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§ 1. 

 

 As is known from the investigations of Jacobi (*), the differential equations to which the 

determination of the maxima and minima of simple integrals leads possess the remarkable property 

that they can be transformed into a system of first-order differential equations whose integration 

is equivalent to the solution of a first-order nonlinear partial differential equation. One obtains the 

integral equations of the problem of the calculus of variations when one differentiates a complete 

integral of the partial differential equation that is connected with it with respect to its integration 

constants and sets those differential quotients equal to new arbitrary constants. 

 That interesting peculiarity of the aforementioned differential equations might seem to justify 

the question whose resolution will define the subject of the following efforts: 

 

 What property characterizes a differential equation: 

 

( , , , , )F x y y y   = 0 

 

as the equation of a problem in the calculus of variations? 

 

 The known deductions of the calculus of variations, which we would next like to recall, will 

likewise make a special property of the differential equations that we speak of emerge that will 

prove to be essentially characteristic from now on: Let 
( )( , , , , , )nf x y y y y   be a given function 

of the argument x, an unknown function y of x, and its derivatives y , y , …, 
( )ny , and treat the 

problem of determining y as a function of x in such a way that the integral: 

 

 
 (*) “De aequationum differentialium isoperimetricarum transformationibus earumque reduction ad aequationem 

differentialem partialem primi ordinis non linearem,” Gesammelte Werke, Bd. V, and Vorlesungen über Dynamik, 

Lect. 19. 
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will become a maximum or a minimum, in which x0 and x1 are unvarying quantities for which the 

functions y, y , y , …, ( 1)ny −  shall assume prescribed values. From the principles of the calculus 

of variations, in order for an extremum to occur, it is necessary that the desired function: 

 

 1. should make the first variation of the integral J : 
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equal to zero, and that: 

 

 2. it should give an unvarying sign to the second variation: 
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 . 

 

The u in that means a function of x that vanishes at the limits of the integral, along with its first (n 

– 1) derivatives but is otherwise arbitrary. 

 We shall appeal to the abbreviated notation: 

 

( , , , )x y y  ~ ( , , , )x y y  

 

in order to express the idea that the difference between the functions  and  for an undetermined 

y can be represented by an exact differential quotient: 

 

( , , , )
dX

x y y
dx

  . 

One will then get: 

f  
( )

0

n
k

k

k

f u
=

  ~ 
(2 )( , , , , )nu F x y y y  

 

by repeated partial conversion, in which fk replaces 
( )/ kf y  , and F represents the differential 

expression: 

(1)  
(2 )( , , , , )nF x y y y  = V (f)  

0

( 1)
kn

k

kk
k

d
f

dx=

− , 
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which has order 2n or lower, but has even order in any event, as one knows (*). When one recalls 

that the u, u , …, ( 1)nu −  vanish at the limits, it will then follow that: 

 

J = 
1

0

x

x

f dx   = 
1

0

x

x

u F dx  , 

 

from which one further concludes that the desired function y must satisfy the differential equation: 

 

(2)     (2 )( , , , , )nF x y y y  = 0 

 

in order to make J zero. 

 Since the operations d and  commute, when one applies the  process to: 

 

f ~ u  F, 

that will give: 
2 f  ~ u  F, 

 

such that one can put the second variation of the integral into the form: 

 

2 f  = 
1

0

2

x

x

f dx   = 
1

0

x

x

u F dx  , 

 

Now, Jacobi (**) based the further transformation of that expression for the purpose of determining 

its sign upon the remarkable fact that the differential expression: 

 

 F = ( )k

kF u , 

 

which is linear and homogeneous in the derivatives of u, is self-adjoint. The adjoint to the linear 

differential expression: 

(3)      P (u)  
( )

0

( )
n

k

k

k

p x u
=

  

is known to be: 

(4)  ( )P u   
0

( 1) { ( ) }
kn

k

kk
k

d
p x u

dx=

−   

 

and as such, it is characterized completely by the property (***) that: 

 
 (*) Cf., Frobenius, “Ueber adjungirte lineare Differentialausdrücke,” Crelle’s Journal, Bd. 85, pp. 206. 

 (**) “Zur Theorie der Variationsrechnung und der Differentialgleichungen,” Ges. Werke, Bd. IV. 

 (***) Cf., Frobenius, loc. cit., pp. 188. 
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(5)  v  P (u) ~ ( )u P v  . 

 

As a result of Jacobi’s theorem, one will then have: 

 

(6)  v  u F ~ u  v F , 

 

which can be proved as follows: 

 By definition, one has: 

u f ~ u  F , 

so 

v (u f) ~ u  v F , 

and similarly: 

u (v f) ~ v  u F , 

so since: 

v (u f) = u (v f) , 

one will have: 

u  v F ~ v  u F 

Q.E.D. (*). 

 

 Conversely, the extent to which the property of the expression F that is characterized in that 

way implies its formal structure will emerge from the following theorems, whose proofs will be 

what are mainly addressed here: 

 

 I. If the function 
(2 )( , , , , )nF x y y y  of even order 2n has the property that the linear 

differential expression F = 
2

( )

0

n
k

k

k

F u
=

  that is derived from it is self-adjoint then a function

( )( , , , , )nf x y y y  can be determined by quadratures in such a way that F can be represented in 

terms of f in the form: 

F = V (f)  
0

( 1)
kn

k

k k
k

d f

dx y=

 
−  

 
  . 

 

Solving the differential equation F = 0 is then equivalent to the problem in the calculus of 

variations of making the integral: 

J = 
1

0

( )( , , , , )

x

n

x

f x y y y dx  

and extremum. 

