The existence conditions for the generalized kinetic potential

By
JOSEPH KÜRSCHAK in Budapest

Translated by D. H. Delphenich

Let $F_{1}, F_{2}, \ldots, F_{n}$ be given functions that include n unknown functions $y_{1}, y_{2}, \ldots, y_{n}$, in addition to the m independent functions $x_{1}, x_{2}, \ldots, x_{m}$, along with a finite number of derivatives:

$$
y_{1}^{(1)}=\frac{d y_{1}}{d x_{1}}, \quad \cdots, \quad y_{h}^{(i)}=\frac{d y_{h}}{d x_{i}}, \quad \cdots, \quad y_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}=\frac{d^{v} y_{h}}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}}
$$

If there is a function:

$$
f\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} ; y_{1}^{(1)}, \ldots, y_{h}^{(i)}, \ldots, y_{h}^{\left(i_{1} i_{2} \cdots i_{i}\right)}, \ldots\right)
$$

such that every F_{h} can be represented in the form:

$$
\begin{aligned}
F_{h}=V_{h}(f) & =\frac{\partial f}{\partial y_{h}}-\frac{d}{d x_{1}} \frac{\partial f}{\partial y_{h}^{(1)}}-\frac{d}{d x_{2}} \frac{\partial f}{\partial y_{h}^{(2)}}-\cdots \\
& +\frac{d^{2}}{d x_{1}^{2}} \frac{\partial f}{\partial y_{h}^{(11)}}+\frac{d^{2}}{d x_{1} d x_{2}} \frac{\partial f}{\partial y_{h}^{(22)}}+\cdots \\
& -\frac{d^{3}}{d x_{1}^{3}} \frac{\partial f}{\partial y_{h}^{(111)}}-\frac{d^{3}}{d x_{1}^{2} d x_{2}} \frac{\partial f}{\partial y_{h}^{(112)}}-\cdots
\end{aligned}
$$

then we, with Leo Koenigsberger, will say that the system $F_{1}, F_{2}, \ldots, F_{n}$ possesses the generalized kinetic potential f.

Our problem shall be to show the general validity of the elegant existence conditions for such a potential that Arthur Hirsch presented (${ }^{*}$) but proved only for $m=1$ in some very special cases. I shall follow precisely the same path that Hirsch pursued in deriving the necessity of those

[^0]conditions. By contrast, I had to look for a new way of proving the sufficiency of the conditions that are known to be necessary.

1. - Before we turn to the topic itself, we shall first present some considerations about systems of linear differential expressions that are adjoint to each other.

If we denote n undetermined functions of $x_{1}, x_{2}, \ldots, x_{m}$ by:

$$
u_{1}, u_{2}, \ldots, u_{m}
$$

and let:

$$
\begin{gathered}
P_{h k}(u)=\alpha_{h k}\left(x_{1}, \ldots, x_{m}\right) u+\beta_{h k}\left(x_{1}, \ldots, x_{m}\right) \frac{d u}{d x_{1}}+\cdots+\mu_{h k}\left(x_{1}, \ldots, x_{m}\right) \frac{d^{v} u}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}}+\cdots \\
(h, k=1,2, \ldots, n)
\end{gathered}
$$

be n^{2} linear homogeneous differential expressions, from which we compose the n sums:

$$
\begin{equation*}
\sum_{k=1}^{n} P_{1 k}\left(u_{k}\right), \quad \sum_{k=1}^{n} P_{2 k}\left(u_{k}\right), \quad \ldots, \quad \sum_{k=1}^{n} P_{n k}\left(u_{k}\right), \tag{1}
\end{equation*}
$$

then an obvious question to ask would be: How must the n functions be arranged in order for:

$$
\begin{equation*}
v_{1} \sum_{k=1}^{n} P_{1 k}\left(u_{k}\right)+v_{2} \sum_{k=1}^{n} P_{2 k}\left(u_{k}\right)+\cdots+v_{n} \sum_{k=1}^{n} P_{n k}\left(u_{k}\right) \tag{2}
\end{equation*}
$$

to be representable by an aggregate of m exact differential quotients with respect to the individual arguments?

