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Hr. Kummer presented three models of general, infinitely-thin, rectilinear ray sheaves 
that are composed of filaments and coupled that to the following publication: 

 
 As I proved in a paper that appeared in volume 57 of Borchardt’s mathematical 
Journal and was presented to this class on 17 October of the previous year, the general, 
infinitely-thin sheaves of rays are bounded by rectilinear surfaces whose generating lines 
will always go through two straight lines that are perpendicular to the axis of the ray 
sheaf, and will simultaneously go through an infinitely-small, closed curve that surrounds 
the axis.  In the present models, this small, closed curve will be chosen to be a circle 
whose plane is perpendicular to the axis and whose center lies on the axis.  The bounding 
surface of the ray sheaf will thus be a rectilinear surface of degree four whose sections 
that are perpendicular to the axis will always be ellipses, two of which will degenerate 
into straight lines in the first and second models of ray sheaves that will be represented.  
The two straight guiding lines that are perpendicular to the axis, and which correspond to 
the two rectilinear sections of the ray sheaf, and along with them, the two planes that are 
laid through the axis and either of the straight guiding lines – which I call the focal planes 
of the ray sheaf – define a right angle in the first model and an acute angle in the second 
one, but in the third one they will be imaginary and define an imaginary angle, but in 
such a way that the ray sheaf and its bounding surface remain real.  The three kinds of ray 
sheaf that are represented by these models and their bounding surfaces – namely, the 
conical and cylindrical surfaces, as I proved in the cited paper – are the only ones that are 
mathematically possible.  Since then, I have also examined the question of whether, and 
under what circumstances, these sheaves can and must actually occur in Nature as optical 
ray sheaves, and I have found a very general and simple theorem in regard to that, which 
gives the complete answer to the question, and indeed, not only for the simply-refracting 
media whose wave surface is a sphere, the uniaxial crystals whose wave surface is the 
sphere and an ellipsoid of rotation, and the biaxial crystals, which belong to Fresnel wave 
surfaces, but in fact for all possible transparent media or crystals that might belong to any 
other wave surface of light.  The theorem is the following one: 
 
 Theorem: 
 
 Any infinitely-thin, optical ray sheaf in the interior of a homogeneous medium has the 
property that its two focal planes cut two curves that intersect in conjugate directions out 
of the wave surface of light that belongs to this medium, and the midpoints of these 
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curves will be chosen to lie on the axis of the ray sheaf.  Moreover, every ray sheaf that 
has that property will actually be optically-representable. 
 
 Among the conjugate direction on the wave surface, one will find the directions of 
two conjugate diameters of the infinitely-small Dupin conic section that belongs to the 
point of the wave surface in question – namely, the indicatrix – which is a conic section 
that is either an ellipse or a hyperbola according to whether the surface is convex-convex 
or convex-concave at that location, respectively. 
 For each well-defined direction in the crystal, and for each point of intersection of 
that direction with the radius vector of the wave surface that is parallel to it, one can 
choose the position of the one focal plane arbitrarily, and the position of the other focal 
plane will then be determined completely, from the theorem that was given.  There will 
always be a certain position of the first focal plane for which the second focal plane 
defines a right angle with it, such that the ray sheaf of the first kind – whose focal planes 
are perpendicular to each other – will exist in any crystal for any arbitrary direction of its 
axis, but only for a certain position of itsfocal planes, in general. 
 Now, first of all, when the wave surface is convex-convex at the point at which radius 
vector meets it − so the indicatrix will be an ellipse − and one rotates the first focal plane, 
starting with the position in which it is perpendicular to the second one, around the radius 
vector as axis then the angle between the two focal planes will become smaller and it will 
attain a well-defined minimum for which the two focal planes lie in such a way that the 
angle between the mutually-perpendicular focal planes will be bisected.  If one lets α 
denote the angle through which the first focal plane is rotated from given, initial position 
and one denotes the angle between the two associated focal planes by γ then the smallest 
value of γ will occur when γ = 2α . 
 Secondly, if the wave surface is convex-concave at the endpoint of the radius vector 
in question – so the indicatrix will be a hyperbola – and one rotates the first focal plane 
from the position in which the second one is perpendicular to it then the angle γ between 
the two focal planes will become smaller and attain the value zero at a well-defined 
position, and if one goes to that position then the angle γ will again increase to 90o and 
then decrease to zero a second time.  The two positions of the focal planes for which γ = 
0 correspond to the directions of the infinitely-large radius of curvature of the wave 
surface, or – what amounts to the same thing – the directions of the asymptotes of the 
hyperbolic indicatrix.  Since the hyperbolas possess imaginary, conjugate diameters, in 
addition to their real, conjugate diameters, it will then follow that for the directions in 
which the radius vector enters a convex-concave part of the wave surface, the infinitely-
thin ray sheaf of the third kind – which has imaginary focal planes – will also actually 
come about. 
 If the transparent medium is a simply-refracting one, so its wave surface is the outer 
surface of a ball, then all indicatrices will be circles, and it will follow that all conjugate 
directions will only be mutually-perpendicular, and that since the radius vectors are 
everywhere perpendicular to the wave surface here, it will then follow that focal planes of 
the ray sheaves will also be everywhere mutually-perpendicular.  In a simply-refracting 
medium, no other optical ray sheaves can exist besides ones of the first kind whose focal 
planes are mutually-perpendicular. 
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 If the transparent medium is an optically-uniaxial crystal whose irregular rays have an 
ellipsoid of rotation for their wave surface then the indicatrices will only be ellipses.  The 
direction in which the first focal plane must lie in order for the second one to be 
perpendicular to it here is always the one in which the optical axis lies.  If the semi-axis 
of rotation of the wave ellipsoid is equal to c, the semi-axis of that ellipsoid that is 
perpendicular to the latter axis is a, and ω is the angle that the axis of the ray sheaf makes 
with the optical axis, moreover, and: 
 

