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INTRODUCTION 
 

 

 1. Overview. – Newton’s emission theory leads to the problem of studying not only the 

rectilinear paths of light corpuscles in a vacuum, but also the curved paths that light will follow in 

an inhomogeneous anisotropic medium. All possible ray paths shall then be derived from certain 

optical properties of the medium that generally vary with position and the direction of the ray. 

According to geometrical optics, only a single quantity namely, the index of refraction n, must be 

known at each location and in any direction at that place in order to establish the ray-curve between 

any two arbitrary points. (Variations of color and polarization are ignored in that.) Indeed, light 

seeks the path between two points P and P   along which the optical length: 

 

S = 

P

P

n ds



  

 

assumes an extreme value (Fermat’s principle). Fermat’s principle does justice to diffraction 

phenomena and all of the phenomena that are peculiar to the wave theory of light only 

approximately, and only as long as the index of refraction varies vanishingly little along a 

wavelength. In that way, e.g., discontinuities, diffraction gratings, etc., are excluded. 

 Based upon the emission theory, the question arose of whether and how the path of a light ray 

could be reduced to forces that originate in the medium and compel the light corpuscles to follow 

a curved path. Such a mechanics of light should explain the elementary law of interaction between 

light and matter, and therefore bring with it an interpretation of the optical index of refraction by 

reducing the law of the paths (i.e., a variational principle) to fundamental force law (i.e., a 

differential equation for the family of curves). By pursuing that line of reasoning, Maupertuis 

arrived at his principle of least action as the mechanical counterpart to Fermat’s principle. 

Maupertuis’s investigations were taken up by Hamilton and generalized by him and Jacobi to a 

comprehensive theory of arbitrary mechanical systems. The meaning of the classical investigations 

for the development of mechanics and astronomy is known (1). The optical applications took a 

backseat to them, especially since they were more interested in the deviations from geometrical 

optics, namely the study of waves. Nonetheless, geometrical-optical theorems are still significant 

when one wishes to illustrate mechanical connections, and the analogy between Fermat’s and 

Maupertuis’s principles, between optical and mechanical equations of motion, between 

Huygens’s principle and the Hamilton-Jacobi partial differential equation allowed progress in 

mechanics to benefit indirectly from geometrical optics. 

 However, Hamilton’s school of thought, which was so profound for the structure of mechanics 

remained totally unused in optics, as a result of the separate development of wave theory. New life 

was breathed into the old analogy by the quantum-theoretic investigations of de Broglie and 

Schrödinger, and once again it was optics that exerted its productive influence on mechanics. The 

study of blackbody radiation in Planck’s quantum theory had already led to repercussions in 

 
 (1) See Handbuch der Physik, Bd. V, Chap. 3, “Die Hamilton-Jacobische Theorie der Dynamik,” by L. Nordheim 

and E. Fues.  
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classical mechanics and electrodynamics that required a revision that was all the more urgent for 

the further construction of quantum theory, since the Rutherford-Bohr model of the atom 

preserved classical mechanics only qualitatively. Indeed, the adaptation of the astronomical laws 

to the atomic microcosmos pointed to the superiority of the Hamilton-Jacobi methods of 

generalization and uniformization, but only up to a limit that was defined by the quanta. The latter 

could not be organically incorporated into mechanics initially, nor could the fruitful hypotheses by 

which Bohr had blazed new trails into the exploration and interpretation of atomic processes 

dissuade one from the demand of eventually reconstructing mechanics, in whose fundamentals the 

quanta were already rooted, rather than adding them afterwards as a restricting auxiliary condition. 

Here, following a trail that was blazed by de Broglie (1), Schrödinger (2) convincingly sought the 

assistance of the older Maupertuis-Hamilton analogy between optics and mechanics: Just as 

geometrical optics was built upon the basis of the undulatory theory, the classical “geometrical” 

mechanics was extended to an undulatory mechanics. 

 That path for getting around the problems of atomic mechanics was all the more surprising 

since the transition from the discontinuity in the Newtonian light corpuscles and the Einsteinian 

light quanta, which are similar to them in many respects, to the continuous wave field of the 

undulatory theory seemed to point in precisely the opposite direction. However, the spirit of 

quantum laws was sought in precisely the fact that the continuous state quantities of classical 

mechanics should yield to the quantum discontinuities. In fact, Heisenberg (3), Born and Jordan 

(4), and Dirac (5) constructed a theory of quantum mechanics that represented a true discontinuum 

theory, in contrast to the classical theory, in which all differential equations were replaced with 

difference equations, and all observable data were coupled to each other by purely-algebraic 

(whole number) ones. However, as was shown later, Schrödinger’s opposite path, along which 

one replaces the motions of a discontinuous system of mass-points with f degrees of freedom with 

a continuous field-like phenomenon in a space of f dimensions, was a representation of one and 

the same thing that deviated only formally: For Schrödinger, the quantum-mechanical problem 

was the eigenvalue problem for a boundary-value problem in f-dimensional space in which the 

generally discrete eigenvalues are interpreted as the values of the energy for the quantum states of 

the system. The latter, along with other quantities that are accessible to observation, which take 

the form of the components of algebraic matrices in Heisenberg’s theory, can also be 

simultaneously represented as coefficients in a development in the eigenfunctions of 

Schrödinger’s differential equation. 

 The formal connection between the classical mechanics of mass-points and the undulatory 

mechanics is characterized by the reinterpretation of the impulse p as a differential operator by 

way of conjugate coordinates q : 

 

 
 (1) L. de Broglie, Thèse, Paris 1924; Ann. Phys. (Leipzig) (10) 3 (1925), pp. 22. German version by K. Becker.  

 (2) E. Schrödinger, Abhandlungen zur Wellenmechanik, Leipzig 1927; “Quantisierung als Eigenwertproblem,” 

Ann. Phys. (Leipzig) 79 (1926), pp. 361, 489. 

 (3) W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,” Zeit. 

Phys. 33 (1925), pp. 879. 

 (4) M. Born and P. Jordan, “Zur Quantenmechanik,” Zeit. Phys. 34 (1925), pp. 858; ibid. 35 (1926), pp. 557.  

 (5) P. A. M. Dirac, Proc. Roy. Soc. 109 (1925), pp. 642; ibid. 110 (1926), pp. 561.  
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p →  
2

h

i q




, − E →  

2

h

i t




, 

 

when one appeals to Planck’s constant h, which will turn Hamilton’s energy equation: 

 

H (q, t, p) – E = 0 

 

Schrödinger’s partial differential equation: 

 

, , , ( , )
2 2

h h
H q t q t

i t i t


 

    
+  

    
 = 0 

 

for a function  of the coordinates q and time t. Aside from the computational advantages of 

working with operators instead of differential equations, the significance of the operator calculus 

is in the fact that the -functions themselves take on no direct physical meaning because they are 

not invariant under the group of canonical transformations. Only certain derived functions that we 

will come to call “matrix elements” have that invariance property and are distinguished by being 

the physical quantities that are accessible to experiments. That fact is at the basis for the calculus 

of quantum mechanics that Heisenberg founded, and Born and Jordan, as well as Dirac, dressed 

in its adequate mathematical clothing. Starting from the epistemological viewpoint that physical 

equations should consist of (at least mainly) observable quantities, Heisenberg, Born, and Jordan 

arrived at a quantum algebra of invariant matrix elements that was derived from the corresponding 

between the quantities that one would expect from classical mechanics and the data that were 

actually observed and predicted by quantum theory. However, that matrix algebra had a formal 

sort of character that suggested an immediate reformulation as an operator calculus. Born and 

Wiener (1) recognized that fact, and Lanczos (2) was the first to introduce the state function as the 

object of the operators in order to give some physically-intuitive content to the otherwise abstruse 

operator formalism. Schrödinger arrived at his undulatory equation for a state function  whose 

eigen-solutions possess the discreteness that reality demands of its stationary quantum states from 

an entirely different way of thinking, which was just the analogy with optics. 

 Although Schrödinger’s theory, with its new state function, has the advantage of being more 

intuitive than the other formalisms, one cannot forget that is has the disadvantage that lies in the 

non-invariance of that state function under the transformations of mechanics (canonical 

transformations) and would be avoided by calculating with those invariant matrix elements. That 

relationship between the undulatory mechanics of Heisenberg, Born, and Jordan can be 

characterized as being similar to the relationship between the theory of the ether and the theory of 

relativity. The study of the material ether for light as the carrier of the observed field properties 

had the advantage of its immediate intuitiveness, but the great disadvantage that any moving 

 
 (1) M. Born and N. Wiener, “Eine neue Formulierung der Quantengesetze für periodische und nichtperiodische 

Vorgänge.” Zeit. Phys. 36 (1926), pp. 174. 

 (2) C. Lanczos, “Über eine feldmäßige Darstellung der neuer Quantenmechanik,” Zeit. Phys. 35 (1926), pp. 812.  
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coordinate system will require its own special ether. The theory of relativity, which is built upon 

its requirement of being invariant under Lorentz transformations, must give up the intuitively-

graspable character of the ether in favor of many equally-justified space-time systems, but in that 

way it will reveal the relationships between observable quantities in a formally-transparent way. 

Similarly, Schrödinger’s -function, as an intuitive picture for the appearance of the quantum-

theoretic discrete states, is also an immediately powerful heuristic tool for the intuitively-minded 

physicist. However, since every new canonically-transformed coordinate system has its own -

functions, the quantity  can be ascribed just as little physical reality as the ether had in the 

absolute theory. 

