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 It is my intent to fill a large and essential gap in the calculus of variations.  Namely, 
in the problems of the greatest and smallest that depend upon the calculus of variations, 
one can give no general rule by which one could recognize whether a solution was 
actually a greatest, or a smallest, or neither.  Indeed, one recognizes that a criterion for 
that would depend upon whether certain systems of differential equations have integrals 
that remain finite over the entire interval over which the integral that is supposed to be a 
maximum or minimum is extended.  However, one cannot find these integral themselves, 
and can in no way discuss the situation of whether one knows if they do or do not remain 
finite inside the given limits.  However, I have remarked that this integrals will always be 
given when one has integrated the differential equations of the problem – i.e., the 
differential equations that must be fulfilled in order for the first variation to vanish.  If 
one has obtained expressions for the desired functions by integrating these differential 
equations that contain a number of arbitrary constants then their partial differential 
quotients with respect to those arbitrary constants will give the integrals for the new 
differential equations that one must integrate in order to determine the criterion for 
greatest and smallest. 

 In order to consider the simplest case, let the given integral be , ,
y

f x y x
x

∂ ∂ ∂ 
∫ ; y 

will be determined by the differential equation 

f
f y

y x

∂
′∂ ∂− ∂ ⋅

∂ ∂
 = 0, in which we have 

substituted y′ for 
y

x

∂
∂

.  The expression for y that is given by integrating these equations 

will include two arbitrary constants that I would like to call a and b.  If w = δy, w′ = ∂w / 
∂x then the second variation will be: 
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and in order for this to be a maximum or minimum, it would be necessary for ∂2f / ∂y′2 to 
always have the same sign.  However, in order to get the complete criterion for the 
maximum or minimum, one must still know the complete expression for a function ν that 
is required to satisfy the differential equation: 
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one can see this in Lagrange’s theory of functions or Dirksen’s calculus of variations.  
(Ohm’s calculus of variations is not precise in that theory.)  I now find the complete 

expression for v as follows: Let u = 
y y

a b
α β∂ ∂+

∂ ∂
, in which 

y

a

∂
∂

, 
y

b

∂
∂

 mean the partial 

differential quotients of y with respect to the arbitrary constants a, b that enter into y, and 
α, β are new arbitrary constants, so: 
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will be the desired expression for v, which will contain an arbitrary constant β / α. 
 The case in which higher-order differentials enter under the integral sign is more 

difficult.  Let ( , , , )f x y y y x′ ′′ ∂∫  be the expression that must take on a maximum or a 

minimum, in which, once more, y′ = 
y

x

∂
∂

, y″ = 
2

2
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∂
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, so y will be the integral of the 

differential equation: 
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which contains four arbitrary constants a, a1, a2, a3 .  If, once more, δy = w, δy′ = w′, δy″ 
= w″ then the second variation will become: 
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In order for this to be a maximum or minimum, 
2

2

f

y

∂
′′∂

 must always have the same sign.  

However, in order to get the complete criterion, one must integrate the following system 
of differential equations, as one can see from Lagrange’s theory of functions: 
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The three functions v, v1, and v2 are determined from these three first-order differential 
equations, which present a truly daunting sight, and whose complete expression must 
contain three arbitrary functions.  I have found their general integrals, as follows: 
 Let: 
 

u = 1 2 3
1 2 3

y y y y

a a a a
α α α α∂ ∂ ∂ ∂+ + +

∂ ∂ ∂ ∂
,   u1 = 1 2 3

1 2 3
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∂ ∂ ∂ ∂
, 

 
or let u, u1 be linear expressions in the partial differential quotients of y with respect to 
the arbitrary constants that it contains.  The eight constants α, α1, α2, α3, β, β1, β2, β3 are 
not taken to be entirely arbitrary, but a certain condition must exist between the six 
quantities αβ1 – α1β, αβ2 – α2β, αβ3 – α3β, α2β3 – β2α3, α3β1 – α1β3, α1β2 – α2β1 that are 
composed from them, although I would not like to go into that in detail here.  Thus, the 
general expressions for v, v1, v2 that I have found will be the following ones: 
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. 

