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First treatise. 
 

1. 
 

In a treatise that was read to the Berlin Academy, along with others, in 1814-1815, Pfaff 
showed how one could integrate any equation of the form: 
 

X1 ∂x1 + X2 ∂x2 + … + X2n ∂x2n = 0, 
 
where X1, X2, …, X2n are arbitrary functions of x1, x2, x3, …, x2n, by means of a system of 
n equations, so the problem of integrating partial differential equations of first order in n 
variables is only a special case.  To that end, he expressed 2n – 1 of the variables x1, x2, 
x3, …, x2n in terms of the remaining one xm and 2n – 1 new quantities variables a1, a2, a3, 
…, a2n−1, where these a1, a2, a3, …, a2n−1 are certain functions of x1, x2, x3, …, x2n .  After 
such a substitution, the equation: 
 

X1 ∂x1 + X2 ∂x2 + … + X2n ∂x2n = 0 
 

is always converted into another one of the form: 
 

U ∂xm + A1 ∂a1 + A2 ∂a2 + … + A2n−1 ∂a2n−1 = 0, 
 

where U, A1, A2, …, A2n−1 are functions of xm, a1, a2, a3, …, a2n−1.  Pfaff determined the 
functions a1, a2, a3, …, a2n−1 in such a way that U = 0 and xm entered into the quantities 
A1, A2, …, A2n−1 only in a factor that was common to all of them.  If one divides by it then 
one has converted the given equation into another one that is similar, except that it only 
involves 2n – 1 variables a1, a2, a3, …, a2n−1 .  Since this process is possible only for an 
even number of variables, one cannot further convert them into an equation in only 2n – 2 
variables in the same way.  Pfaff then set one of these variables equal to a constant, and 
then once more converted the equation in the remaining 2n – 3 variables into another one 
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in only 2n – 3 variables, one of which he again set equal to a constant, and proceeded in 
that manner until he came to an equation in only 2 variables, whose integration gives the 
last nth equation with the nth arbitrary constant. 
 
 Pfaff then further showed, in a similar way, how these things happened for partial 
differential equations such that one could, from such a solution with n arbitrary constants, 
derive other solutions with arbitrary functions.  Namely, one imagines that the n integral 
equations have been brought into the form: 
 

F1 = C1, F2 = C2, …, Fn = Cn , 
 
where C1, C2, … Cn are arbitrary constants and  F1, F2, … Fn no longer include them.  If 
one now thinks of the quantities C1, C2, … Cn as variables then one must have that by 
means of the equations: 
 

F1 = C1, F2 = C2, …, Fn = Cn , 
the expression: 

X1 ∂x1 + X2 ∂x2 + … + X2n ∂x2n  
 

can be converted into another one of the form: 
 

K1 ∂C1 + K2 ∂C2 + … + Kn ∂Cn , 
 

because this expression must vanish when C1, C2, … Cn are set equal to constants.  In an 
identical way, one must then have: 
 

X1 ∂x1 + X2 ∂x2 + … + X2n ∂x2n = K1 ∂C1 + K2 ∂C2 + … + Kn ∂Cn . 
 

However, this expression does not vanish merely when one sets F1, F2, …, Fn equal to 
constants, but also when one makes m of the quantities F1, F2, …, Fn take the form of 
arbitrary functions of the remaining ones − e.g., F1, F2, …, Fm as functions of Fm+1, Fm+2, 
…, Fn − from which: 
 

K1 ∂F1 + K2 ∂F2 + … + Kn ∂Fn = Π1 ∂Fm+1 + Π2 ∂Fm+2 + … + Kn ∂Fn ,  
 

and then appends the equations: 
 

Π1 = 0,  Π2 = 0,  …, Πn−m = 0. 
If one sets: 
     F1 = ψ1(Fm+1, Fm+2, …, Fn), 
     F2 = ψ2(Fm+1, Fm+2, …, Fn), 
      … 
     Fm = ψm(Fm+1, Fm+2, …, Fn) 
then one obtains: 
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and the given equation: 

X1 ∂x1 + X2 ∂x2 + … + X2n ∂x2n = 0, 
 
will also be integrated by means of the system of n equations: 
 
     F1 = ψ1(Fm+1, Fm+2, …, Fn), 
     F2 = ψ2(Fm+1, Fm+2, …, Fn), 
      … 
     Fm = ψm(Fm+1, Fm+2, …, Fn), 
 

Π1 = 0,  Π2 = 0,  …, Πn−m = 0. 
 