 However, the theories of Schrödinger and Heisenberg, which seem to be so different on first 

glance, lead to the same values for the invariant quantities that can be physically interpreted. One 

can seek their physical interpretation in two directions, namely, as statements with a continuum-

hydrodynamical nature or as statements about the theory of probability and statistics. The 

resolution of that dilemma, which can only come from experiments, will undoubtedly lean in favor 

of the statistical interpretation. In that way, the theory has its starting point in the creation of a 

theory of waves that is analogous to the undulatory mechanics, which seems quite remote from it. 

It can be characterized (1) as the study of the interference of certain probability functions in a 

coordinate space as many dimensions as the number of degrees of freedom gives to the system 

being treated. However, along with that, the new theory has also settled the dispute in optics 

between the study of continuous waves and the study of discontinuous light quanta by a statistical 

interpretation of the wave fields as probability field for the appearance of light corpuscles. 

 

___________ 

 

 
 (1) P. Jordan, “Eine neue Begründung der Quantenmechanik,” Zeit. Phys. 40 (1926), pp. 809; ibid. 44 (1927), pp. 

1; D. Hilbert, J. von Neumann, and L. Nordheim, “Über die Grundlagen der Quantenmechanik,” Math. Ann. 98 

(1927), pp. 1. 



 

CHAPTER I 

 

THE OPTICAL-MECHANICAL ANALOGY (1). 
 

 

 2. Fermat’s principle. – Geometrical optics can be developed from the principle of the 

distinguished light-path. Here, we shall consider only the special case in which the medium is 

indeed optically inhomogeneous, but isotropic, such that its optical properties are determined by a 

scalar function of position n (x1, x2, x3) that is called the index of refraction in the following way: 

If a curve: 

s = 
P

P

ds



  

 

goes from the point P to the point P   then one denotes the line integral: 

 

S = 

P

P

n ds



  = 

P

P

dS



       (1) 

 

along the curve as its optical length. Now, Fermat’s law of the distinguished light-path says that 

among the possible paths between P and P  , a light ray will choose the one with minimal (or more 

precisely, extremal) optical length S : 

0 = S = 

P

P

nds


 .     (2) 

 

The extremal optical path between two well-defined points in the medium is a function of the two 

points ( , )S P P  = ( , )S P P ; we would like to refer to it as the Fermat function. If we know the 

function S, i.e., the value of ( , )S P P  for every point-pair in the medium then we can derive further 

geometrical-optical properties of the medium from them. 

 

 

 
 (1) E. T. Whittaker, Analytische Dynamik, German by Mittelsten-Scheid. Berlin 1914; L. Nordheim, “Prinzipe 

der Dynamik,” Handbuch der Physik, Bd. V, Chap. 2; L. Nordheim and E. Fues, “Hamilton-Jakobische Theorie der 

Dynamik,” Handbuch der Physik, Bd. V, Chap. 3. Elaboration on a Hamburg lecture on optics by W. Lenz. 

Furthermore, L. Flamm, “Die Grundlagen der Wellenmechanik,” Phys. Zeit. 27 (1926), pp. 600. 



6 Optics, mechanics, and wave mechanics 

 

 3. Light rays. – In order to arrive at explicit equations for light rays in a medium with a Fermat 

function ( , )S P P  that is known to be assumed, we ask which direction 

of the light ray PP  beyond P   will advance to a neighboring point P  

that possesses an optical distance ds (dS = n ds, resp.) from P  , so it will 

have an optical distance of S + dS from P (Fig. 1). From Fermat’s 

principle, P  will then first lie on the surface about P that is drawn at an 

optical distance of S + dS, and secondly on the surface about P   that is 

drawn at an optical distance of S + dS, so at its contact point. However, 

since one sees that the smallness of ds means that one can regard the 

function n as constant in the vicinity of P  , the latter surface will be a sphere of optical radius dS 

and geometrical radius ds = dS / n. As seen from P  , P  will the lie on the surface S + dS in the 

direction of the perpendicular to that surface through P  , i.e., in the direction for which the function 

( , )S P P  will experience its maximum increase when one leaves the point P  . The direction of the 

ray at P   will then point in the direction of the gradient: 

 

grad S =  t , 

 

in which t  is a unit vector that is parallel to the light ray,  is a proportionality factor, and the 

prime on grad suggests differentiation with respect to the coordinates of P   while P is held fixed. 

Since dS = n ds, one can determine that  = n, and one will get: 

 

grad S =  n t   (light ray equation).  (3) 

Correspondingly, when P  , one will get: 

grad S = − n t   (light ray equation).  (3) 

 

at the point P, in which the minus sign comes from the fact that S will decrease when P advances 

in the direction t. Each of the two vector equations (3) and (3) represents three components: 

 

S

x




 =   xn t , 

S

y




 =   

yn t , 
S

z




 =  zn t ,     (4) 

 

S

x




 = − xn t , 

S

y




 = − 

yn t , 
S

z




 = − zn t ,     (4) 

 

in which the left-hand sides will be known functions of the six quantities x, y, z, x , y , z  when 

the Fermat function ( , )S P P  is assumed to be known. If one then imagines that the six equations 

have been solved for x , y , z , x
t , 

y
t , z

t   in the form: 

 

x  = x (x, y, z, tx, ty, tz, S) , …, z
t  = z

t  (x, y, z, tx, ty, tz, S)   (5) 

 

S + dS 

P 

 

 

Figure 1. 
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then one will have a parametric representation (with parameter S) of a light ray that leaves a given 

point P in a given direction t. When the Fermat function ( , )S P P  is assumed to be known, one 

can then refer to (3) [(3), resp.] as the implicit path equations for the light rays, which correspond 

to the explicit form (5). 

 

 Example: In a homogeneous medium n = const., the Fermat function is: 

 

S = n s = 
2 2 2( ) ( ) ( )x x y y z z  − + − + − , 

 

so equations (4) will read: 

 

x x
n

s

 −
  = xn t , …, and − 

x x
n

s

 −
  = − xn t , …, 

 

and when they are solved one will get: 

 

x  = x + xs t  = x + x

S

n
t , …, and  x

t  = x
t , … 

 

as a special case of (5). The light rays have a constant direction here, so they are straight lines. 

 The transition from the quantities xk tk to the k kx t  will be given by the transformation (5). It 

is mediated by the Fermat function ( , )S P P  that appears in (3), (3) [(4), (4), resp.] One refers 

to ( , )S P P  as the generator of the transformation. Due to the contact property above (Fig. 1), one 

calls the transformation from the old coordinates xk tk to the new coordinates k kx t  that is mediated 

by S a contact transformation. The vectorial form (3), (3) for the representation of light rays has 

the advantage that is also valid for arbitrary curvilinear coordinates, as opposed to the Cartesian 

components (4), (4). 

 

 

 4. Equations of motion of light. – Let the optical length S and the geometric length s along a 

light ray, as measured from a starting point on the ray, be represented as functions of a parameter 

 : 

s = s () , ds = s d , S = S () , dS = S d . 

 

When based upon any curvilinear coordinate system, the point of the light ray will possess the 

following coordinates and their derivatives with respect to  : 

 

x1 (), x2 (), x3 () ;  1( )x  , 2 ( )x  , 3( )x   . 

 

s , as well as S , will then be a function of the xk and kx : 
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( , )s x x , ( , )S x x , which will make n s  = S . 

 

Fermat’s principle (2) can now be written in the form: 

 
2

1

( , )S x x d





   = 0 .           (6) 

The variational problem will be solved by the Lagrange equations: 

 

0 = 
k k

d S S

d x x

  
− 

  
  for k = 1, 2, 3       (7) 

 

as the differential equation for S . Here, one can split off the factor n, which depends upon only 

xk, but not kx , and obtain: 

( )

k

n s

x




 = 

k

d s
n

d x

 
 

 
  for k = 1, 2, 3.       (8) 

 

One can take, e.g., time t to be the parameter  with which one can move a point on the ray (viz., 

a point of a certain “phase”) along the latter. Based upon the velocity law s  = c / n, the Fermat 

principle will become the principle of shortest light-time: 

 

0 = S = n ds   = n s dt   = c dt   = c t , 

 

and (8) will represent the equations of motion of the light-point (or light-phase). However, it would 

actually go beyond the scope of geometrical optics to consider the temporal propagation of a light 

phase. Rather, here we are concerned with only the geometric form of the light curves that are 

given by (8) with an arbitrary meaning for . 

 We would now like to try to write (8) vectorially. In order to do that, it suffices to exhibit their 

vector form when we start from any coordinates, and the most convenient ones are rectilinear. 

Now, for rectilinear coordinates, we have, in particular: 

 

s  = 
2 2 2x y z+ + , 

and 

s

x




 = 0 , 

s

x




= 

x

s
 = 

/

/

dx d

ds d




 = 

dx

ds
. 

 

When that is substituted in (8), that will give: 

 

n
s

x




 = 

d dx
n

d ds

 
 
 

, … 
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and ultimately when it is summarized vectorially: 

 

grad s n  = ( )
d

n
d

t  or also  
( )d n

ds

t
 = grad n ,   (9) 

 

with t as the tangential unit vector. That vector equation shows how the direction t changes along 

the ray as a function of n. 

 In a homogeneous medium, where n = const., (9) will simplify to d t / ds = 0, i.e., the direction 

of the ray will not change. 

 Later on, we will once more find the counterpart to Newton’s equations of mechanics (no. 11). 