 
 Since one identical equation exists between the six quantities αβ1 – α1β, etc., in 
addition to which, one condition is given between them, and only their ratios enter into 
the expressions for v, v1, v2, they represent the effect of three arbitrary constants, which 
was desired. 
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 The general theory, in which one includes differentials of y up to any order under the 
integral sign, will be derived with no difficulty from a remarkable property of a special 
class of linear differential equations.  These 2nth-order linear differential equations have 
the form: 

0 = Ay + 
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in which y(m) = 
m

m

y

x

∂
∂

, and A, A1, etc., are given functions of x.  If y is any integral of the 

equation Y = 0, and one sets u = t y then the expression: 
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in which u(m) = 
m
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, will become integrable; i.e., one can give its integral without 

knowing t, and that integral will again have the form of Y, except that n is 1 smaller; 
namely, one will have: 
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in which t(m) = 
m

m

t

x

∂
∂

, and the functions B can generally be given in terms of u and the 

functions A and their differentials.  The proof of this theorem presents no difficulty.  I 
have found the general expressions for the functions B; for the application that we have 

posed, it will suffice to just prove that yU x∂∫  has the given form, without it being 

necessary to know the functions B themselves. 
 The metaphysics of the results that were found, if I might appeal to a French 
expression, rests upon roughly the following considerations: As is known, one can give 

the first variation the form V y xδ ∂∫ , in which V = 0 is the equation to be integrated.  

The second variation thus takes the form V y xδ δ ∂∫ .  If the second variation is to not 

change sign then it must not be capable of vanishing, or the equation δV = 0, which is 
linear in δy, can have no integral δy that fulfills the conditions that δy is subject to 
according to the nature of the problem.  One sees from this that the equation δV = 0 plays 
a key role in this investigation, and in fact, one soon recognizes its connection with the 
differential equations that must be integrated for the criterion of max. or min.  In addition, 
one sees immediately that a value of δy that fulfills the differential equation δV = 0 will 
be that partial differential quotient of y with respect to which one of the arbitrary 
constants is taken that include y as an integral of the equation V = 0.  One will then obtain 
the general expression for the integral δy of the differential equation δV = 0 when one 
defines a linear expression with all of those partial differential quotients.  However, the 
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equation δV = 0, whose integrals one knows in that way, can, as one can see, be brought 
into the form of the equation Y = 0 above when one writes δy for y in it, and by means of 
the given properties of that kind, arrives at equations that transform the second variation 

V y xδ δ ∂∫  into another expression by continued partial integration that contains a 

complete square under the integral sign that is just the transformation of the second 
variation that one has thus hoped to achieve.  If, e.g., the integral above 

( , , , )f x y y y x′ ′′ ∂∫  is given, and one preserves the given meaning of u and u1 for this 

case, then δV will take on the form: 
 

δV = A δy + 1 2
2

A y A y

x x

δ δ′ ′′∂ ⋅ ∂ ⋅+
∂ ∂

, 

 
and one will have δV = 0 for δy = u.  If one sets δy = u δ ′y then, from the general 
theorem above, one will get: 

V y xδ δ ∂∫  = u V y xδ δ ′ ∂∫  
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If one now sets the last integral equal to 1V y xδ ′ ′∂∫  then the equation V1 = 0 will be 

fulfilled when one sets δ′ y = u1 / u, so δ′ y′ = 1 1
2

uu u u

u

′ ′−
.  One then continues to use the 

same method when one sets δ′ y′ = 1 1
2

uu u u
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′ ′− ⋅⋅⋅⋅ δ″ y, with which, by the same theorem: 

 

1V y xδ ′ ′∂∫  = 1 1
1 2

uu u u
V y x

u
δ

′ ′−  ′′ ∂ 
 

∫  = C δ″ y ⋅⋅⋅⋅ δ″ y′ − 2( )C y xδ ′′ ′ ∂∫ , 

 
and in the last transformation, the arbitrary variation enters under the integral sign only as 

a square.  One easily sees, moreover, that B1 = u2 A2, C = 
2

1 1
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B1, and thus C = 
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A2 . 

