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This article treats an approximate method for solving Schrödinger’s eigenvalue and eigenfunction problem 
for an arbitrary system with one degree of freedom.  In § 1, it will be shown that the so-called half-integer 
quantization represents a natural first approximation.  § 2 contains approximation formulas for the 
graphical determination of the eigenfunctions.  In § 3, the relationship between the method and the 
systematic process of approximations that was considered by Brillouin  and Wentzel will be discussed.  § 4 
treats central motion and includes approximation formulas for spectral problems. 
 
 
 § 1.  The approximate solution of the wave equation. – Suppose that one has posed 
the problem of the quantization of a system with one degree of freedom whose motion 
has an oscillatory character.  According to Schrödinger, the stationary states are 
determined by looking for the eigenvalues En for which the differential equation: 
 

ϕ″ + 
2

y

K
ϕ = 0,     (1) 

where 
y = 2m (En – V (x))     (2) 

 
(K = h / 2π, m = mass, V (x) = potential energy) has an everywhere-finite real solution ϕn .  
The quantum number n refers to the number of zeroes of ϕn between the two zeroes x1 
and x2 of y, which coincide with the points of regression of the motion that is calculated 
in classical mechanics.  For the case in which n is a large number, we can construct a 
function y that represents an approximate solution to (1) in the domain x1 < x < x2 by 
means of an elementary argument.  From the wave-like character of ϕ in this domain and 
the argument that y varies only slightly in the domain of a wave length for large n, we 
will be led to make the following Ansatz for ψ : 
 

ψ = g (x) cos f (x),     (3) 
 
in which g (x) is imagined to be a “flat” function of the same kind as y (x), while f (x2) – 
f(x1) has the order of magnitude nπ. 
 We will obtain an expression for f (x) when we observe that the wave length would be 
equal to 2π K y−1/2 for constant y.  That will, in fact, give the approximate condition for 
f(x): 

f (x + 2π K y−1/2) – f (x) = 2π, 
or 
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2π K y−1/2 f′ (x) = 2π, 
  

f (x) = 1/ 21 x
y dx

K ∫
.     (4) 

 
 We will get an expression for the function g (x) that represents the dependency of the 
wave amplitude on x by considering the differential equation: 
 

ϕ″ + 0 0 0
2

( ) ( )( )y x y x x x

K

′+ − ϕ = 0,    (5) 

 
which practically coincides with (1) in a region whose order of magnitude is one wave 
length.  Upon neglecting small quantities that are proportional to the second and higher 
powers of y′, a solution of (5) will be given by: 
 
 ϕ = cos (K−1 y1/2 (x – x0))  

– 1
4 y−1 y′ [(x – x0) cos K−1 y1/2 (x – x0) + K−1 y1/2 (x – x0)

2 sin K−1 y1/2 (x – x0)]. 

 
We deduce from this that the amplitude of the oscillating function that is represented by 
ϕ can be represented in the first approximation in a domain of order of magnitude one 
wave length by a factor of the form: 
 

1 – 1
4 y−1 y′ (x – x0). 

For that reason, we can then write: 
 

g′ g−1 = − 1
4 y′ y−1, g = y−1/4 

 
for the function g (x).  Our approximation for the eigenfunction will then assume the 
following form: 

ψ = y−1/4 cos 1/ 21 x
y dx

K ∫
.    (6) 

 
 We now come to the question of how the energy value En and the integration constant 
in (4) must be determined in order for ψ to actually approximate an eigenfunction of the 
problem.  In order to answer it, it will not suffice to consider only the properties of ψ, 
since ψ is already infinite at x1 and x2  and will assume complex values for x < x1 and x > 
x2 .  For that reason, we would like to consider the solution of (1) in vicinity of x1 .  When 
y′ assumes the value α at x1, and when we denote x – x1 by ξ, (1) will assume the form: 
 

ϕ″ +
2K

α ξ ϕ = 0     (7) 
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in the neighborhood of x1 .  The solution to this equation (1) can be represented in the 
form: 

ϕ = ( )1/ 2 3/22
1/3 3 /Z Kξ α ξ⋅ .    (8) 
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Figure 1. 

