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ANALYTICAL MECHANICS

AND

WAVE MECHANICS

By Gustave JUVET

Professor at the University of Lausanne

INTRODUCTION

The wave mechanics that was created by L. de BroglieEarschrodinger has deep
roots in analytical mechanics. Its brilliant foundersehakiown how their new concepts
belong to the ideas that were sketched out a century agtaiyiton 27, 28]. While
interpreting Hamilton’s principle and that of de Mauperttdamilton showed how the
notion of wave could be juxtaposed with that of trageg in classical mechanics. The
prodigious advances of these discoverers in the new idsrtizat they introduced into
science have extended the principles that guided thstrafitempts considerably. Wave
mechanics has taken on an aspect that is quite aitfsoan that of analytical mechanics
so that despite the presentations that have been madeeinto exhibit the solidarity of
the Jacobi-Hamilton theory with that of de Broglie es\and the Schrodinger equation
(and here we are thinking of the beautifatroduction a I'étude de la Mécanique
ondulatoireby de Broglie himself), the neophyte will always beickrby the differences
more than the similarities, and he will be seduced bystltcesses of the new theories in
guantum physics more than by their illustrious origins.

Meanwhile, if one utilizes not only the works of Hawi, but also those of Delassus,
Beudon, and Hadamard, on the characteristics of seaoled-gartial differential
equations then one can show that even before thedsigbhantum physics itself, it was
possible for it to arouse some beautiful mathematarahd in a sophisticated mind.

It is easy, they say, to prophesy after the facteaivvhile, there is a very strong
temptation to show the continuity of the efforts ddparit that is immanent in the world
of learning after a discontinuity in the advance of ggniu

Even if one denies that continuity, if one would likesee only some manifestation of
a spirit of escalation in the concept of history thame would, of course, have to
recognize the utility (which can be called pedagogical) ef dttempts that have the
search for that continuity as their objective. Inthruhe origin of this fascicle was
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precisely a course in mathematical physics in whiclsewgght to show the attendees that
were very familiar with analytical mechanics and physaatics how it is possible to
arrive smoothly at the threshold of the new mechaisedf. We recall the beautiful
essay in which Levi-Civita has recently shovi]j[how one can pass from Newton’'s
mechanics to that of Einstein by some elegantly-arraagpdoximations. Inspired by
that example, we have, in turn, sought to show howpbssible to pass to the brilliant
and audacious wave mechanics without leaving the time-vpaths of analytical
mechanics.

It was Vessiot who gave a perfectly rigorous and elegaesentation of the
interpretation of Jacobi-Hamilton theory by means efdbncepts of wave theory. Inthe
first two chapters, we shall follow the two pape38, [40] that Vessiot write in 1906 and
1909, and the second one, in particular, for which we ghadl an extended summary.
The principle of enveloping waves is presented thereawibor that one will hardly find
in the physics treatises, and its importance for thegmation of partial differential
equations is clearly brought to light there. We havéteththe consequences that relate
to the principle of least action that were inferred Bs$lot from his own principles, as
they are hardly useful for our purposes: However, ifhage overlooked that principle
then it would be easy to show, in passing, its kinghig-ermat’s principle and the
principle of de Maupertuis. Nevertheless, we shall ingg®n the problem of geodesics,
whose importance is great in gravitation, and we sleahlr the Jacobian form of the
equations of motion for the electron.

The third chapter relates to the discoveries of BeuBatassus, and Hadamard on
second-order partial differential equations. We introdbeenotions of characteristic and
bicharacteristic, and we shall show that charactesistefine the surfaces of equal phase
for the propagation of periodic waves whose frequengyfirste.

Having thus attached, on the one hand, a propagation @sweath any motion that
is defined by analytical dynamics la Vessiot, and on the other hand attached
trajectories to it in the approximation that is callbd geometrical optics approximation,
a la Hadamard, it will be legitimate to make a wave-likategses of mechanics, and to
that end we shall recall some attempts to base efeaginetism and gravitation upon a
unified theory, along with that of matter waves, aslweéle quickly abandon those
speculations in order to exploit the theory of Hadahtay using the idea of periodicity.
Thanks to the simplest second-order equation that onattach to the motion of an
electron in an electromagnetic field, we can seethenone hand, how the notion of
probability can be introduced into those classical tlkedhanks to an idea that goes back
to L. de Broglie, namely, a fictitious fluid that is dedd by aclassof motions, and on the
other hand how one can smoothly introduce Planck’s canstahich links the
hypothetical frequency of the matter wave to the veat energy of the particle by de
Broglie’s principle. Finally, we shall review the nati@f group velocity which will
show that dispersive waves transport energy with @citglthat is not equal to the phase
velocity, but with a velocity that is equal to pretysinat of the material point in motion
to which they are attached. We therefore concludedtter Iramifications in a place
where a somewhat clever historian or a sophisticatedypgda can perceive one of the
main roots of analytical mechanics, which mingle and connétt those of the new
mechanics.



CHAPTER |

THE PROPAGATION OF WAVES AND THE
INTEGRATION OF FIRST-ORDER PARTIAL
DIFFERENTIAL EQUATIONS ( Y.

Principle of enveloping waves.

1. — LetE, be a Euclidian space, so it is a set of pdih{g, ..., X,), Or more simply
P(x), that are referred to a rectangular system of akgds amediumin which certain
disturbances can propagate by waves. That signifies tlatpoimts of E, can
instantaneously acquire a property: If that property is fast@d at the instaritat all

points of a multiplicityM then it will cease to belong to the pointsidf at the following

instants, and it will be manifested by the points of agmothultiplicity M" att + At. The

appearance of the property at a poxjt wWill be called adisturbance;any multiplicity
that is the locus of disturbed points at the same ihstéirbe awave.
We propose the following principle:

The multiplicity M' is determined by the nature of the medium (relativeht® t
property in question), the instanthe intervalAt, and the multiplicityM.

2. — One defines theatureof the medium by giving the systemasdrived wavesgor
elementary waves) that have their origins at the varmnints of a medium at the instant
t. LetP (x) be the only disturbed point at the instgrand att + At, the locus of disturbed
points will be a multiplicityM (x | t, At) that one says hadxfor its origin, or that itissues
from P. One takes the homothety that relateB teith the ratio 1 At, and one makest
tend to zero. The limiting multiplicity (if it existsyhich we assume to be the case) is
properly thederived wavehat had® for its origin at the instarit

The homothetic image of the derived wave relativePtwith the ratiodt is the
elementary wavéhat had? for its origin and corresponds to the instant

In general, the system of derived waves depends wufanable regimé however, it
can happen that it isdependen{permanent regime

We suppose that each derived wave %3 points, since that is the most common
case in applications.

3. — Propagation is governed by the following law, which iedathe “law of
enveloping waves:”

() For a discussion of the various aspects of the nofiovave, one should refer to the excellent article
by Levi-Civita and Amaldi20], and | am grateful to them for sending me the firsiofs.
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Let M be an arbitrary wave at the instanfet M' be the wave that it produces at the
instantt + dt. If each pointP (x) of M is disturbed at only the instanthen it will emit
an elementary wavel (x | t, dt) in the course of timelt. The envelopeM” of all

elementary waves that issue at the instadnbm all points of M represents\’, up to
infinitesimals of order higher thamlt, which is considered to be the principal
infinitesimal.

We shall insist upon neither the difference betwddh and M" nor the lack of
contradiction in the principle of enveloping waves. @aa establish with full rigor, as
Vessiot did, that the representation/of by M" is a true identification that implies no
contradiction. The reader is advised to reread thattafefollowing calculations.

4.—Let f):
uig‘i—lzo

be the equation of a plane that is referred to asysferectangular axes that hakgXx)
for their origin and are parallel to the axes E&f . The & are the running point
coordinates.
The equation:
H(t|X, ..., % | U, ...,Up) =0
or
H({t|lu=0

is the tangential equation of the derived wave that ss$t@m P (x), when referred

precisely to the system of axes that Rder its origin.
The tangent plane to the elementary wave is:

u & —dt=0,
and as a result, the tangential equation of the elamewtve is:
H(t|x|ud)=0.
Upon taking homogeneous coordindtksU,, ..., Un, Unsg such that:

U

_l
Un+1

U

once one setdn:1 = 1, and furthermor®; = u;, the tangential equation can be written:

Tt |x|u) =1;

(® When two indices in a monomial are equal, one interatsttiey are to be summed from Intwith
respect to that common index, unless stated to the oantra



Chapter | — The propagation of waves and first-ordergbatifferential equations 5

7ris homogeneous of degree 1 in the which amounts to defining that function by the
identity:
u
H (t [ x |—j: 0.
T

The elementary wave will have the equation:
Tt |x|u)dt=1.

The coordinates of the contact point of the plaife) with the derived wave are:

and with the elementary wave:
or

=——dt.
d ou,

Only the ratios of the; enter into these expressions, because they haveedeero in the
U ; they will then give the coordinates of a poiritcontact of a tangent plane that is
parallel to a given one. In general, there willsleseral functiongz which represent the
various sheets of the derived wave, which are sé@@rn such a manner that each of
them will have only a tangent plane that is patédiea given plane.

When referred to the original system of axes,dberdinates of the contact point of
the tangent plane to the elementary wave will be:

X = x + U1 o

g,
in which the equation of that tangent plane is:
Ui (Xi—x)—1=0
or
g X—-1=0,

and one will see that the tangential equation efelementary wave is:

(1) mT(t|x|q) dt+q % = 1.

5. —One must find the envelope of all the elementaayes that are represented by
the last equation whel (x) describesM. Letp, ..., pn be the direction parameters of

the normal to the tangent planeiAd atP. For a displacemenriP on M, one will have:
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pi & =0,
but one will also have:

9UIX19) 5 gt + g 3 = 0
X, ’

and that equation must be a consequence of thegingcone for alldx that satisfy it.

Therefore:
071X 4y 4 =y

ox

in whichmis a factor that will be determined when one tglgsnto account.
It is easy, moreover, to see that among the coetaments that are common to the
elementary wave (1) and to all infinitely-close waythere is one and only one of them

that tends to the contact elemexit (.., X, | p1, ..., pn) Of the waveM whendt tends to

zero.
If one restricts thgx, which are defined by their ratios, to ones thatify the

equation:

(2) mt|x|p)=1

then they will be defined perfectly. IX'(| p') are the coordinates of the contact element
that tends tox| p) whendt tends to zero then one will further set:

X |p)=1

in order to define the', and if one letslx denote the principal part of — x , while dp;
denotes that oy — pi , then it will be easy to see that:

ax 071X IP)
op,

d/'l ’

g = 71X 1), o
%

in whichdg is infinitely small and is determined by takingaraccount the fact that:

a—ﬂdt+a—ﬂd>§ Lo dp=0;
ot 0X op
one will find that:
o
du=-—dt
H ot
Moreover:
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Each contact elemenk ( p) of a wave M that is considered at the instantvill

correspond to a new contact element on the infinitelgecwave that results after a time
dt, and it will be given, up to second-order infinitesimalgsthe formulas:

(3) dx =270XIP) 4
op,
@ dp =—| O7UXIP),  OmEIXIP)] 4
0X, ot
while supposing that one always has:
t|x|p) =1.

If one returns to the inhomogeneous equation:

H(t[x|p)=0
then upon setting:
\M = ﬂl
T

one will have the identities:

OH(t]x|w) _w aH (t]x|w)orr _
ot 7 0w ot

OH(t[x|w) _w dH(t|x|w)d7m _
0%, T ow 0%

01

OH(t[x|w) _w dH(t|x|w)orm _
oW, T ow on

01

which will reduce to some simple forms that we saike out when:
mt|x|p) =1,
and the equations that define theand thedp will take the forms9):

3), (4) dx _ dp _ dt

oH oH _ oH o, OH
=t _fon,  on p o
op [ax P ot ; “ op,

() Thei’s are not summed over in these expressions.
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Integration. Theory of characteristics.