 Furthermore, A2 = 
2

2

f

y

∂
′′∂

, so C will always have the same sign as 
2

2

f

y

∂
′′∂

, which is 

always positive for a minimum, but must always be negative for the maximum.  As is 
known, one must now examine whether ∂″y′ cannot become infinite between the limits of 
the integration, where one will be put into that position when one knows the functions u, 
u1, which one will know as soon as y or the complete integral of the equation V = 0 is 
given. 
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 If the analysis that was suggested in the foregoing requires rather deep speculations 
into integral calculus then the criterion that is derived from them of whether a solution 
gives a maximum or a minimum at all becomes very simple.  I would like to consider the 
case in which y, along with its differentials up to the nth, are present under the integral 
sign, and the boundary values of y, y′, …, y(n−1) are given, along with the boundary itself.  
If one substitutes these boundary values in the 2n integral equations, with their 2n 
arbitrary constants, then the arbitrary constants will determined.  However, because the 
solution of equations is necessary for that, there will be, as a rule, several ways of doing 
that determination, such that one will get several curves that obey the same boundary 
conditions and the same differential equation.  If one has chosen one of them then one 
will consider the one boundary point to be fixed, and go from it to the following point 
along the curve.  If one takes one of these following points to be the other boundary point 
then, from what was said above, it will be possible for one to lay other curves through it 
and the first one, for which y′, …, y(n−1) will have the same values at these two limits, and 
which will satisfy the given differential equation.  Now, as long as one arrives at a point 
when one proceeds along the curve for which one of the other curves coincides with it 
(or, as one can also say, comes infinitely close to it), it will be the limit up to which, or 
beyond which, one cannot extend the integration if one is to find a maximum or 
minimum.  However, when one does not extend the integral up to these limits, a 

maximum or a minimum will always be found if one assumes that 
2

( )2n

f

y

∂
∂

 always has the 

same sign between the limits. 
 In order to make this clear with an example, I would like to consider the principle of 
least action for the elliptical motion of a planet. 
 As Lagrange believed, the integral that is considered in the principle of least action 
can never be a maximum.  However, it will also in no way always be a minimum, but 
certain restrictions on its limits would be necessary for that, which would be given by the 
general rule above, failing which, the integral would be either a maximum or a minimum.  
The planet (Fig. 1) begins to move from a, where a lies between the perihelion and the 
aphelion.  Let the other endpoint be b; if 2A is the major axis then f is the Sun.  As is 
known, one will then get the other focal point of the ellipse as the intersection of two 
circles that are described by the centers a and b and the radii 2A – af, 2A – bf.  The two 
intersection points of the circles give two different solutions of the problem that can 
coincide in just one only when the circles contact; i.e., when ab goes through the other 
focal point.  If one then draws the chord of the ellipse aa′ from a through the other focal 
point of the ellipse f′ then as a result of the given rule, the other limit point b must lie 
between a and a1 if the ellipse is to actually make the integral that is considered in the 
principle of least action become smallest.  If b falls upon a1 then the second variation of 
the integral can indeed not become negative, but 0, such that the variation of the integral 
can be of the third order, and this positive, as well as negative.  If the starting point a lies 
between the aphelion and the perihelion then the external point a′ will be determined by 
the chord of the ellipse that one draws from a through the Sun f.  Thus, if a and a′ (Fig. 2) 
are the limit points then one will obtain infinitely many solutions of the problem by 
rotating the ellipse around afa′ .  Thus, if the second limit point in the latter case lies 
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above a′ then it will give a courbe à double courbure between the two given limits, for 

which v s∂∫  will be smaller for the ellipse. 

 I would like to take this opportunity to say a few words about the variation of the 
double integral, whose theory is capable of taking on greater elegance than it already has 
from the work of Gauss and Poisson.  In order to give a presentation of the kind that 
would seem appropriate to me in order to express the variation of the double integral, I 

would like to assume the simplest case, in which one considers ( , , , , )f x y z p q x yδ ∂ ∂∫∫ , 

where p = ∂z / ∂x, q = ∂z / ∂y. 
 Let w be the variation of z, so one will have: 
 

x y fδ ∂ ⋅∂∫∫ = 
f f w f w

x y w
z p x q y

 ∂ ∂ ∂ ∂ ∂∂ ⋅∂ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ 
∫∫ . 

