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 Abstract:  After a brief overview of the basic concepts of the wave mechanics of the one-electron 
problem in § 1, expressions will be presented in § 2 that can serve as the relativistic generalization of the 
wave-mechanical expressions that Schrödinger gave for the electric density and current vector.  Starting 
from that, the evaluation of the Maxwell-Lorentz  theory in quantum theory on the basis of the 
corresponding principle will be discussed in § 3 and explained in terms of simple examples in § 4.  The 
perturbation of an atom by external forces and the Compton effect will be discussed in § 5 as further 
examples of that way of regarding the theory.  Finally, some remarks on five-dimensional wave mechanics 
will be imparted in § 7. 
 
 
 Introduction.  – Under the influence of quantum theory, the well-known difficulties 
that obstruct the application of classical theories to the description of atomic processes 
have led to a revision of our mechanical conception of things that drew upon the known 
analogy between point mechanics and wave theory that is at the basis of Hamilton ’s 
theory.  We can thank de Broglie for taking the first step in that direction when he 
compared the motion of a particle with the propagation of waves in a dispersive medium, 
and thus arrived at a geometric interpretation of the quantum conditions for periodic 
systems.  In that way, Schrödinger then succeeded in developing a general wave 
mechanics.  The many significant results of that theory aroused the hope that with its 
help, one could avoid the discontinuities that were formulated within the postulates of 
Bohr’s theory of atomic structure and were characteristic of the quantum theory, and in 
that way create a true continuum theory in space and time.  However, such a way of 
looking at things will encounter unsolved difficulties whose roots lie deep, and in the 
present state of science, an adequate description of phenomena might only be achieved by 
using the correspondence principle that Bohr established.  The basis for such an 
evaluation of wave theory would also be constructed from the connection between non-
relativistic wave mechanics and Heisenberg’s quantum mechanics that Schrödinger 
discovered.  As is known, upon referring to a matrix representation of the mechanical 
quantities using Heisenberg’s procedure, a rational corresponding evaluation of point 
mechanics in the sense of Bohr’s basic postulates was already achieved before the 
creation of Schrödinger’s theory.  The possibility of realizing an even more direct 
relationship between wave mechanics and the postulates of quantum theory was 
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emphasized by Born especially, in conjunction with his treatment of the collision 
phenomena that are so important to atomic theory. 
 The following treatment of radiation processes starts from the field equations of the 
Maxwell-Lorentz theory and seeks simply to evaluate wave mechanics from the 
standpoint of Bohr’s correspondence principle.  In that way, one will arrive 
spontaneously at a description that satisfies the requirements of special relativity.  The 
representation is naturally connected with the relativistic generalization of the 
expressions for the electric density and current vector that Schrödinger presented.  In so 
doing, we restrict ourselves to the one-electron problem (simplified by ignoring the 
proper rotation of the electron), in which it was possible up to now to create only a theory 
that satisfied the principle of relativity.  Even in that problem, the demand that the matrix 
theory should be relativistic raised some peculiar problems that seemed to be based in the 
nature of things.  However, here one must recall the interesting treatment of the 
Compton effect that Dirac gave with the help of his symbolic representation of matrix 
mechanics. 
 As the author hopes to show soon, the theory can be extended in the sense of the 
general theory of relativity.  In that way, one will get a representation of the quantum-
mechanical equations of motion using the correspondence principle that is an immediate 
expression for the conservation of energy and impulse, which defines just the necessary 
condition for the coupling of wave mechanics with Einstein’s field equations.  In 
connection with that, in the last paragraphs of this article, some remarks will be made that 
will go more deeply into five-dimensional wave mechanics in connection with a 
representation of general relativity that Kaluza had previously attempted.  That form of 
wave theory starts from the aspiration to arrive at a way of describing things that, despite 
the unfamiliar path of introducing a new dimension, would correspond to the classical 
theory more closely than the current representation using the correspondence principle 
that seems to be inevitable in a space-time description of phenomena. 
 The following paper can thank Prof. N. Bohr for its existence almost entirely and the 
friendly and animated interest that he has shown in the author’s work for some years 
now.  Not only has he provided me with the invaluable advantage of belonging to his 
circle of colleagues, but he has also actively contributed to this work in with his advice 
and criticism, which made the relationship between wave mechanics and the postulates of 
quantum theory much clearer to me, in particular.  Professor Bohr hoped to return to that 
question soon the context of a general discussion of the questions of quantum theory.  At 
this point, I would also like to acknowledge some detailed discussions about general and 
special problems in wave mechanics with Prof. H. A. Lorentz, Prof. P. Ehrenfest, and 
other Dutch physicists that were made possible by a kind invitation for me to go to 
Leiden by the H. A. Lorentz foundation. 
 
 
 § 1. Foundations of wave mechanics. – We consider the motion of an electron in an 
electromagnetic field according to the mechanics of the special theory of relativity.  Let 
the charge of the electron be – ε, let its rest mass be µ, and let its position be defined with 
respect rectangular coordinates (x, y, z), and let the time (t) be measured by a clock at rest 
in that coordinate system.  We describe the electromagnetic field by the four-potential A 

and the scalar potential V, and we impose the usual condition upon it: 
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div A + 
1 V

c t

∂
∂

 = 0,     (1) 

 
in which c denotes the speed of light. 
 The following Hamilton-Jacobi differential equation for the action function S can be 
regarded as the expression for the motion of the electron: 
 

2 2
2

2

1 1 1
grad 

2 2

S
S V c

c c t

ε ε µ
µ
 ∂    + − − +    ∂     

A = 0.   (2) 

 
Certain “ray equations” belong to this equation, which corresponds to the differential 
equation for the wave surface in optics according to Hamilton ’s theory, and those ray 
equations represent precisely the relativistic equations of motion of the electron.  Those 
equations can be written in canonical form as follows: 
 

, , , ,

, , , ,

x y z t

yx tz

dx H dy H dz H dt H

d p d p d p d p

dpdp dpdpH H H H

d x d y d z d t

τ τ τ τ

τ τ τ τ

∂ ∂ ∂ ∂ = = = = ∂ ∂ ∂ ∂ 


∂ ∂ ∂ ∂ = − = − = − = −
∂ ∂ ∂ ∂ 

  (3) 

with 
 

H = ( )
2 2 2

2 2
2

1 1 1

2 2x x y y z z tp p p p V c
c c c c

ε ε ε ε µ
µ
       + + + + + − − +      
       

A A A . (4) 

 
If follows from (4) and (3) that: 
 

px = x

dx

d c

εµ
τ

− A ,    py = y

dy

d c

εµ
τ

− A ,    pz = z

dz

d c

εµ
τ

− A ,    pt = 2 dt
c V

d
µ ε

τ
+ . (5) 

 
As a result, we can write H as: 
 

H = 
2 2 2 2

2
2

1 1

2 2

dx dy dz dt
c

d d d c d

µ µ
τ τ τ τ

         + + − +        
         

, 

 
such that relation that follows from (2): 

H = 0 
 
will be fulfilled when we set dτ equal to the proper time that is associated with the 
electron thus: 

dτ = 
2 2 2

2
2

dx dy dz
dt

c

+ +− .    (6) 
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The quantities px , py , pz are then precisely the momenta that enter into the phase integral: 
 

( )x y zp dx p dy p dz+ +∫ , 

 
which is important in quantum theory, while – pt is a measure of the energy of the 
electron (viz., its rest energy µ c2). 
 We will now get the usual quantum theory of periodic systems when look for the 

stationary states of those solutions of equation (2) for which 
2 i

S
he
π

, in which h denotes 
Planck’s constant, is a single-valued function of the position in space in the case of a 
static force field.  Following L. de Broglie (1), we perceive an interference relation in the 
last condition, which is equivalent to the usual quantum conditions, of the kind that arises 
in the determination of eigen-oscillations and by which the quantum numbers will take on 
the meaning of node numbers and the quantum conditions will be organically coupled 
with the laws of motion.  Furthermore, we connect the known problems in the usual 
quantum theory of periodic systems that refer to deviations from ordinary mechanics, 
according to Schrödinger (2), with the fact that the aforementioned method for 
calculation the eigen-oscillations will only lead to results that are approximately correct 
in optics, as well, when the curvature of the light ray is close to one wavelength (viz., 
high quantum numbers), and in the general case it must be replaced with the 
consideration of the second-order linear equation.  Correspondingly, we replace the 
second-degree, first-order equation (2) with the following second-order linear equation: 
 

−
2 2

2 2 2 2
2 22 (  grad ) (  )

4 2

h h V
c V

i c c t c

ε ϕ εϕ ϕ µ ϕ
π π

 ∂ + + + + −  ∂   
□ A A  = 0,  (7) 

 

where ϕ means a function of time and position that corresponds to 
2 i

S
he
π

, and where: 
 

□= 
2 2 2 2

2 2 2 2 2

1

x y z c t

∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

, 

 
means the d’Alembert  wave operator (3). 
 With the Ansatz: 

ϕ = 
2 i

S
he
π

,     (8) 
we will get from (7) that: 
 

