The Frenet formulas for a Weyl space

By

Note by Juvet, presented by Hadamard

Translated by D. H. Delphenich

Blaschke recently gave $\left({ }^{1}\right)$ the Frenet formulas for a curve that is traced in a space $\left(R_{n}\right)$ with a Riemannian metric in which one defines parallel displacement as Levi-Cività did (${ }^{2}$). Upon employing the same calculation procedures that Blaschke did, we have obtained the Frenet formulas for a curve that is traced in a space $\left(W_{n}\right)$ with a Weyl metric.

An n-dimensional Weyl $\left(^{3}\right)$ space $\left(W_{n}\right)$ is an n-dimensional multiplicity in which the metric is defined by two forms (one quadratic and one linear):

$$
d s^{2}=\sum_{i, k=1}^{n} g_{i k} d x_{i} d x_{k}, \quad d \varphi=\sum_{i=1}^{n} \varphi_{i} d x_{i}
$$

$d \varphi$ is an invariant for any continuous transformation (T) of the form:

$$
x_{i}=\psi_{i}\left(y_{1}, \ldots, y_{n}\right) \quad(i=1,2, \ldots, n)
$$

Moreover, if one makes a change of calibration - i.e., if one takes a unit of length that is $\sqrt{\lambda}$ times smaller $\left(\lambda=\right.$ continuous function of $\left.x_{1}, \ldots, x_{n}\right)$ - then the two forms will become:

$$
d s^{\prime 2}=\sum_{i, k=1}^{n} \lambda g_{i k} d x_{i} d x_{k}, \quad \quad d \varphi^{\prime}=d \varphi-\frac{d \lambda}{\lambda} .
$$

The laws of geometry must be satisfied under the following two conditions:

1. They are expressed by formulas that are invariant under any transformation (T).
(1) Math. Zeit. 6 (1919).
$\left({ }^{2}\right)$ Rendiconti del Circolo mat. di Palermo 42 (1917).
$\left(^{3}\right)$ See WEYL, Raum, Zeit, Materie, $4^{\text {th }}$ edition, § 16.
2. Those formulas remain invariant if one changes $g_{i k}$ into $\lambda g_{i k}$ and φ_{i} into $\varphi_{i}-\frac{1}{\lambda} \frac{\partial \lambda}{\partial x_{i}}$.

Weyl define parallel displacement in relation to this new concept. Let a vector with components $\left(\xi^{1}, \ldots, \xi^{n}\right)$ be attached to the point $P\left(x_{1}, \ldots, x_{n}\right)$. We say that its measure is:

$$
m=\sum_{i, k=1}^{n} g_{i k} \xi^{i} \xi^{k}
$$

Upon displacing P to $P^{\prime}\left(x_{i}+d x_{i}\right)$ by congruence, its components will become $\xi^{i}+d \xi^{i}$, with:

$$
d \xi^{i}=-\frac{1}{2} \sum_{k, r, t=1}^{n} g^{i k}\left[\frac{\partial g_{i k}}{\partial x_{r}}+\frac{\partial g_{k r}}{\partial x_{t}}-\frac{\partial g_{r t}}{\partial x_{k}}+g_{r k} \varphi_{t}+g_{t k} \varphi_{r}-g_{r t} \varphi_{k}\right] \xi^{r} d x_{t} .
$$

Let C be a curve whose parametric equations are $x_{i}=x_{i}(s)$. Imagine that we have fixed a vector Ξ at each point $P(s)$ whose components $\left(\xi^{i}\right)$ are continuous functions of s according to a continuous law. Let $P(s)$ and $P^{\prime}(s+d s)$ be two neighboring points, so they will then correspond to the two vectors Ξ and Ξ^{\prime}. Displace Ξ from P to P^{\prime} by congruence, so one will get a vector Ξ^{*} at P that is generally different from Ξ^{\prime}. The difference $\Xi^{\prime}-\Xi^{*}$ is an infinitely small vector that is attached to the arc $P P^{\prime}$. Form:

$$
\theta(\Xi)=\frac{\Xi^{\prime}-\Xi^{*}}{d s}
$$

We will then get a new vector $\theta(\Xi)$ that is attached to the point $P(s)$ of the curve C and depends upon the field Ξ in an invariant manner $\left({ }^{1}\right)$. Then let $\Xi=\Xi_{1}$ with the components $\xi_{(1)}^{i}=d x_{i} / d s$. Then set:

$$
\begin{aligned}
& \theta\left(\Xi_{1}\right)=\Xi_{2} \quad \text { with components } \xi_{(2)}^{i}, \\
& \theta\left(\Xi_{2}\right)=\Xi_{3} \quad " \quad \xi_{(3)}^{i}, \\
& \theta\left(\Xi_{n-1}\right)=\Xi_{n} \text { with components } \xi_{(n)}^{i} \text {. }
\end{aligned}
$$