 
The method that is applied to simple integrals consists of dividing the expression under 
the integral sign into two parts, one of which is multiplied by w, while the other of which 
is the element of an integral.  The former must be set equal to zero under the integral if 
the variation is to vanish; the latter can be integrated, and one can let its integral vanish.  I 
then divide the expression under the double sign into a part that is multiplied by w and 
another one that is the element of a double integral; that is, if u = aw then I set: 
 

f f w f w
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z p x q y
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u v u v
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If one compares the terms that are multiplied by w, 
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∂
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 then one will obtain: 
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from which it will follow that: 

A = 

f f

p qf

z x y

   ∂ ∂∂ ∂   ∂ ∂∂    − −
∂ ∂ ∂

, 

 
which will give the known partial differential equation when it is set equal to zero that is 
derived here in a completely symmetric way.  The function v must fulfill the equation 

f v f v

p x q y

∂ ∂ ∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂

 = 0.  If one sets A = 0 then one will have: 
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u v u v

x y
x y y x

 ∂ ∂ ∂ ∂∂ ∂ ⋅ − ⋅ ∂ ∂ ∂ ∂ 
∫∫  = v u∂ ∂∫∫ , 
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which must vanish when it is taken at the given limits.  When z is given at the limits, w 

will vanish at the limits, and thus u = w, as well, and therefore one will have v u∂ ∂∫∫ = 0.  

If the limiting values of z are completely arbitrary then v must vanish at the limits, or if v 
= 0 means the limit curve then the arbitrary functions that enter into the integral of 

equation A = 0 will be determined such that 
f v f v

p x q y

∂ ∂ ∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂

 = 0, etc. 

