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 Up to now, the atmospheric refraction of rays has been treated almost exclusively 
only upon the basis of ratios of magnitudes that are coincidentally appropriate to our 
Earth for the practical use of astronomy and geodesy.  On has, in turn, a series of very 
interesting phenomena that his theory features when they are considered from a more 
general, more mathematical viewpoint, which seem to have been completely unnoticed, 
up to now.  The brief exposition of the phenomena that I would like to give here will 
perhaps also be of interest because even though it does not pertain to our Earth, it still 
must actually pertain to the larger heavenly bodies – e.g., Jupiter – even when the 
strengths of the atmosphere of such a heavenly body are significantly less that those of 
the Earth atmosphere. 
 
 
 1. The curvilinear path of a light ray in an inhomogeneous, transparent, simply-
refracting medium whose absolute refraction exponent n is a continuous function of the 
rectangular coordinates x, y, z of position is determined by the following differential 
equations: 
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in which ds refers to the differential arc length, and: 
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refer to the partial differential quotients of n.  As is easy to show, one of these three 
equations will be a consequence of the other two, such that two of them will suffice for 
the complete determination of the path of the light rays. 
 If one compares these equations with the known differential equations by which one 
determines the equilibrium position of a flexible string that is acted upon by a given force 



Kummer – On atmospheric ray refraction. 2 

then one will remark that they are completely identical with them if the refraction 
exponent n is the same function of x, y, z that the stress T is at each point of the string.  
One recognizes the basis for this identity almost immediately when one applies the 
principle of least action to one and the other equation.  The refraction exponent n is 
known to be inversely proportional to the velocity of light at the point considered, so one 
will then have: 

ds

dt
= 

1

n
, dt = n ds, 

 
and since the motion of light from one point to another takes place in the shortest time: 
 

∫ n ds 
 
must be a minimum.  On the other hand, the equilibrium of the flexible string demands 
that the sum of all the stresses of the individual arc elements between any two given 
points must be a minimum.  Thus 
 

∫ T ds 
 
must be a minimum.  One finds the above differential equations from these conditions 
from the rules of the calculus of variations, which must be the same for both problems 
when T is the same function of x, y, z as n is. 
 
 
 2. The general differential equations will now be applied to the case in which the 
refraction exponent n is any function of the distance from a fixed center, so the refraction 
exponent will have the same value for all points of the outer surface of a ball of arbitrary 
radius in the transparent medium, which is a case that approximates the atmosphere of a 
heavenly bodies in a regular state.  Every curve that a light ray describes in such a 
medium will obviously lie completely within a plane that goes through the center; if it 
were chosen to be the x, y coordinate plane then one would have z = 0, and n would be a 
function of: 

r = 2 2x y+ . 

 
The third differential equation will be fulfilled identically in this case, but the other two, 
which already sufficed for the complete solution of the problem, will give 
 

dx dy
y d n xd n

ds ds
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 = 0 

 
when one multiplies one of them by y and the other one by x and subtracts them.  If one 
develops this equation and sets: 
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dy dx
x y

ds ds
− = p 

then one will obtain: 
n dp + p dn = 0, 

so 
np = C 

 
will be a first integral.  If one introduces polar coordinates by setting: 
 

x = r cos ϕ, y = r sin ϕ 
then one will get: 

2

2 2 2

nr d
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ϕ
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so 
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2 2 2

Cdr

r r n C−
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 If one now assumes that the transparent medium surrounds an opaque ball with a 
radius of R in the manner of an atmosphere then one will have to consider only the values 
of r that are greater than R.  Therefore, if one sets r = R + v and Rϕ = u then u and v can 
be regarded as coordinates of the curve, and indeed, u – viz., the abscissa − will be an arc 
of the great circle on the sphere and v – viz., the ordinate – will be the altitude of the 
point of the curve considered above the outer surface of the ball that is erected at the 
endpoint of the abscissa.  One will then have: 
 

u + B = 
2 2 2( ) ( )

G

RC dv

R v R v n C+ + −
∫ . 

