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 When one studies non-holonomic manifolds, one confirms that the usual method for 
arriving at curvature is no longer applicable to a mnX , due to the impossibility of 

constructing an infinitely-small, closed parallelogram (1).  In the present Note, I propose 
to generalize the usual method for a mnX  by replacing the closed parallelogram with an 

infinitely-small closed cycle that is composed of an arbitrary parallelogram that is 
situated in m

nX  and the vector that joins its final point to its initial point, in such a way 

that one returns to the starting point. 
 Consider a m

nX  that is embedded in a Xn with a local (n – m)-direction and let xλ (λ, 

µ, ν = 1, 2, …, n) be the holonomic parameters of Xn .  If one introduces the non-
holonomic parameters xk (i, j, k = 1, 2, …, n) (2): 
 

dxk = kA dxλ
λ ,  dxλ = k

kA dxλ , 

and if one denotes: 

12
∆  = 

2 1 1 2
d d d d−  

then one will have: 
 
(1)     

12

kx∆  = 
121 2

k i j k
ij idx dx A xλλΠ + ∆ , 

in which: 

k
ijΠ  = [ ]2 k

i jA Aλ
λ ∂    i iA

x
λ

λ
∂ ∂ = ∂ 

, 

 
in which the choice of the parameters xk and the operation 

12
∆  is completely arbitrary.  

Now, one can choose the dxk in such a manner (3) that the displacements in the mnX  are 

coupled by the n – m conditions: 

                                                
 (1) J.-A. SCHOUTEN, “On non holonomic connections,” Proc. Kon. Akad. v. Wet. Amsterdam 31 
(1928).  See also G. VRANCEANU, “Sur quelques tenseurs dans les variétés non holonomes,” C. R. Acad. 
Sci. Paris 186 (1928), 995-996. 
 (2) J.-A. SCHOUTEN, loc. cit. 
 (3) See my paper: “Ueber die Formeln für die allgemeine lineare Uebertragung…,” Nieuw Achif v. 
Wisk. 15 (1927), 193-201. 
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dxr = 0  (r = m + 1, …, n), 
 
and that the other m differentials dxa (a, b, c, d, e, f = 1, 2, …, m) are situated in m

nX .  

Having said that, we shall suppose that the displacements 
1
d , 

2
d  that intervene in the 

operation are placed in m
nX  in such a way that: 

 
(2)    

1

rd x = 0, 
2

rd x = 0, 
12

rx∆  = 0. 

 
 Hence, the two displacements 

1
d , 

2
d  generate a parallelogram in mnX  whose final 

point can agree with its initial point by displacing along the vector: 
 

− 
12

xλ∆ = 
21

xλ∆ . 

 
 It is precisely the vector that completes the parallelogram considered to a closed cycle 
to which we shall appeal for our definition of curvature.  Finally, if we write: 
 

− 
12

kA xλ
λ ∆ = −

12

k∆  = 
21

k∆  

 
then, by virtue of (2), the equations (1) will become: 
 

(3)    
12

xλ∆ = 
211 1

cc b d
bd d x d xΠ − ∆ , 

21

r∆ = 
1 1

r b d
bd d x d xΠ . 

 
 Now suppose that one introduces an arbitrary linear connection in Xn that is defined 
by the coefficients ν

λµΓ , ν
λµ′Γ .  If one denotes the coefficients of that connection by k

ijΛ , 
k

ij
′Λ , when they expressed by means of the non-holonomic parameters xk (1) – i.e., if one 

sets: 
 
(4)    ∇i vk = ∂i vk + k k j

ij v dxΛ , ∇i wk = ∂i wk + k j
ij kw dx′Λ , 

 
then the non-holonomic connection that is induced (2) in the m

nX  by the given connection 

will be defined the coefficients cabΛ , c
ab
′Λ  (3). 

 Having said that, we propose to calculate the change 
12

cvD  that a vector vc (vr = 0) that 

is situated in m
nX experiences during a circulation around our closed cycle.  If the symbol 

                                                
 (1) HORÁK, loc. cit.  

 (2) The covariant derivative of an affinor in m

n
X  is equal to the m

n
X –component of the covariant 

derivative in Xn ; see Schouten (loc. cit.). 
 (3) See my Czech paper: “On a generalization of the notion of manifold,” Publication of the Science 
Faculty at the University of Masaryk, Brno, no. 86, 1927, pp. 2.  
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12

cDv  denotes the change that the same vector experiences during displacement along the 

parallelogram that is generated by 
1

bd x , 
2

bd x  then one obtains the total change 
12

cvD  by 

adding to 
12

cDv  the change that the vector vc experiences upon returning from the final 

point of the parallelogram to its initial point along the vector 
12

k∆ .  One will obviously 

have: 

12

cvD = 
12 21

c c k
kD v v+ ∇ ∆  

 
then, from which one can easily infer by calculation and taking (3) and (4) into account: 
 

(5)    
...

12 1 1

...
[ | | ] [ | | ]

,

2 2 .

c c a b d
bda

c c c f c k
bda d a b f d a b ak bd

v R v d x d x

R

 =


= ∂ Λ + Λ Λ + Λ Π

D

 

 
We have then arrived at a definition of the affinor (5) as the quantity of curvature in m

nX .  

By the same reasoning, when applied to a covariant vector wa , we will arrive at the 
equation: 

12 aD w = − ...

1 1

c b d
bda cR w d x d x′ , 

 
in which the quantity ...c

bdaR′  results from (5) by replacing the cabΛ  with c
ab
′Λ . 

 If Xn becomes an An then (5) will reduce to the affinor that Schouten (1) defined to be 
the curvature of the m

nA , and for a holonomic manifold, the ...cbdaR , ...c
bdaR′  will take the form 

that was given by the author (2). 
 

_________ 

                                                
 (1) Loc. cit.  
 (2) Loc. cit.  