 Let us get back to the maximum and minimum.  It is unfortunate that so much 
confusion arises in the use of those words.  One says: “let an expression be a maximum 
or a minimum” when one would like to say merely that its variation vanishes, regardless 
of whether a maximum or minimum is present.  One says: “let a quantity be a maximum” 
when one would like to say only that it is not a minimum.  That is what Poisson said in 
his mechanics: For closed surfaces, the shortest line between two given points can be a 
maximum, regardless of whether one understands that to mean that one can make a long 
path even longer by bends that can be infinitely small.  Admittedly, the shortest path 
gives a relative minimum when the condition that is posed by my general rule above is 
fulfilled, namely, that there do not exist two other points along the curve between the two 
endpoints, between which, one can draw a second infinitely close shorter curve.  
However, in other cases, the length is not a maximum, but either a maximum or a 
minimum.  I have proved that the shortest line really is a shortest line between any two 
points of a surface that has two opposite curvatures at each point. 
 The investigations that were suggested above on the criterion for the greatest and 
smallest in the isoperimetric problem fill an essential gap in one of the most beautiful 
parts of mathematics; in addition, they are noteworthy in the integral calculus that is 
applied in them.  However, the following investigations would be more far-reaching in all 
of science, so I shall allow myself to give a brief hint of them. 
 Hamilton has shown that the problems of mechanics in which the law of vis viva is 
true can lead back to the integration of a first-order partial differential equation.  He 
actually required the integration of two such partial differential equations; however, one 
easily shows that it suffices to know any complete integral of one of them.  One also 
extends his results easily to the case in which the force functions – i.e., the function 
whose partial differential quotients give the force – contains time explicitly.  The law of 
vis viva is not true for that case, but the principle of least action still is.  It seems as if less 
can be accomplished by this conversion to a partial differential equation, since from 
Pfaff’s method in the treatises of his Academy (and up to now, one knows nothing else 
about the integration of first-order partial differential equations in more than three 
variables), the integration of the one partial differential equation to which the dynamical 
problem comes down is much more difficult than the integration of the system of the 
originally-given, ordinary differential equations of motion.  In fact, if, as one can do with 
no difficulty, one extends Hamilton’s investigation to all first-order partial differential 
equations then it will be, conversely, a meaningful discovery in the theory of first-order 
partial differential equations that they can always be converted to the integration of a 
single system of ordinary differential equations, which Pfaff’s method did not succeed in 
doing, up to now.  That can be important for the integration of the differential equations 
of mechanics themselves only when one confirms that the system of ordinary differential 
equations to which the first-order partial differential equations come down is capable of a 
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special treatment that distinguishes them from other differential equations.  Whether or 
not Hamilton sought to make many applications of his new methods, as he called them, 
nothing has been said of them since then, and therefore no essential use of his remarkable 
theorems has been made, either.  However, in fact, Lagrange already remarked about the 
first-order partial differential equations in three variables that he restricted himself to, and 
whose integration belongs to his most beautiful and celebrated discoveries, that when one 
knows one integral of the system of three first-order ordinary differential equations in 
four variables into which the problem has been converted, all that one must integrate are 
two first-order differential equations, each of which is in two variables.  However, in 
general, one would have to integrate a second-order differential equation in two variables 
that one can thus always reduce to first order for that special system of ordinary 
differential equations.  If the first-order partial differential equation in three variables 
does not contain the unknown function itself, but only its two differential quotients, then 
one will have only two first-order differential equations in three variables to integrate, 
and if one knows one integral of them then, from Lagrange’s method, one must perform 
only two quadratures, while, in general, there would still be one first-order differential 
equation to integrate.  The latter case occurs in mechanics; viz., the first-order partial 
differential equations to which the dynamical problem reduces never contain the 
unknown function itself.  Thus, one can already deduce some new, most remarkable, 
theorems from Lagrange’s process for three variables.  Namely, it follows from it in a 
completely general way that when any problem of mechanics for which the law of vis 
viva is true depends upon a second-order differential equation, and one know one integral 
from that law, such that the problem comes down to the integration of a first-order 
ordinary differential equation in two variables then one can always integrate the latter; 
i.e., one can find its multiplier by a general, well-defined rule.  One such mechanics 
problem is – e.g. – the motion of a body in a plane that is drawn between two fixed 
centers.  Euler found a second integral for it, in addition to the vis viva, with ease; 
however, the first-order differential equation to which he arrived was so complicated that 
his great dauntlessness was shown by the fact that he addressed the integration of it, and 
his success in that endeavor belongs to his most celebrated masterpieces.  However, this 
integration was achieved by means of the aforementioned general rule with no further 
artifices.  Maybe half a year ago, I lectured to the Paris Academy on formulas that relate 
to the case of the free motion of a point in a plane, which generally reduce the problem to 
quadratures when one knows another integral besides the vis viva.  These formulas can be 
immediately extended to the motion of a point on a given surface. 
 However, in order for an application of these considerations to more complicated 
systems to be possible, it is necessary to extend Lagrange’s method for the integration of 
first-order partial differential equation in three variables to any number of variables.  
Pfaff, who saw that as being connected with insurmountable obstacles, felt that on that 
basis, one should abandon that method entirely.  He considered the problem to be a 
special case of a much more general one whose fortunate solution belongs to the most 
important ways by which integral calculus has been enriched.  However, the problem of 
the integration of first-order partial differential equations admits some simplifications in 
comparison to the general problem that Pfaff considered that escaped him, and which he 
could not find using his methods.  I have succeeded in removing the difficulties that stand 
in the path of the generalization of Lagrange’s method, and have thus founded a new 
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theory of first-order partial differential equations for any number of variables that offers 