6. — Knowing an original waveé\, that is given at the instaty, find the waveM
that results at the instantThat is the general problem of the propagation of watase
imagines thatM is deduced froma\1, by integrating the differential equations that were

obtained above, such that the givéfy defines the initial conditions. What will make
the integration a little complicated is the fact ttiet differential equations (3) and (4) are
accompanied by equation (2).

One sees immediately that if (2) is verified by th#iah conditions then one will
always haverr (t | x | p) = 1 by virtue of the differential equations themseh@sefach
instantt, because:
or

%

= a_]T 1- pi 6_7T dt
ot op,

o
dx +—d
Xa P

d(m7-1) :a—ﬂdt+
ot R

o
=—(1-7dt
at( 7)

Moreover, the functiomr— 1 satisfies the homogeneous equation:

d(7-1)

+ 7 (1=1) =0 [m=%—’3

and one sees that ifrt 1) = 0 then one will always have— 1 for ant.
The equation:

mt[x|p)=1
is invariant under the transformation:
(5) X =A (X |p° | to),
(6) pi=Bi(t|X |p |to),

which defines the general integral of (3) and (4), i.e jntegral that reduces to:
X = )QO’ Pi= B
fort=tp.
We remark, in passing, that the functiohsand the ratios of the functiori are
homogeneous of degree zero with respegpp..., p’. One proves that by substituting

A for x, andm B for p; in (3) and (4); one first sees that:
dm=m(1-m) 7z dt.

One determines the integidl of that equation that reduces to the constafort =t, .
The functions:
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Xi=A, pi=M B
constitute the solution of (3) and (5) that is definedheyinitial conditions:

0

x =X, p=m g
however, that solution is obviously given by the equation

X =A (X | mop° |to),
pi =B (t[x° [mop® [to),
SO
A7 [to) = A (X | mo p° | to),
M B; (¢ [X° | p° [to) =Bi (t|x° | mo p° | to),

which proves our assertion.

7.— The x’ and thep’ constitute the multiplicityM, ; we shall show that formulas

(5), (6), which define the integral of (3), (4), will defimenultiplicity M at each instant.

It suffices to prove that the equation:
piox =0

is invariant under the transformation (5), (6), in whidlk a differentiation symbol that is
independent odi; in particulard ox = ddx .
One immediately sees that:

d _
a(pi o) + 78 (p o) = 0,

by virtue of the differential equations (3) and (4) themselveherefore, if the’ and the
p? are functions ofi — 1 parametersn, ..., an-1 that verify the relation:

p’ox’=0
then the functions:
X =A, pi = B;

will be functions of the same parameters that vehéyrelation:
pi X =0,
in which dis a differentiation symbol that produces variatiohsrdy thea.

The transformation (5) and (6), in whitlandty are arbitrary constants, changes any
multiplicity into a multiplicity. It is acontact transformation
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7.— One saysrajectoryor ray to mean the locus of points whose coordinates are:
= A o 1)

when onlyt varies, while the quantities®, p°, to are constant. Each point of the

trajectory corresponds to an instanbut that point is considered only at the instant to
which it corresponds.
A contact element passes through each point of tjeetoay, and it is defined by the

equations:
pi = Bl(t|)(f,,)§) | Qov-- 1F£ |B]
One has:
dx _onm
dt  ap’

moreover, which shows that the pokh(x) of a trajectory, which exists at the instans
the origin of a derived wave at that instant, and thection of the trajectory & (x) is
the one that goes fromto the contact point of the tangent plane to thevddmwave that
is parallel to the contact element that is carriedhigypointP (x) of the trajectory at the
instantt.
The set that consists of a trajectory and alhef¢ontact elements that are carried by
its points is acharacteristic. Equations (5) and (6) will define a characteristic wbely
t varies.
One will easily understand the following statementrenger:

A multiplicity M at an instant will result from the simultaneous transport of the
contact elements of a multiplicity1, that is given at the instaty . That transport is
defined spatially and temporally by the characteristies tlave the contact elements of
M for their elements at the instapt

8. — The family of multiplicitiesM' that results from the multiplicity\o by the

transport along characteristics and the family of waVv€ that issue from\, under the
mode of propagation envisioned are such that one passefre multiplicity in each
family to the infinitely-close one by means of theigaon that was defined in equations
(3) and (4), in which (2) is always satisfied, and oné thén see that the principle of
enveloping waves implies no contradiction. It remaiosbé shown that these two
families are identical.

One can prove that fact by remarking that the famill\® is the only one that is
defined by the variation (3) and (4), while (2) is satisfidéideed, imagine that a family
of multiplicities is defined by the equation:

(7 F (X, ..., %) =t,
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in whicht is the parameter that varies from one multiplitityhe other. Let:

and
IT(F |X1, ...,anpl, ...,Pn) =77

For a contact element of (7), set:
(8) pi =

N |-o

so (2) will be verified for those values. Moreover, ugaking (3) into account, one
infers from (7):

dt=P, dx = P.a_”dt P.a_”dt_ dt,
¥ oP

because the derivative@sr/ op; depend upon only the relationship betweenpthavhich
is the same as the relationship betweerPth@nd consequently, they will be equal to the
derivativeso 7/ op; ; moreover,77is homogeneous of degree 1 in the One will then
see that:
9) T =1
As a result:
pi=Pki.
One finds that by virtue of (4):

dp = {671 planjdt:_(an Pa_njd

0x ot 0x oF
or
2
OF g [O7,0MOF )
0X 0%, 0x OdFOX
le.:

077 0P, 677 07T oF _

oR, 0x 6)4 aFax

Now, when these equations are written, while taking(®i (4) into account, they
will result from (9) by differentiation with respea %, . One has then proved that the
relations (3) and (4) result from (7) and (8) by differatibn.

The family (7) satisfies the partial differential eaa:

OF  OF
10 FIX,...X |—.. 1,
(10) ﬂ( | %, Iax1 axqj
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which is only equation (2) in which one has set:

p=2
| aXI

Since the most general first-order partial differdr@guation:

(11) H(t|x, ....% |p1, -, Pn) =0 [pi:aa—;j

reduces to the form (10), one will see that the thebgharacteristics will permit one to
construct a solution of (11) that takes the given véuet all points of an arbitrarily-

chosen multiplicityM upon integrating (3) and (4) or'}3(4).

The fact that there is only one will result frore tiollowing analysis:

Let the familyM that is defined (7) satisfy (9), in whiéh=09F / dx; . One and only
one M that corresponds to one value topasses through each poiat(x) of E, .
Construct the derived wave that issues frBnat that instant, draw the plane that is
tangent to it and parallel to the tangent plandtat P, and draw the line that joiri3to

the contact poin@Q. One has a directioD at each point o, ; there exists a family of
tangent curves to each of its points in the correspondiregtion. Each point also
corresponds to a value bfand a contact element, which is the contact elentethe

multiplicity M that passes through it, so | say that one has defieechtracteristics in

that way, and therefore any family (7) that satisf@®sis provided by the construction of
paragrapl®.
The curves that we just discussed are indeed integralscaftiee system:

and one infers, by virtue of (8), that:
dF =P dx = 7dt =dt,

and therefore (7), provided thaf, ..., x°, to satisfy (7).
The contact elements are defined by the equations:

(12) Pi = P .

| say that they imply equations (4); i.e., that onetrhase the equations:

by virtue of (7), (9), and:



Chapter | — The propagation of waves and first-ordergbatifferential equations 13

dP = - o7 671 dt
6)§ 6F

from (12), or:
OR o7 677 om

%, P, ax Fr
or rather:
o7 oF 677 EG_P
OF ox ax 6P6x_’
because:
ok _ oR
X, ox

However, that will result from (9) when one diffatates it with respect tg, and (9)
is verified identically, by hypothesis.

Any solution of (9) that takes the valtieat the various points of ai, is obtained

by the construction in paragraphby means of characteristics. As a result, theomlig
one solution that satisfies that initial condition.

Any first-order partial differential equation corsponds to a propagation of waves,
and conversely.

Jacobi’'s theorem

9. Jacobi's theorem.— If one remarks that the transformation (5), (6) agisn the
contact elementd | p°) without one having to specify that it belongs\y then one can

confirm that if two original waves have a common eghtelement then the waves that it
produces at an arbitrary instant will also have a comommact element, which is the
transform of the preceding one, and one will see ddfesly, moreover, that the principle

of the enveloping wave is verified rigorously for a finit&riation of time. The wava1

at timet is then the envelope of the waves that are emittegl aatd considered at the
instantt for all points ofM, ; if one then knows the latter then one can knetwvithout
integration.

There is more: Imagine that one knows the propagatfom"oarbitrary original
waves. It will be obvious when one is given an integra

t=G (X, ..., % | @1, ..., &)
of the partial differential equation (10) that depends uparbitrary constants which will

serve to defineo" waves, if they are essential, and consequdatlyill be acomplete
integral of (10).
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There areo®"* contact elements in space. One can determine #ieaf fort =t, :

Each of them is defined to be common to the multigticit
(13) to =G (x]a),

and all of them that result from infinitely-small \&tions of thes; will be coupled by just
one relation:

bic%u:O.

One will then haver2+ 1 conditions:

which will reduce to 8 — 1 conditions that define just one contact elementnwhe
ratios of theb; are given; conversely, if the contact element is gthen one can infer the
a and the ratios of thie .

At the instantt, that element will correspond to an element thatoisimon to the
multiplicities that issue from the first one andttbae can obtain by giving the valtieo
G and fixing thea; and theb; as we discussed. Moreover, the equations:

(14) G ((x|a) =t, g—::mb, pi:ha—G

ox

define that element, and also as a result, if oneiderssthea; and the ratios of thig to
be o — 1 arbitrary constants then they will represent gheeral equations ob**
possible characteristics. They give the general intedtae differential equations of the
characteristics and are equivalent to equations (5) andT{&)se propositions constitute
Jacobi’s theorenon the interpretation of the characteristic equations

If Mo is given as the envelope &f* multiplicities (12) then they will verify the
equation:

d (ag, ...,an) =0,

so the waveM at the instant will be the envelope ob™* multiplicities:

t=G(x]|a),
with @ (a) = 0.

10. - In the case of the permanent regime, the equations:
HXy, ooy Xn | Py o) =0

or
m(X, oy X0 | P2y o P) =1
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do not containt. We leave to the reader the task of writing out ¢haracteristic
equations, and we remark that their general integrahailé the form:

X =A t—10[x°|pY),
pi=B -1 [X]p).

The wave that is emitted by, at the instant depends upon only the intervat t,

and not uport, . A contact element is always transported by theesaajectory, no
matter what the initial position.

The family of contact transformations that gives lw of propagation then forms a
group with one parameter, namdly; . (Cf., Lie 25 and26].)

Trajectories

11. Trajectories. — One can define the trajectories independently of theacbnt
elements that transport them. It will suffice tarehate thep;, from equations (3), (4),
and (2).

