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 When one lets F0 denote a real function of n real variables z1, z2, …, zn, and lets  F01, 
F02, …, F0n denote its partial derivatives then one can apply the considerations to the 
system of n functions (F01, F02, …, F0n) that I discussed in my communication on 4 
March of this year.  That special system is worthy of particular interest because one will 
be led to it when one extends the theory of curvature of surfaces to functions of several 
variables.  I shall preserve the terminology and notations of the article in the 
Monatsberichte on March of this year and set: 
 

Fk = F0k (for k = 1, 2, …, n) 
 
for the special case that will define the topic of the present article, and also for the sake of 
uniformity, replace F0 with F00 , when it seems appropriate.  Furthermore, as in my article 
on bilinear forms (Monastberichte of October 1866), I will let: 
 

| Agh | 
 
denote the determinant that is defined by the (n + 1)2 quantities: 
 

Agh  (g and h = 0, 1, 2, …, n) 
 

and let δgh denote “zero” or “one” according to whether g ≠ h or g = h, respectively.  The 
characteristic of the system (F01, F02, …, F0n) is then expressed by: 
 

(K)      − 
1

1
| |gh n

dw
F

Sϖ +⋅∫ . 

In the determinant under the integral sign, the indices g and h assume all values from 0 to 
n, and F0h , as well as Fh0 (which coincides with Fh), means the derivative of F0 with 
respect to zh , whereas when g and h are non-zero, Fgh refers to the derivative of Fg with 
respect to zh , or also the second derivative of F0 with respect to zg and zh .  If one sorts all 
systems of values (z) that satisfy the conditions: 
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F0 < 0,  F01 = F02 = … = F0n = 0 

into two categories according to whether the Hessian determinant of F0 has a positive or 
negative value then the integral (K), from the meaning of the word “characteristic,” will 
give the amount by which the number of systems of values in the first category exceeds 
the number in the second category.  On the other hand, the integral (K) has a well-known 
geometric meaning for the cases n = 2 and 3, and in fact, for n = 3, it means the curvatura 
integra that is extended over the entire closed surface, divided by 4π.  Therefore, the 
agreement between the curvatura integra and the characteristic of the system (F01, F02, 
…, F0n), divided by 4π has been proved, and in that way, a simple method for the 
determination of the total curvature of an arbitrary closed surface has been obtained. 
 The investigation of the integral above of the characteristic of a system (F01 , F02 , …, 
F0n) has led me to carry over the theory of curvature to functions of n variables.  In that 
investigation, I have found that the considerations that are useful for surfaces can be 
generalized in a very simple and elegant way and that the known analytical results will 
remain preserved entirely when one introduces n variables in place of the three space 
coordinates.  I shall reserve communicating my detailed investigations for later, and here 
I will only give some provisional suggestions about them. 
  
 I shall say planar ν-fold manifold to mean one that is cut out from the total n-fold 
manifold by (n – ν) linear equations, which can then be defined by n equations: 
 

zk − 0
kz  = 

1
kl i

i

c u
ν

=
∑  (k = 1, 2, …, n) 

 
when one introduces n new variables u.  A simple planar manifold can then be 
represented by a planar line in the form: 
 

zk − 0
kz  = ak t  (k = 1, 2, …, n), 

 
where 2

ka∑ = 1 and the variable t is, so to speak, the distance from the variable point (z) 

to the fixed point (z0) .  For two such lines, the expression: 
 

k ka a′∑  (k = 1, 2, …, n) 

 
corresponds to the cosine of the difference between the directions of the two lines.  
Furthermore, as in my paper on 4 March of this year, the line: 
 

zk − 0
kz  = kF

p
S

⋅  

 
is the normal to F0 at the point (z0), and p is the distance from the point (z) to the point 
(z0).  Obviously, the concept of the difference between the direction of a line and an (n – 
1)-fold manifold can also be established with the help of that determination. 
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 The (n – 1)-fold planar manifold that contacts the (n – 1)-fold manifold F0 = 0 at the 
point (z0) is: 

0( )k k kz z F−∑  = 0  (k = 1, 2, …, n), 

 
where the variables z are replaced with the corresponding values z0 in Fk , A second 
planar manifold that goes through the same contact point is: 
 
 (a, b)   zk − 0

kz  = ak u + bk v  (k = 1, 2, …, n), 

 
in which u and v mean two variables.  By a linear conversion of u and v, the values of a 
can chosen here in such a way that the line: 
 
 (a)    zk − 0

kz  = ak t   (k = 1, 2, …, n) 

 
lies in each contacting manifold, and that the line: 
 
 (b)    zk − 0

kz  = bk t   (k = 1, 2, …, n) 

 
is normal to the line (a).  The following equation then come about: 
 

k ka F∑ = 0, k ka b∑  = 0, 

while, as above, one has: 
2
ka∑ = 1, 2

kb∑ = 1, 

 
moreover.  If one imagines that a normal is determined to the line that is cut out of F0 by 
the manifold (a, b) in the manifold (a, b), and indeed at the point (z0), and if: 
 

ρ (a, b) 
 
is the distance along it from the point (z0) to the point of intersection of the neighboring 
normal then that will be the corresponding radius of curvature, and the quantity ρ, which 
depends upon the coefficients a and b, will be given by the equation: 
 

ρ (a, b) ⋅⋅⋅⋅ i k ika a F∑ = k ikb F∑  (i, k = 1, 2, …, n). 