 

 An immediate consequence of that theorem is the following one: 

 

 
 (*) Cf., Frobenius, loc. cit., pp. 205. 
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 II. When the problem of seeking an extremum to the integral: 

 
1

0

( )( , , , , )

x

m

x

x y y y dx   

 

leads to a differential equation that degenerates to the extent that its order is 2n < 2m, a function 
( )( , , , , )nf x y y y  of order n can be determined by quadratures in such a way that corresponding 

problem for the integral: 
1

0

( )( , , , , )

x

n

x

f x y y y dx  

 

will imply the same differential equation. 

 

 There is no difficulty involved with proving that theorem directly. 

 Whereas the function F that was used as a basis up to now necessarily has even order, an 

expression F of odd order that one can associate with an analogous property has an essentially 

different character. Namely, as one can deduce by extension, one has the theorem: 

 

 III. If the function 
(2 1)( , , , , )nF x y y y +  of odd order has the property that the linear 

differential expression F = ( )k

kF u  that is derived from it is equal and opposite to its adjoint 

then F will necessarily be a function that is linear in y and its derivatives. 

 

 The problem statement that was suggested is closely related to the problem of converting it 

into multiple integrals and partial differential equations. If x1, x2, …, xn are n independent 

arguments, and y is an unknown function of them, and if one sets: 

 

1 2 n
y    = 

1 2

1 2

1 2

n

n

n

y

x x x

  

 

+ + +


  
, 

 

then a function y that makes the n-fold integral: 

 

1 21 2 1 2
( )

( , , , , , , , )
nn n

n
f x x x y y dx dx dx    

 

an extremum must fulfill the partial differential equation: 

 

(7)  F = V (f)  
1 2

1 2

1 2

1 21 2

( 1)
n

n

n

nn

d f

dx dx dx y

  
  

 

  

+ + +
+ + +

 
−  

  
  = 0 , 

 

whose left-hand side is implied by the relation: 
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(8)    f  
1 2

1 2

n

n

f
u

y
  

  




 ~ u  V (f) , 

 

when that notation is now understood to mean that the difference between the two sides can be 

represented by an aggregate of n exact differential quotients that are taken with respect to the 

individual arguments x1, x2, …, xn . In complete analogy to the above, (8) will imply the relation: 

 

(6)     v  u F ~ u  v F, 

  

and since equation (5) is also characteristic of the adjoints of linear partial differential equations 

(*), one can conclude from this that: 

 

 The expression F = V (f) that is given in (7) possesses the property that the linear differential 

expression F that is derived from it is self-adjoint. 

 

 Although it now seems likely that concluding the aforementioned property from the structure 

of the function F that is given in (7) is also allowable in this more general case, it nonetheless 

seems that proving the validity of that hypothesis will encounter grave difficulties. We will then 

restrict ourselves to the examination of second-order partial differential expression with two (three, 

resp.) arguments, which will, in fact, imply the theorem: 

 

 IV. If an expression F has the property that its F is self-adjoint then a function f can be 

determined by quadratures that is itself of second order and by means of which F can be 

represented in the form V (f). The differential equation F = 0 is then equivalent to the problem of 

the calculus of variations: 

   
1

( )
n

n
f dx dx   = 0  n = 2, 3. 

 

 

§ 2. 

 

 We begin with the exhibition and discussion of the conditions for the linear differential 

expression of even order 2n : 

(3)      P (u) = 
2

0

( )
n

k

k

k

p x u
=

  

to be equal to its adjoint expression: 

(4)      ( )P u  = 
2

0

( 1) ( )
kn

k

kk
k

d
p u

dx=

−   . 

 

 
 (*) Cf., Frobenius, loc. cit., pp. 207. 
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If one develops ( )P u  in the derivatives of u and compares that to P (u) then that will give the 

relations: 

(9)     
( )

2

0

( 1) (2 )k k

k n k

k

n k p






−

− −

=

− −  = p2n−  ( = 0, 1, 2, …, 2n) 

or, when written out: 

 

(9)    ( ) ( 1) ( 2)

2 1 2 2 2 2(2 ) (2 1) (2 2) ( 1)n n n nn p n p n p p   

   

− −

− − −− − + − + + −  = p2n− . 

 

If one distinguishes between the odd and even values of the index  then one will get, with the use 

of the Kronecker symbol: 

 

 = 0  when    ,   = 1 , 

 

the two systems of condition equations: 

 

(9)   
2 1

(2 1 )

2 1 2 ,2 1

0

( 1) (2 ) (1 )k k

k n k k

k

n k p




 
−

− −

− − − −

=

− − +  = 0 ( = 1, 2, …, n), 

 

(9)  
2 1

(2 1 )

2 2

0

( 1) (2 )k k

k n k

k

d
n k p

dx






−
− −

− −

=

 
− − 

 
  = 0  ( = 1, 2, …, n). 

 

 Although it is not exactly required for our purposes, we shall however prove that the system 

of relations (9) is already a consequence of the mutually-independent relations (9) (which are 

obvious in their own right) since the expression in brackets in (9) to be differentiated will vanish 

automatically on the basis of (9). If follows from (9) that by (2 – 2)-fold differentiation: 

 

(10)  
2 1

(2 1 )

2 1 2 ,2 1

0

( 1) (2 ) (1 )k k

k n k k

k

n k p




 
−

− −

− − − −

=

− − +  = 0 ( = 1, 2, …, ), 

 

and it can be shown that the equation: 

 
2 1

(2 1 )

2 2

0

( 1) (2 )k k

k n k

k

n k p






−
− −

− −

=

− −  = 0 , 

 

which corresponds to the  th equation in (9), represents a linear combination of equations (10). 

