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Wave mechanics and half-integer quantization

By H. A. Kramers in Utrecht
With 1 figure (Received on 9 September 1926)

Translated by D. H. Delphenich

This article treats an approximate method for sol8ogrodinger's eigenvalue and eigenfunction problem
for an arbitrary system with one degree of freedom§ In it will be shown that the so-called half-integer
guantization represents a natural first approximatiog.2 contains approximation formulas for the
graphical determination of the eigenfunctions. In § 3, rédationship between the method and the
systematic process of approximations that was considerBdllopin andWentzel will be discussed. § 4
treats central motion and includes approximation formfdaspectral problems.

8 1. The approximate solution of the wave equatior: Suppose that one has posed
the problem of the quantization of a system with one @egfdreedom whose motion
has an oscillatory character. According $throdinger, the stationary states are
determined by looking for the eigenvalugsfor which the differential equation:

vy Y oo
2?0, (1)

where
y=2m(E,-V(X) (2)

(K=h/2m m=massV (X) = potential energy) has an everywhere-finite sedtiong, .
The quantum number refers to the number of zeroes @i between the two zeroes
andx, of y, which coincide with the points of regression of theiamthat is calculated

in classical mechanics. For the case in wimndk a large number, we can construct a
functiony that represents an approximate solution to (1) in theadoxa < X < x; by
means of an elementary argument. From the wave-lizeacter ofg in this domain and
the argument that varies only slightly in the domain of a wave length fangén, we
will be led to make the following Ansatz fqr:

W=g (x) cosf (x), 3

in whichg (x) is imagined to be a “flat” function of the same kirsygx), while f (x2) —
f(x1) has the order of magnitudez
We will obtain an expression f6(x) when we observe that the wave length would be
equal to 27K y*2 for constanty. That will, in fact, give the approximate conditior fo
f(x):
f(x+ 2Ky —f (x) = 271
or
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2K y 27 (X) = 271
f(x) = ijxyl’z dx. (4)
K

We will get an expression for the functigr{x) that represents the dependency of the
wave amplitude om by considering the differential equation:

g YOO+ yé;s)( %) 50, (5)

which practically coincides with (1) in a region whose oroemagnitude is one wave
length. Upon neglecting small quantities that are ptapw@l to the second and higher
powers ofy’, a solution of (5) will be given by:

¢ = cos Ky (x - x))
— 2yt y [(x = %) cosK™ Y2 (x — %) + K™ y2 (x — %)% sinK™! y!2 (x — %)].

We deduce from this that the amplitude of the oscillatimgtion that is represented by
@ can be represented in the first approximation in a dowkorder of magnitude one
wave length by a factor of the form:

1-1yty’ (x—x).
For that reason, we can then write:

vl ~1/4

9'gt=-2y'y, g=y

for the functiong (x). Our approximation for the eigenfunction will then assutime
following form:

TV O TP
Y=y COSEJ. y"2dx. (6)

We now come to the question of how the energy Viaiend the integration constant
in (4) must be determined in order fgrto actually approximate an eigenfunction of the
problem. In order to answer it, it will not suffice ¢consider only the properties ¢,
sincey is already infinite ak; andx, and will assume complex values fok x; andx >
X2 . For that reason, we would like to consider the soiuaf (1) in vicinity ofx; . When
y’assumes the valueatx;, and when we denote— x by &, (1) will assume the form:

ny -
+Ff¢—0 (7)
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in the neighborhood of; . The solution to this equatiof) (can be represented in the
form:

b= E72,(2 @l KE"), (8)
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Figure 1.

However, the discussion will take on a simpler faviren one writes it directly in the
form of a definite integral:

a 1/2 1 .
¢ Cjeprsz ftet :ldt (9)
that lets the fact that is an entire function better emerge from the esgiom (8), among
other things. The integral (9) represents a smiutor allx when the path of integration
asymptotically approaches the directions with ttgueentst 77/ 3, 77(cf., Fig. 1). One
further easily recognizes that for negative réahe integral that is extended along the
curveW; goes to the value zero with increasifigand thus corresponds to the particular
solution of (1) that is desired in wave mechaniésne takes the integral along a straight
line fromR to 0 and then from O tB then when one develops the integrand in powers of
&and sets the fact@ = - i, one will get:

ey i e 2\ @ o a |
$=3 F(:—gj+31 F(EJ(FJ 5+.--+(Pjg+... (10)

() For the literature on this equation and its sohsjacf., e.g.Watson, Theory of Bessel Functions
Cambridge, 1922, pp. 188 seq.
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1/3
The asymptotic developments for large values of the angu&%j & are important.