                                                
 (1) L. de Broglie, Ann. de physique (10) 3 (1925), 22 (1924 thesis). 
 (2) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 361, 489, 734; ibid. 80 (1926), 437; ibid. 81 
(1926), 109.  
 (3) Like the Hamilton-Jacobi equation (2), that equation will give a class of solutions for which the 
energy proves to be negative, and which have no direction relationship to the motion of the electron.  
Naturally, they will be excluded from consideration. 
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2 2
2 2

2

1
grad 

2

S h
S V c S

c c t i

ε ε µ
π

∂   + − − + +   ∂   
□A  = 0.  (9) 

 
In fact, for h = 0, the Hamilton-Jacobi equation (2) will yield the corresponding 
transition from wave optics to geometric optics. 
 Equation (7), which was presented from various angles, represents the direct 
relativistic generalization of Schrödinger’s wave equation for the one-electron problem.  
For the comparison with Schrödinger’s results, we shall refer to the fact that his non-
relativistic equation can be obtained from (7) by the Ansatz: 
 

ϕ = 
22 i

c t
he
π µ

ξ
−

      (10) 
 

when we assume that 
2

h

i t

ξ
π

∂
∂

, ε V ξ, ε | A | ξ can be treated as if they were infinitely 

small of first order compared to µc2 ξ .  It will then follow that: 
 

∆ξ + 
2

2

8
( grad)

2

h
V

h i c t

π µ εε ξ
π µ

  ∂− +  ∂  
A  = 0,   (11) 

 
which agrees with the equation that Schrödinger gave. 
 In order to explain equation (7), we now consider the case of a force-field that is 
static in a well-defined coordinate system.  We can then set ϕ equal to: 
 

ϕ = Φ e 2π i T t,      (12) 
 
where Φ no longer depends upon time, and T refers to a constant.  That will then imply 
that: 
 

− 
2 2

2 2 2 2
2 2 2

1
2 ( grad ) ( )

4 2

h h
c hT V

i c c c

ε εµ ε
π π

 
∆Φ + Φ + + − − Φ 

 
A A  = 0.  (13) 

 
 From the foregoing, we see that we will achieve a natural connection to the usual 
quantum conditions for periodic systems when we consider the eigen-oscillations that 
belong to that equation to be representatives of the stationary state of the atom.  The 
replacement of the quantum conditions with the eigenvalue problem that belongs to 
equation (11) will now bring with it the immediate advantage that the problem in 
question generally has well-defined discrete solutions, such that fundamental 
complication arises that originated in the usual theory of stationary states by the 
exceptional role that is played by periodic systems in ordinary mechanics. 
 In the limit of ordinary relativistic mechanics, it would follow from (8) that hT will go 
to the quantity pt , which measures the energy, when taken with the negative sign.  From 
Bohr’s frequency condition, we would expect that the associated eigenvalue T would 
represent the spectral term.  However, the frequency condition itself is likewise foreign to 
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the representation of ordinary quantum theory that is based in the phase integral.  Here, 
we stand at precisely the starting point for Bohr’s correspondence principle, and as we 
will see in the next paragraph, it is, in fact, possible to arrive at a logical association of 
the quantum-theoretic postulate with the demands of classical electrodynamics in 
connection with the wave-mechanical interpretation of the frequency condition that 
Schrödinger discovered, and that would correspond to the spirit of the correspondence 
principle. 
 When the force fields that enter into (7) vary in time, that equation can still be 
employed for the solution of the quantum problem by means of the correspondence 
principle, in contrast to the Hamilton-Jacobi equation (2).  That fact is closely linked 
with the linearity of that equation, which will imply properties of its solutions that will 
correspond to the transitions between stationary states of the associated “virtual” 
oscillators.  As in Heisenberg’s theory, that will define a bridge between the theory of 
periodic systems and dispersion theory in terms of the correspondence principle, as it was 
developed by Ladenburg and Kramers. 
 
 
 § 2. Wave-mechanical expressions for the electric density and current vector. – 
In Lorentz’s theory of electrons, the electromagnetic field is known to be determined by 
the electric density ρ and the (electrostatically-measured) current vector J in the 

following way: 
div 4 ,

1 4
rot .

c t c

π ρ
π

= 


∂ − = ∂ 

E

E
H J

    (14) 

 
In this, E denotes the electric field vector and H denotes the magnetic one.  The following 

relations exist between the quantities E and H, on the one hand, and V and A, on the 

other, which correspond to the second pair of Maxwell equations: 
 

E = − 
1

grad V
c t

∂ + ∂ 

A
,  H = rot A.   (15) 

 
The law of conservation of electricity, namely: 
 

div J + 
t

ρ∂
∂

= 0,     (16) 

 
follows from (14) in the well-known way. 
 If we would now like to evaluate equations of the form (14) with the help of wave 
mechanics using the correspondence principle, it would be, above all, necessary to form 
expressions from the solutions of the wave equation that fulfill the relationship (16). 
 To that end, along the lines of some arguments that Schrödinger recently 

communicated, we consider equation (7).  Since i = 1−   enters into that equation 
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explicitly, the following equation will exist that is equivalent to the latter equation and in 
which i is switched with – i : 
 

− 
2 2

2 2 2 2
2 22 ( grad ) ( )

4 2

h h V
c V

i c c t c

ε ψ εψ ψ µ ψ
π π

 ∂ − + + + −  ∂   
□ A A = 0,  (7a) 

 
in which ψ denotes a function of position and time that be the complex conjugate of the 
function ϕ in (7), in particular.  Just as the Schrödinger equation (11) follows from (7), 
using the Ansatz: 

ψ = 
22 i

c t
he
π µ

η ,     (10a) 
 
we will get the following equation from (7a): 
 

∆η + 
2

2

8
( grad)

2

h
V

h i c t

π µ εε η
π µ

  ∂+ +  ∂  
A  = 0.  (11a) 

 
Likewise, when we set h = 0, the Ansatz: 

ψ = 
2 i

S
he
π−

     (8a) 
 
will yield the Hamilton-Jacobi equation (2) for the function S.  In analogy with (12), in 
the case of a static force field, one can ultimately set: 
 

ψ = Ψ e−2π i T t,     (12a) 
which will imply the equation Ψ: 
 

− 
2 2

2 2 2 2
2 2 2

1
2 ( grad ) ( )

4 2

h h
c hT V

i c c c

ε εψ ψ µ ε ψ
π π

 
∆ − + + − − 

 
A A = 0,  (13a) 

 
which differs from equation (13) only by the sign i. 
 We now multiply equation (7) by ψ and equation (7a) by ϕ and subtract.  After a 
simple calculation, in which use is made of the condition (1), we will get: 
 

div (  grad  grad ) 2
2

h

i c

εψ ϕ ϕ ψ ϕψ
π

 − + 
 

A  

(17) 

+
2 2

1 2

2

h
V

t i c t t c

ϕ ψ εψ ϕ ϕψ
π

∂  ∂ ∂  − − +  ∂ ∂ ∂  
 = 0. 

 
In fact, we have an equation with the form of the continuity equation (16) before in (17).  
When we multiply the expressions in brackets by – ε / 2µ, on grounds that will become 
clear later, we would like to set: 
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  ρ = − 
2 2

2 2

h
V

c i t t

ε ϕ ψψ ϕ ε ϕψ
µ π

 ∂ ∂  − − +  ∂ ∂  
, 

(18) 

  J = − ( ) grad grad 2
2 2

h

i c

ε εψ ϕ ϕ ψ ϕψ
µ π
 − + 
 

A . 

 
When we neglect relativity in these expressions with the help of (10) and (10a), and in 
addition, consider the magnetic field to be so weak that the term in J that is proportional 

to A can be dropped, we will get precisely the expressions for the electric density and 

current vector that Schrödinger gave, namely: 
 

ρ = − ε ξ η, 
(19) 

J = − ( ) grad grad 
2 2

h

i

ε ψ ϕ ϕ ψ
µ π
 − 
 

. 

 
 In order to make the expressions (18) more intuitive, we would like to go to the limit 
h = 0.  In order to do that, we substitute the expressions (8) and (8a) for ϕ and ψ in (18), 
which will yield: 

2
,

grad .

S
V

c t

S
h

ερ ε
µ
ε ε
µ

∂  = −  ∂  


  = − +    
J A

    (20) 

 
 With the help of the “ray equations” (3), we would further like to express the 
differential quotients of S in (20) in terms of the components of the dx / dt, dy / dt, dz / dt 
of the “ray velocity” v, which will yield: 

2 2

2 2

,
1 /

.
1 /

c

c

ερ

ε

= − − 

= −
− 

v

v
J

v

    (21) 

 
The superficial similarity between these expressions and the corresponding formulas of 
the classical theory of electrons might help illuminate the fact that on first glance, the 
potential that enters into (18) seems rather foreign to those equations.  However, it must 
be emphasized that the passage to the limit that is considered here must be regarded as 
purely formal and does not answer the deeper question of how one can arrive at the 
results of the classical theory of electrons continuously from the properties of the wave-
mechanical electron model.  In that regard, Schrödinger attempted to find a connection 
by comparing a particle with a “wave packet.”  However, it is known that it is not 
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possible to achieve cohesion in the electron in that way.  It seems as if the coupling will 
come about here by precisely the correspondence principle, which will seem all the more 
natural when one seeks to consider the existence of the particle to be a quantum problem 
(1). 
 Before we go on to a discussion of the applications of the relations (18), we would 
like to derive the following auxiliary equation: 
 

d
t

ρ υ∂
∂ ∫

 = 0     (22) 

 
by multiplying equation (16) with a volume element dυ and integrating over the entire 
region in which ρ and J exist, under the assumption that the electric current vanishes on 

the boundary surface.  Moreover, as is known, (16) implies that the integral dρ υ∫  is 

also invariant under Lorentz transformation. 
 