 

 

 5. Eikonal surfaces. – If an arbitrary surface F is given in advance then we seek another 

surface whose points possess the optical distance S from the initial surface F. We would like to 

denote the initial surface F by S0 and the desired surface by S. We will get the latter by the 

following construction (Fig. 2): One lays a surface around each point P of S = 0 that has an optical 

distance of S from P (Huygens’s elementary surface and finds the envelope of the elementary 

surfaces. By carrying out the same construction of S0 with different optical radii S1, S2, …, one 

will get an entire series of associated light surfaces (Huygens’s envelopes at optical distances of 

S1, S2, … from S0), that are also referred to as eikonal surfaces (1). Due to Fermat’s principle, the 

contact point P   of the envelope S with the elementary surface of optical radius S about P will 

then be the point where the optically-shortest ray from P to S pierces 

S. Instead of starting from S0 directly, one can also obtain the eikonal 

surface S2 with an intermediate stop at S1 when one performs 

Huygens’s envelope construction with an optical radius of S2 – S1 

when one starts from S1. 

 We would now like to relate a light surface S with the one that 

is infinitely close to it S +  S (Fig. 3). The point P  at which the ray 

from P   pierces S +  S lies along the direction from P   to S +  S 

that has the shortest optical distance, which is likewise the shortest 

geometric distance, since index of refraction n is approximately 

constant there, so the small 

elementary surface around P   is a sphere of geometric radius s = 

S / n. Therefore, P P   is perpendicular to S and S +  S. In 

general, we then have: The light rays pierce the eikonal surfaces 

perpendicularly. 

 Along the ray element ds whose direction lies perpendicular to 

S and S +  S, i.e., in the direction of the steepest increase (decrease, resp.) of the parameter S, one 

can write |  S | :  s = | grad S |, when S (x, y, z) = const. (= S0, S1, etc.) represents the equations of 

 
 (1) The eikonal is an integral that has the value 0 when it is extended between two points of a surface S = const., 

but the value S2 – S1 when it is extended between two points of the surfaces S1 and S2 . 

 

S 
P 

S = 0 

Figure 2. 

 

 
S 

S +  S 

Figure 3. 
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the eikonal surfaces. Since one has, on the other hand, |  S | :  s = n, one will get | grad S | = n, 

which one can also write as: 

 

(grad S)2 = 2n   for the eikonal surfaces S (x, y, z) = const. = S , (10) 

 

or in Cartesian coordinates: 
22 2

S S S

x y z

      
+ +    

      
 = 2n .    (10) 

 

 If the family of associated eikonal surfaces is described by the equations S (x, y, z) = const. = 

S then S (x, y, z) must satisfy the partial differential equation (10). Conversely: If one has a function 

S (x, y, z) that satisfies the partial differential equation then S (x, y, z) = S will represent a family 

of associated light surfaces in a medium with an index of refraction n. (10) is the analytical 

expression for the Huygens envelope construction. Later on, we will see that (10) is the optical 

counterpart of the Hamilton-Jacobi partial differential equation for the action function S in 

mechanics (no. 12). 

 

 

 6. Light rays and eikonal surfaces. – It shall now be shown that the Fermat function 

( , )S P P  in a medium n, as well as the ray-curve between two arbitrary points P and P  , can be 

obtained when one succeeds in finding a solution S to the partial differential equation (grad S)2 = 
2n , and indeed a so-called complete integral S (x, y, z, 1, 2, 3) that depends upon constant 

parameters 1, 2, 3, in addition to the coordinates. If one gives the  fixed values then one will 

get a family of associated light surfaces of the form: 

 

S (x, y, z, 1, 2, 3) = const. = S    (11) 

 

with the parameter S. If one gives other fixed values to the  then (11) will represent a different 

family of associated eikonal surfaces. One can choose the  according to the particular problem. 

 Now, if S (x1, x2, x3, 1, 2, 3) is a complete integral of (10) then one forms the equations: 

 

k

S






= 

k   for k = 1, 2, 3 (Jacobi system of equations),  (12) 

 

in which the 
k  are constants that can be once more be adapted to the demands of the particular 

problem afterwards. Before we prove that, we shall first give an example. 

 

 Example: In a homogeneous medium n = const., a complete integral of (10) is: 

 

S = 
2 2 2

1 1 2 2 3 3( ) ( ) ( )n x x x   − + − + −  . 
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In place of (12), one will get: 

 
k  = − n (xk – k) :  = − 2 ( ) :k kn x S−  

 

here, in particular. It follows that one must choose 2( )k  = 2n , and that: 

 

(x1 – 1) : (x2 – 2) : (x3 – 3) = 1 2 3: :   . 

 

Here, the light rays are lines through the point xk = k with the direction cosines k / n. 

 

 We can exhibit the general proof that (12) represents light rays when we show the equivalence 

of (12) with the vector equation grad S = n t of the light rays, with the use of (grad S)2 = 
2n . We 

next imagine that Cartesian coordinates x1 = x, x2 = y, x3 = z have been introduced, instead of the 

arbitrary coordinates x1, x2, x3, and now fix S as the function S (x, ). Moreover, the parametric 

representation x1 (), x2 (), x3 () might be introduced for the curve that is described by (12). We 

suggest differentiation with respect to , i.e., along the curve, by a dot. Since 
i  do not dependent 

upon the x (so not upon , either), one has: 

 

0 = 
id

d




 = 

i

d S

d 

 
 

 
 = 

2

k

k i k

S





 
 x

x
. 

 

On the other hand, 
2n  does not depend upon the i, but on the position, such that since 

2n  = 
2(grad )S , one will get: 

0 = 
2

i

n






 = 

2(grad )
i

S





 = 

2

ki k

S



  
 

  


x
 = 

2

2
k k k i

S S



 


  


x x
 . 

 

A comparison of the last two equations will show the proportionalities: 

 

kx  = 
k

S




x
 and 2s  = 2

k

k

 x  = 

2

2

k k

S


 
 

 


x
 = 

2 2n , 

so  = /s n  and: 

 
k

S

x
 = k



x
 = k

n

s
x  = 

/

/

kd d
n

ds d





x
 = n tk (for k = 1, 2, 3), 
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in which tk means the xk-component of the unit vector t in the direction of the curve. The latter 

equation can be written vectorially as grad S = n t, so the curve is a light ray. That proves that the 

curves (12) are light rays. 

 One will get the equations of the ray that goes through the two points x1, x2, x3 and 1x , 2x , 3x  

when one determines the parameters 1 to 3 in (12) with the help of the six equations (k = 1, 2, 

3): 

 1 2 3 1 2 3( , , , , , )

k

S x x x   






 = k , 1 2 3 1 2 3( , , , , , )

k

S x x x   



  


 = k .  (13) 

 

The Fermat optical distance PP  will then be: 

 

( , )S P P  = S (x1, x2, x3, 1, 2, 3) − 1 2 3 1 2 3( , , , , , )S x x x       .   (14) 

 

 

 7. Phase velocity. – Some further connections between light rays and eikonal surfaces shall 

now be discussed, but although they belong to the realm of geometrical optics, they are, however, 

borrowed from the theory of waves, in that the velocity of a light ray (the velocity with which a 

“phase” advances along the light ray, resp.) is drawn into the sphere of consideration. 

 Let S (x1, x2, x3, 1, 2, 3) be a complete integral of: 

 

(grad S)2 = 2n .      (15) 

 

For fixed , S (x, ) = S will then represent a family of successive eikonal surfaces as the parameter 

S varies that we call the “-family.” Now, the value of S at time t = 0 shall be referred to as the 

phase of the surface S (x, ) = S. By contrast, at the time t, the phase of that surface with the value 

S – c t : 

 (x, , t) = S (x, ) – c t = phase     (16) 

 

will define the -family at the spacetime point (x, t). In that way, c shall possess the value of the 

speed of light in vacuo. A well-defined phase will then wander from surface to surface within the 

-family. One can also express that in the form: Every individual surface, along with its phase, 

wanders throughout the family. Now, since on the one hand, dS = n ds, and on the other, since (16) 

ways that dS = c dt for constant phase, it will follow that ds / dt = c / n is the velocity with which 

the phase wanders throughout the -family and perpendicular to them, or also the phase velocity 

with which a surface of constant phase moves forward perpendicular to itself: 

 

ds

dt
 = 

c

n
 = u = phase velocity.           (16) 
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Moreover, due to (16) and (16), one can replace the equation (grad S)2 = 2n  with the equation for 

 : 

(grad )2 − 

2

2

1

u t

 
 

 
 = 0 .          (17) 

 

  From now on, we will consider another family of surfaces, namely, the “ + -family,” that 

differs from the former by only the slightly-varied value of the constant, so the family S (x,  + 

) = const. Here as well we define the phase of a surface to be the value of the function: 

 

 (x,  + , t) = S (x,  + ) – c t = phase,    (17) 

 

or when developed, since  / k = S / k : 

 

 (x,  + , t) =  (x, , t) + k

k k

S







  = S (x, a) – c t + k

k k

S







 .  (18) 

 

At one and the same spacetime point, the -family will then generate the phase (16), and the  + 

-family will generate the phase (18). The phase difference D is: 

 

( , )
k

k k

S x 







  = D .          (19) 

 

At all points that satisfy the latter equation with a given value of D and given quantities k , the 

two families  and  +  exhibit the same phase difference D, and in fact at all times, since t 

does not enter into (19). 

 Finally, we shall consider yet a third, fourth, etc., family  + ,  + , etc., which are 

defined with other well-defined variations  ,  , etc., that are, however, all infinitely small. 

We shall call the entire group of families that are obtained by varying the -family the -group. 

At a spacetime point P, the phase differences at each time t are equal to: 

 

D  = 
0( , )

k

k k

S x 







 , 0D  = 

0( , )
k

k k

S x 








 , etc. (19) 

 

The condition that the same phase difference should prevail at P as at 0P : 

 

D = D0 , D  = 0D , D  = 0D , …   (20) 

is fulfilled for: 
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( , )
k

k k

S x 







  = 

0( , )
k

k k

S x 







 , 

( , )
k

k k

S x 








  = 

0( , )
k

k k

S x 








 , etc. 