The property that is required of the expression (2) shall be denoted by ~ 0 in what follows, to abbreviate. In order to also express the demand:

$$
\begin{equation*}
\sum_{h=1}^{n} \sum_{k=1}^{n} v_{h} P_{h k}\left(u_{k}\right) \sim 0 \tag{3}
\end{equation*}
$$

we shall bring into consideration the fact that the differential expression that is adjoint to $P_{h k}(u)$:

$$
\text { adj. } P_{h k}(u)=u \cdot \alpha_{h k}-\frac{d}{d x_{1}}\left(u \cdot \beta_{h k}\right)+\cdots+(-1)^{v} \frac{d^{v}}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}}\left(u \cdot \mu_{h k}\right)+\cdots
$$

is known (*) to be characterized completely by the property:

[^1]$$
v \cdot P_{h k}(u)-u \cdot \operatorname{adj} . P_{h k}(v) \sim 0 .
$$

Thus, our requirement above can also be written:

$$
\begin{equation*}
\sum_{h=1}^{n} \sum_{k=1}^{n} u_{k} \cdot \operatorname{adj} \cdot P_{h k}\left(v_{h}\right) \sim 0 . \tag{4}
\end{equation*}
$$

Since the u_{k} are undetermined here, the individual coefficients:

$$
\sum_{h=1}^{n} \operatorname{adj} . P_{h k}\left(v_{h}\right) \sim 0
$$

must vanish.
We shall call the sums:

$$
\begin{equation*}
\sum_{h=1}^{n} \operatorname{adj} . P_{h 1}\left(v_{h}\right), \sum_{h=1}^{n} \operatorname{adj} \cdot P_{h 2}\left(v_{h}\right), \ldots, \sum_{h=1}^{n} \operatorname{adj} \cdot P_{h n}\left(v_{h}\right), \tag{5}
\end{equation*}
$$

which then define the left-hand sides of some remarkable differential equations, the system of linear differential expressions that is adjoint to the system (1).

If the two systems (1) and (5) coincide once we identify the symbols u_{k} and v_{k} then we will call the system (1) self-adjoint.

The necessary and infallible criterion for the occurrence of that case is expressed by the equations:

$$
\text { adj. } P_{h k}(u)=P_{k h}(u) \quad(h, k=1,2, \ldots, n),
$$

which we can also write in the form:

$$
\begin{equation*}
u \cdot P_{k h}(v)-v \cdot P_{h k}(u) \sim 0 \quad(h, k=1,2, \ldots, n) . \tag{6}
\end{equation*}
$$

2. - The kinetic potential:

$$
f\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} ; y_{1}^{(1)}, \ldots, y_{h}^{(i)}, \ldots, y_{h}^{\left(i_{1} i_{2} \cdots i_{\nu}\right)}, \ldots\right)
$$

leads to the derived system:

$$
F_{1}=V_{1}(f), \quad F_{2}=V_{2}(f), \quad \ldots, \quad F_{n}=V_{n}(f) .
$$

That is defined by the property that is known from the calculus of variations that the difference of $u_{k} \cdot F_{h}$ and:

$$
\delta_{u_{h}} f=\frac{\partial f}{\partial y_{h}} u_{h}+\frac{\partial f}{\partial y_{h}^{(1)}} u_{h}^{(1)}+\cdots+\frac{\partial f}{\partial y_{h}^{\left(i_{h} i_{2} \ldots i_{v}\right)}} u_{h}^{\left(i_{i} i_{2} \cdots i_{v}\right)}+\cdots
$$

can be represented by an aggregate of m exact differential quotients with respect to the individual arguments $x_{1}, x_{2}, \ldots, x_{m}$. That can be expressed with the help of the symbol \sim in the form:

$$
\delta_{u_{h}} f \sim u_{k} \cdot F_{h} \quad(h=1,2, \ldots, n)
$$

If we apply those relations to the process:

$$
\delta_{v_{k}} f=\frac{\partial f}{\partial y_{k}} v_{k}+\frac{\partial f}{\partial y_{k}^{(1)}} u_{k}^{(1)}+\cdots+\frac{\partial f}{\partial y_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}} v_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}+\cdots
$$

then since $\frac{d}{d x_{i}}$ and $\delta_{v_{k}}$ commute, that will give:

$$
\delta_{v_{k}}\left(\delta_{u_{h}} f\right) \sim u_{h} \cdot \delta_{v_{k}} F_{h} .
$$

One will likewise have:

$$
\delta_{u_{h}}\left(\delta_{v_{k}} f\right) \sim v_{k} \cdot \delta_{u_{h}} F_{k} .
$$

As a result of the commutability of the two processes $\delta_{u_{h}}$ and $\delta_{v_{k}}$, it will follow from this that:

$$
\begin{equation*}
u_{h} \cdot \delta_{v_{k}} F_{h} \sim v_{k} \cdot \delta_{u_{h}} F_{k} \quad(h, k=1,2, \ldots, n) \tag{7}
\end{equation*}
$$

If we introduce the symbol $P_{h k}\left(u_{k}\right)$ for $\delta_{u_{h}} F_{k}$ then those formulas will go to the system (6). Their content can then be expressed by saying:
I. The system of linear differential expressions that is derived from the functions:

$$
F_{1}=V_{1}(f), \quad F_{2}=V_{2}(f), \quad \ldots, \quad F_{n}=V_{n}(f),
$$

namely:

$$
\begin{equation*}
\delta F_{h}=\delta_{u_{1}} F_{h}+\delta_{u_{2}} F_{h}+\cdots+\delta_{u_{n}} F_{h} \quad(h=1,2, \ldots, n), \tag{8}
\end{equation*}
$$

is self-adjoint.
3. - The theorem that was just proved can be inverted. That is almost self-explanatory when the derivatives of $y_{1}, y_{2}, \ldots, y_{n}$ are not included in F_{h}, but in addition to the:

$$
x_{1}, x_{2}, \ldots, x_{m}
$$

only:

$$
y_{1}, y_{2}, \ldots, y_{n}
$$

will appear. Namely, in that case, the system that is adjoint to the system:

$$
\delta F_{h}=\frac{\partial F_{h}}{\partial y_{1}} u_{1}+\frac{\partial F_{h}}{\partial y_{2}} u_{2}+\cdots+\frac{\partial F_{h}}{\partial y_{n}} u_{n} \quad(h=1,2, \ldots, n)
$$

takes the following form:

$$
\frac{\partial F_{1}}{\partial y_{h}} v_{1}+\frac{\partial F_{2}}{\partial y_{h}} v_{2}+\cdots+\frac{\partial F_{n}}{\partial y_{h}} v_{n} \quad(h=1,2, \ldots, n) .
$$

If those two systems coincide as soon as we identify the symbols u_{k} and v_{k} then:

$$
\frac{\partial F_{h}}{\partial y_{k}}=\frac{\partial F_{k}}{\partial y_{h}} \quad(h, k=1,2, \ldots, n)
$$

If that condition is satisfied in the neighborhood of a location:

$$
x_{1}=a_{1}, \quad x_{2}=a_{2}, \quad \ldots, \quad x_{m}=a_{m}, \quad y_{1}=b_{1}, \quad y_{2}=b_{2}, \quad \ldots, \quad y_{m}=b_{m}
$$

then one will have that:

$$
\begin{equation*}
F_{1} d y_{1}+F_{2} d y_{2}+\ldots+F_{2} d y_{2} \tag{9}
\end{equation*}
$$

is a complete differential there, when one considers $x_{1}, x_{2}, \ldots, x_{m}$ to be only parameters. F_{1}, F_{2}, \ldots, F_{n}, can then be represented in the form:

$$
F_{1}=V_{1}(f)=\frac{\partial f}{\partial y_{1}}, \quad F_{2}=V_{2}(f)=\frac{\partial f}{\partial y_{2}}, \ldots, \quad F_{n}=V_{n}(f)=\frac{\partial f}{\partial y_{n}}
$$

in the stated neighborhood. If we choose f to be the rectilinear integral of the differential (9) of (b_{1}, $\left.b_{2}, \ldots, b_{n}\right)$ to $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ then we will have:

$$
\begin{equation*}
f=\sum_{h=1}^{n} \int_{0}^{1}\left(y_{h}-b_{h}\right) F_{h}\left(x_{1}, \ldots, x_{m} ; t\left(y_{1}-b_{1}\right)+b_{1}, \ldots, t\left(y_{n}-b_{n}\right)+b_{n}\right) d t . \tag{10}
\end{equation*}
$$

4. - The generalization of the known formula (10) leads to the following general converse to Theorem I in a simple way:
II. - Let $F_{1}, F_{2}, \ldots, F_{n}$ be given functions of the quantities:

$$
x_{1}, x_{2}, \ldots, x_{m} ; y_{1}, y_{2}, \ldots, y_{n} ; \ldots ; y_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}, \ldots
$$

and let:

$$
x_{1}=a_{1}, \quad x_{2}=a_{2}, \ldots, x_{m}=a_{m} ; y_{1}=b_{1}, \quad y_{2}=b_{2}, \ldots, y_{n}=b_{n} ; \ldots ; y_{k}^{\left(i_{1} i_{2} \cdots i_{v}\right)}=b_{k}^{\left(i_{1} i_{2} \cdots i_{v}\right)}, \ldots
$$

mean a location (S) such that the coefficients that appear in the system:

$$
\begin{equation*}
\delta F_{h}=\delta_{u_{1}} F_{h}+\delta_{u_{2}} F_{h}+\cdots+\delta_{u_{n}} F_{h} \quad(h=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

and the system adjoint to it exist at not only that location, but also in a certain neighborhood (C) of it. In addition, let the system (8) be self-adjoint at (C). One can then construct a function:

$$
f\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{n} ; \ldots, y_{h}^{\left(i_{1} i_{2} \cdots i_{v}\right)}, \ldots\right)
$$

with the help of a quadrature by means of which the functions F_{h} can be represented in the form:

$$
F_{1}=V_{1}(f), \quad F_{2}=V_{2}(f), \quad \ldots, \quad F_{n}=V_{n}(f) \quad(h=1,2, \ldots, n),
$$

in a certain neighborhood $\left(C^{\prime}\right)$ of (S).

If we again denote by the symbol $P_{h k}\left(u_{k}\right)$ then our assumption that the system (6) is self-adjoint can be expressed by the following equations:

$$
\begin{equation*}
\sum_{k=1}^{n} P_{h k}\left(u_{k}\right)=\sum_{k=1}^{n} \operatorname{adj} . P_{k h}\left(u_{k}\right) \quad(h=1,2, \ldots, n) . \tag{11}
\end{equation*}
$$

By our assumption, those equations are satisfied identically. Thus, they will still be true when we replace the y_{k}, u_{k}, and their derivatives with other quantities. Above all, we would like to replace:

$$
y_{1}, y_{2}, \ldots, y_{n}
$$

and its derivatives with the functions:

$$
t\left(y_{1}-\varphi_{1}\right)+\varphi_{1}, \quad t\left(y_{2}-\varphi_{2}\right)+\varphi_{2}, \quad \ldots, \quad t\left(y_{n}-\varphi_{n}\right)+\varphi_{n}
$$

and their derivatives. Here, the φ_{k} mean arbitrary, but given, functions of $x_{1}, x_{2}, \ldots, x_{m}$. The symbol t denotes a new parameter that does not appear in the φ_{k}. With the stated substitution, for which we introduce the symbol [], equations (11) will go to:

$$
\begin{equation*}
\sum_{k=1}^{n}\left[P_{h k}\left(u_{k}\right)\right]=\sum_{k=1}^{n}\left[\operatorname{adj} . P_{k h}\left(u_{k}\right)\right] \quad(h=1,2, \ldots, n) . \tag{12}
\end{equation*}
$$