 
 § 3. Evaluation of wave mechanics in the case of a static force field using the 
correspondence principle. – We now turn to the evaluation of the expressions (18) for 
quantum theory, and we would first like to consider the case of a static force field and in 
so doing, assume that we are dealing with a nondegenerate system, which will imply no 
essential restriction of generality.  In that case, the general solutions to equations (7) and 
(7a) will be linear combinations of the solutions that belong to the individual eigen-
oscillations, such that from (12) and (12a), we can set: 
 

ϕ = 2 ni T t
n

n

e πΦ∑ , ψ = 2 ni T t
n

n

e π−Ψ∑ ,   (23) 

 
in which Φn and Ψn denotes a pair of eigenfunctions of the equations (13) and (13a), and 
in which all Tn are different.  With the help of those expressions, the quantities ρ and J 

will assume the following form: 
 ρ = nm

n m

ρ∑∑ , 

(24) 
 J = nm

n m
∑∑J , 

where 

 ρmn = − 2 ( )
2

( )

2
n mi T T tn m

n m

h T T
V e

c
πε ε

µ
−+ − + Φ Ψ 

 
 

(25) 

 J mn = − 2 ( )( grad grad ) 2
2 2

n mi T T t
m n n m n m

h
e

i c
πε ε

µ π
− Ψ Φ − Φ Ψ + Φ Ψ  

. 

 

                                                
 (1) Cf., O. Klein, Nature 118 (1926), 516.  
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 If we consider the electromagnetic field that belongs to the expressions (24), 
according to the field equations (14), then that will point to a striking similarity with the 
external behavior of an atom in a way that corresponds to the postulates of Bohr’s theory, 
and that will endow the representation of stationary states by eigen-oscillations with an 
essential meaning.  As we see, part of the field in question consists of static terms that 
belong to the individual eigen-oscillation and part of it consists of purely harmonic 
oscillations that belong to the pairs of two different eigen-oscillations.  The frequency 
that belongs to the pair of numbers n, m is then given by: 
 

ν = | Tn – Tm | ,     (26) 
 

such that the entire spectrum will satisfy the Rydberg-Ritz combination principle.  At the 
same time, Bohr’s frequency condition is also fulfilled, so as we have seen, the wave-
mechanical picture will lead to the following relation between the energy E of the atom 
and the quantity T : 

E = − h T.     (27) 
 
 It was exactly that significant agreement between the results of wave mechanics and 
the demands of quantum theory that Schrödinger considered to be the basis for his 
program of a purely wave-mechanical theory of atomic processes, in which the postulates 
of quantum theory would no longer appear explicitly, although they would already be 
required in order to explain the combination principle in the theory of periodic systems 
that is based in classical mechanics.  In the meantime, wave mechanics has not helped us 
get over the fundamental problems that can come about in the generation of spectra, inter 
alia, and which find their expressions in the postulates.  By contrast, the wave-
mechanical expressions for ρ and J permit a quantitative formulation of the 

correspondence between the demands of electrodynamics and the description of atomic 
processes that is based upon Bohr’s postulates, which is a correspondence that might be 
better understood with the help of the classical theory of electrons, which only seems to 
allow one to give an asymptotically-quantitative expression, however (1). 
 Pursuing the correspondence, we associate the terms in the wave-mechanical 
expressions (24) for the density and current vector in the following way: 
 

, ( ),

, ( ),

m n

m n

E E

n n nn mn nm
n m

E E

n n nn mn nm
n m

ρ ρ ρ ρ ρ ρ
<

<


= = + + 



= = + +


∑ ∑

∑ ∑J J J J J J

   (28) 

 
in which the summations in the expressions for ρn and Jn is extended over all of those 

eigen-oscillations for which Em < En .  We first see that the quantities ρ and J will be real 

only when each Ψn is assumed to be the complex conjugate of the corresponding Φn (up 
to a factor that is common for all n, and which we naturally set equal to one on the 

                                                
 (1) See N. Bohr, “Über die Quantentheorie der Linienspektren,” Braunschweig (1923).  
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grounds of symmetry).  With that assumption, the quantities (ρnm + ρmn) and (Jnm + Jmn) 

will become individually real.  If we now consider the quantities ρn and Jn then we will 

see that precisely all of the radiation frequencies are represented in them that belong to 
spontaneous transitions from that stationary state whose energy is equal to En from the 
postulates of quantum theory. 
 We will then attempt to describe the electromagnetic effects that originate in an atom 
in a stationary state with the help of the quantities ρn and Jn .  To that end, we must first 

demand that the total charge that belongs to the density ρn is equal to the charge – ε of the 
electron.  The fact that it is possible to make such a demand is based in the fact that the 
total charge is independent of time, from the continuity equation (16), which is fulfilled 
for each pair of quantities ρnm and Jnm .  When n and m are different, it follows simply 

from (22) that: 

 nm dρ υ∫ = 0, 

 
which is a relation that goes to the well-known orthogonality condition for eigenfunctions 
when one neglects relativity.  In fact, it follows from (10) and (10a) that: 
 

n m dξ η υ∫ = 0.     (29) 

From (28), we then have: 

 n dρ υ∫ = nn dρ υ∫ , 

 
such that fixing the total charge by (25) will lead to the following relation: 
 

− 2

1
( ) n nhT V d

c
ε υ

µ
− Φ Ψ∫  = 1,   (30) 

 
which will normalize each eigenfunction in a well-defined way.  If we neglect relativity 
then that will imply that: 

 n n dξ η υ∫  = 1,     (31) 

 
which agrees with the normalization condition that Schrödinger imposed upon the 
eigenfunctions, and is especially significant for the derivation of the connection between 
wave mechanics and matrix mechanics.  In fact, if we neglect relativity and normalize all 
eigenfunctions in the aforementioned way then the quantities ρnm will be the elements of 
a matrix from which the representation of the mechanical quantities of the motion of 
electrons will follow in a manner that corresponds to Heisenberg’s theory. 
 Since we seek to evaluate wave mechanics in direct analogy to the electromagnetic 
field equations, we will assume that the quantities ρn and Jn correspond to 

electromagnetic phenomena, in the sense of Bohr’s correspondence principle, that give a 
quantitative expression for the presence of observed effects that are coupled with an atom 
in the stationary state in question.  In that, Einstein’s probability coefficients for 
spontaneous transitions are to be ascertained in the usual way under the assumption of 
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conservation of energy.  We see that our assumption about that leads to an association of 
ρ and J with the totality of electromagnetic phenomena that belong to an imagined 

simultaneous presence of electrons that are bound with no interaction in the same static 
field in such a way that each possible stationary will be represented by an electron.  It 
was by precisely that association that we obtained a connection between the wave-
mechanical description and the quantum-theoretical picture of the way that individual 
atoms behave.  To the extent that those considerations deal with sums of harmonic 
oscillator terms, they are linked with the asymptotic representation of the correspondence 
principle that is based upon the classical theory of electrons.  However, it should be 
remarked that it is just in the nature of wave theory that the coupling in the limit where 
the relative difference between stationary states vanishes does not take an especially 
simple form, as was mentioned before.  Moreover, that is precisely the quantum-theoretic 
aspect of the correspondence that Bohr emphasized and which defines the nucleus of our 
analysis here. 
 The evaluation of wave mechanics using the correspondence principle that was 
described allows not only the demands of relativity to be satisfied, which are, as 
mentioned, the source of the difficulties in matrix theory, but the direct connection with 
the field equations also makes it possible to simplify the treatment of the radiation 
problem.  That problem was taken up in the context of matrix mechanics by Dirac (1), in 
particular, and he succeeded in deriving an expression for the probability coefficients of 
the transitions that are induced by external radiation that coincided with the calculation of 
the probability coefficients for spontaneous transition that was described above when one 
appeals to general relation that Einstein gave.  In regard to that, it should be pointed out 
that in Dirac’s calculation, as in Born’s collision theory, the wave equation was 
employed in a way that is essentially different from the way that it was used here.  
Whereas in our presentation, it is in the nature of things that the properties of an electron 
are always coupled with normalized eigenfunctions, the aforementioned theory dealt with 
arbitrary amplitudes whose changes were considered to be a measure of the probability of 
the transition processes that were stimulated by external agencies. 
 We shall now go into somewhat deeper detail and consider the external behavior of 
an atom that should be expected from the argument above.  For that, we first turn to the 
static field that belongs to a single stationary state.  The quantities ρ and J that come 

under consideration in it will then be independent of time, such that we can solve the 
field equation (14) by the usual method with the following expressions: 
 

,

1
,

PQ

PQ

d
V

r

d

c r

ρ υ

υ

= 


=


∫

∫
J

A

     (32) 

 
in which rPQ denotes the distance from the source point Q to the reference point P.  We 
would now like to assume that the force field in which the electron moves is essentially 
centrally-symmetric, which would correspond to an actual atom.  Furthermore, 
                                                
 (1) P. A. M. Dirac, Proc. Roy. Soc. (A) 112 (1926), 661.  
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corresponding to the usual experimental conditions, we would like to place the reference 
point so far from the atom that the expressions (32) for the potentials will take on 
appreciable magnitudes only within a distance from the center point of the atom that is 
very small in comparison with the distance r to the reference point. 
 Now let n be a unit vector that gives the direction from the center of the atom to the 

reference point, and let r be the radius vector from the center to the source point.  