One finally obtains a solution when one sets: 
 

K1 = 0,  K2 = 0, …, Kn = 0, 
 
which, along with the one in which one sets F1, F2, …, Fm equal to arbitrary constants, 
defines, in a certain sense, the two extreme cases that correspond to the so-called singular 
and complete solution of the partial differential equations, although the remaining ones 
correspond to the so-called general solutions.  All of these solutions have a well-defined, 
distinct character when compared to the other ones, and one can never, e.g., obtain the 
original solution with n arbitrary constants when one chooses the arbitrary functions to be 
functions with n constants.  Pfaff gave only the solution that one obtains when one makes 
one of the functions F1, F2, …, Fn take the form of a function of the remaining ones. 
 
 

2. 
 

 One sees from the foregoing that everything comes down to a general method of 
determining the functions a1, a2, …, a2n−1 in every case, which we would like to 
undertake with Pfaff’s guidance. 
 Therefore, let the equation: 
 

0 = X1 ∂x1 + X2 ∂x2 + … + Xp ∂xp  
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be given.  Let a1, a2, …, ap be certain functions of x, x1, x2, …, xp, and one thinks of them 
as being expressed in terms of x1, x2, …, xp, and x.  With that assumption, I will denote 
the partial differentials with respect to the x, a1, a2, …, ap without brackets, such that, 
e.g.: 

1

X

a

∂
∂

= 1 2

1 1 2 1 1

p

p

xx xX X X

x a x a x a

  ∂   ∂ ∂∂ ∂ ∂⋅ + ⋅ + + ⋅      ∂ ∂ ∂ ∂ ∂ ∂     
⋯ . 

 
 The given equation: 

0 = X ∂x + X1 ∂x1 + X2 ∂x2 + … + Xp ∂xp 
 

is then converted into the following one: 
 

0 = U ∂x + A1 ∂a1 + A2 ∂a2 + … + Ap ∂ap , 
where: 

  U = X + 1 2
1 2
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p
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 One first sets: 

U = X + 1 2
1 2

p
p
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⋯ = 0. 

 
In order for x to enter into A1, A2, …, Ap only by way of a common factor M, moreover, 
one must have: 

1
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⋯ , 

 
an expression from which one obtain the various values of A1, A2, …, Ap when one sets a 
equal to a1, a2, …, ap in sequence, so one has: 
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 However, it follows from the equation: 
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⋯ , 

 
when one differentiates it with respect to a, that: 
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 The difference of both expressions gives 
A

x

∂
∂

.  If one sets, for brevity, 

XX

x x
βα

β α

  ∂ ∂ −    ∂ ∂  
 = (α, β), where one then has (α, β) + (β, α) = 0, and e.g.: 

 

(0, 1) = 1

1

XX

x x
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, 

then one obtains: 
 

  
A

x

∂
∂

 = 

   1 2 1(1,0) * (1,2) (1,3) (1, ) pxx x x
p

a x x x

∂ ∂ ∂ ∂+ + + + + ∂ ∂ ∂ ∂ 
⋯  
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expressions for 1A
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in which one has suppressed the remaining terms, or since: 
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one obtains the equation: 

N X = 1 2(0,1) (0,2) (0, ) pxx x
p
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In this way, one obtains p + 1 linear equations between the p + 1 unknown quantities 

N, 1x

x

∂
∂

, 2x

x

∂
∂

, …, px

x

∂
∂

. 

 Therefore, everything has been reduced to merely relations between the derivatives 

with respect to x, namely, 1x
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desired functions a1, a2, …, ap are the functions that will be set equal to the p arbitrary 
constants in the integration of the equations: 
 

∂x : ∂x1 : ∂x2 : … : ∂xp = V : V1 : V2 : … : Vp , 
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which was required.  If one thus finds the values of V, V1, V2 , …, Vp from the p + 1 
equations then the integration of the equations: 
 

∂x : ∂x1 : ∂x2 : … : ∂xp = V : V1 : V2 : … : Vp , 
 
give the desired functions a1, a2 , …, ap. 
 
 

3. 
 

 The equations by which one must look for1
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∂
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∂
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If one finds from these equations that: 
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∂x = 
NV x∂

∆
, ∂x1 = 1NV x∂

∆
, …, ∂xp =

pNV x∂
∆

 

then one will have: 
∂x : ∂x1 : ∂x2 : …: ∂xp = V : V1 : V2 : … : Vp . 