To that end, we must prove that all of the determinants of degree ( + 1) in the matrix: 
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1 ,1

2 1 ,2 1

2 1 ,2 1

2

(2 ) (1 )

(2 ) (1 )

(2 ) (1 )

(2 )

k k

k k

k k

k

n k

n k

n k

n k

 

 









−

− − −

− − −

−

− + 
 
 
 − + 
 
 
 − +
 

−  

 
( 1, 2, , )

( 0,1, 2, , (2 1))k

 



=

= −
 

 

vanish identically. If we multiply the rows and columns of it with suitable non-vanishing factors 

then we must show the same thing for the determinants of the matrix: 

 

(11)  

,1

,2 1

,2 1

(2 1) (1 )

(2 1) (1 )

(2 1) (1 )

(2 )

k k

k k

k k

k







 

 



−

−

− + 
 
 
 − + 
 
 
 − +
 
  

  
( 1,2, , )

( 0,1,2, , (2 1)).k

 



=

= −
 

 

We now compose that system with the following one: 

 

(12) 

0

1

( )

( )

( )

k

k

k

u

u

u

 −
 

− 
 
 
 − 

   (k = 0, 1, 2, …, (2 – 1)) , 

 

in which u0, u1, …, u are undetermined quantities, and obtain the table: 

 

(13) 

3 3

5 5

2 1 2 1

2 2

(1 )

(1 )

(1 )

(1 )

(1 )

k k

k k

k k

k k

k k

u u

u u

u u

u u

u u

 

 

− −

− − 
 

− −
 
 − − 
 
 
 − −
 

− −  

  (k = 0, 1, 2, …,  ) . 

 

If one regards the determinant of the latter as a function of u0 then it will be rational in u0 and entire 

and obviously of degree at most (2 – 1), but in that way it will vanish for the 2 values: 

 

  u0 = u1 , u2 , u3 , …, u 
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u0 = 1 − u1 , 1 − u2 ,  1 − u3 ,  …, 1 − u , 

 

since any two columns in the determinant will be equal or equal and opposite, and it will then be 

identically zero. If one then denotes the corresponding determinants of degree ( + 1) in the 

composed system (11) and (12) by Dk and Uk then the extended law of multiplication for 

determinants will give: 

 

(14) 
k kD U   0 . 

 

If we now regard the undetermined quantities u0 , u1 , …, u  as infinitely small then a simple 

argument will show that the identity (14) will have the vanishing of the individual determinants 

Dk as a consequence, assuming that not all sub-determinants of degree  from the first  columns 

of the system (11) vanish. The fact that one of those determinants, namely: 

 

(15)     | (2 − 1)k  (1 + k, 2−1) |  
1,2, ,

0,1, , ( 1)k

 



= 
 

= − 
 

is, in fact, non-zero will be shown later in passing. 

 

 The relations (9) then represent necessary and sufficient conditions for one to have ( )P u  = 

P (u). 

 

§ 3. 

 

 We shall now move on to prove Theorem I, as we promised, for the case of n = 1. Should the 

function ( , , , )F x y y y   be arranged that the linear differential expression: 

 

F = 0 1 2F u F u F u + +  

 

is self-adjoint, then from (9), the relation must exist: 

 

(16) 2
1

dF
F

dx
−  = 0 , 

 

which then shows that F2 can no longer contain y  itself, so F must then have the form: 

 

F = ( , , ) ( , , )M x y y y N x y y   +  . 

 

 If one integrates the function M over y  (while considering that quantity to be freely variable) 

and sets: 

( , , )M x y y dy   = ( , , )P x y y  
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then 

dP

dx
 = 

P P
M y y

y x

 
  + +

 
 , 

 

such that F can be put into the form: 

 

F = ( , , ) ( , , )
d

P x y y Q x y y
dx

 +  , 

for which (16) will go to: 

d P dP Q

dx y y dx y

    
− −   

      
 = 0 , 

or since: 

dP

y dx

  
 

  
 = 

d P P

dx y y

  
+ 

  
 , 

it will go to: 

P Q

y y

 
+

 
 = 0 . 

 

As a result, one will get a function ( , , )f x y y  by quadrature that satisfies the equations: 

 

f

y




 = − P ,  

f

y




 = Q , 

 

and with its use, F will assume the structure: 

 

  F = 
f d f

y dx y

  
−  

  
 = V (f) . Q.E.D. 

 

We now assume that Theorem I is correct for the order numbers 2, 4, 6, …, (2n − 2), and we will 

show in what follows that it is also true for order 2n under that assumption, which will prove it in 

general. 

 

 

§ 4. 

 

 If the linear differential expression that is derived from the function 
(2 )( , , , , )nF x y y y : 

 

 F = 
2

( )

0

n
k

k

k

F u
=
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is to be self-adjoint then from (9), the following relations must be fulfilled: 

 

(17) 
2 12 1

2 1 ,2 1 22 1
0

( 1) (2 ) (1 )
k

k

k k n kk
k

d
n k F

dx



  


− −−

− − − −− −
=

− − + = 0  ( = 1, 2, …, n), 

the first of which: 

(17)     2 2 1n n

d
n F F

dx
−−  = 0 , 

 

shows that F2n does not include (2 )ny , so F is linear in the highest derivative of y : 

 

(18)   F = (2 1) (2 ) (2 1)( , , , , ) ( , , , , )n n nM x y y y y N x y y y− −  +  . 

 

 In what follows, W shall generally denote a function of the arguments that are given in each 

case, although it will not be important to define it more precisely. If one substitutes the expression 

(18) for F in (17) then it will follow that: 

 

(2 )

2 1 2 1

n

n n

dM
n M y N

dx
− −−  −  = 0 

or 

(2 1) (2 1)

(2 1)
( 1) ( , , , , )n n

n

M
n y W x y y y

y

− −

−


− +


 = 0 , 

 

from which it will emerge that: 

(2 1)n

M

y −




 = 0 , 

so M is free of (2 1)ny − . 