Consistent with what was just said, we would like to replace the quantity 1 / rPQ with the 

approximate value 
2

1 ( )

r r
+ n r , which would then yield: 

 

2

2

1 1
( ) ,

1 1
( ) .

V d d
r r

d d
cr cr

ρ υ ρ υ

ρ υ υ

= + 

= +


∫ ∫

∫ ∫

nr

A nr J

     (33) 

 
 The meaning of the first of those formulas is brought to light immediately.  The first 
term gives the potential of the total charge of the electron, which was just set equal to – ε, 
and as we saw, that corresponds to the normalization of the eigenfunctions.  The second 
term gives the potential of the electric moment of the charge distribution.  The vector of 
the electric moment D in this is given by the following expression: 

 

D = dρ υ∫ r .      (34) 

 
We can give the expression for A the following form by a simple calculation: 

 

A = 
32

d
c r

υ 
 
 

∫
n
[Jr] .     (35) 

 
That expression represents the vector potential of a magnet whose magnetic moment is 
given by the vector: 

B = 
1

2
d

c
υ 

 
 

∫[J r] .     (36) 

 
In fact, the expression for the field vector that following from (35): 
 

H = rot A 

 
can be transformed into the expression below by a known rule: 
 

H = − grad 
2

( )

r

⋅n B
. 
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 We shall now go on to the consideration of the radiation field that is associated with a 
transition process by way of (25).  Here, we can set: 
 

2
0

2
0

,

,

i t

i t

e

e

π ν

π ν

ρ ρ =
= J J

     (37) 

 
in which ρ0 and J0 are independent of time, and ν denotes the frequency that belongs to 

the transition process.  As in the classical theory of radiation, we solve the field equations 
(14) by retarded potentials, in which consider only the part of the field that is proportional 
to 1 / r.  That will then imply that: 
 

 V = 
2

( )2 ( / )
0

1 i
i t r c ce e d

r

π ν
π ν ρ υ−

∫
nr

, 

(38) 

 A = 
2

( )2 ( / )
0

1 i
i t r c ce e d

cr

π ν
π ν υ−

∫
nr

J . 

 

 Since we would like to consider only dipole radiation, we can replace 
2

( )
i

ce
π ν

nr

 with 

one in A and with 1 + 
2 i

c

π ν
(n r) in V.  From the continuity equation, which now reads: 

 
div J0 + 2π i ν ρ0 = 0, 

we see that: 

0 dρ υ∫  = 0 

and 

0 dυ∫ J  = 02 i dπ ν ρ υ∫ r , 

which then implies that: 

2 ( / )
0

2 ( / )
0

2
( ) ,

2
.

i t r c

i t r c

i
V e d

c r

i
e d

c r

π ν

π ν

π ν ρ υ

π ν ρ υ

−

−

= 


=


∫

∫

n r

A r

   (39) 

 
If we now calculate the field vectors E and H that describe the radiation field directly 

then (38) will simply yield that: 
2

( ),

2
[ ]

i
V

c r

i

c r

π ν

π ν

= − − 


= −


E A n

H n r

    (40) 
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when we consider only the terms that are proportional to 1 / r.  If we then set: 
 

D0 = 0 dρ υ∫ r  

then (39) will imply that: 
2 2

2 ( / )
0 02

2 2
2 ( / )

02

4
( ) ],

4
[ ].

i t r c

i t r c

e
c r

e
c r

π ν

π ν

π ν

π ν

−

−


= − 



=


E [D nD n

H nD

    (41) 

 
A spherical electromagnetic wave is described by formulas (41) in a well-known way.  
One sees immediately in them that the electric force, in magnitude as well as direction, is 
determined by the components of the electric moment in the plane that is perpendicular to 
n, and that the magnetic field is perpendicular to n, just like E, and has the same 

magnitude as E. 

 In that, we should recall that the radiation field that corresponds to the transition 
process n → m, where En > Em , will be described by the real quantities E + E , H + H , in 

which E  is complex conjugate to E and H  is complex conjugate to H, when the quantity 

(En – Em) / h is substituted for ν and the amplitude of: 
 

Dnm = nmr dρ υ∫      (42) 

 
is substituted for D0 .  Just as the quantity Dnm means the static electric moment of the 

atom in the state n, from (34), we will refer to Dnm + Dmn as the electric moment that 

belongs to the transition. 
 
 
 § 4. Illustrative examples from the theory of atomic structure. – In this paragraph, 
we would like to clarify the arguments that were made in the previous paragraphs with 
some simple examples.  We first turn to the simple and most important case in which the 
electron moves in a pure centrally-symmetric field.  Since the absolute direction in space 
plays no role in that system, we are dealing with a degenerate case here in which only 
two quantum numbers n and k are necessary to characterize the stationary state.  We 
introduce a polar coordinate system r, ϑ, α, in which r is the length of the radius vector r, 

ϑ means the angle that r makes with a fixed axis, and α is the angle between the 

projection of r onto the plane that is perpendicular to that axis and a fixed line that lies in 

that plane.  As is known, we can then set an eigenfunction Φ of the equation (13) equal 
to: 

Φ = X (r) Y (ϑ, α),     (43) 
 
in which Y (ϑ, α) denotes a spherical function – i.e., an eigenfunction of the following 
equation: 
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∆*Y + λ Y = 0,      (44) 
 
where ∆* represents the two-dimensional Laplace operator that refers to the outer surface 
of the unit ball.  The eigenvalues of that equation are known to the be the quantities k (k + 
1), where k means a whole number, and the associated solutions are linear combinations 
of expressions like: 

Yk, m = eimα Pk, m (cos ϑ),     (45) 
 
in which m is a positive or negative whole number whose absolute value is equal to at 
most k, and Pk, m means the following polynomial: 
 

Pk, m (s) = 21 ( )
m

km

d
s P s

ds
− ,    (46) 

where 

Pk (s) = 
1

2! !

k

k

d

k ds
(s2 – 1)k    (47) 

means a Legendre polynomial. 
 In order to investigate the light radiation that belongs to that system, we form the 
component of the amplitude D0 in the direction of the polar axis, which reads: 

 

0cosr dϑ ρ υ∫ . 

 
From (43), that integral will split into two factors, one of which represents an integral 
over just r and the other of which defines an integral that is extended over exclusively the 
angles ϑ and α .  The first integral is non-zero, in general, and changes from one central 
system to another.  The second integral, which is common to all central systems, is non-
zero only under special conditions, and expresses the well-known selection rule for the 
changes in the number k, which largely implies the characteristic picture of ordinary 
series spectra. 
 In fact, from (25) and (43), we can write ρ0 as: 
 

ρ0 = F (r) Y′ (ϑ, α) Y″ (ϑ, α), 
 
in which F(r) means a function of r that is of no interest here, while Y′ and Y″ should be 
two spherical functions that belong to different k-values.  From (45), the integral that 
depends upon the angles, which belongs to a well-defined transition that is characterized 
by the numbers k′ and k″, can always be a linear combination of a number of integrals of 
the type: 

2 1
( )

. .

0 1

( ) ( )i m m
k m k me d s P s P s ds

π
α α

+
′ ′′−

′ ′ ′′ ′′
−

∫ ∫ , 

 
in which we have introduced the variable: 
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s = cos ϑ, 
 
in place of ϑ.  In order for that integral to be non-vanishing, as one sees, one must first 
have m′ equal to m″, such that we only need to examine the following integral: 
 

1

. .

1

( ) ( )k m k ms P s P s ds
+

′ ′′
−
∫ . 

 
Now, the polynomial Pk, m fulfills the following relation: 
 

s Pk, m = 1, 1,

1

2 1 2 1k m k m

k m k m
P P

k k+ −
− + ++

+ +
.    (48) 

We then get: 
 

1

. .

1

k m k ms P P ds
+

′ ′′
−
∫ = 

1 1

. 1. . 1.

1 1

1

2 1 2 1k m k m k m k m

k m k m
P P ds P P ds

k k

+ +

′′ ′ ′′ ′+ −
− −

′ ′− + ++
′ ′+ +∫ ∫ . 

 
Since the quantities Pk, m satisfy the orthogonality condition: 
 

1

. .

