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 Let F1, F2, …, Fn be given functions that include n unknown functions y1, y2, …, yn, in addition 

to the m independent functions x1, x2, …, xm, along with a finite number of derivatives: 
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then we, with Leo Koenigsberger, will say that the system F1, F2, …, Fn possesses the generalized 

kinetic potential f. 

 Our problem shall be to show the general validity of the elegant existence conditions for such 

a potential that Arthur Hirsch presented (*) but proved only for m = 1 in some very special cases. 

I shall follow precisely the same path that Hirsch pursued in deriving the necessity of those 

 
 (*) A. Hirsch, “Über eine characteristische Eigenschaft der Differentialgleichungen der Variationsrechnung,” 

Math. Ann. 49 (1897), 49-72. 

 “Die Existenzbedingen des verallgemeinerten kinetischen Potential,” Math. Ann. 50 (1898), 429-441. 
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conditions. By contrast, I had to look for a new way of proving the sufficiency of the conditions 

that are known to be necessary. 

 

 

 1. – Before we turn to the topic itself, we shall first present some considerations about systems 

of linear differential expressions that are adjoint to each other. 

 If we denote n undetermined functions of x1, x2, …, xm by: 

 

u1, u2, …, um , 

and let: 

Phk (u) = 

1 2
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be 2n  linear homogeneous differential expressions, from which we compose the n sums: 
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then an obvious question to ask would be: How must the n functions be arranged in order for: 
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to be representable by an aggregate of m exact differential quotients with respect to the individual 

arguments? 

 The property that is required of the expression (2) shall be denoted by ~ 0 in what follows, to 

abbreviate. In order to also express the demand: 
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we shall bring into consideration the fact that the differential expression that is adjoint to Phk (u): 
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is known (*) to be characterized completely by the property: 

 

 
 (*) G. Frobenius, “Über adjungierte lineare Differentialausdrücke,” J. reine angew. Math. 85 (1878), pp. 207. 
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v  Phk (u) − u  adj. Phk (v) ~ 0 . 

 

Thus, our requirement above can also be written: 
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Since the uk are undetermined here, the individual coefficients: 
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 We shall call the sums: 
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which then define the left-hand sides of some remarkable differential equations, the system of 

linear differential expressions that is adjoint to the system (1). 

 If the two systems (1) and (5) coincide once we identify the symbols uk and vk then we will call 

the system (1) self-adjoint. 

 The necessary and infallible criterion for the occurrence of that case is expressed by the 

equations: 

  adj. Phk (u) = Pkh (u)   (h, k = 1, 2, …, n), 

which we can also write in the form: 

 

(6)  u  Pkh (v) − v  Phk (u) ~ 0   (h, k = 1, 2, …, n). 

 

 

 2. – The kinetic potential: 
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leads to the derived system: 

 

F1 = V1 (f) , F2 = V2 (f) , …, Fn = Vn (f) . 

 

That is defined by the property that is known from the calculus of variations that the difference of 
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can be represented by an aggregate of m exact differential quotients with respect to the individual 

arguments x1, x2, …, xm . That can be expressed with the help of the symbol ~ in the form: 

 

  
hu f  ~ k hu F    (h = 1, 2, …, n). 

 

 If we apply those relations to the process: 
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then since 
i

d

dx
 and 

kv  commute, that will give: 

( )
k hv u f   ~ 

kh v hu F  . 

One will likewise have: 

( )
h ku v f   ~ 

hk u kv F  . 

 

As a result of the commutability of the two processes 
hu  and 

kv , it will follow from this that: 

 

(7)  
kh v hu F  ~ 

hk u kv F    (h, k = 1, 2, …, n). 

 

If we introduce the symbol Phk (uk) for 
hu kF  then those formulas will go to the system (6). Their 

content can then be expressed by saying: 

 

 I. The system of linear differential expressions that is derived from the functions: 

 

F1 = V1 (f) , F2 = V2 (f) , …, Fn = Vn (f) , 

namely: 

 

(8)      Fh = 
1 2 nu h u h u hF F F  + + +   (h = 1, 2, …, n), 

 

is self-adjoint. 

