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INTRODUCTION  
 

 The wave mechanics that was created by L. de Broglie and E. Schrödinger has deep 
roots in analytical mechanics.  Its brilliant founders have shown how their new concepts 
belong to the ideas that were sketched out a century ago by Hamilton [27, 28].  While 
interpreting Hamilton’s principle and that of de Maupertuis, Hamilton showed how the 
notion of wave could be juxtaposed with that of trajectory in classical mechanics.  The 
prodigious advances of these discoverers in the new domains that they introduced into 
science have extended the principles that guided their first attempts considerably.  Wave 
mechanics has taken on an aspect that is quite different from that of analytical mechanics 
so that despite the presentations that have been made in order to exhibit the solidarity of 
the Jacobi-Hamilton theory with that of de Broglie waves and the Schrödinger equation 
(and here we are thinking of the beautiful Introduction à l’étude de la Mécanique 
ondulatoire by de Broglie himself), the neophyte will always be struck by the differences 
more than the similarities, and he will be seduced by the successes of the new theories in 
quantum physics more than by their illustrious origins. 
 Meanwhile, if one utilizes not only the works of Hamilton, but also those of Delassus, 
Beudon, and Hadamard, on the characteristics of second-order partial differential 
equations then one can show that even before the birth of quantum physics itself, it was 
possible for it to arouse some beautiful mathematical forms in a sophisticated mind. 
 It is easy, they say, to prophesy after the fact.  Meanwhile, there is a very strong 
temptation to show the continuity of the efforts of a spirit that is immanent in the world 
of learning after a discontinuity in the advance of genius. 
 Even if one denies that continuity, if one would like to see only some manifestation of 
a spirit of escalation in the concept of history then one would, of course, have to 
recognize the utility (which can be called pedagogical) of the attempts that have the 
search for that continuity as their objective.  In truth, the origin of this fascicle was 
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precisely a course in mathematical physics in which we sought to show the attendees that 
were very familiar with analytical mechanics and physical optics how it is possible to 
arrive smoothly at the threshold of the new mechanics itself.  We recall the beautiful 
essay in which Levi-Civita has recently shown [21] how one can pass from Newton’s 
mechanics to that of Einstein by some elegantly-arranged approximations.  Inspired by 
that example, we have, in turn, sought to show how it is possible to pass to the brilliant 
and audacious wave mechanics without leaving the time-worn paths of analytical 
mechanics. 
 It was Vessiot who gave a perfectly rigorous and elegant presentation of the 
interpretation of Jacobi-Hamilton theory by means of the concepts of wave theory.  In the 
first two chapters, we shall follow the two papers [39, 40] that Vessiot write in 1906 and 
1909, and the second one, in particular, for which we shall give an extended summary.  
The principle of enveloping waves is presented there with a rigor that one will hardly find 
in the physics treatises, and its importance for the integration of partial differential 
equations is clearly brought to light there.  We have omitted the consequences that relate 
to the principle of least action that were inferred by Vessiot from his own principles, as 
they are hardly useful for our purposes: However, if we have overlooked that principle 
then it would be easy to show, in passing, its kinship to Fermat’s principle and the 
principle of de Maupertuis.  Nevertheless, we shall insist upon the problem of geodesics, 
whose importance is great in gravitation, and we shall recall the Jacobian form of the 
equations of motion for the electron. 
 The third chapter relates to the discoveries of Beudon, Delassus, and Hadamard on 
second-order partial differential equations.  We introduce the notions of characteristic and 
bicharacteristic, and we shall show that characteristics define the surfaces of equal phase 
for the propagation of periodic waves whose frequency is infinite. 
 Having thus attached, on the one hand, a propagation of waves with any motion that 
is defined by analytical dynamics, à la Vessiot, and on the other hand attached 
trajectories to it in the approximation that is called the geometrical optics approximation, 
à la Hadamard, it will be legitimate to make a wave-like syntheses of mechanics, and to 
that end we shall recall some attempts to base electromagnetism and gravitation upon a 
unified theory, along with that of matter waves, as well.  We quickly abandon those 
speculations in order to exploit the theory of Hadamard by using the idea of periodicity.  
Thanks to the simplest second-order equation that one can attach to the motion of an 
electron in an electromagnetic field, we can see, on the one hand, how the notion of 
probability can be introduced into those classical theories thanks to an idea that goes back 
to L. de Broglie, namely, a fictitious fluid that is defined by a class of motions, and on the 
other hand how one can smoothly introduce Planck’s constant, which links the 
hypothetical frequency of the matter wave to the very real energy of the particle by de 
Broglie’s principle.  Finally, we shall review the notion of group velocity, which will 
show that dispersive waves transport energy with a velocity that is not equal to the phase 
velocity, but with a velocity that is equal to precisely that of the material point in motion 
to which they are attached.  We therefore conclude the latter ramifications in a place 
where a somewhat clever historian or a sophisticated pedagogue can perceive one of the 
main roots of analytical mechanics, which mingle and connect with those of the new 
mechanics. 

__________



CHAPTER I 
 

THE PROPAGATION OF WAVES AND THE 
INTEGRATION OF FIRST-ORDER PARTIAL 

DIFFERENTIAL EQUATIONS ( 1). 
 
 

Principle of enveloping waves. 
 

 1. – Let En be a Euclidian space, so it is a set of points P (x1, …, xn), or more simply 
P(x), that are referred to a rectangular system of axes.  En is a medium in which certain 
disturbances can propagate by waves.  That signifies that the points of En can 
instantaneously acquire a property: If that property is manifested at the instant t at all 
points of a multiplicity M then it will cease to belong to the points of M at the following 

instants, and it will be manifested by the points of another multiplicity M′ at t + ∆t.  The 

appearance of the property at a point (x) will be called a disturbance; any multiplicity 
that is the locus of disturbed points at the same instant will be a wave. 
 We propose the following principle: 
 
 The multiplicity M′ is determined by the nature of the medium (relative to the 

property in question), the instant t, the interval ∆t, and the multiplicity M. 

 
 
 2. – One defines the nature of the medium by giving the system of derived waves (or 
elementary waves) that have their origins at the various points of a medium at the instant 
t.  Let P (x) be the only disturbed point at the instant t, and at t + ∆t, the locus of disturbed 
points will be a multiplicity M (x | t, ∆t) that one says has P for its origin, or that it issues 
from P.  One takes the homothety that relates to P with the ratio 1 / ∆t, and one makes ∆t 
tend to zero.  The limiting multiplicity (if it exists, which we assume to be the case) is 
properly the derived wave that has P for its origin at the instant t. 
 The homothetic image of the derived wave relative to P with the ratio dt is the 
elementary wave that has P for its origin and corresponds to the instant t. 
 In general, the system of derived waves depends upon t (variable regime); however, it 
can happen that it is independent (permanent regime). 
 We suppose that each derived wave has ∞n−1 points, since that is the most common 
case in applications. 
 
 
 3. – Propagation is governed by the following law, which is called the “law of 
enveloping waves:” 
 

                                                
 (1) For a discussion of the various aspects of the notion of wave, one should refer to the excellent article 
by Levi-Civita and Amaldi [20], and I am grateful to them for sending me the first proofs. 
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 Let M be an arbitrary wave at the instant t ; let M′ be the wave that it produces at the 

instant t + dt.  If each point P (x) of M is disturbed at only the instant t then it will emit 

an elementary wave M (x | t, dt) in the course of time dt.  The envelope M″ of all 

elementary waves that issue at the instant t from all points of M represents M′, up to 

infinitesimals of order higher than dt, which is considered to be the principal 
infinitesimal. 
 We shall insist upon neither the difference between M′ and M″ nor the lack of 

contradiction in the principle of enveloping waves.  One can establish with full rigor, as 
Vessiot did, that the representation of M′ by M″ is a true identification that implies no 

contradiction.  The reader is advised to reread that after the following calculations. 
 
 
 4. – Let (2): 

ui ξi – 1 = 0 
 
be the equation of a plane that is referred to a system of rectangular axes that have P (x) 
for their origin and are parallel to the axes of En . The ξi are the running point 
coordinates. 
 The equation: 

H (t | x1, …, xn | u1, …, un) = 0 
or 

H (t | u) = 0 
 

is the tangential equation of the derived wave that issues from P (x), when referred 
precisely to the system of axes that has P for its origin. 
 The tangent plane to the elementary wave is: 
 

ui ξi – dt = 0, 
 
and as a result, the tangential equation of the elementary wave is: 
 

H (t | x | u dt) = 0. 
 

 Upon taking homogeneous coordinates U1, U2, …, Un, Un+1 such that: 
 

ui = 
1

i

n

U

U +

, 

 
once one sets Un+1 = 1, and furthermore Ui = ui, the tangential equation can be written: 
 

π (t | x | u) = 1; 
                                                
 (2) When two indices in a monomial are equal, one intends that they are to be summed from 1 to n with 
respect to that common index, unless stated to the contrary. 
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π is homogeneous of degree 1 in the ui , which amounts to defining that function by the 
identity: 

| |
u

H t x
π

 
 
 

= 0. 

 
 The elementary wave will have the equation: 
 

π (t | x | u) dt = 1. 
 

 The coordinates of the contact point of the plane π (u) with the derived wave are: 
 

ξi =
iu

π∂
∂

, 

and with the elementary wave: 

ξi =
iu

π∂
∂

dt . 

 
Only the ratios of the ui enter into these expressions, because they have degree zero in the 
ui ; they will then give the coordinates of a point of contact of a tangent plane that is 
parallel to a given one.  In general, there will be several functions π, which represent the 
various sheets of the derived wave, which are separated in such a manner that each of 
them will have only a tangent plane that is parallel to a given plane. 
 When referred to the original system of axes, the coordinates of the contact point of 
the tangent plane to the elementary wave will be: 
 

Xi = xi + 
( | | )

i

t x q

q

π∂
∂

 dt, 

 
in which the equation of that tangent plane is: 
 

ui (Xi – xi) – 1 = 0 
or 

qi Xi – 1 = 0, 
 
and one will see that the tangential equation of the elementary wave is: 
 
(1)  π (t | x | q) dt + qi xi = 1. 
 
 
 
 5. – One must find the envelope of all the elementary waves that are represented by 
the last equation when P (x) describes M.  Let p1, …, pn be the direction parameters of 

the normal to the tangent plane to M at P.  For a displacement δ P on M, one will have: 
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pi δxi = 0, 
but one will also have: 

( | | )

i

t x q

x

π∂
∂

δxi dt + qi δxi = 0, 

 
and that equation must be a consequence of the preceding one for all δxi that satisfy it.  
Therefore: 

( | | )

i

t x q

x

π∂
∂

dt + qi = m pi , 

 
in which m is a factor that will be determined when one takes (1) into account. 
 It is easy, moreover, to see that among the contact elements that are common to the 
elementary wave (1) and to all infinitely-close waves, there is one and only one of them 
that tends to the contact element (x1, …, xn | p1, …, pn) of the wave M when dt tends to 

zero. 
 If one restricts the pi, which are defined by their ratios, to ones that verify the 
equation: 
(2)      π (t | x | p) = 1 
 
then they will be defined perfectly.  If (x′ | p′) are the coordinates of the contact element 
that tends to (x | p) when dt tends to zero then one will further set: 
 

π (t′ | x′ | p′) = 1 
 
in order to define the p′, and if one lets dxi denote the principal part of ix′ – xi , while dpi 

denotes that of ip′ – pi , then it will be easy to see that: 

 

 dxi =
( | | )

i

t x p

p

π∂
∂

dt, 

 

 dpi = − ( | | )

i

t x p

x

π∂
∂

dt + pi dµ, 

 
in which dµ is infinitely small and is determined by taking into account the fact that: 
 

i i
i i

dt dx dp
t x p

π π π∂ ∂ ∂+ +
∂ ∂ ∂

= 0; 

one will find that: 

dµ = − 
t

π∂
∂

dt. 

 Moreover: 
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 Each contact element (x | p) of a wave M that is considered at the instant t will 

correspond to a new contact element on the infinitely-close wave that results after a time 
dt, and it will be given, up to second-order infinitesimals, by the formulas: 
 

(3) dxi =
( | | )

i

t x p

p

π∂
∂

dt, 

 

(4) dpi = − ( | | ) ( | | )
i

i

t x p t x p
p

x t

π π ∂ ∂+ ∂ ∂ 
dt, 

 
while supposing that one always has: 

π (t | x | p) = 1. 
 

 If one returns to the inhomogeneous equation: 
 

H (t | x | p) = 0 
then upon setting: 

wi = ip

π
, 

one will have the identities: 
 

 
( | | ) ( | | )i

i

wH t x w H t x w

t w t

π
π

∂ ∂ ∂−
∂ ∂ ∂

= 0, 

 

 
( | | ) ( | | )i

k i k

wH t x w H t x w

x w x

π
π

∂ ∂ ∂−
∂ ∂ ∂

= 0, 

 

 
( | | ) ( | | )i

k i k

wH t x w H t x w

w w p

π
π

∂ ∂ ∂−
∂ ∂ ∂

= 0, 

 
which will reduce to some simple forms that we shall write out when: 
 

π (t | x | p) = 1, 
 
and the equations that define the dxi and the dpi will take the forms (3): 
 

(3′), (4′) i

i

dx
H

p

∂
∂

 = i

i
i

dp

H H
p

x t

 ∂ ∂− + ∂ ∂ 

 = 

1

n

k
k k

dt
H

p
p=

∂
∂∑

. 

 

                                                
 (3) The i’s are not summed over in these expressions. 
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Integration. Theory of characteristics. 
 

 6. – Knowing an original wave M0 that is given at the instant t0 , find the wave M 

that results at the instant t. That is the general problem of the propagation of waves.  One 
imagines that M is deduced from M0 by integrating the differential equations that were 

obtained above, such that the given M0 defines the initial conditions.  What will make 

the integration a little complicated is the fact that the differential equations (3) and (4) are 
accompanied by equation (2). 
 One sees immediately that if (2) is verified by the initial conditions then one will 
always have π (t | x | p) = 1 by virtue of the differential equations themselves for each 
instant t, because: 

 d (π – 1) = i i
i i

dt dx dp
t x p

π π π∂ ∂ ∂+ +
∂ ∂ ∂

 

  = 1 i
i

p dt
t p

π π ∂ ∂− ∂ ∂ 
 

  = 
t

π∂
∂

(1 – π) dt. 