 
 However, the discussion will take on a simpler form when one writes it directly in the 
form of a definite integral: 

ϕ =
1/2

3
2

1
exp

3
C t t dt

K

α ξ
   +  
   

∫     (9) 

 
that lets the fact that ϕ is an entire function better emerge from the expression (8), among 
other things.  The integral (9) represents a solution for all x when the path of integration 
asymptotically approaches the directions with the arguments ± π / 3, π (cf., Fig. 1).  One 
further easily recognizes that for negative real ξ the integral that is extended along the 
curve W1 goes to the value zero with increasing ξ, and thus corresponds to the particular 
solution of (1) that is desired in wave mechanics.  If one takes the integral along a straight 
line from R to 0 and then from 0 to P then when one develops the integrand in powers of 
ξ and sets the factor C = − i, one will get: 
 

ϕ = 
1/3

1/6 1/6 3
2 2

1 2
3 3

3 3 K K

α αξ ξ−       Γ + Γ + +      
      

⋯ + …  (10) 

 

                                                
 (1) For the literature on this equation and its solutions, cf., e.g., Watson, Theory of Bessel Functions, 
Cambridge, 1922, pp. 188, et seq.  
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The asymptotic developments for large values of the argument 
1/3

2K

α 
 
 

ξ are important.  

One gets this simply with the help of the saddle-point method (1).   For negative real ξ, 

we need the saddle point at A 
1/3

2 | |OA
K

α ξ
   =  
   

, and the line of steepest descent, 

along which the integral is extended, will become a branch of a hyperbola W1 whose 
asymptotes are OP and OR.  One easily finds that: 
 

ϕ = 

1/41/3 1/ 2
3/2

2 2

2
| | exp | |

3K K

α απ ξ ξ
−

      −      
         

.   (11) 

 
For positive real ξ, we need the saddle points B and C: 
 

1/3

2OB OC
K

α ξ
   = =  
   

. 

 
The lines of steepest descent are the curve branches of degree three W2 and W3 , and the 
integral is extended over W2 , as well as W3 .  One then obtains the asymptotic expression: 
 

ϕ = 

1/ 41/3 1/2
3/2

2 2

2
2 cos / 4

3K K

α απ ξ ξ π
−

       −      
         

,  (12) 

 
which is different from (11) (2).  We can now compare this expression directly with the 
expression that (6) goes to for values of α that are not too distant from x1 .  One must then 
set y = α ξ / K2 and find immediately that: 
 

ψ = 
1/4 1/2

1/4 3/2
2 2

2
cos

3K K

α αξ ξ β
−

−
     −    

     
,   (13) 

 
in which – β initially represents the still-undetermined integration constant in the integral 
(4).  A comparison of (12) and (13) implies immediately that it is only for β = π / 4 that 
the function that is represented approximately by (6) will represent the particular solution 
of (1) that is required by wave mechanics; i.e., one must be able to write down ψ in the 
form: 

ψ = y−1/4 cos 
1

1/21
/ 4

x

x
y dx

K
π −  

∫ .   (14) 

                                                
 (1) Cf., say, Courant-Hilbert , Mathematische Physik, pp. 435.  
 (2) This is the so-called “Stokes phenomenon”; cf., Watson, Bessel Functions, pp. 435. 
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In this, we have introduced the permissible restriction that ϕ (x1) must be positive (1). 
 A consideration that is entirely similar to the one above can also be applied to the 
other points of regression, and one easily recognizes that in order for ψ to approximate an 
eigenfunction, one must likewise be able to write the expression (6) in the form: 
 

ψ = y−1/4 cos 
2

1

1/21
/ 4 / 2

x

x
y dx

K
π π − ±  

∫ .   (15) 

 
The plus or minus sign is true according to whether ϕ (x2) is positive or negative, 
respectively. 
 The condition for (14) and (15) to represent the same function reads: 
 

2

1

1/21
/ 4

x

x
y dx

K
π−∫ = 

2

1

1/21
/ 4 / 2 2

x

x
y dx m

K
π π π− ± +∫ ,  (16) 

 
in which m is a whole number.  This immediately implies that: 
 

2

1

1/21 x

x
y dx

K ∫
= K π (2m ± 1

2 ), 

 
or, when one multiplies both sides by 2, introduces the classical phase integral, and 
replaces K with its value h / 2π : 
 

2

1

1/ 22
x

x
y dx∫ = p dx∫�  = (2m ± 1

2 ) h.   (17) 