ρ = 
2 2 2 2cos sin

ac

a cω ω+
 

 
is the radius vector that corresponds to that direction then the smallest angle γ between 
the two focal planes of the ray sheaf that lies in that direction will be given by the 
formula: 
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according to whether c < a or c > a – i.e., according to whether the uniaxial crystal is a 
negative or positive one, respectively.  For ω = 90o – i.e., for the position that is 
perpendicular to the optical axis – one will obtain the ray sheaf with the smallest angle 
between the focal planes that can even exist in such a crystal, namely: 
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according to whether c < a or c > a. 
 For Iceland spar, for which: 

1

a
 = 1.483, 

1

c
 = 1.654, 

one will then get: 
γ = 83o 45′ 50″. 

 
Inside Iceland spar, one will then find no other ray sheaves, as such, for which the angle 
of the two focal planes lies between 90o and 83o 45′ 50″.  For the ray sheaves that are 
perpendicular to two parallel, natural surfaces of the rhombohedral Iceland spar and 
define an angle of 44o 36′ 30″ with the optical axis, one will find that the smallest angle 
between the focal planes is γ = 87o 5′. 
 In the optically-biaxial crystals, which belong to the Fresnel wave surface, one finds 
not only the ray sheaves of the first and second kind (and indeed for all angles between 
the two focal planes from a right angle to zero), but also the ray sheaves of the third kind, 
which have imaginary focal planes.  In fact, the Fresnel wave surface has four locations 
on its outer shell at which it is convex-concave, which are locations that will be bounded 
by the known four circles at which the contact of the singular tangential planes with the 
surface takes place.  The ray sheaves of the third kind and the ones for which the angle 
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between the focal planes drops to zero exist only in the directions in the crystal whose 
corresponding radius vectors meet the wave surface inside these circles; for each of the 
direction that are included between these limits, there is a certain minimum of the angle γ 
between the two focal planes that will become ever larger as the radius vector once more 
grows further away from the aforementioned four circles.  The value of the angle γ, as a 
function of the direction of the axis of the ray sheaf and the direction of the first focal 
plane, as well as the value of the minimum of γ for every given direction of the axis of 
the ray sheaf, can be give without any difficulty, although the expressions will become 
complicated, so I would not like to go into them here. 
 If one lets a ray sheaf of the first, second, or third kind that exists inside of a crystal 
leave that crystal into a simply-refracting medium – e.g., into air – then it will always be 
converted into a ray sheaf of the first kind with mutually-perpendicular focal planes, and 
for that reason, one can, conversely, optically generate any ray sheaf that is possible in a 
crystal in such a way that one lets a suitable ray sheaf of the first kind fall upon the 
crystal. 
 One can generate a ray sheaf of the first kind with arbitrarily-given distances between 
the two mutually-perpendicular rectilinear sections most simply by a convex, spherical 
lens, through which one lets the light that emanates from a point go, and in addition, the 
light must go through a narrow opening in order for the ray sheaf to be sufficiently thin.  
If one directs the lens in such a way that its axis lies in the direction of the incident light 
itself then one will get only the conical ray sheaf, for which the two rectilinear sections 
coalesce into a single point – viz., the focal point; however, if one rotates the lens in such 
a way that its axis defines an acute angle with the direction of the incident light then the 
two rectilinear sections will diverge from each other, and their separation will grow larger 
as that angle grows smaller; likewise, the two rectilinear sections will also increase in 
length proportionately.  A piece of white paper that is held perpendicular to the axis of 
the ray sheaf at various distances will make the various sections visible, among which, 
the two that are rectilinear and mutually-perpendicular will also emerge quite clearly. 
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