One will easily arrive at that upon starting with gn@nt-like equation of the wave
that issues fror® (x). Let:

(15) Qt|x, ....%|é, .., &) =1

be that equation, when written in a form that is homegas of degree 1 in th. The
coordinates of the tangent place to that wav@,in.., &, are:

4 = 9tX|€)
0¢ ’
just as:
&= or(t|x|u)
ou,

are the coordinates of the contact point of thgeahplane whose coordinates are
Rewrite equations (3) and (4), while denoting tiegivatives with respect to by
primes:

o
3 =
3) X o

o orr
4 =D —.
4) P ox P o

Equations (3 and (2) are equivalent to the system:

(16) Q (t|x|X)=1,
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_ 0Q(t]x|X)
Ppi=—"5-
0%

On the other hand, the identity:

Q(t|x|a—nj:1
ap

will imply that:

dQ 0Q o°m _
+— =0

dt o0x dp.oot

or
0Q 0°m
— T B =0
ot op, ot

but d7z/ ot is homogeneous of degree 1 in fheso:

moreover; hence:

as well, and equations’'§4will become:

dGQ
(17) _ax' —a_Qa_Q—a_Q =
dt ot aX dx

The trajectories are then defined by the systef) @nd (17), which is over-
determined. In order to simplify it, we remarkttBaceQ is homogeneous in the :

0Q(t|x|X) _ 0Q(t|x|dx)

ox 0dx
6(2(t|x|>(): 6(2(t|x|dx)_1
X ox dt’
6Q(t|x|>(): 6(2(t|x|dx)_1
ot ot dt’
and if one sets:
Q =Q (t|x|dx

then one will have:
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00 90 00 00 _

(18) — =
odx odtaddx dx

instead of (17). Upon multiplying this lolx and summing ovear one will get:
0Q ~
—(dt-Q)=0.
o ( )

Hence, in the variable regime, the trajectoriedafened by the system (18), not only
by their form, but also by the law that describes them.
In the permanent regime, it is the system:

400 90 _
odx 0x

that defines their form; it reduces mo- 1 equations. The law by which the trajectories
are traversed is given by the equation:
dt=Q.

One calls a trajectory my when one considers only its form. If a ray is giveen
one will find the corresponding characteristic upon remgrkhat:

0Q

S odx

12.- The Eulerian form of the equations that we haveioddaat least, in the case of
the permanent regime) suggests the idea of investigatinthevhiere are maximum or
minimum properties with respect to the propagation ofesavWe shall not appeal to
such properties in what follows, so we shall confine oueseto pointing out that the
problem was treated by Vessiot with full rigor.

13.— It is not necessary to insist upon the theory t&gration for partial differential
equations that one can infer from the preceding considesa In truth, that theory
coincides with the usual theory, up to the language thatadopts in order to illustrate
the use of characteristics and complete integrals @ameake it more intuitive. One can
solve the Cauchy problem with no difficulty, which corsist finding an integral surface
that passes through a given curve that is not a chesgicte




CHAPTER I

APPLICATIONS OF THE PRECEDING THEORY
TO ANALYTICAL MECHANICS
AND DIFFERENTIAL GEOMETRY

Dynamics of holonomic systems.

14.— Let a holonomic system hawe- 1 degrees of freedom. Let ..., X,-1 be the
Lagrangian parameters that fix the position, andkldte time, which is included as a
Lagrangian parameter in analytical mechanics. Asdhatethere exists a force function
U, and let 2 denote theis viva

n-1

-1 1 d)ﬁ
2T = ack % +2) b x+c ()ﬂ ——j
i=1 k=1 i=1 d)ﬁ1

3

=~
1

Let 7 be an arbitrary parameter by means of which opeesents the motion of the
system by equations of the form:

X =X (1) i=1,...,n).

The Lagrange equations are then written:

d({oL) oL
(e
r\ox ) 0x
in which:
_ dx
5= dr
and
=(T+U) x,
Set:

Q (X1, .oy X | OXe, ..., OX) = (T + U) dxq

1n1n1 d)g 1 C
= D ax + S b dx+| U+E | dx
=5 % e % > b >.<( 2) X

i=1 k=1 i=1

Q is homogeneous of degree 1 in the. Moreover, set:
n-1
_ d
00 _ 2.3 a%

+ Db i=1,..n=-1),
0X, dx,
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@ =235 A1 -B)(u - B)+ U+,

in which theAy are the minors of the determinaal||, divided by that determinant itself.
The preceding equation is written:

(3) U +H (X1, .., X-1, Xn ; Ug, ..., Up-1) =0,

in whichH is the Hamiltonian function of the system consdgrand theu, ..., u,-; are
conjugate variables of the , .., X,-1 . Consider that equation to be the tangential
equation (in inhomogeneous form) of the derived evilnat issues from the poin( ...,

Xn) In the n-dimensional space that can be legitimately atthdbea system oh — 1
degrees of freedom when one adds the coordinate, . Any dynamical problem (at
least when the system considered is holonomic lagre texists a force function) will then
correspond to a problem of wave propagation ingbananent regime. Time, as it
relates to the propagation of waves, is, in effdo, variableS that is defined by the
equation:

(4) dS=Q = (T+U)dx, :

it is theHamiltonian action which does not figure explicitly in the equaticofsmotion,
any more than it does in the wave equation. Theevegarfaces that are attached to the
dynamical problem in question are then the surfatesjual Hamiltonian action.

15. — The Lagrange equations are the equations oftrdjectories along which
propagate the contact elementg (). In order to obtain the characteristic equations
the usual form, one can make the equatipft H = 0 homogeneous, but for our present
purposes, it will suffice to take the form\3(4) of Chapter I. Here, the functidh (t | x
| p) is:

U +H (X1, .., X-1, X0 s Uz, .oy Up-1) =0

(pi =u,i=1, ...,n),
and one will find the differential system for theacacteristics immediately in the form:

(5) dx _ duy _ dx, _ du, _ ds
OH oH 1 oH & oH'
N T e wrrud
ou 0x 0X, = O0u
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The equations:

d oH d
(6) X _ U

dx, ou dx

__o0H
0X, (

are the canonical equations of mechanics, so theyhare dne part of a system that
defines the characteristics of the propagation of wtwasare attached to the dynamical
problem.

16. — Thanks to the propagation in question, it will be weagy to find the general
integral of the canonical equations. The complete iategvhich was at issue in
paragrapl®, relates to the homogeneous equationl, but it is also a complete integral
to the equatiomd = 0, in which one has set:

Ui :E (i

0%
Therefore, let:

G (X1, ., Xn-1, X0 ; @1y -.., 8n-1) T 0

asj:
0%,

The contact elements in the propagation in space..( X,) are defined by equations (14)
of Chapter I. If:

be a complete integral of the equation:

0S 0S
—+H| X, X X

0.
X, 0%

(7)

S=G (X1, .., X1, Xn; 81, ..., Bn-1) + 3

is the complete integral then let:

9 —mh=1 h2C=y=-H=-hH (K1),
®) % 7%

G G .

- = =, —=1 =1..., 1).

3 h=¢ ox Y (i n-1)

Equations (8), in whiclt; are arbitrary, thus define the general integral of the
canonical equations (6) by means of a complete integréd)o One will then obtain
Jacobi’s theorenty a very simple route.

17 — In the case where the

constraints are independeqtaofdU contains onlyx ,

..., Xn-1, One knows that the equations of motion admit tis iintegral:
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T=U+h

Consider the motions whémnis fixed; upon changint, which is defined only up to a
constant, one can write:
T=U,

and in this casd, by a convenient choice of parameters, can be reduceduadaatic
forminthex (i=1, ...,n—1):

2T=) > a % %

Set:
T=Tdx.

Q=2JuUT

then the Lagrange equations can be written:

One easily sees that if:

da—Q—a—Q:O i=1,..n-1),
odx 0x

and that one can make any motion of the systenespond to the propagation of a wave
by taking the time of the propagation to be thealde W that is defined by the equation:

dw=Q =2,JUT .

That variable is thiMaupertuisian actionand the tangential equations for the derived
waves can be immediately put into the homogenemuns: f

]T(Xll --1Xn—l ; ul! sy un—l) = 11
with

9 =, —,

in which Tis the form that is adjoint t® .

We remark that the surfaces of equal Maupertuia@ion are also surfaces of equal
Hamiltonian action, because:

dW=2/UTdx,, dS=(U+T)dx,
and with the hypothesis that conforms to the didiniof W-:

T=U,
one will then have:
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dW=dS

Upon replacindJ with U + h, one will come down to the case in which the viva
constant has an arbitrary value.

One knows that one can obtain a complete integréloin the case whend does
not contairx, and has the form:

S=—an X +V (X1, .., %Xn-1; &1, ..., &),

in which no constant is additive. One sees that with const., the multiplicitie$ =
const. will determine the multiplicitieg = const. in the spad&,-1 (X1, .., Xn-1) precisely,
and conversely. As a result, for an observer thatdeasmposed the spaEg into a
“space” and a “time,” the propagation that appear£&in to be the motion of a
multiplicity V = const. will again satisfy the principle of envelopingwes, in which the
time by which that motion is framed will be the timeitself, which is coupled to the
time S of the propagation i&, by a simple linear relation.

If one makes the decomposition into a spége and a timex, in the case where
containsx, then the traces of the multipliciti€= const. in the “spaceX, = const. (i.e.,
in the spaceq , .., X»-1) Will no longer propagat@ la Huygens (i.e., according to the
principle of enveloping waves).

Dynamics of special relativity.

18. — We have yet to speak of Einsteinian mechanics, but alé dh that in what
follows, at least as far as general relativity is @ned. Meanwhile, it is convenient to
give some precise indications in regard to the dynamicgpetial relativity that have
great utility for the study of phenomena that do novive intense gravitational fields.

Let mp be the rest mass of a material point. &ekenote itsproper timeand recall
that one has:

(10) ?ds =c?d —dx¥ —dy? —dZ

in a Minkowskian system that serves to frame the uniyensehichc is the speed of
light in vacuo. By hypothesis, let (x, y, z t) be the force function from which one
derives the field that acts upon the point consideredthe function such that:

ou oU odU oU

ox oy o0z ot

are the components of a quadrivector whose first thregaoents represent the force. If

one sets:
HRHEE]
ﬁ2: dt dt dt

CZ
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at a point on the world-line of the partictg then the equations of motion will be:

df_m dx|_ou
dt| ,J1- 32 dt 0x

if one taked to be the independent variable, and some similar ongsafiodz. One can
put them into canonical form by setting:

dir =X, gz =Y, g3 =z
oz
1_ﬁ2dt
P2 = m_dy
1_ﬁ2dt
Ps = m_dz
1_ﬁ2dt

and will one see effortlessly that the Hamiltonianction is:
= O
1- p?

:c\/nﬁcz+ F+ g+ g - VU (qu G2 Gs, 1)

The Jacobi equation will be:

2 2 2
0S 0S 0S 0S
_+C CZ+ - +| — +| — _U ) ) 1t :01
5 \/mf [aqu [6q2j ( j (G, G2, G, 1)
or rather:

0
2 2 2 2
(12) i(a_S_lj _[9S] _[9S] _[9 5 _ g &
c*\ ot aq aq, aq,
One can make this equation homogeneoust)(&nd interpret the result as the

tangential equation of the derived wave for propiagain the universex( y, z t), in
which the time of the propagationSsand the regime is permanent. Upon setting:

- U (Q1, O, O3, 1)

_ _T _0S _
Pr=—, P2=—, Ps=—, Pa=— =—,
Tt Tt Tt ot 7
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equation (11) can be written:

1

CZ

(12) TR + 1T, + 71,

V) u? 2
Ty +—myr—| — —mjc? | mi=0.
c C

That manner of proceeding, which permits one to pass Ifewtonian mechanics to
the mechanics of special relativity, is not sufficiesihce equation (11) is not invariant
under the Lorentz transformations, although it is quéteful in the simplest problenty.(
The presence of the scaldris precisely what disturbs that invariance. One knthas
electromagnetism leads to some much more symmetric egsati Thanks to the
introduction of the quadri-vector potential, whose fourtimgonent is the ordinary
potential, and the other three of which are the vgmtential from Maxwell’'s theory, the
motion of an electrified material point of mass and charge is given by the following
equations, whose proof one will find in the great treatfsee Donder 9], for example.

Jacobi equation:
2 2
1(0S 3(0S
13 —|—=€A | D |—-eA| =m 2,
(13) Cz[aXA AAJ é(ax Aj m;
in which Ay, Az, As, A4 are the covariant components of the world-poténtia

General integral of the equations of motion:

0S 0S

in which S (X1, X, X3, X4, 1, Q2, a3, ) IS @ complete integral of (13)p1, p2, Ps, P4 are
the covariant components of the quantity of moBoergy quadrivector. The
contravariant components are expressions of tim fof., pp. 90 %]:

oA M %
14 TEAT s PTER T O
. 0= £A S P EA M C s
and:

0 _ o= g5

ox c ds

0S _ _,_ - dx

6X4 £A4 rrbcds’

(Y One knows that this defines one of the obstacleshbld back the theoreticians who sought to
introduce gravitation into special relativity betweld05 and 1912.

(") Translator's note: There was no pp. 90 in the orlgieat of this monograph. Perhaps he was
referring to the reference to de Donder.
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in which the right-hand sides are the covariant componehtéded by c, of the
guadrivectolV, whose contravariant components are:

dx ,
— =1, 2, 3,4).
™5 (i )

In the spaceEs (X1, X2, X3, X4, X5), ONe can attach the motions in question to a wave
propagation whose equation is obviously:

(16) inﬁ—%nﬁ—%[i/ﬂ T Amjns{s{i/x - A§j+ mfcﬂ =0

c C

We shall employ the wave equation in that form in paggtydd. The fact that its left-
hand side is homogeneous of second-degree will make itydarty useful in the theory
of second-order equations. The form= 1 of paragrapld has the same utility in the
context of that problem. Meanwhile, it is by meanshait tftact and the forr@ = 1 of
paragrapthi 1 that one can go on to justify equations (£4) (

Geodesics in a Riemannian space.

19. — The determination of geodesics of a Riemannian spacsed¥uis given in the
form:
(17) ds” = gi dx dx

will also lead to the consideration of the propagatibwaves in the spacey( ..., X,).
As we have established no metric relation in regard tthéary of waves, it is legitimate
to consider the wave surfaces:

F (X1, ..., %) = const.

to be traced out in Riemannian space itself or in an anxiktuclidian space with the
rectangular coordinatesy( ..., X,). Of course, it will be more natural and simpler to

imagine things in the Riemannian space itself.
The regime is permanent, moreover, and the time @bpgwation is the variable

itself. One makes:
Q= g,dx dy =ds

and the tangential equation of the desired waves will be:

(18) m(x|p) =1,

() Recall that the fastest way to write down the eqnatif a point is to start from the principle of least
action for electromagnetism:

4
B mdo+ ¥ Adx=0.

i=1
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with
m(x|p)=ya9“n R .

in which theg” are coefficients of the form that is adjointds’; the absolute differential
calculus has made them known to all.

Jacobi's theorem permits one to determine all ofgé®desics of the given manifold
when one knows a complete integral of equation (18hichp; =0S/0x . Itis easy to
see then that the geodesics that issue from a poimtoaneal to the wave surfaces that
issue from that point, where perpendicularity is idehin the sense of the Riemannian
metric (17) here.

20. — Some difficulties will arise when the form (17)net defined. That is what
happens in relativity when one seeks the null-length gesdtst represent the motion
of photons. ds = 0 on those geodesics, and one does not see thacsigod of wave
surfaces immediately.

One arrives at the notion of wave in the followingnmer: The geodesics have an
invariant significance, and on the other hand d#fecan always be put into the following
form by a change of variables when one knows that gexsdésit issue from a point:

n-1 n-1

(19) ds'= "> g,, dx, dy - df,

a=1 =1

so it will suffice to consider the form (19) and to terdown the geodesic equations that
depend upon it.

If d¢ # 0 then those equations will be obtained by eliminatirgy ghfrom the
equations:

dx=¢' pdi,

199’
dn=- - ppar,
Px 20kag

which one can write upon starting from equation (18)dsi= 0 then one will take, to
be the representative parameter, and the geodesic equweailidake the form:

u s g:npj (i=1....n-1),
dx, g"n
(20) aq’
A___ % (k=1...,n-1),
dx, 9" R,

which will make sense in all cases.
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Now, it is obvious that these equations are the ctensiic equations of propagation
in the variable regime for waves in the sp&ge; (X1, ..., Xo-1) when one writes the
tangential equation of the wave surfaces in the form:

LN

n-1

pE\/n_ > 9”R P =1

1 8=1

Q
1

Indeed, it will suffice to sgb,/ pn =— P, in (18) in order to verify that assertion.

Hence: The null-length geodesics correspond to wave gatipa in the permanent
regime inE, for which the time of propagation s (which is proper time in special
relativity). The null-length geodesics correspond to wpr@pagation in the variable
regime, in general, in a spaBg (xi, ..., X-1) that is defined by the form (19) foi,
and the time of propagationxs . If theggsin (19) do not depend upon tkethen the
propagation will be in the permanent regimdjm , and one will see that the null-length
geodesics of the manifold, project ontoE,-; along geodesics &,-; itself. One can
recognize one of the classical propositions ford#ief a static universe in thi§)(

() Cf., for example, CHAZYT].
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SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS
AND THE WAVE PROPAGATIONS
THAT ARE ATTACHED TO THEM.

Indeterminacy in the Cauchy-Kowalewsky problem.

21.— It is convenient to recall some useful terms. fifrectionz of n variablesxy, ...,
Xn admits partial derivatives up to ordpr+ 1 then its derivatives will verify some
relations of the form:

0z
1
(1) —

d a;

n an+lz
)qn = Zaxl”l a)ﬁai’rl a)ﬁn d)g (0'1 t.o..oth= k)
—

fork=0,1, ...p.
When one fixes the values of the variables:

0z ¢z

X1, «eey Xn, yA ox o
when they are considered to be independent, one saythety determinex contact
element of order p in thesh 1-dimensional spacem (z X1, ..., Xn).

Two infinitely-close elements that verify all of ratéans (1) are callednited.

Any system of equations between the coordinates of ameeit that verifies
equations (1) defines rultiplicity M " ; thesupportof M " is defined by the equations
of the system, which couple only the variablgs..., x,, zto each other.

If q is the number of dimensions of the support\df, which is chosen such that
each point of the aforementioned support corresponds toomd contact element of

orderp then the multiplicity will be denoted byl .

22.— Consider the second-order equation, which is linethreilerivatives of order 2:

0z 0%z
ox ’

2 d=A = = =
(2 Akpk+¢=0 [Q v P 9% 0

in which theAy and¢ are given functions of;, ..., %n, Z P1, --., Pn-
If one solves equation (2) fgu., , and if certain conditions of holomorphy are
realized (upon which we shall not dwell) then there &sist one and only one integral of

(2) that reduces to a given functign(x., ..., X,-1) whenx, = x°, while dz/ dx, reduces
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to another given functiog (X , ..., X»-1). The determination of that integral, which is

assured by the Cauchy-Kowalewsky theorem, comes aboundans of a Taylor

development, and the latter theorem asserts both gsemess and its convergence.
Geometrically, that problem amounts to finding an irdegnultiplicity M, that

contains the multiplicityM?_, that is defined by the equations:

X = X Z=@ (X1, ..., %n-1),  Pn= (X, ..., %n-1).

One can solve (1) fqu,, and thus put the proposed equation imbomal form. One
can demand to know if it is possible to give Mr) , by some less-specialized conditions.

The role that is played by the plaxe= x; will be played by a surface

Xn = (X, ..., Xn-1),
or rather:
F (X, ...,%) =0.

One seeks to get back to the preceding case by a chaveyeabies:

X1, .0 X)) = (Y1, -y V),
such that the surfacewill have the equation:
Yn = cONst.

@ and ¢ will then become known functions wf, ..., y»-1 onZ. Now, in order for one to
get back to the preceding case, it is necessary thahosebe able to solve the equation

that results from the transformation of (1) withpest tod°z/dy;, which supposes that

the coefficient ofd*z/0y; is not zero, and as a result tliahas not been chosen too
poorly. We shall pass over that method; it was devdlopasterfully by Levi-Civita in
his beautiful work 23], but we shall present the method of Beudfntp which the work
of Hadamard 16, 17] gave great importance.

23. — We then seek the integral of (1) that contains aitrarily-given multiplicity
M:,. Let:

(3 E=pi + pna—Xn (i=1,..n-1)

0X, 0X,

be the equations that represéuf_, , in whichz x, , andp, are the arbitrary functions of

X1, ooy Xn-1 .

In order to find the integral multiplicity that cointa M?_,

it is necessary that one
must be able to determine all of the partial derivatifesom the suppoiX of M? .
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They enter into the Taylor development of the sotut We shall not concern
ourselves with the case in which the solution is datexdhby the givens, but rather with
the case in which it is indeterminate. The condgiohdeterminacy characterize certain

multiplicities M}, whose importance for applications is considerable.
One calculates the second derivatives by means dbltbeving formulas:

op X, _

4 —L =D, —_— =1,...ni=1,..n=-1),
which gives:

0 0
(5) ppn :a_pn_ pnna_xn’

Xp Xp

op, 0x 0 ox 0

(6) ppi =2 - T0 %% p 0% 0%

ox 0x 0%, "ox0x

One substitutes these expressions in (2), and one musbbit@n p,, , by means of
which all of the second derivatives are calculatede @ats:

n-1 n-1 a a a
{ZZAM e A jpnn

p=1i=1 p=1

n-1 n-1 ap axnap ap
+ A n """ n n 4 0
p:l.g ”'{c’bﬁ 0x 6&} pzf)’ -

It is impossible to solve the Cauchy problem & ttoefficient ofpn, is zero without
the second line on the left-hand side also being.zi order for it to be indeterminate, it
is necessary that the aforementioned coefficiedtthe second line in question must both
be zero. Hence, the first necessary conditiongfieterminacy are written:

5 A % 0% M _
7 —n +A, =0,

n-1 n-1 ap axnap ap
8 Ay -2 "+ $=0.
©) p:llz pl{axi 0x a)saj pzpb ’=

The multiplicities M, that are defined by equations (3), (7), and 8Wwhichz, x,,

and p, are functions ok; , ..., X.+1 are thecharacteristic multiplicities or simply the
characteristicsof equation (2).
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Characteristics and bicharacteristics.

24. — If the multiplicity M*_, that figures in the given of the Cauchy problem is a

characteristic then the second-order elements inagiTdevelopment of the solution to

the stated problem will be indeterminate. One can givarbitrarily onM}_, , while the

otherpi are deduced from equations (5) and (6). Upon supposing thaaorentinue
to determine the third-order elements on the integraliphalty and the elements of
arbitrary order, and if the Taylor development convergesn one will say that the
integral multiplicitycontainsthe characteristitv’® , .

However, that fact is hardly important for us. R it will suffice to study the
characteristics that are placed on a given integralphaity.
Now, the calculation that we made proves that we d¢ad &n infinitude of

characteristicsM® , on an integral. Whea is known as a function of;, ..., X.1,

equation (7) will define, as a function oxy, ..., X,-1. We know that this is possible in
an infinitude of ways. An integral of (7) will alwaysgsathrough a multiplicity that is
defined by the functions:

Xn-1 = X,?_l,
X =f (X1, ...\ Xn-1),

in which f is arbitrary. However, if (2) is verified by then equation (8) will be a
consequence of equation (7), and our assertion will beea proved.

One can pursue the study of the indeterminacy of theh@guoblem by passing to
third-order elements; that is what Beudon did in thedcgaper, and he easily defined

multiplicities M2, M2, ..., which were characteristics of order 2, 3, ..., resp.

n-17 n-17 **

25. — We remark that the characteristic equations are gignheletermined only for
given integralsz because the coefficientsc depend uporz and thep; . Meanwhile, it
can happen that those characteristics are independemty gfagticular integral of (1)
when theAyx depend upon only, ..., X, . That is what happens for the linear equations
to which we shall devote the balance of our study.

