
will be situated on our singular surface, and are nothing but the corresponding 
bicharacteristics. 
 Consequently, one sees that condition (89) relates to the distribution of values for Z 
itself (and not its derivatives) on the hypersurface Π = 0.  If one sets, as before: 
 

(14′)     1

1

dx

A

π
 ∂
 ∂ 

= 2

2

dx

A

π
 ∂
 ∂ 

= … = n

n

dx

A

π
 ∂
 ∂ 

= ds  

then Z will have the value: 
 

(90)     Z =
( )

0

M ds
Z e

−∫ A , 
 
where Z0 is a factor that is independent of s that one must choose arbitrarily at a point of 
each characteristic, moreover. 
 Z having been thus chosen (and assuming that it is regular, moreover), the left-hand 
side of the condition (89) will be annulled with Π.  Consequently, it will have the form: 
 

ΠP, 

P being a regular function. 
 As for the logarithmic terms, the necessary and sufficient condition for them to 
disappear is obviously that Z be itself a solution of the proposed equation. 
 This being the case, it will remain for us to determine z1 from the equation: 
 
(91)     F(z1) = − P. 

 
Since P is, as we have said, a regular function, we learn from the general theorems (58) 
that this equation admits a likewise regular solution. 
 To summarize, we see that it is necessary that we: 

                                                
 (57 )  Compare, no. 332. 
 
 (58 )  At least, in the case where all of the calculations are analytic. 
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 1.  Choose the multliplicity Π = 0 to be a characteristic, conforming to the theorem of 
Delassus. 
 2.  Calculate the distribution of values for Z on this multiplicity by means of equation 
(89), or, what amounts to the same thing, by means of formula (90). 
 3.  Find a solution to the proposed equation that takes the values thus calculated for Π 
= 0. 
 4.  Determine a regular function z1 by means of equation (91). 
 We know, moreover, by this procedure, that if the calculations are analytic then the 
third operation is possible in an infinitude of ways. 
 
 
 344. – When the number of independent variables is two the logarithmic solution thus 
obtained plays a fundamental role in the study of the equation, and this is particularly true 
in the case where the characteristics are imaginary. 
 One may then (59), by a change of real variables, put the equation into the form: 
 

(92)   F(z) = ∆z + 
z z

a b
x y

∂ ∂+
∂ ∂

+ cz = 0, 

 

∆ denoting the Laplace symbol in two variables
2 2

2 2

z z

x y

∂ ∂+
∂ ∂

, while a, b, c are given 

functions of x, y.  Under these conditions, the characteristics are x – iy = const., x + iy = 
const. 
 We seek a uniform solution that becomes logarithmically infinite in a neighborhood 
of a given point (x0, y0). 
 If we suppose that a, b, c are analytic then nothing will stop us from applying the 
preceding reasoning to the multiplicities: 
 

x − x0 – i (y – y0) = 0,  x − x0 + i (y – y0) = 0; 
 
and they will be the logarithms of x − x0 – i (y – y0), on the one hand, and x − x0 + i (y – 
y0), on the other.  They will then have the form: 
 

Z log[x − x0 – i (y – y0)] + Z′ [x − x0 + i (y – y0)] + z1. 
 
 However, one has: 
 
    log[x − x0 – i (y – y0)] = log r – iω, 
    log[x − x0 + i (y – y0)] = log r + iω, 
 
upon denoting the distance between the two points (x0, y0) and (x, y) by r, and the angle 
that this distance makes with the x axis by ω.  It is clear that the solution will not be 
uniform if ω does not indeed disappear, i.e., if one does not have: 

                                                
 (59 )  PICARD, Traité d’Analyse. 
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Z′ = Z. 

 
 Thus, we ultimately have to find a solution Z to equation (92) that is defined by the 
double condition of taking given values for x − x0 – i (y – y0) = 0, and other given values 
for x − x0 + i (y – y0) = 0, these values being, moreover, analytic.  This is, as we have 
seen, the problem that was solved by Goursat and, for the case of a much larger number 
of variables, by Beudon. 
 We thus obtain a solution of the form: 
 
(93)     2 Z log r + z1, 
 
i.e., one of the solutions whose existence was established by Picard in the special case 
where a and b are null (60).  However, we have been obliged to restrict ourselves to 
equations with analytic coefficients.  In regard to that, although we did not make that 
assumption in the developments of no. 343, we are now applying them in the complex 
domain.  On the contrary, the method of Picard, which is founded upon successive 
approximations, nowhere assumes the analytic nature of the coefficients. 
 Nonetheless, observe that just as it does for non-analytic a, b, c our method leads to 
the desired result in some very general cases.  Indeed, if a, b, c admit derivatives up to a 
certain order p around (x0, y0) then the Taylor formula will be applicable to them around 
this point, i.e., one may represent them by polynomials α, β, γ at x, y, up to quantities that 
will be of order greater than p at x – x0, y – y0 . 
 For the moment, we then replace a, b, c with α, β, γ.  The equation will thus admit a 
solution z′ of the form (93).  The result of substituting z′ in the given equation will be a 
quantity that is continuous and differentiable up to order p − 1.  It only remains for us to 
augment z′ with a quantity z″ that is defined by the equation: 
 

F(z″) = − F(z′), 
 

an equation such that the theorems of Picard (61) permit us to find a regular solution, once 
we have specified the order of differentiability. 
 The only question – which we will not, moreover, venture to elucidate – is that of 
knowing whether this order is the highest one possible when one is given the hypotheses 
that we made on the coefficients. 
 The integrals of the form (93) play the same role in the study of equation (92) that the 
function log r plays in the study of the Laplace equation.  Indeed, consider the adjoint 
equation to (92), namely, the equation: 
 

                                                
 (60 )  The preceding method was obtained in an independent manner by Hedrick (Über den 
analytischen Character der Lösungen von Differentialgleichungen, Göttingen 1901) and myself (see Notice 
sur les travaux scientifiques de M. Jacques Hadamard, February 1901, and also Congrés international des 
Mathématiciens) (Paris, 1900; Gauthier-Villars, 1902). 
 
 (61 )  Journal de Mathématiques, 5th series, tome VI, 1900; pp. 138 et seq. 
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G(u) = ∆u − ( ) ( )au bu
x y

∂ ∂−
∂ ∂

+ cu = 0. 

 
 Here, the formula gives: 

[ ( ) ( )]
C

u z z u dxdy−∫∫ F G  

= [ cos( , ) cos( , )]
S

dz du
u z a N x b N y zu ds

dN dN
 − − + 
 
∫ , 

 
S being the frontier of the planar domain T, s being the arc length of S, and N being the 

normal to S. 
 However, equation G(u) = 0 admits a solution of the form (93).  Suppose that it 

chosen in such a manner that the coefficient 2Z is equal to 1 at the point (x0, y0) (which is 
possible, because from our calculations Z is necessarily non-zero at that point) and 
choose it for the function u. 
 Upon performing the integration, on the one hand, along an arbitrary curve (62) S that 
surrounds the point (x0, y0), and, on the other, a circle of very small radius having that 
point for its center, one finds exactly as in the theory of the ordinary logarithmic 
potential: 

1
[ cos( ) cos( )]

2 S

dz du
u u a Nx b Ny zu ds

dN dNπ
 − + + 
 
∫ = s(x0, y0). 

 
 This formula is completely analogous to the one that we recalled in ch. 1 (no. 1).  As 
is that context, we obviously may deduce the following consequences: 
 An equation (92) with analytic coefficients admits only analytic solutions. 
 If two solutions of an equation (92) have analytic coefficients that are defined on one 
side of a line l or the other and take the same values on that line, while the same is true of 
their normal derivatives, then these functions are analytic continuations of each other. 
 Finally, if one recalls that the regular term z that figures in the solution (93) may be 
modified by the addition of an arbitrary regular solution of the proposed equation then 
one will be led to determine such an additive term for the function u1 in such a manner 
that the corresponding solution: 

u = U log r + u1 
 
of the adjoint equation is annulled on the contour S, or in such a manner that its normal 
derivative is constant there.  u will then play the role of a true Green function for the 
solution of the Dirichlet problem or the Neumann problem relative to equation (92). 
 
 
 345. – One may demand to see what the calculations that we just performed become 
when the equation has real coefficients. 

                                                
 (62 )  Or even a system of several curves, provided that the area that they bound includes the point (x0, 
y0). 
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 Therefore, suppose that the variables are chosen in such a manner that these 
characteristics are x = const., y = const.  The quantity: 
 

log r = [ ]0 0 0 0

1
log[( ) ( ) log[( ) ( )]

2
x x i y y x x i y y− − − + − + −  

 
must then be replaced (up to a factor of 2) by the logarithm of the product (x – x0)(y – y0). 
 Now, since the characteristics are parallel to the axes, the equation has (no. 164) the 
form: 

2z z z
a b cz

x y x y

∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0. 

 
 If it is to admit the solution: 
 

z = Z log [(x – x0)(y – y0)] + z1 
 
then the function Z, itself a solution of the equation, must verify, in addition, the relations 
(89) on the characteristics, which reduce to the form: 
 

Z
aZ

y

∂ +
∂

= 0 

on the characteristic x = x0 and: 
Z

bZ
x

∂ +
∂

= 0 

on the characteristic y = y0 . 
 We may further take Z = 1 for x = x0, y = y0 .  We then see that the function Z is none 
other than the Riemann function that was defined in no. 171. 
 
 
 346. – When one passes to the case of three independent variables, the important 
solutions to consider are no longer the ones that we just spoke of, but the ones that are 
infinite like 1/r in the environment of r = 0. 
 This leads us to give the function F that was introduced in the foregoing the form F = 
1/Π.  However, it is easy to see that if the given equation and the characteristic Π = 0 are 
taken in an arbitrary manner then an integral of this type will not exist, in general. 
 In order to see this, it suffices to observe that in the expression: 
 

z = 
Z

Π
+ z1 ,  

 
which is singular on the multiplicity Π = 0, the values that are taken by Z on that 
multiplicity determine only the values of the singularity, provided that upon adding to Z a 
regular function that is annulled with Π and that consequently has the form ΠZ one 

modifies the expression z only in the regular quantity Z. 
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 Now, once the coefficient of F″ − i.e., of 2/Π2 – is annulled, thanks to a choice of Π, 
it remains for us to make the terms in 1/Π2 and 1/Π disappear.  We will thus have two 
conditions on the partial derivatives, which both affect, as we have seen, and as one 
painlessly verifies directly, the distribution of values for Z along our multiplicity Π = 0.  
In general, these two partial differential equations will not have common solutions that 
are not identically null. 
 By contrast, there will exist solutions of the form: 
 

Z log Π + 1Z

Π
, 

 
and this is likewise easy to deduce from what we previously obtained.  Indeed, consider 
the characteristic that we start with to be part of a family of characteristics whose general 
equation is: 

Π(x1, x2, …, xn, λ) = 0 . 
 
 For each value of λ, we may, by the preceding method, construct the solution: 
 

Z log Π + z1 . 
 
 By differentiating the expression that is thus obtained with respect to λ we will have a 
new solution to the equation that may be written: 
 

1log
zZ Z

λ λ λ
∂∂Π ∂+ Π +

Π ∂ ∂ ∂
. 

 
 This solution will thus have precisely the form that is demanded if one does not have 
∂Π / ∂λ = 0. 
 For example, upon differentiating the solutions (93) of no. 344 with respect to x0 and 
y0 one will obtain: 

2

P

r
+ Q log r + z1  

 
(P and Q being regular functions, with P(x0, y0) = 0), which was likewise considered by 
Picard (63). 
 
 
 347. – The preceding results can be generalized to the case of an arbitrary order. 
 By contrast, they no longer persist if the characteristic considered is double (no. 284), 
i.e., if it satisfies the conditions: 
 

i

A

π
∂
∂

= 0,  (i = 1, 2, …, n). 

                                                
 (63 )  C. R. Ac. des Sc., 1891. 
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 Indeed, suppose that this is true, and also (as one may obviously do without 
diminishing the generality) that all of the multiplicities Π = const. are characteristic, in 
such a way that the quantity that was denoted above by A is identically null.  Then, once 

the term in F′ is annulled the term in F may disappear only for Z = 0, at least if one has 
for Π = 0 that: 

M = 0. 
 
 For example, if one takes Π to be the variable x0 then one must have: 
 

an = 0 
in equation (63). 
 By contrast, if this condition is verified then it is, in general, possible to construct 
integrals that present the indicated singularity.  Thus, for the equation (in two 
independent variables): 
 

2 2 2

2 2( ) ( ) 2 2 2
z z z z z

z a z b z c d e f g hz
x y x x y y x y

∂ ∂ ∂ ∂ ∂ ∂ ∂∆∆ + ∆ + ∆ + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 
which satisfies the preceding condition, one easily proves by this procedure that there 
exist solutions of the form: 

z = r2 log r ⋅ Z + z1, 
 
which play the same role for this equation as the solutions (93) do for equation (92). 
 
 
 348. – One easily extends the preceding considerations to systems of equations.  For 
example, suppose we have the linear system: 
 

(94) 

0,

0,

0,

ik ik ik ik ik ik i i i i i i

ik ik ik ik ik ik i i i i i i

ik ik ik ik ik ik i i i i i i

a p b q c r a p b q c r g h l

a p b q c r a p b q c r g h l

a p b q c r a p b q c r g h l

ξ η ζ
ξ η ζ
ξ η ζ

 + + + + + + + + =
 ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + + + + =
 ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + + + + + + + =

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

 

 
where, as in no. 291, the ξ, η, ζ are unknowns and the p, q, r are their first and second 
derivatives. 
 We seek a solution that is singular on the multiplicity Π = 0 in which the principal 
parts of the unknowns are: 
 

ξ = Ξ F(Π), η = Η F(Π), ζ = Ζ F(Π), 
respectively. 
 Since the function F is assumed to verify the same hypotheses as in no. 349, the terms 
in F″ must disappear, and one will have, for Π = 0: 
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(95)    

0,

0,

0,

A B C

A B C

A B C

Ξ + Η + Ζ =
 ′ ′ ′Ξ + Η + Ζ =
 ′′ ′′ ′′Ξ + Η + Ζ =

 

 
where A is the expression ∑∑∑∑ aik pi pk and B, C, … are the analogous expressions that are 
formed as in no. 291. 
 The determinant of these equations must consequently be null (64), in such a manner 
that the singular multiplicity must again be a characteristic. 
 If we place ourselves under the hypotheses of no. 292, where the minors of the 
determinant in question are non-null, and we denote, as before, these minors by the 
notations α, β, γ, … then equations (95) give (for Π = 0): 
 
(96)   Ξ = αρ, Η = βρ, Ζ = γρ, 
 
ρ being indeterminate, by means of which the left-hand sides of these equations will be 
null with Π, and consequently of the form: 
 

KΠρ, K′Πρ, K″Πρ, 
 
K, K′, K″ being known regular functions. 
 Furthermore, let F(Π) = log Π, in such a manner that one has F″ / F′ = − 1/ Π.  The 
disappearance of the singular terms in F′ in the equation that one obtains by multiplying 
the first one by α, α′, α″, respectively (in order to eliminate F″) furnishes an equation 
that is entirely analogous to the preceding one (33), up to the replacement of the 
quantities pnn , qnn , rnn with Ξ, Η, Ζ.  Moreover, if we substitute for these latter quantities 
their values (96) then it is clear that we have an equation in ρ that is similar to the 
equation that was obtained in no. 293, and to which one may apply all of the preceding 
conclusions that were established relative to the latter.  Thus, thus equation will define 
the distribution of values of r on the singular multiplicity and will have the 
bicharacteristics of the system (94) for its characteristics. 
 One will thus determine the values of Ξ, Η, Z on Π = 0. 
 
 
 349. – In order to see whether one may obtain a solution to the problem under these 
conditions, we suppose that the transformation that we described in no. 322-323 has been 
performed.  In other words, our characteristics will be nothing but xn = 0.  Furthermore, 
one of our equations will no longer contain the second derivatives with respect to xn; the 
other two will contain these derivatives, the one only in the term pnn, and the other, only 
in the term qnn (

65). 

                                                
 (64 )  There is no reason to be preoccupied with the case in which Ξ, Η, Ζ go to zero with Π, for the 
same reason as in no. 342.  (See the note on page (?).) 
 
 (65 )  More exactly, in order to obtain this result one must arrange for all of the multiplicities xn = const. 
to be characteristic and perform a change of variables that is defined, not by formulas (52), but by formulas 
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 If we group our various terms according to their order of differentiability with respect 
to xn alone then we may write these equations in the form: 
 

  
2

1 1 1 2 2 22 ( ) ( ) ( )
n n n nx x x x

ξ ξ η ζϕ ψ χ ϕ ξ ψ η χ ζ
     ∂ ∂ ∂ ∂+ + + + + +     ∂ ∂ ∂ ∂     

= 0, 

  
2

1 1 1 2 2 22 ( ) ( ) ( )
n n n nx x x x

η ξ η ζϕ ψ χ ϕ ξ ψ η χ ζ
     ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′+ + + + + +     ∂ ∂ ∂ ∂     

= 0, 

   1 1 1 2 2 2( ) ( ) ( )
n n nx x x

ξ η ζϕ ψ χ ϕ ξ ψ η χ ζ
     ∂ ∂ ∂′′ ′′ ′′ ′′ ′′ ′′+ + + + +     ∂ ∂ ∂     

= 0, 

 
where ϕ1, ψ1, χ1, 1ϕ′ , 1ψ ′ , 1ψ ′ , 1ϕ ′′ , 1ψ ′′ , 1χ ′′ denote first order linear differential polynomials, 

each one of which defines a function in which appear only differentiations with respect to 
the variables other than xn . ϕ2, ψ2, …, 2ψ ′′ , 2χ ′′  are second order differential polynomials 

that are likewise devoid of differentiations with respect to xn . 
 We must substitute the values: 
 
(97)  ξ = Ξ log xn + ξ1,  η = Η log xn + η1, ζ = Ζ log xn + ζ1 
 
for the unknowns in the equations that we just wrote.  The factor log xn must be treated as 
a constant for any differentiation with respect to a variable other than xn , and one will 
obviously obtain the result:  
 

(98)  

[ ]

1 1 12

1 1 12

1 1 1

1
2 ( ) ( ) ( ) 0,

1
2 ( ) ( ) ( ) 0,

1
( ) ( ) ( ) 0,

n n n

n n n

n

x x x

x x x

x

ϕ ψ χ

ϕ ψ χ

ϕ ψ χ

  Ξ ∂Ξ− + + Ξ + Η + Ζ + =  ∂ 
  Η ∂Η ′ ′ ′− + + Ξ + Η + Ζ + =  ∂ 


′′ ′′ ′′Ξ + Η + Ζ + =


⋯

⋯

⋯

 

 
in which we have written only the terms in 21/ nx  and 1/xn .  The vanishing of the former in 

the first two equations shows that Ξ and Η must be annulled with xn ; this corresponds to 
formulas (96).  Under these conditions, the vanishing of terms in 1/xn in the third 
equation demands that one have, for Π = 0, that: 
 

1( )χ ′′ Ζ = 0. 

 

                                                                                                                                            
(53), the functions A, B, C, A′, B′, C′ being equal for any system of values for x1, x2, …, xn to the 

coefficients ann , bnn , cnn , a′nn , b′nn , c′nn . 
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 This is the partial differential equation that we recently found, which determines the 
distribution of values of Z on the multiplicity xn = 0.  If it is verified then our third 
equation (which reduces to the linear combination that we constructed in the preceding 
no. here) contains no other singular terms besides logarithmic terms. 
 Assume that this is the case for the remaining two equations.  Since Ξ and Η are 
initially null, one has: 
(99)    Ξ = xn Ξ1,  Η = xn Η1, 
 
where Ξ1 and Η1 are new regular functions.  It then follows, upon equating to zero the 
terms in 1/xn (which, by means of relations (99), are furnished either by the terms in 1/xn 
or by the ones in 21/ nx ) in the first two of equations (98): 

 
      Ξ1 + χ1(Z) = 0, 
       Η1 + 1( )χ ′ Ζ  = 0. 

 
Since Z is known for xn = 0, the two preceding relations make known the initial values of 
Ξ1 and Η1, i.e., of ∂Ξ / ∂xn and ∂Η / ∂xn . 
 If we recall that Ξ, Η, Ζ themselves must define a solution to the given system (in 
order to make the logarithmic terms disappear) then we see that we are led to determine 
one such solution once we are given the values of our three unknowns and the first 
derivatives of both of them on the characteristic xn = 0.  Now, we saw in no. 323 that to 
these givens we may add the values of Ζ on a multiplicity that is secant to the latter. 
 Therefore, there exist an infinitude of solutions of the form (97) that depend upon an 
arbitrary function of n – 1 variables and a second arbitrary function of n – 2 variables, 
since Ζ may be chosen arbitrarily at any point of an n – 2- fold extended multiplicity that 
is situated on our characteristic and cuts each bicharacteristic at one point. 
 
 
 350. – We are led to the waves that appear in the theory of periodic motions if we 
give the function F the form: 

F(Π) = sin µΠ, 
µ being an arbitrary parameter. 
 The function F thus chosen is holomorphic, in such a way that µ is always between 
+1 and −1.  Properly speaking, it does not fall into the category that we just envisioned.  
Meanwhile, − and this is one notion that acquires considerable significance in many 
physical applications of analysis – since it is always regular in theory, it must be regarded 
as being practically singular when µ has large values.  Indeed, it enjoys a certain number 
of properties that agree with those of functions provided with singularities.  It is always 
continuous and never offers brief variations, in the absolute sense of the word.  However, 
it meanwhile passes from the value +1 to the value −1 when its independent variable Π 
increases from the small quantity π / µ .  It has a derivative that is never infinite, but the 
values of that derivative are very large with respect to those of the function, namely, of 
order µ; the second derivatives are likewise very large compared to µ2, etc. 
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 From this (restricting ourselves to the case of only one unknown), if we suppose that 
equation (63) has a solution of the form (66): 
 
(100)     z = Ζ sin µΠ + z1, 
 
and if µ is very large then if the derivatives of Π, Ζ, and z (as well as those quantities 
themselves) are not very large then one must have that in the left-hand side of equation 
(86) the terms in F″, which are of order µ2, and the terms in F′, which are of order µ, are 
annulled separately.  The first of these conditions gives: 
 
(12′)     A = 0. 
 
and this time this will be true for any value of Η, in such a manner that the multiplicities 
Π = const. must be characteristics. 
 The terms in F′ give the condition (89) with A = 0 as a consequence, upon 

introducing the bicharacteristic variable z that is defined by equation (14′) (no. 283): 
 

(101)     
d

M
ds

Ζ + Ζ = 0. 

 
 Conversely, suppose that the functions Π and Ζ are well-defined, the former by 
equation (12) and the latter by equation (101).  The result of substituting the product Z 
sin µΠ in the given equation will then reduce to Q sin µΠ, upon setting: 
 

Q = F(Z). 

 
 We thus have to determine z1 by the equation: 
 
(102)     F(z1) = − Q sin µΠ. 

 
 Now, for the various second order partial differential equations (with real 
characteristics) that one must integrate (compare no. 339), one confirms, for the equation 
whose left-hand side is: 

F(z) = F 

 
(where F is a given function of x1, x2, …, xn), the existence of solutions that are 

represented by sums of n-fold integrals of the form: 
 

(103)   1 1 2 1( , , ) ( , , , , , , )n n nx x G x x x x x dτ′ ′ ′ ′∫∫ ∫⋯ ⋯ ⋯ ⋯F , 

 

                                                
 (66 )  Nothing essential will be modified if we replace the term Ζ sin µΠ with the sum Ζ1 sin µΠ  + Ζ2 
cos µΠ  
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where G is calculated a priori, independently of the function F, and where dτ is an 

element of the n-fold or n−1-fold extended multiplicity that is described by the point 

1 2( , , , )nx x x′ ′ ′⋯ . 

 In order to obtain a solution of equation (102) we must replace F by – Q sin µΠ. 

 Supposing that the functions Q and G satisfy conditions that are analogous to those of 
Dirichlet, I would like to say that their total variation (67) over an arbitrary finite line does 
not become greater than these functions themselves.  The theory of trigonometric series 
(68) then tells us that an integral of the form (103), when taken over the function QG sin 
µΠ, is very small with respect to the values of Q and the order of Q/µ . 
 Finally, suppose that Q = F(Ζ) has the same order of magnitude as Ζ itself.  One then 

sees that of the two terms of the expression (100), the latter is very small with respect to 
the former.  Under these conditions, the solution therefore reduces approximately to the 
product Ζ sin µΠ. 
 That quantity proves, from its form itself, that periodic oscillations become more 
rapid as µ becomes greater, and the points with corresponding phases are situated on the 
surfaces Π = const., i.e., on the characteristics. 
 