 
For the determination of the two integration constants, it shall be assumed that the light 
ray starts from the point of the sphere whose coordinates are u = 0 and v = 0, and that its 
initial direction makes an angle of inclination i with the horizontal plane at that point.  
One will then have: 

B = 0, C = n0 cos i, 
 
where n0 refers to the value of n for v = 0.  The equation of the curve of the light ray will 
then become: 

u = 
2

0

2 2 2 2 2
0
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( ) ( ) cos
G

R n i dv
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∫ . 

 
 
 3. Now, there are two essentially different cases to distinguish, namely, the first 
case, in which the quantity under the square root sign, which shall be briefly denoted by: 
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V = (R + v)2 n2 – R2 cos2 i, 
 
shall be equal to zero for no positive value of v, and otherwise positive, and the second 
case, in which that quantity shall be equal to zero for some positive value of v.  The 
refraction exponent n, as a function of the altitude v, shall temporarily be left arbitrary 
and subject to only the condition that is must be a single-valued function of v that 
approaches a finite limit for v = ∞ that cannot be smaller than one, and furthermore, that 
n itself, as well as its first and second differential quotients, must not become infinitely 
large for any positive value of v. 
 If V is not equal to zero from v = 0 to v = ∞ then u will also become constantly larger 
with increasing v, but for v = ∞, u will take on a finite value, as is easy to show.  If one 
denotes it by c then: 

c = 
2

0

0
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( )

R n i dv

R v V

∞
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It follows from this that the curve of the light ray will always have a rectilinear 
asymptote, and that the angle that this asymptote makes with the vertical at the point u = 
0, v = 0, when it is expressed as the arc for radius one, will be equal to: 
 

c

R
 = 0

0
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Thus, the angle of refraction – which might be denoted by Θ – for objects whose distance 
is very large in comparison to the radius R, as the difference between the direction of the 
asymptote and the direction of the tangent to the initial point, will be: 
 

Θ = 
2 2

c n−  + i; 

 
this can also be easily put into the form: 
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 4.  I shall now consider the other case, in which V is equal to zero, for one, or also for 
several, positive values of v.  Let v = b be the smallest of these values, and let the value of 
the abscissa that belongs to it be u = a, so: 
 

a = 
2

0

0

cos

( )

b R n i dv

R v V+∫ . 

 



Kummer – On atmospheric ray refraction. 5 

One now comes to the question of whether this well-defined integral – or a – has a finite 
or an infinitely-large value.  From Taylor’s theorem, one has: 
 

V(v) = V(b) – (b – v) V′(b) + 
2( )

2

b v−
V″(ε), 

 
where ε is a quantity that lies between the limits of 0 and b.  Now, since it was assumed 
above that the function n, along with its first two differential quotients, were not infinite 
the same thing will obviously be true, as well, for the function V and its first two 
differential quotients V′ and V″ for all positive finite values of v.  Now, when V′(b) is not 
equal to zero, but V decreases from positive values to negative ones, so V′(b) will have a 
negative value, where V(b) is equal to zero, V will have the form: 
 

V = (b – v) W, 
 
where W will have a finite, non-zero value for v = b.  One concludes from this by known 
rules that in this case – viz., where V′ is not equal to zero for v = b – the integral a will 
have a finite value.  By contrast, if V′, as well as V, are both equal to zero for v = b then V 
will take the form: 