 

 

 3. – The theorem that was just proved can be inverted. That is almost self-explanatory when 

the derivatives of y1, y2, …, yn are not included in Fh , but in addition to the: 

 

x1, x2, …, xm , 

only: 

y1, y2, …, yn 

 

will appear. Namely, in that case, the system that is adjoint to the system: 
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If those two systems coincide as soon as we identify the symbols uk and vk then: 
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If that condition is satisfied in the neighborhood of a location: 

 

x1 = a1 ,    x2 = a2 ,     …,     xm = am ,    y1 = b1 ,    y2 = b2 ,     …,     ym = bm 

 

then one will have that: 

 

(9)  F1 dy1 + F2 dy2 + … + F2 dy2 

 

is a complete differential there, when one considers x1, x2, …, xm to be only parameters. F1, F2, …, 

Fn, can then be represented in the form: 
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in the stated neighborhood. If we choose f to be the rectilinear integral of the differential (9) of (b1, 

b2, …, bn) to (y1, y2, …, yn) then we will have: 
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 4. – The generalization of the known formula (10) leads to the following general converse to 

Theorem I in a simple way: 

 

 II. – Let F1, F2, …, Fn be given functions of the quantities: 

 

x1, x2, …, xm ;  y1, y2, …, yn ; … ; 1 2( )i i i

ky  , …, 

and let: 
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x1 = a1,    x2 = a2, …, xm = am ;  y1 = b1,    y2 = b2, …, yn = bn ; … ; 1 2( )i i i

ky   = 1 2( )i i i

kb  , … 

 

mean a location (S) such that the coefficients that appear in the system: 

 

(8)      Fh = 
1 2 nu h u h u hF F F  + + +   (h = 1, 2, …, n) 

 

and the system adjoint to it exist at not only that location, but also in a certain neighborhood (C) 

of it. In addition, let the system (8) be self-adjoint at (C). One can then construct a function: 
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with the help of a quadrature by means of which the functions Fh can be represented in the form: 

 

  F1 = V1 (f) ,    F2 = V2 (f) ,    …,    Fn = Vn (f) (h = 1, 2, …, n), 

 

in a certain neighborhood ( )C  of (S). 

 

 If we again denote by the symbol Phk (uk) then our assumption that the system (6) is self-adjoint 

can be expressed by the following equations: 

 

(11) 
1

( )
n

hk k

k

P u
=

  = 
1

adj. ( )
n

kh k

k

P u
=

   (h = 1, 2, …, n). 

 

By our assumption, those equations are satisfied identically. Thus, they will still be true when we 

replace the yk, uk, and their derivatives with other quantities. Above all, we would like to replace: 

 

y1, y2, …, yn , 

and its derivatives with the functions: 

 

t (y1 – 1) + 1 , t (y2 – 2) + 2 , …, t (yn – n) + n , 

 

and their derivatives. Here, the k mean arbitrary, but given, functions of x1, x2, …, xm . The symbol 

t denotes a new parameter that does not appear in the k . With the stated substitution, for which 

we introduce the symbol [ ], equations (11) will go to: 
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Here, we have: 
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then we can also write: 
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 If we now replace u1, u2, …, un , and their derivatives with the functions: 

 

y1 – 1 , y2 – 2 , …, yn – n , 

 

and their derivatives then the sum 
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and the product t [adj. Pkh (u)] will go to: 

 

Vh ((yk – k) [Fk]) – hk [Fh] , 

 

in which hk means one or zero according to whether h and k are equal or different, resp. Equation 

(12) will ultimately go to the following one then: 
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 If we now integrate over t from t = 0 to t = 1. and in so doing consider that this integration 

commutes with the operation Vh , then we will, in fact, get: 

 

Fh = Vh (f) , 

in which: 

(15) f = 

1

1 0

( )[ ]
n

k k k

k

y F dt
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That is the desired generalization of (10). 

 Naturally, the formulas that led to this result can be applied only within a certain domain of 

validity. We must then establish a domain in which our result is valid unconditionally. 

 Let the neighborhood (C) of the location (S) in which equations (11) have been assumed to be 

satisfied identically be defined by: 

 

| xi – ai | < i ,  | yh – bh | < h ,  1 2 1 2( ) ( )i i i i i i

h hy b −  < 1 2( )i i i

h
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We would like to choose 1, 2, …, n , to be entire rational functions such that for x1 = a1, …, xm 

= am, the derivative: 
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resp. Let the initial value of the h be: 

 

h (a1, a2, …, am) = bh , 

 

which would be natural. We now determine 1  , 2  , …, n   such that for: 

| xi − ai | < i  ,  | yh − bh | < 
2

h
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we have the inequalities: 
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If we now define the neighborhood ( )C  of (S) by the inequalities: 
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then all of our formulas will be true in that domain for 0  t  1. Therefore, the system: 

 

F1, F2, …, Fn 

 

will actually possess the generalized kinetic potential (15) in ( )C . 

 

 Budapest, 8 June 1905. 

 

__________ 

 