 
 351. – Now, return to the determination of Ζ.  Once Π has been chosen, Ζ is subject 
to the differential equation (101). 
 Now, this only tells us the mutual ratios of the values of Ζ at the various points of the 
same bicharacteristic.  It does not establish any relation between the values that are taken 
by this function on various bicharacteristics. 
 For example, suppose we are given an arbitrary region of n-dimensional space and 
consider the set of bicharacteristics that traverse that region.  This is what one might call 
a pencil of bicharacteristics.  Nothing prevents us from supposing that Ζ is non-zero on 
the bicharacteristics of the pencil and null everywhere else. 
 From the foregoing, the bicharacteristics are then precisely the only lines that possess 
this property. 
 Now, from this, we recognize precisely the essential character by which the rays 
intervene physically.  It corresponds, moreover, to having at least one property of the 
solution (100) that µ is very large, and consequently, that z1 is very small.  Indeed, this is 
the case for oscillations that are extremely rapid, such as luminous vibrations, for which 
the propagation by rays is the neatest. 
 One must nevertheless observe that in the regions where Ζ varies rapidly the 
conclusions will be modified since z1 will cease to be negligible (diffraction). 
 

_____________ 

                                                
 (67 )  JORDAN, Cours d’Analyse, 2nd edition, tome 1, no. 67, pages 54 et seq. 
 
 (68 )  JORDAN, Ibid., tome II, ch. IV; PICARD, Traité d’Analyse, 2nd edition, tome I, 2nd part, ch. IX. 



 

NOTE I 
__ 
 

ON THE CAUCHY PROBLEM AND CHARACTERISTICS 
 

_________ 
 
 

 While we established (in chap. VI) that if two integral surfaces of the same Monge-
Ampère equation are tangent all along a line, which may only be a characteristic, our 
proof remains incomplete in one aspect: we have, in fact, omitted the case in which the 
contact is of infinite order.  There is therefore reason to demand that, likewise on 
considering non-analytic solutions, the Cauchy problem is perfectly determined whenever 
the sequence of given values is not characteristic.  If one is concerned with a linear 
equation with analytic and holomorphic coefficients then the solution has been obtained 
in a manner that is as general as possible by Holmgren (69), not only for a second order 
equation, but also for a linear system in an arbitrary number of equations. 
 Such a system may, as one knows, always be reduced to a form in which all of the 
equations are of first order.  Moreover, if the multiplicities x = const. are not 
characteristic then these equations are soluble with respect to the derivatives relative to x, 
in such a way that they have the form: 
 

(1)   Fi(x) =
1 1

( , ) ( , )
n n

i k
ik ik k

k k

x z
A x y B x y z

x y= =

∂ ∂
− −

∂ ∂∑ ∑ = 0 (i = 1, 2, …, n), 

 
in which the quantities Aik, Bik are analytic and holomorphic functions of x and y.  If the 
given line L (on which z1, z2, …, zn are annulled) is not tangent to a characteristic at the 
point O, in whose vicinity we propose to study the system of function z, then one may 
assume that the y-axis is tangent at this point, since the equations preserve their previous 
form. 
 One may, by an obvious transformation, always exclude the case in which there is an 
inflection point at O, and assume consequently that the convexity of our line changes at a 
side that is determined by the y-axis; the choice of side is up to us.  Suppose, to fix ideas, 
that we have chosen the one with positive x, or the right side. 
 The adjoint system to (1) is: 
 

Gi(x) = ( , )i
ik k ik k

k k

u
A u B u

x y

∂ ∂− −
∂ ∂∑ ∑ = 0 

or: 

(2)        Gi(x) = i k
ik ik k

k k

u u
A u

x y
β∂ ∂

− −
∂ ∂∑ ∑ = 0 

                                                
 (69 )  Ofversigt af Kongl. Vetenshaps. Akad. Förhandl, 9 January 1904, pp. 91-103. 
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(3)     βki = − Bki − kiA

y

∂
∂

. 

 
 With the given system, this gives rise to the identity:  
 

(4)   [ ( ) ( )]i i i i
i

u z z u dxdy
 + 
 
∑∫∫ F G = i i ik i k

i ik

z u dy A u z dx
 − 
 
∑ ∑∫ , 

 
in which the double integral extends over an arbitrary area of the xy-plane, and the simple 
integral is along the contour of this area. 
 The functions β will be, like the A and B, analytic and holomorphic, and consequently 
developable into a Taylor series that is ordered in powers of x – x0, y – y0, where x0, y0 
denote the coordinates of an arbitrary point near O.  Moreover, the associated radii of 
convergence (70) of these developments do not go below a certain fixed limit when the 
point (x0, y0) varies in a neighborhood of O.  Since the corresponding functions remain 
finite, any of the developments in question will admit a majorizing series of the form: 
 

(5)     
0 01 1

M
x x y y

r r

− −   − −   ′   

, 

 
in which M, r, r ′ are independent of x0, y0. 
 Under these conditions, if we give the values of u on the line x = x0, namely, ui = fi(y), 
these values being analytic and holomorphic and their developments in powers of y – y0 
admitting the common majorizing series: 
 

(6)      
01

P
y y

R

−−
 

 
(P, R constant), then a classical argument relating to partial differential equations gives us 
(71) the existence of a holomorphic solution to the system (8) that takes the given values 
on the line x = x0.  Moreover, the developments of the functions u thus obtained converge 
for: 

(x – x0) < ρ, (y – y0) < ρ′ ; 
 
ρ, ρ′depend on M, r, r ′ , R, but not on P.  Indeed, one may give the latter quantity an 
arbitrary value upon multiplying the values fi(y) by the same factor, which one finds in 
the values of the unknowns, and which does not modify the radii of convergence of their 

                                                
 (70 )  See BOREL. – Leçons sur les séries a termes positives, pp. 86. 
 
 (71 )  JORDAN. – Cours d’Analyse, t. III, chap. III. – GOURSAT, Leçons sur l’intégration des 
operations dérivées partielles du premier ordre,pp. 2-8. 
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developments.  For example, ρ, ρ′might be greater than the values that they would take if 

one replaced all of the Aik, βik by the function (5) and all of the fi by the function: 
 

0

1

1
y y

R

−−
 

 
(a case in which these values may be easily written, since the u are then obtained by 
direct integration). 
 Choose R arbitrarily, which will permit us to calculate ρ, ρ′ , since M, r, r ′ are known.  

Finally, give x0 a value that is lower in absolute value than ρ, and such that the line x = x0 
intercepts our line at the endpoints of an arcPP′ (fig. 24) that is completely situated in the 
domain in which the preceding considerations are valid. 
 Now suppose that the system (1) admits a solution 
such that all of the z are null on the arc, that solution 
being defined in the neighborhood of that arc, and, in 
particular, in the entire region between that arc and its 
chord.  We apply formula (4) to the contour of the area 
thus defined by taking e to be the functions whose 
existence we just assumed. 
 As for the u, they will be defined in the following 
manner: Let Fi(y) be the sequence of values that are 
taken by zi along the line segment.  We may find (for 
each value of i) a polynomial fi(y) that has, with Fi, a 
difference ϕi that is everywhere lower in absolute value 
than a number ε that is small as one desires. 
 We take the ui to be a solution of the adjoint system 
such that the ui reduce to fi(y) on the line.  Since 
obviously the polynomials may always be regarded as admitting majorants of the form 
(6), the ui will exist and will be analytic and holomorphic in all of our integration area. 
 In the right-hand side of (4), the integral over the arcPP′ will be null, since all of the z 
are annulled along that arc.  On the chord ofPP′ , since dx is null the integration element 
reduces to: 

∑ ui zi dy = dy ∑ Fi fi =
2
i i idy F Fϕ + ∑ ∑ . 

 

 Let I be the integral 2( )iF y dy  ∑∫ , H, the maximum of the modulus of Fi, and l, the 

length ofPP′ .  It is clear that the integral considered will differ from I by a quantity that 
is less than nεHl.  It may therefore be null only if one has: 
 

ε < 
I

nHl
. 

 

 
y 

x 

P 

P′  

O 

Fig. 24 



ON THE CAUCHY PROBLEM AND CHARACTERISTICS                      305 

 

 Since ε is arbitrarily small, one may always assume that this inequality is satisfied, 
and consequently the formula will lead to a contradiction unless one does not have I = 0; 
i.e., unless not all of the F are identically null.  It must therefore be the case that one has: 
 

z1 = z2 = … = zn = 0 , 
 
at least everywhere to the right of L, since the abscissa x0 is arbitrary, except for the 
condition that x0 < ρ. 
 In order to establish the same conclusion for the points to the left of L, it will suffice 
to modify the sense of the convexity of that line by a change of variables. 
 The foregoing argument may be generalized to the case of an arbitrary number of 
variables.  If one has, for example, three of them, then the Cauchy givens will relate to a 
surface, on which it will suffice to give (by a change of variables) curvatures that are of 
the same sign and different from zero. 
 On the other hand, one may reduce the case of an arbitrary equation to that of a linear 
equation by means of the following lemma: 
 Let F(x1, x2, …, xm) be a function that admits continuous partial derivatives up to a 
certain order p in a certain domain.  If y1, y2, …, ym denote a new sequence of variables 
that are the same in number as the former one then the difference: 
 

F(y1, y2, …, ym) − F(x1, x2, …, xm) 
may be put into the form: 
 

(y1 – x1) ϕ1 + (y2 – x2) ϕ2 + … +(ym – xm) ϕm , 
 
in which ϕ1, ϕ2, …, ϕm denote functions of x1, x2, …, xm , y1, y2, …, ym that are 
continuous, along with all of their derivatives up to order p – 1. 
 In order to prove this proposition, one begins by assuming that m = 1.  One verifies 
without difficulty that for an F that is continuous, along with all of its first p derivatives, 
the function: 

1 1

1 1

( ) ( )F y F x

y x

−
−

 

 
is continuous, as well as its partial derivatives with respect to x1 and y1, up to order p − 1. 
 In order to pass to the general case, it will suffice to apply the conclusion thus 
obtained to each of the terms in the sum: 
 

[F(y1, x2, x3, …, xm) − F(x1, x2, x3, …, xm)] 
+ [F(y1, y2, x3, …, xm) − F(y1, x2, x3, …, xm)] + … 

+ [F(y1, y2, …, ym) − F(y1, y2, …, ym−1, xm)] . 
 

If F is analytic, as well, then the same thing will be true for ϕ1, ϕ2, …, ϕm . 
 For x1 = y1,  x2 = y2 , …,  xm = ym , these functions obviously have the value: 
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(7)    ϕi =
i

F

x

∂
∂

  (i = 1, 2, …, m) . 

 
 Having said this, let: 
(8)     F(z) = F(x, y, z, p, q, r, s, t) = 0 

 
be a second order partial differential equation that defines z as a function of x and y, and 
let z and z′ = z + dz be two integrals of that equation that coincide along with their 
derivatives all along a certain line L.  One will have: 
 

F(z + u) = F(z) = 0 . 

 
 From the preceding lemma, the relation: 
 

2 2 2

2 2, , , , , , ,
u u u u u

F x y z u p q r s t
x y x x y y

 ∂ ∂ ∂ ∂ ∂+ + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 
− F(x, y, z, p, q, r, s, t) = 0 

 
may be put into the form: 
 

(9)    
2 2 2

2 22 2 2
u u u u u

a b c d e fu
x x y y x y

∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0 , 

 
in which a, b, …, f are continuous differentiable functions of x, y, of z, u, and their 
derivatives; i.e. (if z and u are themselves assumed to be differentiable up to a certain 
order), continuous differentiable functions of x and y. 
 All of this therefore amounts to knowing whether that linear equation in u may admit 
a null integral, along with its first and second derivatives all along a particular line L 
without being identically null – or, at least, in all of a region surrounding L. 
 We remark that at any point where u is null, along with its first and second 
derivatives, one has, from relations (7): 
 

(10)   a = 
F

r

∂
∂

, 2b = 
F

s

∂
∂

, c = 
F

t

∂
∂

, 

 
in such a way that at such a point the characteristics of equation (9) are tangent to those 
of the proposed ones. 
 
 The question will be resolved, moreover, by Holmgren’s method of proof if equation 
(9) has analytic coefficients.  However, we must not assume that same thing will be true 
if F itself is analytic.  Indeed, as we saw at the beginning, we must assume that the 
integrals z andz′ do not possess this property, which will not, moreover, contain the 
coefficients a, b, c, … 
 It will therefore be necessary to extend the Holmgren argument to non-analytic linear 
equations.  That extension has been made in only one case up till now: the one in which 
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the characteristics of the equation (9) – and consequently those of the given equation – 
are real and distinct.  Indeed, since the argument of no. 174 applies in this case, the 
Riemann function may always be constructed by the method of successive 
approximations (72).  Our conclusion is therefore proved. 
 
 

_________ 

                                                
(72 )  PICARD, in DARBOUX, Leçons sur la théorie des surfaces, tome IV. 



 

NOTE II 
__ 
 

ON SLIPS IN FLUIDS 
 

___________ 
 
 

 In chap. V, we saw that, other than waves (which exist only in compressible fluids), 
arbitrary fluids − compressible or not – may present stationary discontinuities.  One 
knows, moreover, that they may be absolute, i.e., that two portions of the fluid may slip 
over each other in the manner of two different bodies. 
 Ever since Helmholtz, who was the first to draw attention to that category of motion 
(73), they have played an important role in several hydrodynamical theories.  Their 
existence is invoked in order to explain various paradoxical circumstances, such as the 
flow of liquids in the presence of angular walls, or the result that is known by the name of 
the d’Alembert paradox (the absence of resistance presented to a liquid by a solid that is 
symmetric with respect to a plane perpendicular to the direction of motion). 
 Nevertheless, all such explanations suffer a common objection, to which we have 
already alluded in the text (ch. V).  Indeed, the slips that we just spoke of are possible, in 
the sense that nothing (in the absence of viscosity) opposes their persistence once they 
are produced between two arbitrary regions of the fluid.  However, we have seen that 
their creation is impossible, at least, under the conditions that rational hydrodynamics 
demands. 
 If the slip velocity on a slip surface is null at a particular point at the instant t0 then it 
will remain null between the same molecules for any later instant. 
  It is nevertheless essential to take into account the restriction that we have made on 
our statement for a moment.  Indeed, one recalls that in the study of natural fluids there 
are cases that elude the argument that we shall present, since everything rests upon 
classical equations of hydrodynamics such as we wrote down in this text (ch. III and V), 
and consequently nothing precludes the production of absolute discontinuities in the 
course of motion. 
 They are the ones in which although the pressure vanishes, cavities are momentarily 
created in the fluid mass considered.  In general, these cavities appear near eddies in 
which the molecules that belong to the different regions mix together in such a way that it 
becomes impossible to assume the hypothesis of continuity of no. 45 at any point. 
 What we shall therefore prove is simply that such a singularity (or all other analogous 
ones, provided that the hypothesis that served as the basis for rational hydrodynamics 
ceases to be valid (74)), is necessary in order for a slip to be produced in an arbitrary time 
interval of motion if it did not exist before that interval. 

                                                
 (73 )  Monatsber. der Berl. Ac. der Wissensch., 23 April 1868. 
 
 (74 )  The general equations of hydrodynamics are likewise modified in the case of friction.  However, 
they may no longer be invoked in order to explain the creation of slips because they have the opposite 
effect of destroying that which made them exist to begin with. 
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 The proof rests upon the fact that was stated in no. 244 that (under the fundamental 
hypotheses in question) to each instant of a relative slip the acceleration jump is normal 
to the surface S along which the discontinuity is defined. 
 We propose to construct the differential equations that express this condition. 
 Recalling the same notations as in no. 249, we let ξ, η denote the curvilinear 
coordinates on S, which is regarded as being in its initial state S0.  The Cartesian 
coordinates x, y, z of a molecule of S that belongs to the region 1 will be functions of 
ξ, η, and time t: 

(1)     

( , , ),

( , , ),

( , , ).

x x t

y y t

z z t

ξ η
ξ η
ξ η

=
 =
 =

 

 
 The same will be true for the coordinates, ,x y z′ ′ ′of a molecule that belongs to region 
2.  However, the expressions will be different in the two cases.  Since there is a slip along 
S the molecule in region 1 that has the curvilinear coordinates ξ, η in the initial state will 
have, at the instant t, the coordinates in region 2 that were,ξ η′ ′ in the initial state (which 

are generally different from the former coordinates).  If ξ ′andη′are given then ξ and η 
will be functions of t, and it will suffice to substitute them in equations (1) in order to 
describe the motion of the molecule (, ,x y z′ ′ ′ ). 
 These are the functions that we must study. 
 The acceleration of the molecule (x, y, z) will be obtained by twice differentiating 
formulas (1) with respect to t, without varying ξ and η; it will have the components: 
 

2

2

x

t

∂
∂

,
2

2

y

t

∂
∂

,
2

2

z

t

∂
∂

. 

 
 On the contrary, the acceleration of the molecule ( , ,x y z′ ′ ′ ) is obtained by substituting 
ξ, η for their values as functions of t; it will have the components: 
 

 
2

2

d x

dt

′
=

2 22 2 2 2 2 2

2 2 2 2 22
x x d x d x d x d d x d

t dt dt dt dt dt dt

ξ η ξ ξ η η
ξ η ξ ξ η η

∂ ∂ ∂ ∂ ∂ ∂   + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

        
2 2

2 2
x d x d

dt dt dt dt

ξ η
ξ η
∂ ∂+ +

∂ ∂
 

 

 
2

2

d y

dt

′
=

2 22 2 2 2 2 2

2 2 2 2 22
y y d y d y d y d d y d

t dt dt dt dt dt dt

ξ η ξ ξ η η
ξ η ξ ξ η η

∂ ∂ ∂ ∂ ∂ ∂   + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

        
2 2

2 2
y d y d

dt dt dt dt

ξ η
ξ η
∂ ∂+ +

∂ ∂
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2

2

d z

dt

′
=

2 22 2 2 2 2 2

2 2 2 2 22
z z d z d z d z d d z d

t dt dt dt dt dt dt

ξ η ξ ξ η η
ξ η ξ ξ η η

∂ ∂ ∂ ∂ ∂ ∂   + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

        
2 2

2 2
z d z d

dt dt dt dt

ξ η
ξ η
∂ ∂+ +

∂ ∂
. 

 
 In order to obtain the components of the acceleration jump on the right-hand side of 

these expressions, it will suffice to shift the terms
2

2

x

t

∂
∂

,
2

2

y

t

∂
∂

,
2

2

z

t

∂
∂

to the left-hand side.  We 

say that the segment thus obtained is normal to S by saying that it is perpendicular to the 
two directions: 
 

, ,
x y z

ξ ξ ξ
 ∂ ∂ ∂
 ∂ ∂ ∂ 

 and , ,
x y z

η η η
 ∂ ∂ ∂
 ∂ ∂ ∂ 

. 

 
This gives the two relations: 
 

(2)  

2 22 2 2

2 2 2

22 2

2

2 2

2

2

2

2 2 0,

d x d x x d x x

dt dt dt

d d x x d x x

dt dt dt

d x x d x x

dt t dt t

d x x d

dt

ξ η ξ
ξ ξ η ξ ξ

ξ η η
ξ ξ η ξ η

ξ η
ξ ξ ξ η

ξ
η ξ

    ∂ ∂ ∂ ∂ ∂ + +      ∂ ∂ ∂ ∂ ∂      

   ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂ ∂    

   ∂ ∂ ∂ ∂+ + =   ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂ + ∂ ∂ 

∑ ∑ ∑

∑ ∑

∑ ∑

∑
2 22 2

2 2

22 2

2

2 2

2

2 2 0,

x d x x

dt dt

d d x x d x x

dt dt dt

d x x d x x

dt t dt t

η ξ
η η ξ

ξ η η
η ξ η η η

ξ η
η ξ η η













   ∂ ∂ ∂ +     ∂ ∂ ∂    
    ∂ ∂ ∂ ∂  + +    ∂ ∂ ∂ ∂ ∂     


   ∂ ∂ ∂ ∂ + + =    ∂ ∂ ∂ ∂ ∂ ∂   

∑ ∑

∑ ∑

∑ ∑

 

 
in which the ∑ signs signify that one must replace x with y, and then z in the partial 
derivatives and then add the three expressions thus obtained. 
 Here, we see the introduction of the coefficients: 
 

(3)   E = 
2

x

ξ
 ∂
 ∂ 

∑ , F = 
x x

ξ η
 ∂ ∂
 ∂ ∂ 

∑ , G = 
2

x

η
 ∂
 ∂ 

∑ , 

 
of the linear element: 
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E dξ2 + 2F dξ dη + G dη2 
 
of the surface S at the instant considered.  They are the ones that appear as the 
coefficients of the second derivatives of ξ and η in the preceding equations. 
 On the other hand, their partial derivatives permit us to express the coefficients 

of
2

d

dt

ξ 
 
 

,2
d d

dt dt

ξ η
,

2
d

dt

η 
 
 

, namely: 

 

 
2

2

x x

ξ ξ
∂ ∂
∂ ∂∑ =

1

2

E

ξ
∂
∂

, 
2x x

ξ ξ η
∂ ∂
∂ ∂ ∂∑ =

1

2

E

η
∂
∂

,  
2

2

x x

ξ η
∂ ∂
∂ ∂∑ =

1

2

F G

η ξ
∂ ∂−
∂ ∂

, 

 
2

2

x x

ξ η
∂ ∂
∂ ∂∑ =

1

2

F G

η ξ
∂ ∂−
∂ ∂

, 
2x x

η ξ η
∂ ∂
∂ ∂ ∂∑ =

1

2

G

ξ
∂
∂

,  
2

2

x x

η η
∂ ∂
∂ ∂∑ =

1

2

G

η
∂
∂

. 

 

 They likewise permit us to express two of the coefficients of
d

dt

ξ
,
d

dt

η
: those of

d

dt

ξ
in 

the first equation: 

2
2x x

tξ ξ
∂ ∂
∂ ∂ ∂∑ =

E

t

∂
∂

, 

and those of 
d

dt

η
in the second one: 

2
2x x

tη η
∂ ∂
∂ ∂ ∂∑ =

G

t

∂
∂

. 

 
 However, the same is not true for the remaining two coefficients: 
 

(4)     
2x x

tξ η
∂ ∂
∂ ∂ ∂∑ ,  

2x x

tη ξ
∂ ∂
∂ ∂ ∂∑ . 

 
 Their sum may be calculated only with the aid of the coefficients (3); it is equal to 
∂F/∂t. 
 It is, moreover, evident, a priori, that one must introduce a distinct element of the 
form of the surface S in equations (2).  Indeed, the motion of a molecule( , , )x y z′ ′ ′  may be 
regarded as the resultant of the motion of S, taken in region 1 (i.e., that of the molecule 
(x, y, z)), and the motion of( , , )x y z′ ′ ′  with respect to (x, y, z).  The former of these 
motions may be regarded as the driving motion and the latter as the relative motion.  
Now, one knows that in the theory of relative motions, accelerations do not compose 
linearly as the velocities do.  If, for example, the driving motion is that of a rigid system 
then one will have to take into account the complementary Coriolis acceleration, which 
depends upon the instantaneous rotation of the system.  One must therefore attend to the 
intervention of a rotation of the type that is presently in question, and likewise the 
Coriolis theorem that we just alluded to in order to indicate that part of the rotation that 
will truly play a role.  Indeed, if the rotation in question is tangent to S, since the same is 
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true of the relative velocity, then the Coriolis acceleration (if one assumes that it is 
applicable) will give a normal complementary acceleration.  As we are only interested in 
the vanishing of the tangential components of the acceleration jump, we will need to use 
only the normal component of the rotation. 
 It is easy to see that things happen essentially this way: It suffices to decompose the 
motion of S into a pure deformation and a rotation, as we did in nos. 51 and 62.  It is true 
that instead of a spatial deformation, here we only have a deformation of the surface.  
However, in order to reduce the latter case to the former one it suffices to imagine that 
the surface S drags along its normals such that they displace like rigid lines.  One may 
then say, upon letting the symbol d denote the differentials that correspond to the 
displacements in space at the instant considered, letting u, v, w denote the components of 
the velocity of the point (x, y, z), and letting ϕ denote a quadratic form in dx, dy, dz that  
the equations of no. 62 may be written in the form: 
 

     du = 
1

2 ( )dx

ϕ∂
∂

+ q dx – r dy , 

     dv = 
1

2 ( )dy

ϕ∂
∂

+ r dx – p dy , 

     dw = 
1

2 ( )dz

ϕ∂
∂

+ p dx – q dy , 

 

(u =
x

t

∂
∂

, v =
y

t

∂
∂

, w = 
z

t

∂
∂

). 