 We shall now assume that the function M cannot include the arguments 
(2 1)ny −

, 
(2 2)ny −

, …, 
(2 1)ny − + , and that will show that M is also free of 

(2 )ny −
 when  < n. On the basis of that 

assumption, the first  relations of the system (17) will, in fact, take the form: 

 
2 1 2 11

2 1 2 1 ,2 1 22 1 2 1
1

(2 ) ( 1) (2 ) (1 )
k

k

k k k kk
k

d d
n n k N

dx dx

 

   


− − −−

− − − − −− − −
=

+ − − +  

+ (2 2 1 ) (2 2 2)

2 1 ,2 1 2( 1) (2 ) (1 ) ( , , , , )n n

nn M y W x y y y    

      + − − + − −

− − − −
− − +  +  = 0 

 

( = 1, 2, …, ), 

 

and their (2 – 2)-fold differentiation will yield: 

 

(19)  (2 1)

2 2 1 2 1 ,2 1{(2 ) ( 1) (2 ) (1 )}n

nM y n n 

      + −

− − − − − + − − +  
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+ 
2 11

2 1 ,2 1 22 1
1

( 1) (2 ) (1 )
k

k

k k n kk
k

d
n k N

dx



  


− −−

− − − −− −
=

− − +  

  + (2 2)( , , , , )nW x y y y + − = 0  ( = 1, 2, …, ). 

 

 We define the determinant  of the system of coefficients of equations (19): 

 

(20)   = | {(2n)2−1 + (−1) (2n – )2−1− (1 + ,2−1)} … (2n – k)2−1− (1 + k,2−1) … | 
 

1,2, , ( 1)

1,2, ,

k 

 

= − 
 

= 
 

 

 Now, if one can show that  is non-zero then the elimination of the ( – 1) quantities 
2 1

2

2 1

k

n k

k

d N

dx





− −

−

− −
 from the  equations (19) will produce a relation of the form: 

 
(2 1) (2 2)

2 ( , , , , )n n

nM y W x y y y 



+ − + −

−
 +  = 0 , 

 

from which, it will emerge that one will also have: 

 

(21)      M2n− = 0 , 

 

so M will be free of 
(2 )ny −

. 

 We now investigate the possibility that the equation  = 0 is true. Upon multiplying the rows 

and columns of that by non-vanishing factors, it will go to: 

 

| {(2n)  ! + (−1) (2 – )  ! (1 + ,2−1)} … (2 – 1)k k ! (1 + k,2−1) … | = 0  
 

1,2, , ( 1)

1,2, ,

k 

 

= − 
 

= 
, 

 

or when one decomposes the aggregates that correspond to the first column of the determinant 

into: 

 

(22)   (2n)  ! | (2 – 1)k−1 (k – 1)! (1 + k−,2−1) | 

  −  | (2 – 1)k k !  (1 + k,2−1) | = 0  (k,  = 1, 2, …, ). 

 

It is advisable to convert that equation from an arithmetic one into a functional one. To that end, 

we introduce  functions: 
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(23)  f (x) = 2 1 2 1(1 )x x − −+ +   ( = 1, 2, …, ) 

 

and remark that: 
( ) (0)kf  = (2 – 1)k  k ! (1 + k,2−1) . 

 

With the use of that, one converts the equation  = 0 into the demand that x = 0 must satisfy the 

equation: 

 

(24) ( 1) ( )(2 ) !| ( ) | | ( ) |k kn f x f x   − −  = 0  (k,  = 1, 2, …, ). 

 

The method for calculating the determinant that appears here leads us to the following remark: The 

 functions f (x) fulfill a homogeneous linear differential equation of order  : 

 
( )

( )

1 1 1 1

( )

2 2 2 2

( )

y y y y

f f f f

f f f f

f f f f









   

 

 

 

 

 = 0 , 

 

and when that is developed, it might read: 

 

(25) ( ) ( 1) ( 2)

1 2 1( ) ( ) ( ) ( )y p x y p x y p x y p x y  

 

− −

−
+ + + + +  = 0 . 

 

The coefficient of y : p (x) in that, in particular, can be represented by means of the integral in the 

following way: 

  p (x) = ( ) ( 1)( 1) | ( ) | :| ( ) |k kf x f x

 

−−   (k,  = 1, 2, …, ) 

 

such that we can now write the equation  = 0 as simply: 

 

(26)  p (0) = (− 1) (2n)   ! . 

 

 

§ 5. 

 

 We shall now deal with the problem of exhibiting the linear differential equations (25) that the 

n functions: 

 

(23)     f (x) = 
2 1 2 1(1 )x x − −+ +  
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must satisfy. If we next set x = z – 1/2, which will make: 

 

f (x) = ( ) ( )
2 1 2 1

1 1
2 2

z z
 − −

+ − −  =  (z) , 

 

then the expressions  (z) will obviously be odd functions of z, so they will have the form: 

 

 (z) = 2( )z z  , 

 

in which  (u) represents a certain entire rational function of degree ( – 1) in u. The linear 

differential equation of order  that those  functions fulfill will then be simply: 

 

(27) 
d

du






 = 0 , 

 

and that is now to be transformed into one in terms of z by the relation u = 2z . The differential 

quotient 
d

du






 is represented in terms of the derivatives of  with respect to z in the form: 

 

(28) 
d

du






 = 

1
( )

0

1
( 1)

2

k
k k

k k
k

d
A z

dz




 

=−
− +

−
=

− , 

 

in which the quantities Ak represent certain numerical values that satisfy the recursion formulas: 

 

(29)     A+1,k = Ak + ( + k – 1) A,k−1  
0,1, ,

1,2,3,

k 



= 
 

= 
, 

as one sees immediately, and in which one sets: 

 

A0 = 1 , A = 0 . 