 

Since the variations ,  , … can possess different infinitely-small values here, the last system 

of equations is possible only when the equations: 

 

( , )

k

S x 






 = 

0( , )

k

S x 






 for k = 1, 2, 3      (20) 

 

are fulfilled individually. All points P that satisfy that system of equations have the property (20), 

so the same phase difference can prevail there as at 0P . Moreover, one can also write (20) in the 

form: 

( , )

k

S x 






 = 

k     for k = 1, 2, 3            (21) 

 

and then see from a comparison with (12) that the aforementioned point P is the point of a light 

ray that runs through the -family perpendicularly and which will naturally include the point 0P  

itself, as well. One thus comes to a special conception of light rays: A light ray, which is 

perpendicular to the family S (x, ), is the locus of points at which the families S (x,  + ), S (x, 

) + , etc., possess the same phase differences D, D , D , …, resp., with respect to the family 

S (x, ). In that way, the phase was defined by (16), (17) and shows that it will advance with the 

velocity u = c / n. 

  

 

 8. Group velocity. – The connection between the geometrical-optical results that were 

discussed up to now and wave optics will be exhibited when one considers periodic functions  of 

the phase: 

  = 
2 ( , , ) /i x tA e      = 

2 [ ( , , ) ]/i S x t ctA e   − ,   (22) 

 

in which  is a constant that should have the same dimension as S. Moreover, one ordinarily refers 

to the factor of i (so 2 S / ) as the phase, and not S itself. c / k means the temporal frequency  

at a location, and ds / d (S / ) is the length through which one must advance perpendicular to a 

surface S = const. in order for S /  to advance by 1: 

 

 = 
c


,  = 

ds

dS


,    = 

ds
c

dS
 = 

c

n
 = u .  (22) 

 

 We shall now consider the case in which the index of refraction n depends, in addition to 

position, upon a parameter that we would like to assume is just the frequency  = c /  : n = n (x, 

). All of the previous relations will likewise include that parameter then. For example, the 
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equation (grad S)2 = 
2 ( , )n x   will possess the wave surfaces S (x, , ) = const. as complete 

integrals whose phases S = S (x, , ) – c t will move forward perpendicular to the family of 

surfaces with a phase velocity c / n = u (x, ) that depends upon . The periodic functions: 

 

 () = 
2 [ ( , , ) ]/i S x ct cA e   



−
            (23) 

 

will then possess a wavelength that varies with . We further consider the light surfaces that belong 

to the index of refraction n = n (x,  + ) and their periodic functions: 

 

 ( + ) = 
2 ( )[ ( , , ) ]/i S x ct cA e      

 

+ + −

+ .       (23) 

 

From the development S (x, ,  + ) = S (x, , ) + 
S







, the phase difference  between (23) 

and (23), i.e., the difference between their exponents, will be equal to: 

 

 = 
2 S

S c t
c


   



 
+ − 

 
 . 

 

The phase difference will have the same magnitude for every spacetime point that is described by: 

 

S







 + S – c t = ( )S






 − c t = const.        (23) 

 

Now, for a well-defined t, the latter equation will represent a surface in space on which the same 

phase difference will then prevail everywhere between  () and  ( + ). When t increases by 

t, the surface of constant phase difference will advance in space, whereby a point P will take on 

the coordinate increases xk , which are restricted by setting the variation of (23) equal to zero: 

 

0 = ( ) k

k k

S x c t
x

  


  
 −  

  
 , 

or when written vectorially: 

0 = grad
S

c t


 


   
 −     
s . 

 

In the event that the point P should advance perpendicular to the surface (23),  s must be taken 

to be parallel to the grad in the last equation. One will then get the velocity g with which a surface 

element of the surface of constant phase difference moves forward perpendicular to itself: 
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g = 
s

t




 = : grad

S
c








 , 

and g is called the group velocity: 

 

g = 

grad

c

S







 = 

grad grad 

c

S S



+



 .    (24) 

 

A comparison with the phase velocity: 

u = 
c

n
 = 

| grad |

c

S
 

will give the simple formula: 

1

g
 = 

u





 
  

 


 = 

1 1
1

u

u u 

 
− 

 
 = 

1





 
 

 


.        (24) 

 

An essential path into actual wave optics is that one does not operate with light rays, so one also 

does not derive the phase relations between the individual spacetime points from their geometrical-

optical connection (that is known to lead to false results, such as apparent phase jumps under 

reflection and diffraction, etc.), but one calculates them from the oscillation function  in space 

and time as a solution to a governing differential equation, namely, the wave equation. It is only 

in the limiting case of small  that geometrical optics can be applied: 

 The differential equation of wave optics reads: 

 

 − 
2

1

u
  = 0 .     (25) 

If one tries to solve it by the Ansatz: 

 = 2 /iA e     

 

then one will get the following differential equation for  (x, y, z, t) : 

 
2

2 2

2 2

2 1 2 1
(grad )

i i

u u

 
   

 

     
 − + −    

     
 = 0 . 

 

It is only in the limiting case where the first term will vanish in comparison to the second one 

(small  = n ) that the equation of geometrical optics that coincides with (17) will remain: 

 

2 2

2

1
(grad )

u
 −  = 0 ,    (25) 
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One can now describe the formal connection between (25) and (25) as follows: One replaces the 

quantities: 

x




 with 

2i x








, …, 

t




 with 

2i t








   (26) 

 

in (25), so, e.g., one replaces 

2

x

 
 

 
 with 

2

2i x





 
 

 
 = − 

2 2

2 24 x









, and applies the operator 

equation that thus arises: 
2 2 2 2

2 2 2 2 2

1

x y z u t

   
+ + −

   
 = 0 

 

to a function . One will then get the wave equation (25). That formal connection will find its 

counterpart in the transition from classical to wave mechanics. 

 

 

 9. General metric. – For later use, we will now recall some familiar formulas from the 

geometric of curvilinear coordinates (1). 

 The meaning of the vector operations grad, div, etc., and furthermore perpendicularity, angle, 

etc., is independent of any coordinate system. If one chooses a certain curvilinear coordinate 

system x1, x2, x3 as a basis then one can also express scalar geometric quantities with the help of 

components in the system in question. What is characteristic of the system is, above all, the 

expression for the ordinary length ds of a vector element ds. (ds)2 is generally a homogeneous 

quadratic function of the components dxk : 

 

(ds)2 = ik

i k

i k

g dx dx ,     (27) 

 

with the coefficients 
ikg  that depend upon the position (x1, x2, x3), and which one refers to as the 

components of the fundamental metric tensor, and in that way, one will have ikg  = kig . If one has 

an orthogonal coordinate system then all ikg  = 0 when i  k, and only the 
kkg  will be non-zero. In 

an orthogonal Cartesian coordinate system, the 
kkg  will be constant, and indeed equal to 1, 

moreover. 

 Two vectors ds and s are perpendicular to each other when their “scalar product”: 

 

(ds, s) = ik

i k

i k

g dx x      (27.a) 

vanishes. 

 
 (1) Cf., e.g., E. Madelung, Die mathematischen Hilfsmittel des Physikers, Berlin, Julius Springer, or W. Pauli, 

Relativitätstheorie, Enzykl. d. math. Wiss., Bd. V, 2. Reprinted by B. G. Teubner. 
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 Along with the components dxk of a vector ds that one also calls contravariant components 

(their index k is attached below), one often needs the covariant components kdx  (index above) of 

the vector ds, which are defined by: 

kdx  = ik

k

k

g dx .              (27.b) 

 

If one solves the system of equations (27.b) for the dxk then one will get: 

 

dxk = k

ik

i

g dx  with the abbreviation gik = 
ik

g




,  (27.c) 

 

in which g 
 should mean the determinant of the ikg , and ik  are the subdeterminants that belong 

to the ikg . Conversely, one further has: 

ikg  = ik

g





,           (27.d) 

 

in which g  means the determinant gik , ik is the subdeterminant of gik . 

 One then proves the relation: 

g g

  = 1 .            (27.e) 

 

 The mixed expressions, in which contravariant and covariant components appear, become 

especially simple, e.g.: 

 

(ds)2 = k

k

k

dx dx ,  (ds, s) = k

k

k

dx x  = k

k

k

x dx  . 

 

In that way, the gik drop out completely due to the determinant rule: 

 
ik il

i

g  = 0  for l  k, = g 
  for l = k . 

 

We shall give some further component representations of scalar quantities whose form and 

magnitude will not change under the transition to other coordinates. The volume of a volume 

element dv is defined by: 

dv = 1 2 3g dx dx dx
 = 1 2 3g dx dx dx  .            (28) 

 

The gradient vector of a scalar function of position  is defined by its components: 

 

(grad )k = 
kx




 = ik

i i

g
x




 ,   (grad )k = 

kx




 = ik

i
i

g
x




 , (26.a) 
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from which it will follow that the gradient-square scalar is: 

 

(grad )2 = ik

i k i k

g
x x

  

 
  = ik

i k
i k

g
x x

  

 
 .   (28.b) 

 

The Laplace operation  = div grad is defined by: 

 

 = div grad  = 
1

ik

i k i k

g g
x xg





  
 

  
  = 

1 ik

k
i k i

g g
x xg






  
 

  
  .     (28.c) 

 

All of those formulas can be adapted to n coordinates, instead of three. Moreover, they are true for 

not only the case in which one deals with curvilinear space coordinates x1, x2, …, xn, which will 

take the ordinary (Euclidian) metric to the element of length: 

 

ds = ik

i k

i k

g dx dx , 

 

but also for any coordinates in a space in which the element of “length” is defined in a non-

Euclidian way by the quantity: 

ds = ik

i k

i k

g dx dx  . 