 

 Consequently, upon taking dx, dy, dz to be proportional to
x

ξ
∂
∂

,
y

ξ
∂
∂

,
z

ξ
∂
∂

, and then 

to
x

η
∂
∂

,
y

η
∂
∂

,
z

η
∂
∂

, in turn, one will have: 

 

     
u

ξ
∂
∂

=
2x

tξ
∂

∂ ∂
=

1

2 x

ϕ

ξ

∂
 ∂∂  ∂ 

+ q
z

ξ
∂
∂

 – r
y

ξ
∂
∂

, 

     
v

ξ
∂
∂

=
2 y

tξ
∂

∂ ∂
=

1

2 y

ϕ

ξ

∂
 ∂∂  ∂ 

+ r
x

ξ
∂
∂

 – p
z

ξ
∂
∂

, 

     
w

ξ
∂
∂

=
2z

tξ
∂

∂ ∂
=

1

2 z

ϕ

ξ

∂
 ∂∂  ∂ 

+ p
y

ξ
∂
∂

 – q
x

ξ
∂
∂

, 

 
along with analogous equations in which ξ is replaced with η. 
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 Now, multiply the first three of the equations by
x

η
∂
∂

,
y

η
∂
∂

,
z

η
∂
∂

, respectively, then the 

last three by
x

ξ
∂
∂

,
y

ξ
∂
∂

,
z

ξ
∂
∂

, and subtract the sum of the latter three products from the sum 

of the former three.  The terms that depend upon the derivatives of ϕ are eliminated, and 
what remains is: 

2x x

tη ξ
∂ ∂
∂ ∂ ∂∑ −

2x x

tξ η
∂ ∂
∂ ∂ ∂∑ = 2

p q r

x y z

x y z

ξ ξ ξ

η η η

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 2 R 2EG F− , 

 
in which R denotes the normal component of the rotation (p, q, r). 
 Thus equations (2) may finally be written: 
 

(5)  

2 22 2

2 2

2 22 2

2 2

1
2 2

2

2 0,

1
2 2

2

d d E d E d d F G d
E F

dt dt dt dt dt dt

E d F d
R

t dt t dt

d d F E d G d d G d
F G

dt dt dt dt dt dt

F

ξ η ξ ξ η η
ξ η η ξ

ξ η

ξ η ξ ξ η η
ξ η ξ η

  ∂ ∂ ∂ ∂   + + + + −     ∂ ∂ ∂ ∂      

∂ ∂ + + − = ∂ ∂ 

  ∂ ∂ ∂ ∂   + + − + +     ∂ ∂ ∂ ∂      

∂+
∂

2 0.
d G d

R
t dt t dt

ξ η











 ∂ 
 + + =  ∂  

 

 
 When the surface S is fixed, along with the molecules of the region 1 that are situated 
on that surface, the two equations that we just obtained reduce to the ones that define the 
motion of a point of S in the absence of accelerating forces; this is obvious a priori since 
the latter are obtained by expressing the fact that the acceleration is normal. 
 In any case, if the motion of the medium 1 is given then that of the molecule, ,x y z′ ′ ′  
is determined by equations (5), which are of the same form as the equations of dynamics 
with two degrees of freedom, in the sense that the second derivatives of ξ and η are 
expressed by polynomials of second degree in the first derivatives (75). 
 On the other hand, since equations (5) are always soluble with respect to these second 
derivatives (since EG – F2 is always positive) and admit the solution ξ = const., η = 

                                                
 (75 )  If one substitutes a portion of the fluid with a solid wall that is animated with the same motion 
then the motion of the molecules of the fluid part will not change.  Of course, it results from this that 
equations (5) are applicable to the surface motion of a fluid that is bounded by an arbitrary wall.  This is 
true only in the case in which the motion of that wall is the one that it takes on when one assumes that the 
fluid has the same nature as the medium that it touches and is subject to the pressures of that medium. 
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const., it results from general theorems that relate to differential equations that ξ and η 
are forced to be constant if their derivatives are null at some particular arbitrary instant 
t0, i.e., if there is no point at which the velocity jumps at that instant. 
 Moreover, this will be the case either at all points of the surface S – in which case, 
there will not be an absolute discontinuity, – or only at certain points of that surface, in 
which case, the molecules of region 1 that are situated at these points will coincide with 
the corresponding molecules of region 2 for all of the subsequent motion. 
 
 

________________ 
 

 



 

NOTE III 
__ 
 

ON THE VORTICES PRODUCED BY SHOCK WAVES 
 

________ 
 
 

 In nos. 254-255 we established that the presence of second order discontinuities does 
not invalidate the classical theorems of hydrodynamics that relate to the conservation of 
the velocity potential or vortices.  We propose to investigate the effect that is produced in 
that regard when the discontinuity that is propagated is of first order.  To that effect, we 
employ the integral: 

∫ u dx + v dy + w dz , 
 
or circulation, which is taken around a closed contour C. 
 This contour being entirely arbitrary, we may 
suppose, to simplify, that during the instants when it 
traverses the wave surface it only encounters that 
surface at two points. 
 Therefore, let A, B be those two points at a 
particular instant t.  Take the initial state to be the state 
of region 1 at that instant.  Furthermore, let,A B′ ′be 
the initial positions of the points of contact at the 
instant t + dt.  These points will be determined by the 
new wave surface0S′ , which is situated at a distance θ 

dt from the first one S0. 
 In order to evaluate how much the circulation varies during the interval time dt, we 
consider separately: 
 1.  The two arcs BA,A B′ ′ (fig. 25), the former of which belongs to region 1 during the 
interval of time considered and the latter of which belongs to region 2. 
 2.  The two little arcsAA′ , B B′ that pass from one state to the other during the time dt. 
 We start with the simplest case: the one in which one does not take into account the 
Hugoniot objection, and which, consequently, the pressure and the density are related by 
Poisson’s law, or, more generally, by a relation that has the form (13) of no. 131. 
 The variation relative to the arc BA is given by the classical considerations that serve 
to establish the vorticity theorem (76).  It is equal to the product of dt by the difference of 
the values that the quantity: 

(1)     Q =
2 2 2

2

u v w dp
V

ρ
+ + + − ∫  

 

                                                
 (76 )  KIRCHHOFF,  Mécanique, 15th lesson. 

 

Fig. 25 
2 
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S0 

0S′  
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takes at the points A and B, in which V is the ponderable force potential and the term that 
we denote by – P is, as one knows, a function of ρ under our present hypotheses. 
 Likewise, the variation of the integral, when taken along the arcA B′ ′ , is the product 
of dt with the difference of the values that the quantity Q takes at the pointsB′andA′ . 
 The sum of these two terms gives (upon supposing that the contour is traversed in the 
sense ofA B BA′ ′ ): 
(2)    dt (QA – QB + BQ ′ − AQ ′ ) = dt [QA – AQ ′ + (QB − BQ ′ )] , 

 
in which one may abstract the term V in each of the differences QA – AQ ′ , QB − BQ ′ , since 

it is continuous during the passage of the wave. 
 We now occupy ourselves with the part that relates to the arcAA′ .  Let x1, y1, z1, u1, 
v1, w1 be the coordinates and the components of the velocity at a point of that arc in the 
state 1; let x2, y2, z2, u2, v2, w2 be the same quantities when considered in the state 2.  One 
will have: 

(3)     
2 1

2 1

2 1

,

,

,

u u

v v

w w

λθ
µθ
νθ

= −
 = −
 = −

 

 
and, from formulas (9) of no. 55: 
 

(4)    
2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

( ),

( ),

( ),

dx dx dx dy dz

dy dy dx dy dz

dz dz dx dy dz

λ α β γ
µ α β γ
ν α β γ

= + + +
 = + + +
 = + + +

 

 
in which λ, µ, ν, θ always denote the components of the discontinuity and the velocity of 
propagation when referred to the initial state (i.e., the state of region 1) and α, β, γ denote 
the direction cosines of the normal to the wave. 
 It then follows, upon multiplying the quantities (3) by the quantities (4), respectively, 
that: 
 
 u2 dx2 + v2 dy2 + w2 dz2 = u1 dx1 + v1 dy1 + w1 dz1 – θ (λ dx1 + µ dy1 + ν dz1) 
      + (λ u1 + µ v1 + ν w1) (α dx1 + β dy1 + γ dz1) 
      − (λ2 + µ2 + ν2) θ (α dx1 + β dy1 + γ dz1) . 
 
 Since dt is regarded as infinitely small the integrals that are taken along the arcAA′ , 
for example, reduce to the corresponding differentials.  The differential (α dx1 + β dy1 + γ 
dz1, which is the normal projection of the arcAA′ , is nothing but θ dt, the distance 
between the two wave surfaces in the initial state.  The expression λ u1 + µ v1 + ν w1 
reduces to the preceding one if we replace λ, µ, ν by their values lα, lβ, lγ (in which l is 
the magnitude of the discontinuity).  It will be equal to lθ dt, whereas λ u1 + µ v1 + ν w1 
will represent 1nlv (in which, 1nv denotes, as in no. 103, the normal component of the 

velocity in state 1).  The variation of the integral relative toAA′ will therefore be: 
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u1 dx1 + v1 dy1 + w1 dz1 – (u2 dx2 + v2 dy2 + w2 dz2) 
= l θ {( l + 1) θ  − 1nv } dt , 

  
 The integral relative toBB′ will be an analogous expression, but taken with the 
opposite sign. 
 However, in expression (2) we may also evaluate the difference of the values of 

2 2 2

2

u v w+ +
at the points A andA′  (or at the points B andB′ ) with the aid of formulas (3).  

One must therefore have, as in no. 257: 
 

2 2 2

2

u v w + +
 
 

= 
2 2

1 2n

l
l v

θθ − . 

 
 The total variation of the circulation, i.e., the sum of the expressions (2) and (5), will 
then be equal to the product of dt with the quantity: 
 

(6)     P2 – P1 + lθ2 1
2

l + 
 

, 

 
relative to the point A, minus the analogous quantity relative to the point B. 
 Now use the formulas: 

     l = 1

2

ρ
ρ

− 1, 

     l = −
2

1

1

ρ θ
(p2 − p1), 

 
of no. 256.  The quantity (6) becomes: 
 

(7)    Π = P2 − P1 − 2 1

1 2

1 1

2

p p

ρ ρ
 − + 
 

. 

 
 Under these conditions, it is clear that whenever the contour C completely passes 
through region 1 the circulation along the contour will be augmented by the curvilinear 
integral: 

(8)      ∫ Π dt , 
 
in which t represents the instant at which an arbitrary point of the contour traverses the 
wave, and the corresponding quantity Π is calculated at the moment of this passage. 
 Suppose that the contour C is very small and very close to a particular point O of the 
surface S.  Refer it to three rectangular axes Oξ, Oη, Oζ, the first two of which are 
tangent to S at O and the third of which is normal and directed towards region 2.  t will 
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then be a function of ξ, η, ζ, and the same will be true of Π.  The integral (8) may then be 
written: 

(9)     
t t t

d d dξ η ζ
ξ η ζ

 ∂ ∂ ∂Π + + ∂ ∂ ∂ 
∫ . 

 
 One knows that in order to obtain the components of vorticity it suffices to apply 
Stokes’s theorem to the circulation along a closed contour in such a manner that it then 
takes the form: 

(10)   
Σ∫∫ [p cos(n, ξ) + q cos(n, η) + r cos(n, ζ)] dΣ 

 
(in which Σ is an arbitrary surface that contains the contour and is bounded by the 
contour, and n is the normal to an arbitrary point of Σ); the quantities p, q, r will then be 
the desired components.  On will thus obtain additional components p. q, r  of vorticity 
that are produced by the passage of the wave upon making the same calculations on the 
integral (9); one thus obtains: 
 

    p =
t t

η ζ ζ η
   ∂ ∂ ∂ ∂Π − Π   ∂ ∂ ∂ ∂   

=
D( , )

D( , )

t

η ζ
Π

 

    q =
D( , )

D( , )

t

ζ ξ
Π

 

    r  =
D( , )

D( , )

t

ξ η
Π

. 

  
 Finally, if we take into account the fact that this contour is infinitely close to the 

origin then we must make
t

ξ
∂
∂

=
t

η
∂
∂

= 0 (since the ξ and η axes are tangent to Σ) 

and
t

ζ
∂
∂

=
1

θ
.  Hence, we finally have the desired formulas: 

 

(11)    

1

1

0.

θ η

θ ξ

∂Π = ∂


∂Π = − ∂
 =



p

q

r

 

 
 ξ and η may be considered to be the curvilinear coordinates on the surface S, where 
an arbitrary point that is close to O may be substituted for its projection onto the tangent 
plane at O.  The values of p and q then depend uniquely upon the distribution of values 
of Π on S.  It then results from formulas (11) that a shock wave always creates vortices 
by its passage if the quantity Π is not constant on the wave at each instant. 
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 It clear, moreover, that Π will not be constant on any randomly chosen wave, at least 
when the relationship between pressure and density is not such that this quantity is 
identically null.  However, this will be true, as is easy to assure, only in the case that we 
spoke of in no. 144, where 1/ρ is a linear function of p. 
 
 In the foregoing, we have assumed the exactness of Poisson’s law.  If one takes the 
viewpoint of Hugoniot then the question loses all interest because the vorticity, after 
having been modified at the moment of passage of the wave, will continue to be altered 
in the continuous motion that follows.  In fact, the quantity k that figures in the relation: 
 

p = h ρm 
 
will become variable after the discontinuity, the quantity dp/ρ will cease to be an exact 
differential, and the general theory of vortices will cease to be applicable. 
 It is, moreover, also easy to calculate the instantaneous variation of the vorticity in 
this case.  One must nevertheless observe that this instantaneous variation must be 
combined with another continuous one.  If we thus consider, as always, our contour C as 
taking a certain time τ  to traverse the wave (which is, moreover, small, along with the 
dimensions of C) then the variation of the circulation along C that will be produced 
during the time τ will be the combined effect of the two cases that we just spoke of, and 
not just that of the instantaneous variation. 
 However, it is easy to discern the term that is provided by the latter, and which is due 
to the continuous variation.  Indeed, the latter is of order Στ, where Σ is the area that is 
bounded by the contour C.  It will thus be infinitely small with respect to the 
instantaneous variation, which has the order of Σ. 
 In the expression ΠA – ΠB, which has always given us the elementary variation of the 
circulation, up to a factor dt, only one category of terms must be modified: the terms in P.  
Their totality (P1 − P2)A −  (P2 − P1)B must obviously be replaced by the difference of the 
values that one obtains by the integral ∫ dp/ρ when one takes it from A to B on the part of 
the contour C that is situated in the state 1 or the part that is situated in the state 2. 
 Let the surface Σ be bounded by the contour C, and suppose, to fix ideas, that it is 
constantly composed of the same molecules.  Let σ be the line BA, along which Σ cuts the 
wave surface S at the time t.  We replace the difference of the two integrals that we just 
spoke of by the expression: 

(12)     2 1

2 1

dp dp
σ ρ ρ
 

− 
 
∫ . 

 
 Having done this, we alter the difference in question by a quantity of order Σ.  When 
this quantity is used in the integral over t during the time interval τ the result will be of 
order Στ, which must be negligible, from what we said above. 
 Let s be a parameter that corresponds to a variable point on σ and increases from B to 
A, for example, the arc length of σ when measured from the point B.  We may take as 
curvilinear coordinates on Σ the instant t when an arbitrary molecule of that surface is 
reached by the wave and the value of s that is determined by the position of that molecule 
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on the corresponding line σ.  From the hypotheses that were made on the position of the 
ξη-plane, one will have, approximately: 
 

(13)     
s

ζ∂
∂

= 0 , 
t

ζ∂
∂

= 0, 

 
and this will be true at any point of S and any instant t1 that is later, but by a sufficiently 
small quantity, than the time interval t (and consequently the area Σ, which is completely 
situated in region 1, will be infinitely close to the wave). 
 On the other hand, the integral of the quantity (12), when taken over t, is obviously: 
 

(14)    2 1

2 1

1 1p p
ds dt

s sρ ρΣ

 ∂ ∂− ∂ ∂ 
∫∫ . 

 
 Since p1 and p2 are determined for each molecule (at the moment of passage across 
the wave, as before) and are consequently functions of the coordinates ξ, η, ζ of that 

molecule at the instant t1, one will have (since
s

ζ∂
∂

= 0): 

 

ip

s

∂
∂

= i ip p

s s

ξ η
ξ η

∂ ∂∂ ∂+
∂ ∂ ∂ ∂

 (i = 1, 2). 

 
 If we substitute these values in the integral (14) then it will suffice to employ the 
relations: 

s

ξ∂
∂

ds dt = − 
d

θ
Σ

cos(n, η),  
s

η∂
∂

ds dt = − 
d

θ
Σ

cos(n, ξ), 

 
 
which result from equations (13), in order to put them into the form (10), in which the 

coefficient cos(n, ξ) is 2 1

2 1

1 1 1p p

θ ρ η ρ η
 ∂ ∂− ∂ ∂ 

and cos(n, ζ) is − 2 1

2 1

1 1 1p p

θ ρ ξ ρ ξ
 ∂ ∂− ∂ ∂ 

.  One 

thus has: 

   p = 2 1 2 1

2 1 1 2

1 1 1 1 1

2

p p p p

θ ρ η ρ η η ρ ρ
   ∂ ∂ −∂ − − +   ∂ ∂ ∂     

 

   q = 2 1 2 1

2 1 1 2

1 1 1 1 1

2

p p p p

θ ρ ξ ρ ξ ξ ρ ρ
   ∂ ∂ −∂ − − − +   ∂ ∂ ∂     

 

   r  = 0 , 
 
in which one must suppose that p1, p2, ρ1, and ρ2 are related by the dynamical adiabatic 
relation (13) of no. 257.  This relation will, moreover, permit us to put the preceding 
formulas into the form: 
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   p = 1 12 1
2 1

1

( 1)
m mk k

m
ρ ρ

θ η η
− − ∂ ∂− − − ∂ ∂ 

 

      = 2 1
2 1

log log

( 1)

k kR
T T

m θ η η
 ∂ ∂− − − ∂ ∂ 

 

 

   q = 1 12 1
2 1

1

( 1)
m mk k

m
ρ ρ

θ ξ ξ
− − ∂ ∂− − ∂ ∂ 

 

      = 2 1
2 1

log log

( 1)

k kR
T T

m θ ξ ξ
 ∂ ∂− − ∂ ∂ 

 

 
in which T1, T2 are the two absolute temperatures, as long as one has: 
 

k1 = 1

1
m

p

ρ
, k2 = 2

2
m

p

ρ
, 

 
and R  denotes the constant that figures in the right-hand side of equation (5) in no. 125. 
 

__________ 
 
 



 

NOTE IV 
__ 
 

ON REFLECTION IN THE CASE OF A FIXED PISTON 
 

_________ 
 
 

 We saw in chapter IV (no. 180) that if we desire to take into account both the pre-
existing motion of the gas (this motion being arbitrary) and the motion of the piston one 
is led to a problem that is very different from the one that corresponds to the case in 
which only the initial motion is involved, and which has a much greater degree of 
difficulty, thanks to the circumstance that one must determine a solution to the Euler 
equation (equation (46), no. 175) in terms of givens that relate to a an unknown line in 
the ξη-plane. 
 Meanwhile, there is a particular case that is the exception to this, and in which the 
problem is solved without difficulty: the case in which the piston is immobile (or, more 
generally, animated with a uniform motion). 
 Indeed, one will then have that the quantity u = (ξ + η)/2 is null (or constant) at the 
extremity of the tube (for example, a = 0). 
 On the other hand, when u is constant and x is only constant initially one always has x 
= ut. 
 Under these conditions, the quantity z that is defined by formula (30) of no. 170 will 
be null. 
 We thus have to determine a solution z to the Euler equation under the following 
conditions: 
 1.  x will be null for ξ + η = 0 (or for ξ + η equal to a given constant 2v). 
 2.  The values of z will be known on a certain characteristic η = const., namely, the 
wave for which the desired motion agrees with the given initial motion, namely: 
 

η = η0 . 
 
 We said above (chap. VII) that such a problem is possible and well-defined provided 
that the preceding givens agree at the point of the ξη-plane that is common to the 
preceding two lines, i.e., when one gives η the value η0 and gives ξ the value ξ0 = 2v – 
η0. 
 In order to find the solution, trace out the second characteristic ξ = ξ0 that passes 
through the same point, and which is nothing but the symmetric image of the first one 
with respect to the straight line ∆ that is represented by the equation ξ + η = 2v.  Consider 
the solution z of the Euler equation that takes the given values for η = η0 and values that 
are equal, but with opposite signs, to the latter when ξ = ξ0 .  By this, I intend to imply 
that z will have a value at the point (ξ0, η) that is equal and opposite in sign to the one 
that it takes at the point (2v – η, η0) that is symmetric to the preceding one with respect to 
∆. 
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 From what we saw in no. 172, if we therefore give z the values for ξ = ξ0, on the one 
hand, and, on the other, for η = η0, then we determine an integral of the Euler equation. 
 Now, it is clear that this integral takes values that are equal and of opposite sign at 
two arbitrary symmetric points, with respect to ∆, i.e., whose coordinates ξ, η; ,ξ η′ ′ are 
coupled by the relations: 

(1)     
2 ,

2 .

v

v

ξ η
η ξ

′ = −
 ′ = −

 

 
 Indeed, the transformation thus defined does not change the partial differential 
equation, but changes the signs of the initial givens.  Since they change sign when one 
passes from one side of ∆ to the other, the integral z is null on ∆.  They represent the 
desired solution, the solution that one determines by formula (40) of no. 172. 
 It is easy to exhibit the phenomenon of reflection in the calculations that we just 
carried out.  Indeed, let,u ω′ ′ be the values that are taken by u and ω by means of the 

formulas (27) of no. 170, when one gives ξ the valueξ ′and gives η the value η′ .  The 
transformation (1) that we have written will, for some instant, correspond to: 
 

u′ = 2v – u, ω ′ = ω . 
 

 Since the new value of z is z′ = − z, the new values of a =
z

ω
∂
∂

, t =
z

u

∂
∂

, and of x = ωa 

+ ut – z will be: 
 
(2)     a′ = − a ,  t′ = t  
(3)      ω ′ = 2vt – x . 
 
 Therefore, if the initial state of the given fluid is assumed to correspond to a ≥ 0 then 
we consider a completely similar fluid mass to fill the region a ≤ 0, and we impress upon 
this second medium a motion such that by means of relations (2) one obtains (3), and the 
totality of the real fluid and the fictitious one will form a single mass whose motion will 
satisfy the partial differential equation.  This motion, which is calculated by starting with 
the initial state of the given fluid, as was explained in no. 179, will itself satisfy the 
condition x= vt for a = 0, in such a way that we may suppress the piston under these 
conditions. 
 Now, each molecule of the fictitious fluid is, at an arbitrary instant, symmetric to the 
corresponding molecule of the real fluid with respect to the barrier. 
 
 Of course, the solution thus obtained may be subject to the difficulty that was pointed 
out at the end of no. 179, and gives rise to the singularities that were considered in nos. 
194, and following. 
 

______ 
 



 

Translator’s notes 
 
 

 Since this book is now over one hundred years old, it is more necessary than usual to 
justify why it would continue to be of interest in the current era, especially in light of how 
much the mathematics, physics, and engineering that pertains to its subject matter has 
advanced, if not exploded, since it was written.  Therefore, in these notes concerning the 
translation, we shall first define the historical context of the book’s original conception 
and then point out the continuing influence that it had on the subsequent advances in the 
study of waves, in both the physical sense of that term and the mathematical one.  After 
that, some observations will be made about the material in the individual chapters that 
might make that material more meaningful to modern readers. 
 
 
 § 1.  Biographical sketch.  Jacques Hadamard began his long and prolific life on 
December 5 of 1865 in the town of Versailles outside of Paris.  His father, Amédeé, was 
a schoolteacher at the local lycée whose career as a schoolteacher was not entirely stable, 
as the family did not stay in Versailles, but moved several times during Jacques’s 
childhood. 
 Jacques’s mother, Claire-Marie-Jeanne, supplemented the income of Amédeé by 
teaching piano.  Although she was somewhat infamous amongst her students for her 
strictness – indeed, some students were reputed to have been seen weeping as they 
ascended the stairs to her apartment – her students did nonetheless include such 
celebrated musical figures as the composer Paul Dukas. 
 Jacques got most of his early schooling at the Lycée Louis-le-Grand in Paris, where 
his father eventually taught after Versailles.  Interestingly, despite Jacque’s distinctions in 
adulthood as a world-renowned mathematician, in his childhood he apparently detested 
his arithmetic studies 77.  Indeed, one of his mathematics teachers later on, the celebrated 
mathematician Émile Picard, admitted that as a youth he himself only did his geometry 
homework to avoid punishment!  Nevertheless, young Jacques must have eventually 
learned to focus on his studies, since he generally placed at or near the top of his school 
in his tests in numerous subjects, and was actually two years ahead of his other 
classmates when he graduated. 
 As a result of this superior scholasticism, he was able to get accepted at both the 
prestigious and highly competitive École Polytéchnique, which was more oriented 
towards educating engineers, and the École Normale Supérieure, which provided a more 
philosophically-inclined education for future professors and other teachers.  He chose to 
enter the later institution, along with such distinguished fellow students as Paul Painlevé, 
Ernest Vessiot, and Eugene Cosserat.  His teachers included some of the legendary 
figures of French mathematics, such as Charles Hermite, Camille Jordan, Pierre Bonnet, 
Gaston Darboux, Henri Poincaré, Paul Appell, Pierre Duhem, Edouard Goursat, and the 
aforementioned Picard.  Hadamard completed a doctoral thesis entitled Éssai sur l’étude 

                                                
 77 However, it is somewhat dubious that his daughter Jacqueline was being completely serious when she 
later insisted that he never learned to count past four (“…after that, there was just n…”)!  
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des fonctions données par leur developpement de Taylor in 1892 and defended it before a 
committee that was composed of Hermite, Picard, and Jules Joubert. 
 In that same year, he married Louise-Anne Trénel, and stayed married to her for the 
remaining sixty-eight years of her life until her death on July 6 of 1960.  Her contribution 
to his life was inestimable, since this otherwise prolific contributor to the literature of 
mathematics was nonetheless hopeless at putting his thoughts down on paper and would 
dictate his research to Louise, while replacing all of the equations with the generic term 
“poum,” which he would fill in later.  Moreover, his legendary absent-mindedness 
included the fact that he was equally hopeless at dressing himself, and could not tie a 
proper knot in his tie. 
 Jacques and Louise had five children, in the form of three sons, Pierre, Étienne, and 
Mathieu, and two daughters, Cécile and Jacqueline.  However, Hadamard’s family life 
was touched by tragedy during both World Wars, the first of which took the lives of 
Pierre and Étienne, while the Second World War took that of Mathieu. 
 Hadamard’s career as a college professor began with various short-lived tutoring 
appointments, and he mostly taught at the university of Bordeaux until 1897, when he 
began with the faculty at the Collège de France, which is where he taught when this book 
was written.  Later on, he accepted a position at the École Polytéchnique in 1912, and in 
that same year was inducted as a member of the prestigious French Académie des 
Sciences, when the death of Poincaré created an opening for a new member. 
 At a personal level, Hadamard had a special talent for languages, and even felt 
considerable pride in the fact that after teaching a seminar at a Spanish university for a 
semester, he had succeeded in giving his last lecture in Spanish, having learned enough of 
that language over the course of the seminar.  Spending his childhood in a musical 
environment translated into the fact that as an adult he not only enjoyed playing the 
violin, but also had an informal home orchestra that sometimes included his colleagues, 
such as Einstein.  One of Hadamard’s other academic passions besides mathematics was 
botany, and he was known to have inadvertently abandoned one of his own children on a 
glacier while absorbed in the collection of specimens.  For some years, he was also quite 
passionate about the politics of the Dreyfus affair. 
 In addition to Einstein, Hadamard’s colleagues and acquaintances included not only 
mathematicians and physicists, but also philosophers and political leaders from all over 
the world.  The mathematicians represented some of the most distinguished figures in 
their respective countries, and included the Russians, Andrei Kolmogorov, Alexander 
Liapunov, Vladimir Steklov, and Pavel Alexandrov, the Italians Francesco Tricomi and 
Vito Volterra, the Germans David Hilbert and Felix Klein, the Americans Norbert 
Wiener and George Birkhoff, the Englishman G. H. Hardy, and the Swede Gösta Mittag-
Leffler.  Along with the French mathematicians mentioned in the context of Hadamard’s 
education, he was also acquainted with Henri Lebesgue and André Weil, as well as the 
physicist Paul Langevin.  His non-mathematical associations included the French poet 
Paul Valéry, the French sociologist Émile Durkheim, and he was once introduced to 
prime minister Pandit Jawaharlal Nehru of India. 
 Hadamard’s influence on the mathematics and mathematicians that followed him was 
incommensurable.  For instance, his first student was Maurice Frechet, who eventually 
went on to be one of the founders of functional analysis.  The mathematician Laurent 
Schwartz, who did much to define the theory of distributions, conceded his debt to the 
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influence of Hadamard, as did Émile Borel, who had been a student at the École 
Polytechnique some five years behind Hadamard. 
 The methods of the present work by Hadamard were a seminal influence on much of 
the work that was done on wave theory later on, since they served to define the most 
useful way of characterizing a wave mathematically – namely, as a propagating 
discontinuity in the kinematical variables at some level of differentiability − as well as 
showing that such discontinuities could propagate only along bicharacteristic curves in 
characteristic hypersurfaces.  The provenance of many subsequent publications on the 
subject of waves, especially those of the French school of partial differential equations, 
includes this work either explicitly or implicitly.  We shall note some of those 
publications in the process of discussing the material contained in this book. 
 The evolution of Hadamard as a mathematician can be partially seen from a list of the 
books that he published: 
 
 1898 Leçons de géométrie élémentaire: géométrie plane. 
 1901 La série de Taylor et son prolongement analytique 
  Leçons de géométrie élémentaire: géométrie dans l’espace 
 1903 Leçons sur la propagation des ondes et les équations de l’ 

hydrodynamique 
 1910 Leçons sur le calcul des variations 
 1922 Lectures on Cauchy’s Problem in Linear Partial Differential Equations 
 1926 Cours d’analyse de l’École Polytechnique (v. 1) 
 1930 Cours d’analyse de l’École Polytechnique (v. 2) 
 1945 The Psychology of Invention in the Mathematics Field 
 1965 La théorie des équations aux dérivées partielles (published posthumously) 
 
 Hadamard published over four hundred research papers on such diverse mathematical 
topics as analytic function theory, number theory, geometry, the calculus of variations, 
and partial differential equations, as well as on topics in physics such as mechanics, 
hydrodynamics, elasticity, and waves.  Consequently, he was sometimes characterized as 
a “universal mathematician,” in the sense of a mathematician who could make 
contributions to all of the branches of mathematics that were important in his era; indeed, 
the period that followed the turn of the Nineteenth Century was probably the last point in 
history when such an achievement was still humanly possible.  However, one can see that 
the study of partial differential equations occupied the focal position in his research for 
more than sixty years. 
 Jacques Hadamard died on October 17 of 1963, two months short of his ninety-eighth 
birthday and three years after the passing of his wife.  Strangely, for all of his prolific 
contributions, international renown, celebrity acquaintances, and honorary distinctions, 
the family tomb at Père Lachaise cemetery in Paris does not include an inscription for his 
name.  Similarly, no street in the Latin Quarter bears his name, and it was more than 
thirty years after his death before a biography appeared.  Perhaps the most lasting 
monument to his place in the history of mathematics will have to be the legacy of his 
contributions to the foundations of modern mathematics by way of publications such as 
the present one. 
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 § 2.  The writing of this book.  As one can see from the timeline of Hadamard’s 
books that was given above, the publication of this work came at a rather early point in 
his mathematical career, certainly as far as his subsequent work on partial differential 
equations was concerned. 
 The inspiration for the study of the title topic itself came from lectures of Pierre 
Duhem on hydrodynamics, elasticity, and acoustics that were given during the years 1890 
and 1891 while Hadamard was at the Collège de France.  In those lectures, Hadamard 
was exposed to the fundamental work that had been done before by Riemann, Christoffel, 
Rankine, and Hugoniot on the propagation of shocks in elastic media, such as 
compressible gases. 
 Consequently, Hadamard gave a series of lectures on the mathematical aspects of the 
subject during the academic years from 1898 to 1900.  A preliminary report on this work 
“Sur la propagation des ondes” was published in the Bulletin de la Société Matematique 
de France in 1901 prior to the publication of this book. 
 Now, shock waves pertain to discontinuities in the velocity of a wave across a 
surface. Hence, it is easy to see how this concept would suggest the generalization to 
discontinuities in other derivatives across surfaces, such as discontinuities in the 
acceleration, and this is one of the innovations that this book introduced. 
 The fact that such kinematical discontinuities propagate along bicharacteristics was 
established in the last chapter of this book, which Hadamard later regarded as something 
of a preliminary sketch of the more mathematically rigorous treatment that he gave the 
subject in his subsequent Yale lectures on the Cauchy problem in 1922.  Hence, one can 
regard that later, primarily analytical, work on partial differential equations as a 
complementary continuation to the present work, and not as superseding replacement, 
since the present book is more concerned with establishing the foundations of wave 
theory in continuum mechanics, not analysis.  As Hadamard points out in the Preface, his 
main intention was “to study how boundary conditions influence the motion of a fluid.” 
 Another historical aspect of this book that is not entirely self-evident from reading it 
is the fact that before the book was written the mathematical study of partial differential 
equations had not yet matured into a particularly organized, rigorous state.  Rather, it 
existed primarily in the form of descriptions of the methods of solution for various 
particular partial differential equations that grew out of specific problems in physics that 
seemed, at the time, otherwise unrelated.  Hence, this work also served to address for the 
first time the problem of developing the theory of partial differential equations more 
generally as a problem in mathematical analysis, as well as a set of problems in applied 
mathematics. 
 In his 1960 work on the classical field theories, that most influential figure of modern 
continuum mechanics, Clifford Truesdell, listed what he considered to be the principal 
achievements of Hadamard with the publication of this book: 
 1. The basic lemma that distinguishes between the compatibility conditions for a 
kinematical variable at a discontinuity surface in general and the compatibility conditions 
for particular cases. 
 2. The recognition that there is more than one type of compatibility, such as 
geometric, kinematic, dynamic, energetic, and material (although this book only 
addresses the first two). 
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 3. The classification of kinematical singularity surfaces and the construction of a 
general theory of such things. 
 4. The calculation of exact wave speeds in the case of finite elastic strains, when 
previously they were calculated only for infinitesimal strains.  Moreover, he proved that 
they are all real and non-vanishing iff the equations of equilibrium for the strain are 
“strongly elliptic” partial differential equations (in a sense that we will clarify later). 
 5. The proof that “weakly singular” surfaces in gas dynamics still preserve the 
circulation of the velocity vector field.  Consequently, such waves do not invalidate the 
theorem of Lagrange and Cauchy on velocity potentials. 
 6. The proof that an oblique shock wave in a gas generates vortices. 
 7. The first rigorous definition and analysis of stability in the context of elastic 
strains, along with the proof that when an elastic medium is in a state of stable 
equilibrium the inequality that defines strong ellipticity must still hold, except that one 
must replace the “≥” with a “>”. 
 
 
 § 3.  Notes on Chapter I.  It is almost a tradition of the pure mathematics community 
that the introductory chapter of any research monograph is composed of specialized 
results that are not used until much later in the study, and this book is no exception to that 
rule.  Indeed, there is no loss of comprehension in beginning one’s reading of the work 
with Chapter II, since the theorems of chapter I are used only occasionally in the 
remainder of the book. 
 The theorems of this chapter are primarily concerned with the Neumann problem for 
the Laplace equation, so their relationship with the problems of wave motion is somewhat 
peripheral and largely based in the consideration of standing-wave solutions to wave 
equations. 
 In a paper that he wrote in 1902, Hadamard introduced the concept of a well-posed 
boundary-value of Cauchy problem for a partial differential equation, by requiring that a 
well-posed problem admit a unique solution that depends continuously upon the 
boundary or Cauchy data.  The problems concerning elliptic partial differential equations 
that are well-posed in the Hadamard sense are generally boundary-value problems. 
 The Dirichlet problem involves finding a solution φ to the Laplace equation: 
 

0 = ∆φ ≡
2

ij

i jx x
δ ∂

∂ ∂
, i, j = 1, …, n 

 

in a region V ⊂ Rn with boundary ∂V when one is given the values of that solution on the 

boundary.  By comparison, the Neumann problem involves being given the values of the 
normal derivative of the solution on the boundary.  When the boundary in question has 
more than one connected component it is also possible to define mixed – or Robin – 
boundary-value problems. 
 The Dirichlet problem is often the most natural problem to pose in the context of 
electrostatics, since one can measure electric potential differences directly in the 
laboratory.  However, in hydrodynamics, the solution that one is often seeking takes the 
form of a velocity potential, so since it is more natural to know the value of its gradient − 
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namely, the velocity vector field – on a boundary, one sees how the Neumann problem 
might be relevant to the subject of the present tome. 
 Furthermore, as long as ∂V divides the space into two distinct components that can 
identified as an “interior” region and an “exterior” one, one can distinguish between the 
interior boundary-value problem and the exterior problem.  That is, one proposes to find 
a function that is defined on the chosen region that satisfies the given partial differential 
equation and agrees with a given function that is defined on the boundary. 
 A key result in the study of boundary-value problems for the Laplace equations is 
Green’s formula: 

( )
V

u v v u dV∆ − ∆∫ = ( )n nV
u v v u dS

∂
−∫ , 

 
which is valid for any pair of C2 functions u and v on V.  In this expression, un = ni ∂u / 
∂xi and vn = ni ∂v / ∂xi represent the directional derivatives of the functions u and v in the 
direction of the unit normal n to the boundary hypersurface. 
 One then looks for a fundamental solution γ(xi, yi) to the Laplace equation, which then 
satisfies, by definition: 

∆γ(x, y) = − δ(x – y). 
 
We point out that since the Dirac “delta function” δ(x – y) is not really a function, but the 
mythical kernel of the evaluation functional, the only way that this equation is rigorously 
defined is if both γ and δ are defined as two-point distributions.  However, since this 
rapidly leads away from the presentation that is given in the book under discussion, we 
refer the curious to more modern literature on boundary-value problems, such as 
Stakgold [1967]. 
 Hence, if one assumes that u satisfies the Poisson equation on V – i.e., ∆u = ρ – and v 
= γ is a fundamental solution then Green’s formula takes the form: 
 

u(x) = − ( , ) ( )
V

x y y dVγ ρ∫ − ( , )
( ) yV

y

x y
u y d S

n

γ
∂

∂
∂∫ + ( , ) ( )n yV

x y u y d Sγ
∂∫ . 

 
 For a harmonic function u, the source function ρ vanishes, along with the first 
integral.  The second integral is referred to as a single-layer surface potential, while the 
final one is referred to as a double-layer surface potential. 
 Since one generally cannot specify both u and un on the same boundary components, 
one then makes one or the other integral vanish by specifying the boundary behavior of 
the fundamental solution γ.  In the case of the Dirichlet problem, one is given u on ∂V so 
in order to make the integral involving un vanish, one specifies that γ must vanish on ∂V.  
The resulting fundamental solution, which is denoted by G(x, y), is then called the Green 
function for this boundary-value problem.  The solution to the Dirchlet problem is then 
given by: 

u(x) = − ( , )
( ) yV

y

G x y
u y d S

n∂

∂
∂∫ . 
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 By comparison, for the Neumann problem one is given un on ∂V so one needs to 
make the other integral vanish, and one does this by specifying that ∂γ / ∂ny must vanish 
on the boundary.  Such a fundamental solution is then called a Neumann function, which 
one denotes by N(x, y), and the solution to the Neumann problem then becomes: 
 

u(x) =  ( , ) ( )n yV
N x y u y d S

∂∫ . 

 
 Note that finding a fundamental solution still amounts to a boundary-value problem in 
the Laplace equation, so in a sense there is only so much of a simplification.  However, it 
turns out that the coefficients gij of the generalized Laplacian operator gij ∂2/∂xi∂xj are 
intimately based in the geometry of the space since they are the inverse matrices to the 
components of the metric tensor field g = gij dxi dxj on it.  Indeed, the fundamental 
solutions that one usually encounters in potential theory (such as Duff [1950]) are usually 
constructed from the geodesic distance function s(x, y) that is associated with that metric, 
at least locally.  That is, s(x, y) equals the minimum length of the geodesics (in the sense 
of paths whose velocity vector fields are parallel translated) that connect x to y.  Hence, 
since not every pair of points in a more general Riemannian manifold can be connected 
by at least one geodesic, one sees why such a construction is usually only local in scope. 
 In the case of electrostatics or Newtonian gravitostatics in three spatial dimensions, 
the fundamental solution is proportional to 1/r(x, y), where r(x, y) = [(x1 – y1)2 + (x2 – y2)2 
+(x3 – y3)2]1/2, which represents the potential at y due to a unit charge or mass at x, when 
one ignores the constitutive properties of the medium. 
 
 
 § 4.  Notes on Chapter II.  The contents of this chapter constitute the fundamental 
basis for the remainder of the topics presented in the book, namely, the mathematical and 
physical nature of the compatibility conditions that must be satisfied by a wave 
propagating in an elastic medium when that wave is defined by a jump discontinuity in 
some kinematical derivative across a discontinuity hypersurface. 
 Section 1 of the chapter begins with a brief summary of the kinematics of 
deformation in continuum mechanics.  For the benefit of modern readers, we now present 
the form that such a summary might take nowadays. 
 One begins by mathematical characterizing two elementary physical notions: an 
(extended material) object O and a medium M.  Although there are many possible ways 

of axiomatizing both concepts, the one that we shall choose is that of making the medium 

M take the form of the vector space78 Rn, and the object O take the form of a 

differentiable (non-singular) cubic k-chain in M.  That is, O is composed of a finite 

number N of embedded k-dimensional cubes σi: I
k → M, (a1, …, ak) ֏ σi(a

1, …, ak), i = 
1, …, N that are “attached” to each other along their boundaries in a specified way.   In 
particular, we are assuming that the maps σi are one-to-one, differentiable, and have a 
                                                
 78 Although this vector space could be generalized to a differentiable manifold, since the material in the 
book under discussion is primarily non-relativistic and Euclidian in character, it would be something of a 
needless distraction to pursue that direction of inquiry in the present context.  However, we shall still make 
occasional remarks about the use of manifold techniques more generally in what follows. 
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differentiable inverse when restricted to their images.  For practical purposes, the values 
of k will usually be 1, 2, and 3, which corresponds to filaments, surfaces, and volumes.  
Rather than go into the details of the aforementioned construction, from now on, we will 
simply confine our attention to the individual k-cubes in M; i.e., N = 1.  When the 
extended material object in question is a fluid, such as a stream in a given channel, the k-
cubes can be thought of as “fluid cells.” 
 In point mechanics, the object in question would be the embedding of a single point 
in M in the static case and a time interval I = [0, 1] in the dynamic case. 

 Since we are restricting ourselves to M = Rn, with n = 2, 3, or 4, we can express the 

embedding of a k-cube as a set of functional equations of the form: 
 

xi = xi(a1, …, ak),  i = 1, …, n, 
 
in which the functions are continuously differentiable to some specified order. 
 We shall regard each individual embedding of an object O in M as a state of the 

object.  In order to define a finite deformation of the object, we then need two states: an 
initial state O0 and a final state O1, which we then characterize by the embeddings 

1
0( , , )i kx a a⋯ and 1

1( , , )i kx a a⋯ , respectively.  Often, the initial state takes the form of a 

“natural” state, which might be characterized by a state of stress equilibrium, but as long 
as one deals only with changes in physical properties between the initial and final states, 
it is not always necessary to start with the equilibrium state. 
 A finite deformation of the object O0 to the object O1 is then a diffeomorphism f: O0 

→ O1, 0
ix ֏ 1

1 0 0( , )i nx x x⋯ , i = 1, …, n.  That is, f is invertible, continuously differentiable, 

and has a continuously differentiable inverse. 
 Since we already have the 0

ix  expressed as functions of the a1, …, ak, we can also 

characterize the deformed coordinates1
ix as functions of the form 1

1( , , )i kx a a⋯ .  One can 

then distinguish two different ways of characterizing the deformation: the Lagrangian 
picture, which regards the coordinates 0

ix  as the fundamental ones, and the Eulerian 

picture, which regards the coordinates 1
ix  as fundamental.  The Lagrangian picture is 

more convenient in solid mechanics, where one can speak of the initial state as being the 
“natural” state of the object, i.e., the state in which no external forces or moments are 
present, while the Eulerian picture is more convenient to fluid mechanics, where the 
natural state is not as well-defined, so one essentially uses the present state as a 
reference. 
 As long as the manifold M is a vector space, one can define the displacement vector 
field that is defined by the deformation f to be the following vector field on O0: 

 

0( )i ju x = 1 0 0( )i j ix x x− . 

 
One can also think of it as a vector field parameterized by the reference coordinates aI, I 
= 1, …, k of the object itself: 
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1( , , )i ku a a⋯ = 1 1
1 0( , , ) ( , , )i k i kx a a x a a−⋯ ⋯ . 

 
 Corresponding to the two formulations, one can consider two sets of partial 
derivatives for the displacement vector field, namely: 
 

i

p

u

a

∂
∂

= 01
ii

p p

xx

a a

∂∂ −
∂ ∂

, 

and: 

0

i

j

u

x

∂
∂

= 1

0

i
i
jj

x

x
δ∂ −

∂
, 

 
which refer to the differential of the embedding and the differential of the 
diffeomorphism, respectively.  The first set of partial derivatives has the advantage that it 
is more intrinsic to the way that the deformation appears to the points of O, but the 

second set has the advantage that it allows one to express the differential of the 
deformation in the form: 

1

0

i

j

x

x

∂
∂

=
0

i
i
j j

u

x
δ ∂+

∂
. 

 
Although one often regards the second term in the sum as an infinitesimal perturbation of 
the identity deformation, at this point, that approximation is not necessary.  From now on, 
we write that term in the form ui,j and refer to it as the displacement gradient, although 

we have implicitly lowered the upper index using the Euclidian metric on Rn, which is 

customary in non-relativistic continuum mechanics. 
 The displacement gradient can then be decomposed into a sum of a matrix of trace 

type, a traceless symmetric matrix
o

ije , and an anti-symmetric matrix θij : 

 

ui,j = λδij +
o

ije + θij , 

in which: 

λ = 1
n Tr ui,j = 1

n ui
,i , 

o

ije = 1
2 (ui,j + uj,i) − λδij , θij = 1

2 (ui,j − uj,i). 

 

The scalar λ is called the infinitesimal dilatation, the matrix 
o

ije defines the infinitesimal 

(volume-preserving) shear, and the matrix θij gives the infinitesimal rotation that is 
associated with the deformation; we shall denote the matrix 1

2 (ui,j + uj,i) by eij . 

 In order to measure the deformation of an object due to a diffeomorphism, one 
introduces the concept of strain, which presumes the existence of a metric on the 
manifold M.  Since we are dealing with the non-relativistic case in Hadamard’s book, it is 

sufficient to regard M as Rn with the Euclidian metric δij dxi dxj; this has the advantage 

that one does not have to deal with the issue of whether the metric on M “changes” from 
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point to point independently of the objects embedded in it, which necessitates the 
introduction of a connection and the consideration of its curvature. 
 Generally, strain is only introduced in the Lagrangian picture, since fluid media do 
not support strains; one can, however, make corresponding definitions in the Eulerian 
picture, though.  The basic idea in measuring the deformation of an object is to compare 
the metric δij that is defined on the initial state by restriction with the metric that one 
obtains by “pulling back” the metric, which also has the components δij , on the final state 
along the deformation f.  This gives the Cauchy-Green finite strain tensor: 
 

2Eij = 1 1

0 0

k l

kli j

x x

x x
δ∂ ∂

∂ ∂
− δij = 2 k k

ij i je u u+ . 

 
The matrix eij is then the same as above, and is also referred to as the infinitesimal strain 
tensor.  Note that the strain is indifferent to the rotational part of the deformation, along 
with the addition of a spatially homogeneous displacement vector field.  That is, rigid 
motions of an object do not produce strains.  However, one should note that, so far, we 
have not specified that the deformation does not involve an inhomogeneous rotation – 
i.e., torsion. 
 If one wishes to go from statics to dynamics, one must introduce the concept of 
motion, which we take to mean a one-parameter family Ot , t ∈ [0, 1] of deformations 

such that O0 and O1 represent the initial and final state in the family.  The family is also 

assumed to be continuously differentiable to some specified order, as well.  Note that our 
previous choice of objects in the form of differentiable k-cubes is entirely consistent with 
this expansion of scope, as long as one regards the motion of a k-cube as a k+1-cube.  We 
shall add the time parameter as the 0th coordinate of the cube.  Furthermore, we shall 

make the non-relativistic assumption that M = R × Rn, which amounts to the Newtonian 

assumption that time works the same way for everyone; i.e., the time coordinate t is not 
deformed along with the spatial ones.  Hence, a motion takes the functional form: 
 

t = t0 + ∆t, xi = xi(t, 0
ix ). 

 
 From this, we can associate a velocity vector field on the image of the k+1-cube Ot by 

way of the partial time derivative: 

vi(t, xj) =
ix

t

∂
∂

. 

 
This can also be parameterized in terms of (t, a1, …, ak) by expressing the xi as functions 
of (t, a1, …, ak). 
 One can analogously define the velocity gradient by the partial derivatives 

/i pv a∂ ∂ or /i jv x∂ ∂ , in which we can include t as a coordinate in either case.  Hence, the 
temporal part of the velocity gradient becomes the linear acceleration of the deformation.  
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 One can also decompose the velocity gradient, in the form vi,j , into the sum of a 

tracelike matrix, a traceless symmetric matrix
o

ijeɺ , and an anti-symmetric one ωij: 

 

vi,j  = ρδij + 
o

ijeɺ + ωij , 

in which: 

ρ = 1
n vi

,i , 
o

ijeɺ = 1
2 (vi,j  + vj,i) − ρ δij , ωij = 1

2 (vi,j  − vj,i), 
 

This time, we refer to ρ as the rate of dilatation, 
o

ijeɺ as the rate of (volume-preserving) 

shear, and and ωij as the vorticity of the deformation; we can also refer to 
o

ijeɺ as the rate of 

strain.  It is no longer necessary to distinguish between finite deformations and 
infinitesimal ones, since all objects obtained by differentiation will be infinitesimal in 
character, although in the finite case one will have to say whether the resulting tensor is 
defined on the initial state or the present state.. 
 In fluid media, which do not support strains, one usually starts with the flow velocity 
vector field v(t, xi) in the space of the motion.  The flow is said to be irrotational if the 
vorticity vanishes.  In that event, the velocity vector field (or really, the covelocity 1-form 
v = vi dxi) will admit a global velocity potential φ when M is simply connected 79.  Hence, 
v will be the gradient of φ: 

v = ∇φ. 
 