Here, we have:

$$
\begin{equation*}
\left[P_{h k}(u)\right]=\left[\frac{\partial F_{h}}{\partial y_{k}}\right] u+\left[\frac{\partial F_{h}}{\partial y_{k}^{(1)}}\right] u^{(1)}+\cdots+\left[\frac{\partial F_{h}}{\partial y_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}}\right] u^{\left(i_{1} i_{2} \cdots i_{v}\right)}+\cdots \tag{13}
\end{equation*}
$$

and
$\left[\operatorname{adj} . P_{k h}(u)\right]=\left[u \cdot \frac{\partial F_{k}}{\partial y_{h}}\right]+\left[\frac{d}{d x_{1}}\left(u \cdot \frac{\partial F_{h}}{\partial y_{k}^{(1)}}\right)\right]-\cdots+(-1)^{v}\left[\frac{d^{v}}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}}\left(u \cdot \frac{\partial F_{h}}{\partial y_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}}\right)\right]+\cdots$

If we bring under consideration the fact that for every function Φ :

$$
\frac{\partial[\Phi]}{\partial y_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}}=\left[\frac{\partial[\Phi]}{\partial y_{h}^{\left(i_{i} \dot{L}_{2} i_{i}\right)}}\right] t
$$

and

$$
\frac{d[\Phi]}{d x_{i}}=\left[\frac{d \Phi}{d x_{i}}\right]
$$

then we can also write:

$$
\begin{equation*}
\left[\operatorname{adj} . P_{k h}(u)\right]=u \cdot \frac{\partial\left[F_{k}\right]}{\partial y_{h}}-\frac{d}{d x_{1}}\left(u \cdot \frac{\partial\left[F_{h}\right]}{\partial y_{k}^{(1)}}\right)-\cdots+(-1)^{v} \frac{d^{v}}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}}\left(u \cdot \frac{\partial\left[F_{h}\right]}{\partial y_{k}^{\left(i_{i} i_{2} \cdots i_{v}\right)}}\right)+\cdots \tag{14}
\end{equation*}
$$

If we now replace $u_{1}, u_{2}, \ldots, u_{n}$, and their derivatives with the functions:

$$
y_{1}-\varphi_{1}, \quad y_{2}-\varphi_{2}, \quad \ldots, \quad y_{n}-\varphi_{n}
$$

and their derivatives then the sum $\sum_{k=1}^{n}\left[P_{h k}\left(u_{k}\right)\right]$ will go to:

$$
\frac{\partial\left[F_{h}\right]}{\partial t},
$$

and the product $t\left[\operatorname{adj} . P_{k h}(u)\right]$ will go to:

$$
V_{h}\left(\left(y_{k}-\varphi_{k}\right)\left[F_{k}\right]\right)-\delta_{h k}\left[F_{h}\right],
$$

in which $\delta_{h k}$ means one or zero according to whether h and k are equal or different, resp. Equation (12) will ultimately go to the following one then:

$$
t \frac{\partial\left[F_{h}\right]}{\partial t}=\sum_{k=1}^{n} V_{h}\left(\left(y_{k}-\varphi_{k}\right)\left[F_{k}\right]\right)-\left[F_{h}\right] \quad(h=1,2, \ldots, n),
$$

i.e., to:

$$
\frac{\partial}{\partial t}\left(t\left[F_{h}\right]\right)=\sum_{k=1}^{n} V_{h}\left(\left(y_{k}-\varphi_{k}\right)\left[F_{k}\right]\right) \quad(h=1,2, \ldots, n)
$$

If we now integrate over t from $t=0$ to $t=1$. and in so doing consider that this integration commutes with the operation V_{h}, then we will, in fact, get:

$$
F_{h}=V_{h}(f),
$$

in which:

$$
\begin{equation*}
f=\sum_{k=1}^{n} \int_{0}^{1}\left(y_{k}-\varphi_{k}\right)\left[F_{k}\right] d t \tag{15}
\end{equation*}
$$

That is the desired generalization of (10).
Naturally, the formulas that led to this result can be applied only within a certain domain of validity. We must then establish a domain in which our result is valid unconditionally.