1

k m k mP P ds
+

′ ′′
−
∫ = 0 for k k′ ′′≠ ,   (49) 

 
we see that the component of D0 that we consider will be non-zero only when: 

 
k′ – k″ = ± 1.     (50) 

 
Since the axis refers to a direction that is completely arbitrary with respect to the central 
field, that result must be true for each component of D0 .  From (41), we will then get a 

finite intensity of the dipole radiation only when the relation (50) is fulfilled, which 
coincides with exactly the selection rule for the auxiliary quantum number k that Bohr 
derived from the correspondence principle. 
 Let us take another simple example of the case of an axially-symmetric system.  Here, 
we would first like to calculate the magnetic moment of the system in a stationary state 
when we neglect relativity as an example of an application of formula (35).  We 
introduce cylindrical coordinates z, a, α, in which z denotes the projection of r onto the 

axis, a is its projection onto the plane that is perpendicular to the axis, and α is the angle 
between that projection and a fixed line in that plane.  We can set the eigenfunctions of 
equation (13) to be: 

Φ = eimα θ (z, a)     (51) 
 
in this case, in which m means a positive or negative whole number, and θ is a function 
of z and a.  When we ignore the terms that depend upon A, we will get: 

 



Klein – Electrodynamics and wave mechanics from the standpoint of the correspondence principle. 18 

J = − 
2 2

h

i

ε
µ π

(Ψ grad Φ – Φ grad Ψ)   (52) 

 
for the current vector, in which Ψ is complex conjugate to Φ, and in which, from (26), 
one will have: 

dυΦ Ψ∫ = 1     (53) 

when one ignores relativity. 
 On symmetry grounds, it is clear that the magnetic moment will point in the z-
direction, such that we need to calculate only the z-component of the vector [r I], which 

is obviously equal to a Jα , where Jα is the component of J in the direction that points to 

an increase in α.  We now get: 
 

a Jα = − 
2 2

h

i

ε
µ π α α

∂Φ ∂Ψ Ψ − Φ ∂ ∂ 
 

from (52), and then: 

a Jα = − 
2

h
m

ε
πµ

Φ Ψ  

from (51), and finally: 

Bz = − 
4

h
m

c

ε
πµ

    (54) 

 
from (35) and (53).  According to whether m is positive or negative in (51) [which would 
correspond to the positive or negative direction of rotation around the z-axis, respectively, 
according to (8)], we will then get a magnetic moment that points in the direction of the 
negative or positive z-axis, resp., which would correspond to the negative charge of the 
electron, and its magnitude would be an m-fold multiple of the Bohr magneton.  We 
would like to return to that question soon in connection with the action of a weak 
perturbing magnetic field on the atom. 
 If we now consider the radiation properties of that atom then we will see from (51) 
that the z-component of the electric moment that belongs to a transition (m′, m″) includes 
a factor of the form: 

2
( )

0

i m me d
π

α α′ ′′−
∫  

 
that is non-zero only when m′ = m″.  Hence, it is only in that case that the light wave (42) 
will contain a component whose direction of polarization coincides with the direction of 
the z-axis.  Likewise, the components of D0 that are perpendicular to the z-axis will 

contain a factor of the form: 
2

( 1)

0

i m me d
π

α α′ ′′− ±
∫ , 

 
such that the corresponding part of the radiation will appear only when: 
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m′ – m″ = ± 1. 
 
We then come to the well-known selection or polarization rules for the quantum number. 
 As a special axially-symmetric system, we consider an electron that moves in an 
axially-symmetric electrostatic field, over which a weak, homogeneous magnetic field 
that is directed along the axis of the system is superimposed.  We can then set: 
 

A = 1
2 [H r]. 

 
In the aforementioned cylindrical coordinate system, the operator (A grad) is simply 

equal to 12 | |
α
∂

∂
H then.  Since the electrostatic potential V is independent of t, as well as 

α, by introducing a new variable: 

α′ = α − | |

2
t

c

ε
µ
H

    (55) 

 
and neglecting quantities of second order in | H |, we can reduce the relativistic wave 

equation (11) to the corresponding equation with no magnetic field.  In fact, that 
transformation, which corresponds precisely to Larmor ’s theorem, will replace the 

operator 
| |

2 c t

ε
µ α

∂ ∂+
∂ ∂

H
 with the operator 

t

∂
∂

, while ∆ goes to the operator ∆′ that arises 

from ∆ by replacing α with α′.  Equation (11) then assumes the form: 
 

∆′ξ + 
2

2

8

2

h
V

h i t

π µ ε ξ
π

 ∂− ∂ 
 = 0, 

 
in which the magnetic field vanishes.  Now, from (10), (12), and (51), the solutions to 
those equations can be written in the form: 
 

ξ = 
2

( , )
i
E t im

hz a e
π α

θ
′− +
, 

 
in which E represents the energy (rest energy of the electron = 0) of the atom with no 
magnetic field.  From (55), one will then have: 
 

ξ = 
2 | |

4( , )
i

E t im
h cz a e
π ε α

πµθ
  ′− + + 
 

H

.    (56) 
 

Therefore, the energy will change by 
| |

4 c

ε
πµ
H

 as a result of the magnetic field, which will 

lead to a normal Zeeman effect in conjunction with the selection rule for m that was 
derived above. 



Klein – Electrodynamics and wave mechanics from the standpoint of the correspondence principle. 20 

 In the special axially-symmetric system that arises from the perturbation of a 
centrally-symmetric system by a weak constant magnetic field, the eigenfunctions will be 
given by (43) and (45) in the first approximation, where the axis lies in the direction of 
the magnetic field.  In that case, the maximum value of m will then be given by k.  We 
can therefore say (if we ignore relativity) that the number k determined the number of 
magnetons of the magnetic moment of a central system whose direction is arbitrary due 
to degeneracy. 
 
 
 § 5. Perturbation of an atom by external forces. – The action of a weak perturbing 
force field on an atom in a stationary state will serve as a further case of the application 
of the evaluation of wave mechanics by the correspondence principle.  For the sake of 
simplicity, we would like to ignore the influence of relativity in it and assume that the 
force field is purely electrostatic in the unperturbed state.  If we denote the potential that 
belongs to that field by V0 then, from (11), we will have the following equation for the 
determination of the stationary states of the unperturbed atom: 
 

∆ξ + 
2

02

8

2

h
V

h i t

π µ ε ξ
π

∂ − + ∂ 
= 0,   (57) 

with the eigen-solutions: 

ξn = 
2

n
i
E t

h
nu e

π−
,    (58) 

 
in which un is independent of time, and in which we have introduced the energy value of 
the stationary state in place of the term that is defined in the usual way (viz., rest energy = 
0).  In this, we would like to assume that the unperturbed system is nondegenerate; i.e., 
each eigenvalue belongs to just one eigenfunction (up to a constant factor of modulus one 
that defines the phase). 
 We would like to denote the perturbing force field by σ V and σ A, in which σ is a 

constant parameter that can be treated as a first-order infinitesimal.  We now seek a 
solution to equation (11) with the form ξn + σ fn , which would give us the following 
perturbation equation for the function fn : 
 

∆fn + 
2

02

8

2 n

h
V f

h i t

π µ ε
π

∂ − + ∂ 
 = −

2

2

8
( grad)

2 n

h
V

h i c

π µ εε ξ
π µ

 − 
 

A . (59) 

 
In order to solve that equation, following Schrödinger, we develop the function fn , as 
well as the quantities on the right-hand side of the equation, in terms of functions ξn of 
the unperturbed atoms.  We then set: 
 

fn = ns s
s

f ξ∑ ,  Vξn  = ns s
s

V ξ∑ , −
2

h

iπ
(A grad ξn) = ns s

s

A ξ∑ , (60) 

 
with 
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Vns = n sV dξ η υ∫  and Ans = − n(  grad )
2 s

h
d

i
ξ η υ

π ∫ A ,  (61) 

 
in which the quantities fns , Vns , and Ans are functions of time, but not the position 
coordinates, and ηs is the complex conjugate of ξs .  If we introduce those expressions 
into (59) then when one starts with (57) and identifies the coefficients of ξs on both sides, 
that will yield the equation: 

2
nsdfh

i dtπ
= ε Vns +

c

ε
µ

Ans .    (62) 

 
 We would now like to apply these general perturbation equations to the case in which 
the perturbing field is static, and therefore in which all of the considerations of § 3 prove 

to be true.  Since the quantities Vns and Ans include time only in the factor 
2

( )n s
i

E E t
he
π− −

, we 
can solve equations (62) by the following expressions: 
 

fns = − 
ns ns

n s

V A
c

E E

εε
µ

+

−
 (s ≠ n),  fnn = 

2
nn nn

i
V A t

h c

π εε
µ

 + 
 

.  (63) 

 
We then get: 

ξn + σ fn = 
2

1
nn nn

nn nn n s
s n n s

V A
i c

V A t
h c E E

εε
π ε µσ ε ξ σ ξ

µ ≠

+
  

+ + −   −  
∑ , 

 
and since the expression is correct only to the first order of magnitude, we can also write 
this as: 

ξn + σ fn = 
2

nn nn
i nn nnV A t

h c
n

s n n s

V A
c

e
E E

π εσ ε
µ

εε
µξ σ

 
+ 

 

≠

 + 
− 

− 
  

∑ .  (64) 

 
Since, from (58) and (61), the expression in brackets includes time in the common factor 

2
n

i
E t

he
π

, that solution can be considered to be an eigenfunction of the perturbed atom in 
which only a single frequency appears, in a sense.  Moreover, one easily shows that ξn + 
σ fn also fulfills the orthogonality condition. 
 If we now consider the expression (64) somewhat more closely then we will see that 
the energy of the state that is denoted by n has increased by: 
 

γn = − nn nnV A
c

εσ ε
µ

 
+ 

 
.    (65) 

From (61), we can write this as: 
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γn = − ( grad )
2n n n n

h
V d d

c i

εσ ε ξ η υ σ ξ η υ
µ π

+∫ ∫ A , 

 
or, from (19) and (66): 