 

One obtains from (29), in succession, for k = 1, 2, 3: 

 

A1 = 2 ; A1 = 3  ( + )4 ; A3 = 3  5  ( + )6 , 

 

and one easily verifies upon inferring (k + 1) from k that: 

 

Ak = 1  3  5 … (2k – 1)  ( + k – 1)2k = 
( 1)!

2 !( 1)!k

k

k k





+ −

 + −
 . 

 

Therefore, under the substitution u = 2z , equation (27) will go to the following one: 
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(30) 
1

0

( 1) ( 1)!

2 ! ( 1)!

k k
k

k k
k

k d
z

k k dz





 



−−
−

−
=

− + −

 − −
  = 0 , 

 

in which one further substitutes  = y / z . In that way, one will then get the differential equation 

for the functions y =  (z) : 

(31) 
0

( 1)

( )!

d y
C z

dz

  


  
  

−
−

−
=

−

−
  = 0 , 

in which: 

C = 
0

( 1)!
( )

2 !k
k

k
k

k

 


=

+ −
−


  . 

 

However, if one splits ( – k) into ( + k) – 2k here then one will have: 

 

C = 
1

0 1

( )! ( 1)!

2 ! 2 ( 1)!k k
k k

k k

k k

  
−

= =

+ + −
−

  −
   = 

( )!

2 !

 



+


 , 

so (31) will become: 

0

( )!
( 1)

2 !

d y
z

dz

 
 

   


 




−
−

−
=

+
−


  = 0 . 

 

Finally, if one substitutes z = ( )1
2

x +  in that then that will give the differential equation of the 

functions f (x) : 

(32)    
0

( )!
( 1) (2 1)

!

d y
x

dx

 
 

  


 




−
−

−
=

+
− +  = 0 , 

or 

(32)   
( ) ( 1)( 1) (2 )!

( 1)
(2 1) !(2 1)

y y y
x x

  



  



− +
− + + −

+ +
 = 0 . 

 

 The determinant of the  functions f (x) is known to be: 

 

  ( )kf x  = 
( )p x dx

c e
−  = 

( 1) / 2(2 1)c x   ++  
0,1, , ( 1)

1,2, ,

k 

 

= − 
 

= 
, 

 

in which c means a non-vanishing constant. If we set x = 0 in that then we will see that the 

expression: 

  | (2 – 1)k  k! (1 + k,2−1) | = c  
0,1, , ( 1)

1,2, ,

k 

 

= − 
 

= 
, 

 

and with it, the determinant (15) will be non-zero, which was promised above. 

 Furthermore, we infer from (32) that: 
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p (x) = 
(2 )! 1

( 1)
! (2 1)x








−

+
, 

 

which will make equation (26) go to the following one: 

 

(33) (2n) = (2) . 

 

However, that cannot be true for  < n, one must have   0, and therefore equation (21) is proved 

for  < n . By contrast, it is no longer true for  = n, because (33) is fulfilled in that case, of  = 0. 

 We have then arrived at the result: 

 

 If the function (2 )( , , , , )nF x y y y  is arranged such that F is self-adjoint then F will have the 

form: 

 

(34)   F = ( ) (2 ) (2 1)( , , , , ) ( , , , , )n n nM x y y y y N x y y y −  + . 

 

 

§ 6. 

 

 If we now set: 
( ) ( )( , , , , )n nM x y y y dy  = 

( )( , , , , )nP x y y y  

then that will make: 

( )n

P

y




 = M , 

so 
n

n

d P

dx
 = 

(2 ) (2 1)( , , , , )n nM y W x y y y − +  , 

and therefore: 

F = 
( ) (2 1)( , , , , ) ( , , , , )

n
n n

n

d
P x y y y Q x y y y

dx

− +  . 

If we further denote: 

 
( ) ( )( , , , , )n nP x y y y dy  by 

( )( 1) ( , , , , )n nx y y y −  , 

such that: 

P = 
( )

( 1)n

ny


−


, 

then we can obviously put F into the form: 

 

(35)  
(2 )( , , , , )nF x y y y  = 

(2 ) (2 1)( , , , , ) ( , , , , )n nx y y y x y y y −  +  , 
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in which we have set: 

(36)     = V ()  
( )

0

( 1)
kn

k

k k
k

d

dx y



=

 
−  

 
  . 

Now, should: 

 F =   +   

 

be self-adjoint, and since the adjoint expression to an aggregate is equal to the sum of the adjoint 

expressions of the individual summands, and since   further has the structure of  in (36) as a 

result of the fact that it is self-adjoint, that would imply that   must also be equal to its own 

adjoint. However, the relation (17): 

2 2 1n n

d
n

dx
− −   = 0 

 

that  must then satisfy shows that since  does not include 
(2 )ny , one must have 2n−1 = 0 , so 

 is also free of 
(2 )ny . Therefore, the assumption that we made at the end of § 3 must hold true for 

(2 2)( , , , , )nx y y y − , and  can be put into the form: 

 

(37)     = V ()  
1

( )
0

( 1)
kn

k

k k
k

d

dx y

−

=

 
−  

 
  , 

 

in which  depends upon the arguments x, y, y , …, ( 1)ny − . If one now sets: 

 
( ) ( 1)( , , , , ) ( , , , , )n nx y y y x y y y  − +  = 

( )( , , , , )nf x y y y  

 

then when one recalls (36) and (37), equation (35) will go to: 

 

(38) F = V (f)  
( )

0

( 1)
kn

k

k k
k

d f

dx y=

 
−  

 
  , 

which proves Theorem I. 