Let the neighborhood (C) of the location (S) in which equations (11) have been assumed to be satisfied identically be defined by:

$$
\left|x_{i}-a_{i}\right|<\delta_{i}, \quad\left|y_{h}-b_{h}\right|<\varepsilon_{h}, \quad\left|y_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}-b_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}\right|<\varepsilon_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)} .
$$

We would like to choose $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$, to be entire rational functions such that for $x_{1}=a_{1}, \ldots, x_{m}$ $=a_{m}$, the derivative:

$$
\frac{d^{v}}{d x_{i_{1}} d x_{i_{2}} \cdots d x_{i_{v}}} \varphi_{h}\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

is equal to $b_{h}^{\left(i_{i} \cdots i_{v}\right)}$ or zero according to whether $y_{h}^{\left(i_{i} i_{2} \cdots i_{v}\right)}$ does or does not appear in $F_{1}, F_{2}, \ldots, F_{n}$, resp. Let the initial value of the φ_{h} be:

$$
\varphi_{h}\left(a_{1}, a_{2}, \ldots, a_{m}\right)=b_{h},
$$

which would be natural. We now determine $\delta_{1}^{\prime}, \delta_{2}^{\prime}, \ldots, \delta_{n}^{\prime}$ such that for:

$$
\left|x_{i}-a_{i}\right|<\delta_{i}^{\prime}, \quad\left|y_{h}-b_{h}\right|<\frac{\varepsilon_{h}}{2}, \quad \ldots, \quad\left|x_{m}-a_{m}\right|<\delta_{m}^{\prime}
$$

we have the inequalities:

$$
\begin{gathered}
\left|\varphi_{h}-b_{h}\right|<\frac{\varepsilon_{h}}{2} \\
\left|\varphi_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}-b_{h}^{\left(i_{i} i_{2} \cdots i_{i}\right)}\right|<\frac{\varepsilon_{h}^{\left(i_{i} \cdots i_{\nu}\right)}}{2} .
\end{gathered}
$$

If we now define the neighborhood $\left(C^{\prime}\right)$ of (S) by the inequalities:

$$
\left|x_{i}-a_{i}\right|<\delta_{i}^{\prime}, \quad\left|y_{h}-b_{h}\right|<\frac{\varepsilon_{h}}{2}, \quad\left|y_{h}^{\left(i_{h} i_{2} \cdots i_{v}\right)}-b_{h}^{\left(i_{1} i_{2} \cdots i_{v}\right)}\right|<\frac{\varepsilon_{h}^{\left(i_{i} i_{2} \cdots i_{v}\right)}}{2}
$$

then all of our formulas will be true in that domain for $0 \leq t \leq 1$. Therefore, the system:

$$
F_{1}, F_{2}, \ldots, F_{n}
$$

will actually possess the generalized kinetic potential (15) in $\left(C^{\prime}\right)$.
Budapest, 8 June 1905.

[^0]: (*) A. Hirsch, "Über eine characteristische Eigenschaft der Differentialgleichungen der Variationsrechnung," Math. Ann. 49 (1897), 49-72.
 "Die Existenzbedingen des verallgemeinerten kinetischen Potential," Math. Ann. 50 (1898), 429-441.

[^1]: (*) G. Frobenius, "Über adjungierte lineare Differentialausdrücke," J. reine angew. Math. 85 (1878), pp. 207.