V = (b – c)2 W1, 
 

where W1 will not be infinite for v = b, from which, it would follow that the integral a 
would have an infinitely large value in that case. 
 First of all, let V′ be non-zero for v = b, so a finite value of the abscissa u = a will 
belong to the value v = b of the ordinate.  Once v has reached the value b, starting from 

zero, it cannot become larger, since otherwise V  would become imaginary; however, 

the curve of the light ray cannot break suddenly at the point u = a, v = b, since the light 
ray must remain in the continuously-transparent medium, so it must once more become 

smaller from there to v – hence, dv will be negative – and at the same time, the root V  
must take on a negative sign that can come about without disrupting continuity, since that 
square root will go through the value zero for v = b.  The curve of the light ray will thus 
attain its maximum altitude at the point u = a, v = b, and then it will once more approach 
the sphere from there, and indeed in such a way that the increasing part of the curve will 
be completely symmetric to the decreasing part, and it will again return to the outer 
surface of the ball, and the distance from the starting point to the point where it again 
meets the sphere will be equal to 2a, when measured as the arc length of a great circle of 
the sphere. 
 Here, one enters into the same situation as in the known phenomenon of air reflection, 
namely, when a light ray comes tangentially at an infinitely small angle to a layer of air 
that is relatively too thin for it to break through, it will suffer a kind of total reflection and 
turn back from there into the thicker layer of air. 
 Secondly, if V′, as well as V, is equal to zero for v = b, so a becomes infinitely large, 
then the ordinate v will approach the limit v = b when the abscissa u goes to infinity.  The 
curve of the light ray will thus go around the sphere infinitely many times and 
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asymptotically approaches a circle whose radius is equal to R + b, or whose height above 
the sphere is equal to b. 
 5.  The various values of the inclination angle i shall now be brought under 
consideration.  If the quantity (R + v)2 n2 attains its smallest absolute value, which is at 
the same time smaller than 2 2

0R n , for v = b, and one determines the acute angle i = I by 

means of the equation V = 0 for v = b, namely: 
 

cos I = 
0

( ) ( )R n

R n

β β+
, 

 
then V can be equal to zero only when the inclination angle i lies between the limits of 0 
and I, and for each of the limiting values of i there will also be actually one or more 
positive values of v for which V = 0; let the smallest of them be v = b.  It will then follow 
from this that: 
 All light rays that depart from the sphere with an angle i > I will go to an infinite 
distance from it and have rectilinear asymptotes; however, the ones that leave the sphere 
at an angle that is smaller than I will attain only a certain maximum altitude v = b that is 
smaller than β, and then will generally return to the outer surface of the ball, but in the 
special case for which not only V = 0 for v = b, but also V′ = 0, the light ray will approach 
a circle whose altitude above the sphere is equal to b. 
 This latter case of the circular asymptote of the light ray always comes about when i = 
I, since v = β for that value of the angle of inclination and V will attain its minimum, 
whose value is equal to zero, so one will have both V = 0 and V = 0 for v = β.  One can 
also enter in that case even for other values of i that between the limits 0 and I, namely, 
when the quantity V becomes equal to zero for certain other smaller values of v – e.g., for 
v = β′.  The light ray will then also have a circular asymptote at the altitude β′ for the 
value of the inclination angle i that is determined by the equation: 
 

cos i = 
0

( ) ( )R n

R n

β β′ ′+
. 

 
 

 6. In order to apply the results that were found for the phenomena of atmospheric 
ray refraction to other heavenly bodies, I will assume that they are spherical and consider 
the temperature of the atmosphere to be constant at the various altitudes, which are 
assumptions that suffice entirely for the present purpose, in which one does not arrive at 
the most precise numerical results that are possible, but only to the qualitative character 
of the phenomena.  It is known that the density of the atmosphere, as a function of the 
altitude v above the outer surface of the heavenly body whose radius is R, when it is 
determined from the law of gravity and Mariotte’s law, has the expression: 
 

( )
Rv

R ve λ
−

+ , 
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when the density at the outer surface is set to unity, and λ equals the altitude of an air 
column of constant density one which exerts the same pressure on the outer surface of the 
heavenly body as its atmosphere actually does.  Thus, from a known physical law: 
 

n2 = 1 + k ( )
Rv

R ve λ
−

+ , 
 

where k is the absolute refracting power of the air at the outer surface of the heavenly 

body, or 1 k+  is its absolute refraction exponent.  If one now sets: 

 

( )

Rv

R vλ +
= w, 

 
for the sake of brevity, then one will get the equation: 
 

n = 
2

0

1 cos

( )

R k i dv

R v V

+
+∫  

 
for the curve of the light ray, where: 
 

V = (R + v)2 (1 + k e−w) – R2 (1 + k) cos2 i, 
 

from which, one will obtain the following values for the first and second differential 
quotients of V: 

 V′ = 2 (R + v) (1 + k e−w) − 
2R k

λ
e−w, 

 

 V″ = 2 + k e−w 
22

1
( )

R

R vλ
 

− + 
 + k e−w . 

 
Since the second differential quotient V″ is always positive, as the expression itself 
shows, the first V′ will be a function that increases along with v, so V′ can be zero only 
for a single value of v, when it goes from positive to negative, and if this value of v that 
gives V′ = 0 should be positive then V′ will still be negative for v = 0, and conversely, if 
V′ is negative for v = 0 then the equation V′ = 0 will have a positive root, which shall be 
denoted by b.  The condition that V′ should be negative for v = 0 gives: 
 

2R (1 + k) − 
2R k

λ
 < 0, 

or 

R > 
2 (1 )k

k

λ +
. 
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 For those heavenly bodies for which this condition is not fulfilled, but: 
 

R < 
2 (1 )k

k

λ +
, 

 
V′ will be positive for all positive values of v, so V will constantly increase, and as a 
result, it will never be equal to zero for any value of the inclination angle i.  Therefore, 
for these heavenly bodies, all rays that emanate from a point of the outer surface will go 
to infinity, and no other point of the outer surface can be seen from any point of that 
surface, strictly speaking.  This is the case for our Earth, for which, in fact, under the 
assumption of a constant temperature of 0 degrees: 
 

k = 0.000589,    λ = 7974 m,    R = 6366198 m, 
so 

2 (1 )k

k

λ +
 = 27092000 m, 

 
which is a value that is larger than the radius R of the Earth. 
 
 
 7. The refraction phenomena of the heavenly bodies for which: 
 

R > 
2 (1 )k

k

λ +
 

 
shall now be examined more closely.  For them, there will be a single positive value v = β 
for which V′ = 0, which can be calculated easily from the equations: 
 

ew + 
2 2

k Rk
w

λ
−  + k = 0, v = 

R w

R w

λ
λ−

. 

 
If one now determines the acute angle I, which is the value of i that satisfies the equation 
V = 0 for v = β, so: 

cos I = 
( )( ) 1

1

R

RR ke

R k

β
λ ββ

−
++ +

+
, 

 
then for all values of the inclination angle i that lie between 0 and I, the equation: 
 

V = 0 
 
will have two real, positive roots, the smaller of which, v = b, will be the maximum 
altitude to which the light ray will rise above the heavenly body, and one will have: 
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cos i = 
( )( ) 1

1

Rb

R bR b ke

R k

λ
−

++ +
+

. 

 
The arc length 2a from the starting point at which the light ray again meets the heavenly 
body is: 

2a = 
2

0

2 1 cos

( )

b R k i dv

R v V

+
+∫ . 