Any linear second-order partial differential equationresponds to a first-order
equation (7) that obviously defines a wave propagation for wkicis the time of
propagation. The space in which the waves propagate spHwx; , ..., X,, and the
wave surfaces are defined by the equations:

Xn = Xn (X1, ..y Xn-1),

in whichx, (X1, ..., X»-1) IS an arbitrary solution of (7). One replacewith n — 1 in the
theory of the first chapter, andvith x, . The tangential equation of the derived waves is
(7). In order to put it into the homogeneous fgrm 1, one sets:



32 Analytical mechanics and wave mechanics

9%,
0%
in (7) and one solves it for
Hadamard|fc. cit) called the characteristics of the propagationbilcbaracteristics
of equation (1). They are defined by the equations:

-FE =100
T

dx = dr = ox, i=1 ..n-1).

©) = C(oH | _oH) (u ‘
Z[p:lApiBz_pmj {a&“:?a)%j Z[p:lApnBz_Amj

26. — It is useful to put equation (7) into a differdorm. Instead of supposing that
the wave equations are given in the form:

X = Xn (X1, +.ey Xne1),

one can imagine that they are given by the equation

F(, ...,%n) =0,
and (7) will take the form:

@ )IP IR

moreover, and as a simple calculation will showe, bicharacteristics will be defined by
the equations:

9) - = — ) (,j=1,...n)

if 7=0F/0x% .

We remark that past the point at which one cosfioeeself to considering only the
characteristics on the integral of (2), equatiopwdl play no further role, since it is
satisfied whenever (7) or'{7are.

Systems of partial differential equations.

27.— As Hadamard has showhd], the notion of characteristic can be extended to
system of second-order partial differential equaif).

It will also be possible to attach a wave propagato a system that definds
unknown functions, ..., z of n independenk,, ..., X,, and that propagation will take
place in the spaca, ..., X,-1, while time will once more b, .

Indeed, let:

() Cf., also JANET29.



Chapter 11l — Second-order partial differential equations. 33

(10) SY AN +gM =0  m=1,..K

i=1 j=1

be the proposed system; one has:

07, 0%z,
- 94 () —
p| GXI ’ p|k axl a)q( !

and the coefficientsA™, as well as thgg™, will be functions of the, z and thep”.
One considers a multipliciti* , :
Xn =X (X1, -, Xn-2),

and one proposes to solve the Cauchy problem for the gystam. One supposes that
the first-order elements are given for eachand one seeks the second-order elements

p{". As one will easily see, everything comes down to detdng the p{) by means of
the system:

ZH‘”")p")+K(m"0 m=1, ...k,
in which:

m ahk (m aXn 6Xn (ml 6Xn ml
H(mD )} ) + Am)
;;AGMM ;ﬂ ox "

and in whichK™ are certain expressions whose explicit form islévant; they contain
only the p{™ .

If the determinant of theH™ is zero then the Cauchy problem will be impossible
or indeterminate. The necessary conditions foirnttieterminacy are very complicated to
write down; they involve the rank of the matrixtbe H™ and they couple thé™ with
each other. If one confines oneself to the stutdynanifolds that are defined by the
equation:

(11) A=0

and are found on the integral multiplicities of thestem then the conditions in question
will be verified identically.

The multiplicities of M—; that are defined by (11) are once more called the
characteristicsof the system (10).

The equatiod\ = 0 is indeed defined in the spage ..., X,-1 of wave propagation, in
which x, is the time, which is independent of the solutiansconsidered if the

A"™ depend upon only the , ..., X,. We shall suppose that this is true unless stated
the contrary.

In that case, one can further define bineharacteristicsof system (10); they are the
characteristics of the first-order partial diffei@hequation.
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Physical interpretation of second-order equations.
Discontinuity of solutions.

28. — Under the conditions that we have adopted, one camthahyeing given an
integral of (2) or (10) amounts to being given ond @unctionsz or z, ..., %, resp., of
X1, ..., X , Whose variation one can follow on the consecutiavavsurfaces while
traversing each bicharacteristic. Hence, a bicharatteriwhen considered to be a
trajectory, serves to transport the contact elemaintise wave surfaces and to transport
the values of certain functiorzg ..., z., which can characterize the intensities of certain
disturbances. (Which will be concomitantski®> 1, as in the Maxwell's equations, in
which the disturbances are the perturbations of the étherare caused by electric and
magnetic fields; viz., the fields themselves.)

The theory of the first chapter is, indeed, powerlessrepresent all of the
circumstances that relate to propagation. In particuiagives no details about the
intensity of the disturbance that propagates. One must appealetsettond-order
equations in order to compensate for that, and theythbat we have sketched out will
show neatly the manner by which the kinematic theorhefirst chapter enters into the
theory that one can call “dynamic” of the second-osgprations.

We remark that, when the functiopsare considered to be functions»>@falong a
bicharacteristic, they will have a non-zero value amhenx, has attained the value that
corresponds to the point considered on the bicharaaterisAt that moment, the
disturbance will reach the point, and thewill take on appreciable values there, while
they were zero beforehand.

More precisely, the@ — 2-dimensional multiplicities that are the wave swefamn the
spacex, ..., X1 are thediscontinuitymultiplicities (forn = 4, they will bediscontinuity
surface$ of then — 1-dimensional physical medium in which the disturbapcepagate.

The study of the discontinuities, and above all, dtuely of the circumstances under
which those discontinuities are compatible, has been imademerous geometers of the
first order, among which, one must include Riemann, @iffed, Hugoniot, and
Hadamard 16] (in which one finds the biography that relates to fingt three cited
authors).

They started with the equations of mathematical phyawd showed that the
characteristic equation of one or the other of them esgms the idea that the
discontinuities are compatible on the characteristicsffect.

We shall limit ourselves to those remarks. The caiitiy conditions are outside
the scope of our study, so it will suffice to recall yonhat they also lead to the
characteristics. (Cf., also the book by VAN MIEGHESS]).

29. — Meanwhile, there are some other discontinuitiesdha should examine more
carefully, namely, the ones that affect the integrain the regions where it becomes
infinite. More precisely, following Delassu8][ Le Roux [L8], and Hadamardlf], we
seek the circumstances under whidmear equation®):

() The summation is not notated:; it goes from f.to
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(12) P@=AkpktAp+tAz=0

can possess an integral of the form:
z=ZF (n,

in whichZ and rrare finite functions that are continuous and at lewise differentiable,
but in whichF, which is considered to be a functionmfis singular forrr= 0, and that
singularity is such that if7 is infinitely small thenF (73 will be infinitely large in
comparison toF (7, andF” (7) will be infinitely large in comparison t& '(73; for

example:

p/q 1 1/
m™, —, logm e,
"

Upon substituting this in the proposed equation, it witidree:
0Z
(13) Axmm)ZF"(7)+ {Z&Ajﬂj + A[P(77) - Nﬂ} F'(n+P@F(n)=0,

when one set87r/ 0x, = 71 . Now, under the present circumstancesy # 0 then the
coefficient ofF (7 must be zero, so:
Ak 7 7%= 0.

In other words, if a solution of indicated type existsrt the multiplicity/z= 0 will be a
characteristic of the proposed equation. The same wWilhge true if one seeksin the
form:

(14) z=ZF () +¢

in which ¢ is regular. Hadamardog. cit, [16], pp. 333) has shown that if= 0 is a
characteristic then one can effectively find altlodé solutions of the form (14); we shall
have no need for that result in the rest of our study.

Periodic waves. Geometrical optics approximation.

30. — Hadamard (loc. cit.,1p], pp. 345) made a very important remark along the
same lines. It related fweriodic wavesand it touched upon the fundamental problem of
the approximation that is called geometrical optics, whioé can make in the study of
certain phenomena.

In physics, in a great number of cases, it is convemeerestrict oneself to periodic
waves. They are represented by functibosthe form:

zZ=sinumr (1 = const.),

in which 77is a functionxy, ..., X, that is linear with respect tg, as many times as
necessary.
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It can also have the form:
(15) z=Zsinum+ ¢,

in which Z and ¢ are regular functions of;, ..., x,, and one then imagines that the
phenomenon that the varialdeepresents is due to the superposition of two disturbances
one of which is¢, while the other one & sin y7z which is periodic ir, if Z does not
depend upon, andszis linear inx, , or if Z does depend upoqy, but the modulation can
sometimes be considered to be periodic over a shorirberval.

Whenyu has a very large value, the function gimwill pass from the value + 1 to the
value — 1 for small variations @t In practice, it behaves like a singular function vehos
derivative has the order @f whose second derivatives has the orderfofetc. The
physicist that utilizes such functions will often negléhe terms inu in his calculations,
in comparison to the terms jirf, and as a result,in comparison t@z / dx, , anddz / x,
in comparison t@?z/9x% .

More precisely, and without making any initial hypothedi®ut the form ofrz in

regard tox, , we seek a solution to (12) that has the form (15encase wherg is very
large. Upon substituting and reordering, one will find:that

omom 0Z o M
16 z gron 2 L———AZ— 2
(16) -4/ smuﬂ(Ak ox a)&jwcosuﬂ[ A2 o TATo T A xad

+P () sinumr+P ({ =0.

Annulling the term inZ will give:

07T o717 _
(17) Ak ——=0
0x; 0%,
Hence, the equation:
7T= const.

will again represent a characteristic.

The surfaces of equal phasas one calls them for a periodic propagation, or the
multiplicities on which the argument of the periodimétion has a given constant value
for a modulation, will then be characteristic mulgies when the parameteris very
large, and one can then neglgah comparison to its square.

31. — Chooseu in that fashion. Since the term jf is zero, annul the term in.
Now, on a characteristic, one can consider the kacharistics that are defined by the
equations:

X _ gy (=1, ...n)
o
ZAka

and one can calculaon each bicharacteristic by the equation:
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%+MZ: 0,
du

in which:
orr 0°rr
M=A—+ ;
A 0X; A 0% 0%,

this is a known function. One will then find that:
Z=12, epr'uu M du,

in which Z, is an arbitrary function of the variable pointttimlocated on a multiplicity
Mn-2 in each characteristM,; (%) that propagates froM,-1 to M1

JT= const.;

i.e., if /7is linear as a function of, , which we shall suppose from now on, it will have
the same equation:

Y, ..., %) =0.

Z will then be determined in all of the spage ..., X, .
One will finally determine by the condition:

P({)=-P (2 sinur,

in which P (2) is a known function ok; , ..., X, ; in a great number of caseg,is
negligible (cf., Hadamardoc. cit, pp. 346).

We remark tha¥, is the fixed value oE on a bicharacteristic. If one considers a
pencil of bicharacteristics that issue from a set of {mirfior example, and they are
chosen in such a way that they traverse a cerégiiom of spaceq , ..., X, then one can
suppose thaly is null everywhere except on the set in questidnch can correspond to
u = Up for each bicharacteristi& will be non-zero only on the pencil, moreover. viNo
the choice of the set of points considered can adenphysically by means of a screen
that is pierced with a hole (if = 4), and one will see that tlperiodic phenomena will
propagate only along the pencil as long as thecqopation that consists of neglectipg
in comparison tg/ is legitimate. Such an approximation is the dra will be permitted
in optics when one restricts oneself to the comatiten of rays (viz., geometrical optics).

The preceding remarks, which are due to Hadanwask a bright light upon the
physical prolegomena to wave mechanics. One edlsme applications of this in the
book by L. de Broglie4]; we shall not need to return to it.

() If n =3, theM,, must not be characteristics; for arbitrarghey must not contain them.



38 Analytical mechanics and wave mechanics

32. — One can effortlessly extend the theory of singfigar and that of periodic
waves to a system of partial differential equationke fieader will indeed see the form in
which that extension can be made. That will nohbeessary for us in what follows,
because we do not propose to enter into the theaystéms () any further than we did
in paragrapt27, since the scope of this small volume will not perthdt. Meanwhile,
we would like to cite the work of Levi-Civita2 and 23] and that of Racah3p], who
have treated, on the one hand, the equations of Hiastegravitation, and on the other
hand, those of Dirac that relate to the photon anéldetron, from that standpoint.

(*% The general theory of characteristics of systemsé@mntly given rise to some important research,
and we cite those of Carta],[ Thomas and Titt3g].



CHAPTER IV

RETURN TO THE WAVE INTERPRETATION OF
ANALYTICAL MECHANICS. WORLD GEODESICS.
PROBABILISTIC CONSIDERATIONS.

DE BROGLIE WAVES.

Second-order equations and mechanics.

33.—In the second chapter, we saw how Vessiot attackex/@ propagation to any
motion of a holonomic system with a force function dxtending a beautiful idea of
Hamilton. Up until the work of Louis de Broglie, whichshi@ansformed mechanics, one
could only produce those waves physically, such that thgmoduction into analytical
dynamics might seem to be more of a refinement @légance than a true enrichment of
that field, and furthermore, in the simplest case ofaéerial point, the velocity of wave
propagation is not the same as the velocity of theemadtpoint, so that elegance itself
might seem illusory.

While pursuing the succession of articles by Vessioigimt lof the ideas of Beudon,
and above all, Hadamard, it is interesting to look fier $econd-order equations that one
can propose in such a manner that the propagation of waatesorresponds to them, in
the sense of the preceding chapter, is precisely théhahés attached to the motion that
the problem of analytical dynamics considers to have deéned.

Meanwhile, it is obvious that if one necessarilysessfrom equation (2) in Chapter
lll to equation (7) or equation '(7then one cannot necessarily pass from a first-order
equation that defines the wavesaasingle second-order equation. If the equation of
propagation has degree two in the derivatives then om@ass to an equation of type
(2), but all of the terms that one has grouped underdtaion ¢ will be indeterminate.
One will need some new principles in order to insureuthigueness of the second-order
equation that one proposes to find in order to realegtbgram that we just discussed in
broad terms.

34. - Consider the system with— 1 degrees of freedom that was defined in Chapter
II, paragraptl4. The equation of the derived waves is the Jacobi equation:

J) U, +H (X, ..., Xn-1, Xn ; U, ..., Up) =0,
in which the “time” of the propagation is the acti§rand one sets:

uk:E k=1, ...,n)

0%,
in (J).
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The Jacobi equation can be identified with equation (7hjctw defines the
characteristics of (2) only if one writes (2) and (7)hm + 1 independent variables in the
form:

n+l n+l

) 2. 2GR +¢=0

i=1 k=1
and

(2) iiGp 05 aS zn pn+1 + Gn+1 n+l — 0

resp., upon settin§=xX,+1.
Having said that, one should recall thhhas degree precisely two in thgi = 1, ...,
n—1). One can write equation (J) in the form:

3§55, 9905, 8100 515

Identifying this with equation (2) will give:

Gpi = Byi wi=1,..n=-1),
Gi  =Gn=Gm=0 (=1,..n-1),
Gina  =-B, i=1,..n=-1),
Gn, n+1 :_%,

Gn+1,n+1 =B.

One can formulate the following theorem:

One can make any holonomic system with a forcetion that has — 1 degrees of
freedom and can be described by means-oflL parameters, ..., X,-1 correspond to an
n + 1-dimensional spacBn:1 (X1, ..., X1, Xn , S, In which x, is time andS is the
Hamiltonian action. The Jacobi equation of theeaysdefines a wave propagation in the
permanent regime in the spdée(xi, ..., X,). The wave surfaces are the characteristics
of certain second-order partial differential eqolasi that are linear in the unknown
function z and are determined perfectly. The remaining tecosstitute an arbitrary
function ofz 0z / 0x ,0z/dS, of X1, ..., X»-1, Xn, S The Lagrange equations of the
system are the bicharacteristics of that secondra¥quation, in the sense of Hadamard.
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In brief, the equation:

622 1 62 n-1 n-1 n-1

3 BGSZ 2090 Zaasaszalaxax 0

i=1 i=1j=1
has characteristics:
S=S(X1, ..., Xn-1, Xn),

which are defined by the Jacobi equation:

E+H 0,

ox,

and the bicharacteristics, which are defined by the lmagraequations or those of
Hamilton.

In the particular case of a material point of masand Cartesian coordinatgsy, z
that is subject to a force that is derived from a paébiti the second-order equation can
be written:

2 2 2 2
Y 0 O 0 0%, 4 g
x> 0y° 07 099t 03

in which ¢ denotes the unknown function a@ds an arbitrary function of:

aw oy oy oy oy

X, Zt, ; y
y2tsd "9y 9z ot oS’

35. — If the constraints on the holonomic system comsil@are independent af ,
and ifU contains only the variables, ..., x,-1 then the problem will simplify. One will
then know that the surfac&s= const. oW = const. agree with the surfaces= const., in
such a way that it will suffice to consider a spacd ttontains at least one dimension.
Indeed, one knows that the equation of propagation is:

in which7'is a quadratic form in thgy, ..., pn-1. The preceding equation is written:

B, ———-2U =0,

ot AW oW
(4)
z{ 0% 0%

i=1 k

Now, if one sets:

(3

ow
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then one will see that (4) is the equation for theattaristics of Chapter Il in the form
(7):

W(Xl, ceny Xn—l) -W=0
for the second-order equation:

n-1 n-1 62

(5) 2B 2+ 4=0,

i=1 k=1 6)(, a)ﬁ( 6V\4

in which theBy are the coefficients of the adjoint foffror T.

Now, neithetJ nor By depend upomr, , SO one can suppose tlfaho longer depends
upon it either, and one can simplify the preceding equdtyosearching for solutions of
the form:

Z=AM) { (X1, ..., Xn-1).

Suppose thap is linear inz, and to simplify even further, that:

P=¢ (X1, ..., %n-1) Z.
One will then have:
n-1 n-1 n
ZZ% ~wiW g
E=i 6& A(W)
which is possible only if:
A W) _ const.
AW)

In these very simple cases, one sees solutiappear that are exponential functions
of W, so under certain circumstances, there will besdhat argeriodicin W.
The variablex, plays no role in those considerations. Meanwlifes knows that:

dw= 2,/UT dx,,
i.e., thatW = const. ifx, = const., which will permit one to elimina¥® in order to have
only x, to worry about. We shall not belabor that becauisat follows will permit us to
specify the role of action and that of time in thest interesting case of wave mechanics.

Invariance conditions.

36. — Now consider the motion of a material point frtime standpoint of general
relativity. The world-line is a certain geodesfaals :

(6) ds = gy dx dx; .

One can attach (cf., ) a wave propagation to it whose equation is:
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) nx|p)=+9“n R =1

the regime is permanent, and the time of propagatidweisdriables itself.
Consider a five-dimensional multiplicityls (xa, ..., X4, Xs) whoseds’ is:

ds — gi dx dxc.

The null-length geodesics of thdds project onto the universg, ..., X4 along
geodesics of (6). Those null-length geodesicMincorrespond to a wave propagation
that is precisely the one that is attached to thddalmre of the material point considered
in the universey, ..., X4. The regime is permanent, and the time of propagatign-s
i.e., theproper timeof the material point.

The tangential equation of the derived waves is equétioim the universe, but when
one setst/ 78 =— i, it will become:

(8) 0¥ m - E=0

in Ms , which corresponds to some second-order partial diffiefeaquations, the
simplest of which is:

2 2
) g% 0°z 0°z

-2 %20,
ox, 0x, 0%

37. — Meanwhile, it is convenient to add a few new conditibese. In the
calculations that we have developed, it is basicallglavant whether the variables
represent rectangular coordinates. The theory of prapagata theory of contact, and if
the variables represent arbitrary curvilinear coordinatebe space of propagation then
that would bring about no great alteration of the dgwelents in the preceding chapters.
Only the relations iQ and 77 (Chap. I, 811) will be transformed when one takes into
account the metric that is defined by t#in the space of propagation.

It is still preferable to do that, nonetheless; iadtef considering the universe,
consideiMs whoseds’ is:

(10)

5

D Vi dx d .

5
i=1 k

1
=

Equation (8), which relates to null-length geodesidsldn is written, with the well-
known notations of the absolute differential calculus:

DM

(11) Viedx dx =0

5
i=1

=~
1

1

relative to the form (10), but equation (9) must be transéa if one desires that its
relationship to (11) should be invariant when one changeslioates inMs , since the
functionzis an invariant. The simplest invariant form is obvigus
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(12) fz [f p azj 0,

0%

in which yis the determinant of thg. . That equation, which is written in terms of the
covariant derivative as:

in whichz" =g " dz/dx , is indeed invariant.
If the ds” has the particular form:

dx¢ — g dx dxc
then one will have:
Jy=4Jg., ry=-d* (k=123 4)
y5k — V<5 — 0’ y55 —

upon utilizing the fundamental form (6), and agsuit (12) will be written:

Tl 0% o) o =0

or rather:

| 0%z 0z)| 0%z
13 k -r == ———O
~ ) (GM& 'kaxj 0x
because:

1 9(/gg") __ oo
\/E an rs

in which I'_ is the notation for the Christoffel symbol of thecond kind for thes® of

the universe — namely, (6). Equation (13) willrthee replaced with equation (9), for
reasons of invariance that we have pointed outrbeft).

Electromagnetism and gravitation.

38.— It is possible to make some other suggestissiedl. The multiplicityMs that
was introduced naturally into our calculations t@nconsidered from a more advanced
viewpoint.

Originally, xs is a parameter that is constant when the actiocomstant. More
precisely, if one examines all the possible motioha material point that passes through

(Y Cf., KLEIN [32).
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the same point at the same instafx then the various trajectories will define values for
the actionW. The locus of point®V = const. corresponds to the points in whigh=
const., while the parametgs is the proper tima on each world-line relative to each of
the motions considered. The idea of mak@nindependent variablavith the same
status agy, X2, X3, XaWill naturally upset the foundations of mechanics profoundly

One can remark, first of all, that this upheaval came& about non-violently. One
considers a news’ for that universe that has the form:

ds = dx¢ — gi dx dx,

in which thegi do not depend upo@ . That is exactly what was done above.
Let us generalize this by one degree and introduce a fowhich the coefficient of

dx is no longer a constant, but a functiorxpfxz, xs, X4, while the other onegi (i, k =
1, 2, 3, 4) no longer depend upon fge One writes’f):

Oss = Y°
and

(14) ds = - 2dx2 — gy dx dx.

We propose to generalize Einstein’s theory, moreover ta find the equations that
define thegy and ¢/?. The simplest idea, at least for regions of the usé/¢hat are
devoid of matter, is to write:

(15) Rgs=0 @ f=1,2345),

in which theR,z are the components of the contracted Riemann tenabrelate to the
d<’ that is defined by (14).

Now, fora, B=1, 2, 3, 4, equations (15) are precisely those of &mfbr ads’ that
goes with a four-dimensional universe whose coefficiamesgi (i, k = 1, 2, 3, 4),
provided that one neglects the derivatiges/ dx in comparison to thégy / dx ; i.e.,
provided thaty? is “not too variable.”

The equations:

Rsis=0 @=1,23,4

are verified identically, and the equation:

R55 =0
is written:

(16) g" -2 +(ri‘; g"+aghija—¢ =0,

ox ox' X X

(*3 It is necessary to specify the class of thoseianst moreover, but we shall limit ourselves to a
suggestion.
¥ Cf., [13and14].
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in which the ¢ are the Christoffel symbols of the forgm dx dx, and theg* relate to
that same form.

One can formulate the following theorem, moreovehiciv attaches a wave
propagation to the motion of a material point by an invargocess that is different
from the one that we saw in the preceding paragraphs:

If one considers an Einsteinian universe to be a sestion const. of a five-
dimensional universex, x,, Xs, X4, Xs) Whoseds’ has the form (14) then the equations of
gravitationin vacuowill be the equation&x = 0 (, k = 1, 2, 3, 4) (if the derivatives
dy?10x are negligible in comparison to the derivatidegg / dx) that relate to thad<’,

and the world-lines of a material point in such a field lbe the bicharacteristics of the
equationRy4 = 0, which will determine/ when thegy are known.

The equatiorRss = 0 can play the role of the Schrédinger equatién (If one no
longer neglects théyw? / dx in comparison to thagy / dx then one can assume that the
terms that were omitted R« = 0 (, k=1, 2, 3, 4) will translate into the influence of the
wave field that the equatidiss = O defines on the gravitational field. One can then say
that the material point first perturbs the field tisatlefined by theik (i, k=1, 2, 3, 4) by
way of the waves that are attached to it before iogp#tby its mass.

39. — In the spirit of discovery, one can immediate peatto examine the equations
that one will be led to when one considerdsaon the multiplicityMs whosegjs are no
longer zero. One will then recover the unitary themirKaluza B0], and the extension
that Gonseth and Juvet gave taliB pnd14]. If one sets:

ds’ = gup dx, dxg (a, =1, 2,3,4,5)

with gss = ¢/2 or Y@ then one will be led to first assume that ¢ge(i = 1, 2, 3, 4) are
very small, and one can write down equations that gkrethe Einstein equations:

(17) Raop= k(T,; =2 q,7) (@ f=1,23,4,5),

the first ten of whichd = 1, 2, 3, 4) are the ordinary equations of gravitatiamjeathe
following four (a=5,8=1, 2, 3, 4) are Maxwell's equations that define the piatierp
as functions of the current, provided that one sets:

O =T ¢,

in which 7 is a constant. Finally, i&r = 8 =5 then one will recover a second-order
equation fory. That supposes that one neglects the derivativds negpect tac in
comparison to the other derivatives. Those conclusionlyithpt one must define the

() In that case, it will be preferable to replagéwith ¢ , in which is a complex function ang# is
is the conjugate quantity.
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energy-matter tensofys in such a manner that it will generalize the one thastEin
introduced into his theory. One will succeed in doing tia¢n one sets:

(18) dx = L ds
0

which defines the fifth direction parameter Ms of the world-line of a point in a
continuous medium whose mass density &d whose electric density

The latter equation will be imposed, moreover, whenstads with the equations of
motion of electricity, when they are written in terofsthe Lorentz force, and one seeks
to interpret them as the ones that define a paralleladsment inVis in the sense Levi-
Civita. The notion of force is thus banned from thiscagtion of things. L. de Broglie
made an analogous remaf. [

What one can keep from that unitary theory is the tlaat it is possible to take the
wave fields that are created by the motion of matier account in the equations of
gravitation. From the instant at which these fieldsrardonger a simple formal artifice,
but one can assign a true physical significance to théeiy tinfluence on the
gravitational fields can no longer be negligible, andpiteeeding remarks show how one
can take that into account.

When equation (18) is applied to an electron, it will asgghat the ratio of the
charge to mass can vary. Physically, there is a glifetulty associated with that, but
that difficulty will disappear when one remains withie tscope of a theory of continuous
media that is properly the scope of a theory of fields.

Finally, if one establishes an invariant theory thdiased upon thes’ of Ms , while
one considers the derivatives with respectstto have the same status as the derivatives
with respect to the other variables, the simplicitytttd relationship between equation
(17), for whicha = 8= 5, and the geodesics 6§, which must then define the world-
lines of the motion of a point that is endowed withrgkea will then disappear. Those
geodesics will no longer be the bicharacteristics of e¢lgeation with indices 55.
However, in that case, the electromagnetic field priédominate, and the geometrical
optics approximation will probably be no longer admissible.

Periodicity of waves in mechanics.

40. — Despite the very formal attempts at a unificationhef field theories'f), one
can try to adopt another viewpoint that conforms bétténe history of wave mechanics,
and is a better way of comprehending its present s@ie knows that the essential idea
of L. de Broglie resides in the very bold postulate ofchiteg a frequency, or if one
prefers, geriodicityto any particle in motion.

Moreover, one should examine the consequences thatcameinfer from the
hypothesis that makes the Hamilton-Vessiot waves thles periodic. First of all, just
as in geometrical optics, where tfay is the main notion that the theory hangs upon, it
will then become clear that that notion will be irfguént for phenomena at the small

(*®) One will see similar attempts presented in a fésaicthis collection that is due to de Dond&g]|[
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scale, and that a periodic wave will become necessanylarly, one can think that the
trajectory or world-line of a material point are notions that are insufficiémt the
phenomena that unfold at the atomic scale, and thatotii@nrof wavewill serve to put
things in order in quantum physics when it is suitably chiced into dynamics.

The problem will preserve a very formal aspect for usthis little book, it will not
be possible to color in the very minimal sketch that fireceding considerations
permitted us to make with any physical touches. One mugblys say that the
wavelengths that are attached to the motions thatwadesd in classical mechanics must
be extremely small: The “physical”’ effects of thagaves must be weak enough that one
can immediately understand why the mechanician was etaldbserve them, any more
than the astronomer.

Our goal is then to introduce the notion of periodiwvevas a prolegomena to a type
of mechanics that will admit analytical mechanicsaadirst approximation, just as
physical optics admits geometrical optics as a first apmation.

41. — Naturally, just as it is by way of d’Alembert’s eqoatithat one can complete
optics when one passes (thanks to Kirchhoff) from theometric” level to the
“physical” level, which is more advanced, it is by wafya second-order equation that
one succeeds in completing analytical mechanics.

In order to specify all of the circumstances under Wwisiech a second-order equation
has been employed to good use, the best way is to d@kdeptiewpoint of special
relativity. The Jacobi equation, under the hypothesis fdld that is derived from a
potential, was recalled in paragrap Equation (13) of that paragraph must be the
characteristic equation of a second-order equation. sififnglest equation of propagation
that one can propose is obviousi§){

3.0°z 1 0%z
l

0z 1 0%z
(19) Z X cﬁ_ﬁ_zg(z%xa{_&%x@éj

|e(za-gam e

The variabless is due to the fact that the time of propagation is/Hr@ableS with the
interpretation that was pointed out in paragrafh We then call it and remember that
the equations of the wave surfaces have the form:

S=1 (X1, X2, Xs, Xa),

since the regime is permanent, or rather:

Xs + @ (X1, X2, X3, X4) = cONSst.,

(**) Compare this with de Dondet(] and Géhéniaul[l and12].
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Now, let us introduce the idea of periodic waves itlte debate and seek the
solutions to (19) that are functiomshat contain a sine as a factor, such that fun¢tiah
the sine applies to must be constant on the wavecastfavhich amounts to setting:

z=asinu[xs+ @ (X, Xz, X3, X4)],

in whicha is a function ok, X, X3, andxs . Indeed, it is natural to assume that it does
not depend upors due to the permanence of the regime of propagation.father 4 in
the phaseis a constant.

It is, moreover, preferable, to write:

z= " (X, X, X3, Xa),

and one will effortlessly see that verifies the following equation, from which one can
derive all of theequations that are called Schrodinger equations:

(20) ZS: v —iz )Z’—zgiy[ZAa—w—ﬁa—wj

which no longer contaings. (Cf., Gordon 15], who was the first to give a relativistic
Schrddinger equation.)
One must then further seek the solutignsf the form:

(21) ¢/ a(xl X2, X3, X4) l/¢(X1 X2, X3, X4)

but in order to not introduce wave lengths that are too,lavgesuppose that is a very
large number. Upon recalling the calculations of a pagt80 and changing the sine
into an exponential, one will find that if one can ®egl in comparison tq/ and the
terms that are independentin comparison to the terms in(*") theng must verify the
equation:

1(0 _ )V (08 _ V. o
(22) ?(— £A4j Z(ax £Aj mg ¢,

0x, =

which is found to be the Jacobi equation (13) ohgeaphl8 (*¥). The surfaces of equal
phase will be the characteristics of equation @0)the propagation of periodic waves
whose frequency irs = S (namely,uz/ 27) is very large. To the same approximation, the

() One can remark that certain coefficients have thesamter ag/in the present problem.

(*®) One should mention that Debye has made a very integestmark regarding the relationship
between the equation of propagation and that of geomebptas. He already pointed out that the latter
resulted from the former by passing to the limit whea wWavelength of light considered tends to zero.
That remark was mentioned by Sommerfeld and Rudide [
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bicharacteristics of (22) are the world-lines of a pahtmassmy and charges that
displaces in the field of the potential One will then indeed see that if one assumes that
the second-order equation (20) rules the dynamics of ariaapoint in a type of
mechanics where waves plays an essential role thematien of a ray — i.e., of a
trajectory — will preserve a useful meaning in the fygproximation.

Probabilistic interpretation.

42.— It is natural to look for the meaning of the equatioas ¢me will obtain upon
annulling the term iz and the term that is independenyddy substituting (21) in (20).

L. de Broglie gave a very elegant interpretationtfa case in which one confines
oneself to the Newtonian approximation to dynamdggp. 85]. It is possible to extend
it to the case of special relativity. The equation thgrovided by the term ip, which
is, moreover, also the one that one obtains upon Emmthe term ini after substituting
(21) in (20), is:

5, 0adg 1 daodg a3M 10°¢ S, 0a_1loa
(23) Sox 0x Cox 0% 2{21 i} @A ax ¢ zl %

which will be written:

(24) .Zi"ax{a [gf ‘SAH_%;&{ (6¢ MH

after multiplying by 2, because from the Lorentz relation between thent@ats, one
will have (%)

20 1 0A _
,Z:;‘c'))q @ ox

Consider the quadrivectdy whose covariant components are:

(25) i:% - A (i=1,2 3, 4).
0x
Equation (24) can be written:
Z“: a(aZW') _
i 0%
Let:
(26) Diva® W = 0,

3 |
(*°) That relation is writters. 6— upon utilizing the usual notations of tensorial calculNsw, A =
i=1

(i =1, 2, 3) and\, = ¢ A%, because the fundamental fornugé= c* dx — d¥ - d¥ - dx.
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in which Div is the symbol of the world-divergence, hes=

Wi=-W (i=1,23)
and

One then has a fictitious fluid whose definition onasmfind and whose quadri-
dimensional quantity of motion is the vecta® W. Equation (26) is the equation of
continuity of that fluid.

43.— Let us define somdasses of motiorthat relate to an arbitrary Jacobi equation.
Let:

SO, ...y ar, ..., @)

be a complete integral of a Jacobi equation. We krmat we requiren arbitrary
constants in order to define the general equation oédb@tions of motion. We say that
all of the motions for whicla , ..., a, are fixed belong to the same class. We will then
consider some identical corpuscles whose motions @l tiee same class. There ar'e

of them (corresponding to the values of theonstants that do not enter into the complete
integral). Those material points form a fluid th#isfup a region of the space @f. It is

the velocity (which comes from the quantity of motioh}he points of that fluid that we
shall occupy ourselves with in the particular case optleeeding problem. We remark
that the fictitious fluid is composed of material paées that exert no effect upon each
other.

If one is given the constamsin the complete integral then that will define theuesl
of thep; at each point in the space of tipehat relate to the particle that one finds there
(®®). Now, thep; are the components of a field in the fluid that sereeshtrracterize the
guantity of motion. One can then say that one withw the velocity field of a certain
fluid when one is given a class of motions. Furtheanid one knows the class to which
the motion of a material point belongs then one wilbw nothing about its position.
One will know only that it is a particle in a certdlnid that is defined by the Euler
variables.

Now, suppose that the density of that fluid is very larga small region and very
weak elsewhere. Since we do not know anything about theoposf the material point
in question, can we say that there is any chancevihaan find it precisely in the regions
where the density of the fluid is great?