 The function 
( )( , , , , )nf x y y y  is not determined uniquely by F. If a function 

( )( , , , , )ng x y y y  likewise implies a representation F = V (g) for F then the difference: 

 

f – g = 
( )( , , , , )nh x y y y  

 

will satisfy the differential equation: 

 

V (h)  
( )

0

( 1)
kn

k

k k
k

d h

dx y=

 
−  

 
  = 0 , 
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which is known to be the necessary and sufficient condition for h to be equal to an exact differential 

quotient. One will then get all functions g that serve to represent F as in (38) from the relation: 

 

g ~ f . 

 

 

§ 7. 

 

 If a differential equation of order (2n) that can be solved for the highest derivative: 

 

(39) 
(2 ) (2 1)( , , , , )n ny x y y y −+   = 0 

 

belongs to a problem in the calculus of variations then, as would be clear from the remark at the 

end of § 5, there must exist a multiplier function 
( )( , , , , )nM x y y y  such that the product: 

 

F = 
(2 )( )nM y +   

 

has the property that  F can be equal to its own adjoint. 

 In the case n = 1 of the differential equation ( , , )y x y y +   = 0, which we will treat next, 

( , , )M x y y  must satisfy the equation: 

 

( )
dM

M y M
dx y


−  + 


 = 0 

or 

(40)    
M M M

M
x y y y

   
+ −   − 

    
 = 0 , 

 

and since that equation always possesses an integral M, and at the same time represents the only 

condition in our case, we can conclude that mainly every second-order differential equation will 

be equivalent to a problem in the calculus of variations (*), but in general that is only true a 

posteriori. That is, in order for formulate that problem, one will need to know the integral of the 

given differential equation itself, because if one sets: 

 

log M = N 

 

in (40) then one will get the linear, inhomogeneous, first-order partial differential equation for N: 

 

N N N
y

x y y y

   
+ −   −

    
 = 0 , 

 
 (*) That remark is already found in Darboux Théorie Générale des surfaces, III partie, pp. 53, et seq. 
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whose solution comes down to the integration of the system of ordinary differential equations: 

 

dx : dy : dy  : dN = 1 : y  : −  : 
y




  

or 

 

(a)      ( , , )y x y y +   = 0 , 

 

(b)      
dN

dx
 = ( , , )x y y

y





 . 

 

In order to then determine N from (b), one must have generally integrated (a) before. There is only 

one case in which N can be determined a priori, i.e., without any prior integration of the differential 

equation (a), namely, when / y   is an exact differential quotient, so when 1 = / y   

satisfies the condition that: 

V (1)  1 1d

y dx y

  
−  

  
 = 0 . 

 

If that is fulfilled then the given differential equation (a) can be reduced to a problem on the 

calculus of variations a priori. 

 In the case n > 1, the determination of M from the relation (17) leads to the equation: 

 

(41)     
(2 1)n

dM
n M

dx y −


−


 = 0 . 

 

That will show that when if the determination of M is to be possible then 2n−1 = 
(2 1)ny −




 will be 

an exact differential quotient, so the condition must be satisfied: 

 

(42) V (2n−1)  2 1

( )
( 1)

k
k n

k k

d

dx y

−
 

−  
 

  = 0 . 

 

When the latter is satisfied, one can determine M from (41). If the linear differential expression: 

 

 F = 
(2 ){ ( )}nM y  +   

 

is self-adjoint then the differential equation (38) will be equivalent to a problem in the calculus of 

variations. 

 

 



Hirsch – A characteristic property of differential equations. 20 
 

§ 8. 

 

 The proof of Theorem III can be achieved with fewer strokes. If (2 1)( , , , , )nF x y y y +  is a 

function of odd order with the property that the differential expression that is derived from it: 

 

u F = 
2 1

( )

0

n
k

k

k

F u
+

=

  

 

is equal and opposite to its adjoint then as a result of (5), that situation can be expressed by the 

relation: 

 

(43)     u  v F + v  u F ~ 0 , 

 

and in particular, for u = v that will imply that: 

 

(44) v  v F ~ 0 . 

 

If one applies the v-process to (43) and the u-process to (44) then it will follow that; 

 

(43)     2 ( )v uu F v F   +   ~ 0 , 

 

(44)      v  u (v F) ~ 0 , 

 

so one will also have: 
2u F  ~ 0 . 

 

However, due to the arbitrariness in u, that is possible only when: 

 

2F   
2 1

( ) ( )

, 0

n
i k

ik

i k

F v v
+

=

   0 . 

 

If one replaces v with (u + v) in that then that will further give: 

 
2 1

( ) ( )

, 0

n
i k

ik

i k

F u v
+

=

   0 , 

so 

  
2 1

( )

, 0

n
k

ik

i k

F v
+

=

   0   [i = 0, 1, …, (2n + 1)], 

and finally: 
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  Fik = 
2

( ) ( )i k

F

y y



 
  0  [i = 0, 1, …, (2n + 1)]. 

 

It will then emerge from this that F depends upon the arguments y, y , y , …, (2 1)ny +  linearly. 

Q.E.D. 

 

 That theorem and its proof can be adapted to partial differential expressions F immediately. 

 

 

§ 9. 

 

 We shall now turn to the examination of a second-order partial differential expression F (x, y, 

z, p, q, r, s, t) with two arguments x, y, in which z is the function that depends upon the latter, while 

p, r, s, t mean their first and second differential quotients in Euler’s notation. The assumption that 

 F is self-adjoint can be expressed by the equation: 

 

 F  
2 2 2

2 2z p q r s t

u u u u u
F F F F F F

x y x x y y

    
+ + + + +

     
 

 

= 
2 2 2

2 2
( ) ( ) ( ) ( ) ( )z p q r s t

d d d d d
F F u F u F u F u F u

dx dy dx dx dy dy
−  −  +  +  +   

 

which splits into the two relations: 

(45)     

2 2 ,

2 2 ,

sr
p

s t
q

dFdF
F

dx dx

dF dF
F

dx dx


+ =


 + =


 

 

and in that way we set Fx = 
F

x




, Fxy = 

2F

x y



 
, etc. 