 When M is not simply connected, v will admit velocity potentials that are defined 
only in some neighborhood of each point, since every point of any manifold will have a 
simply connected neighborhood. 
 Section 2 of this chapter is concerned with the nature of kinematical discontinuities in 
the form of jump discontinuities in some level of kinematical derivative across a 
particular hypersurface.  This material is essential to all of the material that follows in the 
book, since it is in this context that Hadamard gives a rigorous definition to the notion of 
a wave itself. 
 As Hadamard describes the provenance of the topics, this section was based in earlier 
work of Riemann, Christoffel, and Hugoniot.  In 1860, Riemann established the main 
results on compatibility conditions associated with the discontinuity in case of shock 
waves in one-dimensional gases, where a shock wave represents a discontinuity in the 
velocity vector field.  In 1877, Christoffel extended these results to three dimensions, and 
in 1887, Hugoniot, apparently unaware of the work of Riemann and Christoffel, made a 
more general study for higher-order discontinuities, in which he explicitly introduced the 
idea that the conditions obtained represented compatibility conditions for the 
discontinuities. 

                                                
 79 A topological space is called simply connected when every continuous loop in that space can be 
continuously deformed to a constant loop; i.e. to some point of the space.  For instance, any vector space is 
simply connected, but all that it takes to render a plane non-simply connected is to remove a single point 
from it. 
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 Since the discontinuities are assumed to be defined only on an isolated hypersurface S 
in M, one represents S by the zero hypersurface of some continuously differentiable 
function f: 

f(t, xi) = 0. 
This hypersurface is, moreover, assumed to divide M into two disjoint regions M1 and 
M2, which one may regard as the disturbed and undisturbed regions. 
 The class of functions Φ on M that one considers are functions that are smooth on 
both components M1 and M2 and approach finite limits Φ1(x) and Φ2(x) on the points x ∈ 
S.  Hence, the jump discontinuity in Φ across S: 
 

[Φ](x) ≡ Φ2(x) − Φ1(x) 
 
defines a smooth function on S.  Hence, even though the singularity is in the function Φ 
and not the surface S, nowadays one refers to S as a singular surface. 
 This same process of definition can be applied to the partial derivatives of Φ in an 
analogous manner: 

ix

∂Φ 
 ∂ 

≡
2 1

i ix x

∂Φ ∂Φ   −   ∂ ∂   
 

 
 One finds that the jump in any derivative is not arbitrary, but must satisfy geometrical 
compatibility conditions that are based in the assumption that the jump in Φ is smoothly 
distributed across S and not only over some lower-dimensional subset, such as a set of 
isolated points or curves.  One sees that this will the case iff there is no jump in the 
specified derivative when you go from one point of S to another. 
 Here, it helps to know that nowadays (cf., e.g., Truesdell and Toupin [1960]) the 
discussion in no. 72 of Hadamard’s book gets phrased as Hadamard’s lemma: If Φ is 
smooth on either side of S and its restriction to S is smooth then for any continuously 
differentiable curve xi(s) on S the derivative of either Φ1 or Φ2 along xi(s) with respect to 
s is the directional derivative one usually computes: 
 

1,2d

ds

Φ
= 1,2

i

i

dx

ds x

∂Φ
∂

. 

 
(The only analytical detail to be resolved in this is the passage to the one-sided limits on 
either side of S.) 
 By taking the difference of these latter two equations, one finds the useful 
consequence that the derivative of [Φ] with respect to s is also the tangential projection of 
[∂Φ/∂xi]: 

[ ]d

ds

Φ
= vi [Φ,i] = [vi Φ,i]. 

 
That is, the derivative of the jump equals the jump of the derivative. 
 One can extend this result to partial derivatives with respect to any coordinate system 
ξa, a = 1, …, dim S on S: 
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[ ]
aξ

∂ Φ
∂

= ,[ ]
i

ia

x

ξ
∂ Φ
∂

= ,

i

ia

x

ξ
 ∂ Φ ∂ 

. 

 
This has the immediate consequence that if Φ is continuous across S – so [Φ] = 0 – then 
since all of the vectors that are described by the coordinate derivatives will be tangent to 
S, one must conclude that any jump discontinuity in [Φ,i] will have to be normal to S; of 
course, this is consistent with the notion that compatibility is based in the assumption that 
the jump discontinuities on Φ are smoothly distributed across S. 
 Although Hadamard does not mention the fact in his book, one can solve the previous 
formula for [Φ,i] by projecting it into its normal and tangential components: 
 

[Φ,i] = ,

[ ]i
j i ab

j a b

x
n n g

ξ ξ
∂ ∂ Φ

 Φ +  ∂ ∂
, 

 
in which we have introduced the unit normal vector field ni = f,i / || f,j || to S and the metric 
tensor for it (i.e., the first fundamental form): 
 

gab =
i j

ij a b

x xδ
ξ ξ

∂ ∂
∂ ∂

; 

the matrix gab is then the inverse to this matrix. 
 With this formula, we see that when [Φ] = 0 there must be a function λ on S such 
that: 

ix

∂Φ 
 ∂ 

= λni , 

namely: 
λ = [ni Φ,i]. 

 
Apparently, this result had been previously obtained by Maxwell in the context of 
electromagnetism, although Hadamard does not mention this fact. 
 This same logic can be applied to all higher-order derivatives analogously if one 
assumes that the derivatives up to the specified derivative are continuous across S.  
Hadamard defines the order of a discontinuity to be the smallest order of derivative that 
exhibits a discontinuity, and its index to be the order smallest time derivative that is 
discontinuous. 
 For instance, if the first derivative to have a jump discontinuity is in second order 
then one has the compatibility condition: 
 

2

i jx x

 ∂ Φ
 ∂ ∂ 

= λni nj, λ = [ni nj Φ,i, j]. 

 
 In § 3 of this chapter, Hadamard introduces the notion of kinematical compatibility 
conditions, in addition to the purely geometrical ones of the previous section.  They are 
based in the fact that, so far, there is nothing in the previous compatibility conditions for 
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a discontinuity that would prevent the two regions from drifting apart in time or 
intermingling with each other.  Hence, one would probably wish to add this further 
constraint, although, one would probably still wish to allow for sliding contact at S. 
 This restriction would imply that the normal components of the kinematical variables 
must be continuous across S.  Hence, discontinuities can appear only in the tangential 
components. 
 One can then distinguish two types of discontinuity surfaces: stationary 
discontinuities, for which the function f = f(xi) that defines S is independent of t, and 
propagating discontinuities, for which f = f(t, xi) depends on t.  More commonly, one 
refers to the propagating discontinuities as waves. 
 One notes that the stated conditions on the normal derivatives work only for the case 
of stationary discontinuities.  For a wave, the first order of derivatives in which a 
discontinuity can appear must have index 0; that is, the time derivatives must be 
continuous.  An example of a stationary discontinuity of order one is given by vortex 
sheets, which are surfaces across which the flow velocity vector field of a moving fluid 
has a jump in its transverse components. 
 Previously, for the case of waves, Hugoniot had called the motions in both regions M1 
and M2 (kinematically) compatible iff S remains unique for all t.  By this, he meant that if 
the intersection of S with the constant t hyperplane consists of a single connected 
component for one value of t then this will be true for all others; i.e., it will not undergo 
any “topology-changing processes.”  As pointed out in Truesdell and Toupin [1960], 
kinematically incompatible motions do not have to result in a splitting of the one surface 
into more than one surface, but might also involve the disappearance of the surface.  
Hence, the latter authors regard kinematical compatibility as involving the persistence of 
the surface, and therefore the discontinuity itself, in time. 
 One finds that propagating discontinuities can never give rise to a discontinuity of 
order zero.  Hence, the discontinuous kinematical derivatives for a wave must be time 
derivatives.  When the discontinuity is in the normal component of the first time 
derivative, one refers to the wave as a shock wave and when it is in the second time 
derivative, one calls it an acceleration wave.  A common way of producing acceleration 
waves is by means of forcing functions that take the form of impulse or step functions in 
time.  Kinematical compatibility also implies that one cannot have one derivative of 
index 0 being discontinuous without all other derivatives of the same order being 
discontinuous, as well. 
 When S is defined implicitly by a level hypersurface for a function such as f(t, xi), one 
can define its slowness covector to have the components: 
 

s0 = 1,  si = ,

,

i

t

f

f
− , 

 
which makes f,t sµ = f,µ , µ = 0, …, n so the slowness covector is collinear with the normal 
covector. 
 The speed of propagation of S is one over the norm of the spatial part si of its 
slowness covector: 
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v = ,

2 2
,1 ,

t

n

f

f f+ +⋯
. 

 
 Hadamard points out that using this definition of v means that one will generally 
obtain different values for v depending upon whether one uses spatial coordinates for S 
that pertain to the initial or the present state of S.  The difference between them is then 
due to the relative velocity of displacement of the two.  Of course, this “addition of 
velocities” is valid only in the context of non-relativistic motion, so, for instance, S 
cannot represent a moving electromagnetic wave surface. 
 One defines the velocity vector field vµ, µ = 0, 1, …, n of S to be: 
 

v0 = 1,  vi = v ni = || f,i ||
−2 f,t f,i 

 
with the unit normal vector field ni as above.  This makes: 
 

sµ v
µ = 1 + si v

i = 1 − , , ,
2

, ,|| ||
i t i

t i

f f f

f f
= 0. 

 
and the velocity vector field of S is tangential to S, at least when one looks at S as a 
hypersurface in spacetime.  However, when one regards the spatial parts si and vi at a 
particular instant of t, one sees that si v

i = −1, so the velocity can have parts that are both 
normal and tangential to S. 
 Since the time component v0 is always equal to unity, it cannot suffer any 
discontinuities, and one finds that when there is a jump discontinuity [vi] in the spatial 
part of the velocity, the last formula implies, by subtraction, that: 
 

f,i [v
i] = 0. 

 
That is, the jump in the velocity must be tangential to S.  One similarly deduces that any 
jump in acceleration must also be tangential. 
 In addition to its implicit definition by means of f, the moving singular surface S (or 

at least a portion of it) can also be defined explicitly by embedding some subset O in R× 

R
n−1, which we parameterize by the coordinates (t, aI), I = 1, …, n−1; as pointed out 

above, the coordinates ai might possibly represent the coordinates of the initial state of S 
at t = 0.  Hence, the points of S will have coordinates of the form (t, xi(t, aI)).  The fact 
that we are assuming an embedding implies that the differential (i.e., Jacobian) matrix ∂xi 
/ ∂aI has maximal rank n − 1. 
 One can define the displacement (or convected, material, etc.) derivative of any 
function Φ on S with respect to t to be its total derivative: 
 

d

dt

Φ
=

i

i

x

t t x

∂Φ ∂ ∂Φ+
∂ ∂ ∂

= Φ,t + ui Φ, i , 
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which is also the directional derivative of Φ in the direction (1, ui).  This time, we have 
defined the velocity vector field uµ of S by: 
 

u0 = 1,  ui = 
ix

t

∂
∂

,  = 1, …, n. 

 
 Suppose that S is defined by both a function f and an embedding (t, xi(t, aI)), so we 
have f(t, xi(t, aI)) = 0.  Taking the displacement derivative of f, which must necessarily 
vanish, gives: 

0 = f,t + ui f,i = f,µ u
µ. 

 
 Since we also have that f,µ vµ. vanishes, this gives us that f,i u

i = f,i v
i, but we cannot 

actually conclude that ui = vi, since they could differ by a vector tangent to the spatial part 
of S.  Hence, we only have that the normal components of ui and vi agree; i.e., un = v. 
 Now, if Φ is singular across S, an application of the Hadamard lemma gives: 
 

[ ]
d

dt
Φ = [Φ,t] + ui [Φ, i], 

 
so if Φ is continuous across S then this gives: 
 

[Φ,t] = − uj [Φ, j] = − un [n
j Φ, j], 

 
which makes the discontinuity in the time derivative of Φ equal to the projection of the 
discontinuity in the gradient in the direction of ui. 
 By iteration, one obtains: 
 

[Φ,t, t] = − uj [Φ, j] = − un [n
j Φ, t, j], 

etc. 
 In particular, when Φ = xi for a choice of i, one has: 
 

ix

t

 ∂
 ∂ 

 = − un n
i, …, 

k i

k

x

t

 ∂
 ∂ 

 = (− un)
k ni. 

 
 This shows what Hadamard concludes in this section: A kinematical discontinuity is 
completely determined by the knowledge of only the number un and the unit vector ni. 
 One can also apply Hadamard’s lemma to the components of the deformation 
gradient ui

,j .  In particular, one can derive compatibility conditions for the jumps in 
dilatation, shear, and rotation that follow from the discontinuities in ui across S. 
 One starts with the fact that if the displacement vector field has a first-order 
discontinuity across S then for each i the jump [∂ui / ∂xj] will be a normal vector to S.  In 
fact: 

i

j

u

x

 ∂
 ∂ 

 = i
jn n , 
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where the unit vector in  is defined by the jump in vi: 
 

in = −1/un [v
i]. 

 
 Hence, taking the trace of the above equation gives us that the jump in the 
infinitesimal dilatation ε is: 

[ε] =
i

i

u

x

 ∂
 ∂ 

 = i
in n = cos(∠n , n); 

 
that is, it is the cosine of the angle between the two unit vectors.  This means that a 
transverse (i.e., tangential) jump in v will not affect the dilatation. 
 This makes the finite dilatation take the form: 
 

λ = 1 + ε = 1 − 
[ ]nv

v
. 

 
Although one can express this as a ratio of densities, since we are still concerned with 
only kinematics, it would be slightly premature to introduce dynamical considerations, 
such as mass, at this point. 
 The jump in the infinitesimal shear takes the form: 
 

2[γij] = i j j in n n n+ , 

 
and the jump in the infinitesimal rotation takes the form: 
 

2[θij] = i j j in n n n− = εijk ( )k×n n . 

 
Thus, longitudinal (i.e., normal) jumps in v will not affect the infinitesimal rotation. 
 One derives analogous results for the jump in the velocity gradient relative to the 
jump in the acceleration vector. 
 In the general case when the motions in two regions might not be compatible, 
Hadamard says that when the tendency is for the regions to interpenetrate one calls the 
discontinuity positive or compressive, and when they tend to separate, he calls them 
negative or dilative. 
 This clearly relates to the jump in the normal component of the velocities or 
accelerations of the two regions, depending upon the order of the discontinuity.  
Furthermore, one essentially looks at the sign of the scalar product of the jump vector 
field with the normal vector field to S.  If the sign is negative then the normal component 
of the jump is oppositely directed to the normal vector field and the discontinuity is 
compressive; conversely, if the sign of the scalar product is positive then the 
discontinuity is dilative.  (One notes that the signs of the scalar product are then opposite 
to the sign of the discontinuity in both cases.) 
 This definition of the sign of a discontinuity is meaningless in the case of stationary 
discontinuities, which are neither compressive nor dilative. 
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 When a first-order discontinuity satisfies the kinematical compatibility conditions, 
one can relate the sign of the discontinuity to the jump [ε] in the infinitesimal dilation, as 
one might suspect.  It is negative for a compressive discontinuity and positive for a 
dilative one, so again the sign convention of the definition is opposite to the natural one.  
One finds that the tendency of a compressive (dilative, resp.) discontinuity is to make its 
motion evolve into the region of lower (higher, resp.) density. 
 One can obtain analogous conditions for higher-order discontinuities. 
 Hadamard concludes this section with some remarks on the splitting of one singular 
surface into two singular surfaces that move in opposite directions in the case of 
incompatible motion. 
 In § 4, he points out that, so far, the compatibility conditions involved relations 
between discontinuities of order n and derivatives of other things that were also of order 
n.  The question arises whether one might find relations between discontinuities of order 
n and derivatives of things of order higher than n.  In particular, one might consider 
higher derivatives of the function f that defines the hypersurface S. 
 One finds that nowadays it would be more illuminating to consider how the 
differential geometry of the surface S affected the compatibility relations for its motion.  
For instance, in addition to the normal vector field that is defined by the gradient (or 
differential) of f and the first fundamental form that one obtains from the restriction of the 
background metric on the ambient space, one could also consider the second fundamental 
form that derives from the “covariant” derivative of the normal vector field, using the 
Levi-Civita connection that is obtained from the first fundamental form, and the 
curvature of that connection, which pertains to the second covariant derivative operator. 
 We will not go further in these directions here, since they rapidly leave the scope of 
Hadamard’s treatise, but one can confer more modern books on continuum mechanics 
that also treat the problem of compatibility, such Truesdell and Toupin [1960], Thomas 
[1961], and Eringen [1962]. 
 
 
 § 5.  Notes on Chapter III.  The basic content of the third chapter of Hadamard’s 
book is a summary of elementary hydrodynamics, as he intends to use it in the 
subsequent chapters.  As he does not introduce any personal innovations of his own in 
this chapter, one understands that it is included largely for the sake of completeness in the 
presentation.  He also defines a problem that eventually evolves into the more general 
mathematical theory of characteristics, namely, the problem of whether one can derive 
the values of the initial acceleration on a Cauchy surface when one is given the Cauchy 
data – viz., the initial position and normal velocity of the surface. 
 In the first section of this chapter, Hadamard discusses the issues that are associated 
with the equations of motion for moving fluids and the equation of state that must be 
added to make the system of equations well-determined. 
 Equations of motion in mechanics can be derived by starting with various 
fundamental hypotheses.  The two most common ones are balance (or conservation) laws 
and variational principles. 
 The concept of a balance law assumes the general case of an open system and then 
expresses the time rate of change of the total value of some system parameter in terms of 
a sum of incoming and outgoing flow rates, suitably signed.  By contrast, the concept of a 
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conservation law assumes the more idealized case of a closed system in which the 
incoming and outgoing rates vanish, so the equation of conservation takes the form of the 
vanishing of a time derivative or, equivalently, some algebraic condition on the quantity 
that is conserved.  One sees that there is a subtle difference between the steady state of an 
open system, which means that the incoming sum equals the outgoing sum, and the 
equilibrium state of a closed system, which says that all of the incoming and outgoing 
rates vanish. 
 In the case of the mechanical systems of interest to the present book the state 
variables of the system consist of the total mass and total linear momentum.  The balance 
laws then consist of conservation of total mass Mtot (assuming no mass is coming in or 
going out): 

totdM

dt
= 0, 

and Newton’s second law of motion: 
 

totd

dt

P
= . .comp tens−∑ ∑F F . 

 
That is, the time derivative of the total momentum Ptot is the sum of the forces of 
compression minus the sum of the forces of tension.  Of course, for a point mass, the 
distinction between a compression and tension is meaningful only for a given force 
vector, since it amounts to a change to the opposite direction. 
 When the system in question is a fluid that is confined to some region of space, the 
total quantities must resolve into integrals of densities in each case:  The total mass 
resolves to a mass density ρ(t, xi), and the total linear momentum resolves to a linear 
momentum density ρvi(t, xj), where vi represent the components of the flow velocity 
vector field.  The forces, however, take two forms: bulk forces fi(t, xj), which act on the 
mass elements of the fluid independently of the fluid properties, and pressure p(t, xj), 
which acts on the mass element as a consequence of the neighboring fluid elements.  The 
most common examples of bulk forces are gravity and electric or magnetic forces that 
might act on charged fluids, such as electrolytes and plasmas. 
 As mentioned previously, one has two ways of defining the time derivative: the 
Lagrangian description and the Eulerian one.  In the Lagrangian picture, the motion takes 
the form xi = xi(t, aj), where the components aj coordinatize the initial state, and the time 
derivatives are simply the partial derivatives with respect to t.  Hence, the equations of 
motions take the form: 

(EOML)   ρ(t, ai) = 0

( , )

( )
k

i
k

j

t a

x
a

a
ρ∂

∂
, iv

t
ρ ∂

∂
= fi – p,i .  

 
 The Eulerian picture, which is more convenient for the purposes of modeling fluid 
motion, follows the present state of a fluid cell, so each point of the fluid lies on a path 
line xi(t) and the appropriate time derivatives are the convected (material, Lie, total, etc) 
derivatives: 

d

dt
= i

i
v

t x

∂ ∂+
∂ ∂

. 
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The equations of motion are then: 
 

(EOME)   d

dt

ρ
= 0, ρ idv

dt
= fi – p,i . 

 
 So far, either of these systems represents four equations (EOML) or (EOME) for five 
unknowns, namely, xi, ρ, p.  Hence, one must append another equation to make the 
system well-determined, and this supplemental equation usually takes the form of an 
equation of state for the fluid itself, which might take the forms: 
 

ρ = ρ(p) or F(ρ, p) = 0. 
 
In the first case, one now refers to such a fluid as barotropic. 
 The determination of an equation of state for a medium is basically a thermodynamic 
problem, since one usually settles on a form for this equation by first making 
thermodynamic assumptions about the gas in question.  More generally, the 
thermodynamic state of the gas at a point can be described by the (intensive) variables of 
pressure p, temperature T, specific volume v or density ρ = 1/v, specific internal energy ε, 
and specific entropy s, which are all function of (t, a) in the pipe.  In general, an equation 
of state amounts to a choice of hypersurface in the five-dimensional region of the space 
of all (p, T, ρ, ε, s) that is defined by the bounds that one places on each physical 
variable.  Hence, the equation of state at issue is one that assumes that the temperature, 
specific internal energy, and specific entropy are either constant throughout the motion or 
do not affect the relationship between pressure and density. 
 The simplest example of an equation of state is given by an incompressible fluid, for 
which: 

ρ = ρ0  ( = constant). 
 
 The equation of state for an ideal gas is given by Mariotte’s law p = Kρ = K′/ω, which 
is a special case of the more general Poisson law: 
 

p(ρ) = Kρm = K′ω−m, 
 
which is also referred to as the Poisson adiabatic.  Such an equation of state comes about 
when one considers a gas with vanishing heat conductivity, but which contracts or 
expands adiabatically (i.e., with no change in heat content) under isothermal conditions 
The exponent m is called the adiabatic index (see Landau and Lifschitz [1987]) and is 
equal to the ratio cp / cv of the specific heat of the gas at constant pressure to the specific 
heat of the gas at constant volume.  For a monoatomic gas, it equals 5/3 and for diatomic 
gases, it equals 7/5, but in any case, it is greater than 1.  Nowadays, one also refers to 
gases that obey this law as polytropic. 
 In general, the implicit form of an equation of state will then be: 
 

F(ρ, p, T) = 0. 
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 The assumption that F is not also a function of the velocity, or any higher kinematical 
variables is equivalent to the existence of thermodynamic potential φ for the force fi – p,i , 
which is the difference between an external force potential and the pressure: 
 

φ(xi) = ( , )
V

t dVρ ρΦ∫ , 

for some appropriate function Φ. 
 From the variational principle that the variation of this thermodynamic potential must 
vanish for every “acceptable” variation of the state of the fluid cell, one derives the 
equation of state: 

p = 2ρ
ρ

∂Φ
∂

. 

 
 From the preceding remarks, the question arises whether the relation p = Aρm must 
necessarily follow from an equation of state of the form F(ρ, p, T) = 0 under the 
assumption of adiabatic compression or relaxation.  Hadamard gives a demonstration that 
thermodynamic consideration involving the specific heat of the fluid show that the 
existence of a thermodynamic potential does indeed establish that outcome. 
 However, his argument excluded the possibility that the velocity might have jump 
discontinuities inside the gas, which was necessary for the definition of the variation of 
kinetic energy. 
 If the fluid is neither incompressible nor an ideal gas then one wonders if one can still 
use the equation of state p = Aρm under Duhem’s assumption of the existence of a 
thermodynamic potential.  This question can be resolved in the affirmative when the 
velocity is continuous, and under the general assumption in the isothermal case that the 
pressure is an increasing function of density; this amounts to the statement that the 
equilibrium state of the fluid is stable. 
 In the second section of this chapter Hadamard addresses the issue of initial and 
boundary conditions for the system of partial differential equations that dictate the time 
evolution of the fluid state.  Indeed, one sees that since fluids are usually confined to 
pipes and channels (but not, for instance, in the case of interstellar gases), one must 
define boundary conditions for the state variables even in the case of the Cauchy − or 
initial value − problem, in which one defines the initial (i.e., t = t0) values of the state 
variables and their time derivatives. 
 The boundary surfaces can be both fixed and moving, so one must assume that the 
equation of the boundaries and their motions are givens.  Further, one assumes that the 
pressure is given on these surfaces. 
 The problem arises: Can one derive the initial values of the acceleration from the 
Cauchy data and the equations of motion or can that information be specified arbitrarily?  
Indeed, this is a question of fundamental importance in the eyes of the theory of 
characteristics, which the book eventually converges to.  In particular, one assumes that 
one is given: 
 1. The forces that act on the fluid. 
 2. The points of the initial surface and their velocities. 
 3. The motion of the walls and the initial pressures on the free surfaces, along with 
their time derivatives. 
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 One first finds that there is a fundamental difference between the special cases of a 
liquid – i.e., an incompressible fluid – and a gas, or compressible one.  In the 
incompressible case, the equations of motion simplify to: 
 

vi
,i = 0,  

idv

dt
ρ = − p,i + fi. 