It is then natural to consider the density of thetfaus fluid, which is, in some way,
the collective effectof the motions of an entire class, to beetative probability a
probability density or even as a measure of fh@bability of presencef our particle at
a point at an instant.

(*® In the case of a stationary regime, one ofdhis ordinary time; the time of propagation has been
eliminated. Upon decomposirkg, into “space” and time, one will determine the stata efuantity at a
point of “space” at an instant by way of the
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One will then see that it is upon posing a very nauaktion that one will be led to
introduce the calculus of probabilities into analyticaéchanics, or rather the wave
conception of analytical mechanics.

A more systematic study of what one calls Euerian methodor the study of force
fields was recently carried out by J. Ulin®®].

44. — Recall the calculations of paragragphand seek to interpret the quadrivector
W. In order to do that, one must refer to paragfhOne sees that:

(27) w=Y,
C

and as a result, the continuity equation (26) will bisten:

L0 (2 dxj_
— — | =0.
zc’bg(am) ds

i=1

Now, the world-vector whose contravariant componantsn, dx / dsis the generalized
guantity of motion of the point that we consider. Tib&tious fluid that we consider to
have a density that is equaladmy , and for which we can say thaft= ¢/ is a measure
of the probability that the material point of mamswill be found at the pointx{, X2, X3)
when the only thing that we know about it is that itsiorohas a class that is determined
by the choice of constants that enter into the compigegralg of the Jacobi equation
(22).

We remark that functioa is determined by the equation:

(28)

that one obtains upon writing that the term in (20),which one has made the
substitution (21), that is independent.ois zero.

Sincea is determined up to a constant factor, it is naturalaionalize it in such a
manner that the total probability of finding the point ©idered at some location at an
instantxs will be precisely unity. Upon integrating over all spacee needs only to
write:

[[[ wwdr=1.

However, that equation is not invariant with respedtdrentz transformations. One
can also write:

[[] Jow dx dx dx dx =1,
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in which the domain of integration is the entire univelsg,that integral will diverge, in
general.

That is a very grave difficulty, along with some otheas well, and it has led to a new
theory of wave mechanics that is due to Dirac, and inlwthie second-order equation
(20) is replaced by a system of first-order equations \thih lead to (20) when it is
iterated. As RacalBp] has shown, there is a relation between the neveisyand the
Jacobi equation that defines the characteristics of yeers precisely. It would be
impossible to present Dirac’s theory within the scopthsf monograph. One knows its
importance and its fecundity. L. de Broglie has shtivat Dirac’s theory leads, in turn,
to some difficulties that come about from the asymimeble that must be played by
space and time, despite the origins of the thegry [

45. — One must remark that if one abandons the approximatigaarhetrical optics
then it will no longer be possible to determmend ¢ from the two equations in one
unknown (22) and (28). Meanwhile, equation (23) will persstalise it is produced by
the ann(yililation of the term in as well as that of the term 4n in the substitution of (21)
in (20) ().

That can always be interpreted by appealing to (26),Vuvould then have a
different meaning, since one can no longer expressdrins of a solution to the Jacobi
equation. The relationship betweandg that one obtains upon annulling the real term
after substituting (21) into (20) is written:

iz -S4 1285 -

In the treatises)V is given a form that is different from the one theg gave it above
(27). One starts from equation (20) and chamget® —i and ¢ into ¢, while theAy, ¢,
and a remain unchanged. One will obtain an equatior){4fut there is no point in
writing it out. One multiplies the two sides of (20) By, those of (20 by ¢, and

subtracts the corresponding sides of the equationsatbabbtained. After taking the
Lorentz relation into account, one will find effortlgsks, pp. 93] that:

4 acl
29 —=
(29) 2o
The covariant components Gfare:
Ce = 2uei A i - [ oy wa—wj k=1,2,3),
0%~ 0%

(*Y) Of course, that is after simplifying it lg}f“.
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C4:2ﬂ5iA4¢’¢7_( g%_wg—fj-

One will recover (26) upon replacingwith a € and @ with a €' in (29).
The vectorC is sometimes called the (worldjobability current.

46. — The reader will effortlessly see how the equatwointhe preceding paragraphs
simplify when one limits oneself to the Newtonian apgmation €%). In particular, the
equation of continuity will become:

2
%4 L diva®v=0,
ot

in whicha® = ¢ andv is the ordinary velocity of the point in the fictitioflsid. One
normalizesa here with no difficulties in regard to invariance bywed:

J'HEaZ dxdydz= 1,

in which the domain of integration is all of space. Wendb wish to go further into
wave mechanics, but we can remark that the second-ordeioeghy means of which
one determineg/ = a € is theSchrédinger equationy must be a solution that fimite
and uniformin all of space, and is such that:

[[[w@dv=1.

Those conditions will determine the fundamental fuorddiof the Schrdodinger equation
after one has determined the values of the dynamicaineéees that enter into it in order
for the equation to have solutions of the indicated t@gg [

Plane wave and Planck constant. De Broglie’s principle.

47.— 1t remains for us to say a few words about the numpehich is assumed to be
very large, and which we introduce in order to pass fleysecond-order equation to the
Jacobi equation — i.e., in order to easily obtain theofgetric” approximation to wave
mechanics.

Since the entire evolution of quantum physics has shtvat when one can neglect
Planck’s constarth in this or that relation that expresses a quantumdae will recover
a law of classical mechanics, one might think hahust be a function df, when it is
considered to be a parameter, that will become infinitenkhiends to zero.

(® In that case, one would start with equation (12) of papigt8 and make the usual simplifications
when one passes from special relativity to Newtoniaohanics.
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In order to make these remarks more precise, we athdless the case of a material
point of massm, that displaces in the universe under the hypothesighi@giotentialA
that is zero.

The equation of propagation is then:

S, 0% 1 9%
(30) 2 6)? s a)‘? - fmg ¢y =0.
The simplest solutions are:
(31) [/I :aé/‘(alxl"' Xt BgXgt 3y X)) ,

in whicha and theg; are constants. The wave that is represented byutiation will be

a plane wave?}). On the other hand, one knows that the rays of propagare lines in
the geometric approximation. In the absence of a fthle trajectories of the material
point are indeed rectilinear, and they will be travergg a uniform motion. The world-
lines are then rectilinear. If one substitutes (31 {80) then one will find:

a
c?

L]

@2) —a-g-d = e

However, the numbels , a;, as, a4 are covariant parameters of the normal to the plane
wave, so they will be proportional to the covaripatameters of the generalized quantity
of motion. Ifk is an undetermined factor then one will have:

ai:—kn'bd_)ﬁ’ a4:kn'bC2d_X4.
ds ds

Upon substituting this in (32), one will find thett= 1.
On the other hand, if the frequency of the wave consitezlative to timey isv then
one must have’)):

g—wZZITiVl/I.

X4
Now, one has:

() If my = 0 then one will have the equation of optics. Irardgo that equation, one should cite the
very penetrating study of Le Roukd], whose considerations belong to the ones that we hexée

(**) Here, there might be some uncertainty as to whidh @ag should follow. We remarked above that
{ would have to be periodic i if one would like to utilize the theory of Delassus aratl&éimard. When
one treats the simple problems, the functibwill be linear inx,, so the periodicity relative trs will
imply the periodicity relative tay, . It would be interesting to take periodicity>gin the most general
case, and to not append the hypothesis of periodicity in In the ultimate development of quantum
mechanics, that would amount to not making energy playivdeged role, and perhaps we would, in
addition, arrive at a theory in which space and time d@lagtvery different roles, which is much-desired
today. There is even some chance that the signiécahthe constartt might be clarified by the essential
role that is played by, ; i.e., by theaction.
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oy _. _ 20, _. mcC
o L paay=ium 2y Iﬂ—\/l_—ﬁzw,

in which 8=c /v, wherev is the velocity of the particle (in space). Oa@ then set:

(33) zTV:,uLCZ

J1-8%

m,¢
J1-/3°
number of phenomena — in particular, the ones dahatconcerned with radiation — one
will be led to attach a frequency to the elemefith® energy that seem to be emitted or
absorbed by discontinuous matter. As one kna®jsll. de Broglie thinks that one
should extend the quantum relation that PlanckstEin, and Bohr have made such
fruitful use of. He proposed to make any phenomanavhich the quantity of enerdy
is brought into play correspond to a frequendy the condition?):

The quantity represents thenergy Eof the material point. In a very large

(34) E=hv.

Moreover, if one assumes precisely that the waverlytical mechanics has the
frequency that is indicated by de Broglie’s prineithen the relation (33) can be written:

2nmv=uE=uhy,
and that will show that:

,U:T-

Group velocity.

48. — Meanwhile, a very grave difficulty presents lideom the outset that L. de
Broglie brought to light brilliantly. We have péoad it out for some time already,
moreover. It presents itself at the instant whea mtroduces the motion of waves into
analytical mechanics (cf., Chap. VI38). The velocity of propagation of a wave that is
attached to the motion of a material point is nqua to the velocity of the material
point.

One can account for this immediately with the eplnthat we just treated by
calculating the velocity of the plane wave. Thamest way is to remark that for that
plane wave:

(*® Here, one should cite a paper by Pers&#.[ That author has shown that if one assumes tfeat th
energy is a function of the frequency then a theogyropagation that is entirely similar to the one that we
have developed above will finally lead to the relation hv.
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U 4 Y.

2
0X;

Furthermore, equation (30) can be written:

3 azl// n2 624[/
35 -— =0,
(35) Z:‘ ox  c* 0x
with
o 477.21/2_#2%204 - nﬁc“: L~ V_(?’
arry? h2? p?

if one setam, ¢ = hw , in whichvy is the frequency that is attached to the matpndit
for an observer that is at rest with respect tolitdeed, in that case, the mass is
equivalent to the enerdsp = mo ¢ (%9).

Moreover, from (35), the velocity of the wave is:

Vv

=l o)

I.e., it is greater thaobecause < 1. On the other hand, one has:

1_V_§:1_5?:1_—IT€C4 :IBZ:V_Z'
2 2 2 41 _ 2 2
v E my ¢ /(- 57) c
hence:
2
v=S%,
Y,

The product of the velocity of the material poiithwthe velocity of the plane wave
that is associated with it is equal to the squdréhe speed of light.

In optics, it has already been known for some tim&t the phase velocity in a
dispersive medium is not equal to the velocity mérgy transport. Since Lord Rayleigh,
it has been recognized thanif- viz., theindex of refractiorof the medium in which the
waves propagate — is a function of the frequenew the velocityJ, which is called the
group velocity and is the velocity at which energy propagated, ve given by the
formula:

1 _1d(nv)
U ¢ dv

(*®) As L. de Broglie showed, the relatigi= hv for energy is naturally implied by covariance from the
other ones for the components of the quantity of motibloreover, we shall confine ourselves here to the
very simple case of a plane wave. The generalizatithetease in which the force field is arbitrary was
also pursued successfully by the founder of wave mechanies-Chéta introduced the notion of a wave
in the local sense in the case of an Einsteinian fi2{ [
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Now, in our problem we see that:
U=w.

In the simplest case that we have addressed, thetyaddethe material point is equal
to the group velocity of the plane waves that are atthttthe motion of the point.

This very general principle, which is placed at the saxftwave mechanics, along
with the principle of the frequency, was studied exhaabtiby L. de Broglie in his
Introduction a I'étude de la Mécanique ondulatoivee refer the reader to it. For us, it
will have to suffice that we have shown the beginninghef road that leads to wave
mechanics when one starts from analytical mechanickat fiew path, which was
presented by Hamilton and prepared by Vessiot and Hadanmat@l@ng which L. de
Broglie and Schrédinger have made bold advances, haggtedeanto the heart of a new
province of natural philosophy. One can explore it neomapletely by other paths, but it
seems to us that none of them are more attractarettie one that we have described in
the course of this attempt.
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