 
 Moreover, the function π – 1 satisfies the homogeneous equation: 
 

( 1)d

dt

π −
+ π1 (π – 1) = 0 1 t

ππ ∂ = ∂ 
, 

 
and one sees that if (π – 1)0 = 0 then one will always have π – 1 for any t. 
 The equation: 

π (t | x | p) = 1 
is invariant under the transformation: 
(5)      xi = Ai (t | x

0 | p0 | t0), 
(6)      pi = Bi (t | x

0 | p0 | t0), 
 
which defines the general integral of (3) and (4), i.e., the integral that reduces to: 
 

xi = 0
ix , pi = 0

ip  

for t = t0 . 
 We remark, in passing, that the functions Ai and the ratios of the functions Bi are 
homogeneous of degree zero with respect to 0

1p , …, 0
np .  One proves that by substituting 

Ai for xi and m Bi for pi in (3) and (4); one first sees that: 
 

dm = m (1 – m) π1 dt. 
 
One determines the integral M of that equation that reduces to the constant m0 for t = t0 .  
The functions: 
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xi = Ai ,  pi = M Bi  
 

constitute the solution of (3) and (5) that is defined by the initial conditions: 
 

xi =
0
ix ,  pi =

0
0 im p ; 

 
however, that solution is obviously given by the equations: 
 
 xi = Ai (t | x

0 | m0 p
0 | t0), 

 pi = Bi (t | x
0 | m0 p

0 | t0), 
so 

Ai (t | x
0 | p0 | t0) = Ai (t | x

0 | m0 p
0 | t0), 

M Bi (t | x
0 | p0 | t0) = Bi (t | x

0 | m0 p
0 | t0), 

 
which proves our assertion. 
 
 
 7. – The 0

ix  and the 0
ip  constitute the multiplicity M0 ; we shall show that formulas 

(5), (6), which define the integral of (3), (4), will define a multiplicity M at each instant.  

It suffices to prove that the equation: 
pi δxi = 0 

 
is invariant under the transformation (5), (6), in which δ is a differentiation symbol that is 
independent of d; in particular, d δxi = δ dxi . 
 One immediately sees that: 

d

dt
(pi δxi) + π1 (pi δxi) = 0, 

 
by virtue of the differential equations (3) and (4) themselves.  Therefore, if the 0ix  and the 

0
ip  are functions of n − 1 parameters α1, …, αn−1 that verify the relation: 

 
0 0
i ip xδ = 0 

then the functions: 
xi = Ai ,  pi = Bi  

 
will be functions of the same parameters that verify the relation: 
 

pi δxi = 0, 
 
in which δ is a differentiation symbol that produces variations of only the α. 
 The transformation (5) and (6), in which t and t0 are arbitrary constants, changes any 
multiplicity into a multiplicity.  It is a contact transformation. 
 
. 
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 7. – One says trajectory or ray to mean the locus of points whose coordinates are: 
 

xi = 0 0 0 0
1 1 0( | , , | , , | )i n nA t x x p p t… …  

 
when only t varies, while the quantities 0ix , 0

ip , t0 are constant.  Each point of the 

trajectory corresponds to an instant t, but that point is considered only at the instant to 
which it corresponds. 
 A contact element passes through each point of the trajectory, and it is defined by the 
equations: 

pi = 0 0 0 0
1 1 0( | , , | , , | )i n nB t x x p p t… … . 

One has: 

idx

dt
= 

ip

π∂
∂

, 

 
moreover, which shows that the point P (x) of a trajectory, which exists at the instant t, is 
the origin of a derived wave at that instant, and the direction of the trajectory at P (x) is 
the one that goes from P to the contact point of the tangent plane to the derived wave that 
is parallel to the contact element that is carried by the point P (x) of the trajectory at the 
instant t. 
 The set that consists of a trajectory and all of the contact elements that are carried by 
its points is a characteristic.  Equations (5) and (6) will define a characteristic when only 
t varies. 
 One will easily understand the following statement, moreover: 
 
 A multiplicity M at an instant t will result from the simultaneous transport of the 
contact elements of a multiplicity M0 that is given at the instant t0 .  That transport is 

defined spatially and temporally by the characteristics that have the contact elements of 
M0 for their elements at the instant t0 . 

 
 
 8. – The family of multiplicities M′ that results from the multiplicity M0 by the 

transport along characteristics and the family of waves M′ that issue from M0 under the 

mode of propagation envisioned are such that one passes from one multiplicity in each 
family to the infinitely-close one by means of the variation that was defined in equations 
(3) and (4), in which (2) is always satisfied, and one will then see that the principle of 
enveloping waves implies no contradiction.  It remains to be shown that these two 
families are identical. 
 One can prove that fact by remarking that the family of M′ is the only one that is 

defined by the variation (3) and (4), while (2) is satisfied.  Indeed, imagine that a family 
of multiplicities is defined by the equation: 
 
(7)      F (x1, …, xn) = t, 
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in which t is the parameter that varies from one multiplicity to the other.  Let: 
 

  
i

F

x

∂
∂

= Pi 

and 
π (F | x1, …, xn | P1, …, Pn) = π . 

 
 For a contact element of (7), set: 

(8)      pi = iP

π
, 

 
so (2) will be verified for those values.  Moreover, upon taking (3) into account, one 
infers from (7): 

dt = Pi dxi = i
i

P dt
p

π∂
∂

= i
i

P dt
P

π∂
∂

= π dt, 

 
because the derivatives ∂π / ∂pi depend upon only the relationship between the pi , which 
is the same as the relationship between the Pi , and consequently, they will be equal to the 
derivatives ∂π / ∂pi ; moreover, π is homogeneous of degree 1 in the Pi .  One will then 
see that: 
(9)      π  = 1. 
 As a result: 
  pi = Pi . 
One finds that by virtue of (4): 
 

dPi = − i
i

p
x t

π π ∂ ∂+ ∂ ∂ 
dt = − i

i

P
x F

π π ∂ ∂+ ∂ ∂ 
 dt 

or 
2

k
i k i i

F F
dx dt

x x x F x

π π ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ ∂ 
 = 0; 

i.e.: 

k

k i i i

P F

P x x F x

π π π∂∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂

= 0. 

 
 Now, when these equations are written, while taking (3) and (4) into account, they 
will result from (9) by differentiation with respect to xi .  One has then proved that the 
relations (3) and (4) result from (7) and (8) by differentiation. 
 The family (7) satisfies the partial differential equation: 
 

(10)    1
1

| , , | , ,n
n

F F
F x x

x x
π
 ∂ ∂
 ∂ ∂ 

… …  = 1, 
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which is only equation (2) in which one has set: 
 

pi = 
i

t

x

∂
∂

. 

 
 Since the most general first-order partial differential equation: 
 

(11)   H (t | x1, …, xn | p1, …, pn) = 0 i
i

t
p

x

 ∂= ∂ 
 

 
reduces to the form (10), one will see that the theory of characteristics will permit one to 
construct a solution of (11) that takes the given value t0 at all points of an arbitrarily-
chosen multiplicity M0 upon integrating (3) and (4) or (3′), (4′). 
 The fact that there is only one will result from the following analysis: 
 Let the family M that is defined (7) satisfy (9), in which Pi = ∂F / ∂xi .  One and only 

one M that corresponds to one value of t passes through each point P (x) of En .  

Construct the derived wave that issues from P at that instant, draw the plane that is 
tangent to it and parallel to the tangent plane to M at P, and draw the line that joins P to 

the contact point Q.  One has a direction D at each point of En ; there exists a family of 
tangent curves to each of its points in the corresponding direction.  Each point also 
corresponds to a value of t and a contact element, which is the contact element to the 
multiplicity M that passes through it, so I say that one has defined the characteristics in 

that way, and therefore any family (7) that satisfies (9) is provided by the construction of 
paragraph 6. 
 The curves that we just discussed are indeed integral curves of the system: 
 

dxi = 
iP

π∂
∂

dt, 

and one infers, by virtue of (8), that: 
 

dF = Pi dxi = π dt = dt, 
 

and therefore (7), provided that 0
1x , …, 0

nx , t0 satisfy (7). 

 The contact elements are defined by the equations: 
 
(12)     pi = Pi . 
 
I say that they imply equations (4); i.e., that one must have the equations: 
 

  Pi = 
i

F

x

∂
∂

,  

by virtue of (7), (9), and: 
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dPi = − i
i

P
x F

π π ∂ ∂+ ∂ ∂ 
dt 

from (12), or: 

i
i

k k i

P
P

x P x F

π π π∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

= 0, 

or rather: 

k

i i k i

PF

F x x P x

π π π ∂∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂

= 0, 

because: 

i

k

P

x

∂
∂

= k

i

P

x

∂
∂

. 

 
 However, that will result from (9) when one differentiates it with respect to xi, and (9) 
is verified identically, by hypothesis. 
 Any solution of (9) that takes the value t0 at the various points of an M0 is obtained 

by the construction in paragraph 6 by means of characteristics.  As a result, there is only 
one solution that satisfies that initial condition. 
 
 Any first-order partial differential equation corresponds to a propagation of waves, 
and conversely. 
 
 

Jacobi’s theorem 
 

 9. Jacobi’s theorem. – If one remarks that the transformation (5), (6) acts upon the 
contact element (x0 | p0) without one having to specify that it belongs to M0 then one can 

confirm that if two original waves have a common contact element then the waves that it 
produces at an arbitrary instant will also have a common contact element, which is the 
transform of the preceding one, and one will see effortlessly, moreover, that the principle 
of the enveloping wave is verified rigorously for a finite variation of time.  The wave M 

at time t is then the envelope of the waves that are emitted at t0 and considered at the 
instant t for all points of M0 ; if one then knows the latter then one can know M without 

integration. 
 There is more: Imagine that one knows the propagation of ∞n arbitrary original 
waves.  It will be obvious when one is given an integral: 
 

t = G (x1, …, xn | a1, …, an) 
 
of the partial differential equation (10) that depends upon n arbitrary constants which will 
serve to define ∞n waves, if they are essential, and consequently G will be a complete 
integral of (10). 
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 There are ∞2n−1 contact elements in space.  One can determine all of them for t = t0 : 
Each of them is defined to be common to the multiplicity: 
 
(13)     t0 = G (x | a), 
 
and all of them that result from infinitely-small variations of the ai will be coupled by just 
one relation: 

bi δai = 0. 
 
 One will then have 2n + 1 conditions: 
 

G = t0 ,  
i

G

a

∂
∂

= m bi ,  pi = 
i

G
h

x

∂
∂

, 

 
which will reduce to 2n – 1 conditions that define just one contact element when the 
ratios of the bi are given; conversely, if the contact element is given then one can infer the 
ai and the ratios of the bi . 
 At the instant t, that element will correspond to an element that is common to the 
multiplicities that issue from the first one and that one can obtain by giving the value t to 
G and fixing the ai and the bi as we discussed.  Moreover, the equations: 
 

(14)   G (x | a) = t, 
i

G

a

∂
∂

= m bi , pi = 
i

G
h

x

∂
∂

 

 
define that element, and also as a result, if one considers the ai and the ratios of the bi to 
be 2n – 1 arbitrary constants then they will represent the general equations of ∞2n−1 
possible characteristics.  They give the general integral of the differential equations of the 
characteristics and are equivalent to equations (5) and (6).  Those propositions constitute 
Jacobi’s theorem on the interpretation of the characteristic equations. 
 If M0 is given as the envelope of ∞n−1 multiplicities (12) then the ai will verify the 

equation: 
Φ (a1, …, an) = 0, 

 
so the wave M at the instant t will be the envelope of ∞n−1 multiplicities: 

 
t = G (x | a), 

with Φ (a) = 0. 
 
 
 10. – In the case of the permanent regime, the equations: 
 

H (x1, …, xn | p1, …, pn) = 0 
or 

π (x1, …, xn | p1, …, pn) = 1 
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do not contain t.  We leave to the reader the task of writing out the characteristic 
equations, and we remark that their general integral will have the form: 
 
 xi = Ai (t – t0 | x

0 | p0), 

 pi = Bi (t – t0 | x
0 | p0). 

 
 The wave that is emitted by M0 at the instant t depends upon only the interval t – t0 , 

and not upon t0 .  A contact element is always transported by the same trajectory, no 
matter what the initial position. 
 The family of contact transformations that gives the law of propagation then forms a 
group with one parameter, namely, t – t0 .  (Cf., Lie [25 and 26].) 
   
 

Trajectories 
 

 11. Trajectories. – One can define the trajectories independently of the contact 
elements that transport them.  It will suffice to eliminate the pi from equations (3), (4), 
and (2). 
 One will easily arrive at that upon starting with the point-like equation of the wave 
that issues from P (x).  Let: 
(15)    Ω (t | x1, …, xn | ξ1, …, ξn) = 1 
 
be that equation, when written in a form that is homogeneous of degree 1 in the ξi .  The 
coordinates of the tangent place to that wave in ξ1, …, ξn are: 
 

ui = 
( | | )

i

t x ξ
ξ

∂Ω
∂

, 

just as: 

ξi = 
( | | )

i

t x u

u

π∂
∂

 

 
are the coordinates of the contact point of the tangent plane whose coordinates are ui . 
 Rewrite equations (3) and (4), while denoting the derivatives with respect to t by 
primes: 

(3′)      ix′ = 
ip

π∂
∂

, 

 

(4′)      ip′ = − i
i

p
x t

π π∂ ∂−
∂ ∂

. 

 
 Equations (3′) and (2) are equivalent to the system: 
 
(16)     Ω (t | x | x′) = 1, 
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  pi = 
( | | )

i

t x x

x

′∂Ω
′∂

. 

 On the other hand, the identity: 

| |t x
p

π ∂Ω ∂ 
= 1 

will imply that: 
2

k k

d

dt x p t

πΩ ∂Ω ∂+
′∂ ∂ ∂

= 0 

or 
2

k
k

p
t p t

π∂Ω ∂+
∂ ∂ ∂

= 0, 

 
but ∂π / ∂t is homogeneous of degree 1 in the pi, so: 
 

t t

π∂Ω ∂+
∂ ∂

= 0, 

moreover; hence: 

i ix x

π∂Ω ∂+
∂ ∂

 = 0 

 
as well, and equations (4′) will become: 
 

(17)    i

i i

d
x

dt t x x

∂Ω
′∂ ∂Ω ∂Ω ∂Ω− −

′∂ ∂ ∂
 = 0. 