The n-hedron $\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}$ is not orthogonal, in general. Orthogonalize it using Schmidt's method $\left({ }^{2}\right)$ by defining an n-hedron that is composed of the n vectors:

[^0]\[

H_{p}=\left|$$
\begin{array}{ccccc}
(1,1) & (1,2) & \cdots & (1, p-1) & \Xi_{1} \\
(2,1) & \cdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(p, 1) & \cdots & \cdots & (p, p-1) & \Xi_{p}
\end{array}
$$\right| \quad(p=1,2, ···, n),
\]

in which one sets:

$$
(\alpha, \beta)=\sum_{i, k=1}^{n} g_{i k} \xi_{(\alpha)}^{i} \xi_{(\beta)}^{k}, \quad D_{p}=\left|\begin{array}{ccc}
(1,1) & \cdots & (1, p) \\
\vdots & \ddots & \vdots \\
(p, 1) & \cdots & (p, p)
\end{array}\right|, \quad D_{0}=1
$$

The n-hedron $(N), H_{1}, \ldots, H_{n}$ is orthogonal and normalized; i.e.:

$$
\sum_{i, k=1}^{n} g_{i k} \eta_{(\alpha)}^{i} \eta_{(\beta)}^{k}=\delta_{p q}=\left\{\begin{array}{lll}
1 & \text { is } & p=q \\
0 & \text { is } & p \neq q
\end{array}\right.
$$

The Frenet formulas for the curve C are the formulas that give the values of s :

$$
\theta\left(H_{p}\right)=\frac{W_{p}^{\prime}-W_{p}}{d s}
$$

One finds, by some simple calculations, that:
(F)

$$
\begin{aligned}
& \theta \eta_{(1)}^{i}=\frac{1}{2} \frac{d \varphi}{d s} \eta_{(1)}^{i}+\frac{1}{\rho_{1}} \eta_{(2)}^{i}, \\
& \theta \eta_{(2)}^{i}=-\frac{1}{\rho_{1}} \eta_{(1)}^{i}+\frac{1}{2} \frac{d \varphi}{d s} \eta_{(2)}^{i}+\frac{1}{\rho_{2}} \eta_{(3)}^{i}, \\
& \theta \eta_{(p)}^{i}=-\frac{1}{\rho_{p-1}} \eta_{(p-1)}^{i}+\frac{1}{2} \frac{d \varphi}{d s} \eta_{(p)}^{i}+\frac{1}{\rho_{p}} \eta_{(p+1)}^{i}, \\
& \theta \eta_{(n)}^{i}=-\frac{1}{\rho_{n-1}} \eta_{(n-1)}^{i}+\frac{1}{2} \frac{d \varphi}{d s} \eta_{(n)}^{i},
\end{aligned}
$$

in which:

$$
\rho_{k}=\frac{D_{k}}{\sqrt{D_{k-1} D_{k+1}}}
$$

The $\theta \eta_{(k)}^{i}$ are then homogeneous linear functions of the $\eta_{(q)}^{i}$. The determinant of those functions is skew-symmetric; the ρ_{i} are the $(n-1)$ radii of curvature of the curve. That determinant
possesses a principal diagonal whose terms are all equal to $\frac{1}{2} \frac{d \varphi}{d s}$. For a space $\left(R_{n}\right)$, the formulas (F) will be the same as the ones that we just found, except that all of the terms in the principal diagonal will be equal to zero. (The ρ_{i} will not have the same value, since they depend upon the φ_{i}.) If one regards the trihedron (N) as moving along the curve C then one can say that one passes from one of its position to the neighboring position by displacing by congruence and then subjecting it to a rotation that is defined by the curvatures $1 / \rho_{i}$ of C, and finally deforming it with a homothety of ratio $1+d \varphi / 2$.

[^0]: ${ }^{(1)}$ WEYL, loc. cit., pp. 103.
 $\left(^{2}\right)$ "Integralgleichungen, etc....," Math. Ann. 63.