 
Now, since the line: 

zk − 0
kz  = kF

p
S

⋅  

 
represents the normal to F0 at the point (z0), the right-hand side of the equation above is 
nothing but S times the cosine of the difference between the directions of the normal and 
the line (b).  Hence, when the line (b) coincides with the normal – i.e., so for a normal 
section (a, b) – one will have: 
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ρ (a, b) ⋅⋅⋅⋅ i k ika a F∑ = S, 

 
and as a result, in analogy to Meusnier’s theorem: 
 

ρ (a, b) = ρ (a) ⋅⋅⋅⋅ k kb f∑ , 

 
in which fk has been written for the quotient Fk / S, to abbreviate. 
 If one now looks for those values of the function ρ (a) for which its first derivatives 
all vanish [assuming that those derivatives can be defined, when one recalls the relations 
that exist between the quantities (a)] then it would be preferable to replace the n 
quantities a with (n – 1) quantities α, which are defined by the following equations: 
 

ak = rk kc α∑   (k = 1, 2, …, n), 

 
in which the summation over r extends over the values 1, 2, …, n – 1 (as it always will in 
what follows).  The coefficients crk are then to be determined in such a way that the 
substitution: 

xk = rk kc y∑  

fulfills the conditions: 
 

k kF x∑ = 0,  ik i kF x x∑ = 2
r ryλ∑ , 2

kx∑ = 2
ry∑ . 

 
One then gets the following defining equations for the coefficients c : 
 

2
rk

k

c∑ = 1,  0rh h
h

c F∑ = 0,  rh ih
h

c F∑ = λr cri , 

 
in which h assumes the values 0, 1, …, n, but i and k assume only the values 1, 2, …, n, 
and in which λr means any root of the equation: 
 

| Fgh – λ ⋅⋅⋅⋅ δgh | = 0 (g, h = 0, 1, 2, …, n) . 
 
Those roots are all real, and one easily convinces oneself of that fact when one replaces 
the last n2 of the (n + 1)2 quantities Fgh – so the quantities: 
 

Fik  (i, k = 1, 2, …, n), 
 
with φk , which appear in the orthogonal transformation: 
 

ik i kF x x∑ = 2
r ryφ∑ ,  2

kx∑ = 2
ry∑ . 

 Since one has: 
ρ (a) ⋅⋅⋅⋅ 2

r rλ α∑ = S,  2
rα∑ = 1, 
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from the determination that was given, all of the derivatives of ρ (a) will vanish when all 
(n – 1) quantities α are equal to zero, except for just (αr), and one will then set 2rα  = 1.  

Any of those special systems of values of the quantities a can then be given simply by the 
equations: 

ak = crk  (k = 1, 2, …, n), 
 

and the corresponding value of ρ will be: 

r

S

λ
. 

 
The radii of principal curvature will then be the (n – 1) values of the ρ (a), namely: 
 

ρr = 
r

S

λ
  (r = 1, 2, …, n – 1), 

 
will then be determined by the equation: 
 

| ρ ⋅⋅⋅⋅ Fgh – S ⋅⋅⋅⋅ δgh | = 0, 
 
so the two-fold planar manifold that belongs to any ρr , as the radius of curvature of the 
simple manifold that is cut out of F0 , will be: 
 

zk − 0
kz  = crk u + fk v, 

 
and the planar line in the contacting manifold that is cut from it will be: 
 

zk − 0
kz  = crk t . 

 
All of those (n – 1) lines that correspond to different values of the index r are normal to 
each other; i. e., for any two lines: 
 

zk − 0
kz  = crk t ,  zk − 0

kz  = csk t , 

the relation: 

rk skc c∑  = 0 

exists, and one have Euler’s formula: 
1

( )aρ
= 

2
r

r

α
ρ∑  

 
analogously, in which αr is defined by the equation: 
 

αr = rk k
k

c a∑ , 
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so it then represents the cosine of the difference between the directions of the two lines: 
 

 zk − 0
kz  = crk t , zk − 0

kz  = ak t , 

 
One sees from this how the quantities ρ1 , ρ2 , …, ρn−1 correspond to the essential relations 
between the radii of principal curvature of surfaces, and therefore one also once more 
finds the following fundamental property of them: 
 
 There are (n − 1) points (z) on the normal: 
 

zk − 0
kz  = fk ⋅⋅⋅⋅ p 

 
that are each cut by a neighboring normal, and the associated values of p are the 
quantities ρ1 , ρ2 , …, ρn−1 . 
 