 
 The trajectories are then defined by the system (16) and (17), which is over-
determined.  In order to simplify it, we remark that since Ω is homogeneous in the ix′ : 

 

 
( | | )

i

t x x

x

′∂Ω
′∂

= 
( | | )

i

t x dx

dx

∂Ω
∂

, 

 

 
( | | )

i

t x x

x

′∂Ω
∂

= 
( | | ) 1

i

t x dx

x dt

∂Ω
∂

, 

 

 
( | | )t x x

t

′∂Ω
∂

= 
( | | ) 1t x dx

t dt

∂Ω
∂

, 

and if one sets: 
 Ω  = Ω (t | x | dx) 

then one will have: 
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(18) 
i i i

d
dx t dx x

∂Ω ∂Ω ∂Ω ∂Ω− −
∂ ∂ ∂ ∂

= 0, 

 
instead of (17).  Upon multiplying this by dxi and summing over i, one will get: 
 

( )dt
t

∂Ω − Ω
∂

= 0. 

 
 Hence, in the variable regime, the trajectories are defined by the system (18), not only 
by their form, but also by the law that describes them. 
 In the permanent regime, it is the system: 
 

i i

d
dx x

∂Ω ∂Ω−
∂ ∂

= 0 

 
that defines their form; it reduces to n – 1 equations.  The law by which the trajectories 
are traversed is given by the equation: 

dt = Ω . 
 
 One calls a trajectory a ray when one considers only its form.  If a ray is given then 
one will find the corresponding characteristic upon remarking that: 
 

pi = 
idx

∂Ω
∂

. 

 
 
 12. – The Eulerian form of the equations that we have obtained (at least, in the case of 
the permanent regime) suggests the idea of investigating whether there are maximum or 
minimum properties with respect to the propagation of waves.  We shall not appeal to 
such properties in what follows, so we shall confine ourselves to pointing out that the 
problem was treated by Vessiot with full rigor. 
 
 
 13. – It is not necessary to insist upon the theory of integration for partial differential 
equations that one can infer from the preceding considerations.  In truth, that theory 
coincides with the usual theory, up to the language that one adopts in order to illustrate 
the use of characteristics and complete integrals and to make it more intuitive.  One can 
solve the Cauchy problem with no difficulty, which consists of finding an integral surface 
that passes through a given curve that is not a characteristic. 
 

___________ 
 



CHAPTER II 
 

APPLICATIONS OF THE PRECEDING THEORY  
TO ANALYTICAL MECHANICS  

AND DIFFERENTIAL GEOMETRY 
 
 

Dynamics of holonomic systems. 
 

 14. – Let a holonomic system have n – 1 degrees of freedom.  Let x1, …, xn−1 be the 
Lagrangian parameters that fix the position, and let xn be time, which is included as a 
Lagrangian parameter in analytical mechanics.  Assume that there exists a force function 
U, and let 2T denote the vis viva: 
 

2T = 
1 1 1

1 1 1

2
n n n

ik i k i i
i k i

a x x b x
− − −

= = =
+∑∑ ∑ɺ ɺ ɺ + c i

i
n

dx
x

dx

 
= 

 
ɺ . 

 
 Let τ be an arbitrary parameter by means of which one represents the motion of the 
system by equations of the form: 
 

xi = xi (τ) (i = 1, …, n). 
 
 The Lagrange equations are then written: 
 

(1)      
i i

d L L

d x xτ
 ∂ ∂− ′∂ ∂ 

 = 0, 

in which: 

ix′ = idx

dτ
 

and 
      L = (T + U) nx′ . 

Set: 
Ω (x1, …, xn | dx1 , …, dxn) = (T + U) dxn 

 

= 
1 1 1

1 1 1

1

2 2

n n n
i

ik n i i n
i k in

dx c
a dx b dx U dx

dx

− − −

= = =

 + + + 
 

∑∑ ∑ . 

 
Ω  is homogeneous of degree 1 in the dxi .  Moreover, set: 
 

 ui = 
ix

∂Ω
∂

= 

1

1

n

ik k
k

n

a dx

dx

−

=
∑

+ bi  (i = 1, …, n – 1), 
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 un = 
ix

∂Ω
∂

= −
1 1

2
1 1

1

2 2

n n
i k

ik
i k n

dx dx c
a U

dx

− −

= =

+ +∑∑ . 

 
 Upon eliminating the ratios dxi / dxn from this, one will infer that: 
 

(2)    un = −
1 1

1 1

1
( )( )

2 2

n n

kk j j k k
j k

c
A u b u b U

− −

= =

− − + +∑∑ , 

 
in which the Ajk are the minors of the determinant | aik |, divided by that determinant itself. 
 The preceding equation is written: 
 
(3)    un + H (x1 , .., xn−1 , xn ; u1, …, un−1) = 0, 
 
in which H is the Hamiltonian function of the system considered, and the u1, …, un−1 are 
conjugate variables of the x1 , .., xn−1 .  Consider that equation to be the tangential 
equation (in inhomogeneous form) of the derived wave that issues from the point (x1, …, 
xn) in the n-dimensional space that can be legitimately attached to a system of n − 1 
degrees of freedom when one adds the coordinate t = xn .  Any dynamical problem (at 
least when the system considered is holonomic and there exists a force function) will then 
correspond to a problem of wave propagation in the permanent regime.  Time, as it 
relates to the propagation of waves, is, in effect, the variable S that is defined by the 
equation: 
(4)      dS = Ω  = (T + U) dxn ; 
 
it is the Hamiltonian action, which does not figure explicitly in the equations of motion, 
any more than it does in the wave equation.  The wave surfaces that are attached to the 
dynamical problem in question are then the surfaces of equal Hamiltonian action. 
 
 
 15. – The Lagrange equations are the equations of the trajectories along which 
propagate the contact elements (x | u).  In order to obtain the characteristic equations in 
the usual form, one can make the equation un + H = 0 homogeneous, but for our present 
purposes, it will suffice to take the form (3′), (4′) of Chapter I.  Here, the function H (t | x 
| p) is: 

un + H (x1 , .., xn−1 , xn ; u1, …, un−1) = 0 
 

(pi = ui , i = 1, …, n), 
 
and one will find the differential system for the characteristics immediately in the form: 
 

(5)    i

i

dx
H

u

∂
∂

= i

i

du
H

x

∂−
∂

= 
1

ndx
= n

n

du
H

x

∂−
∂

= 1

1

n

n i
i i

dS
H

u u
u

−

=

∂+
∂∑

. 
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The equations: 

(6)     i

n

dx

dx
= 

i

H

u

∂
∂

, i

n

du

dx
= −

i

H

x

∂
∂

 (i = 1, …, n – 1) 

 
are the canonical equations of mechanics, so they are then one part of a system that 
defines the characteristics of the propagation of waves that are attached to the dynamical 
problem. 
 
 
 16. – Thanks to the propagation in question, it will be very easy to find the general 
integral of the canonical equations.  The complete integral, which was at issue in 
paragraph 9, relates to the homogeneous equation π = 1, but it is also a complete integral 
to the equation H = 0, in which one has set: 
 

ui = 
i

S

x

∂
∂

  (i = 1, …, n – 1). 

 Therefore, let: 
G (x1 , .., xn−1 , xn ; a1, …, an−1) + an 

 
be a complete integral of the equation: 
 

(7)    1 1
1 1

, , , ; , ,n n
n n

S S S
H x x x

x x x−
−

 ∂ ∂ ∂+  ∂ ∂ ∂ 
… … = 0. 

 
The contact elements in the propagation in space (x1 , .., xn) are defined by equations (14) 
of Chapter I.  If: 

S = G (x1 , .., xn−1 , xn ; a1, …, an−1) + an 
 
is the complete integral then let: 
 

(8)   

1, ( 1),

, ( 1, , 1).

n n
n n

i i i
i i

S G
mb h u H h H h

a x

G G
mb c u i n

a x

∂ ∂ = = = = − = − = ∂ ∂
 ∂ ∂ = = = = −
 ∂ ∂

…

 

 
 Equations (8), in which ci are arbitrary, thus define the general integral of the 
canonical equations (6) by means of a complete integral of (7).  One will then obtain 
Jacobi’s theorem by a very simple route. 
 
 
 17 – In the case where the constraints are independent of xn and U contains only x1 , 
…, xn−1 , one knows that the equations of motion admit the first integral: 
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T = U + h. 
 
 Consider the motions when h is fixed; upon changing U, which is defined only up to a 
constant, one can write: 

T = U, 
 
and in this case T, by a convenient choice of parameters, can be reduced to a quadratic 
form in the xi (i = 1, …, n – 1): 

2T = 
1 1

1 1

n n

ik i k
i k

a x x
− −

= =
∑∑ ɺ ɺ . 

 Set: 
T = 2

nT dx . 

One easily sees that if: 

Ω = 2 U T  
 
then the Lagrange equations can be written: 
 

i i

d
dx x

∂Ω ∂Ω−
∂ ∂

= 0  (i = 1, …, n − 1), 

 
and that one can make any motion of the system correspond to the propagation of a wave 
by taking the time of the propagation to be the variable W that is defined by the equation: 
 

dW = Ω  = 2 U T . 
 
 That variable is the Maupertuisian action, and the tangential equations for the derived 
waves can be immediately put into the homogeneous form: 
 

π (x1 , .., xn−1 ; u1, …, un−1) = 1, 
with 

(9)      π = 
U

T
, 

 
in which T is the form that is adjoint to T . 
 We remark that the surfaces of equal Maupertuisian action are also surfaces of equal 
Hamiltonian action, because: 
 

dW = 2 U T dxn , dS = (U + T) dxn , 
 

and with the hypothesis that conforms to the definition of W: 
 

T = U, 
one will then have: 
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dW = dS. 
 

 Upon replacing U with U + h, one will come down to the case in which the vis viva 
constant has an arbitrary value. 
 One knows that one can obtain a complete integral of (7) in the case where H does 
not contain xn and has the form: 
 

S = − an xn + V (x1 , .., xn−1 ; a1, …, an), 
 
in which no constant is additive.  One sees that with xn = const., the multiplicities S = 
const. will determine the multiplicities V = const. in the space En−1 (x1 , .., xn−1) precisely, 
and conversely.  As a result, for an observer that has decomposed the space En into a 
“space” and a “time,” the propagation that appears in En−1 to be the motion of a 
multiplicity V = const. will again satisfy the principle of enveloping waves, in which the 
time by which that motion is framed will be the time xn itself, which is coupled to the 
time S of the propagation in En by a simple linear relation. 
 If one makes the decomposition into a space En−1 and a time xn in the case where H 
contains xn then the traces of the multiplicities S = const. in the “space” xn = const. (i.e., 
in the space x1 , .., xn−1) will no longer propagate à la Huygens (i.e., according to the 
principle of enveloping waves). 
 
 

Dynamics of special relativity. 
 

 18. – We have yet to speak of Einsteinian mechanics, but we shall do that in what 
follows, at least as far as general relativity is concerned.  Meanwhile, it is convenient to 
give some precise indications in regard to the dynamics of special relativity that have 
great utility for the study of phenomena that do not involve intense gravitational fields. 
 Let m0 be the rest mass of a material point.  Let s denote its proper time and recall 
that one has: 
(10)    c2 ds2 = c2 dt2 – dx2 – dy2 – dz2 
 
in a Minkowskian system that serves to frame the universe, in which c is the speed of 
light in vacuo.  By hypothesis, let U (x, y, z, t) be the force function from which one 
derives the field that acts upon the point considered, i.e., the function such that: 
 

U

x

∂
∂

, 
U

y

∂
∂

, 
U

z

∂
∂

, 
U

t

∂
∂

 

 
are the components of a quadrivector whose first three components represent the force.  If 
one sets: 

β 2 = 

2 2 2

2

dx dy dz

dt dt dt
c

     + +     
       
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at a point on the world-line of the particle m0 then the equations of motion will be: 
 

0

21

md dx

dt dtβ

 
 
 − 

 = 
U

x

∂
∂

 

 
if one takes t to be the independent variable, and some similar ones for y and z.  One can 
put them into canonical form by setting: 
 

q1 = x,  q2 = y,  q3 = z, 
 

p1 = 0

21

m dx

dtβ−
, 

 

p2 = 0

21

m dy

dtβ−
, 

 

p3 = 0

21

m dz

dtβ−
, 

 
and will one see effortlessly that the Hamiltonian function is: 
 

 H = 
2

0

21

m c

β−
− U (q1, q2, q3, t) 

  = 2 2 2 2 2
0 1 2 3c m c p p p+ + +  − U (q1, q2, q3, t). 

The Jacobi equation will be: 
 

22 2

2 2
0

1 2 3

S S S S
c m c

t q q q

    ∂ ∂ ∂ ∂+ + + +     ∂ ∂ ∂ ∂     
 − U (q1, q2, q3, t) = 0, 

or rather: 

(11) 
22 22

2
1 2 3

1
1

S S S S

c t q q q

    ∂ ∂ ∂ ∂ − − − −      ∂ ∂ ∂ ∂       
= 2 2

0m c . 

 
 One can make this equation homogeneous (§ 4) and interpret the result as the 
tangential equation of the derived wave for propagation in the universe (x, y, z, t), in 
which the time of the propagation is S and the regime is permanent.  Upon setting: 
 

p1 = 1

5

π
π

, p2 = 2

5

π
π

, p3 = 3

5

π
π

, p4 = 
S

t

∂
∂

 = 4

5

π
π

, 
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equation (11) can be written: 
 

(12)   
2

2 2 2 2 2 2 2
1 2 3 4 1 5 0 52 2 2

1 2U U
m c

c c c
π π π π π π π 

+ + − + − − 
 

 = 0. 

