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30 July.  Session of the physical-mathematical class. 
 
 Kummer presented three models of the general, infinitely-thin rectilinear ray bundles 
that are produced by filaments, and gave the following communication: 
 
 As I have established in a treatise that appeared in volume 57 of Borchardt’s 
mathematical journal on 17 October, the general, infinitely-thin ray bundles are bounded 
by rectilinear surfaces whose generating lines will always go through two straight lines 
that are perpendicular to the axis of the ray bundle, and likewise though an infinitely-
small, closed curve that surrounds the axis.  In the present model, this small, closed curve 
will be chosen to be a circle whose plane is perpendicular to the axis, and whose center 
will lie on the axis.  The bounding surface of the ray bundle will then be a fourth-degree, 
rectilinear surface whose sections that are perpendicular to the axis will be ellipses 
everywhere, of which, two of them will degenerate into straight lines for the ray bundles 
that are represented by the first and second models.  The two light rays that are 
perpendicular to the axis, and which correspond to the two rectilinear sections of the ray 
bundle, and with them, likewise the two planes that are drawn through the axis and any of 
the straight light rays – which I call the focal planes of the ray bundle – will define a right 
angle in the first model, and an acute angle in the second one, but in the third one, they 
will be imaginary and define an imaginary angle, such that the ray bundle and its 
surrounding surface will remain real.  The three types of ray bundle that are represented 
by this model, along with their limiting cases – namely, the conics and cylinders – are, as 
I have proved in the cited treatise, the only mathematically-possible ones.  Since then, I 
have now also examined the question of whether, and under what circumstances, these 
can and must actually occur in nature as optical ray bundles, and in this regard, I have 
found a very general and simple theorem that gives the complete answer to this question, 
and indeed, not only for simply-refracting media − whose wave surface is a sphere − but 
also for uniaxial crystals − whose wave surface us a sphere and an ellipsoid of rotation − 
and for biaxial crystals − which are associated with the Fresnel wave surface − and even 
for all possible transparent media or crystals that might be associated with any other wave 
surface of light.  This theorem is the following one: 
 
 Theorem: Any infinitely-thin, optical ray bundle, in whose interior a homogeneous, 
transparent medium has the property that its two focal planes will cut out two curves that 
will intersect in conjugate directions from the wave surface of light that is associated 
with that medium, and whose center is assumed to lie on the axis of the ray bundle; any 
ray bundle that has this property will also be optically-representable. 
 
 Amongst the conjugate directions on the wave surface, one will find the directions of 
two conjugate diameters of the infinitely-small Dupin conic section that is associated 
with the point of the wave surface in question – namely, the indicatrix – if one 
understands that this conic section will be an ellipse or a hyperbola, according to whether 
the surface is convex-convex or convex-concave at this location. 
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 For any chosen direction in the crystal, and for any point of intersection of the radius 
vector that is parallel to it with the wave surface, one can choose the position of one focal 
plane to be arbitrary, and the position of the other focal plane will then be determined 
completely by the theorem that we gave.  There will always be a well-defined position of 
the first focal plane, for which, the second focal plane will make a right angle with it, 
such that the ray bundles of the first kind − whose focal planes are perpendicular to each 
other − can then exist for all arbitrary directions of their axes in any crystal, but, in 
general, only for a certain position of the focal planes. 
 It is only when the wave surface is convex-convex at the point of the wave surface at 
which the radius vector meets it – so the indicatrix will be an ellipse – and one rotates the 
first focal plane around the radius vector as axis, starting from the position in which that 
focal plane is perpendicular to the second one, that the angle between the two focal 
planes will become smaller and attain a well-defined minimum, for which the two focal 
planes will lie in such a way that the angle between them will bisect the mutually-
perpendicular focal planes.  If one lets α denote the angle around which the first focal 
plane will rotated from the given initial position and denotes the angle between the two 
associated focal planes by γ then one will find the smallest value of γ when γ = 2α. 
 Secondly, if the wave surface at the endpoint of the radius vector in question is 
convex-concave – so the indicatrix will be a hyperbola – and one rotates the first focal 
plane from the position in which the second one is perpendicular to it then the angle γ 
between the two focal planes will become smaller, and it will attain the value zero at a 
well-defined position, and if one continues from that position then the angle γ will again 
increase to 90o, and will then assume the value zero for a second time.  The two positions 
of the focal planes for which γ = 0 will correspond to the directions of infinitely-small 
radius of curvature on the wave surface or − what amounts to the same thing − the 
asymptotes of the hyperbolic indicatrix.  Since the hyperbola possesses imaginary 
conjugate diameters, in addition to its real conjugate diameters, it will then follow that for 
those directions in which the radius vector meets a convex-concave part of the wave 
surface, there will also exist infinitely-thin ray bundles of the third kind that have 
imaginary focal planes. 
 If the transparent medium is simply-refracting − so its wave surface is the outer 
surface of a sphere – then all of its indicatrices will be circles, and it follows that all of 
the conjugate directions can only be mutually-perpendicular, and since the radius vectors 
will be everywhere-perpendicular to the wave surface here, it will then also follow that 
the focal planes must be everywhere-perpendicular to the ray bundle.  In a simply-
refracting medium, one will then find no other optical ray bundles besides ones of the 
first kind, whose focal planes will be mutually perpendicular. 
 When the transparent medium is an optically-uniaxial crystal whose irregular rays 
form an ellipsoid of rotation on the wave surface then the indicatrices will only be 
ellipses.  The direction in which the first focal plane must lie (which is then perpendicular 
to the second one) is the only one in which the optical axis can lie, here.  If the rotational 
semi-axis of the wave ellipsoid is equal to c, the semi-axis that is perpendicular to it is 
equal to a, and furthermore, ω is the angle that the axis of the ray bundle makes with the 
optical axis, and: 
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is the radius vector that corresponds to this direction then the smallest angle γ between 
the two focal planes of the ray bundle that lies in this direction will be given by the 
formula: 
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according to whether c < a or c > a, resp.; i.e., according to whether the uniaxial crystal is 
a negative or positive one, resp.  For ω = 90o – i.e., for the position that is perpendicular 
to the optical axis, one gets the ray bundle with the smallest angle between the focal 
planes that can exist in such a crystal, at all, namely: 
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according to whether c < a or c > a, resp. 
 For the double path, for which: 
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c
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one will then obtain: 
γ = 83o 45′ 50″. 