γn = ( )nn nnV d d
c

σσ ρ υ υ−∫ ∫ A J .    (66) 

 
 This formula for the change in energy of the stationary state has a simple meaning 
that corresponds completely to Bohr’s theory of the perturbation of a periodic system (1).  
As one can see, the first term means the potential energy of the density distribution that is 
symbolized by ρnn relative to the perturbing electrostatic field, while the second term is 
equal to the interaction energy of the magnetic field of the atom with the perturbing 
magnetic field, taken with the negative sign.  In order to make the last point emerge more 
clearly, we convert the second term of (66) in such a way that we replace the quantities 

Jnn with 
4

c

π
 rot Hn , on the grounds of (14), in which Hn denotes the magnetic field 

vector that belongs to Jnn .  We then get: 

 

− ( rot )
4 n d
σ υ
π ∫
A H , 

which is equal to: 

− (rot  )
4 n d
σ υ
π ∫

A H , 

or equal to: 

− 
1

(  )
4 n dυ
π ∫
HH , 

 
in which H denotes the field vector that belongs to σ A.  However, the magnetic energy 

of our system is: 
 

21
(  )

8 n dυ
π

+∫ H H  = 2 21 1 1
(  )

8 4 8n nd d dυ υ υ
π π π

+ +∫ ∫ ∫H HH H , 

 
in which the middle term represents precisely the interaction energy, so the assertion is 
then proved. 
 In the special case where the perturbing field is homogeneous, we can bring (66) into 
an especially simple form.  If we choose the zero-point of the potential to be the center of 
atom then we can then set the electrostatic potential σ V equal to: 
 

σ V = − (E r), 

 

                                                
 (1) N. Bohr, loc. cit., pp. 123.  
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in which E denotes the electric field vector of the perturbing field, while the vector 

potential will assume the following form by way of the corresponding convention: 
 

σ A = − 1
2 [H r]. 

We then get: 

γn = − 1
[ ]

2nn nnd d
c

ρ υ υ⋅ −∫ ∫E r A r J , 

or, from (34) and (36): 
γn = − (E Dn) – (H Bn),    (67) 

 
in which Dn and Bn refer to the electric and magnetic moment vectors that belong to the 

state n .  That expression shows that the atom in a stationary state also behaves like a 
dipole of moment Dn (a magnet of moment Bn , resp.) in terms of energy.  For the case 

considered above of an axially-symmetric atom, when the magnetic field is assumed to be 
parallel to the axis, formula (67) will lead to the usual expression for the energy under the 
normal Zeeman effect. 
 In order to now find the influence of the perturbing force field on the radiation that 
the atom emits, we form the electric moment that is associated with a pair of stationary 
states: 

Dn′ n″ + σ dn′ n″ = − ( )( )n n n nf g dε ξ σ η σ υ′ ′ ′′ ′′+ +∫ r , 

 
which is definitive of the radiation, from (41).  It then follows from (64) that the moment 
that is provoked by the perturbation is: 
 

σ dn′ n″ = − 
n s n s sn n s n s n s

s n s n s

V A V A
c c

E E E E

ε εε ε
µ µ

σ
′ ′ ′′ ′′ ′′ ′

′ ′′

    
+ +    

    +
 − −
 
 

∑
D D

.  (68) 

 
In order to explain the latter formula, we consider the case in which the perturbing field is 
homogeneous and purely electrostatic.  From (61), one then has: 
 

σ ε Vns = (E Dns), Ans = 0, 

such that we will get: 

σ dn′ n″ = − 
( ) ( )n s sn sn n s

s n s n sE E E E
′ ′′ ′′ ′

′ ′′

 
+ − − 

∑
ED D ED D

.   (69) 

 
That equation gives immediate information of the change in intensity of the radiation that 
belongs to a well-defined transition process.  For example, it gives an expression for the 
appearance of new combination lines in the series spectra under the influence of an 
electric field that Bohr inferred from the asymptotic form of the correspondence 
principle.  As one sees immediately, the frequencies that appear in (69) will then be sums 
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and differences of the frequencies of the spectral lines that belong to the unperturbed 
atom.  Finally, that formula will yield the static electric moment that is induced by the 
electric force for n′ equal to n″. 
 We now turn to the question of how to evaluate wave mechanics on the basis of the 
correspondence principle in the case of a time-varying perturbing field.  As an example, 
we will consider the important case of the scattering of light by an atom more closely 
here.  For a monochromatic light wave, we can set the scalar potential equal to zero, such 
that the electric vector of the light wave will be given by: 
 

E = − 
c t

σ ∂
∂
A

,      (70) 

 
in which A must be chosen in such a way that its temporal mean vanishes at each point.  

The expression for E obviously has order of magnitude σ | A | / λ then, where λ means 

the wavelength of light.  Now, that might be very large in comparison to atomic 
dimensions, as in ordinary experiments.  Since the electric field strength is equal to the 
magnetic field strength, σ | A | will have order of magnitude of λ | H | , and as a result of 

the aforementioned assumption, we can neglect the variation of A with position in space 

and simply introduce its value at the center of the atom into equation (62).  If we then set: 
 

A = C e2πiν t + 2 i te π ν−C , 

 
in which C and C  denote two complex conjugate vectors, then we will have: 

 

E = − 2 22
( )i t i ti

e e
c

π ν π νπ νσ −−C C .   (72) 

 
After a simple calculation, we will get: 
 

nsA
c

ε
µ

= 
1

( )ns d
c

υ∫ AJ = 
2o ( )2 21

( )
n s

i
E E ti t i t h

nse e e d
c

π
π ν π ν υ

− −−+∫ C C J , 

 

in which 
o

nsJ denotes the amplitude of Jns .  With some conversions, this will imply that: 

 

  nsA
c

ε
µ

= − 
2o ( )2 22 ( )

n s
i

E E t
i t i tn s h

ns

E E
i e e e d

c h

π
π ν π νπ υ

− −−− +∫ r C C J  

or 

nsA
c

ε
µ

= − 
o o

2 ( ) 2 ( )2 [( ) ( ) ]ns nsi t i tns
ns nsi e e

c
π ν ν π ν ννπ − − − ++CD CD ,   (73) 
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in which we have denoted the quantities (En – Es) / h by vns .  From (62), our perturbation 
equations will now read: 

2
nsdfh

i dtπ
 = nsA

c

ε
µ

     (74) 

 
If we exclude the case of resonance and assume that ν is different from all of the 
frequencies vns then we can set: 
 

fns = 
2 ( ) 2 ( ) o2 ns nsi t i t

nsns
ns ns

i e e

hc

π ν ν π ν νπ ν
ν ν ν ν

− − − + 
+ − + 

C C
D ,   (75) 

and as a result: 
2 ( ) 2 ( ) o

2 ( ) 2 ( ) o

2
,

2
.

ns ns

ns ns

i t i t

nsn ns s
s ns ns

i t i t

nsn ns s
s ns ns

i e e
f

hc

i e e
g

hc

π ν ν π ν ν

π ν ν π ν ν

π ν ξ
ν ν ν ν

π ν η
ν ν ν ν

− − − +

− − − +

 
= +  − +  


  = − +  − +  

∑

∑

C C
D

C C
D

  (76) 

 
 In order to evaluate the result of the perturbation calculation so as to ascertain the 
external effects of the atom, similarly to what we did in § 3, we would now like to exhibit 
the electric densities that are associated with a well-defined stationary state of the atom.  
If we denote that density for the state n by ρn + σ Pn , in which ρn means the 
corresponding density in the absence of the perturbing radiation, then we will come to the 
following expression for the quantity Pn by an argument that is similar to the one in § 3 : 
 

Pn = ( )
m nE E h

nn nm mn
m

P P P
ν< ±

+ +∑ .    (77) 

In this: 
Pnm = ξn gm + ηm fn ,     (78) 

 
and in the summation, one includes only those terms in the quantities Pnm + Pmn for which 
the condition Em < En + hν (Em < En − hν, resp.) is fulfilled.  The expression for Pn , 
which satisfies the requirement that the total charge should be equal to – ε (when ξn and 
ηn are normalized eigenfunction of the unperturbed system), represents the analogue of 
part of the Fourier development of the motion of the electron that is perturbed by the light 
wave.  In fact, we see from (78) that the term Pnn represents a harmonic oscillation whose 
frequency coincides with the frequency of the incident light and thus corresponds to a 
coherent scattered ray of the kind that one assumes in order to explain ordinary dispersion 
phenomena.  As one sees, the remaining terms in Pn represent harmonic oscillation terms 
whose frequencies are sums or differences of spectral frequencies with the frequency of 
the incident light.  Those terms correspond to the incoherent scattered radiation that was 
proposed by Smekal on the grounds of Einstein’s light quantum hypothesis and by 
Kramers and Heisenberg on the basis of Bohr’s correspondence principle.  From 
quantum theory, radiation with frequencies vnm + v and vnm − v that appear Pnm can only 
be coupled with transitions from one of the two stationary states that are denoted by the 
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symbols n and m to the other one that is induced by the light radiation.  In that way, the 
question of whether the transition starts from the state n or the state m will be dictated by 
the sign of the quantity vnm + v [ = (En − Em + hν) / h] or vnm − v [ = (En − Em − hν) / h], 
resp., and indeed the state that is denoted by n will be the initial state when the quantity in 
question is positive and conversely.  In fact, as we have reasoned in the presentation of 
the expression for Pn , that arrangement will correspond to the argument that Smekal (1) 
developed on the basis of the light quantum hypothesis. 
 If we would like to compare the total expression for the density with the imagined 
system in which each stationary state is represented by an electron then we would collide 
with a certain complication that originates in the fact that the different quantities Pnn 
cancel each other in the summation over all n.  That complication, which, on first glance, 
obstructs a single-valued definition of the quantities Pn , since quantities enter into each 
Pnn that refer to all possible states, is physically connected with the fact we should not 
expect any actual dispersion from a system of the type that we have in mind.  The total 
absorption will then vanish, since, according to Einstein, transitions between a given pair 
of stationary states that is induced by the radiation will happen at the same rate.  Here, we 
are obviously dealing with a case that is analogous to the degenerate one.  In fact, we can 
regard the equality of the frequencies of ξn and ηn as a kind of degeneracy, and in that 
way the problem can be surmounted that we do not set the combination frequency νnn of 
ξn with ηn equal to zero from the outset, which would make the various terms Pnn 
separate from each other. 
 From the foregoing, we will now get information about the presence of atoms in the 
state n by the radiation that is stimulated by incident light when we consider the quantity: 
 