 
 That manner of proceeding, which permits one to pass from Newtonian mechanics to 
the mechanics of special relativity, is not sufficient, since equation (11) is not invariant 
under the Lorentz transformations, although it is quite useful in the simplest problems (4).  
The presence of the scalar U is precisely what disturbs that invariance.  One knows that 
electromagnetism leads to some much more symmetric equations.  Thanks to the 
introduction of the quadri-vector potential, whose fourth component is the ordinary 
potential, and the other three of which are the vector potential from Maxwell’s theory, the 
motion of an electrified material point of mass m0 and charge ε is given by the following 
equations, whose proof one will find in the great treatise of de Donder [9], for example. 
 
 Jacobi equation: 

(13)    
22

3

42
14

1
i

i i

S S
A A

c x x
ε ε

=

  ∂ ∂− − −  ∂ ∂   
∑ = 2 2

0m c , 

 
in which A1, A2, A3, A4 are the covariant components of the world-potential. 
 
 General integral of the equations of motion: 
 

i

S

x

∂
∂

= pi , 
i

S

α
∂
∂

= βi , 

 
in which S (x1, x2, x3, x4, α1, α2, α3, α4) is a complete integral of (13).   p1, p2, p3, p4 are 
the covariant components of the quantity of motion-energy quadrivector.  The 
contravariant components are expressions of the form [cf., pp. 90 (†)]: 
 

(14)    pi = ε Ai − 0 im dx

c ds
, p4 = ε A4 + 4

0

dx
m c

ds
, 

and: 

 
i

S

x

∂
∂

− ε Ai = − 0 im dx

c ds
 (i = 1, 2, 3), 

 

 
4

S

x

∂
∂

− ε A4 = 4
0

dx
m c

ds
, 

 
                                                
 (4) One knows that this defines one of the obstacles that held back the theoreticians who sought to 
introduce gravitation into special relativity between 1905 and 1912. 
 (†) Translator’s note: There was no pp. 90 in the original text of this monograph.  Perhaps he was 
referring to the reference to de Donder. 
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in which the right-hand sides are the covariant components, divided by c, of the 
quadrivector V, whose contravariant components are: 
 

0
idx

m
ds

  (i = 1, 2, 3, 4). 

 
In the space E5 (x1, x2, x3, x4, x5), one can attach the motions in question to a wave 
propagation whose equation is obviously: 
 

(16) 
3 3

2 2
4 4 52 2

1 1

1 1
2i i i i

i i

A A
c c

π π ε π π π
= =

 − − − 
 

∑ ∑ +
3

2 2 2 2 2
4 0 52

1

1
i i

i

A A m c
c

ε π π
=

  − +  
  
∑ = 0. 

 
We shall employ the wave equation in that form in paragraph 41.  The fact that its left-
hand side is homogeneous of second-degree will make it particularly useful in the theory 
of second-order equations.  The form π = 1 of paragraph 4 has the same utility in the 
context of that problem.  Meanwhile, it is by means of that fact and the form Ω = 1 of 
paragraph 11 that one can go on to justify equations (14) (5). 
  
 

Geodesics in a Riemannian space. 
 

 19. – The determination of geodesics of a Riemannian space whose ds2 is given in the 
form: 
(17)     ds2 = gik dxi dxk 
 
will also lead to the consideration of the propagation of waves in the space (x1, …, xn).  
As we have established no metric relation in regard to the theory of waves, it is legitimate 
to consider the wave surfaces: 

F (x1, …, xn) = const. 
 

to be traced out in Riemannian space itself or in an auxiliary Euclidian space with the 
rectangular coordinates (x1, …, xn).  Of course, it will be more natural and simpler to 
imagine things in the Riemannian space itself. 
 The regime is permanent, moreover, and the time of propagation is the variable s 
itself.  One makes: 

Ω = ik i kg dx dx  = ds, 

 
and the tangential equation of the desired waves will be: 
 
(18)     π (x | p) = 1, 

                                                
 (5) Recall that the fastest way to write down the equations of a point is to start from the principle of least 
action for electromagnetism: 

δS m0 dσ + 
4

1
i i

i

A dx
=

∑ = 0. 
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with 

π (x | p) = ik
i kg p p , 

 
in which the gik are coefficients of the form that is adjoint to ds2; the absolute differential 
calculus has made them known to all. 
 Jacobi’s theorem permits one to determine all of the geodesics of the given manifold 
when one knows a complete integral of equation (18), in which pi = ∂S / ∂xi .  It is easy to 
see then that the geodesics that issue from a point are normal to the wave surfaces that 
issue from that point, where perpendicularity is intended in the sense of the Riemannian 
metric (17) here.  
 
 
 20. – Some difficulties will arise when the form (17) is not defined.  That is what 
happens in relativity when one seeks the null-length geodesics that represent the motion 
of photons.  ds = 0 on those geodesics, and one does not see the significance of wave 
surfaces immediately. 
 One arrives at the notion of wave in the following manner: The geodesics have an 
invariant significance, and on the other hand, the ds2 can always be put into the following 
form by a change of variables when one knows that geodesics that issue from a point: 
 

(19)    ds2 = 
1 1

2

1 1

n n

ng dx dx dxαβ α β
α β

− −

= =

−∑∑ , 

 
so it will suffice to consider the form (19) and to write down the geodesic equations that 
depend upon it. 
 If ds2 ≠ 0 then those equations will be obtained by eliminating the pi from the 
equations: 
 dxi = gij pj dλ , 
 

 dpk = − 
1

2

ij

k

g

x

∂
∂

pi pj dλ , 

 
which one can write upon starting from equation (18).   If ds2 = 0 then one will take xn to 
be the representative parameter, and the geodesic equations will take the form: 
 

(20)   
1
2

( 1, , 1),

( 1, , 1),

ij
ji

nn
n n

ij

i j
k k

nn
n n

g pdx
i n

dx g p

g
p p

dp x
k n

dx g p


= = −


 ∂
 ∂ = − = −


…

…

 

 
which will make sense in all cases. 
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 Now, it is obvious that these equations are the characteristic equations of propagation 
in the variable regime for waves in the space En−1 (x1, …, xn−1) when one writes the 
tangential equation of the wave surfaces in the form: 
 

p ≡ 
1 1

1 1

n n

g P Pαβ
α β

α β

− −

= =
∑∑  = 1. 

 
Indeed, it will suffice to set pα / pn = − Pα in (18) in order to verify that assertion. 
 Hence: The null-length geodesics correspond to wave propagation in the permanent 
regime in En for which the time of propagation is s (which is proper time in special 
relativity).  The null-length geodesics correspond to wave propagation in the variable 
regime, in general, in a space En−1 (x1, …, xn−1) that is defined by the form (19) for ds2, 
and the time of propagation is xn .  If the gαβ in (19) do not depend upon the xn then the 
propagation will be in the permanent regime in En−1 , and one will see that the null-length 
geodesics of the manifold En project onto En−1 along geodesics of En−1 itself.  One can 
recognize one of the classical propositions for the ds2 of a static universe in this (6). 
 

_____________ 

                                                
 (6) Cf., for example, CHAZY [7]. 



CHAPTER III 
 

SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS 
AND THE WAVE PROPAGATIONS  
THAT ARE ATTACHED TO THEM. 

 
 

Indeterminacy in the Cauchy-Kowalewsky problem. 
 

 21. – It is convenient to recall some useful terms.  If a function z of n variables x1, …, 
xn admits partial derivatives up to order p + 1 then its derivatives will verify some 
relations of the form: 
 

(1)   
1

1
n

k

n

z
d

x xαα
∂

∂ ∂⋯
= 

1

1

1
1 1

i n

nn

i
i i n

z
dx

x x xα αα

+

+
=

∂
∂ ∂ ∂∑
⋯ ⋯

  (α1 + … + αn = k) 

 
for k = 0, 1, …, p. 
 When one fixes the values of the variables: 
 

x1, …, xn , z, 
1

z

x

∂
∂

, …, 
1

1
n

k

n

z

x xαα
∂

∂ ∂⋯
,  …, 

 
when they are considered to be independent, one says that they determine a contact 
element of order p in the n + 1-dimensional space En+1 (z, x1, …, xn). 
 Two infinitely-close elements that verify all of relations (1) are called united. 
 Any system of equations between the coordinates of an element that verifies 
equations (1) defines a multiplicity pM ; the support of pM  is defined by the equations 
of the system, which couple only the variables x1, …, xn , z to each other. 
 If q is the number of dimensions of the support of pM , which is chosen such that 
each point of the aforementioned support corresponds to only one contact element of 
order p then the multiplicity will be denoted by p

qM . 

 
 
 22. – Consider the second-order equation, which is linear in the derivatives of order 2: 
 

(2)    Φ ≡ Aik pik + ϕ = 0  
2

,i ik
i i k

z z
p p

x x x

 ∂ ∂= = ∂ ∂ ∂ 
, 

 
in which the Aik and ϕ are given functions of x1 , …, xn , z, p1, …, pn . 
 If one solves equation (2) for pnn , and if certain conditions of holomorphy are 
realized (upon which we shall not dwell) then there will exist one and only one integral of 
(2) that reduces to a given function ϕ (x1 , …, xn−1) when xn = 0

nx , while dz / dxn reduces 
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to another given function ψ (x1 , …, xn−1).  The determination of that integral, which is 
assured by the Cauchy-Kowalewsky theorem, comes about by means of a Taylor 
development, and the latter theorem asserts both its uniqueness and its convergence. 
 Geometrically, that problem amounts to finding an integral multiplicity Mn that 
contains the multiplicity 1

1nM −  that is defined by the equations: 

 
xn = 0

nx , z = ϕ (x1 , …, xn−1), pn = ψ (x1 , …, xn−1). 

 
 One can solve (1) for pnn and thus put the proposed equation into normal form.  One 
can demand to know if it is possible to give an 1

1nM −  by some less-specialized conditions.  

The role that is played by the plane xn = 0
nx  will be played by a surface Σ: 

 
xn = f (x1 , …, xn−1), 

or rather: 
F (x1 , …, xn) = 0. 

 
 One seeks to get back to the preceding case by a change of variables: 
 

(x1 , …, xn) ⇔ (y1 , …, yn), 
 
such that the surface Σ will have the equation: 
 

yn = const. 
 
ϕ and ψ will then become known functions of y1, …, yn−1 on Σ.  Now, in order for one to 
get back to the preceding case, it is necessary that one must be able to solve the equation 
that results from the transformation of (1) with respect to 2 2/ nz y∂ ∂ , which supposes that 

the coefficient of 2 2/ nz y∂ ∂  is not zero, and as a result that F has not been chosen too 

poorly.  We shall pass over that method; it was developed masterfully by Levi-Civita in 
his beautiful work [23], but we shall present the method of Beudon [1], to which the work 
of Hadamard [16, 17] gave great importance. 
 
 
 23. – We then seek the integral of (1) that contains an arbitrarily-given multiplicity 

1
1nM − .  Let: 

(3)     
i

z

x

∂
∂

= pi + n
n

i

x
p

x

∂
∂

 (i = 1, …, n – 1) 

 
be the equations that represent 1

1nM − , in which z, xn , and pn are the arbitrary functions of 

x1 , …, xn−1 . 
 In order to find the integral multiplicity that contains 1

1nM − , it is necessary that one 

must be able to determine all of the partial derivatives of z on the support Σ of 1
1nM − . 
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 They enter into the Taylor development of the solution.  We shall not concern 
ourselves with the case in which the solution is determined by the givens, but rather with 
the case in which it is indeterminate.  The conditions of determinacy characterize certain 
multiplicities 1

1nM −  whose importance for applications is considerable. 

 One calculates the second derivatives by means of the following formulas: 
 

(4)    
i

p

x
ρ∂

∂
= pρ i + n

n
i

x
p

xρ
∂
∂

  (ρ = 1, …, n; i = 1, …, n – 1), 

which gives: 

(5)     pρ n = n n
nn

p x
p

x xρ ρ

∂ ∂−
∂ ∂

, 

 

(6)     pρ i = n n n n
nn

i i i

p x x x x
p

x x x x x
ρ

ρ ρ

∂ ∂ ∂ ∂ ∂− +
∂ ∂ ∂ ∂ ∂

. 

 
One substitutes these expressions in (2), and one must then obtain pnn , by means of 
which all of the second derivatives are calculated.  One gets: 
 

1 1 1

1 1 1

2
n n n

n n n
i n nn

i i

x x x
A A A

x x xρ ρ
ρ ρρ ρ

− − −

= = =

 ∂ ∂ ∂− +  ∂ ∂ ∂ 
∑∑ ∑ pnn 

 

+ 
1 1 1

1 1 1

2
n n n

n n n n
i n

i i i

p x p p
A A

x x x xρ ρ
ρ ρρ ρ

− − −

= = =

 ∂ ∂ ∂ ∂− +  ∂ ∂ ∂ ∂ 
∑∑ ∑ + ϕ = 0. 

 
 It is impossible to solve the Cauchy problem if the coefficient of pnn is zero without 
the second line on the left-hand side also being zero.  In order for it to be indeterminate, it 
is necessary that the aforementioned coefficient and the second line in question must both 
be zero.  Hence, the first necessary conditions for indeterminacy are written: 
 

(7)    
1 1 1

1 1 1

2
n n n

n n n
i n nn

i i

x x x
A A A

x x xρ ρ
ρ ρρ ρ

− − −

= = =

∂ ∂ ∂− +
∂ ∂ ∂∑∑ ∑  = 0, 

 

(8)    
1 1 1

1 1 1

2
n n n

n n n n
i n

i i i

p x p p
A A

x x x xρ ρ
ρ ρρ ρ

− − −

= = =

 ∂ ∂ ∂ ∂− +  ∂ ∂ ∂ ∂ 
∑∑ ∑ + ϕ = 0. 

 
 The multiplicities 1

1nM −  that are defined by equations (3), (7), and (8), in which z, xn, 

and pn are functions of x1 , …, xn+1 are the characteristic multiplicities, or simply the 
characteristics of equation (2). 
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Characteristics and bicharacteristics. 
 

 24. – If the multiplicity 1
1nM −  that figures in the given of the Cauchy problem is a 

characteristic then the second-order elements in the Taylor development of the solution to 
the stated problem will be indeterminate.  One can give pnn arbitrarily on 1

1nM − , while the 

other pik are deduced from equations (5) and (6).  Upon supposing that one can continue 
to determine the third-order elements on the integral multiplicity and the elements of 
arbitrary order, and if the Taylor development converges, then one will say that the 
integral multiplicity contains the characteristic 1

1nM − . 

 However, that fact is hardly important for us.  For us, it will suffice to study the 
characteristics that are placed on a given integral multiplicity. 
 Now, the calculation that we made proves that we can find an infinitude of 
characteristics 1

1nM −  on an integral.  When z is known as a function of x1, …, xn−1, 

equation (7) will define xn as a function of x1, …, xn−1 .  We know that this is possible in 
an infinitude of ways.  An integral of (7) will always pass through a multiplicity that is 
defined by the functions: 
 xn−1 = 0

1nx − , 

 xn    = f (x1, …, xn−1), 
 
in which f is arbitrary.  However, if (2) is verified by z then equation (8) will be a 
consequence of equation (7), and our assertion will have been proved. 
 One can pursue the study of the indeterminacy of the Cauchy problem by passing to 
third-order elements; that is what Beudon did in the cited paper, and he easily defined 
multiplicities 2

1nM − , 3
1nM − , …, which were characteristics of order 2, 3, …, resp. 

 
 
 25. – We remark that the characteristic equations are generally determined only for 
given integrals z because the coefficients Aik depend upon z and the pi .  Meanwhile, it 
can happen that those characteristics are independent of any particular integral of (1) 
when the Aik depend upon only x1, …, xn .  That is what happens for the linear equations 
to which we shall devote the balance of our study. 
 Any linear second-order partial differential equation corresponds to a first-order 
equation (7) that obviously defines a wave propagation for which xn is the time of 
propagation.  The space in which the waves propagate is the space x1 , …, xn , and the 
wave surfaces are defined by the equations: 
 

xn = xn (x1 , …, xn−1), 
 
in which xn (x1 , …, xn−1) is an arbitrary solution of (7).  One replaces n with n – 1 in the 
theory of the first chapter, and t with xn .  The tangential equation of the derived waves is 
(7).  In order to put it into the homogeneous form p = 1, one sets: 
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n

i

x

x

∂
∂

= iP

π
 (i = 1, …, n – 1) 

in (7) and one solves it for π. 
 Hadamard (loc. cit) called the characteristics of the propagation the bicharacteristics 
of equation (1).  They are defined by the equations: 
 

(9)  
1

1

2

i

n

i in

dx

A P Aρ ρ
ρ

−

=

 
− 

 
∑

= i

i
i n

dP

H H
P

x x

 ∂ ∂− + ∂ ∂ 

= 
1

1

2

n

n

n nn

dx

A P Aρ ρ
ρ

−

=

 
− 

 
∑

 (i = 1, …, n – 1). 

 
 
 26. – It is useful to put equation (7) into a different form.  Instead of supposing that 
the wave equations are given in the form: 
 
  xn = xn (x1 , …, xn−1), 
 
one can imagine that they are given by the equation: 
 
  F (x1 , …, xn) = 0, 
and (7) will take the form: 

(7′)  
1 1

n n

ik
i k i k

F F
A

x x= =

∂ ∂
∂ ∂∑∑  = 0, 

 
moreover, and as a simple calculation will show, the bicharacteristics will be defined by 
the equations: 

(9′)    

1

i
n

ik k
k

dx

A π
=
∑

= 
1
2

1 1

j

n n
ik

i k
i k j

d

A

x

π

π π
= =

∂
∂∑∑

  (i, j = 1, …, n) 

if πi = ∂F / ∂xi . 
 We remark that past the point at which one confines oneself to considering only the 
characteristics on the integral of (2), equation (8) will play no further role, since it is 
satisfied whenever (7) or (7′) are. 
 
 

Systems of partial differential equations. 
 

 27. – As Hadamard has shown [16], the notion of characteristic can be extended to a 
system of second-order partial differential equations (7). 
 It will also be possible to attach a wave propagation to a system that defines k 
unknown functions z1, …, zk of n independent x1, …, xn , and that propagation will take 
place in the space x1, …, xn−1 , while time will once more be xn . 
 Indeed, let: 
                                                
 (7) Cf., also JANET [29].  
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(10)   ( ) ( ) ( )

1 1

n n
ml l m

ij ij
i j

A p ϕ
= =

+∑∑ = 0 (m = 1, …, k) 

 
be the proposed system; one has: 
 

( )l
ip = l

i

z

x

∂
∂

, ( )l
ikp = 

2
l

i k

z

x x

∂
∂ ∂

, 

 
and the coefficients ( )ml

ijA , as well as the ϕ(m), will be functions of the x, z, and the ( )l
ijp .  

One considers a multiplicity 1
1nM − : 

xn = xn (x1 , …, xn−1), 
 
and one proposes to solve the Cauchy problem for the given system.  One supposes that 
the first-order elements are given for each zl , and one seeks the second-order elements 

( )l
ijp .  As one will easily see, everything comes down to determining the ( )l

nnp  by means of 

the system: 

( ) ( )

1

k
ml l

nn
l

H p
=
∑ + K(m) = 0  (m = 1, …, k), 

in which: 

H(ml) = 
1

( ) ( ) ( )

1 1 1

2
n n n

ml ml mln n n
ij in nn

i k ii k i

x x x
A A A

x x x

−

= = =

∂ ∂ ∂− +
∂ ∂ ∂∑∑ ∑ , 

 
and in which K(m) are certain expressions whose explicit form is irrelevant; they contain 
only the ( )m

ijp . 

 If the determinant ∆ of the H(ml) is zero then the Cauchy problem will be impossible 
or indeterminate.  The necessary conditions for the indeterminacy are very complicated to 
write down; they involve the rank of the matrix of the H(ml) and they couple the K(m) with 
each other.  If one confines oneself to the study of manifolds that are defined by the 
equation: 
(11)      ∆ = 0 
 
and are found on the integral multiplicities of the system then the conditions in question 
will be verified identically. 
 The multiplicities of Mn−1 that are defined by (11) are once more called the 
characteristics of the system (10). 
 The equation ∆ = 0 is indeed defined in the space x1 , …, xn−1 of wave propagation, in 
which xn is the time, which is independent of the solutions zl considered if the 

( )lm
ijA depend upon only the x1 , …, xn .  We shall suppose that this is true unless stated to 

the contrary. 
 In that case, one can further define the bicharacteristics of system (10); they are the 
characteristics of the first-order partial differential equation. 
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Physical interpretation of second-order equations. 
Discontinuity of solutions. 

 
 28. – Under the conditions that we have adopted, one can say that being given an 
integral of (2) or (10) amounts to being given one or k functions z or z1, …, zk , resp., of 
x1, …, xn , whose variation one can follow on the consecutive wave surfaces while 
traversing each bicharacteristic.  Hence, a bicharacteristic, when considered to be a 
trajectory, serves to transport the contact elements of the wave surfaces and to transport 
the values of certain functions z1, …, zk , which can characterize the intensities of certain 
disturbances. (Which will be concomitants if k > 1, as in the Maxwell’s equations, in 
which the disturbances are the perturbations of the ether that are caused by electric and 
magnetic fields; viz., the fields themselves.) 
 The theory of the first chapter is, indeed, powerless to represent all of the 
circumstances that relate to propagation.  In particular, it gives no details about the 
intensity of the disturbance that propagates.  One must appeal to the second-order 
equations in order to compensate for that, and the theory that we have sketched out will 
show neatly the manner by which the kinematic theory of the first chapter enters into the 
theory that one can call “dynamic” of the second-order equations. 
 We remark that, when the functions zl are considered to be functions of xn along a 
bicharacteristic, they will have a non-zero value only when xn has attained the value that 
corresponds to the point considered on the bicharacteristic.  At that moment, the 
disturbance will reach the point, and the zl will take on appreciable values there, while 
they were zero beforehand. 
 More precisely, the n – 2-dimensional multiplicities that are the wave surfaces in the 
space x1, …, xn−1 are the discontinuity multiplicities (for n = 4, they will be discontinuity 
surfaces) of the n – 1-dimensional physical medium in which the disturbances propagate. 
 The study of the discontinuities, and above all, the study of the circumstances under 
which those discontinuities are compatible, has been made by numerous geometers of the 
first order, among which, one must include Riemann, Christoffel, Hugoniot, and 
Hadamard [16] (in which one finds the biography that relates to the first three cited 
authors). 
 They started with the equations of mathematical physics and showed that the 
characteristic equation of one or the other of them expresses the idea that the 
discontinuities are compatible on the characteristics, in effect. 
 We shall limit ourselves to those remarks.  The compatibility conditions are outside 
the scope of our study, so it will suffice to recall only that they also lead to the 
characteristics. (Cf., also the book by VAN MIEGHEM [33]). 
 
 
 29. – Meanwhile, there are some other discontinuities that one should examine more 
carefully, namely, the ones that affect the integrals zl in the regions where it becomes 
infinite.  More precisely, following Delassus [8], Le Roux [18], and Hadamard [16], we 
seek the circumstances under which a linear equation (8): 
 

                                                
 (8) The summation is not notated; it goes from 1 to n.  



Chapter III – Second-order partial differential equations. 35 

(12)    P (z) ≡ Aik pik + Ai pi + A z = 0 
 
can possess an integral of the form: 

z = Z F (π), 
 
in which Z and π are finite functions that are continuous and at least twice differentiable, 
but in which F, which is considered to be a function of π, is singular for π = 0, and that 
singularity is such that if π is infinitely small then F (π) will be infinitely large in 
comparison to F ′(π), and F″ (π) will be infinitely large in comparison to F ′(π); for 
example: 

π p/q,  
1

mπ
, log π, e1/π, … 

 
 Upon substituting this in the proposed equation, it will become: 
 

(13) (Aik πi πk) Z F″ (π) + 2 [ ( ) ]ij j
i

Z
A A P A

x
π π π

 ∂ + − ∂ 
F′ (π) + P (Z) F (π) = 0, 

 
when one sets ∂π / ∂xi = πi .  Now, under the present circumstances, if π = 0 then the 
coefficient of F (π) must be zero, so: 

Aik πi πk = 0. 
 
In other words, if a solution of indicated type exists then the multiplicity π = 0 will be a 
characteristic of the proposed equation.  The same thing will be true if one seeks z in the 
form: 
(14)     z = Z F (π) + ζ, 
 
in which ζ is regular.  Hadamard (loc. cit., [16], pp. 333) has shown that if π = 0 is a 
characteristic then one can effectively find all of the solutions of the form (14); we shall 
have no need for that result in the rest of our study. 
 
 

Periodic waves.  Geometrical optics approximation. 
 

 30. – Hadamard (loc. cit., [16], pp. 345) made a very important remark along the 
same lines.  It related to periodic waves, and it touched upon the fundamental problem of 
the approximation that is called geometrical optics, which one can make in the study of 
certain phenomena. 
 In physics, in a great number of cases, it is convenient to restrict oneself to periodic 
waves.  They are represented by functions z of the form: 
 

z = sin µπ (µ = const.), 
 
in which π is a function x1, …, xn that is linear with respect to xn as many times as 
necessary. 
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 It can also have the form: 
(15)     z = Z sin µπ + ζ , 
 
in which Z and ζ are regular functions of x1, …, xn , and one then imagines that the 
phenomenon that the variable z represents is due to the superposition of two disturbances, 
one of which is ζ, while the other one is Z sin µπ, which is periodic in xn if Z does not 
depend upon xn and π is linear in xn , or if Z does depend upon xn , but the modulation can 
sometimes be considered to be periodic over a short time interval. 
 When µ has a very large value, the function sin µπ will pass from the value + 1 to the 
value – 1 for small variations of π.  In practice, it behaves like a singular function whose 
derivative has the order of µ, whose second derivatives has the order of µ2, etc.  The 
physicist that utilizes such functions will often neglect the terms in µ in his calculations, 
in comparison to the terms in µ2, and as a result, z in comparison to ∂z / ∂xn , and ∂z / ∂xn 
in comparison to 2 2/ nz x∂ ∂ . 

 More precisely, and without making any initial hypothesis about the form of π in 
regard to xn , we seek a solution to (12) that has the form (15) in the case where µ is very 
large.  Upon substituting and reordering, one will find that: 
 

(16) − µ2 Z sin µπ ik
i k

A
x x

π π ∂ ∂
 ∂ ∂ 

+ µ cos µπ 
2

2 ik i ik
i k i i k

Z
A Z A Z A Z

x x x x x

π π ∂ ∂ ∂ ∂ Π+ + ∂ ∂ ∂ ∂ ∂ 
 

+ P (Z) sin µπ + P (ζ) = 0. 
 
Annulling the term in µ2 will give: 

(17)     Aik 
i kx x

π π∂ ∂
∂ ∂

= 0. 

Hence, the equation: 
π = const. 

will again represent a characteristic. 
 The surfaces of equal phase, as one calls them for a periodic propagation, or the 
multiplicities on which the argument of the periodic function has a given constant value 
for a modulation, will then be characteristic multiplicities when the parameter µ is very 
large, and one can then neglect µ in comparison to its square. 
 
 
 31. – Choose µ in that fashion.  Since the term in µ2 is zero, annul the term in µ.  
Now, on a characteristic, one can consider the bicharacteristics that are defined by the 
equations: 

2

i

ik
l

dx

A
x

π∂
∂

= du  (i = 1, …, n), 

 
and one can calculate Z on each bicharacteristic by the equation: 
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dZ

du
+ M Z = 0, 

in which: 

M = 
2

i ik
i i k

A A
x x x

π π∂ ∂+
∂ ∂ ∂

; 

 
this is a known function.  One will then find that: 
 

Z = 
0

0 exp
u

u
Z M du∫ , 

 
in which Z0 is an arbitrary function of the variable point that is located on a multiplicity 
Mn−2 in each characteristic Mn−1 (

9) that propagates from Mn−1 to Mn−1 : 
 

π = const.; 
 
i.e., if π is linear as a function of xn , which we shall suppose from now on, it will have 
the same equation: 

ψ (x1 , …, xn) = 0. 
 

Z will then be determined in all of the space x1 , …, xn . 
 One will finally determine ζ by the condition: 
 

P (ζ) = − P (Z) sin µπ , 
 
in which P (Z) is a known function of x1 , …, xn ; in a great number of cases, ζ is 
negligible (cf., Hadamard, loc. cit., pp. 346). 
  We remark that Z0 is the fixed value of Z on a bicharacteristic.  If one considers a 
pencil of bicharacteristics that issue from a set of points, for example, and they are 
chosen in such a way that they traverse a certain region of space x1 , …, xn then one can 
suppose that Z0 is null everywhere except on the set in question, which can correspond to 
u = u0 for each bicharacteristic; Z will be non-zero only on the pencil, moreover.  Now, 
the choice of the set of points considered can be made physically by means of a screen 
that is pierced with a hole (if n = 4), and one will see that the periodic phenomena will 
propagate only along the pencil as long as the approximation that consists of neglecting µ 
in comparison to µ2 is legitimate.  Such an approximation is the one that will be permitted 
in optics when one restricts oneself to the consideration of rays (viz., geometrical optics). 
 The preceding remarks, which are due to Hadamard, cast a bright light upon the 
physical prolegomena to wave mechanics.  One will see some applications of this in the 
book by L. de Broglie [4]; we shall not need to return to it. 
 

 

                                                
 (9) If n = 3, the Mn−2 must not be characteristics; for arbitrary n, they must not contain them. 
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 32. – One can effortlessly extend the theory of singularities and that of periodic 
waves to a system of partial differential equations.  The reader will indeed see the form in 
which that extension can be made.  That will not be necessary for us in what follows, 
because we do not propose to enter into the theory of systems (10) any further than we did 
in paragraph 27, since the scope of this small volume will not permit that.  Meanwhile, 
we would like to cite the work of Levi-Civita [22 and 23] and that of Racah [35], who 
have treated, on the one hand, the equations of Einsteinian gravitation, and on the other 
hand, those of Dirac that relate to the photon and the electron, from that standpoint. 
 
 

_____________ 
 

                                                
 (10) The general theory of characteristics of systems has recently given rise to some important research, 
and we cite those of Cartan [6], Thomas and Titt [38]. 



CHAPTER IV 
 

RETURN TO THE WAVE INTERPRETATION OF 
ANALYTICAL MECHANICS.  WORLD GEODESICS.  

PROBABILISTIC CONSIDERATIONS.   
DE BROGLIE WAVES. 

 
 

Second-order equations and mechanics. 
 

 33. – In the second chapter, we saw how Vessiot attached a wave propagation to any 
motion of a holonomic system with a force function by extending a beautiful idea of 
Hamilton.  Up until the work of Louis de Broglie, which has transformed mechanics, one 
could only produce those waves physically, such that their introduction into analytical 
dynamics might seem to be more of a refinement of its elegance than a true enrichment of 
that field, and furthermore, in the simplest case of a material point, the velocity of wave 
propagation is not the same as the velocity of the material point, so that elegance itself 
might seem illusory. 
 While pursuing the succession of articles by Vessiot in light of the ideas of Beudon, 
and above all, Hadamard, it is interesting to look for the second-order equations that one 
can propose in such a manner that the propagation of waves that corresponds to them, in 
the sense of the preceding chapter, is precisely the one that is attached to the motion that 
the problem of analytical dynamics considers to have been defined. 
 Meanwhile, it is obvious that if one necessarily passes from equation (2) in Chapter 
III to equation (7) or equation (7′) then one cannot necessarily pass from a first-order 
equation that defines the waves to a single second-order equation.  If the equation of 
propagation has degree two in the derivatives then one can pass to an equation of type 
(2), but all of the terms that one has grouped under the notation ϕ will be indeterminate.  
One will need some new principles in order to insure the uniqueness of the second-order 
equation that one proposes to find in order to realize the program that we just discussed in 
broad terms. 
 
 
 34. – Consider the system with n – 1 degrees of freedom that was defined in Chapter 
II, paragraph 14.  The equation of the derived waves is the Jacobi equation: 
 
(J)     un + H (x1, …, xn−1, xn ; u1, …, un) = 0, 
 
in which the “time” of the propagation is the action S, and one sets: 
 

uk = 
k

S

x

∂
∂

 (k = 1, …, n) 

in (J). 
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 The Jacobi equation can be identified with equation (7), which defines the 
characteristics of (2) only if one writes (2) and (7) with n + 1 independent variables in the 
form: 

(1)      
1 1

1 1

n n

ik ik
i k

G p
+ +

= =
∑∑ + ϕ = 0 

and 

(2)    , 1
1 1 1

2
n n n

i n
i i

S S S
G G

x x xρ ρ
ρ ρρ ρ

+
= = =

∂ ∂ ∂−
∂ ∂ ∂∑∑ ∑ + Gn+1, n+1 = 0, 

 
resp., upon setting S = xn + 1 . 
 Having said that, one should recall that H has degree precisely two in the ui (i = 1, …, 
n – 1).  One can write equation (J) in the form: 
 

1 1 1

1 1 1

2
n n n

ik i
i k in i k i

S S S S
B B

x x x x

− − −

= = =

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂∑∑ ∑ + B = 0, 

 
in which [cf., equations (2), § 14]: 
 

Bik = 1
2 Aik , Bi = − 

1

1

n

ik k
k

A b
−

=
∑  (i = 1, …, n – 1), 

 

B = 
1 1

1 1 2

n n

jk j k
j k

c
A b b U

− −

= =

− −∑∑ . 

 
Identifying this with equation (2) will give: 
 
 Gρ i = Bρ i   (ρ, i = 1, …, n – 1), 
 Gni = Gin = Gnn = 0 (i = 1, …, n – 1), 
 Gi, n+1 = − Bi ,  (i = 1, …, n – 1), 
 Gn, n+1 = − 1

2 , 

 Gn+1, n+1 = B. 
 
One can formulate the following theorem: 
 
 One can make any holonomic system with a force function that has n – 1 degrees of 
freedom and can be described by means of n – 1 parameters x1, …, xn−1 correspond to an 
n + 1-dimensional space En+1 (x1, …, xn−1, xn , S), in which xn is time and S is the 
Hamiltonian action.  The Jacobi equation of the system defines a wave propagation in the 
permanent regime in the space En (x1, …, xn).  The wave surfaces are the characteristics 
of certain second-order partial differential equations that are linear in the unknown 
function z and are determined perfectly.  The remaining terms constitute an arbitrary 
function of z, ∂z / ∂xi , ∂z / ∂S , of x1, …, xn−1, xn , S.  The Lagrange equations of the 
system are the bicharacteristics of that second-order equation, in the sense of Hadamard. 
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 In brief, the equation: 
 

(3)   
2 2 2 21 1 1

2
1 1 1

1

2

n n n

i ij
i i jn i i j

z z z z
B B B

S S x S x x x

− − −

= = =

∂ ∂ ∂ ∂− − +
∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑∑ + ϕ = 0, 

has characteristics: 
S = S (x1, …, xn−1, xn), 

 
which are defined by the Jacobi equation: 
 

n

S

x

∂
∂

+ H = 0, 

 
and the bicharacteristics, which are defined by the Lagrange equations or those of 
Hamilton. 
 In the particular case of a material point of mass m and Cartesian coordinates x, y, z 
that is subject to a force that is derived from a potential U, the second-order equation can 
be written: 

2 2 2 2 2

2 2 2 22U
x y z S t S

ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂+ + − −
∂ ∂ ∂ ∂ ∂ ∂

+ ϕ = 0, 

 
in which ψ denotes the unknown function and ϕ is an arbitrary function of: 
 

x, y, z, t, S, ψ, 
x

ψ∂
∂

, 
y

ψ∂
∂

, 
z

ψ∂
∂

, 
t

ψ∂
∂

, 
S

ψ∂
∂

. 

 
 
 35. – If the constraints on the holonomic system considered are independent of xn , 
and if U contains only the variables x1 , …, xn−1 then the problem will simplify.  One will 
then know that the surfaces S = const. or W = const. agree with the surfaces xn = const., in 
such a way that it will suffice to consider a space that contains at least one dimension.  
Indeed, one knows that the equation of propagation is: 
 

U

T
= 1, 

 
in which T is a quadratic form in the p1, …, pn−1 .  The preceding equation is written: 

 

(4)     
1 1

1 1

n n

ik
i k i k

W W
B

x x

− −

= =

∂ ∂
∂ ∂∑∑ − 2U = 0. 

Now, if one sets: 

2U = 2U 
2

W

W

∂ 
 ∂ 
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then one will see that (4) is the equation for the characteristics of Chapter III in the form 
(7′): 

W (x1 , …, xn−1) – W = 0 
for the second-order equation: 
 

(5)     
2 21 1

2
1 1

2
n n

ik
i k i k n

z z
B U

x x W

− −

= =

∂ ∂−
∂ ∂ ∂∑∑ + ϕ = 0, 

 
in which the Bik are the coefficients of the adjoint form T or T. 

 Now, neither U nor Bik depend upon xn , so one can suppose that ϕ no longer depends 
upon it either, and one can simplify the preceding equation by searching for solutions of 
the form: 

z = λ (W) ζ (x1 , …, xn−1). 
 
 Suppose that ϕ is linear in z, and to simplify even further, that: 
 

ϕ = ϕ (x1 , …, xn−1) z . 
One will then have: 

21 1

1 1

( )
2

( )

n n

ik
i k i k

W
B U

x x W

ζ λρ ζ
λ

− −

= =

′′∂ + −
∂ ∂∑∑ = 0, 

 
which is possible only if: 

( )

( )

W

W

λ
λ
′′

= const. 

 
 In these very simple cases, one sees solutions z appear that are exponential functions 
of W, so under certain circumstances, there will be ones that are periodic in W. 
 The variable xn plays no role in those considerations.  Meanwhile, one knows that: 
 

dW = 2 nUT dx , 

 
i.e., that W = const. if xn = const., which will permit one to eliminate W in order to have 
only xn to worry about.  We shall not belabor that because what follows will permit us to 
specify the role of action and that of time in the most interesting case of wave mechanics. 
 
 

Invariance conditions. 
 

 36. – Now consider the motion of a material point from the standpoint of general 
relativity.  The world-line is a certain geodesic of a ds2 : 
 
(6)      ds2 = gik dxi dxk . 
 
 One can attach (cf., § 19) a wave propagation to it whose equation is: 
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(7)     π (x | p) = ik
i kg p p  = 1; 

 
the regime is permanent, and the time of propagation is the variable s itself. 
 Consider a five-dimensional multiplicity M5 (x1, …, x4, x5) whose ds2 is: 
 

2
5ds − gik dxi dxk . 

 
 The null-length geodesics of that M5 project onto the universe x1, …, x4 along 
geodesics of (6).  Those null-length geodesics in M5 correspond to a wave propagation 
that is precisely the one that is attached to the world-line of the material point considered 
in the universe x1, …, x4 .  The regime is permanent, and the time of propagation is x5 – 
i.e., the proper time of the material point. 
 The tangential equation of the derived waves is equation (7) in the universe, but when 
one sets πi / π5 = − pi , it will become: 
 
(8)      gαβ πα πβ – π5 π5 = 0 
 
in M5 , which corresponds to some second-order partial differential equations, the 
simplest of which is:  

(9)      
2 2

2
5

z z
g

x x x
αβ

α β

∂ ∂−
∂ ∂ ∂

= 0. 

 
 
 37. – Meanwhile, it is convenient to add a few new conditions here.  In the 
calculations that we have developed, it is basically irrelevant whether the variables 
represent rectangular coordinates.  The theory of propagation is a theory of contact, and if 
the variables represent arbitrary curvilinear coordinates in the space of propagation then 
that would bring about no great alteration of the developments in the preceding chapters.  
Only the relations in Ω and π (Chap. I, § 11) will be transformed when one takes into 
account the metric that is defined by the ds2 in the space of propagation. 
 It is still preferable to do that, nonetheless; instead of considering the universe, 
consider M5 whose ds2 is: 

(10)     
5 5

1 1
ik i k

i k

dx dxγ
= =
∑∑ . 

 
 Equation (8), which relates to null-length geodesics in M5 , is written, with the well-
known notations of the absolute differential calculus: 
 

(11)     
5 5

1 1
ik i k

i k

dx dxγ
= =
∑∑ = 0 

 
relative to the form (10), but equation (9) must be transformed if one desires that its 
relationship to (11) should be invariant when one changes coordinates in M5 , since the 
function z is an invariant.  The simplest invariant form is obviously: 
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(12)    
5

1

1 ik

i i k

z

x x
γ γ

γ =

 ∂ ∂
 ∂ ∂ 

∑ = 0, 

 
in which γ is the determinant of the γik .  That equation, which is written in terms of the 
covariant derivative as: 

z r |r = 0, 
 

in which z r = g ri ∂z / ∂xi , is indeed invariant. 
 If the ds2 has the particular form: 

2
5dx  − gik dxi dxk 

then one will have: 

γ = g , γ ik = − gik (i, k = 1, 2, 3, 4) 

 
γ 5k = γ k5 = 0, γ 55 = 1, 

 
upon utilizing the fundamental form (6), and as a result (12) will be written: 
 

2

2
5

1 ik

i k

z z
g g

x x xg

 ∂ ∂ ∂− ∂ ∂ ∂ 
 = 0, 

or rather: 

(13)    
2 2

2
5

ik l
ik

i k l

z z z
g

x x x x

 ∂ ∂ ∂− Γ − ∂ ∂ ∂ ∂ 
= 0, 

because: 

( )1 ik

k

g g

xg

∂
∂

 = − rs i
rsg Γ , 

 
in which i

rsΓ  is the notation for the Christoffel symbol of the second kind for the ds2 of 

the universe – namely, (6).  Equation (13) will then be replaced with equation (9), for 
reasons of invariance that we have pointed out before (11). 
 
 

Electromagnetism and gravitation. 
 
 38. – It is possible to make some other suggestions, as well.  The multiplicity M5 that 
was introduced naturally into our calculations can be considered from a more advanced 
viewpoint. 
 Originally, x5 is a parameter that is constant when the action is constant.  More 
precisely, if one examines all the possible motions of a material point that passes through 

                                                
 (11) Cf., KLEIN [32]. 
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the same point at the same instant (12) then the various trajectories will define values for 
the action W.  The locus of points W = const. corresponds to the points in which x5 = 
const., while the parameter x5 is the proper time s on each world-line relative to each of 
the motions considered.  The idea of making x5 an independent variable with the same 
status as x1 , x2 , x3 , x4 will naturally upset the foundations of mechanics profoundly. 
 One can remark, first of all, that this upheaval can come about non-violently.  One 
considers a new ds2 for that universe that has the form: 
 

ds2 = 2
5dx  − gik dxi dxk , 

 
in which the gik do not depend upon x5 .  That is exactly what was done above. 
 Let us generalize this by one degree and introduce a form in which the coefficient of 

2
5dx  is no longer a constant, but a function of x1 , x2 , x3 , x4 , while the other ones gik (i, k = 

1, 2, 3, 4) no longer depend upon the x5 .  One writes (13): 
 

g55 = ψ 2 
and 
(14)    ds2 = − 2 2

5dxψ  − gik dxi dxk . 