the most essential advantage for their integration and finds immediate application to the 
problems of mechanics.  The following comments might suffice here. 
 First-order partial differential equations and the isoperimetric problem, in which, the 
differential quotients of the unknown functions appear under the integral sign only up to 
the first order, depend upon the same analysis, such that every such isoperimetric 
problem can also be regarded as the integration of a first-order partial differential 
equation.  Among these isoperimetric problems, one can also address ones in which the 
expression that must be a maximum or minimum − or, more generally, whose variation 
should vanish − are given, not as an integral from the outset, but by a first-order 
differential equation.  Conversely, one can also approach the integration of a first-order 
partial differential equation as such an isoperimetric problem.  As a result of the principle 
of least action, the motion of a system of mutually-attracting bodies can be considered to 
be an isoperimetric problem of the stated kind, which can be subject to parallel forces, in 
addition to forces that are directed from fixed or moving centers, provided that the bodies 
of the system do not react to the last center, and its motion will be assumed to be 
otherwise known.  Thus, such a mechanical problem can always be posed as the 
integration of a first-order partial differential equation, as well.  That integration will 
depend upon that of a system of ordinary differential equation that agrees with the known 
differential equations of mechanics, but certain simplifications will be possible, as they 
are for a first-order partial differential equation.  Namely, one can arrange that every 
integral that one finds represents the effect of two integrations by a special form of the 
procedure and a special choice of the quantities that one introduces as variables.  In order 
to make this clearer, I would like to say that a system of differential equations has order n 
when one can convert it into an nth-order ordinary differential equation in two variables 
by eliminating the remaining variables.  For first-order partial differential equations that 
do not include the unknown function itself, but only its partial differential quotients, as 
well as for the isoperimetric problems of the stated kind, in which the expression whose 
first variation should vanish is given as an integral, and therefore, also for the stated 
mechanical problems, the course of operations to be observed, and the advantage that one 
gains by it, can now be given as follows: Let the system of ordinary differential equations 
upon which the problem depends be of order 2n.  One knows an integral of it, so the 
problem can be converted into a system of differential equations of order n – 2 by a 
certain choice of quantities that one introduces as variables.  If one further knows another 
integral of that system then it can be converted into a system of order 2n – 4 by a new 
choice of variables, and so on, until one no longer has any differential equations left to 
integrate.  All of the operations in addition to the ones that are performed are merely 
quadratures.  For the sake of clarity, I remark that I call an equation U = a an integral of a 
system of ordinary differential equations when a is an arbitrary constant that does not 
enter into U, and U is an expressions such that the differential expression dU will become 
zero identically when one uses it. 
  As an example of the general method, I take a mechanical problem that I have 
already had the honor of presenting to the Academy in a previous paper.  Namely, there 
are cases in the motion of heavenly bodies – such as, e.g., the Moon or a comet that 
passes close to Jupiter – in which one is so far from elliptic motion that one can establish 
no process of approximation for the integration of the differential equations of motion 
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that would have any scientific value.  It is therefore of great importance to find other 
motions that are capable of a simple treatment and can better approach the case of nature.  
For this, one can attempt to choose the motion of a massless point that is attracted to two 
bodies that rotate uniformly and with the same angular velocity around their common 
center of mass.  For the Moon, one can still assume for the approximation problem that 
the three bodies move in a plane.  One will then have two second-order differential 
equations that, since the forces include time explicitly, and therefore either the law of 
areas or the law of vis viva will be true, will represent the effect of a fourth-order 
differential equation in two variables.  Even when both the law of areas and the law of vis 
viva are not true, I have still shown that a certain combination of them can also find its 
place here.  However, this integral that I found did not merely convert the problem into 
one of order three, but the application of the general method to that case showed that, by 
a suitable choice of variables, one could convert the problem to second-order differential 
equation in two variables, for which the same method would illuminate the fact that one 
would again need to know only a single integral.  It was then by means of that method 
that I found that the integration of the fourth-order differential equation was converted by 
one integral into that of finding a single integral of a second-order differential equation 
when one requires that all of the remaining integrations should be just quadratures. 
 The entire course of suggested operations depends upon the integrals that one can 
find in each case; the choice of variables likewise depends upon them, and also requires 
integrations of differential equations in its own right, but always in such a way that the 
system of differential equations can be converted into another one whose order is two 
lower by one integral that has been found.  Moreover, the differential equations that allow 
one to determine the choice of variables will be easy to integrate in many cases.  
Provided that one does not overlook the simple integrals that one can find, one can be 
certain of converting the problem in the stated way, if not completely to quadratures, then 
as far as its nature will make that possible.  Moreover, if the differential equations to 
which one comes cannot be integrated then one will recognize noteworthy properties of 
them that can be employed to advantage.  Thus, one knows that in the problem that was 
cited, when one also cannot integrate the second-order differential equations to which it is 
converted, its two integrals can be found from each other by mere quadratures. 
 You see, most revered professor, that the results that were quoted in the foregoing 
brief outline establish a new and important chapter in analytical mechanics whose 
advantage can be deduced from the special form of the differential equations of 
mechanics for their integration.  We owe this form to Lagrange, but up to now, in his 
hands and those of the analysts that followed him, it only served to render the analytical 
transformations faster and clearer, and to extend the known general mechanical laws, 
where that was possible.  However, this form now takes on much more important 
meaning when one shows the precisely the differential equations of that particular form 
are capable of a special treatment that reduces the difficulties in their integration 
substantially. 
 
 29 November 1836. 
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