 
 We infer from this that our approximate representation (6) of the Schrödinger 
eigenfunction corresponds to exactly those energy values that would correspond to what 
one called a half-integer quantization, in the language of the old quantum theory.  The 
relative precision of these energy values will have an order of magnitude that is higher 
than 1 / n (in general, probably 1 / n2), while the energy values that are calculated by 
whole-number quantization generally differ from the Schrödinger eigenvalues by 
quantities whose relative order is 1 / n (2).  We have then arrived at a certain 

                                                
 (1) The fact that this is, in fact, allowable for one to consider the simple equation (7) for the range of ϕ 
in the vicinity of x1 follows as long as one can assume that y′ (x1)(x2 – x1), y″ (x1)(x2 – x1), etc., have the 
same order of magnitude as the values that g assumes between x1 and x2 .  A more precise examination will, 
in fact, show that when one assumes that x has, say, order of magnitude (x2 – x1) / n

2/5 – i.e., when (13) and 
(6) deviate from each other by the relative order of magnitude n−2/5 – the deviations of the expressions (11) 
and (12) from the function (10) will likewise have the relative order of magnitude n−2/5, and that the ϕ in 
(11) will already be small like exp (− n−2/5) for negative ξ, in addition. 
 (2 ) In fact, if we assume that in the region x1 < x < x2,  y′ (x) (x2 – x1) has the same order of magnitude 
that y has in that region then the distance between two successive zeroes of the function (6) will differ from 
the distance between the corresponding zeroes in the Schrödinger eigenfunction only by small quantities 
of order (x2 – x1) / n

2 ; i.e., they are small in comparison to the distance between successive zeroes.  A 
relative change in the energy value of order 1 / n would provoke a perturbation of the location of the zero 
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understanding of the fact that is known from many examples that half-integer 
quantization proves to be a better approximation to the results of quantum mechanics 
than whole-number quantization. 
 
 
 § 2.  The practical calculation of the eigenfunctions. – Our arguments give us a 
simple means of determining the eigenfunctions approximately that can be of practical 
utility in the cases where they cannot be expressed by means of elementary functions.  
Namely, if we employ the function: 
 

ϕ = y−1/4 cos ( )2

1

/ 4
x

x
y dx π−∫  x1 < x < x2 ,  (18a) 

 
in the domain x1 < x < x2, whose values can be ascertained graphically as long as y is 
known, then we can write [cf., (10), (12), and (13)]: 
 

ϕ =
1/6 1/3

1/6 1/61 1
12 2

1 1 2
3 3 ( )

3 32
x x

K K

α α
π

−
−

       Γ + Γ − +       
        

⋯ ,      x close to x1,     (18b) 

 

ϕ =
1/ 6 1/3

1/ 6 1/ 62 2
22 2

1 1 2
( 1) 3 3 ( )

3 32
n x x

K K

α α
π

−
−

       − Γ − Γ − +       
        

⋯ ,  x close to x2     (18c) 

 
in the close vicinity of the regression point itself.  In this, one has α1 = y′ (x1), α2 = y′ (x2), 
n = number of zeroes between x1 and x2 .  These formulas determine the tangents to the ϕ 
curve at the inflection points x1 and x2 . 
 The exponential decay of ϕ for x < x1 and x > x2 is given by the formulas: 
 

ϕ =
1/4 1/ 2

1/4 3/21 1
1 12 2

1 2
( ) exp ( )

2 3
x x x x

K K

α α−
−

    − − −    
     

, x < x1 ,     (18d) 

 

ϕ =
1/ 4 1/ 2

1/ 4 3/ 22 2
2 22 2

( 1) 2
( ) exp ( )

2 3

n

x x x x
K K

α α−
−

 −    − − −    
     

,  x > x2 .     (18e) 

 
However, instead of using formulas (18 b to e) explicitly, it is much simpler to evaluate 
the functional value of the integral: 
 

ω (x) = 
1

31
exp

32 W

i
t t dtξ

π
−  + 

 
∫     (18f) 

 

                                                                                                                                            
that would be incompatible with the properties of the eigenfunctions in the neighborhood of the two points 
of regression.  
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once and for all, for values of x = − ∞ up to, say, the first zero of ω (x) (cf., the function 
table on pp. 12) and employ the following expression for ϕ in the neighborhood of the 
regression point: 
 

ϕ =
1/6 1/3

1 1
12 2

( )x x
K K

α αω
−      −    

     
,  from x = − ∞ up to the first zero,   (18g) 

 

ϕ =
1/6 1/3

2 2
22 2

( 1) ( )n x x
K K

α αω
−     − −    

     
,   from the nth zero up to x = ∞ .     (18h) 

 
 I have applied the approximation formulas (18) to the case of the harmonic oscillator 
and found that for n = 1 and n = 0 they immediately put one into a position to construct 
the eigenfunctions with considerable precision. 
 