 
 While i increases continuously from 0 to I, b will increase from 0 to β, and 2a will 
increase from zero to infinity.  If one lets i1, i2, i3, … denote the values of i that belong to 
the values of 2a that equal Rπ, 2Rπ, 3Rπ, …, resp., then these inclination angles will 
define an increasing sequence whose infinitely-distant term will be equal to I.  If one now 
thinks of an arbitrary point on the outer surface of such a heavenly body as an observer 
then he must be able to survey the entire outer surface of the heavenly body from that 
point.  It must appear to be a concave shell to him whose boundary – viz., the apparent 
horizon – is elevated above the true horizon by the angle I.  In this shell, the entire outer 
surface of the heavenly body must be visible from an angle of zero up to i1, and indeed 
the closer objects on it must appear to have their natural proportions right up to the 
antipodes, but the more distant ones, which lie closer to the antipodes, must increasingly 
flatten and, at the same time, grow narrower.  The points that lie diametrically opposite to 
the observer must appear to be a complete circle that is extended under the inclination 
angle i1 by which this first image completes the entire outer surface.  In the annular 
interval between the angles i1 and i2, a second complete image of the entire outer surface 
must be visible, in which the observer must see himself in the boundary that is 
determined by the angle i2, and indeed, from behind, and distorted into a complete circle.  
A third image of the entire outer surface will lie between the angles i2 and i3, a fourth 
between i3 and i4, and so forth, to infinity, and this infinite sequence of images, which 
soon become extraordinarily narrow, will conclude with the apparent horizon for the 
angle I. 
 If one now considers the value of i that is greater than I and for which V can therefore 
no longer equal zero then: 

c

R
 = 

0

1 cos

( )

R k i dv

R v V

∞ +
+∫  

 
will be the angle that the asymptote of the light ray that goes to infinity will define with 
the vertical line at the point u = 0, v = 0.  When i decreases continually from the value π / 
2 to the value I here, the angle c / R will increase continually from zero to infinity.  If one 
now denotes the values of i that give c / R = π, 2π, 3π, … by i′, i″, i″′, …, respectively, 
then they will define a decreasing sequence of quantities that will have the value I for 
their limiting value.  An observer at an arbitrary point of the outer surface of the heavenly 
body, which can be chosen to be the coordinate origin u = 0, v = 0, can view the entire 
starlit sky down to the nadir from the zenith to the apparent zenith distance π / 2 – i′.  A 
second complete, but very narrow, image of the entire starlit sky must appear between the 
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angles i′ and i″ (and thus, between the zenith distances π / 2 – i′ and π / 2 – i″),  a third, 
even narrower, image must appear between the angles i″ and i″′, and so forth to infinity.  
This infinite sequence of images, which become ever narrower quite rapidly, concludes 
with the angle I and the apparent horizon. 
 If one does not merely consider those light rays that emanate from a point on the 
outer surface of the heavenly body, or − what amounts to the same thing – meet such a 
point, but locates the observer at an arbitrarily distant point from the heavenly body – 
e.g., on any other heavenly body – then the same remarkable situation will occur.  
Namely, the entire outer surface – viz., the front and rear halves – of the heavenly body 
will also be visible from such a standpoint: first, in a disc-shaped principal image, and 
then an infinite sequence of these discs surrounding annular images.  Furthermore, the 
entire starlit sky in the atmosphere of such a heavenly body will also be visible in 
infinitely-many images. 
 
 
 8.  In order to now examine which heavenly bodies might fulfill the condition: 
 

R > 
2 (1 )k

k

λ +
, 

 
upon which, these remarkable refraction phenomena will depend, one must make only 
one special assumption about the strength of the atmosphere when one takes the absolute 
refracting power of that surrounding air to be equal to that of Earth.  One can measure the 
strength of the Earth atmosphere as being the one that would exist over the Earth at an 
altitude of 7974 meters when it has constant density equal to unity.  The strength of the 
atmosphere of another heavenly body should now be measured in a similar way by the 
altitude h at which the surrounding air would have when it has the same density equal to 
one everywhere; i.e., the density that air has at the outer surface of the Earth. 
 If one lets R1, k1, λ1 denote the values that these three quantities have for our Earth, 
under the assumption of a constant temperature of zero degrees, such that: 
 

R1 = 6366198 m,      λ1 = 7974 m,      k1 = 0.000589, 
 

and one takes the mass of the Earth to be equal m1 and the value of gravity at its outer 
surface to be equal g1, while R, λ, k, m, g mean the corresponding quantities for another 
heavenly body, then one will have: 

1

g

g
 = 

2
1
2

1

mR

m R
. 