 

In such a coordinate space, the operations of grad, div, , the concept of perpendicularity, the 

scalar product, etc., will then have, by definition. the (non-Euclidian) meanings that are adapted 

from the formulas above. In order to remind ourselves that we are dealing with, say, 

“perpendicularity” in the non-Euclidian sense of formula (27.a), we will sometimes use “.” to 

emphasize that fact. 

 

 

 10. Maupertuis’s and Fermat’s principles. – The close analogy between geometrical optics 

and classical mechanics is based upon the fact that just as optics can be derived from Fermat’s 

principle of the shortest light path, so can mechanics be derived from a variational principle. 

Ordinarily, one starts from Hamilton’s principle in the form: 

 

( )

t

t

T U dt


−  = 0 ,     (29) 

 

in which T is the kinetic energy of the system and U is the potential energy, while t and t  are two 

time-points,  is the difference between the actual motion of the system and a neighboring path 

that has the same initial and final times t and t  and the same initial and final position P and P   

that belong to the coordinates. 
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 We would now like to assume that the potential energy U is a function of the N coordinates 

that describe the position of the system with N degrees of freedom. Furthermore, let the kinetic 

energy T be a quadratic function of the velocity components kx  of the form: 

 

T = 2 21
2

ik

i k

i k

m g x x , U = U (x) ,   (30) 

 

in which m is any constant with the dimension of a mass that is included in order for the ikg (which 

can themselves be functions of the coordinates) to be dimensionless. If one understands ds to be 

the expression: 

ds = ik

i k

i k

g dx dx ,          (30) 

 

i.e., if one introduces a non-Euclidian metric (no. 9) into the space of coordinates x1, …, xn the T 

can be written in the form: 

T = 21
2
ms .              (31) 

 

In mechanics, one derives the constancy of the total energy E during the motion from Hamilton’s 

principle under the assumption that U = U (xk) : 

 

T + U = E = const.       (32) 

 

 Due to (32), one will then have T – U = 2T – E, and (29) will become: 

 

(2 )

t

t

T E dt


−  = 0 , 

which will simplify to the condition: 

 

2

t

t

T dt


 = 0 ,  T = E – U ,    (32) 

 

due to the facts that E = const. and one has fixed t and t . One can replace 2T  with 
ds

m
dt

 in 

that, such that the last equation will go to: 

 

2 ( )

P

P

m E U ds


− = 0  (E = const.) ,         (33) 

 

which is varied between two fixed initial and final configurations P and P   of the system. The 

version of Hamilton’s principle in (32), (33) is known as the Euler-Maupertuis principle of least 
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action, and is valid under the assumption (30), so it is now completely analogous to Fermat’s 

principle of the distinguished light-path, which likewise requires that one vary with fixed initial 

and final endpoints. Here, we would like to write it in the form: 

 
P

P

dS

c




  = 

P

P

n ds

c




  = 
1

ds
u

  ,    (34) 

 

in which c is the speed of light in vacuo and u = c / n is the phase velocity in the medium. Moreover, 

we would like to write (33) in the form: 

 

2 ( )
P

P

m E U
ds

E



−

 = 0            (35) 

 

and indicate the analogy between the last two equations with a  . The optical function n / c of the 

coordinates corresponds, mechanically, to the function of position 2 ( ) /m E U E−  when the total 

energy E is given any value: 

( )n x

c
  

2 ( ( ))m E U x

E

−
.     (36) 

 

With the use of the analogy (36), we can now translate all optically-derived relationships into 

mechanical ones without needing any special proofs. The three-dimensional optical coordinate 

space of xk (e.g., rectangular coordinates), in which lengths, perpendicularity, etc., are understood 

to have their ordinary (i.e., Euclidian) meanings, shall correspond to an N-dimensional coordinate 

space of the mechanical point-coordinates xk in which “length,” “perpendicularity,” etc., are 

understood to have the non-Euclidian sense of the element of length (30). In both cases, one has 

an isotropic index of refraction n (xk) with the mechanical meaning (36) and distinguishes the 

trajectories by way of ds   = n ds   = 0, while the action surfaces S = const. that are 

“perpendicular” to them are distinguished by (grad S)2 = 
2n . 

 

 

 11. Newton’s equations of motion. – We next show that the optical equation (9): 

 

grad n = ( )
d

n
dt

t  

 

(t = unit vector tangential to the ray, 

 s  = phase velocity = c / n) 

 

is the analogue of Newton’s equations of motion for a mechanical system. With the use of the 

analogy (36), we will, in fact, get from (10) that: 
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grad 2 ( )s m E U−  = ( ) 2 ( )
d

m E U
dt

−t  . 

 

Due to the fact that E – U = T = 2 / 2m s , the left-hand side will be equal to: 

 

grad (  )s m s  = 21
grad (  )

2
m s

m
 = 

1
grad [2 ( )]

2
m E U

m
−  = − grad U , 

 

and the right-hand side: 

( )
d

m s
dt

t  = ( )
d

m
dt

s  = m s , 

 

if s  means the velocity vector t s. One will then have: 

 

− grad U = m s ,     (37) 

 

i.e., the equations of motion in the usual vector form force = mass  acceleration. From (28.a), in 

component form, that reads, more precisely: 

 

− ik

i i

U
g

x




  = 

2

2

kd x
m

dt
     (k = 1, 2, …, N)             (37) 

 

in arbitrary coordinates xk , in which the 
ikg  come from the expression (30) for kinetic energy, and 

gik are the associated contravariant quantities. If one expresses U as a function of the covariant ,kx

instead of the contravariant xk, viz., U (xk) = ( )kU x , then the latter equation can be written more 

simply as: 

− 
k

U

x




 = 

2

2

kd x
m

dt
  (k = 1, 2, …, n). (37) 

 

The rectilinear light rays in a homogeneous medium n = const. correspond to precisely the 

trajectories of constant potential energy U. 

 

 

 12. Action function and Hamilton-Jacobi equation. – A comparison of (34) and (35) will 

lead to the following analogy: The line element of the “optical length” dS = n ds will correspond 

mechanically to the quantity: 

dS = 2 ( )
c

m E U ds
E

− . 
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The “optical distance” S along a ray between two points in a medium with an index of refraction 

n will then correspond to the quantity: 

 

( , )S x x  = 
P

P

dS



  = 2 ( )

P

P

c
m E U ds

E



−  = 2

P

P

c
mT ds

E



 ,   (38) 

 

along a trajectory between P and P   that is traversed with constant energy. The integral that already 

appears in the principle of least action (33) will be called the action. Here, in order to be able to 

follow through on the optical-mechanical analogy logically, we would like to refer to the integral 

( , )S x x  in (38) that is multiplied by c / E as the action, as we can then say that the Fermat light-

path function of the point-pair PP  is the analogue of the action function of mechanics (38) (S has 

the dimension of length in both cases). 

 In optics, it is shown that light rays are perpendicular to the eikonal surfaces S = const. Here, 

the trajectories and the surfaces of constant action are correspondingly mutually-“perpendicular.” 

Analogous to the situation in optics, an associated family of action surfaces that is “orthogonal” to 

a family of trajectories in then determined to be the complete integral of the differential equation 

(10) (grad S)2 = 2n , which is: 

(grad S)2 = 
2

2
2 ( )

c
m E U

E
 −  = 

2 2mc T

E E
          (39) 

 

here. That equation is identical to the Hamilton-Jacobi partial differential equation (H. J. D) in 

mechanics for the determination of the action function S, which one mostly writes in the form tht 

is solved for E: 

E = U + T = U (xk) + 
2

22

E

mc
(grad S)2    [Hamilton-Jacobi].    (39) 

 

[Observe that S has a meaning in (38) that deviates from the usual one.] One arrives at that in 

mechanics in the following way: 

 One can infer the covariant impulse components 
k  = 

km x  from the expression T = 

1
2

ik

i k

i k

m g x x  for the kinetic energy as a function of the velocity components kx , since they 

are defined by the equations: 

k

T

x




 = ik

i

i

m g x  = km x  = 
k ,    (40) 

 

and one can then write T as a function of the impulse components: 

 

T = 1
2

ik

i k

i k

m g x x  = 
1

2

i k

ik

i k

g
m

  ,         (40) 

 

and finally replaces the impulse components with derivatives of the action function S in the form: 
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 im x  = i = 
i

E S

c x





,           (41) 

which will put T into the form: 

T = 
2

2

2
(grad )

2

E
S

mc
, 

which coincides with (39). 

 If a complete integral S (xk, k) of the H. J. D (39) has been found then one will get the 

trajectories [just as one gets the rays from (12)] from the equations: 

 

1( )

k

S x 






 = k   (k = 1, 2, …),  (42) 

 

in which the new constants k  can adapted to the special initial conditions that were imposed 

upon the trajectory. The equations: 

i

S

x




 = kc

m x
E

,     (43) 

 

which are compatible with (39) (grad S)2 = 2n , will then also determine the velocity v = s  of the 

image point on the trajectory. (42), (43) define the Jacobi system of equations for determining the 

motion of the system. (43) includes a “local” description of the velocity components that the 

system can assume at a location x that depends upon the integration constants . By contrast, (42) 

will then give a “substantial” description of the path that is followed by a certain mechanical 

system that is characterized by the constants  and . 

 The temporal advance of the light phase  = S – c t corresponds mechanically to such an 

advance of the phase  = S – c t along the action surfaces.  has the same spatial differential 

quotients as S, as well as the temporal one d / dt = − c. In summary, one then has: 

 

, ,

,

k

k

k

k

c
m x c

x E t

t
c

 

 




  
= = −   


  = = −

  

    (43) 

 

for the Jacobi system of equations, and along with (42), (43), it describes the spatial, as well as 

temporal, advance of a point on a path with the phase velocity u. 