 The negative reciprocal value of the product of the (n – 1) values of ρ, which satisfy 
the equation: 

| ρ ⋅⋅⋅⋅ Fgh – S ⋅⋅⋅⋅ δgh | = 0, 
 
is obviously identical to the expression that multiplies the element dw in the integral (K).  
The characteristic of the system: 

(F0 , F01, F02, …, F0n) 
can then be represented by: 

+ 
1 2 1

1

n

dw

ϖ ρ ρ ρ −
∫

⋯

, 

 
and the reciprocal value of the product ρ1 ρ2 … ρn−1 corresponds to the Gaussian 
curvature, because when one extends Gauss’s determination of the curvature to (n – 1)-
fold manifold F0 = 0 and compares the normals to ones for which: 
 

2
kz∑  = 1, 

 
one will get just that expression that multiplies the element dw in the integral (K) for 
quantity that corresponds to the curvature when one takes its negative; i.e., the reciprocal 
value of the product ρ1 ρ2 … ρn−1 .  It emerges from this that, in fact, for a function of n 
variables (F0), the characteristic of the function F0 and its system of n partial derivatives 
will correspond to the same number that gives the ratio of the curvatura integra of a 
closed surface to the area of a spherical surface.  Since that characteristic is given by the 
excess of the points (z) that lie in the interior of F0 , for which: 
 

F01 = F02 = … = F0n = 0, | Fik | > 0, 
 
over the ones for which: 

F01 = F02 = … = F0n = 0, | Fik | < 0, 
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when one varies the constant c for the various manifolds: 
 

F0 = c 
 
that characteristic can change only when points for which: 
 

F01 = F02 = … = F0n = 0 
 
are included or excluded from the interior region (F0 < c) under that variation. 
 The geometric relationship between the characteristic and system of functions is not 
restricted to the special systems that were treated here.  However, for the general system 
(F0 , F1, F2, …, Fn), the Kummer density will appear in place of the Gaussian curvature in 
the geometric relationship.  Namely, if one considers the (n – 1)-fold infinite system of 
planar lines: 

zk − 0
kz  = 

0 0 0
1 2
0 0 0
1 2

( , , , )

( , , , )
k n

n

F z z z
t

S z z z
⋅…

…

  (k = 1, 2, …, n), 

 
in which 0 0 0

0 1 2( , , , )nF z z z…  = 0 and F1 , F2 , …, Fn  mean any single-valued functions of 

the n variables z (so the assumption above that they agree with the derivatives of F0 has 
been dropped), and every planar line of the system corresponds to a point (z0) in the (n – 
1)-fold manifold F0 = 0, as well as a point (z): 
 

ζk = 
0 0 0
1 2
0 0 0
1 2

( , , , )

( , , , )
k n

n

F z z z
t

S z z z
⋅…

…

  (k = 1, 2, …, n) 

 
of the (n – 1)-fold manifold: 

2 2 2
1 2 nζ ζ ζ+ + +⋯  = 1. 

 
However, in the relation that arises between the two (n – 1)-fold manifolds: 
 

0 0 0
0 1 2( , , , )nF z z z…  = 0,   2

kζ∑ = 1, 

 
the ratio of the absolute values of the elements of both manifolds will be expressed by: 
 

1
| |ghn
F

S
⋅

⋅S
  (g, h = 0, 1, 2, …, n), 

in which one takes: 
Fg0 = Fg , 

 

F0k = 0

k

F

z

∂
∂

, Fik = i

k

F

z

∂
∂

 

for i, k = 1, 2, …, n, and: 
S

2 = 2 2 2
01 02 0nF F F+ + +⋯ , 
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S 2 = 2 2 2
1 2 nF F F+ + +⋯ , 

 
and one substitutes the variables z0 that are coupled to each other by the equation: 
 

0 0 0
0 1 2( , , , )nF z z z…  = 0 

 
in the function F.  Now, since one has: 
 

R ⋅⋅⋅⋅ S = | Fgh | , 

 
with the meaning that I gave to R in my aforementioned paper in March of this year, that 
ratio of the elements will be represented by: 
 

n

R

S
 ; 

 
i.e., by just the expression that multiplies the element dw of the manifold F0 = 0 in the 
integral of the characteristic.  Therefore, when one assigns the meaning of rectangular 
space coordinates to the variables z1 , z2 , z3 in the case of n = 3, the element of the 
integral of the characteristic of a general system of functions: 
 

(F0 , F1 , F2 , F3) 
 
for the ray system that is defined by the equations: 
 

zk − 0
kz  = 

0 0 0
1 2
0 0 0
1 2

( , , , )

( , , , )
k n

n

F z z z
t

S z z z
⋅…

…

  (k = 1, 2, 3), 

 
0 0 0

0 1 2 3( , , )F z z z = 0 

 
will be the element of the surface (F0 = 0) projected onto the normal plane to the 
associated ray, multiplied by the Kummer density or the element of the surface (F0 = 0)  
itself, multiplied by the density of the ray system that refers to it.  That will show that the 
theory of the characteristics of systems of functions is connected just as closely to the 
geometric theory as it is to potential theory, and one might probably recognize that this 
relationship between the original concept of the characteristic, which was developed from 
purely-analytical principles, and other known theories can be a probe for their 
authenticity, and therefore a proof that the introduction of that concept into science is 
entirely natural and necessary. 
 

__________ 
 