 
One further obtains N = ∆ / V. 
 Equations (A) have very remarkable properties.  It is characteristic of them that the 
vertical rows of coefficients are precisely the negative of the horizontal rows; therefore, 
the terms in which the mth horizontal row and the mth vertical row agree will vanish as 
will clearly be the case for the stars that one finds in the diagonals.  From this property, it 
then follows that p + 1 – i.e., the number of variables x, x1, x2, …, xp – must be an even 
number.  It is, in fact, known that for any system of n equations in n unknown variables, 
one must see whether the common denominator of the values of the unknowns – which 
Gauss referred to by the name of determinant in his Disquis. Arith. – can vanish.  That 
would be a sign that the system of n equations cannot exist, provided that perhaps no 
equation of condition is found between the constants by means of which the nth equation 
is a consequence of the n – 1 remaining equations.  Now, this remains unchanged in the 
known algorithm by which the determinant is constructed when one switches the 
horizontal rows and vertical rows of the coefficients with each other.  Now, for our 
special case, if we denote the determinant by ∆, then it will follow that ∆ = (−1)p+1∆, 
since every term in the determinant is a product of p + 1 coefficients, each of which is 
converted into its negative under the exchange of horizontal and vertical rows.  However, 
this equation ∆ = (−1)p+1∆ can exist only when p + 1 is an even number, provided that 
one does not have ∆ = 0. 
 I will now develop some special cases. 
 
 For p + 1 = 4, one obtains: 
 
  V  =     *    + (2, 3) X1 + (3, 1) X2 + (1, 2) X3 , 
  V1  = (3, 2) X +       *    + (0, 3) X2 + (2, 0) X3 , 
  V2  = (1, 3) X + (3, 0) X1  +       * + (0, 1) X3 , 
   V3  = (1, 3) X + (3, 0) X1  + (1, 0) X2  +      *       , 
 
  ∆ = (0, 1) (3, 2) + (0, 3) (2, 1) + (0, 2)(1, 3). 
 
For p + 1 = 6, when one denotes the expression: 
 

(1, 2)(3, 4) + (1, 3)(4, 2) + (1, 4)(2, 3) 
 
by (1, 2, 3, 4), for brevity, and forms the similar expressions of this type, one obtains: 
 
 V =          *          + (2, 3, 4, 5) X1 + (3, 4, 5, 1) X2  + (4, 5, 1, 2) X3 + (5, 1, 2, 3) X4 + (1, 2, 3, 4) X5 , 
 V1  = (3, 2, 4, 5) X +         *            + (4, 3, 5, 0) X2  + (5, 4, 0, 2) X3 + (0, 5, 2, 3) X4 + (2, 0, 3, 4) X5 , 
 V2  = (1, 3, 4, 5) X + (3, 4, 5, 0) X1 +        *              + (4, 5, 0, 1) X3 + (5, 0, 1, 3) X4 + (0, 1, 3, 4) X5 , 
 V3 = (2, 1, 4, 5) X + (4, 2, 5, 0) X1 + (5, 4, 0, 1) X2  +          *           + (0, 5, 1, 2) X4 + (1, 0, 2, 4) X5 , 
 V4 = (1, 2, 3, 5) X + (2, 3, 5, 0) X1 + (3, 5, 0, 1) X2  + (5, 0, 0, 2) X3 +           *          + (0, 1, 2, 3) X5 , 
 V5 = (2, 1, 3, 4) X + (3, 2, 4, 0) X1 + (4, 3, 0, 1) X2  + (0, 4, 1, 2) X3 + (1, 0, 2, 3) X4 +           *          . 
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 In order to specify the general procedure for these expressions, I will say that one 
runs through a kind of cycle, in which one sets the numerical elements 0, 1, 2, …, p of 
which it is composed equal to: 
 0,  1, 2, 3, …, p−1, p, 
 1,  2, 3, 4, …, p,  0, 
 2,  3, 4, 5, …, 0,  1, 

… 
 p −1, p, 0, 1, …, p−3, p−2, 
 p,  0, 1, 2, …, p−2, p−1, 
in succession. 
 As one can see from the last example, one thus obtains the expression that is equal to 
Vm from one of its terms when one runs through the cycle, after one has omitted the 
number m from the number sequence 0, 1, 2, …, p, where we remark that one also had to 
do the same thing with the index of X.  One thus obtains from the term (3, 2, 4, 5) X0 in 
the expression that is found for V1, the remaining ones when one replaces 0, 2, 3, 4, 5 
with 2, 3, 4, 5, 0; 3, 4, 5, 0, 2; 4, 5, 0, 2, 3; 5, 0, 2, 3, 4, in succession.  Furthermore, one 
always obtains from all of the expressions found for Vm the ones that follow for Vm+1 
when one sets 0, 1, 2, 3, …, p equal to 1, 2, 3, …, p, 0, resp., and replaces the first two 
elements in them with a bracket.  When one replaces 0, 1, 2, 3, 4, 5 with 1, 2, 3, 4, 5, 0, 
resp., one then obtains from the term (1, 0, 2, 4) X5 in V3, the term (2, 1, 3, 5) X, and when 
one replaces the first two elements in (2, 1, 3, 5), the term (1, 2, 3, 5) X, which is the first 
term in the expression found for V4 . 
 What still remains for us to do is to give the construction of a typical element, such as 
(1, 2, 3, 4).  If one sets the coefficients of X1 in V equal to (2, 3, 4, 5,…, p – 1, p) for p + 1 
elements then (2, 3, …, p) will consist of 1 × 3 × 5 ×…× p – 2 terms.  The first of them 
will be: 

(2, 3) ⋅ (4, 5) ⋅ (6, 7) … (p – 1, p). 
 