 The construction of the family of surfaces S = const. that satisfy the H. J. D. proceeds precisely 

as in no. 5: One erects a “perpendicular” on both sides of each point of the initial surface S (x, ) 

= S0 with a “length” of: 

ds = 
dS

n
 = 

2 ( )

E
dS

c m E U−
, 
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and one will then arrive at the two surfaces S (x, ) = S0  dS. 

 If one proceeds in succession then one will finally arrive at the finitely-distant surfaces S (x, 

) = S0  S. One had also obtained the same result by constructing Huygens’s elementary 

surfaces with the radii: 

S = 
P

dS  = 2 ( )
P

c
m E U dS

E
−  = const. 

 

around each point P of the initial surface (the radii are generally curved while the elementary 

surfaces are small spheres) and constructing their envelopes. 

 One can also let the surfaces S (x, ) = const. emerge from each other in time: In optics, the 

surface elements of the initial surface S = S0 move perpendicularly to themselves with the phase 

velocity u = c / n and sweeps out the segment: 

 

s = u dt  = /c n dt  = /dS n  

 

in time t, whereby the surface S (x, ) = S0 would become the surface S (x, ) = S0 + c t. Just as in 

mechanics, one can imagine that the action surface S (x, ) = S0 + c t arises from S (x, ) = S0 by 

displacing the surface element “perpendicularly” (1) to itself during the time t through the 

“segment”: 

s = 
c

dt
n  = 

2 ( )

E dt

m E U−
  = 

2

E dt

mT
  = 

dS

n  

with the “velocity”: 

u = 
c

n
 = 

2 ( )

E

m E U−
 = 

2

E

mT
.    (44) 

If one introduces the notation: 

 (x, , t) = S (x, ) – c t , 

 

as in no. 7, in which  means a complete integral of (grad )2 = 
2n , just like S, then the equation 

of the time-shifted action surface will be: 

 

 (x, , t) = S0 ,     (44) 

 

in which  = S0 will once more denote its continually-advancing phase. That translates the results 

on families and groups of light-surfaces in nos. 7 and 8 to families and groups of action surfaces, 

which we can the state without proof in the following section. 

 

 

 
 (1) The expressions in “…” are meant in the sense of the line element (30) (see also no. 8). The “…” can then be 

dropped for a system of N equal masses m and the use of Cartesian coordinates. 
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 13. Action waves. – The geometrical-optical results of nos. 7 and 8 can be adapted to the 

language of mechanics with no further analysis, and will then read as follows: 

 One deals with the action function S as a complete integral S (x, a) of the Hamilton-Jacobi 

partial differential equation (H. J. D.) (grad S)2 = 2n , in the coordinate space with the metric: 

 

ds = ik

i k

i k

g dx dx , where  T = 1
2

ik

i k

i k

m g x x .  (45) 

 

 A family of action surfaces S (x, a) = const., which is characterized by a certain choice of the 

k and different values of the const. (we would like to call it the “-family”), will then correspond 

to a family of associated eikonal surfaces in an optical medium with an index of refraction: 

 

n = 2 ( )
c

m E U
E

−  .     (46) 

 

We assign a phase to each surface of the -family at time t that is defined by the value of  = S (x, 

) – c t : 

 (x, , t) = S (x, ) – c t = const.    (47) 

 

will then mean one action surface with constant phase that advances “perpendicularly” to itself 

with the “velocity” u = c / n, so it will successively pass over the positions of the individual surfaces 

in the -family. 

 In addition to the “-family,” we consider the “ + -family,” which is given by S (x, “ + 

) = const. with well-defined variations k, but the same k as above. Finally, we consider the 

entire group of families  + ,  +  ,  +  , … The phases at the point P at time t are: 

 

 (x,  + , t) ,  (x,  +  , t) ,  (x,  +  , t) , …,  (47) 

 

and their phase differences compare to the phase  (x, , t) are (19): 

 

k

k k

S







 , k

k k

S








 , k

k k

S








 , …,   (48) 

 

which are independent of t, since time does not enter into  / k = S / k . The corresponding 

phase differences at the point P0 at time t0 are (19): 

 

0

k

k k

S




 
 

 
 , 

0

k

k k

S




 
 

 
 , 

0

k

k k

S




 
 

 
 , … (48) 
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Now, should the same phase differences prevail at P as at P0, then since k, k  , k  are 

arbitrary quantities, one must have: 

k

S






 = 

0k

S



 
 

 
 (k = 1, 2, 3, …, N)  (49) 

individually, or when written differently: 

 

( , )

k

S x 






 = k  (k = 1, 2, 3, …, N).  (49) 

 

That system of equations establishes a space curve whose points P all exhibit the same phase 

difference between the families of action surfaces ,  + ,  +  , … that simultaneously cross 

through each other there. 

 However, (49) is identical to the Jacobi system of equations (42), which established optical 

light rays as mechanical trajectories of the image points x1, x2, …, xN of the mechanical system. 

One can then regard the trajectories as curves whose points all possess the same phase differences 

for the families of action surfaces ,  + ,  +  ,  +  , … that simultaneously cross 

through each other there. 

 Whereas the action surface will be pierced by the “perpendicular” trajectories with the phase 

“velocity” (1): 

u = 
c

n
 = 

2 ( ( ))

E

m E U x−
,     (50) 

 

the image point of the mechanical system will wander along the trajectory with the “velocity”: 

 

v = s  = 
2T

m
 = 

2( ( ))E U x

m

−
 .    (50) 

 

 Just as one concerns oneself with periodic functions of the phase  in optics as the4 light 

surfaces [cf., (22)], i.e., with the light waves along the geometrical-optical rays: 

 

 = 
2 ( , , ) /i x tAe    

 = 2 [ ( , ) ]/i S x ctAe   − ,    (51) 

 

so can one also consider corresponding action waves in mechanics. In (51),  will then mean the 

phase of the action surface [ = S (x, ) – c t] as a solution to (grad S)2 = 
2n , and  will be a 

constant with the dimensions of S. Ordinarily, it is not  that one refers to as the phase, but the 

factor of i in the exponent (so 2 /   ). As in (22), one will then have: 

 

 
 (1) See footnote on pp. 25.  
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 = 
c


,   = 

( / )

ds

d S 
,    = 

c

n
 = u    (52) 

 

for the frequency, wavelength, and phase velocity of the -function. [ds shall be “perpendicular” 

to the surface S (x, ) = const., so it shall point in the direction of the trajectory.] The phase velocity 

is then different from the velocity of the path v = s . 

 We would now like to consider the case in which the “index of refraction” n depends upon not 

only position, but also a parameter, which we would again like to assume is the frequency  = 

/c  . Since only E is available in n, from (46), E will include the parameter , e.g., the phase 

velocity u of the action waves: 

 

u = 
c

n
 = 

( )

2 [ ( ) ( )]

E

m E U x



 −
 = 

( )

2

E

mT


 with E = E () = 

c
E



 
 
 

  (53) 

 

will depend upon . Since one considers the total energy to be a function of the parameter , all 

relations that are derived with the use of n or E will include the frequency . Inter alia, the solution 

S to (grad S)2 = 2n  will now possess the form S (x, , ), and (51) will go to the periodic function: 

 

 () = 2 [ ( , , ) ]/i S x ct cA e   



− ,     (54) 

 

which will then lead to a wavelength (52) that depends upon . If one now repeats the argument 

from equation (23) to (24) in no. 8 word-for-word, so one considers not only the action waves (54), 

but the waves: 

 ( + ) = 2 ( )[ ( , , ) ]/i S x ct cA e      



+ + − ,   (54) 

 

and then seeks the surfaces on which constant phase differences will exist between  () and  ( 

+ ) at a time t then one will get the following magnitude for the velocity with which such a 

surface will advance perpendicular to itself, i.e., the group velocity g of the action waves [cf., (24), 

(24)]: 

g = 
( )

grad 

c

S







 = 
1

( / )u







 = 
(1 / )








 .   (55) 

 

With the use of u from (53), that will assume the form: 

 

g = 
2[ ( ) ( )]E U x

m

 −
 = 

2T

m
 = s  = v .   (56) 
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This result, which was discovered by L. de Broglie (1) is stated as: The group velocity g of the 

action waves is identical to the path velocity v of the mechanical system. 

 That theorem is interesting due to the fact that since it suggests that the mechanical motion of 

a mass-point (the coordinate point in N-dimensional space, resp.) can be regarded as the motion of 

the group maximum of superimposed action waves. 

 Now, although it is precisely that viewpoint that has not proved to be very fruitful in what 

followed, it is all the more meaningful to pursue the individual action waves with no consideration 

given to their group composition. 

 

 

 14. De Broglie’s phase waves. – The starting point for wave mechanics is take seriously the 

plan that was initiated by de Broglie and followed through by Schrödinger with the optical-

mechanical analogy that was represented in nos. 10-13, i.e., to not merely stop with the fact that 

many of the paths of moving mass-points in mechanics can be represented by the picture of 

surfaces of constant action  (x, t) propagating in time t, but to regard that process of oscillation 

as being itself the true foundation of mechanical phenomena and to glimpse a new state quantity 

in the periodic function  = 
sin

cos
 2  (x, t), from whose properties the observed facts are derived, 

and even better, as it would be possible according to classical mechanics or the original quantum 

theory. The association of the point-mechanical phenomena with the process of the propagation of 

an action function, as it was developed in no. 13, is initially extended, in the spirit of quantum 

theory, by the fact that the relationship between energy E and the frequency of the periodic function 

that was left open in it is now established by: 

 

E = h   (h = Planck constant).       (58) 

 

 For a mechanical system whose kinetic energy is a quadratic function of the velocities and 

whose potential is any function of the coordinates: 

 

U = U (x) , T = 1
2

ik

i k

i k

m g x x ,   (59) 

 

the phase velocity u of the action wave at a location P (x) will be, according to (50): 

 

u = 
2 [ ( )]

h

m h U x



 −
,             (60) 

 

while the group velocity g will be given by (56) as: 

 

 
 (1) L. de Broglie, Thèse, Paris, 1924; Ann. de phys. (10) 3 (1925), pp. 22.  
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g = 
2[ ( )]h U x

m

 −
 = 

( / )
1:

u






.          (61) 

 

In that way, the path length ds in the velocity quotient (path-length : time) is measured with the 

non-Euclidian metric: 

ds = ik

i k

i k

g dx dx . 