One gets this simply with the help of the saddle-poiethaod ). For negative reaf,

we need the saddle point At

1/3
OA= (%} |E|} and the line of steepest descent,

along which the integral is extended, will becoméranch of a hyperbolsy whose
asymptotes ar®P andOR. One easily finds that:

e JTTKK&) & @ ex{—%(%j ¢ 1} (11)

For positive reak, we need the saddle poifdsandC:
a 1/3
OB=0cC= (Fj .

The lines of steepest descent are the curve brarafidegree thred, andWs, and the
integral is extended ov&¥,, as well ad\s . One then obtains the asymptotic expression:

¢:2J71K%j 5} co{%(%) 53’2—77/%, (12)

which is different from (11)%. We can now compare this expression directiy wlie
expression that (6) goes to for valuesrahat are not too distant froma. One must then
sety = a &£/ K? and find immediately that:

[ a e -1/4 2( a e 312 _
w—(sz '3 COSL(KZJ '3 ﬁ] (13)

in which —g initially represents the still-undetermined intagyn constant in the integral
(4). A comparison of (12) and (13) implies immeelg that it is only forg = 7/ 4 that
the function that is represented approximately@yw(ill represent the particular solution
of (1) that is required by wave mechanics; i.eg anust be able to write dowg in the
form:

y=y*" COS[% Jx1 yH2dx— 77/ 4} . (14)

() Cf., say,Courant-Hilbert , Mathematische Physikp. 435.
() This is the so-calledStokesphenomenon”; cf Watson, Bessel Functiongp. 435.
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In this, we have introduced the permissible restricti@ (x;) must be positive').

A consideration that is entirely similar to the aal®ve can also be applied to the
other points of regression, and one easily recognizémtbader fory/to approximate an
eigenfunction, one must likewise be able to write theesgon (6) in the form:

w=y* cos[%j: y/2dx-rm/ 4+ 1t/ 2}. (15)

The plus or minus sign is true according to whetlék,) is positive or negative,
respectively.
The condition for (14) and (15) to represent tme function reads:

ij.xz yY2dx— 77/ 4= ij.xz yY2dx— 77/ 4+ 17/ 2+ m2r, (16)
K % K /%
in whichm is a whole number. This immediately implies that:

ij.xz yY2dx= K m(2m+ 1),

K Jx 2

or, when one multiplies both sides by 2, introdutes classical phase integral, and
replaceK with its valueh / 277

ijl y'?dx= ¢ pdx = (2m+ 1) h. (17)

We infer from this that our approximate represgota (6) of the Schrodinger
eigenfunction corresponds to exactly those eneadyeg that would correspond to what
one called a half-integer quantization, in the laage of the old quantum theory. The
relative precision of these energy values will haweorder of magnitude that is higher
than 1 /n (in general, probably 1), while the energy values that are calculated by
whole-number quantization generally differ from t&ehrodinger eigenvalues by
quantities whose relative order is 1n/ (). We have then arrived at a certain

() The fact that this is, in fact, allowable for omeconsider the simple equation (7) for the rangg of
in the vicinity ofx, follows as long as one can assume Hgk;)(% — X1), Y” (X)) (X2 — Xy), etc., have the
same order of magnitude as the valuesgtasumes betwees andx, . A more precise examination will,
in fact, show that when one assumes gtaas, say, order of magnitude £ x,) / n?® — i.e., when (13) and
(6) deviate from each other by the relative order ajmitaden™" — the deviations of the expressions (11)
and (12) from the function (10) will likewise have théatiee order of magnituda ™, and that thep in
(11) will already be small like exp-(®) for negatives, in addition.

() In fact, if we assume that in the regian< x < X,, y’(X) (X2 —x) has the same order of magnitude
thaty has in that region then the distance between two ssiveezeroes of the function (6) will differ from
the distance between the corresponding zeroes i8chedinger eigenfunction only by small quantities
of order & —x,) / n®; i.e., they are small in comparison to the distabesveen successive zeroes. A
relative change in the energy value of ordemiwould provoke a perturbation of the location of the zero
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understanding of the fact that is known from many exasphat half-integer
guantization proves to be a better approximation to thdtsestiquantum mechanics
than whole-number quantization.

8§ 2. The practical calculation of the eigenfunctions- Our arguments give us a
simple means of determining the eigenfunctions approximé#étalycan be of practical
utility in the cases where they cannot be expressed lansnef elementary functions.
Namely, if we employ the function:

$=y cos(J:Z\/7y dx- 77/ 4) X1 <X <X, (18a)

in the domainx; < x < xp, whose values can be ascertained graphically asdeggs
known, then we can write [cf., (10), (12), and (13)]:

-1/6 1/3
(2] o ] e

(@) guer (D) e (2 2] sy e
¢ =(-1) ZJTT(KZJ {3 r(Sj 3 r(S)(KZJ X=% )+ },xclosetoxz (18c)

in the close vicinity of the regression point itsdlf.this, one hasn =y’ (x1), a2 =y’ (%),
n = number of zeroes betwernandx, . These formulas determine the tangents t@gthe
curve at the inflection pointg andx; .

The exponential decay gffor x < x; andx > x; is given by the formulas:

e ] 2@ Y

¢—§(sz (%=X exp{ 3(sz (x= %Y } X <X, (18d)
_(_1)n a, e _ v \-l/4 _2 a, . _ 2
7= (K—) %) eXp{ EKK_J 6%y }’X”Z' (18

However, instead of using formulas (18 b to e) explicitlys much simpler to evaluate
the functional value of the integral:

_ T 1.
w(x) = mj‘wlexp(fHét jdt (18f)

that would be incompatible with the properties of tlgeefunctions in the neighborhood of the two points
of regression.
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once and for all, for values &f= - o up to, say, the first zero @d(x) (cf., the function
table on pp. 12) and employ the following expressiongfan the neighborhood of the
regression point:

-1/6 1/3
@ :(%j a){(%j (% - x)} , fromx = — oo up to the first zero, (1809)
_ o a, -1/6 a, 1/3 th _
¢ =(-1) P W P (%=X |, from then™ zero up tox = . (18h)

| have applied the approximation formulas (18) to the oaslee harmonic oscillator
and found that fon = 1 andn = 0 they immediately put one into a position to carct
the eigenfunctions with considerable precision.

8 3. Relationship to the systematic method of approximation= The function (6)
that was derived by means of an elementary argumenitssh@lose connection with the
processes of successively calculating the eigenvaluesgenfienctions that was treated
by Brillouin (*) and Wentzel (%), in which the solution oHamilton’s differential
equation defines the first step. These authors madendedz:

¢zexp[‘;(so+ KS+ K$+~-)] (19)

and one easily finds that:
§=5/y, 9=y
[ [
— = —logS, = —logy + const.
5109% = logy
If one truncates at the second approximation thenvall get:
p=y exp(i'E [y dxj . (20)

The plus and minus signs correspond to two paaticslutions, and the function that is
represented by (6) corresponds to just half the sbithese two solutions)( Now, what

() L. Brillouin , C. R.183(1926), 24.
) G.Wentzel| Zeit. Phys38 (1926), 518.

() In order to get (6) directly by means of tRicati equation% y’= p? —y? thatWentzel appealed

to explicitly (oc. cit, pp. 518), one cannot sgt=+ p as a first approximation, but one must write:



Kramers — Wave mechanics and half-integer quantization. 8

is interesting about this is that the function (6) @ by any means a single-valued
function of the same type as the eigenfunction thapgoximating. It can reproduce the
latter only in the domairk; < X < x2 , and indeed only when one determines the
integration constant in the manner that was given in Bldwever, the regression points
themselves are singular locations and the function doeseturn to its old value when
the variable crosses them. One further infers from fovenulas (18) that the
eigenfunction that is approximated by (6) in the regionidetthe regression points by
other approximate solutions of (1) will be approximated lyy; e.

$=5(-y)™"" exp[‘?1 [Ny dxj (21)

for x <x; . Let it be pointed out here that there is nactical utility to preferring the
simpler formula (18d) over the expression (21)tfee calculation of the eigenfunction.
Indeed, it obeys the differential equation (1) mprecisely; however, due to the rapid
exponential decay, the difference is not significan

The essence of the multi-valuedness of the funstithat one obtains from the
approximation process (19) will become clear whew avrites out the differential
equations that the successive approximations oliégnce, the functions (6) and (20)
satisfy the differential equation:

o[ Y _5Y -4y
J{F Ty’ j¢ 0. (22)

(22) has singular locations at the regression poirlh a region that is finitely distant
from them, the solutions of (22) will coincide withe solutions of (1) up to quantities of
orderK , but in the vicinity of those points, the solutsowill be completely different. It
is known from mathematics that one should be chrefien the solution to a differential
equation is examined by means of a solution toagproximate” differential equation
(*). It is in just our present case that the sofutio (22) at some distance from the
regression points indeed represents at the sane aimasymptotic expression for a
solution of (1). However, the same particular solu of (1) will be approximated by
various particular solutions of (22) in varioustgawof thex-plane. It then seems that the
method thatWentzel had already employed for the calculation of eigdumes by the

consideration of the complex integrél¢’/¢dx around the regression point, in which

the successive approximations (19) #rwere employed, demands a more rigorous
foundation. The examples that were worked out igdigelet one suspect that it is
consistent. When one applies it to the approxinsatetion (20), one will immediately
come to a prescription for half-integer quantizatio

Yo=1p tan(%”jpdxj.
() Cf., e.g.,Schlesinger Differentialgleichungenpp. 199¢et seq.
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8 4. Application to central motions.— According to Schrodinger, the problem of a
central motion in space can be reduced to the determinafidhe eigenvalues and
eigenfunctions of the differential equation:

pr+-20=0, y:Zm(E—\(x))—W, (23)

in which the azimuthal quantum numbecan assume the whole-number values 0, 1, 2,
..., andV (r) represents the potential energy of the centrakfo

When one has two regression pointandr; for whichr # 0 (that will be the case in
the current problem whek# 0), the problem will be entirely analogous to tme that
was treated in 88 1 and 2, as long as the factthigatiomain of the variableextends
from O toco here necessitates no alteration of the appro>amati question. However, in
the problems that occur in atomic theory, in whibb terms of the series or Rontgen
levels can be described by a central field, onero#&ncounters the case in which the
assumptions upon which the goodness of the appatkimthat was described in 88 1
and 2 was based are no longer fulfilled and theficetion for a half-integer quantization
of the radial phase integral seems questionablesirglance. Here, | shall envision the
cases in whickk is equal to 0, 1, or 2, and which correspond to-Impdrogenic terms in
the so-called penetrating orbitsirfdringenden Bahnén In those cases, the functign
has a very steep maximum quite close to the sma#igsession point; (for k = 0, where
ri is equal to zero, it will become immediately intinfor r = 0), and the application of
the differential equation (7) to a discussion af #igenfunction in the neighborhood of
that point would become illusory. However, one e a simple approximate
description for the behavior of the eigenfunctiorihe vicinity ofr = 0 in these cases that
will be adequate for most practical purposes, ahathvwill show, at the same time, the
meaning that the half-integer quantization can gme&s In order to arrive at this
description, we remark that in the neighborhoodhef smallest regression pointand
the maximum ofy (for k = 0, that means close to= 0), the force field i€oulomb to a
good approximation, and can therefore be descihlydatie potential:

V() :_NTe2+ a. (24)

In this, N refers to an effective nuclear charge, while tbestanta gives a measure of
the so-called external shielding. It is usuallyadinm comparison to the maximal value of
y/2m. Now, for the hydrogenic orbits, the eigenvdtiis also small in comparison with
that maximal value, and we can therefore assettftihavalues ofr that have order of
magnituder; or less, thg-function (23) can be given approximately by thenfala:

2mNe 1 K kr1)

25
K2 r r2 (25)

Y _
K2~

If we take the radiu&?® / mé of the first “hydrogen orbit” as a unit of lengthen the
differential equation (23) will assume the followiform:
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&+ (ZN k(k+1)j¢ 0 (26)

r r

It obviously corresponds to the parabolic paths i@oulomb field. Those particular
solutions of (26) that are not infinite for= 0 can be expressed as follows by means of
the Besselfunctions of order R+ 1:

$ =1 3y (JBNI). 27)

When we make use of, e.g., the formulas that wevengby Jahnke-Emden and
consider only the first term in the asymptotic esR,(x) andQu(x) (see pp. 90), we will
get the asymptotic representation for (27):

3
6= 772 (2N)_1/4 Y4 cos| .[8Nr +m— ﬂ(k+%) —-71l4). (28)

~/ 8Nr

For k = 0 andk = 1, in particular, this formula will also be trweith considerable
accuracy for values affor which the representation (25) is still suibl