 From this, one constructs p – 2 more, when one lets the last p − 2 elements 3, 4, …, p 
run through a cycle.  From each of these p − 2 terms, one constructs p – 4 more when one 
lets the last p − 4 elements 5, 6, …, p run through a cycle, etc., until finally the last three 
elements p – 2, p – 1, p run through a cycle.  In this way, one obtains, e.g.: 
 
 (2, 3, 4, 5, 6, 7) = 
 
 (2, 3) ⋅ (4, 5) ⋅ (6, 7) + (2, 3) ⋅ (4, 6) ⋅ (7, 5) + (2, 3) ⋅ (4, 7) ⋅ (5, 6) 
 + (2, 4) ⋅ (5, 6) ⋅ (7, 3) + (2, 4) ⋅ (5, 7) ⋅ (3, 6) + (2, 4) ⋅ (5, 3) ⋅ (6, 7) 
 + (2, 5) ⋅ (6, 7) ⋅ (3, 4) + (2, 5) ⋅ (6, 3) ⋅ (4, 7) + (2, 5) ⋅ (6, 4) ⋅ (7, 3) 
 + (2, 6) ⋅ (7, 3) ⋅ (4, 5) + (2, 6) ⋅ (7, 4) ⋅ (5, 3) + (2, 6) ⋅ (7, 5) ⋅ (3, 4) 
 + (2, 7) ⋅ (3, 4) ⋅ (5, 6) + (2, 7) ⋅ (3, 5) ⋅ (6, 4) + (2, 7) ⋅ (3, 6) ⋅ (4, 5). 
 
 If p + 1 is an odd number then we have seen that one must always have an equation of 
condition in order for the equations (A) to be possible or when one wishes that the 
equation: 

0 = X ∂x + X1 ∂x1 + X2 ∂x2 + … + Xp ∂xp 
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should produce a similar equation in only p variables.  For p + 1 = 3, this condition 
equation becomes: 

X(1, 2) + X1(2, 0) + X2(0, 1) = 0, 
 
which is the desired conditio integrabilititatis. 
 For p + 1 = 5, it becomes: 
 

X(1, 2, 3, 4) + X1(2, 3, 4, 0) + X2(3, 4, 0, 1) + X3(4, 0, 1, 2) + X4(0, 1, 2, 3) = 0. 
 

In general, if p + 1 is an odd number then it becomes: 
 

∑ X(1, 2, 3, …, p) = 0, 
 

where one forms all of the terms in the aggregate that is denoted by the ∑ from X(1, 2, 3, 
…, p) when one lets 0, 1, 2, …, p run through a cycle.  This is then the condition equation 
for the equation: 

0 = X ∂x + X1 ∂x1 + X2 ∂x2 + … + Xp ∂xp, 
 
where p is an even number, to be integrated by means of a system of p/2 equations. 
 The presentation and treatment of equations (A) in the elegant and completely 
symmetric form that was given here is the peculiarity and the actual purpose of this 
treatise.  Therefore, for the sake of logical continuity, the rest of the Pfaffian method must 
be briefly presented.  These equations have a high degree of similarity with the ones of 
the known type in which the horizontal rows and vertical rows of coefficients are the 
same, which one encounters in many analytical investigations – among others, the 
method of the least square.  In the expressions that were found for V, V1, etc., the 
horizontal rows and the vertical rows of the coefficients of X, X1, etc., are again the 
negatives of each other, just as both rows are again the same in the results that give the 
solution there.  If one applies the algorithm that Gauss gave in his treatise on the elliptic 
elements of Pallas to our system then one sees how one can always eliminate two 
quantities at once with great ease, and how the new equations, whose number is less by 
two, again take on the same form.  This makes it possible for one to be able to solve such 
a system of equations with great rapidity. 
 
 Addendum.  After the conclusion of this treatise, I remarked that the equations to 
which Lagrange and Poisson arrived in their celebrated papers on the variation of 
constants in the problems of mechanics define just such a system as we have discussed 
here more closely.  (See the 15th volume of the polytechnic journal, pp. 288-89.)  Since 
the Pfaffian method likewise rests upon the variation of constants, this system of 
equations seems to particularly emerge from the method of the variation of constants. 
 
 The 14th of August, 1827. 
 

_________ 