 
The first one now says that the flow generated by the velocity vector field must be 
volume-preserving, not just mass density-preserving. 
 Taking the divergence of both sides of the second equation, while inverting the order 
of time and space differentiation, gives: 
 

∆p = fi
,i . 

 
 Of course, the resulting equation is simply Poisson’s equation for the pressure 
function.  As Hadamard points out, if one is given the normal derivative dp/dn of p on the 
boundaries then this defines a Neumann problem.  Hence, one can resort to the methods 
of chapter I to solve it.  However, this assumes a necessary and sufficient condition of 
possibility, namely, that the second time derivative of any elementary fluid volume must 
be zero. 
 Once one has solved the Neumann problem for p, one can deduce the initial 
acceleration from the equations of motion. 
 Once again, the argument presented by Hadamard assumes that the initial 
accelerations are continuous over the initial surface.  Hence, one wonders if the results 
remain valid for the discontinuous case of acceleration waves.  One finds that as long as 
one assumes that the singular surface satisfies the compatibility conditions, nothing 
changes, although this still assumes the continuity of the initial velocity and its initial 
gradient.  Hadamard promises to return to the question of whether this restriction is 
necessary in chapter V. 
 When there is a free surface, along with fixed surfaces, the problem of solving for p 
becomes a mixed problem; one specifies p on the free surface and dp/dn on the wall.  One 
also assumes that the pressure is positive.  Hence, one is ruling out the possibility of 
“cavitation,” which involves the formation of bubbles (i.e., topological “point defects”) in 
the fluid in regions of negative pressure. 
 When one is concerned with a gas, matters are somewhat more involved.  If one uses 
the equation of state for density as a function of pressure then, since the initial density is 
given, the equations of motion give the initial accelerations. 
 Now, say the initial surface is given by an equation of the form f(t, xi) = 0.  Two time 
differentiations give an equation of the form: 
 

0 =
2

, ,
i i

i if x v f
t

∂ + + ∂ 
ɺɺ . 

 
However, this represents a constraint on the initial acceleration that contradicts the 
freedom to deduce it independently of the choice of surface. 
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 In the chapters that follow Hadamard proposes to attempt to resolve this 
contradiction. 
 
 § 6.  Notes on Chapter IV.  In this chapter, Hadamard first discusses the Riemann 
method for modeling the propagation of discontinuity waves in one-dimensional gas 
dynamics and then discuss the form that Hugoniot gave it by making more definitive 
thermodynamic assumptions about the gas in question. 
 The general picture that recurs throughout the chapter is that of a gas in a cylindrical 
pipe that is closed at each end by means of pistons that can be given pre-assigned motions 
that serve as the sources of disturbances in the gas or simply left stationary, so they might 
serve as potential sources of reflection for the waves that propagate.  The longitudinal 
dimension of the pipe is described by the variable a, which ranges from 0 to the length l 
of the pipe. 
 In order to make the problem essentially one-dimensional, one assumes that the 
dynamical variables of density ρ and pressure p are constant across any perpendicular 
cross-section of the pipe, although they may still vary with a, as well as time t.  The wave 
function at issue is defined by the position x(t, a) of a molecule of the gas that started out 
at the position a when t was 0; one then sees that x(0, a) = a.  Equivalently, one could 
consider the displacement u(t, a) = x(t, a) – a to be the wave function, as long the first 
partial derivative ua = xa − 1 did not enter explicitly.  One can also introduce the 
dilatation ω(t, a) = ρ /ρ0 = ∂x / ∂a, which allows one to equate a dynamical variable with 
a kinematical one. 
 The one-dimensional equation of motion for the gas, in the absence of external forces, 
takes the general form: 

2

2
0

1x p

t aρ
∂ ∂+
∂ ∂

= 0. 

 
 In order to proceed, one must be more specific about the nature of the gas.  In 
particular, one must specify an equation of state p = p(ρ).  One can also express this as a 
differentiable function p = p(ω), which one restricts to be monotone, so dp/dω > 0. 
 By the chain rule: 

p

a

∂
∂

=
a

ϕ ω ϕ
ω ω

∂ ∂ ∂+
∂ ∂ ∂

=
2

2
( , )

x
a

a a

ϕ ϕ ω∂ ∂′+
∂ ∂

, 

 
in which we are allowing K′ to vary along a, and the equation of motion becomes: 
 

2 2
2

2 2
( , )

x x
c a

t a
ω∂ ∂−

∂ ∂
= 

a

ϕ∂
∂

, 

 
in which we are deviating slightly from Hadamard’s notation by denoting the speed of 
propagation with a c, instead of a ψ: 
 

c2(a, ω) = − ϕ′(a, ω)/ρ0 . 
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 Since ω is itself a partial derivative of x, one sees that the equation of motion is 
generally a nonlinear one-dimensional wave equation.  In the years since Hadamard 
wrote this book, much progress has been made in elaborating on the general theory of 
nonlinear one-dimensional wave equations, as well as the nature of various specific cases 
that grew out of fundamental problems in continuum mechanics.  Clearly, when K′ is 
assumed to be constant along a, everything comes down to the nature of c as a function of 
ω, which then reverts to the thermodynamical nature of the gas. 
 In § 1, Hadamard treats the simplest case, where c is constant, along with K′.  (His 
notation for c is θ, in this case.)  The resulting wave equation is linear and can be solved 
in the general form given by d’Alembert: 
 

x(t, a) = 1
2 [f1(a + ct) + f2(a − ct)], 

 
in which the functions f1 and f2 can be determined by specifying the Cauchy data x0(a) = 
x(0, a) and [∂x/∂t]0(a) = [∂x/∂t](0, a).  They represent travelling waves whose shape is 
defined by the initial functions f1(a) and f2(a) that travel with constant speed in the − a 
direction for f1 and the + a direction for f2. 
 Something that Hadamard returns to throughout this chapter that is not commonly 
discussed in the modern treatments of gas dynamics is his geometric picture of any 

solution x(t, a) to the wave equation as defining a surface in R
3 that one obtains by 

considering all points of the form (t, a, x(t, a)) such that t and a are constrained by the 
physical considerations; e.g., t ≥ 0, a ∈[0, l]. 
 In addition to initial values, we might also realistically wish to specify the boundary 
conditions on x, in the form of specifying the time functions x(t, 0) and x(t, a).  For 
instance, one of the pistons – say, the one at a = l – might be held stationary (so x(t, a) = 
0)  and one at a = 0 might be given a specified motion as a means of originating the 
disturbance that propagates away from it.  Hence, we are really dealing with something 
slightly different from the Cauchy problem, namely, the mixed initial-boundary value 
problem. 
 The question that eventually leads one to consider the theory of characteristics of 
wave equations more generally is the problem of whether the initial value [∂2x/∂t2]0(a) of 
the acceleration can be determined uniquely when one is given the equation of motion 
and a set of Cauchy data.  The well-known answer is that this is possible iff the Cauchy 
data is not specified on a characteristic curve in the tx-plane.  For the elementary case at 
hand, these are the pairs of lines that are defined by the ordinary differential equations: 
 

dx

dt
= ± c. 

 
That is, when c is constant the characteristics are the lines x(t) = a ± ct that figured in the 
d’Alembert solution; hence, the functions f1 and f2 must be constant on the characteristic 
lines.  Geometrically, this means that the surfaces defined by these solutions will be 
cylinders that are generated by the lines (t, l – ct, 0) and (t, ct, 0), respectively. 
 One is cautioned that in spatial dimensions higher than one the characteristic equation 
that defines the characteristic hypersurface will be a first-order partial differential 
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equation, not a first order ordinary one.  This is further confused by the fact that the 
bicharacteristic curves that represent the rays of geometrical optics – or geometrical 
acoustics, in the present case – must lie in the characteristic hypersurface.  Hence, in the 
one-dimensional case, the characteristic hypersurface and the bicharacteristic curves are 
essentially the same thing; we shall return to this in our discussion of the final chapter. 
 A subtle and powerful link between characteristics and the propagation of 
discontinuities is given by the fact that discontinuities in the initial acceleration can only 
exist across characteristics.  Consequently, discontinuities can propagate only along 
characteristics.  In terms of the motion of the gas, this means that acceleration waves 
must propagate with the characteristic speed c. 
 If one uses the d’Alembert solution for x, one can express the jumps in the partial 
derivatives of the dilatation ∂x/∂a in terms of f1 and f2: 
 

2

2

x

a

 ∂
 ∂ 

= 1 2[ ] [ ]f f′′ ′′+ , 
2x

t a

 ∂
 ∂ ∂ 

= 1 2([ ] [ ])c f f′′ ′′− , 

 
and solving for 1[ ]f ′′  gives: 

1[ ]f ′′ = 
2 2

2

1x x

a c t a

   ∂ ∂+   ∂ ∂ ∂   
. 

 
If the jump discontinuity is in 2[ ]f ′′ then this must vanish, so: 

 
2x

t a

 ∂
 ∂ ∂ 

= − c
2

2

x

a

 ∂
 ∂ 

. 

 
 In § 2, Hadamard comes back to the more general case of constant K′, non-constant c.  
From the equation of motion, one gets the compatibility condition for an acceleration 
wave: 

2

2

x

t

 ∂
 ∂ 

= − c2
2

2

x

a

 ∂
 ∂ 

. 

 
 The characteristics are still defined by the same ordinary differential equation, but c is 
not assumed to be a constant function of (t, a), so the characteristic curves do not have to 
be straight lines, anymore. 

 Furthermore, the surface in R3 that a solution defines does not have to be a cylinder, 

but will be, more generally, a developable surface 80.  Such a surface is the envelope of 
some one-parameter family of planes, such as a cylinder or a cone.  Except for these two 
examples, every other developable surface can be represented as the tangent surface to 

                                                
 80 Although numerous modern treatments of the geometry of surfaces exist, a reference on 
developable surfaces that is perhaps closer in spirit to the discussion of Hadamard is the older one by 
Eisenhart [1940].  In particular, the term “edge of regression” seems to be an older terminology. 
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some differentiable curve.  That is, it is the surface that is swept out by the tangent line as 
it moves along the curve.  Generally, such surfaces will have two sheets, one of which is 
swept out by the forward ray and the other of which is swept out by the backward ray.  
They intersect along the curve itself, which was once referred to as the edge of regression 
of the surface, since a transverse planar section of the surface would appear to be a cusp. 
 If a second-order discontinuity does not satisfy the compatibility conditions above 
then it will tend to split into a pair of discontinuities that separate from each other with 
speeds of ± c.  One must note that acceleration waves are not possible in fluid media, 
only stationary second-order discontinuities. 
 The Riemann problem for one-dimensional gas dynamics is then defined by starting 
with the present physical scenario and assuming that the gas is kept at constant 
temperature, with a pressure that varies with length only by way of the density, and that 
as one crosses a second-order discontinuity the entropy of the gas remains constant.  One 
then poses the Cauchy problem for the nonlinear wave equation that we have been 
considering. 
 The method that Riemann used to solve the problem thus posed involved the 
introduction of new coordinates for the wave function, as well as transforming the wave 
function itself, in such a way that the resulting form of the wave equation is linear and the 
Cauchy problem can be solved by the method of Green functions. 
 In order to get a better sense for the nature of this transformation, one must return to 
the geometry of the solution to the generalized wave equation as a surface in the space of 
variables (t, a, x) and extend this to the space of variables (t, a, x, u, ω). For a solution, 
one not only has x = x(t, a), but one also has u(t, a) = xt, ω(t, a) = xa , in which the 
subscripts refer to partial differentiation.  This five-dimensional space projects onto the 

two-dimensional space of all (t, a) in the usual way: R5 → R2, (t, a, x, u, ω) ֏ (t, a), so a 

solution represents a “section” of this projection, which we may write in the form (t, a, 
x(t, a), u(t, a), ω(t, a)), namely, a section of the form (t, a, x(t, a), xt(t, a), xa(t, a)). 
 It happens that nowadays the general theory of spaces of the form of this five-
dimensional space in question has developed considerably since the time of Hadamard, 
based on notions that were first suggested by Charles Ehresmann in the 1930’s, and 
which go by the name of the geometry of jet manifolds (see Saunders [1989]).  In the case 
at hand the relevant definition is that of a 1-jet of a differentiable function, such as f, on 

R
2 at a point of R2.  By definition, the 1-jet1

xj f of f at x ∈ R2 is the set of all 

differentiable functions that are defined in some neighborhood of x and have the same 
values as f at x, along with the same values of their partial derivatives.  A section of the 
form j1f(t, a) = (t, a, f(t, a), ft(t, a), fa(t, a)) is referred to as the 1-jet prolongation of the 

differentiable function f on R2 to a section of the aforementioned projection.  However, 

not all sections of that projections are representable as 1-jet prolongations, only the 
integrable ones, by definition. 
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 The way that all of this relates to partial differential equations is that one can 
represent a first order partial differential equation for the function x as a hypersurface in 

R
5 (i.e., the space of 1-jets of differentiable functions on R2) for some function F 81: 

 
F(t, a, x, u, ω) = 0. 

 
A solution to this partial differential equation is then a differentiable function x(t, a) on 

R
2 whose 1-jet prolongation j1f maps R2 into this hypersurface. 

 One can represent a second-order partial differential equation for the function x as a 

system of first-order partial differential equations on R
5.  For instance, the wave equation 

we are considering becomes the system of four equations: 
 

x

t

∂
∂

= u,  
x

a

∂
∂

= ω, 2u
c

t a

ω∂ ∂−
∂ ∂

= 0, 
t

ω∂
∂

− u

a

∂
∂

= 0, 

 
the last of which is redundant, as it can be obtained by differentiating the first two. This 
system can be put into the standard “conservation law” form that one often encounters 
nowadays (see, e.g., Jeffrey and Taniuti [1964]): 
 

Xt – AXa = 0, 
by setting: 

X =
u

ω
 
 
 

, A = 
20

1 0

c 
 
 

. 

 
One notes that the eigenvalues of A will be ± c, while the corresponding eigenvectors will 
be along the lines generated by u ∓  cω, respectively. 
 Now, let us return to the Riemann method of solution for the Cauchy problem.  One 
introduces the Riemann variables (i.e., the Riemann invariants): 
 

ξ = u + χ, η = u – χ, 
in which: 

χ =
( )

d

c

ω
ω∫ =

0

d

c

ρ
ρ∫

; 

 
one also encounters the notation J± = u ± χ. 
 Since one has: 

( )u c J
t a ±

∂ ∂ + ± ∂ ∂ 
= 0 

 

                                                
 81 Some good references on the subject of how jet manifolds relate to differential equations, both 
ordinary and partial are Olver [1993] and Arnol’d [1988].  
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one sees that the Riemann variables are constant for a simple wave that propagates to the 
left in the case of the positive sign and to the right in the opposite case.  Such a wave 
takes the form: 

x = f(v) + (v ± c)t 
 
for a suitable function f(v).  Hence, they generalize the d’Alembert solutions to the 
nonlinear case. 
 In order to convert the wave equation into Riemann variables, one must also perform 
a Legendre transformation on the wave function by defining: 
 

z(u, ω) = ut + ωa – x. 
 
Hence, one can regard the pair of variable (u, ω) as the canonically conjugate variables 
to the pair (t, a), in the same way that conjugate momenta are associated with generalized 
coordinates in Hamilton mechanics.  Once again, this is no coincidence, and relates to the 

fact that the aforementioned first-order partial differential equation on R5 has 

characteristic equations that reduce to the Hamilton equations for the Hamiltonian 
function F when it does not depend upon f explicitly.  We shall clarify these remarks later 
when we discuss Chapter VII, as they bear upon the nature of bicharacteristic curves. 
 Geometrically, we are replacing the representation of a wave function as a surface in 
the space of all (t, a, x) with a subset of the space of all (u, ω, z).  However, one must be 
careful since the transformation does not have to take a surface in the space of (t, a, x) to 
another surface in the space (u, ω, z).  It can map some developable surfaces to curves by 
projecting all of the points along a generating line to a point of the resulting curve in (u, 
ω, z)-space.  Physically, the points of the edge of regression for the developable surface 
in (t, a, x)-space represent the point in time when a later wave overtakes an earlier one; 
this is, of course, possible only when the speed of propagation is not constant. 
 However, the Legendre transformation can sometimes be used to remove singularities 
in the surface.  This does not work for an edge of regression, though; it amounts to a non-
removable singularity. 
 One sees that the resulting Cauchy problem in (u, ω, z)-space might very well be 
inequivalent to the original one in (t, a, x)-space.  As Hadamard points out, Hugoniot 
only solved the problem in the case where the gas in question was initially at rest; i.e., its 
flow velocity u was initially zero. 
 After converting to Riemann variables and performing a Legendre transformation the 
nonlinear wave equation now takes the linear form: 
 

2

( )
z z z

f ξ η
ξ µ ξ η

 ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ 
= 0 

with: 

f[2χ(ω)] = 2

1 ( )

4 ( )

χ ω
χ ω

′′
′

. 
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 One can then solve the Cauchy problem for the function z by the method of Green 
functions, in principle. 
 The cases that were treated by Hadamard involved gases that obeyed the Poisson 
adiabatic and its special case of Mariotte’s law.  In the former case, the Green function 
involved hypergeometric functions, while in the latter, it involved Bessel functions. 
 One finds that there is no symmetry in the nature of the solutions that one obtains by 
using an initial compressive pulse of the piston versus an initial decompressive pulse.  In 
particular, an extremely fast compressive pulse can produce a shock wave, but an 
extremely fast decompression can lead to “cavitation,” or the formation of a partial 
vacuum between the piston and the gas.  By definition, a compressive pulse produces a 
compression wave while a decompressive pulse produces a rarefaction wave. 
 In the third section of this chapter Hadamard focuses on an important consequence of 
the work that was done by Riemann and later Hugoniot, which he calls “the Riemann-
Hugoniot phenomenon.”  What it represents, as a natural phenomenon, is the possibility 
that when two consecutive acceleration waves in a gas whose speed of wave propagation 
is not constant are moving in such a manner that the later one overtakes the earlier one 
they can combine to produce a shock wave.  That is, two moving second-order 
discontinuities can combine to produce a moving first-order discontinuity.  Indeed, this is 
essentially how the expanding shock wave forms in an explosion.  Hence, there is ample 
experimental evidence for the phenomenon. 
 The point of departure between the earlier work of Riemann and the later work of 
Hugoniot was in the thermodynamical assumptions about the gas.  Riemann assumed that 
there is no change in the entropy of the gas from one side of the discontinuity to the 
other, while Hugoniot assumed that there would be an increase in entropy.  Although 
both theories produced qualitatively correct results, the assumption of Hugoniot proved to 
be more consistent with experimental measurements. 
 In order to describe this scenario mathematically, Hadamard first considers the case 
of a gas that is initially at rest and has a constant value for c.  The piston that initiates the 
wave in the pipe is given a differentiable motion x0(t).  The resulting motion x(t, a) is 

differentiable and single-valued, but if one considers the map xt : R → R, a ֏ x(t, a) for 

each value of t, then one finds that it is locally invertible iff the dilatation ω = ∂x/∂a does 
not vanish anywhere; equivalently, the dilatation cannot change sign.  The first time that 
ω vanishes will be at the point of contact with the piston. 
 When c is not constant, but varies with ω, the situation is more complicated.  To 
begin with, one must choose an equation of state.  The choice that Riemann made was 
based on the Poisson adiabatic.  Consequently, ω vanishes only if c is infinite. 
 In this situation one can have two types of singularities: points where ω vanishes and 
points along the edge of regression of the developable surface that represents the solution 
x(t, a) in the space of (t, a, x).  At such points, as mentioned above, one is dealing with a 
later wave overtaking a previous one.  If one is using the Poisson law then the fastest 
waves are the ones that are compressed the most. 
 Hence, assume that χ′(ω) is decreasing (i.e., χ″(ω) < 0).  This implies that the piston 
must have a positive acceleration, which says that one is dealing with compression 
waves.  If the piston had a negative acceleration then one would be dealing with 
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rarefaction waves, which cannot cross each other in the manner that is intended.  One 
finds that when the successive compression waves intersect a shock wave is produced. 
 Riemann’s compatibility conditions for the shock wave were then: 
 
    Kinematical: [u] = − c[ω], 
    Dynamical: [p] = + c[u], 
 
in which u is the velocity of the wave.  These, in turn were based on: 
 

[u]2 = − 1/ρ0 [p][ ω], 
 
which followed from the Poisson adiabatic.  This included the basic assumption that the 
entropy did not change across the shock discontinuity. 
 From the above, one sees that the speed of propagation can be obtained from: 
 

c = 
0

[ ]

[ ]

p

ρ ω
−

. 

 
 Hugoniot’s objection to the foregoing was based in the observation that compression 
and dilatation makes the Poisson adiabatic inappropriate to the problem.  Instead of the 
Poisson law 1 1

mpω = 2 2
mp ω  for polytropic gases, where the subscripts refer to the values on 

either side of the singular surface, he introduced the Rankine-Hugoniot adiabatic: 
 

ε2 – ε1 = 1
2 (p1 + p2)(u1 – u2) = 

1

c

m−
(p1ω1 – p2ω2), 

 
in which ε represents the specific internal energy of the gas.  This adiabatic results in an 
increase of the entropy across the discontinuity and also leads to the Rankine-Hugoniot 
compatibility conditions for a shock wave: 
 

[v]2 = − [ρ][u],  [p] = − [ρ][v]2, 
 
in which v = 1/ρ is the specific volume of the gas. 
 One finds that the numerical agreement between the theory and the experiments is 
much better when one uses the Hugoniot adiabatic instead of the Poisson one. 
 If one considers the opposite phenomenon to the Riemann-Hugoniot phenomenon, 
namely, a single shock wave splitting into a pair of acceleration waves, one finds that this 
is only possible if the initial shock wave is dilative, since the Riemann-Hugoniot process 
produces a compressive one. 
 An elementary form of the problem that we have considering more generally is: 
Suppose that the gas is initially at rest and the piston is given a uniform rectilinear motion 
x0(t) = Vt, with V constant.  Find the resulting motion of the gas. 
 As Hadamard points out, Sébert and Hugoniot showed that the solution follows 
directly as long one satisfies compatibility conditions for the motion of the piston that 
take form: 
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    Kinematical: V + c(ω – 1) = 0, 
    Dynamical: p – p0 = ρ0cV, 
 

      
0

p

p
=

( 1) ( 1)

( 1) ( 1)

m m

m m

ω
ω

+ − −
+ − −

. 

 
If V is given, instead of p, then c is unknown, but it can be solved from the compatibility 
conditions.  One needs to have p > 0, which is always true when V is positive, but if V is 
negative then one must have c < p/(ρ0V), so V2 < 2p0 / (m – 1)ρ0). 
 The remainder of this chapter is primarily concerned with the solution of the present 
problem by means of series expansions in fractional powers of t. 
 
 
 § 7.  Notes on Chapter V.  Since this chapter represents the extension of the one-
dimensional analysis of the previous chapter to the more realistic case of three-
dimensional gases, the fact that it occupies less space in the book is due to the fact that, in 
effect, all one must address is the fact that when one extends from a singular point 
moving on a line to a singular surface moving in space, one must mostly deal with the 
contributions that the transverse dimensions make to the same results. 
 First, one returns to the equations of motion in three-dimensional form 82: 
 

1

i

p

xρ
∂
∂

= Xi −
2

2
ix

t

∂
∂

, i = 1, 2, 3. 

 
 As was shown in the previous chapter, any conflict between the Cauchy data and 
these equations can be resolved by the existence of a second-order discontinuity that 
propagates along characteristic curves.  However, the extension of characteristic curves 
to three-dimensional characteristic hypersurfaces is not discussed until the final chapter 
of the book. 
 As usual, the gas is assumed to be barotropic, so p = p(ρ).  The equations of motion 
then take the form: 

ln

i

dp

d x

ρ
ρ

∂
∂

= Xi –
2

2
ix

t

∂
∂

. 

 
 Now assume that one has a singular hypersurface S, over which ∂2xi / ∂t2 and ∂ρ / ∂xi 
have finite jump discontinuities.  Assuming that the Xi and dp / dρ are continuous across 
S, the equations of motion then give the compatibility conditions: 
 

                                                
 82 One notices that a recurring drawback to the mathematical literature of the era in which this book was 
written was the fact that the symbolic representation of systems of differential equations had yet to benefit 
from the introduction of a few well-chosen dimensional indices, so one generally had to deal with notation 
that appeared rather redundant by modern standards.  
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ln(1/ )

i

dp

d x

ρ
ρ
 ∂
 ∂ 

 = 
2

2
ix

t

 ∂
 ∂ 

. 

 
 Let λi , i = 1, 2, 3 represent the components of the discontinuity in the acceleration in 
the form: 

2

2
ix

t

 ∂
 ∂ 

= c2λi . 

 
 If ni , i = 1, 2, 3 are the components of the unit normal to S then the compatibility 
conditions give: 

dp

dρ
(λj nj) ni = c2λi . 

 
 Presumably, the λj do not vanish identically, so if the speed of propagation does not 
vanish either then one finds that the latter formula establishes the fact that a propagating 
discontinuity in a gas must be longitudinal with a speed that satisfies c2 = dp / dρ.  On the 
other hand, if c = 0 then one must have that λj nj = 0, which says that a stationary 
discontinuity must be transversal. 
 Hadamard then shows that the same thing is true for discontinuities of higher order, 
as well.  That is, the propagating ones are longitudinal and have a speed given by the 
second order expression, while the stationary ones are transverse. 
 Furthermore, he points out that one can consider more general equations of state, such 
as ones where the pressure is inhomogeneous in space.  The main alteration to the 
analysis is that one must replace the total derivative of pressure with respect to density 
with a partial derivative. 
 Now, since the expression for c is quadratic, it really allows for the propagation of 
waves in two directions, not just the one.  However, the idea behind kinematic 
compatibility was that if one had such compatibility then the actual motion of S would 
have to have one sign or the other.  Conversely, in the absence of compatibility it would 
be possible for S to split into two surfaces moving in opposite directions with speed c. 
 In order to examine this possibility, Hadamard first considers the more restrictive 
case of liquids, which cannot have normal discontinuities without that affecting the 
derivatives of the density.  Now, if there were normal acceleration waves then a sufficient 
condition for the existence of normal second order discontinuities would be the existence 
of an acceleration potential Φ, which then obeys the defining condition that ∂Φ/∂xi = ∂2xi 
/ ∂t2.  Although it not necessary to assume compatibility to obtain this result, nonetheless, 
when there is compatibility, it gives a consistent result.  In any event, if an acceleration 
wave exists then it must be normal.  Furthermore, it persists for higher order 
discontinuities and when there is compatibility one finds that any discontinuities that are 
tangential to S must be stationary.  Therefore, since normal discontinuities cannot exist in 
liquids, one ultimately concludes that the only kind that one can consider is the stationary 
transverse kind. 
 Now consider a singular surface S in a liquid, across which one is given 2 2[ / ]i jx a∂ ∂  

and [∂2xi / ∂t ∂aj], but one wishes to derive the values of [∂2xi / ∂t2].  One does not assume 
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compatibility, but one does still assume that there is no cavitation in the liquid, so the 
regions of the liquid do not separate if S splits into two propagating surfaces.  One must 
conclude that [∂2xi / ∂t2] vanishes − i.e., the acceleration is continuous across S − since 
any separation of S would have to involve normal discontinuities, but the only 
discontinuities that can exist are transverse, which is a contradiction.  One can again 
extend this result to higher-order time derivatives; viz., they must be continuous. 
 Hadamard points out that this conclusion remains true even when the first time 
derivative – i.e., the velocity – is discontinuous, which is the case for shock waves and 
vortex sheets, which are the stationary manifestation of such discontinuities. 
 Recall that the vorticity tensor for a flow velocity is the anti-symmetric part of the 
velocity gradient ωij = 1/2(vi,j – vj,i), which is the time derivative of the infinitesimal 
rotation θij = 1/2(ui,j – uj,i) of the displacement vector field ui .  In the present case, one 
has ui,j = ∂xi / ∂aj .  Hence, vorticity is related to the second-order partial derivatives of 
the form ∂2xi / ∂t ∂aj .  Hadamard then defines a vorticial discontinuity to be a transversal 
discontinuity of the form [∂2xi / ∂t ∂aj], which makes it a second-order discontinuity of 
index one. 
 Hadamard gives an example of a uniformly rotating disc, which has a jump 
discontinuity [∂xi / ∂t] in the velocity vector field at its rim.  Inside the disc, there is a 
velocity potential of the form φ = kθ, where k is a constant and tan θ  = y/x. 
 From a previous result in no. 93, it follows that a second-order discontinuity of order 
one should produce first order discontinuities of order zero.  That is, a vorticial 
discontinuity should produce discontinuities in the deformation gradient. 
 Next, Hadamard returns to the case of a gaseous medium in which one has a second-
order discontinuity across a hypersurface S, but one does not assume compatibility.  He 
then shows that normal waves must be produced.  First, he shows this in the case where 
the derivatives of index zero are normal to S, and then in the general case, by drawing 
upon the previous result concerning liquids that transverse discontinuities must be 
stationary. 
 Considering that the book was written in 1903, Hadamard observes that up to that 
point in the history of hydrodynamics, the most important mathematical advances seemed 
to be related to the conservation of vorticity and circulation along fluid flows that had 
been investigated by Helmholtz and Lord Kelvin.  For instance, one might confer the 
definitive treatise of Poincaré [1893] on the subject of vortex theory in that era. 
 By definition, if γ is a loop in a moving fluid with a flow velocity vector field 83 vi(xj) 
then the circulation of vi around γ is defined to be the loop integral: 
 

Γ[γ] = i
iv dx

γ∫ . 

                                                
 83 Actually, the most mathematically precise way of describing the vi is to call them the components of 
the covelocity 1-form v = vi dxi, which is then a covector field, not a vector field.  This is because the best 
way of defining integrals over curvilinear regions in space is in terms of exterior differential forms.  
However, the distinction between vector fields and covector fields only becomes unavoidable in relativistic 
continuum mechanics, where one raises and lowers indices with a less trivial metric tensor field than the 
Euclidian one that non-relativistic continuum mechanics assumes.  Hence, as mentioned above, we shall 
not give into the temptation to drift too far from the subject of the treatise in question by discussing those 
modern aspects of the theory, except casually. 
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The Kelvin circulation theorem (see, e.g., Saffman [1992]) says that this circulation is 
conserved along the flow. 
 Several questions then arise concerning the effect of non-vanishing vorticity on the 
validity of the results above.  One finds that the mere existence of non-vanishing vorticity 
does not affect their validity since propagating hydrodynamical discontinuities are 
normal, not transverse.  Similarly, the conservation of circulation is not affected by the 
presence of a singular surface for a wave since the circulation integral involves only first- 
order derivatives.  One can conclude from this that acceleration waves cannot produce 
vortices, which is an important consequence in the eyes of hydrodynamics. 
 Hadamard then considers the way that the earlier discussion of shock waves needs to 
be modified in order to account for the extra spatial dimensions.  One finds that the one-
dimensional compatibility conditions [p] = − ρ0 c

2[ω], where ρ0(a) is the initial density 
and ω = ∂x / ∂a now take the form: 

[p] ni = − ρ1 c
2 λi , 

 
in which ρ1 is the density in the region that precedes the singular surface; i.e., the 
undisturbed region.  The difference in form is due to the fact that in the one-dimensional 
case one was assuming that the initial state of the gas was its present state, while in the 
three-dimensional case this was no longer assumed. 
 Nevertheless, the Hugoniot adiabatic remains unchanged by the expansion of 
dimension.  Consequently, contrary to the previous non-existence result for vortices in 
the context of acceleration waves, one finds that shock waves are indeed capable of 
producing vortices.  This is another deep consequence of Hadamard’s analysis in the eyes 
of hydrodynamics, and he defers its actual proof to an appendix. 
 
 
 § 8.  Notes on Chapter VI.  The primary objective of this chapter is to apply the 
methods that were previously defined in general to waves that propagate in elastic media.  
Here, there is a considerable difference in the treatment of the subject depending upon 
whether one is concerned with infinitesimal deformations or finite ones.  This essentially 
amounts to the statement that if a medium that supports the propagation of waves is 
regarded as a spatial distribution of oscillators then there is a considerable difference 
between the behavior of linear oscillators, which generally appear when one makes 
small-amplitude approximations, and nonlinear oscillators, whose behavior is already 
quite complicated. 
 Elastic media, which include some solid media as well as most compressible fluids, 
are considerably more involved in terms of their mechanical properties than the fluid 
media that were treated up to this point in the book.  For one thing, there is generally a 
distinguished state of the medium that is defined by the equilibrium state of the body in 
the absence of applied loads.  Hence, since the spirit of elastic deformation is related to 
the idea that the work done deforming an elastic body is completely reversible and path-
independent, one can introduce the potential energy of the body and characterize the 
equilibrium state as a state of minimum energy. 
 Interestingly, as Volterra showed in 1907, the equilibrium state does generally not 
have to be a state of vanishing strain or stress, although that is true when the body is 
simply connected.  For instance, if you bend a cylindrical rod into a torus and fuse the 
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end faces together then when you remove all external loads the resulting body will be in 
equilibrium, even though it has it is in a state of non-vanishing strain.  However, not all 
non-simply connected bodies must be in a state of non-vanishing strain, as the example of 
an initially unstrained elastic sheet with a hole punched out of it shows, if one ignores the 
strain that is introduced by the act of punching the hole.. 
 It is customary to use the equilibrium state – or natural state – of the body as a 
reference configuration for the sake of defining coordinate systems, rather than the 
present state.  Hence, one generally addresses the deformation of elastic bodies in terms 
of the Lagrangian formalism.  One can also attribute this to the fact that the fundamental 
object in elasticity is the displacement vector field u that is defined by a deformation, 
rather than the velocity vector field v of a fluid flow.  Another consequence of using the 
Lagrangian viewpoint is that one can use partial time derivatives instead of the convected 
ones. 
 In the approximation of infinitesimal deformations the distinction between initial and 
present state is moot and the Eulerian viewpoint agrees with the Lagrangian one.  
Furthermore, one usually derives linear systems of partial differential equations in that 
approximation, so the analysis is generally simpler.  Hence, most of the empirical data 
that is catalogued for elastic materials in handbooks is oriented towards their properties 
under small deformations.  The properties of elastic materials as one goes beyond the 
linear limit become increasingly complex and phenomenological in character.  Generally, 
linear elasticity first turns into nonlinear elasticity until one reaches the yield point of the 
material, after which elastic deformation turns into plastic deformation, and eventually 
concludes with fracture.  However, no general expression for this behavior seems even 
possible, and one sometimes approximates it with idealized models of elastic-plastic 
behavior, such as piecewise linear functions or polynomials. 

 When an infinitesimal strain eij on a body B ⊂ R3 produces an infinitesimal stress σij , 

one calls the function on the body: 
W(xi, eij) = σij eij 

 
the deformation energy density.  Its integral over B gives the total work done deforming 
the body. 
 A functional relationship σij = σij (xi, eij) is called a constitutive law or response 
function for the material that B is composed of.  If one has W to begin with then one can 
also obtain this relationship from the definition: 
 

σij =
ij

W

e

∂
∂

. 

 
However, nowadays this possibility is not regarded as the most general response function 
and when this is the case, one calls the medium hyperelastic (see Truesdell [1961]).  
Hence, one must keep in mind that the media that Hadamard treated fell into this 
category. 
 Most commonly in practice, one considers linear constitutive laws of the form: 
 

σij = Cijkl(x) ekl . 
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When the functions Cijkl(x) are constants, one calls the material homogeneous, as well as 
linear.  The deformation energy density then becomes a quadratic form that is defined by 
the part of the tensor C = Cijkl dxi ⊗ dxj ⊗ dxk ⊗ dxl that is symmetric in the pair ij , 
symmetric in the pair kl, and symmetric under the exchange of these two index pairs.  
Such a deformation energy density W must necessarily be homogeneous of degree two in 
the infinitesimal strain.  By Euler’s theorem on homogeneous functions, one then must 
have: 

W =
1

2 ij
ij

W
e

e

∂
∂

=
1

2
σij eij =

1

2
 Cijkl eij ekl . 

 
 A particular type of material that gets a lot of attention is that of an isotropic material, 
for which the components Cijkl(x) are invariant under the transformations that arise from 
rotations of the ambient space.  In such a case, one has a constitutive law of the form: 
 

σij = µ eij + λ ekk δij , 
 

in which the functions λ, µ, when they are constant, are called the Lamé constants of the 
material and can be related to tabulated data, such as the Young modulus and the shear 
modulus for the material. 
 A fluid medium is characterized by the fact that it is isotropic and does not support 
strains or shearing stress.  Hence, in the absence of viscosity the stress tensor reduces to 
the pressure times the identity matrix: 

σij = pδij . 
 
However, viscosity couples a shearing stress to the rate of deformation ∂eij / ∂t, which is 
also the infinitesimal strain in the flow velocity vector field. 
 In the isotropic case, the quadratic form defined by Cijkl takes the form: 
 

W[eij] = µ eij eij + λ (ekk )
2. 

 
 The equations of motion for a time-parameterized family of deformations, which is 
then described by a time-varying displacement vector field ui(t, xi), are derived from the 
balance law for linear momentum – i.e., Newton’s second law of motion – and take the 
form: 

2

2
iu

t
ρ ∂

∂
= σij

,j + fi , 

 
in which fi represents the external forces acting on the points of B, while the divergence 
of the stress tensor gives the force that acts on its boundary surface. 
 In the linear, isotropic, homogeneous case this takes the form: 
 

2

2
iu

t
ρ ∂

∂
= µ∆ui + (λ + µ)

2
j

i j

u

x x

∂
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 + fi , 
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 Customarily (see, e.g., Landau and Lifschitz [1959]), one decouples this equation in 
the unforced case into a pair of linear wave equations that describe longitudinal and 
transverse waves: 

2
2

2
i

l i

u
c u

t

∂ − ∆
∂

= 0,  
2

2
2
i

t i

u
c u

t

∂ − ∆
∂

= 0, 

in which the speeds of propagation are defined by: 
 

cl =
2µ λ

ρ
+

,  ct =
µ
ρ

. 

 
The longitudinal wave is coupled to the infinitesimal dilatation by way of λ, so it is a 
compression wave.  However, the transverse wave is coupled to only the shear part of the 
infinitesimal strain, so it is a shear wave. 
 Since none of the material parameters ρ, λ, or µ are negative, both of the propagation 
speeds are real numbers. 
 A complete statement of a problem regarding the motion of B generally involves 
specifying not only the Cauchy data at some initial time point, but also the boundary data 
for ∂B.  For instance, one might specify a particular surface motion − independent of the 
motion that it gets from solving the Cauchy problem – or perhaps a given external 
pressure that acts on the boundary surface. 
 Of course, this implies the possibility that the specified boundary data might be 
inconsistent with the data that one derives from the equations of motion, such as a 
disagreement between the values of the surface acceleration.  However, this is exactly the 
sort of situation that Hadamard has been addressing all along, so in such a case one 
regards ∂B as a singular surface. 
 Let λi = [∂2ui / ∂t2] be the components of a jump discontinuity in the acceleration 
across ∂B, while ni are the components of the unit normal to that surface, and c is the 
speed of propagation. 
 From the equations of motion, one derives a compatibility equation for this jump: 
 

(ρc2 − µ)λi = (λ + µ)(λj nj) ni . 
 
One can then distinguish two types of solutions to these equations:  the longitudinal ones, 
for which the jump in the acceleration is normal (λi = αni), and for which the speed of 
propagation is cl, as above, and the transverse solutions, for which the jump is tangential 
to ∂B (λj nj = 0) and makes ct take on the previously-described value.  A more general 
discontinuity can be decomposed into a normal and transverse part, which then produce 
longitudinal and transverse waves independently, due to the linearity of the equations of 
motion. 
 Hence, the results of compatibility considerations for jump discontinuities in the 
acceleration on the boundary surface are entirely consistent with the more general 
discussion that pertained to simply the form of the equations of motion. 
 One finds that the longitudinal waves have constant infinitesimal rotation – i.e., 
vanishing vorticity – while the transverse waves have constant density gradient. 
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 If the singular surface is internal to B then, as Hadamard asserts, there will be one 
longitudinal wave and three transverse ones. 
 Previously, Christoffel showed that a discontinuity in the stress across the boundary 
surface would not produce an acceleration wave, but a shock wave. 
 Hadamard does not treat the case of anisotropic elastic media in the infinitesimal 
case, but returns to it later in the context of finite deformations.  The usual modern 
treatment (Landau and Lifschitz [1959] or Brekhovskikh and Goncharov [1994]) of 
waves in anisotropic media in the regime of small amplitudes – i.e., infinitesimal 
deformations – is entirely analogous to the Fresnel analysis of the dispersion law for the 
propagation of electromagnetic waves in crystal optics (see Landau, et al. [1984] or Born 
and Wolf [1980]), except that electromagnetic waves do not have longitudinal modes; we 
shall return to this subject shortly. 
 If one wishes to pose the problem of determining the motion of an anisotropic 
deformable body B when one considers the deformations to be finite then the first thing 
that one must address is the choice of formulation, viz., Lagrangian or Eulerian.  
Customarily, in elasticity one chooses the Lagrangian viewpoint by regarding the natural 
state as the reference configuration for B and describing its points by means of the 
coordinates ai , i = 1, 2, 3.  The points of B as it moves through space are then defined by 
spatial coordinates xi(t, aj), such that for each value of t the correspondence between each 
ai and xi(t, aj) is invertible, as well as the Jacobian matrix ∂xi / ∂aj of the transformation.  
Indeed, one deals primarily with ai(t, xj) and aij = ∂ai / ∂xj . 
 In order to obtain the equations of motion for finite deformation, Hadamard chooses 
to employ a variational formulation of those equations as the Euler-Lagrange equations 
for an appropriate action functional.  First, he derives the equations of static equilibrium 
from using the deformation energy density W(xi, ai, aij) as the Lagrangian density for the 
action functional: 

S[ai] = ( , , )i i ijB
W x a a dxdydz∫ , 

 
so the action that is associated with the deformation is the total work done by the 
deformation.  Clearly, this assumes that the material that B is compressed of is 
hyperplastic. 
 The first variation functional δS[.] for this action functional takes a variation δai of 
the natural state, which is best regarded as a vector field on B to the number: 
 

δS[δai] = i j iB B
i ij

W W
a dxdydz a dS

a a

δ δ δ
δ ∂

   ∂+     ∂   
∫ ∫ , 

in which: 

i

W

a

δ
δ

=
i j ij

W W

a a a

∂ ∂ ∂−
∂ ∂ ∂

 

 
is the variational derivative of W with respect to ai . 
 An extremal of the action functional is a static configuration ai(xj) that makes the first 
variation functional vanish for any variation δai that satisfies some set of boundary 
conditions that usually have the effect of making the boundary integral vanish.  The 
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necessary and sufficient condition for a static configuration to be an extremal is then the 
vanishing of the variational derivative, which gives the Euler-Lagrange equations: 
 

i

W

a

δ
δ

= 0. 

 
 Hadamard restricts W to be spatially homogeneous, so ∂W / ∂ai vanishes, and the 
equations of static equilibrium become: 
 

0 =
j ij

W

a a

∂ ∂
∂ ∂

= ij

ja

σ∂
∂

. 

 
 In order to go from elastostatics to elastodynamics, he then uses d’Alembert’s 
principle, which amounts to saying that dynamic extremals are static extremals in 
spacetime when one includes the “inertial forces” Fi − ρ ∂2xi / ∂t2, which gives the 
equations of motion: 

ρ 
2

2
ix

t

∂
∂

= ij

ja

σ∂
∂

+ Fi , 

 
 Hadamard then verifies that these equations produce the hydrodynamical equations of 
motions that he previously treated by using W = W(det aij) ≡ W(D) and setting the 
pressure p equal to – ρ0 dW / dD. 
 We shall summarize the general flow of ideas in the remainder of the chapter as they 
were explained later in Truesdell [1961]. 
 Consider a singular surface S in a body, which can be a boundary or an internal 
surface, and whose unit normal vector field is n.  Assume that there is a second-order 
discontinuity in the kinematical state across S. 
 The jumps [aa

,ij] and [ ]aaɺɺ  must then satisfy kinematical compatibility conditions: 
 

[aa
,ij] = αa ab

,i a
c
,j nb nc , [ ]aaɺɺ = c2αa 

 
for some vector αa and scalar c.  If one recognizes that the differential map ab

,i to the 
deformation can be used to pull back components of covectors from the initial (i.e., 
reference) state to the present state then one can define ni = ab

,i nb to be the components 
of the unit normal relative to the present state and the first condition takes the form: 
 

[aa
,ij] = αa ni nj . 

 
 One also assumes a dynamical compatibility condition for the jump in the Cauchy 
stress tensor tab: 

[tab]nb = 0. 
 
 The stress tensor that one uses in the present state is the two-point tensor: 
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Tia(aa, xi(a)) = ρ0 / ρ tab xi
,b, 

 
that one calls the Piola-Kirchhoff tensor (in addition to the references by Truesdell, see 
also de Veubeke [1979]).  In this definition ρ0 is the mass density of the object in the 
reference state, while ρ is its mass density in the present state. 
 One then expresses the constitutive law in the form Tia = Tia(aa

,j , eA), in which eA, A = 
1, 2, 3 is an orthonormal triad at each point of the deformed state.  This puts Cauchy’s 
law of motion (balance of momentum) into the form: 
 

Tia
,i + ρ0 f

a = ρ0[ ]aaɺɺ . 
 
 Define the fourth-rank tensor field: 
 

Aab
ij(xi

,a , eA) ≡
,

i
a
b
j

T

a

∂
∂

. 

 
 The equations of motion then take the form: 
 

Aab
(ij)ab

,ij + ,

a
bi
A ib

A

T
e

e

∂
∂

+ ρ0 f
a = ρ0[ ]aaɺɺ . 

  
If one assumes that the only variables that experience a jump discontinuity across S are 
the second-order kinematical ones above then when the compatibility conditions are 
applied to this equation, one ultimately deduces the following propagation condition for 
the vector αa: 

Qa
b(n)αb = ρ0c

2αa, 
 
in which we have defined: 

Qab(n) = Aab
(ij)ap

,i a
q
,j np nq . 

 
If we understand that Aab

(pq)= Aab
(ij)ap

,i a
q
,j are the components Aab

(ij) pulled back to the 
initial state then we can say that: 
 

Qab(n) = Aab
(pq)

 np nq . 
 
One refers to the tensor field Q(n) = Qab(n) daa ⊗ dab as the acoustic tensor field for n. 

 The symmetric part of Q(n), namely Q(ab)(n) daadab defines a quadratic form on R3 

and has an associated ellipsoid defined by: 
 

Q(ab)(n) lalb = 1 
 
that one calls the polarization ellipsoid, which is analogous to the one that one defines in 
electromagnetism as a consequence of Fresnel analysis. 
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 In the case of hyperelastic materials, which are the ones that Hadamard is concerned 
with, the components Qab(n) are automatically symmetric.  Hence, the eigenvalues of 
Qa

b(n) are real and there exists at least one orthonormal triad of eigenvectors for Qa
b(n).  

If we return to the propagation condition above then we see that it simply says that a 
must be one of those eigenvectors and the corresponding eigenvalue is ρ0c

2. 
 Hadamard then asserts that is the desired extension of the result that was established 
for infinitesimal deformations of isotropic media, which Truesdell [1961] calls the 
Fresnel-Hadamard theorem:  For each wave normal vector n that lies on the polarization 
ellipsoid there are three mutually orthogonal directions lA, A = 1, 2, 3 in which second 
order discontinuities can propagate, namely, the principal directions of that ellipsoid, and 
the eigenvalues that correspond to the eigenvectors are then proportional to the squares of 
the propagation speeds in those principal directions. 
 Hence, in order for these speeds to be real the eigenvalues must be positive; in other 
words, the quadratic form Q(n) must be positive-definite.  This condition has much 
deeper physical ramifications. 
 We point out that, in general, the principal axes for the acoustic tensor – i.e., the 
acoustic axes – are distinct from the principal axes for the strain or stress tensors.  
However, this is the case in an isotropic medium, and, as a result, one sees that a 
principal wave must be either transverse or longitudinal, but not a combination of both. 
 In the case of liquids, c2 = dp / dρ, which is positive iff the equilibrium state of the 
fluid is stable.  Hence, one suspects that the issue associated with the reality of the 
polarization ellipsoid is the stability of the equilibrium state of the deformable body. 
 In the case of anisotropic solid media, the stability of equilibrium is more involved 
than it is for fluids.  In particular, one needs to consider the second variation of the action 
functional, since equilibrium state itself is obtained from the first variation.  One can 
think of this situation as a sort of infinite-dimensional analogue of the situation that one 
considers in the study of critical points of differential functions of a finite number of 
variables, although in practice that analogy is more heuristically probative than 
computationally useful. 
 When Duhem [1905] published his own work on elastic stability, he suspected that 
the discussion that Hadamard gave to elastic stability had flaws in the proof of his basic 
result.  However, in 1946 Cattaneo gave a rigorous proof that confirmed it. 
 The Legendre sufficient condition for an extremal to be a (weak) local minimum of 
the action functional is that the quadratic form defined by the Hessian ∂2W / ∂aij ∂akl be 
positive definite.  However, the real issue is the positive definiteness of the second 
variation functional δ2S[δaij , δ′aij], as a quadratic form on the infinite-dimensional vector 
space of variations, such as δaij and δ′aij .  Hence, one must regard this problem as 
defining a strong minimum, since the positive-definiteness of this functional does not 
have to imply the positive-definiteness of ∂2W / ∂aij ∂akl , although the converse is true. 
 One can easily convert the Hessian ∂2W / ∂aij ∂akl to one of the form ∂2W / ∂eij ∂ekl , 
which then gives a quadratic form of the form: 
 

S[δaij , δakl] =
2

ij kl

W

e e

∂
∂ ∂

δaij δakl + Ψ[δeij , δekl], 
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whose positive-definiteness gives the desired stability condition. 
 Truesdell asserts that this is equivalent to the condition: 
 

A(ab)
(ij) la lb λi λj > 0  for all  la, λi, 

 
which he calls strong ellipticity, since it is intimately related to the symbol of the 
nonlinear differential operator that defines the equations of equilibrium for finite strains.  
This is the clarification of one his remarks in the second section of these notes that was 
previously promised. 
 Strong ellipticity can also be expressed in the form: 
 

Q(ab)(n) la lb > 0   for all n, l. 
 