 As far as the dependency of the function F upon r, s, t is concerned, the discussion of the 

conditions (45) implies the following differential equations: 

 

(46)  Fr = 0 ,  Ftt = 0 , Frs = 0 , Fst = 0 , 2 Frt + Fss = 0 

 

whose integration for F gives the representation: 

 

(47)    F = M (r t − 
2 )s  + R  r + 2 S  s + T  t + N , 

 

in which M, N, R, S, T are functions of x, y, z, p, q. 



Hirsch – A characteristic property of differential equations. 22 
 

 If one substitutes the expression for F from (47) in (45) then one will find the following 

relations for the latter: 

 

(48)   

( ) 0,

( ) 0,

( ) 0,

( ) 0.

x z q p

y z q p

x z y z p

x z y z q

M M p S T

M M q R S

R R p S S q N

S S p T T q N









+ + − =


+ − + =


+ + + − =
 + + + − =

 

 

Now, let  be a function of x, y, z, p, q. One will then get the following expression for the symbol 

V (  s): 

(49)   V (  s)  
2

( ) ( ) ( )z p q

d d d
s s s

dx dy dx dy
    −  −  +  

 = 2( ) 2pq r t s R r S s T t N    − +  +  +  + , 

 

in which R  , S  , T  , N  are functions of x, y, z, p, q, whose precise determination we shall not 

discuss. If one then determines the function  such that: 

 

pq = 
2

p q



 
 = M 

 

then from (47) and (49), that can be used to represent F in the form: 

 

(50)    F = V (  s) + R  r + 2 S  s + T  t + N . 

 

 If  is likewise a function of x, y, z, p, q then one will find that: 

 

(51)    V () = − pp r – 2 pq s – qq t + N . 

 

If one then determines  by way of the equation: 

 

pp = 
2

2p




 = − R 

 

then, as a result of (50) and (51), one can put F into the form: 

 

(52)    F = V (  s) + V () + 2 S  s + T  t + N . 

 

Now, since the expressions  V (  s) and  V (), by their very nature, are self-adjoint, the same 

thing will also be true of the expression: 
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 {2 S  s + T  t + N} . 

 

 One gets the conditions that S, T, N are accordingly subject to from (48) when one sets M = 0, 

R = 0 in it: 

(53)    

( ) 0,

( ) 0,

( ) 0,

( ) 0.

q p

p

y z p

x z y z q

S T

S

S S q N

S S p T T q N









− =


=


+ − =
 + + + − =

 

 

It emerges from () that S depends upon only x, y, z, q. Now, if  is a function of the same 

arguments then one will have: 

V (  p) = − 2 q s T t N   +  + . 

If one then determines  from: 

q




 = − S 

then one can put F into the form: 

 

F = V (  s) + V () + V (  p) + T  t + N , 

 

in which T and N now satisfy the conditions: 

 

(55)     

( ) 0,

( ) 0,

( ) 0.

p

p

y z q

T

N

T T q N







 =


=
 + − =

 

 

As a result of (), T will depend upon x, y, z, q. If  is once more a function of the same arguments 

then one will have: 

V () = − qq t + N . 

When one then determines  from: 
2

2q




 = − T , 

 

replaces T  t with V () in (54), and applies  to , one can assume that T = 0, such that the 

conditions for N that remain will be: 

Np = 0 , Nq = 0 . 

 

If one then constructs a function  (x, y, z) from: 
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z




 = N , 

 

then one will have N = V (), and when one again inserts  into , one will obtain the following 

result: 

 

 If the function F (x, y, z, p, q, r, s, t) is arranged such that  F is self-adjoint then F can be 

brought into the form: 

F = V (f) 

by quadratures, in which: 

 

f (x, y, z, p, q, r, s) =  (x, y, z, p, q)  s +  (x, y, z, p, q) , 

 

and the functions  and  are subject to no restrictions. 

 

 

§ 10. 

 

 Suppose that second-order differential expression is given: 

 

F {x1, x2, …, xn ; y ; y1, y , …, yn ; y11, y12, …, ynn} . 

 

The x1, x2, …, xn in it means the n arguments, y means the function that depends upon then, and 

one has further set: 

yi = 
i

y

x




, yik = 

2

i k

y

x x



 
 . 

 

Should  F be self-adjoint then one will have: 

 

  F  
1

n

i ik

i i ki ik

F F F
u u u

y y y= 

  
 + +

  
   

= 
2

1

n

i i ki i k ik

F d F d F
u u u

y dx y dx dx y= 

     
 −  +    

     
   . 

 

The following relations emerge from that: 

 

(56)   
1

(1 )
n

ik

i i ik

d F

dx y


=

 
+ 

 
  = 2

k

F

y




  (k = 1, 2, …, n) , 
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(56)   
2

, 1

(1 )
n

ik

i k i k ik

d F

dx dx y


=

 
 + 

 
  = 

1

2
n

k k k

d F

dx y=

 
 

 
  , 

 

from which, however, (56) will be an immediate consequence of (56). If one combines the terms 

in the developed expression for (56) that include the third derivatives of y then that will give: 

 

 
2

, 1 , 1

(1 )(1 )
n n

ik i

i k ik

F
y

y y
 

  

 
= =


+ +

 
   = 0  (k = 1, 2, …, n) , 

so 

(50) 
2 2 2

(1 )(1 ) (1 )(1 ) (1 )(1 )ik i k i k

ik i k i k

F F F

y y y y y y
    

    

     
  

+ + + + + + + +
     

 = 0 

for 

i  k     = 1, 2, …, n . 