We shall now consider the values that the appratensolution (6) to the differential
equation (1) would assume in the same domain-efi.e., we take the step that would
correspond to equation (13) in 8 1. In order tdhdd, we set:

=== (29)

in which we temporarily undetermined and calcutbntemtegral—j \/7 dr, when we

take the regression point=1?/2N. One finds that:

_J' Jydr=2J2Nr-1? -2 arcta 2Nr = /8Nr + ZIZ

T

in which terms of relative order of magnituderlcan be neglected in the last expression.
With the same precision, the function (6) now asssithe form:

2

— -1/4 1/4 2 o
Y=(2N)"r cos{ 8Nx+m 7 ,[z’j, (30)

in which — again means the undetermined integration constdhe integral (4). Now,
a comparison between (28) and (30) teaches udq@hatctually does approximate the
eigenfunction when one sets:

L=l 4, (31)
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as in 8 1, and makes the assumption that:

| =k +4, (32)

N

in addition. In order to find an approximate solution of (283, will be led to consider
the mechanical problem for which the radial impylsis given by:

2 (k 1)2
p? =y= M[E—V(r)—g—m%}. (33)

It is known that (33) corresponds to just the classqgalation for the radial impulse in a
central motion when one has quantized the angular impfldke particle by half
integers. Now, since the difference between the tamn(®3) and (33) that include is
hardly significant, as long as one directs one’snétia to values of that lie at some
distance from the maximum of thefunction, we would, in turn, like to regard the
expression (18 a) as the approximate solution of (23),nbwhichy has been replaced
with the function (33).

We can then once more apply the arguments of § let@atbest regression point
and due to (15), we will be again led to equations (16) and (I'He half-integer
guantization then proves to be the natural method forulzding the eigenvalues
approximately, even for the smallest values of theattal quantum numbet)(

For the actual construction of the eigenfunctions of (28 must now proceed as
follows: For the very small values pfone employs:

¢ =7 Jpa(JBNT). (34a)

One must connect this function with the function:
g=y" cos( ['Jyar —77/4) , (34b)

in whichy is given by (33). At the second regression point and lategpone can again
employ the old formulas (18 c) and (18 €) or (18 h).

The arguments in this paragraph can be of some assistarite problem of
calculating the transition probabilities in the Réntgenes and spectra. By means of the
method that was applied ByuesandHartree, one can in fact, construct a central field
such that observed terms correspond to a half-integetigaon of the azimuthal and
radial impulses. The associated eigenfunctions cancdiestructed to a certain
approximation with the help of that field, and with the o§¢hem one can once more
calculate the characteristic oscillation amplitudes tire associated with the transition.

() If one wishes to continue applying formula (6) to ¢xeression (23) foy — i.e., if one set€ =k (k
+ 1) in (29) — then one must change the quantization presarifmtiosuch a way that one sets

%gﬁﬁdHJ k(k+1) —(k+%) =n+ % (ninteger).
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Appendix. — M. van der Held was kind enough to calculate the functi@r{x) that
was defined by equation (18 f). He found the following values:

& w '3 w & w '3 w '3 w

-9.0 | 4.4107° -19] 0071} -0.8] 0.299| 0.3 0.761] 1.4 0.871
-5.0 |0.00019 | -18 | 0.082}| -0.7 | 0.333| 0.4 0.803 1.5 0.823
-4.0 | 0.0017 -17 | 0.09 | -06 | 0.369| 0.5/ 0.843 1.6 0.761
-3.5 | 0.0045 -16 | 0.110| -05 | 0.408| 0.6/ 0.877 1.7 0.688
-3.0 |0.0121 -15| 0.127| -04 | 0451} 0,7 0.904 1.8 0.603
-25 |0.028 -14 | 0144} -0.3 | 0.493| 0.8/ 0.931 1.9 0.5Q7
-24 [ 0.034 -13(0.164| -0.2 | 0.538| 0.9/ 0.944 2.0 0.403
-2.310.039 -12 ] 0.186| -0.1| 0584} 1.0/ 0.950 2.1 0.290
-2.2 | 0.045 -11 | 0.211 0 0.629, 1.1 0.94f 22 0.172
-21 [ 0.054 -10 | 0239 +0.1] 0.674 1.2 0.938 23 0.048
-2.0 | 0.062 -09 | 0.268| +0.2| 0.719 1.3 0.90f 2{4-0.079

The following integral is of interest for the nornzaliion of the eigenfunctions:

+2.3

j W’dé = 1.54.