 
 § 3.  Relationship to the systematic method of approximation. – The function (6) 
that was derived by means of an elementary argument shows a close connection with the 
processes of successively calculating the eigenvalues and eigenfunctions that was treated 
by Brillouin  (1) and Wentzel (2), in which the solution of Hamilton ’s differential 
equation defines the first step.  These authors made the Ansatz: 
 

ϕ = exp 0 1 2( )
i

S KS KS
K
 + + +  

⋯ ,     (19) 

and one easily finds that: 
 

 0S′  = y± , S0 = y dx± ∫ , 

 

 1S′  = 0

02

Si

S

′′
′

, S1 = 0log
2

i
S′  = 

4

i
log y + const.  

 
If one truncates at the second approximation then one will get: 
 

ϕ = y−1/4 exp
i

y dx
K

 ± 
 

∫ .     (20) 

 
The plus and minus signs correspond to two particular solutions, and the function that is 
represented by (6) corresponds to just half the sum of these two solutions (3).  Now, what 

                                                
 (1) L. Brillouin , C. R. 183 (1926), 24.  
 (2) G. Wentzel, Zeit. Phys. 38 (1926), 518.  

 (3) In order to get (6) directly by means of the Riccati equation 
2
h

iπ
y′ = p2 – y2 that Wentzel appealed 

to explicitly (loc. cit., pp. 518), one cannot set y0 = ± p as a first approximation, but one must write: 
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is interesting about this is that the function (6) is not by any means a single-valued 
function of the same type as the eigenfunction that is approximating.  It can reproduce the 
latter only in the domain x1 < x < x2 , and indeed only when one determines the 
integration constant in the manner that was given in § 1.  However, the regression points 
themselves are singular locations and the function does not return to its old value when 
the variable crosses them.  One further infers from the formulas (18) that the 
eigenfunction that is approximated by (6) in the region outside the regression points by 
other approximate solutions of (1) will be approximated by, e.g.: 
 

ϕ = 
11/41

2

1
( ) exp

x

x
y y dx

K
− − − − 

 
∫     (21) 

 
for x < x1 .  Let it be pointed out here that there is no practical utility to preferring the 
simpler formula (18d) over the expression (21) for the calculation of the eigenfunction.  
Indeed, it obeys the differential equation (1) more precisely; however, due to the rapid 
exponential decay, the difference is not significant. 
 The essence of the multi-valuedness of the functions that one obtains from the 
approximation process (19) will become clear when one writes out the differential 
equations that the successive approximations obey.  Hence, the functions (6) and (20) 
satisfy the differential equation: 
 

ϕ″ +
2

2 2

5 4

16

y y yy

K y

′ ′′ −− 
 

ϕ = 0.    (22) 

 
(22) has singular locations at the regression points.  In a region that is finitely distant 
from them, the solutions of (22) will coincide with the solutions of (1) up to quantities of 
order K2 , but in the vicinity of those points, the solutions will be completely different.  It 
is known from mathematics that one should be careful when the solution to a differential 
equation is examined by means of a solution to an “approximate” differential equation 
(1).  It is in just our present case that the solution to (22) at some distance from the 
regression points indeed represents at the same time an asymptotic expression for a 
solution of (1).  However, the same particular solution of (1) will be approximated by 
various particular solutions of (22) in various parts of the x-plane.  It then seems that the 
method that Wentzel had already employed for the calculation of eigenvalues by the 

consideration of the complex integral / dxϕ ϕ′∫�  around the regression point, in which 

the successive approximations (19) for ϕ were employed, demands a more rigorous 
foundation.  The examples that were worked out generally let one suspect that it is 
consistent.  When one applies it to the approximate solution (20), one will immediately 
come to a prescription for half-integer quantization. 
 
 

                                                                                                                                            

y0 = i p  tan 2
p dx

h

π 
 ∫ 
 

. 