 
 We propose to generalize Einstein’s theory, moreover, and to find the equations that 
define the gik and ψ 2.  The simplest idea, at least for regions of the universe that are 
devoid of matter, is to write: 
(15)    Rαβ = 0  (α, β = 1, 2, 3, 4, 5), 
 
in which the Rαβ are the components of the contracted Riemann tensor that relate to the 
ds2 that is defined by (14). 
 Now, for α, β = 1, 2, 3, 4, equations (15) are precisely those of Einstein for a ds2 that 
goes with a four-dimensional universe whose coefficients are gik (i, k = 1, 2, 3, 4), 
provided that one neglects the derivatives ∂ψ / ∂xi in comparison to the ∂gik / ∂xl ; i.e., 
provided that ψ 2 is “not too variable.” 
 The equations: 

Rα5 = 0  (α = 1, 2, 3, 4) 
 

are verified identically, and the equation: 
 

R55 = 0  
is written: 

(16)    
2 hi

hi h li
ihi h h i

g
g g

x x x x

ψ ψ ∂ ∂ ∂+ Γ + ∂ ∂ ∂ ∂ 
 = 0, 

                                                
 (12) It is necessary to specify the class of those motions, moreover, but we shall limit ourselves to a 
suggestion.  
 (13) Cf., [13 and 14]. 
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in which the k
liΓ  are the Christoffel symbols of the form gik dxi dxk , and the gik relate to 

that same form. 
 One can formulate the following theorem, moreover, which attaches a wave 
propagation to the motion of a material point by an invariant process that is different 
from the one that we saw in the preceding paragraphs: 
 
 If one considers an Einsteinian universe to be a section x5 = const. of a five-
dimensional universe (x1, x2, x3, x4, x5) whose ds2 has the form (14) then the equations of 
gravitation in vacuo will be the equations Rik = 0 (i, k = 1, 2, 3, 4) (if the derivatives 

2 / ixψ∂ ∂  are negligible in comparison to the derivatives ∂gik / ∂xl) that relate to that ds2, 

and the world-lines of a material point in such a field will be the bicharacteristics of the 
equation R44 = 0, which will determine ψ when the gik are known. 
 The equation R44 = 0 can play the role of the Schrödinger equation (14).  If one no 
longer neglects the ∂ψ 2 / ∂xi in comparison to the ∂gik / ∂xl then one can assume that the 
terms that were omitted in Rik = 0 (i, k = 1, 2, 3, 4) will translate into the influence of the 
wave field that the equation R55 = 0 defines on the gravitational field.  One can then say 
that the material point first perturbs the field that is defined by the gik (i, k = 1, 2, 3, 4) by 
way of the waves that are attached to it before creating it by its mass. 
 
 
 39. – In the spirit of discovery, one can immediate proceed to examine the equations 
that one will be led to when one considers a ds2 on the multiplicity M5 whose gi5 are no 
longer zero.  One will then recover the unitary theory of Kaluza [30], and the extension 
that Gonseth and Juvet gave to it [13 and 14].  If one sets: 
 

ds2 = gαβ dxα dxβ (α, β = 1, 2, 3, 4, 5) 
 

with g55 = ψ 2 or ψψ  then one will be led to first assume that the g5i (i = 1, 2, 3, 4) are 
very small, and one can write down equations that generalize the Einstein equations: 
 

(17)   Rαβ = ( )1
2k T g Tαβ αβ−   (α, β = 1, 2, 3, 4, 5), 

 
the first ten of which (α = 1, 2, 3, 4) are the ordinary equations of gravitation, while the 
following four (α = 5, β = 1, 2, 3, 4) are Maxwell’s equations that define the potentials ϕi 
as functions of the current, provided that one sets: 
 

g5i = τ ϕi , 
 

in which τ is a constant.  Finally, if α = β = 5 then one will recover a second-order 
equation for ψ.  That supposes that one neglects the derivatives with respect to x5 in 
comparison to the other derivatives.  Those conclusions imply that one must define the 

                                                
 (14) In that case, it will be preferable to replace ψ 2 with ψψ , in which ψ is a complex function and ψ  is 

is the conjugate quantity. 
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energy-matter tensor Tαβ in such a manner that it will generalize the one that Einstein 
introduced into his theory.  One will succeed in doing that when one sets: 
 

(18)     dx5 = 
σ
ρ

ds, 

 
which defines the fifth direction parameter in M5 of the world-line of a point in a 
continuous medium whose mass density is ρ and whose electric density σ. 
 The latter equation will be imposed, moreover, when one starts with the equations of 
motion of electricity, when they are written in terms of the Lorentz force, and one seeks 
to interpret them as the ones that define a parallel displacement in M5 in the sense Levi-
Civita.  The notion of force is thus banned from this conception of things.  L. de Broglie 
made an analogous remark [3]. 
 What one can keep from that unitary theory is the fact that it is possible to take the 
wave fields that are created by the motion of matter into account in the equations of 
gravitation.  From the instant at which these fields are no longer a simple formal artifice, 
but one can assign a true physical significance to them, their influence on the 
gravitational fields can no longer be negligible, and the preceding remarks show how one 
can take that into account. 
 When equation (18) is applied to an electron, it will suggest that the ratio of the 
charge to mass can vary.  Physically, there is a great difficulty associated with that, but 
that difficulty will disappear when one remains within the scope of a theory of continuous 
media that is properly the scope of a theory of fields. 
 Finally, if one establishes an invariant theory that is based upon the ds2 of M5 , while 
one considers the derivatives with respect to x5 to have the same status as the derivatives 
with respect to the other variables, the simplicity of the relationship between equation 
(17), for which α = β = 5, and the geodesics of ds2, which must then define the world-
lines of the motion of a point that is endowed with charge, will then disappear.  Those 
geodesics will no longer be the bicharacteristics of the equation with indices 55.  
However, in that case, the electromagnetic field will predominate, and the geometrical 
optics approximation will probably be no longer admissible. 
 
 

Periodicity of waves in mechanics. 
 

 40. – Despite the very formal attempts at a unification of the field theories (15), one 
can try to adopt another viewpoint that conforms better to the history of wave mechanics, 
and is a better way of comprehending its present state.  One knows that the essential idea 
of L. de Broglie resides in the very bold postulate of attaching a frequency, or if one 
prefers, a periodicity to any particle in motion. 
 Moreover, one should examine the consequences that one can infer from the 
hypothesis that makes the Hamilton-Vessiot waves themselves periodic.  First of all, just 
as in geometrical optics, where the ray is the main notion that the theory hangs upon, it 
will then become clear that that notion will be insufficient for phenomena at the small 

                                                
 (15) One will see similar attempts presented in a fascicle in this collection that is due to de Donder [10]. 
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scale, and that a periodic wave will become necessary, similarly, one can think that the 
trajectory or world-line of a material point are notions that are insufficient for the 
phenomena that unfold at the atomic scale, and that the notion of wave will serve to put 
things in order in quantum physics when it is suitably introduced into dynamics. 
 The problem will preserve a very formal aspect for us.  In this little book, it will not 
be possible to color in the very minimal sketch that the preceding considerations 
permitted us to make with any physical touches.  One must simply say that the 
wavelengths that are attached to the motions that are studied in classical mechanics must 
be extremely small: The “physical” effects of those waves must be weak enough that one 
can immediately understand why the mechanician was unable to observe them, any more 
than the astronomer. 
 Our goal is then to introduce the notion of periodic wave as a prolegomena to a type 
of mechanics that will admit analytical mechanics as a first approximation, just as 
physical optics admits geometrical optics as a first approximation. 
 
 
 41. – Naturally, just as it is by way of d’Alembert’s equation that one can complete 
optics when one passes (thanks to Kirchhoff) from the “geometric” level to the 
“physical” level, which is more advanced, it is by way of a second-order equation that 
one succeeds in completing analytical mechanics. 
 In order to specify all of the circumstances under which such a second-order equation 
has been employed to good use, the best way is to adopt the viewpoint of special 
relativity.  The Jacobi equation, under the hypothesis of a field that is derived from a 
potential, was recalled in paragraph 18.  Equation (13) of that paragraph must be the 
characteristic equation of a second-order equation.  The simplest equation of propagation 
that one can propose is obviously (16): 
 

(19)  
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z
A A m c

c x
ε  ∂ − −   ∂  
∑ = 0. 

 
 The variable x5 is due to the fact that the time of propagation is the variable S with the 
interpretation that was pointed out in paragraph 18.  We then call it x5 and remember that 
the equations of the wave surfaces have the form: 
 

S = f (x1, x2, x3, x4), 
 
since the regime is permanent, or rather: 
 

x5 + ϕ (x1, x2, x3, x4) = const., 
 

                                                
 (16) Compare this with de Donder [10] and Géhéniau [11 and 12].  
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 Now, let us introduce the idea of periodic waves into the debate and seek the 
solutions to (19) that are functions z that contain a sine as a factor, such that function that 
the sine applies to must be constant on the wave surfaces, which amounts to setting: 
 

z = a sin µ [x5 + ϕ (x1, x2, x3, x4)], 
 
in which a is a function of x1, x2, x3, and x4 .  Indeed, it is natural to assume that it does 
not depend upon x5 due to the permanence of the regime of propagation.  The factor µ in 
the phase is a constant. 
 It is, moreover, preferable, to write: 
 

z = 4i xeµ  ψ (x1, x2, x3, x4), 
 
and one will effortlessly see that ψ verifies the following equation, from which one can 
derive all of the equations that are called Schrödinger equations: 
 

(20)  
2 23 3

4
2 2 2 2

1 14 4

1
2 i

i ii i

A
i A

x c x x c x

ψ ψ ψ ψε µ
= =

 ∂ ∂ ∂ ∂− − − ∂ ∂ ∂ ∂ 
∑ ∑  

  + µ2 
3

2 2 2 2 2
4 02

1

1
i

i

A A m c
c

ε
=
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∑ ψ = 0, 

 
which no longer contains x5. (Cf., Gordon [15], who was the first to give a relativistic 
Schrödinger equation.) 
 One must then further seek the solutions ψ of the form: 
 
(21)    ψ = a (x1 , x2 , x3 , x4) 1 2 3 4( , , , )i x x x xeµϕ , 
 
but in order to not introduce wave lengths that are too large, we suppose that µ is a very 
large number.  Upon recalling the calculations of a paragraph 30 and changing the sine 
into an exponential, one will find that if one can neglect µ in comparison to µ2 and the 
terms that are independent of µ in comparison to the terms in µ (17) then ϕ must verify the 
equation: 

(22)   
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c x x

ϕ ϕε ε
=

  ∂ ∂− − −  ∂ ∂   
∑ = 2 4

0m c , 

 
which is found to be the Jacobi equation (13) of paragraph 18 (18).  The surfaces of equal 
phase will be the characteristics of equation (20) for the propagation of periodic waves 
whose frequency in x5 = S (namely, µ / 2π) is very large.  To the same approximation, the 

                                                
 (17) One can remark that certain coefficients have the same order as µ in the present problem. 
 (18) One should mention that Debye has made a very interesting remark regarding the relationship 
between the equation of propagation and that of geometrical optics.  He already pointed out that the latter 
resulted from the former by passing to the limit when the wavelength of light considered tends to zero.  
That remark was mentioned by Sommerfeld and Runge [37]. 
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bicharacteristics of (22) are the world-lines of a point of mass m0 and charge ε that 
displaces in the field of the potential A.  One will then indeed see that if one assumes that 
the second-order equation (20) rules the dynamics of a material point in a type of 
mechanics where waves plays an essential role then the notion of a ray – i.e., of a 
trajectory – will preserve a useful meaning in the first approximation. 
 
 

Probabilistic interpretation.  
 

 42. – It is natural to look for the meaning of the equations that one will obtain upon 
annulling the term in µ and the term that is independent of µ by substituting (21) in (20). 
 L. de Broglie gave a very elegant interpretation for the case in which one confines 
oneself to the Newtonian approximation to dynamics [4, pp. 85].  It is possible to extend 
it to the case of special relativity.  The equation that is provided by the term in µ, which 
is, moreover, also the one that one obtains upon annulling the term in i after substituting 
(21) in (20), is: 
 

(23)  
2 23 3 3

2 2 2 2 2
1 1 14 4 4 4

1 1 1

2 i
i i ii i i i

a a a a a
A

x x c x x x c x x c x

ϕ ϕ ϕ ϕ ε
= = =

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∑ ∑ ∑ = 0, 

 
which will be written: 
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after multiplying by 2a, because from the Lorentz relation between the potentials, one 
will have (19): 

3
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1i

i i

A A

x c x=

∂ ∂−
∂ ∂∑ = 0. 

 
Consider the quadrivector W whose covariant components are: 
 

(25)    Wi = 
ix

ϕ∂
∂

 − ε Ai (i = 1, 2, 3, 4). 

Equation (24) can be written: 
24
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(26)     Div a2 W = 0, 
                                                

 (19) That relation is written 
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∂
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∂
 upon utilizing the usual notations of tensorial calculus.  Now, Ai = −Ai 

(i = 1, 2, 3) and A4 = c2 A4, because the fundamental form is ds2 = 2 2 2 2 2

4 1 2 3
c dx dx dx dx− −− . 
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in which Div is the symbol of the world-divergence, because: 
 

W i = − Wi (i = 1, 2, 3) 
and 

W 4 = 
2

1

c
 W4 . 

 
 One then has a fictitious fluid whose definition one must find and whose quadri-
dimensional quantity of motion is the vector a2 W.  Equation (26) is the equation of 
continuity of that fluid. 
 