 
Inside of the double path, one will then find no other ray bundles, as such, for which the 
angle between the two focal planes lies between 90o and 83o 45′ 50″.  For the ray bundles 
that are perpendicular to two parallel, double paths on the natural surfaces of the 
rhombohedron, and define an angle of 44o 36′ 30″ with the optical axis, one will find that 
the smallest angle between the focal planes will be γ = 87o 5′. 
 In optically-biaxial crystals – which are associated with the Fresnel wave surface – 
one finds, not only the ray bundles of the first and second kind − and indeed for all angles 
between the two focal planes from a right angle down to zero − but also the ray bundles 
of the third kind that have imaginary focal planes.  In fact, the Fresnel wave surface has 
four places on its exterior sheet at which it is convex-concave, which are places that will 
be bounded by the four, well-known circles at which one finds singular tangential planes 
contacting the surface.  The ray bundles of the third kind and the ones for which the angle 
between the focal planes drops down to zero are found in only those directions of the 
crystal whose corresponding radius vectors meet the wave surface inside these circles.  
For any of the directions that are included in these limiting directions, there is a well-
defined minimum of the angle γ between the two focal planes, which will get larger as the 
radius vector gets further away from the aforementioned four circles.  The value of the 
angle γ as a function of the direction of the axis of the ray bundle and the direction of the 
first focal plane, as well as the value of the minimum of γ for any given direction of the 
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axis of the ray bundle, can be given with no particular difficulty, but since the 
expressions are nonetheless somewhat complicated, I would like to pass over them here. 
 If one allows a ray bundle of the first, second, or third kind that exists inside of a 
crystal to go from it into a simply-refracting medium – e.g., air – then it will always be 
converted into a ray bundle of the first kind with mutually-perpendicular focal planes, 
and for that reason, one can conversely, generate any ray bundle that is possible in a 
crystal in such a way that one lets a suitable ray bundle of the first kind fall upon the 
crystal. 
 One can generate a ray bundle of the first kind that has arbitrary given distances to the 
two mutually-perpendicular rectilinear sections in the simplest way by means of a convex 
spherical lens, through which one lets the light that emanates from a point go, and which 
must go through a narrow opening, in addition, in order for the ray bundle to be 
sufficiently thin.  If one arranges the lens in such a way that its axis lies in the direction of 
the incident light itself then one will obtain only a conical ray bundle in which the two 
rectilinear sections combine into a single point – viz., the focal point.  However, if one 
rotates the lens in such a way that its axis defines an acute angle with the direction of the 
incident light then the two rectilinear sections will drift apart from each other, and their 
separation will get larger as this angle gets smaller; likewise, the two rectilinear sections 
will increase in length proportionately.  A white paper that is held perpendicular to the 
axis of the ray bundle at various distances will illustrate its different sections, among 
which, the two rectilinear, mutually-perpendicular ones will emerge as entirely apparent. 
 

________ 
 