 (1) Cf., e.g., Schlesinger, Differentialgleichungen, pp. 199, et seq.  
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 § 4.  Application to central motions. – According to Schrödinger, the problem of a 
central motion in space can be reduced to the determination of the eigenvalues and 
eigenfunctions of the differential equation: 
 

ϕ″ + 
2

y

K
ϕ = 0, y = 2m (E – V(x)) − 

2

2

( 1)K k k

r

+
,  (23) 

 
in which the azimuthal quantum number k can assume the whole-number values 0, 1, 2, 
…, and V (r) represents the potential energy of the central force. 
 When one has two regression points r1 and r2 for which r ≠ 0 (that will be the case in 
the current problem when k ≠ 0), the problem will be entirely analogous to the one that 
was treated in §§ 1 and 2, as long as the fact that the domain of the variable r extends 
from 0 to ∞ here necessitates no alteration of the approximation in question.  However, in 
the problems that occur in atomic theory, in which the terms of the series or Röntgen 
levels can be described by a central field, one often encounters the case in which the 
assumptions upon which the goodness of the approximation that was described in §§ 1 
and 2 was based are no longer fulfilled and the justification for a half-integer quantization 
of the radial phase integral seems questionable on first glance.  Here, I shall envision the 
cases in which k is equal to 0, 1, or 2, and which correspond to non-hydrogenic terms in 
the so-called penetrating orbits (eindringenden Bahnen).  In those cases, the function y 
has a very steep maximum quite close to the smallest regression point r1 (for k = 0, where 
r1 is equal to zero, it will become immediately infinite for r = 0), and the application of 
the differential equation (7) to a discussion of the eigenfunction in the neighborhood of 
that point would become illusory.  However, one can give a simple approximate 
description for the behavior of the eigenfunction in the vicinity of r = 0 in these cases that 
will be adequate for most practical purposes, and which will show, at the same time, the 
meaning that the half-integer quantization can preserve.  In order to arrive at this 
description, we remark that in the neighborhood of the smallest regression point r1 and 
the maximum of y (for k = 0, that means close to r = 0), the force field is Coulomb to a 
good approximation, and can therefore be described by the potential: 
 

V (r) = − 
2Ne

r
+ a.     (24) 

 
In this, N refers to an effective nuclear charge, while the constant a gives a measure of 
the so-called external shielding.  It is usually small in comparison to the maximal value of 
y / 2m.  Now, for the hydrogenic orbits, the eigenvalue E is also small in comparison with 
that maximal value, and we can therefore assert that for values of r that have order of 
magnitude r1 or less, the y-function (23) can be given approximately by the formula: 
 

2

y

K
= 

2

2 2

2 1 ( 1)mNe k k

K r r

+− .    (25) 

 
If we take the radius K2 / me2 of the first “hydrogen orbit” as a unit of length then the 
differential equation (23) will assume the following form: 
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ϕ″ + 2

2 ( 1)N k k

r r

+ − 
 

 ϕ = 0.    (26) 

 
It obviously corresponds to the parabolic paths in a Coulomb field.  Those particular 
solutions of (26) that are not infinite for r = 0 can be expressed as follows by means of 
the Bessel functions of order 2k + 1: 
 

ϕ = ( )2 1 8kr J Nr+ .    (27) 

 
When we make use of, e.g., the formulas that were given by Jahnke-Emden and 
consider only the first term in the asymptotic series Pp(x) and Qp(x) (see pp. 90), we will 
get the asymptotic representation for (27): 
 

ϕ = π−1/2 (2N)−1/4 r1/4 cos ( )
3
8 1

2

2 ( 1)
8 / 4

8

k k
Nr k

Nr
π π

 + +
+ − + − 

  
.  (28) 

 
For k = 0 and k = 1, in particular, this formula will also be true with considerable 
accuracy for values of r for which the representation (25) is still suitable. 
 We shall now consider the values that the approximate solution (6) to the differential 
equation (1) would assume in the same domain of r – i.e., we take the step that would 
correspond to equation (13) in § 1.  In order to do that, we set: 
 

2

y

K
=

2

2

2N l

r r
− ,     (29) 

 

in which we temporarily undetermined and calculate the integral 
2

1

1 r

r
y dr

K ∫
, when we 

take the regression point r1 = l2 / 2N.  One finds that: 
 

2

1

1 r

r
y dr

K ∫
= 2

2

2
2 2 2 arctan 1

Nr
Nr l l

l
− − −  = 

22
8

8

l
Nr l

Nr
π+ − , 

 
in which terms of relative order of magnitude 1 / r can be neglected in the last expression.  
With the same precision, the function (6) now assumes the form: 
 