 
 43. – Let us define some classes of motions that relate to an arbitrary Jacobi equation.  
Let: 

S (q1, …, qn ; a1 , …, an) 
 
be a complete integral of a Jacobi equation.  We know that we require n arbitrary 
constants in order to define the general equation of the equations of motion.  We say that 
all of the motions for which a1 , …, an are fixed belong to the same class.  We will then 
consider some identical corpuscles whose motions all have the same class.  There are ∞n 
of them (corresponding to the values of the n constants that do not enter into the complete 
integral).  Those material points form a fluid that fills up a region of the space of qi .  It is 
the velocity (which comes from the quantity of motion) of the points of that fluid that we 
shall occupy ourselves with in the particular case of the preceding problem.  We remark 
that the fictitious fluid is composed of material particles that exert no effect upon each 
other. 
 If one is given the constants ai in the complete integral then that will define the values 
of the pi at each point in the space of the qi that relate to the particle that one finds there 
(20).  Now, the pi are the components of a field in the fluid that serves to characterize the 
quantity of motion.  One can then say that one will know the velocity field of a certain 
fluid when one is given a class of motions.  Furthermore, if one knows the class to which 
the motion of a material point belongs then one will know nothing about its position.  
One will know only that it is a particle in a certain fluid that is defined by the Euler 
variables. 
 Now, suppose that the density of that fluid is very large in a small region and very 
weak elsewhere.  Since we do not know anything about the position of the material point 
in question, can we say that there is any chance that we can find it precisely in the regions 
where the density of the fluid is great? 
 It is then natural to consider the density of the fictitious fluid, which is, in some way, 
the collective effect of the motions of an entire class, to be a relative probability, a 
probability density, or even as a measure of the probability of presence of our particle at 
a point at an instant. 

                                                
 (20) In the case of a stationary regime, one of the qi is ordinary time; the time of propagation has been 
eliminated.  Upon decomposing En into “space” and time, one will determine the state of a quantity at a 
point of “space” at an instant by way of the pi . 
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 One will then see that it is upon posing a very natural question that one will be led to 
introduce the calculus of probabilities into analytical mechanics, or rather the wave 
conception of analytical mechanics. 
 A more systematic study of what one calls the Eulerian method for the study of force 
fields was recently carried out by J. Ullmo [42]. 
 
 
 44. – Recall the calculations of paragraph 42 and seek to interpret the quadrivector 
W.  In order to do that, one must refer to paragraph 18.  One sees that: 
 

(27)     W = 
c

V
, 

 
and as a result, the continuity equation (26) will be written: 
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dx
a m

x ds=
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Now, the world-vector whose contravariant components are m0 dx / ds is the generalized 
quantity of motion of the point that we consider.  The fictitious fluid that we consider to 
have a density that is equal to a2 m0 , and for which we can say that a2 = ψψ  is a measure 
of the probability that the material point of mass m0 will be found at the point (x1, x2, x3) 
when the only thing that we know about it is that its motion has a class that is determined 
by the choice of constants that enter into the complete integral ϕ of the Jacobi equation 
(22). 
 We remark that function a is determined by the equation: 
 

(28)     
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a a

x c x=

∂ ∂−
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that one obtains upon writing that the term in (20), in which one has made the 
substitution (21), that is independent of µ is zero. 
 Since a is determined up to a constant factor, it is natural to normalize it in such a 
manner that the total probability of finding the point considered at some location at an 
instant x4 will be precisely unity.  Upon integrating over all space, one needs only to 
write: 

dψψ τ∫∫∫ = 1. 

 
 However, that equation is not invariant with respect to Lorentz transformations.  One 
can also write: 

1 2 2 3

U

dx dx dx dxψψ∫∫∫ ∫  = 1, 
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in which the domain of integration is the entire universe, but that integral will diverge, in 
general. 
 That is a very grave difficulty, along with some others, as well, and it has led to a new 
theory of wave mechanics that is due to Dirac, and in which the second-order equation 
(20) is replaced by a system of first-order equations that will lead to (20) when it is 
iterated.  As Racah [35] has shown, there is a relation between the new system and the 
Jacobi equation that defines the characteristics of the system precisely.  It would be 
impossible to present Dirac’s theory within the scope of this monograph.  One knows its 
importance and its fecundity.  L. de Broglie has shown that Dirac’s theory leads, in turn, 
to some difficulties that come about from the asymmetric role that must be played by 
space and time, despite the origins of the theory [5]. 

 
 
 45. – One must remark that if one abandons the approximation of geometrical optics 
then it will no longer be possible to determine a and ϕ from the two equations in one 
unknown (22) and (28).  Meanwhile, equation (23) will persist because it is produced by 
the annihilation of the term in i, as well as that of the term in µ, in the substitution of (21) 
in (20) (21). 
 That can always be interpreted by appealing to (26), but W would then have a 
different meaning, since one can no longer express it in terms of a solution to the Jacobi 
equation.  The relationship between a and ϕ that one obtains upon annulling the real term 
after substituting (21) into (20) is written: 
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 In the treatises, W is given a form that is different from the one that we gave it above 
(27).  One starts from equation (20) and changes i into – i and ψ into ψ , while the Ak, ϕ, 

and a remain unchanged.  One will obtain an equation (20′), but there is no point in 
writing it out.  One multiplies the two sides of (20) by ψ , those of (20′) by ψ, and 
subtracts the corresponding sides of the equations that are obtained.  After taking the 
Lorentz relation into account, one will find effortlessly [5, pp. 93] that: 
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The covariant components of C are: 
 

 Ck = 2µε i Ak 
k kx x

ψ ψψψ ψ ψ
 ∂ ∂− − ∂ ∂ 

  (k = 1, 2, 3), 

 

                                                
 (21) Of course, that is after simplifying it by eiµϕ. 
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 C4 = 2µε i A4 
4 4x x

ψ ψψψ ψ ψ
 ∂ ∂− − ∂ ∂ 

. 

 
One will recover (26) upon replacing ψ with a eiϕ and ψ  with a e−iϕ in (29). 
 The vector C is sometimes called the (world) probability current. 
 
 
 46. – The reader will effortlessly see how the equations of the preceding paragraphs 
simplify when one limits oneself to the Newtonian approximation (22).  In particular, the 
equation of continuity will become: 
 

2a

t

∂
∂

+ div a2 v = 0, 

 
in which a2 = ψψ  and v is the ordinary velocity of the point in the fictitious fluid.  One 
normalizes a here with no difficulties in regard to invariance by way of: 
 

2

E
a dx dy dz∫∫∫ = 1, 

 
in which the domain of integration is all of space.  We do not wish to go further into 
wave mechanics, but we can remark that the second-order equation by means of which 
one determines ψ = a eiµϕ is the Schrödinger equation.  ψ must be a solution that is finite 
and uniform in all of space, and is such that: 
 

dvψψ∫∫∫ = 1. 

 
Those conditions will determine the fundamental functions of the Schrödinger equation 
after one has determined the values of the dynamical parameters that enter into it in order 
for the equation to have solutions of the indicated type [36]. 
 
 

Plane wave and Planck constant.  De Broglie’s principle. 
 

 47. – It remains for us to say a few words about the number µ, which is assumed to be 
very large, and which we introduce in order to pass from the second-order equation to the 
Jacobi equation – i.e., in order to easily obtain the “geometric” approximation to wave 
mechanics. 
 Since the entire evolution of quantum physics has shown that when one can neglect 
Planck’s constant h in this or that relation that expresses a quantum law, one will recover 
a law of classical mechanics, one might think that µ must be a function of h, when it is 
considered to be a parameter, that will become infinite when h tends to zero. 

                                                
 (22) In that case, one would start with equation (12) of paragraph 18 and make the usual simplifications 
when one passes from special relativity to Newtonian mechanics. 
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 In order to make these remarks more precise, we shall address the case of a material 
point of mass m0 that displaces in the universe under the hypothesis that the potential A 
that is zero. 
 The equation of propagation is then: 
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∂ ∂∑  = 0. 

The simplest solutions are: 
(31) ψ = 1 1 2 2 3 3 4 4( )i a x a x a x a xa eµ + + + , 
 
in which a and the ai are constants.  The wave that is represented by that function will be 
a plane wave (23).  On the other hand, one knows that the rays of propagation are lines in 
the geometric approximation.  In the absence of a field, the trajectories of the material 
point are indeed rectilinear, and they will be traversed by a uniform motion.  The world-
lines are then rectilinear.  If one substitutes (31) into (30) then one will find: 
 

(32)    
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However, the numbers a1 , a2 , a3 , a4 are covariant parameters of the normal to the plane 
wave, so they will be proportional to the covariant parameters of the generalized quantity 
of motion.  If k is an undetermined factor then one will have: 
 

ai = − k m0 idx

ds
, a4 = k m0 c

2 4dx

ds
. 

  
Upon substituting this in (32), one will find that k2 = 1. 
 On the other hand, if the frequency of the wave considered relative to time x4 is v then 
one must have (24): 

4x

ψ∂
∂

= 2π i v ψ. 

Now, one has: 

                                                
 (23) If m0 = 0 then one will have the equation of optics.   In regard to that equation, one should cite the 
very penetrating study of Le Roux [19], whose considerations belong to the ones that we made here. 
 (24) Here, there might be some uncertainty as to which path one should follow.  We remarked above that 
ψ would have to be periodic in x5 if one would like to utilize the theory of Delassus and Hadamard.  When 
one treats the simple problems, the function ϕ will be linear in x4 , so the periodicity relative to x5 will 
imply the periodicity relative to x4 .  It would be interesting to take periodicity in x5 in the most general 
case, and to not append the hypothesis of periodicity in x4 .  In the ultimate development of quantum 
mechanics, that would amount to not making energy play a privileged role, and perhaps we would, in 
addition, arrive at a theory in which space and time do not play very different roles, which is much-desired 
today.  There is even some chance that the significance of the constant h might be clarified by the essential 
role that is played by x4 ; i.e., by the action. 
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4x

ψ∂
∂

= i µ a4 ψ = i µ m0 c
2 4dx

ds
ψ = i µ 

2
0

21

m c

β−
ψ, 

 
in which β = c / v, where v is the velocity of the particle (in space).  One can then set: 
 

(33)     2π ν = µ 
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m c
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. 

 

The quantity 
2

0

21

m c

β−
represents the energy E of the material point.  In a very large 

number of phenomena – in particular, the ones that are concerned with radiation – one 
will be led to attach a frequency to the elements of the energy that seem to be emitted or 
absorbed by discontinuous matter.  As one knows [2], L. de Broglie thinks that one 
should extend the quantum relation that Planck, Einstein, and Bohr have made such 
fruitful use of.  He proposed to make any phenomenon in which the quantity of energy E 
is brought into play correspond to a frequency v by the condition (25): 
 
(34)     E = hv. 
 
Moreover, if one assumes precisely that the wave of analytical mechanics has the 
frequency that is indicated by de Broglie’s principle then the relation (33) can be written: 
 

2π v = µ E = µ h v, 
and that will show that: 

µ = 
2

h

π
. 

 
 

Group velocity. 
 

 48. – Meanwhile, a very grave difficulty presents itself from the outset that L. de 
Broglie brought to light brilliantly.  We have pointed it out for some time already, 
moreover.  It presents itself at the instant when one introduces the motion of waves into 
analytical mechanics (cf., Chap. VI, § 33).  The velocity of propagation of a wave that is 
attached to the motion of a material point is not equal to the velocity of the material 
point. 
 One can account for this immediately with the example that we just treated by 
calculating the velocity of the plane wave.  The simplest way is to remark that for that 
plane wave: 

                                                
 (25) Here, one should cite a paper by Persico [34].  That author has shown that if one assumes that the 
energy is a function of the frequency then a theory of propagation that is entirely similar to the one that we 
have developed above will finally lead to the relation E = hv. 
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2

2
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= − 4π 2 v2 ψ. 

 
Furthermore, equation (30) can be written: 
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if one sets m0 c

2 = hv0 , in which v0 is the frequency that is attached to the material point 
for an observer that is at rest with respect to it.  Indeed, in that case, the mass m0 is 
equivalent to the energy E0 = m0 c

2 (26). 
 Moreover, from (35), the velocity of the wave is: 
 

V = 
c

n
; 

 
i.e., it is greater than c because n < 1.  On the other hand, one has: 
 

1 − 
2
0
2

ν
ν

= 1 − 
2
0
2

E

E
 = 1 − 

2 4
0

2 4 2
0 /(1 )

m c

m c β−
 = β 2 = 

2

2

v

c
; 

hence: 

V = 
2c

v
. 

 
 The product of the velocity of the material point with the velocity of the plane wave 
that is associated with it is equal to the square of the speed of light. 
 
 In optics, it has already been known for some time that the phase velocity in a 
dispersive medium is not equal to the velocity of energy transport.  Since Lord Rayleigh, 
it has been recognized that if n – viz., the index of refraction of the medium in which the 
waves propagate – is a function of the frequency then the velocity U, which is called the 
group velocity, and is the velocity at which energy propagates, will be given by the 
formula: 

1

U
= 

1 ( )d nv

c dv
. 

                                                
 (26) As L. de Broglie showed, the relation W = hv for energy is naturally implied by covariance from the 
other ones for the components of the quantity of motion.  Moreover, we shall confine ourselves here to the 
very simple case of a plane wave.  The generalization to the case in which the force field is arbitrary was 
also pursued successfully by the founder of wave mechanics.  Levi-Civita introduced the notion of a wave 
in the local sense in the case of an Einsteinian field [24]. 
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 Now, in our problem we see that: 
 

U = v. 
 

 In the simplest case that we have addressed, the velocity of the material point is equal 
to the group velocity of the plane waves that are attached to the motion of the point. 
 This very general principle, which is placed at the roots of wave mechanics, along 
with the principle of the frequency, was studied exhaustively by L. de Broglie in his 
Introduction à l’étude de la Mécanique ondulatoire; we refer the reader to it.  For us, it 
will have to suffice that we have shown the beginning of the road that leads to wave 
mechanics when one starts from analytical mechanics.  That new path, which was 
presented by Hamilton and prepared by Vessiot and Hadamard, and along which L. de 
Broglie and Schrödinger have made bold advances, has penetrated into the heart of a new 
province of natural philosophy.  One can explore it more completely by other paths, but it 
seems to us that none of them are more attractive than the one that we have described in 
the course of this attempt. 
 

__________ 
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