 
The pressure of the h meter-high air column of unit density relates to the pressure of the 
λ1 meter-high air column on the Earth like hg to λ1 g1, so the density of the lowest layer 
of air to the other heavenly body, which shall be denoted by δ, relates to the unit density 
like hg to λ1 g1, in any case, and one will have: 
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δ = 
1 1

hg

gλ
. 

 
Since n2 – 1 = k1 for air of unit density, moreover, n2 – 1 = k1δ for air of density δ, so k = 
k1δ, or: 

k = 1

1 1

hgk

gλ
. 

 
The air column that has height h for unit density will have height h / δ for density δ, so 
one will have: 

λ = 
h

δ
 = 1 1g

g

λ
. 

The condition: 

R > 
2 (1 )k

k

λ +
 

will then give: 

1

1 1

Rhgk

gλ
 > 1 1 1

1 1

2
1

g hgk

g g

λ
λ

 
+ 

 
, 

or 

h > 
2 2

1 1
2

1 1 1 1

2

2

g

Rg k g hk

λ
λ−

, 

 
so when the strength of the atmosphere that is to be measured by h satisfies this 
condition, the remarkable phenomena that were explained above will occur. 
 
 
 9.  I take Jupiter as a special case, whose radius is roughly 10.86 times as big as the 
Earth radius, and whose mass is about 338 times as big as that of the Earth.  One will thus 
have: 

1

R

R
 = 10.86, 

1

m

m
 = 338, R = 691356000 

 
for Jupiter, and as a result: 
 

1

g

g
= 2.866, l = 2782, k = 

0.001688

7974

h ⋅
. 

 
One will then find that the quantity condition above for the strength of the atmosphere 
that Jupiter must have in order for this kind of phenomena to take place on it is: 
 

h > 389, 
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and since 389 is somewhat smaller than the twentieth part of 7974, it will then follow that 
it would already be sufficient if the atmosphere of Jupiter were also only as strong as the 
twentieth part of the Earth atmosphere. 
 However, one makes the assumption about the strength of the Jupiter atmosphere that 
seems to be the most reasonable one − namely, that the mass of the air on Jupiter relates 
to that of the Earth as the total mass of Jupiter to that of Earth − so one will have: 
 

4R2πh : 2
1 14R πλ  = 338 : 1, 

 
from which, one will get that h = 22852; that would then make: 
 

k = 0.00484, λ = 2782. 
 

One the finds the value of β = 11394 m from the equation V′ = 0, and from that, the value 
of I = 3o 48′.  With that assumption, the outer surface of Jupiter will appear to be a 
concave shell whose boundary, as the apparent horizon, is elevated by 3o 48′ above the 
true horizon. 
 I further remark that the expression “visible” that was used in the foregoing is to be 
taken only in its geometric sense, namely, that, in fact, the light rays in the given 
directions would arrive at the eye under the assumptions that were made.  Namely, if one 
brings under consideration the weakening or the complete disappearance that the light 
rays suffer in an atmosphere that is not absolutely transparent – e.g., as they do for our 
Earth – then only a few of them will actually remain in the physiological and physical 
sense of the given phenomena.  Only a certain part of the principal, first image of the 
Jupiter outer surface that is directed by the higher or lower degree of transparency will 
actually be indistinguishable from the second, third, and following images.  Likewise, of 
the entire starlit sky, not once will the first image be clearly distinguished completely, 
and even the Sun, which never rises or sets on Jupiter, due to the refraction of its rays, 
since its image can never sink below the apparent horizon, will also be the first image if it 
goes too far below the true horizon, which must then appear to be flattened into a very 
narrow ellipse that is hardly recognizable to the eye.  In the vicinity of the apparent 
horizon, only a blue strip will appear in place of the infinitely many images of the entire 
sky and the entire outer surface of Jupiter. 
 
 Berlin, in July 1860. 
 

___________ 
 