 

One easily convinces oneself that this system of differential equations is satisfied by the 

determinant: 

  | yik |    (i, k = 1, 2, …, n), 

 

as well as all of its subdeterminants of each order. In the case of n = 3, to which we shall now 

restrict ourselves, we likewise show with no effort that a sum of those quantities represents the 

general integral of equations (57). For n = 3, F will then take the form: 

 

(58) F = 

11 12 13

21 22 23

31 32 33

y y y

A y y y

y y y

 

 + 2 2 2

11 22 33 23 22 33 11 31 33 11 22 12( ) ( ) ( )B y y y B y y y B y y y− + − + −  

 + 2 B23 (y12 y13 − y12 y13) + 2 B31 (y23 y21 − y22 y31) + 2 B12 (y31 y32 − y33 y12) 

 + C11 y11 + C22 y22 + C33 y33 + 2 C23 y23 + 2 C31 y31 + 2 C12 y12 + D , 

  

in which the coefficients A, B11, …, C11, …, D are functions of x1, x2, x3, y, y1, y2, y3 that must still 

satisfy certain conditions. 

 We would now like to show that we can progressively eliminate that expression for F by 

subtracting suitably-constructed quantities V (f). If we next take f = 2

22 33 23( )M y y y − , in which M 

is independent of the second derivatives, then we will get an expression for V (f) that has the same 

form as F in (58): 

2

22 33 23{ ( )}V M y y y −  = − 

11 12 132

21 22 232

1

31 32 33

y y y
M

y y y
y

y y y


+
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As a result, the initial term in F can be eliminated, and we can assume that A = 0 . We will further 

find that: 

 

V {R  y22} = − 
2

2 2

11 22 12 11 22 33 232

1

( ) ( )
R

y y y B y y y
y


− + −


 +

31 23 21 22 31( ) ik ikB y y y y C y D  − + + , 

 

V {S  y23} = 
2

2

12 13 11 33 11 22 33 232

1

( ) ( )
S

y y y y B y y y
y


− + −


+ 31 23 21 22 31 12 31 32 33 12( ) ( )B y y y y B y y y y − + −  

  +
ik ikC y D + , 

 

V {T  y33} = − 
2

2 2

33 11 31 11 22 33 232

1

( ) ( )
T

y y y B y y y
y


− + −


 +

12 31 32 33 122 ( ) ik ikB y y y y C y D  − + + . 

 

 The respective coefficients B33, B23, B22 in (58) can be reduced to zero with the use of those 

expressions. If one then substitutes the expression for F in (58), thus-simplified, in equations (56) 

then one will get the following conditions for the coefficients B11, B12, B13 : 

 

(59)    

12

1

13

1

1311 12

1 2 3

( ) 0,

( ) 0,

( ) 0.

B

y

B

y

BB B

y y y







 
=


 

=


  
+ + =

  

 

 

B12 and B13 are then independent of y1 . 

 Now let S   and T   be functions of x1, x2, x3, y1, y2, y3, so they are likewise free of y1 . One will 

then find that: 

 

1 23( )V S y y    = − 
2

2

23 21 22 31 31 32 33 12 1 22 33 23

2 3 2 3

( ) ( ) ( )
S S S

y y y y y y y y y y y y
y y y y

    
− − − +  − +

   
 

 

 1 33( )V T y y    =  
2

2

31 32 33 12 1 22 33 232

2 2

2 ( ) ( )
T T

y y y y y y y y
y y

  
− −  − +

 
 

 

One can first make B31 equal to zero in (58) with the help of those expressions, and then B12, and 

(59.) shows that the still-remaining coefficient B11 will no longer include y1 . Now when T   is 

also free of y1, one will have: 
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33( )V T y   = − 
2

2

1 22 33 232

2

( )
T

y y y y
y


 − +


, 

 

with which, one can also reduce B11 to zero. 

 Furthermore, one has: 

V (N) = − 
2

112

1

N
y

y


+


, 

 

which will make C11 go to zero. The expression for F in (58) then reduced to the following one: 

 

(60)  F = 2 C12 y12 + 2 C13 y13 + C22 y22 + 2 C23 y23 + C33 y33 + D . 

 

Upon substituting that in (56), one will get the following relations for the coefficients C : 

 

(61)   

1312

1 1

23 31 12

1 2 3

33 1322 12

1 2 1 3

23 33 2322

3 2 2 3

( ) 0, 0,

( ) ,

( ) , ,

( ) , .

CC

y y

C C C

y y y

C CC C

y y y y

C C CC

y y y y










= =  


  

= =
  


   = =

    


   = =
    

 

 

As a result of () and (), one can set: 

 

C12 = − 2 3

2

( , )N y y

y




, C13 = − 2 3

3

( , )N y y

y




, 

and since: 

1( )V N y   = − 12 13

2 3

2 2
N N

y y
y y

  
− +

 
 , 

 

C12 and C13 can be eliminated, and therefore C22, C23, C33 will be free of y1, from () and (). Since 

the same thing is now true for D, as well, based upon (56), y1 will no longer enter into F at all, 

while x1 will act as a constant, and we will find ourselves in the case of two arguments that was 

resolved in § 9. We have then arrived at the result: 

 

 If the expression for F in (58) is arranged such that  F is self-adjoint then F can be brought 

into the form: 

F = V (f) 

by quadratures, in which: 
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f = 2

22 33 23 22 23 23( ) 2M y y y R y S y T y N − +  +  +  + , 

 

and the coefficients M, N, R, S, T represent arbitrary functions of x1, x2, x3, y, y1, y2, y3 .   

 

 Zurich, May 1896. 

 

_________ 