ψ = (2N)−1/4 r1/4 cos 
22

8
8

l
Nx l

Nx
π β

 
+ − −  

 
,   (30) 

 
in which – β again means the undetermined integration constant in the integral (4).  Now, 
a comparison between (28) and (30) teaches us that (6) actually does approximate the 
eigenfunction when one sets: 

β = π / 4,      (31) 
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as in § 1, and makes the assumption that: 
 

l = k + 1
2 ,     (32) 

 
in addition.  In order to find an approximate solution of (23), we will be led to consider 
the mechanical problem for which the radial impulse pr is given by: 
 

2
rp  = y = 2m 

( )22 1
2

2
( )

2

kK
E V r

m r

 +
 − −
 
 

.   (33) 

 
It is known that (33) corresponds to just the classical equation for the radial impulse in a 
central motion when one has quantized the angular impulse of the particle by half 
integers.  Now, since the difference between the terms in (23) and (33) that include k is 
hardly significant, as long as one directs one’s attention to values of r that lie at some 
distance from the maximum of the y-function, we would, in turn, like to regard the 
expression (18 a) as the approximate solution of (23), but in which y has been replaced 
with the function (33). 
 We can then once more apply the arguments of § 1 to the largest regression point r2, 
and due to (15), we will be again led to equations (16) and (17).  The half-integer 
quantization then proves to be the natural method for calculating the eigenvalues 
approximately, even for the smallest values of the azimuthal quantum number (1). 
 For the actual construction of the eigenfunctions of (23), one must now proceed as 
follows: For the very small values of r, one employs: 
 

ϕ = 2 1( 8 )kr J N rπ + .    (34a) 

 
One must connect this function with the function: 
 

ϕ = y−1/4 cos ( )
1

/ 4
r

r
y dr π−∫ ,   (34b) 

 
in which y is given by (33).  At the second regression point and beyond it, one can again 
employ the old formulas (18 c) and (18 e) or (18 h). 
 The arguments in this paragraph can be of some assistance in the problem of 
calculating the transition probabilities in the Röntgen series and spectra.  By means of the 
method that was applied by Fues and Hartree, one can in fact, construct a central field 
such that observed terms correspond to a half-integer quantization of the azimuthal and 
radial impulses.  The associated eigenfunctions can be constructed to a certain 
approximation with the help of that field, and with the use of them one can once more 
calculate the characteristic oscillation amplitudes that are associated with the transition. 

                                                
 (1) If one wishes to continue applying formula (6) to the expression (23) for y – i.e., if one sets l2 = k (k 
+ 1) in (29) – then one must change the quantization prescription in such a way that one sets 

( )1 1( 1)
2

y dr k k k
h

+ + − +∫� = n + 1
2  (n integer). 
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 Appendix. – M. van der Held was kind enough to calculate the function ω (x) that 
was defined by equation (18 f).  He found the following values: 
 

 

ξ 
 

 

ω 
 

ξ 
 

ω 
 

ξ 
 

ω 
 

ξ 
 

ω 
 

ξ 
 

ω 

− 9.0 4.4×10−9 − 1.9 0.071 − 0.8 0.299 0.3 0.761 1.4 0.871 

− 5.0 0.00019 − 1.8 0.082 − 0.7 0.333 0.4 0.803 1.5 0.823 

− 4.0 0.0017 − 1.7 0.096 − 0.6 0.369 0.5 0.843 1.6 0.761 
− 3.5 0.0045 − 1.6 0.110 − 0.5 0.408 0.6 0.877 1.7 0.688 

− 3.0 0.0121 − 1.5 0.127 − 0.4 0.451 0,7 0.904 1.8 0.603 
− 2.5 0.028 − 1.4 0.144 − 0.3 0.493 0.8 0.931 1.9 0.507 
− 2.4 0.034 − 1.3 0.164 − 0.2 0.538 0.9 0.944 2.0 0.403 

− 2.3 0.039 − 1.2 0.186 − 0.1 0.584 1.0 0.950 2.1 0.290 
− 2.2 0.045 − 1.1 0.211 0 0.629 1.1 0.947 2.2 0.172 

− 2.1 0.054 − 1.0 0.239 + 0.1 0.674 1.2 0.933 2.3 0.048 
− 2.0 0.062 − 0.9 0.268 + 0.2 0.719 1.3 0.907 2.4 − 0.079 

 
 The following integral is of interest for the normalization of the eigenfunctions: 
 

2.3
2dω ξ

+

−∞
∫  = 1.54. 

 
_____________ 