 

Moreover, from (56), the group velocity is equal to the point velocity v at the location P when the 

total energy is given as E = h . 

 The wavelength  of the action waves at the location P is then calculated to be: 

 

 = 
u


 = 

2 ( )

h

m E U−
 = 

2

h

mT
,    (62) 

 

in which T is the kinetic energy that the system would have at the location P point-mechanically 

if its total energy were E = T + U. Now, in general, one has 2mT  = p = magnitude of the 

impulse. One shows this as follows: The impulse components 
kp  are defined by 

kp  = / kT x  , 

i.e., according to (59), kp  = ki

i

i

m g x = km x . One will then have: 

 

| p |2 = i k

ik

i k

g p p  = 2 i k

ik

i k

m g x x = 2 ki

i k

i k

m g x x  = 2m T . 

 

In place of (62), one can then write: 

 = 
h

p
   (de Broglie wavelength). (63) 

 

This de Broglie equation is the spatial counterpart to Planck’s temporal equation  = E / h. 

 Let us consider, say, the example of Rutherford’s model for the hydrogen atom with the 

charge   . In it, for a circular orbit of radius a, one will have: 

 

− E = − 
2

U
 = T = 

2

2a


, 

 

so the de Broglie wavelength at each location on the circle will be: 

 

 = 
2

h

mT
 = 

2

h a

m
. 
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The periodic function  of the azimuth  (the path-length a  along the orbit, resp.) is: 

 

 = 
2 ( / )i t ae    −

. 

 

If one demands that  is a single-valued function of the azimuth, i.e.,  goes to itself when  

increases by 2, then that will be possible only when the factor of i  in the exponent is equal to a 

whole number n : 

n = 
2 a


 = 

22 a m

h a

 
, 

or when solved from a : 

 

a = 
2 2

2 24

n h

m 
  and E = − 

2

2a


 = − 

2 4

2 2

2 m

n h

 
. 

 

Those are the known formulas for the radius and energy of the thn  quantum orbit, which is derived 

with the help of the quantum conditions ( )p d h  =  in Bohr’s theory. Here, one will get the 

allowable energy values E as a consequence of simply the almost-obvious single-valuedness 

requirement for the function  of the azimuth , instead of the quantum conditions. 

 We would also like to find the phase waves for the relativistic mass-point m that moves in the 

absence of external forces (inertial motion of an electron). The kinetic energy will no longer be a 

quadratic form in the velocity components then. According to de Broglie, in that case, one initially 

imagines that the mass-point is at rest in a coordinate system K0 with the rest-mass m0 and the 

relativistic energy E0 = 2

0m c  and uses the equation: 

 

h 0 = E0 = 2

0m c      (64) 

 

to associate the latter with a frequency 0 that defines a synchronous oscillation 0 = 0 02 t
e


 of the 

entire system K0 at the time-point t0 . K0 moves relative to a system K with a velocity of v in the x-

direction. In the latter system, the time value is t, where t0 = 
2

2 2
: 1

v x v
t

c c

 
− − 

 
. Therefore, the 

oscillation above would be exhibited by: 

 = 
2

0
2

2

exp 2

1

v x
t

c

v

c



 
− 

 
 

− 
 

 

 

relative to K, so one would have a wave in K that advances along x with a: 
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frequency   = 0

2

2
1

v

c



−

 and phase velocity u = 
2c

v
,  (65) 

 

and its wavelength in K would prove to be: 

 = 
u


 = 

2

2 2

0

1
v

c c

v 

−

 , 

or when one uses the facts that: 

0 = 0E

h
 = 

2

0m c

h
 and p = 

2

2

0

0

1

:

v

c
m v



−

 = relativistic impulse, 

one would have: 

 = 
h

p
  (de Broglie wavelength),  (66) 

 

cf., (63). Due to the facts that E0 = h 0 , E = h  = 
2

0 2
: 1

v
E

c
−  = 

2

0 2
: 1

v
h

c
 − , one will have: 

 

  the point velocity: v = 
2

0

2
1c




− , 

  the phase velocity: u = 
2c

v
 = 

2

0

2
: 1c




−  . 

 From that, one calculates the: 

 the group velocity: g = 
( / )

1:
u






 = 

2

0

2
1c




− . 

 

One then finds that the group velocity is identical to the point velocity [cf. (56)]. 

 When one addresses the wave function  (x, t), which is continuous in space and time, one will 

first discover the value that one learns to physically assign to  itself [functions of , resp. (in the 

most general sense, e.g., 2 ,  / x,   dx, etc.)]. We will go into the association of the -

functions with observable physical quantities in the following section. Now, as long as one puts 

the wave function along a ray s of optical length S into the form: 

 

 = 
2 ( , ) /i x tAe   

 = 
2 [ ( ) ]/i E x ctAe  −

     (67) 

 

in optics, one will remain within the scope of geometrical optics, in which the periodicity of the 

ray has only a secondary significance. However, that will lead to experimentally-correct results 
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only for wide wave-fronts and minor inhomogeneities in the index of refraction. For narrow ray-

bundles and strong inhomogeneity (e.g., diffraction from narrow openings, reflection and 

refraction at discontinuities in the index of refraction), the function sin (2  / ) will not lead to 

correct phases along the light-path. Rather, one must then allow (viz., the Fresnel-Fraunhoffer 

theory) certain “phase shifts” at the diffracting aperture and with reflection from a thin medium in 

order to get results that are correct to some extent. Kirchhoff’s theory first gave exactly correct 

value to the oscillation quantity  by reverting to a differential equation (wave equation) that was 

imposed upon the function and solving it for the boundary conditions. Things are similar in 

mechanics. In that case, if one simply sets  equal to a periodic function of the phase (action, 

resp.) along a mechanically-possible point-path then one will get a “geometrical” mechanics with 

periodicity being imposed secondarily (viz., de Broglie’s theory). Now, Schrödinger’s 

accomplishment consists of the fact that he recognized the necessity of looking for de Broglie’s 

oscillation function  as a solution to a field equation in space and time, and that he also exhibited 

the fundamental equation of the undulatory mechanics in the special cases and showed how to 

interpret them physically. As a counterpart to the optical field equation: 

 

 − 
2

1

u
 = 0  with  u = 

( )

c

n x
, 

 

Schrödinger’s fundamental equation for undulatory mechanics read: 

 

   − 
2

1

u
 = 0 with u = 

2 [ ( )]

E

m E U x−
 . 

 

Quantum theory is introduced into that by the coupling of the constant value of energy E with the 

temporal periodicity  of the oscillation function  with the help of the equation E = h . 

 

____________ 



 

CHAPTER II  

 

CORPUSCULAR AND WAVE THEORIES  

OF LIGHT AND MATTER 
 

 15. Statistical theory. – The old controversy between the undulatory and emission theories of 

light, which seems to have long since concluded with a victory for the wave theory, was revived 

by the observation of optical processes at the quantum level and found its most fruitful expression 

in Einstein’s quantum theory of light. However, it was clear from the outset in that quest that one 

would no longer have to deal with an either/or situation in the name of the wave and corpuscular 

theories, but a union of the two that would correctly account for the typical interference processes, 

as well as the obvious emission and absorption of individual quantum energies and impulses. 

 An attempt that was aimed along those lines goes back to Bohr, Kramers, and Slater, namely, 

the theory of virtual radiation (1). Starting from the fact that the optical observation registered only 

quantum-theoretic conversions of material particles (retina, film), one would like to regard the 

radiation that exists between the emission and absorption of particles as a heuristic mathematical 

fiction for which one can introduce the detailed picture of an intermediate field for the sake of 

illustration, but without ascribing any “reality” to the same extent as material particles themselves. 

The reality of the field in the electromagnetic theory of light is based upon the idea that it functions 

as the carrier of energy, impulse, stress, and current in such a way that the laws of conservation of 

energy and impulse will be valid for only the system of matter-plus-field. However, since the 

conservation laws are initially proved empirically for only macroscopic processes. one can regard 

them as statistical laws that are valid for only distributions of a large ensemble of radiation and 

particles but will break down for the individual reactions. 

 For example, when a particle A makes a quantum jump to a different atom B with a loss of 

energy, according to Bohr, Kramers, Slater, there is a probability that it will induce an inverse 

quantum jump with a corresponding gain in energy. That probability shall be calculated from the 

properties of an imaginary classical wave-field that has its source in an atom A, which is envisioned 

classically, and which corresponds to the actual quantum atom A in some way. However, that 

“virtual classical field” allows one only to calculate the transition probability to the atom B but 

cannot appear as the carrier of the energy and impulse itself, because that virtual field is assumed 

to be continuous, in the classical way, and capable of producing interference, while the absorption 

and emission of particles has a quantum character. In that way, the laws of conservation of energy 

and impulse will break down at the detailed level, so there is a probability that B can absorb or 

emit A immediately, a while later, or even earlier, without the exchanged energy being found 

anywhere in the meantime. 