σ dn = nP dσ υ∫ r ,     (79) 

 
which amounts to the change in the electric moment of the state in question that is due to 
the radiation.  From (77), we can write the quantity dn as: 

 

dn = dnm + ( )
m mE E h

nm mn
m

ν< ±

+∑ d d ,    (80) 

in which: 

dnm = nmP dυ∫ r  = ( )ns sm ms ns
s

f g+∑ D D ,   (81)  

or, from (77): 

dnm = 

o o o o

2 ( )2 ( ) ( )
nm

ns sm sm ns i t
ns ms

s ns ms

i
e

hc
π ν νπ ν ν

ν ν ν ν
− −

 
 −
 − +  

∑
CD D CD D

 

(82) 

+

o o o o

2 ( )( ) ( )
nm

ns sm sm ns i t
ns ms

ns ms

e π ν νν ν
ν ν ν ν

− +
 
 − 

 + −    

CD D CD D
. 

                                                
 (1) A. Smekal, Nature 11 (1923), 873.  
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As one easily shows, the term dnm , which is responsible for the dispersion, is identical to 

the formula for the corresponding part of the scattered electric moment of a radiating 
atom that Kramers (1) derived on the basis of an ingenious application of the 
correspondence principle to the result of a classical-mechanical perturbation calculation, 
which was a formula that also remained true in matrix mechanics.  The derivation above 
is formally close to the wave-mechanical derivation that Schrödinger (2) gave.  
Meanwhile, the deep-rooted difference between the more-classical picture that 
Schrödinger presented and the viewpoint that is assumed here on the basis of the 
correspondence principle will become clearer when we consider those terms in (82) that 
belong to incoherent scattered radiation.  In fact, the expression for σ dn coincides with 

the complete formula that Kramers and Heisenberg (3) gave for the scattered electric 
moment of an atom, such that the objections that Schrödinger raised against the reality 
of the incoherent scattered radiation will drop out from our presentation. 
 Along those lines, let it be remarked that just as formula (82) yields the induced static 
electric moment of the atom in the limit ν = 0 when n = m, it will also go over to the 
expression (72) for the new combination of lines that is excited by an external electric 
field in that limit when n ≠ m, which is a fact that Pauli (4) has already employed in order 
to calculate the intensity of such combination lines before the construction of a rational 
quantum mechanics. 
 
 
 § 6. Interaction of radiation with free electrons. – The examples that were 
considered in the foregoing paragraphs are characterized by the fact that the force field in 
which the electron moves has a significant influence.  In the language of wave 
mechanics, that says that the wave function can have noticeably values only at a distance 
from a certain spatial point (e.g., the atomic nucleus) that is small compared to the light 
wavelengths that come under consideration.  In contrast to such a “bound” electron, we 
shall now consider an example in the form of the Compton effect, in which one is 
dealing with a “free” electron.  Here, we will get a picture that corresponds to the 
experimental conditions when we assume that the electron is available in a force-free 
region whose dimensions are large in comparison to the wave length of light, and in 
which the influence of the magnitude and form of the region on the light that the electron 
emits is therefore vanishingly small.  The wave equation (7) assumes the simple form 
here: 

−
2

24

h ϕ
π
□  + µ2 c2 ϕ = 0.    (83) 

 
When the volume of the region is equal to υ, we can solve this and the corresponding 
equation for ψ that follows from (7a) by the following pair of wave functions: 
 

                                                
 (1) H. A. Kramers, Nature 113 (1924), 673; 114 (1924), 310.  
 (2) E. Schrödinger, Ann. Phys. (Leipzig) 81 (1926), 109.  
 (3) H. A. Kramers and W. Heisenberg, Zeit. Phys. 31 (1925), 681.  
 (4) W. Pauli, Det. Kgl. Danske Videnskabernes Selskab. Math.fys. Med. 7 (1925), 3.  



Klein – Electrodynamics and wave mechanics from the standpoint of the correspondence principle. 28 

ϕ = 
2

[ ( )]1 i
Et

he
π

υ
− + Mr

,  ψ =
2

[ ( )]1 i
Et

he
π

υ
− − + Mr

,   (84) 

 
in which r means the radius vector from a fixed point that lies in the region and the point 

considered.  Those expressions, in which E represents the value of the energy, and M 

represents the impulse vector in a well-defined state of the electron, correspond to the de 
Broglie waves for a free electron.  On the grounds of (83), the relationship: 
 

M
2 – E 2 / c2 + µ 2 c2 = 0    (85) 

 
exists between E and M, which coincides with the relationship between energy and 

impulse of a free electron in ordinary relativistic mechanics. 
 A plane, monochromatic light wave now falls on the electron, which we would like to 
describe by the following Ansatz for the potentials: 
 

σ A = 
( ) ( )

2 2i t i t
c ce e

π ν π ν
σ

   − − − −   
   

 
+ 

  

nr nr

C C , σ V = 0,  (86) 

 
in which σ again denotes a small constant parameter, while n means the unit vector that 

defines the direction of radiation. 
 In order to consider the effect of the light wave on the electron, we would like to 
content ourselves with the first approximation in σ .  If we denote the solution to equation 
(7) that belongs to a well-defined state by ϕ + σ f then we will get the following 
perturbation equation for f : 
 

−
2

24

h ϕ
π
□  + µ2 c2 ϕ = − 

( ) ( )
2 2

2
2

i t i t
c ch

e e
i c

π ν π νε
π

   − − − −   
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 
+ 

  

nr nr

C C grad ϕ .  (87) 

 
 From (84), we can solve that equation with the following expression: 
 

f = 
[ / ( )]h E c

ε
υ ν −

M

Mn

2 2
( ) ( )

i h i h
E h t E h t

h c h ce e
π ν π νν ν      − − − + − − + + +      

      
 

+ 
  

M n r M n r

C C . (88) 

 
If we denote the corresponding solution of (7a) by ψ + σ g then we can write g as: 
 

g = 
1

[ / ( )]E ch

ε
υ ν −

M

Mn

2 2
( ) ( )

i h i h
E h t E h t

h c h ce e
π ν π νν ν      − − + − − − + + +      

      
 

+ 
  

M n r M n r

C C . (88a) 
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 In order to find the scattered radiation, we can now proceed in a manner that is 
similar to what one does for light scattered by an atom and exhibit a general expression 
for the density that belongs to a well-defined initial state of the system.  However, we 
would not like to go into the quantitative side of the intensity question here (1), but only 
examine the dependency of the frequency on the direction of observation, which 
corresponds formally to the selection rule for the appearance of spectral lines.  We can 
then be content to consider an expression for density that (corresponding to one of the 
quantities ρnm) emerges from the general expression when we introduce a well-defined 
solution ϕ + σ f of the wave equation (7) that is given by (84) and (88) in place of ϕ and a 
solution ψ + σ g that belong to another state and is given by (84) and (88a) in place of ψ .  
We thus consider the following expression: 
 

ρ = − 
22 2

h f g
f g

c i t t t t t t

ε ϕ ψ ψ ϕψ ϕ σ ψ ϕ
µ π

 ′ ′ ′ ∂ ∂ ∂ ∂ ∂ ∂  ′ ′ ′− − + − + −   ∂ ∂ ∂ ∂ ∂ ∂   
.  (89) 

 
 It is good to point out that this expression represents two transition probabilities, each 
of which starts from the state in question.  In fact, the two frequencies E – E′ + hν and E′ 
– E + hν enter into them, and from quantum theory, the former corresponds to a transition 
from the state with energy E, while the latter corresponds to a transition from the state 
with energy E′.  When choose the first state to be the initial state, we would only like to 
bring terms with the frequency E – E′ + hν into consideration. 
 As one sees, the expressions (89) are composed of terms of the form: 
 

a e 2π i [ω t + (s r)], 

 
in which a and ω are constants, and s denotes a constant vector.  When we form the 

corresponding expressions for the potentials, we would like to assume that the 
dimensions of the region in which the electron exists are small in comparison to the 
distance r between the fixed point and the reference point.  From (38), the potentials have 
the following form: 

2
2 ( / )

i
i t r c ca

e e d
r

ωπ
π ω υ

′ + −  ∫
n

s r

, 

 
in which the unit vector n′ points in the direction of observation.  Obviously, for given s 

and ω, that integral will yield appreciable contributions to the field only for those 
directions for which the exponent that contains r lies very close to zero, so: 

 

n′ = − c

ω
 s.      (90) 

                                                
 (1) See P. A. M. Dirac, Proc. Roy. Soc. (A) 3 (1926), 405, in which a thorough treatment of that 
question is given that is based in matrix theory.  Cf., also Breit , Phys. Rev. 27 (1926), 362, in which the 
intensity problem is treated on the grounds of the correspondence principle in conjunction with the classical 
theory of electrons. 
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Since n′ means a unit vector, that condition can be fulfilled only when: 

 
c2 s2 = ω2 .     (91) 

 
 From (89), we will first address those terms that belong to the unperturbed electron, 
and in which: 

ω = 
E E

h

′−
,  s = −

h

′−M M
. 

From (91), one then have: 
c2 (M − M′)2 = (E – E′ )2, 

 
here, and on the grounds (85), that condition will be fulfilled only when: 
 

M = M′, E = E′, 
 
which then express precisely the idea that a free electron cannot radiate.  For the radiation 
terms, we get: 

ω = 
E E

h

′−
 + ν, s = − 1 h

h c

ν ′− + 
 
M M n , 

 
and when we denote the frequency ω of the scattered light by ν′, it will then follow that: 
 

M + n
h

c

ν
 = M′ + n′ h

c

ν ′
, E + ν = E′ + hν′   (92) 

 
are exactly the well-known conditions that Compton and Debye gave for the relationship 
between the frequencies and directions of the primary and secondary light under the 
Compton effect. 
 As one sees, the presentation of the Compton effect that was sketched out in the 
foregoing pages has a great formal similarity to the theory of lattice reflection, in which 
the combination of two de Broglie waves will lead to a charge distribution on the lattice 
that will selectively reflect incident light.  With that presentation, we arrived at an 
interpretation in terms of the correspondence principle of the aforementioned peculiar 
coupling of the directions of the incident and scattered light and the electron that is 
liberated by the photoelectric effect by means of Einstein’s light quantum hypothesis, 
which was verified experimentally by Geiger and Bothe and Compton, and which is 
based upon assumptions that are similar to the description of the ordinary spectrum that is 
emitted by an atom that uses the correspondence principle. 
 
 
 § 7. Five-dimensional wave mechanics. – In two articles that appeared recently, the 
author (1) attempted to connect the formalism of quantum theory with the five-

                                                
 (1) O. Klein, Zeit. Phys. 37 (1926), 895; Nature 118 (1926), 516.  
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dimensional generalization of Einstein’s theory of relativity that Kaluza had proposed, 
and recently Fock (1) has also attempted to express similar endeavors.  Some remarks 
about that five-dimensional wave mechanics shall follow here in connection with the 
questions that were touched upon in the present treatise, and in that way, we will show 
how it is possible to shed some light upon the appearance of two different wave functions 
ϕ and ψ in the treatment of wave mechanics from that standpoint using the 
correspondence principle. 
 In order to define the basis for five-dimensional wave mechanics, we shall start from 
the fact that the Hamilton-Jacobi differential equation (2) for the relativistic motion of 
electrons has the form of the characteristic equation for a five-dimensional wave equation 
(2).  In fact, it will emerge from the following homogeneous quadratic equation: 
 

2 2 2 2 22 4

2 2
0 0 0 0 0

1
x y x

c
cV

x x y x z x c t x x

µ
ε

         ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω− + − + − − + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
A A A  

 
= 0,      (93) 

 
in which x0 means the coordinate of the fifth dimension, by the Ansatz: 
 

Ω = − 0x
c

ε
+ S (x, y, z, t) .    (94) 

 
The simplest wave equation that belongs to the characteristic equation (93) reads: 
 

2 2 2 2
2 2 2 2

2 2 2
0 0 0

grad 
2 2 ( )

U V U c U
U c V

x c t x c x

εµ
ε

   ∂ ∂ ∂− − + + −   ∂ ∂ ∂ ∂  
□ A A = 0.  (95) 

 
From the known properties of characteristics, we know from the outset that the wave 
equation (95) will be replaced by precisely the Hamilton-Jacobi equation (93) in the 
limit of geometrical optics. 
 The coefficients of the wave equation (95) are independent of the quantity x0 .  For 
that reason, we can summarize the general solution to that equation as particular solutions 
with the form: 

0 0i x i xe eω ωϕ ψ− + , 
 

in which ϕ and ψ do not include x0 , and ω denotes an arbitrary constant.  If we now try 
to evaluate equation (95) for quantum theory then from the arguments in § 1 and (94), we 
would expect that the solutions that come under consideration in the quantum problem 
could be represented approximately by: 
 

                                                
 (1) V. Fock, Zeit. Phys. 39 (1926), 226.  
 (2) For the meaning of a characteristic equation, see, e.g., J. Hadamard, Leçons sur la propagation des 
ondes et les équations de l’hydrodynamique, Paris, 1903.  
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U = 
2 i

he
π± Ω

     (96) 
 
in the vicinity of the “geometrical optics” limit, in which Ω is a solution of (93).  From 
(94), the solutions in question are harmonic in x0 with periods h c / ε in this case.  Since 
that property, in this form, has nothing to do with the limit, we will be led to generally 
assume that: 

ω = 
2

hc

π ε
,     (97) 

and thus to set: 

U = 
0 0

2 2i i
x x

h c h ce e
π ε π ε

ϕ ψ
−

+     (98) 
 
in order to get the most general solution of (95) that comes under consideration.  If we 
introduce that expression into (95) then that equation will split into two equations, one for 
ϕ that agrees with (7), and one for ψ that agrees with (7a).  The fact that only those 
solutions of these equations should be considered in this that correspond to a positive 
energy means that in the five-dimensional representation of the motion of electrons, only 
those waves should come under consideration that have a well-defined direction of 
propagation relative to the fifth dimension. 
 The periodicity in x0 that is expressed in (98), by which Planck’s constant is 
introduced into the wave equation (95), admits a simple geometric interpretation by way 
of the assumption that the five-dimensional space is closed in the direction of x0 , which 
makes the solution (98) correspond to the ground state oscillation in x0 .  That is closely 
related to the problem of relating the non-appearance of a fifth coordinate in our ordinary 
physical equations to this picture, and of considering those equations to be mean values 
over the fifth coordinate of more general equations that include the fifth coordinate.  
Correspondingly, we must first take the mean value over the fifth dimension in the 
formation of expressions that have degree two in U (such as the electric density) that we 
have to put in the right-hand side of the ordinary field equations in the corresponding 
representation of behavior of an electron.  As we would like to show in the simplest 
example of the function U 2, in that way, we will come to exactly those expressions in 
which the two functions ϕ and ψ enter bilinearly, as they do in (18).  Namely, from (98), 
one has: 

U 2 = 
0 0

4 4
2 22

i i
x x

h c h ce e
π ε π ε

ϕ ϕψ ψ
−

+ + , 
 
such that taking the mean over x0 will, in fact, yield: 
 

2U = 2ϕ ψ .     (99) 
 
 We can see how the “observable” physical quantities that enter into the usual physical 
description contain exactly the products of the conjugate wave functions, and the 
characteristic duality of quantum phenomena then finds an expression in that fact.  The 
assumption of such a closedness in the fifth dimension will then not only imply the 
possibility of introducing Planck’s constant into the theory in a way that is naturally 
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connected with the world-view of the theory of relativity, but it will also lead us 
immediately to the four-dimensional corresponding representation of the one-electron 
problem on the basis of wave mechanics. 
 

Copenhagen, Univers. Institut for teoretisk Fysik, 4 Dec. 1926. 
 
 

Added in correction. 
 

 After the present article was submitted, Gordon’s thorough treatment of the 
Compton effect based upon Schrödinger’s theory [Zeit. Phys. 40 (1926), 117] was 
brought to my attention, and in it, he also arrived at the relativistic expressions for the 
electric density and current vector that were developed in § 2.  In conjunction with it, 
Schrödinger then gave a simple geometric interpretation of the wave-mechanical theory 
of the Compton effect in a treatise that just appeared [Ann. Phys. (Leipzig) 82 (1927), 
257], and which was very close to the arguments that were present here in § 6, without 
relating it to the general questions of quantum theory, however.  The latter is also true for 
Schrödinger’s simultaneously-appearing treatise [Ann. Phys. (Leipzig) 82 (1927), 265] 
on the wave-mechanical energy-impulse principle, in which questions were addressed 
that were similar to the work of the author that was announced in the introduction. 
 I would also like to take this opportunity to point out the fact that Epstein [Proc. Nat. 
Acad. 12 (1926), 634] has treated the normal Zeeman effect in a way that is similar to 
what was done above in § 4, and that Fermi [Nature, 18 Dec. 1926] has published a 
calculation of the magnetic moment of a centrally-symmetric atom that is found in a 
magnetic field that is close to the calculations in § 4. 
 

__________ 