Hence, it is equivalent to the positive-definiteness of the acoustic tensor for all n.  As one 
corollary, one sees that strong ellipticity is a sufficient condition for the reality of the 
speeds of propagation, and another says that this is always true in any isotropic material. 
 Hadamard shows that this is indeed consistent with the hydrodynamical condition 
when one substitutes the simplifying expressions that pertain to that case. 
 He then returns to an earlier question that was posed for the propagation of waves that 
involve finite deformations in isotropic media.  He proceeds by analogy with the Fresnel 
analysis in crystal optics for anistropic media.  However, when he reduces to the isotropic 
case, he obtains a negative result for the proposed extension.  That is, unlike waves of 
infinitesimal deformations, waves of finite deformations in isotropic media are not solely 
longitudinal or transverse in general, but a combination of both. 
 
 
 § 9.  Notes on Chapter VII.  This chapter is concerned with the theory of 
characteristics for hyperbolic second order partial differential equations.  As Hadamard 
pointed out later in his Yale lectures [1922], the issues discussed in this chapter defined 
the starting point for that subsequent examination of the Cauchy problem in a purely 
mathematical context, rather than in the context of continuum mechanics that the present 
monograph centers around. 
 Since Hadamard had previously discussed the role of characteristic curves in the 
chapter on one-dimensional gas dynamics, the first section of this chapter represents the 
extension of that study to spaces of higher dimensions than just one, namely, dimension 
n. 
 The appearance of characteristic hypersurfaces is intimately related to the existence 
and uniqueness of solutions to the Cauchy problem, so we pose that problem in the 
present n-dimensional case for quasilinear second-order partial differential equations in 
scalar functions.  However, many of the key notions can be generalized to higher-order 
partial differential equations and vector-valued functions (see, e.g., John [1982] or 
Folland [1976]). 
 A quasilinear second-order partial differential equation in a scalar function u on some 

region V in Rn takes the form: 
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(*)     0 = 
2

( , , ) ( , , )ij k k
k ki j

u
a x u u f x u u

x x

∂ +
∂ ∂

, 

 
in which the function f(xk, u, uk) need not be linear in (u, uk).  Note that the symmetry of 
aij in its indices must follow naturally from the symmetry of mixed partial derivatives. 

 Suppose that one is given a hypersurface S in Rn, which we express by making the 

coordinate system that we use be one that is adapted to the function that defines the 
hypersurface; i.e.: 

xn = xn(x1, …, xn−1). 
 
 Now, suppose that we are given a function u0 on S.  As long as one is assuming that 
u0 is at least C1 on S, one sees that the tangential derivatives u0i, i = 1, …, n − 1 of u0 are 
uniquely defined by a choice of u0, so the only undetermined first derivative that can be 
defined arbitrarily must be the normal derivative u0n .  Hence, the Cauchy data for the 
Cauchy problem that is defined by our quasilinear partial differential equation above on 
the Cauchy hypersurface S – namely, {u, un} − is the analogue of the corresponding 
initial-value problem for each point of S had we defined a system of ordinary differential 

equations, namely: Given u0 and u0n on S, find a u on Rn (or, at least, some neighborhood 

of S) that satisfies the partial differential equation in question and agrees with the Cauchy 
data on S. 
 When one goes to the next level of differentiation, one sees that if u0 is assumed to be 
at least C2 then, similarly, the tangential second derivatives uij, i, j = 1, …, n – 1 are all 
uniquely determined by the choice of u0, and cannot be assigned arbitrarily.  The question 
then arises whether the second partial derivatives uin and unn can be determined arbitrarily 
when one also assumes that the differential equation (*) is in effect, along with the 
Cauchy data on S. 
 First, one sees that the functions aij(xk, u, uk) and  f(xk, u, uk) are uniquely determined 
when one sets xk = 0

kx , u = 0( )ku x , uk = 0( )k
ku x .  We expand the highest-order term in 

equation (*) to: 
ann unn + 2ain uin + aij uij 

 
Furthermore, on S, one also has that since xn is a function of the remaining coordinates, 
one must have: 
 

2
0

n i

u

x x

∂
∂ ∂

=
2 2

0 0

0 0

n

n i i n n

u ux
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, 
2

0
i j

u

x x

∂
∂ ∂

=
2 2

0 0

0 0 0 0

n n

i j i i n n

u ux x

x x x x x x

∂ ∂∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂

. 

 
If we introduce the notation Ki = ∂xn / ∂xi, i = 1, …, n − 1 then the leading-order terms in 
(*) take the form: 

(ann + 2ain Ki + aijKi Kj) u0nn + 
2 2

0 0

0 0 0

2 ni ij
n i i j

u u
a a

x x x x

∂ ∂+
∂ ∂ ∂ ∂

. 
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Hence, if u0 is consistent with the differential equation then one can solve for u0nn as long 
as one does not have: 

0 = ann + 2ain Ki + aijKi Kj . 
 
This can also be regarded as a partial differential equation for xn; i.e., a compatibility 
condition on the Cauchy hypersurface S.  When this condition is satisfied, one refers to 
the hypersurface S as a characteristic hypersurface. 
 Now, one can regard the Ki as inhomogeneous coordinates for the projective space 

RPn−1 and introduce the homogeneous coordinates by way of Ki = ki / kn , where kn ≠ 0 so 

the characteristic equation takes the form: 
 

aµν kµ kν = 0,  µ, ν = 1, …, n. 
 
 The character of this hypersurface depends upon the character of the symmetric real 
matrix aµν, which one calls the principal symbol of the second-order partial differential 
operator that we are considering.  By Sylvester’s principle of inertia, there is a matrix T µ

ν  

that makes T T aµ ν κλ
κ λ = diag[−1, …, −1, +1, …, +1] with p negative signs and q positive 

ones; one then calls the ordered pair (p, q) the signature type of aµν, while the signature is 
defined to be q – p. 
 When aµν is either positive definite (q = 0) or negative definite (p = 0) the only real 
solution to the characteristic equation is 0.  In such a case – namely, the elliptic case – 
one can always compute u0nn from the given data. 
 When aµν has a Lorentzian signature type, so either p = 1, q = n – 1 or p = n – 1, q = 

1, the hypersurface takes the form of a generalized cone in Rn, since the line through any 

point on the hypersurface and the origin will be contained in that hypersurface.  The 

shape of its spatial generator in RPn−1 will take the form of an ellipsoid when n = 4.  If 

one regards the homogeneous coordinates kµ as describing points of the cotangent bundle 
T*M in a local coordinate system (xµ, kµ) then when the signature type of aµν is 
Lorentzian the characteristic equation that it defines can either describe a hypersurface in 
T*M when the functions aµν(xµ, kµ) are allowed to vary freely, and which Hadamard calls 
the characteristic conoid, or a hypersurface in each cotangent space when one fixes xµ, 
and he calls this the characteristic cone (at x). 
 Hadamard singles out the case of a symbol with multiple characteristics as being 
associated with points where aµν(xµ, kµ) does not have maximal rank, which is then the 
parabolic case.  For instance, each component of aµν(xµ, kµ) might be itself a quadratic 
form aµνκλ(x)kκ kλ whose vanishing defines a conoid in T*M, as well.  The zero locus of 
aµν(xµ, kµ) could then consist of intersecting cones in each cotangent space or a more 
elaborate self-intersecting quartic, which is analogous to the situation one encounters in 
Fresnel analysis that leads to birefringence (double refraction) or conical refraction, 
respectively (see, e.g., Landau, et al, [1984] or Born and Wolf [1980]).  However, in that 
analysis the components aµνκλ(x) of the quartic form come about from a slightly different, 
but related, procedure to that of simply taking the principal symbol of the differential 
operator in question. 
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 The symbol of the second-order quasilinear differential operator considered defines a 
generally nonlinear first-order partial differential equation: 
 

( )
S S

g x
x x

µν
µ ν

∂ ∂
∂ ∂

= 0. 

 
In this formulation, we are assuming that our second-order differential operator is 
hyperbolic, so we have changed our notation for the coefficients of the leading term from 
aij to gµν, and we are assuming that they do not depend explicitly upon u.  The equation 
that we have defined on spacetime manifold M is a homogeneous form of the Hamilton-
Jacobi equation, and when one restricts it to a spatial submanifold by considering only 
stationary wave functions one obtains the eikonal equation of geometrical optics. 
 The function S(xµ) on M is called the phase function for the wave function u(xµ) that 
solves our wave equation.  This is because the way that one associates the latter first-
order partial differential equation with the original second-order differential equation (*) 
is by way of the geometrical optics approximation, which we will discuss later in the 
context of linear wave equations. 
 We define the function F(xκ, kκ) on T*M by way of: 
 

F(xκ, kκ) = 1
2 gµν(xκ, kκ)kµ kν  . 

 
 The function F can be regarded as a Hamiltonian function on the phase space that is 
defined by T*M, and its associated canonical equations are: 
 

dx

d

µ

τ
= gµνkν ,  

dk

d
µ

τ
= − 1

2  gκλ
, µ kκ kλ  . 

 
 These equations are a specialized form of the characteristic equations for the first-
order partial differential equation F(xκ, S,κ) = 0.  For a more general equation, F is a 

function on J1(M, R) with the local form F(xκ, u, uκ) and the resulting characteristic 

equations are: 
dx

d

µ

τ
= 

F

kµ

∂
∂

, 
du

dτ
=

F

kµ

∂
∂

kµ ,  
dk

d
µ

τ
= − F F

k
x u µµ

∂ ∂ + ∂ ∂ 
. 

 
As one sees, these equations reduce to the previous form when F does not depend upon u 
as long as: 

0 =
F

kµ

∂
∂

kµ  = 
dx

d

µ

τ
kµ  . 

 
In the case of F that we defined above, this expression takes the form 0 = gµν kµ  kν , which 
amounts to restricting kµ to be a characteristic covector.  This has the effect of saying that 
the velocity vector for the motion of the wave must be tangent to the characteristic 
hypersurface, which forces the characteristic curves to lie in it. 
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 Since we are now using the word “characteristic” in two different senses, in order to 
avoid ambiguity, Hadamard suggests using the term bicharacteristics for the 
characteristic curves of the first-order partial differential equation that is defined by the 
characteristic hypersurface of the original second-order one.  When space is one-
dimensional, the situation is confused further by the fact that the hypersurfaces are also 
curves.  In optics, the characteristic hypersurfaces represent elementary propagating wave 
fronts at each point of M, such as expanding spheres, while the bicharacteristic curves 
represent the light rays that come about in the geometrical optics approximation. 
 Since the recurring theme of this book is that waves are best mathematically 
represented by propagating discontinuities, one finds that the relevance of characteristics 
and bicharacteristics to discontinuities is based in the fact that a second-order 
discontinuity in a wave function across a singular hypersurface represents a non-
uniqueness in its second derivatives across that hypersurface.  However, as we have seen, 
the only way that this is possible is when the hypersurface is characteristic.  One then has 
the corollary that discontinuities must propagate along bicharacteristics.  Hence, the 
association of propagating second-order discontinuities with waves seems quite natural.  
It is also a consequence of the kinematical compatibility conditions, which make the 
discontinuity transverse to the singular hypersurface and the velocity normal to it. 
 As Hadamard points out, an important class of transformations is defined by wave 
motion, namely, contact transformations.  Primarily, they take solutions of the Hamilton-
Jacobi equation to other solutions.  If one thinks of the pair (x, k) ∈ T*M as representing a 
hyperplane in the tangent space at x − viz., the hyperplane k(v) = 0 – then one sees that if 
this hyperplane is tangent to a wave hypersurface, which was once referred to as first-
order contact, then one sees that contact transformations take hyperplanes tangent to the 
characteristic hypersurface to other such hyperplanes.  Hence, they must preserve the 
characteristic hypersurface, as well as the bicharacteristic curves. 
 When Hadamard applies the method of characteristics to waves in gases and 
compressible fluids he deduces consistent conclusions, that if the discontinuity is normal 
to the (spatial) wave surface then the wave surface must be characteristic and the 
bicharacteristics must be normal to that wave surface (this assumes that one is using the 
Eulerian viewpoint for the dynamical model).  In the case of three-dimensional elasticity, 
he finds that in an anisotropic medium, a given wave surface is compatible with three 
types of discontinuities: one normal and two transverse ones, while in an isotropic 
medium, there is one normal type and one transverse type. 
 In the second section of Chapter VII, Hadamard focuses on applying the methods of 
characteristics to the problem of proving the actual existence of solutions to the Cauchy 
problem.  Prior to the publication of his book, existence proofs for restricted cases of the 
Cauchy problem had been known to Cauchy, Kowalevski 84, Goursat, and Beudon. 
 The Cauchy-Kowalevski theorem asserted the existence of a unique local solution 
about each point of a non-characteristic Cauchy hypersurface when the Cauchy data, as 
well as the coefficients of the differential equation, were analytic.  What Goursat had 
shown was that when one is given an analytic partial differential equation for a scalar 
function u(x, y) of two independent variables x, y: 

                                                
 84 Since there are numerous alternate spellings of this last name, we defer to the argument of Fritz John 
[1982], who points out that the spelling that Sonja Kowalevski herself used in the papers that she submitted 
to the Acta Mathematica was the one we have chosen. 
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F(x, y, u, ux , uy , uxx , uxy, uyy) = 0, 
 
i.e., F is analytic, and two intersecting curves γ1, γ2 that are tangent to the characteristic 
curves through the point of intersection then if one is given analytic Cauchy data for u on 
both characteristics there will be a unique solution u to this variation of the Cauchy 
problem. 
 A corollary to this is the fact that if u is given on only one of the characteristic curves 
then there will be an infinitude of solutions, which suggests what breaks down when the 
Cauchy problem is defined upon a characteristic initial hypersurface. 
 What Beudon contributed was the extension of this result to the case of an arbitrary 
finite number of independent variables; i.e.: 
 

F(xi, u, ui , uij) = 0. 
 
One must then consider two intersecting initial hypersurfaces that are tangent to the 
characteristic hypersurfaces at the curve of intersection. 
 Hadamard then proposes to prove Beudon’s result under the slightly weaker 
hypothesis that only one of the initial hypersurfaces needs to be characteristic.  He 
deduces an analogous result that includes the corollary that when the Cauchy data is 
defined upon a characteristic initial hypersurface there will be an infinitude of solutions 
to the Cauchy problem. 
 He applies his result to various problems in hydrodynamics, such as the crossing of 
irrotational waves, which then admit velocity potentials.  One can then obtain the 
resulting motion after the crossing in the case when the wave surfaces are analytic, along 
with the motion of the fluid. 
 Next, Hadamard generalizes his existence result to the case of systems of second-
order partial differential equations for vector-valued wave functions ua(xi): 
 

( , , , )b i a a a
i ijF x u u u = 0,  a, b = 1, 2, 3. 

 
 He then applies this to the initial-value problem in gas dynamics in which both the 
initial motion of the gas and the motion of the boundary that encloses it are given.  One 
also assumes that the fluid and the wall are in constant contact and that the new motion of 
a wave agrees with the original one.  As long as the intersection of the wave with the wall 
is not tangent to a bicharacteristic, one can determine the resulting wave uniquely.  
However, the method does not apply to the crossing of waves in this case. 
 In the final section of this chapter, Hadamard examines the form that the analysis 
takes when one restricts oneself to linear second-order partial differential operators, 
which then take the form: 

L = 
2

( ) ( ) ( )ij i

i j i
a x b x c x

x x x

∂ ∂+ +
∂ ∂ ∂

. 

 
 For the case where the operator L is the d’Alembertian operator: 
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□= 
2

x x
µν

µ νη ∂
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=
2 2

2 2

1 ij

i jt c x x
δ∂ ∂−
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, 

 
solutions to the stationary initial-boundary-value problem had been found by Poisson and 
Kirchhoff.  One seeks solutions of the form: 
 

u(t, xi) = T(t)φ(xi), 
 
which converts the linear wave equation □u = 0 into the pair of equations: 
 

2
2

2

d T
T

dt
ω+ = 0, ∆φ + (ω/c)2φ = 0, 

 
when one introduces the separation constant ω, which then represents the frequency of 
the elementary oscillators that define the wave medium. 
 The first of these equations can be solved by the pair of sinusoidal functions: 
 

T(t) = e±iωt. 
 
 The second is a spatial second-order partial differential equation that one refers to as 
the Helmholtz equation.  Its solution φ essentially defines the shape of the wave envelope 
for the motion.  The operator that defines it is self-adjoint for the Euclidian metric on the 
spatial manifold; hence, it is elliptic.  One can then solve the Dirichlet or Neumann 
problems for it by the method of Green or Neumann functions.  However, one must 
observe that the only way that one can specify both the boundary values of the function φ 
and its normal derivative is when these two data are compatible, as one might obtain 
when they are derived from the original Cauchy data by separation of variables. 
 Kirchhoff’s solution to the problem amounted to obtaining the Neumann function for 
the d’Alembertian operator in spherical coordinates in the form: 
 

N(xi, yi) =
( )ik r cte

r

−

, r = || x – y || = [(x1 – y1)2 + (x2 – y2)2 +(x3 – y3)2]1/2. 

 
 This is where physics usually introduces the geometrical optics approximation as a 
way of simplifying the solution of the Cauchy problem for wave motion, while one 
generally refers to the explicit solution for the wave function u as wave optics. 
 One first looks for all separable wave functions: 
 

u(t, xi) = A(x)eiS(t, x), 
 
in which A(x) is called the amplitude function for u and S(t, xi) is its phase function. 
 This converts the d’Alembertian of u into: 
 

u□ = gµν[Aµν – ASµ Sν + i(Aµ Sν + Aν Sµ + ASµν)] e
iS. 
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 One further restricts the class of wave functions by the approximation that the 
amplitude must vary slowly in space compared to the rate at which S varies, which 
amounts to a small-wavelength (or high-frequency) approximation; in practice, one might 
simply assume that the amplitude is constant.  This approximation has the effect of 
eliminating all derivatives of A.  As long as one also assumes that: 
 

0 = S□ = kµ
,µ 

 
which is a sort of incompressibility condition on the covector field kµ , one can replace 
the linear wave equation for u with the Hamilton-Jacobi equation for S: 
 

0 = gµν Sµ Sν  ; 
 
again, it would be sufficient to assume that the frequency and wave number of the wave 
are constant. 
 The resulting bicharacteristic equations: 
 

dx

ds

µ

= gµνkν = kµ,  
dk

ds
µ = − 1

2 gκλ
, µ kκ kλ , 

 
can be combined into a single system of second-order ordinary differential equations: 
 

2

2

d x
x x

ds

µ
κ λµ

κλ
 

+  
 

= 0, 

 
in which we have introduced the Christoffel symbols: 
 

µ
κλ
 
 
 

= 1
2 gµα(gακ,λ + gαλ,κ – gκλ,α). 

 
 At the present stage of history, the geometrical significance of these equations is well-
known to differential geometry and physics alike: They are the equations for the 
geodesics that are associated with the Lorentzian metric gµν by way of the Levi-Civita 
connection that it defines.  Geodesics can be regarded as the curved-space analogues of 
the straight lines that one finds in Euclidian spaces, for which the Christoffel symbols 
will vanish. 
 When one combines this fact with the fact that the velocity vector field kµ will always 
have to be characteristic – or null – one sees that the bicharacteristic curves, as light rays, 
will represent null geodesics. 
 The reason that we are using the symbol s for our curve parameter instead of τ is 
simply that in the eyes of general relativity, the differential increment dτ of the proper 
time parameter τ must always be null – i.e., gµν

 kµ kν − on light rays, so one must use 
some other parameter if one is to define non-degenerate light rays.  The usual choice is to 
make s one of the class of affine parameterizations, which then differ by the replacement 
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of s with as + b, with a ≠ 0 and b constants.  Affine parameters are characterized by the 
fact that they will put the geodesic equation into the form described above, while any 
other parameterization will introduce a non-zero contribution to the right-hand side of the 
geodesic equation. 
 The geometrical optics approximation is generally more than adequate for the most 
elementary problems of optics involving visible light wavelengths, such as describing 
reflection, refraction, and even dispersion in optical systems.  However, it breaks down 
when one goes to radio frequencies, whose associated wavelengths can be in the meters 
and more, and − more to the point – when one considers the effects of diffraction on 
wave motion.  These effects usually come about when waves of a certain wavelength 
pass through slits or edges whose characteristic dimensions are comparable to those 
wavelengths and amount to the appearance of non-zero light intensities inside the shadow 
of the obstacle.  Traditionally, they are treated by asymptotic series expansions of the 
wave functions, in which the geometrical optics approximation represents the leading-
order term and successive terms introduce the diffraction corrections.  Since Hadamard 
did not mention this topic in his book, we shall, however, suspend our commentary with 
that brief observation. 
 
 
 § 10.  Notes on the appendixes.  In general, the notes at the end of this book take up 
some of the open issues in the main body of the text.  For instance, some of the 
conjectures in earlier chapters could not be rigorously proved until material in the later 
chapters had been introduced. 
 In Note I, Hadamard returns to a statement that was established in the final chapter on 
characteristics that if two integral surfaces to the same Monge-Ampère equation are 
tangent along a line then that line must be a characteristic line.  He points out that the 
proof used breaks down when the intersection has higher-order contact than one. 
 This observation then gives way to a generalization of the Cauchy problem in which 
the Cauchy data include higher-order derivatives.  The question to be resolved is: Under 
what conditions will this generalized Cauchy problem admit a unique solution assuming 
that the Cauchy data is not characteristic?  This also suggests a generalization of the 
Cauchy-Kowalevski theorem must be posed. 
 About the same point in time when Hadamard first published this book, Holmgren 
[1904] established his uniqueness theorem (cf., e.g., John [1982], Folland [1976], or 
Hörmander [1969]), which stated, in effect, that when one is concerned a linear system of 
analytic first-order partial differential equations the only Ck, but not analytic, solution to 
the Cauchy problem with vanishing Cauchy data that is defined on some initial Cauchy 
hypersurface is the null solution. 
 Hence, the bulk of the material that is discussed in this Note is concerned with giving 
Hadamard’s proof of Holmgren’s theorem. 
 In Note II, Hadamard returns to the study of stationary discontinuities in fluids that he 
briefly introduced in Chapter V. 
 In order zero, one is concerned with discontinuities in some function, such as 
position.  Hadamard refers to such position discontinuities as “slips” (glissements), 
although nowadays it is more common to call them shears.  In order one, stationary 
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discontinuities in the velocity vector field across a singular surface are referred to as 
vortex sheets. 
 Up to the point in question in Chapter V, nothing obstructed the persistence of fluid 
shears in the absence of viscosity, but their actual creation would have been impossible 
under the assumptions that had been made.  Hence, Hadamard deferred the discussion of 
the assumptions under which fluid shears could be created to this appendix. 
 His basic observation is that nothing in the equations of motion of hydrodynamics 
forbids the existence of discontinuous solutions.  Indeed, the cavitation that occurs near 
vortices, such as propellers, suggests that such solutions occur naturally. 
 The primary purpose of this Note is to establish that cavitation is a necessary 
condition for the creation of fluid shears.  The proof is founded on the fact that at each 
instant in the motion of a fluid shear the jump in acceleration across a singular surface is 
normal. 
 In Note III, Hadamard returns to a previous observation (nos. 254-255) that the 
existence of second-order discontinuities does not invalidate the classical theorems of 
vorticity, such as the conservation of circulation and velocity potential, to give a more 
rigorous proof of that assertion. 
 As a corollary, he shows that it is entirely possible for shock waves to produce 
vortices, at least when one assumes the Poisson adiabatic.  Recall that this result was 
regarded as one of the fundamental lasting contributions from this book in the opinion of 
Truesdell. 
 When one uses the more physically realistic Hugoniot adiabatic, the quantity dp/ρ is 
not longer an exact differential, and the basic assumptions that the classical theory of 
vortices rests upon are no longer valid. 
 Finally, in Note IV the Hadamard returns to a question that had been left open in 
Chapter IV, namely: What happens to the initial/boundary-value problem when one 
includes both the initial motion of the gas in a pipe, as well as the initial motion of a 
piston, instead of only the initial motion of the gas itself? 
 Hadamard points out that the problem could be solved directly in at least one 
physically useful case, namely, the case in which the piston is assumed to exhibit uniform 
rectilinear motion, such as a fixed piston.  The solution, which involved the use of results 
that were not obtained until Chapter VII, then included the possibility of reflection of the 
wave from the fixed piston. 
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