 That picture unites the field and corpuscular theories, because the classical properties of the 

virtual radiation makes it possible for interference phenomena to take place, but on the other hand, 

the quantum processes of emission and absorption are allowed, but generally without the 

conservation of energy and impulse for the system of matter-plus-radiation. However, the 

weakness of the theory lies precisely in the latter fact, because the experiments of Bothe and 

 
 (1) Born, Kramers, and Slater, Zeit. Phys, 24 (1924), pp. 69. 
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Geiger (1), Compton and Simon (2), Joffe and Dobronrawoff (3) subsequently showed that the 

emission from an individual atom A and the absorption by B are by no means coupled statistically, 

but in a strictly causal way, and indeed in precisely the same way as when a light-quantum flies 

away from A and in some way creates the corresponding absorption jump in an atom B anywhere 

while obeying the laws of energy and impulse. 

 The theory of Bohr, Kramers, and Slater then has a statistical element, which is obviously 

necessary for the union of the theories of waves and light-quanta but is not introduced at entirely 

the right point along the way, because, as the experiments show, the light-quanta exist in reality as 

the direct carriers of energy and impulse. By contrast, the time-point at which the light-quantum is 

emitted from A and the direction of the emission is governed by statistics, like the emission of -

rays from radioactive atoms. We will soon learn about a static theory that takes that fact into 

account, but first we will confine ourselves to the propagation of light in vacuo, and only later treat 

the static theory of the interaction of radiation and material particles (Chap. V) when the quantum 

theory of radiation is based upon unperturbed matter. 

 If one restricts oneself to the propagation of light in vacuo then initially there will be no 

possibility of relating Einstein’s light quanta with the state quantities for a Maxwellian 

electromagnetic field, because the light-quanta possess no polarization and even fewer six-vector 

properties than the electromagnetic field Ex, Ey, Ez, Hx, Hy, Hz at least when one excludes artificial 

hypotheses on their state. Rather, initially the only possibility that exists is that the light-quanta of 

given energy and impulse are associated with a scalar field  that is the solution to the equation 

 − 2

2

1

u
  = 0 in the pre-Maxwellian oscillator theory of light (Kirchhoff). 

 Similarly, we shall later encounter the association of material corpuscles with Schrödinger’s 

mechanical oscillations: Material particles also have energy and moment, but no polarization, so 

they can only be reinterpreted as scalar quantities. In general, according to Uhlenbeck and 

Goudsmit, electrons exhibit a rotational impulse whose two allowed direction are very essential 

for atomic phenomena to take place, and in a certain sense represent the two opposite polarization 

states of matter (4). The scalar theory of light and matter that is considered in the present article 

must be correspondingly extended to a vector field theory, which is a problem that has already 

been taken up (Chap. VI). 

 We shall then stay with the scalar theory of light and consider the association of light-quanta 

and scalar light oscillations (as a preparation for the association of the corpuscular and wave 

theories of matter). 

 

 

 16. Association of light quanta and waves. – The field theory of light in vacuo determines 

the field scalar  from the equation: 

 
 (1) W. Bothe and H. Geiger, Zeit. Phys. 32 (1925), pp. 639.  

 (2) Compton and Simon, Phys. Rev. 26 (1925), pp. 289.  

 (3) Joffe and Dobronrawoff, Zeit. Phys. 34 (1925), pp. 889.  

 (4) For the correspondence between polarized light quanta and the magnetic electrons, see especially, P. Jordan, 

Zeit. Phys. 44 (1927), pp. 292. C. G. Darwin, Proc. Roy. Soc. 116 (1927), pp. 227.  
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 − 
2c


 = 0 , 

or in rectangular coordinates: 
2 2 2 2

2 2 2 2 2

1

x y z c t

      
+ + −

   
 = 0 .       (1) 

 

By contrast, for free-flying light corpuscles, the relativistic energy-impulse connection p = E / c, 

or in rectangular components: 

− 
2

2 2 2

2x y z

E
p p p

c
− − +  = 0 , p = 

E

c
.            (2) 

 

Those two equations can be formally converted into each other in the following way: 

 We recall the transition from geometrical to wave optics that was discussed at the conclusion 

to no. 8.  At that time, the wave equation  − 
2/ u  = 0 was obtained from the geometrical-

optical equation (grad )2 − 2 2/ u  = 0 by replacing the quantities: 

 

x




 with 

2i x








, …, 

2i t








     (3) 

 

formally in the latter, and applying the operator thus-obtained: 

 
2

2 2

2 2 2

1

2i x u t





    
+ −  

    
 

 

on a function . ( stems from the Ansatz  = 
2 /ie   

, which satisfies the wave equation only 

approximately, and has the meaning of  =  / c.) Here, we are dealing with special picture for 

geometrical optics, namely, with light-rays are mechanical paths of light corpuscles. However, in 

mechanics, one gets energy and impulse from the function  = S – c t by way of the derivatives [I, 

(41)]: 

E

c x




 = px , …, 

E

c x




 = 

E

c
(− c) = − E , 

 

in which  does not mean the usual action function of mechanics, c / E times it. The replacement 

above (3) will then be the following one: 

 

px with  
2

c

i E x








, …, (− E) with 

2

c

i E t








, 

 

or with the use of  = c / , h = E /  : 
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px with  
2

c

i E x








, …, (− E) with 

2

c

i E t








.       (3) 

 

With the help of that reinterpretation, the equation (2) for the impulse and energy of the light-

quantum will, in fact, become: 
2

2 2

2 2 2

1

2

h

i x c t

    
− − +  

    
 = 0 , 

 

which one then applies to a function  in order to obtain the wave equation (1) in the form: 

 
2 2 2

2 2 2 2

1
,

4

h

x c t




  
+ − 

  
 = 0   = {0, } .   (4) 

 

One can also use the notation: 
2

2 2 2

2
,x y z

E
p p p

c


 
− − − + 

 
 = {0, }       (4) 

 

instead, in which px, …, E shall not mean physical quantities now, but the operators that were 

introduced in (3). The form (4) for the wave equation then proves its applicability to the 

corpuscular equation (2) in a particularly instructive way. The transition from the point theory to 

the field theory, so from (2) to (4), is formally characterized by the transition (3) from impulses 

to operators that are applied to a field function. The reinterpretation (3) will be inverted in all later 

cases, so for the transition from point mechanics to wave mechanics. 

 It is noteworthy that the quantity h that was into the wave equation (4) in the reinterpretation 

(3) can be dropped on dimensional grounds (which is something that does not occur in the 

corresponding transition to mechanics). That is indicated by the fact that for optics in vacuo, the 

classical theory is valid to a greater degree than perhaps in mechanics, but one should not be misled 

to the conclusion that no physical difference whatsoever exists between the classic and quantum 

theories of radiation in vacuo. That is because Planck’s radiation formula already deviates from 

the classical theory in an essentially statistical way. 

 We shall now consider an Ansatz for a solution to the wave equation (4) that is periodic in 

spacetime, namely: 

 = 
2 ( / )i t tA e   − s

 = 
2 x y z

x y z
i t

A e
 

  

 
+ + − 

 
s s s

.             (5) 

 

The unit vector s then gives the wave normal to the monochromatic plane waves. Introducing the 

Ansatz (5) into the wave equation (4) will the following relation between the constants  and  : 

 

− 
2 2 2 2 2

2 2 2

2 2 2 2x y z

h h h h

c



  
− − +s s s  = 0 . 
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A comparison with (2) will show that the energy and impulse of a flying light-quantum are 

associated with the wave quantities  and  by the equations: 

 

px = 
x

h


s , …, E = h  .     (6) 

 

The basic reinterpretation (3) has led us to the Planck and de Broglie association then. A 

monochromatic plane wave corresponds to a current of light-quanta that possesses an energy of 

E = h  and impulse components of px = 
x

h


s , etc. 

 Conversely, substituting (6) in (5) will give: 

 

 = 
2 ( ) /x y zi p x p y p z Et h

A e
 + + −

     (5) 

 

as the monochromatic plane wave that is associated with a current of light-quanta px, py, pz, E. 

  The intensity of the wave is classically proportional to the square of the amplitude 2A  =    

(~ means the transition to the complex conjugate). Now should that intensity be really transported 

by light-quanta then one would regard    = |  |2 as a measure of the density with which the 

light quanta are distributed in space. The number of light quanta in a volume dV is proportional to 

dV   , and dV    shall be a measure of the probability of finding a light-quantum in dV. 

In that way, we have arrived at a modification of the Bohr-Kramers-Slater statistical picture. 

Namely, we can state, in connection with Born, Jordan, and Dirac (1): One can never obtain exact 

data about the microscopic distribution of light-quanta (nor ever observe them either, cf., the 

following no.), but only their mean distribution (for the observations, that would mean only data 

with a precision that mainly cannot be reduced, resp.). Calculating the probability function    

will happen with the help of wave theory, but in which the wave state quantity  will take on no 

other meaning than just that of a probability amplitude whose square |  |2 will give the probability 

for the appearance of corpuscles in reality. The -field is only a “virtual guiding field” for the real 

light corpuscles. 

 Now, the fact that the probability amplitude  is complex is significant, i.e., that it possesses 

both magnitude and phase. The linear homogeneous oscillation equation has the property that the 

superposition of its various complex solutions 1, 2, … will again yield a solution  = 1 + 2 + 

… However, its intensity is now: 

 

|  |2 = | 1 |
2 + | 2 |

2 + … + 1 2 1 2( )   +  + …    (7) 

 

 
 (1) A. Einstein, Berliner Ber. (1925), pp. 3; Born-Heisenberg-Jordan, Zeit. Phys. 35 (1926), pp. pp. 557, Chap. 

4, § 3; P. Jordan, