On the curvature of non-holonomic manifolds

Note by Z. HORÁK

Translated by D. H. Delphenich

When one studies non-holonomic manifolds, one confirms that the usual method for arriving at curvature is no longer applicable to a X_{n}^{m}, due to the impossibility of constructing an infinitely-small, closed parallelogram $\left({ }^{1}\right)$. In the present Note, I propose to generalize the usual method for a X_{n}^{m} by replacing the closed parallelogram with an infinitely-small closed cycle that is composed of an arbitrary parallelogram that is situated in X_{n}^{m} and the vector that joins its final point to its initial point, in such a way that one returns to the starting point.

Consider a X_{n}^{m} that is embedded in a X_{n} with a local $(n-m)$-direction and let $x^{\lambda}(\lambda$, $\mu, v=1,2, \ldots, n)$ be the holonomic parameters of X_{n}. If one introduces the nonholonomic parameters $x^{k}(i, j, k=1,2, \ldots, n)\left({ }^{2}\right)$:

$$
d x^{k}=A_{\lambda}^{k} d x^{\lambda}, \quad d x^{\lambda}=A_{k}^{\lambda} d x^{k}
$$

and if one denotes:

$$
\underset{12}{\Delta}=\underset{2}{d} \underset{1}{d}-\underset{1}{d} \underset{1}{d} d
$$

then one will have:
in which:

$$
\Pi_{i j}^{k}=2 A_{\lambda}^{k} \partial_{[i} A_{j]}^{\lambda} \quad\left(\partial_{i}=A_{i}^{\lambda} \frac{\partial}{\partial x^{\lambda}}\right)
$$

in which the choice of the parameters x^{k} and the operation Δ_{12} is completely arbitrary. Now, one can choose the $d x^{k}$ in such a manner $\left({ }^{3}\right)$ that the displacements in the X_{n}^{m} are coupled by the $n-m$ conditions:

[^0]$$
d x^{r}=0 \quad(r=m+1, \ldots, n)
$$
and that the other m differentials $d x^{a}(a, b, c, d, e, f=1,2, \ldots, m)$ are situated in X_{n}^{m}. Having said that, we shall suppose that the displacements $\underset{1}{d},{ }_{2}^{d}$ that intervene in the operation are placed in X_{n}^{m} in such a way that:
\[

$$
\begin{equation*}
\underset{1}{d} x^{r}=0, \quad d_{2}^{d} x^{r}=0, \quad \underset{12}{\Delta} x^{r}=0 . \tag{2}
\end{equation*}
$$

\]

Hence, the two displacements $\underset{1}{d}, \underset{2}{d}$ generate a parallelogram in X_{n}^{m} whose final point can agree with its initial point by displacing along the vector:

$$
-\Delta_{12} x^{\lambda}=\underset{21}{\Delta} x^{\lambda} .
$$

It is precisely the vector that completes the parallelogram considered to a closed cycle to which we shall appeal for our definition of curvature. Finally, if we write:

$$
-A_{\lambda}^{k}{\underset{12}{ } x^{\lambda}=-\Delta_{12}^{k}=\Delta_{21}^{k}, ~}_{\text {a }}
$$

then, by virtue of (2), the equations (1) will become:

$$
\begin{equation*}
\underset{12}{\Delta} x^{\lambda}=\prod_{b d}^{c} \underset{1}{c} x^{b}{\underset{1}{d}}_{d} x^{d}-\Delta_{21}^{c}, \quad \underset{21}{\Delta^{r}}=\prod_{b d}^{r} \underset{1}{d} x^{b} \underset{1}{d} x^{d} . \tag{3}
\end{equation*}
$$

Now suppose that one introduces an arbitrary linear connection in X_{n} that is defined by the coefficients $\Gamma_{\lambda \mu}^{\nu}, \Gamma_{\lambda \mu}^{\prime v}$. If one denotes the coefficients of that connection by $\Lambda_{i j}^{k}$, $\Lambda_{i j}^{\prime k}$, when they expressed by means of the non-holonomic parameters $x^{k}\left({ }^{1}\right)$ - i.e., if one sets:

$$
\begin{equation*}
\nabla_{i} v_{k}=\partial_{i} v_{k}+\Lambda_{i j}^{k} v^{k} d x^{j}, \quad \nabla_{i} w_{k}=\partial_{i} w_{k}+\Lambda_{i j}^{\prime k} w_{k} d x^{j} \tag{4}
\end{equation*}
$$

then the non-holonomic connection that is induced $\left({ }^{2}\right)$ in the X_{n}^{m} by the given connection will be defined the coefficients $\Lambda_{a b}^{c}, \Lambda_{a b}^{c}\left({ }^{3}\right)$.

Having said that, we propose to calculate the change $\underset{12}{\mathcal{D}} v^{c}$ that a vector $v^{c}\left(v^{r}=0\right)$ that is situated in X_{n}^{m} experiences during a circulation around our closed cycle. If the symbol

[^1]${ }_{12} v^{c}$ denotes the change that the same vector experiences during displacement along the parallelogram that is generated by $\underset{1}{d} x^{b},{\underset{2}{2}}_{d} x^{b}$ then one obtains the total change $\underset{12}{\mathcal{D}} v^{c}$ by adding to $D v_{12}^{c}$ the change that the vector v^{c} experiences upon returning from the final point of the parallelogram to its initial point along the vector Δ_{12}^{k}. One will obviously have:
$$
\underset{12}{\mathcal{D}} v^{c}=\underset{12}{D} v^{c}+\nabla_{21} v^{c} \Delta^{k}
$$
then, from which one can easily infer by calculation and taking (3) and (4) into account:
\[

\left\{$$
\begin{array}{l}
\mathcal{D} v^{c}=R_{b d a}^{\ldots c} v^{a} d_{1} x^{b}{ }_{1}^{d} x^{d}, \tag{5}\\
R_{b d a}^{\ldots c}=2 \partial_{[d} \Lambda_{[a \mid b]}^{c}+2 \Lambda_{f[d}^{c} \Lambda_{[a b]}^{f}+\Lambda_{a k}^{c} \Pi_{b d}^{k} .
\end{array}
$$\right.
\]

We have then arrived at a definition of the affinor (5) as the quantity of curvature in X_{n}^{m}. By the same reasoning, when applied to a covariant vector w_{a}, we will arrive at the equation:

$$
\underset{12}{D} w_{a}=-R_{b d a}^{\prime . . c} w_{c} d_{1}^{d} x^{b} d_{1}^{d} x^{d},
$$

in which the quantity $R_{b d a}^{\prime-c c}$ results from (5) by replacing the $\Lambda_{a b}^{c}$ with $\Lambda_{a b}^{\prime c}$.
If X_{n} becomes an A_{n} then (5) will reduce to the affinor that Schouten ${ }^{1}$) defined to be the curvature of the A_{n}^{m}, and for a holonomic manifold, the $R_{b d a}^{\ldots c}, R_{b d a}^{\prime . c c}$ will take the form that was given by the author $\left({ }^{2}\right)$.

[^2]
[^0]: (${ }^{1}$) J.-A. SCHOUTEN, "On non holonomic connections," Proc. Kon. Akad. v. Wet. Amsterdam 31 (1928). See also G. VRANCEANU, "Sur quelques tenseurs dans les variétés non holonomes," C. R. Acad. Sci. Paris 186 (1928), 995-996.
 $\left({ }^{2}\right)$ J.-A. SCHOUTEN, loc. cit.
 ${ }^{(3)}$ See my paper: "Ueber die Formeln für die allgemeine lineare Uebertragung...," Nieuw Achif v. Wisk. 15 (1927), 193-201.

[^1]: (${ }^{1}$) HORÁK, loc. cit.
 (${ }^{2}$) The covariant derivative of an affinor in X_{n}^{m} is equal to the X_{n}^{m}-component of the covariant derivative in X_{n}; see Schouten (loc. cit.).
 $\left(^{3}\right)$ See my Czech paper: "On a generalization of the notion of manifold," Publication of the Science Faculty at the University of Masaryk, Brno, no. 86, 1927, pp. 2.

[^2]: ${ }^{1}$) Loc. cit.
 $\left({ }^{2}\right)$ Loc. cit.

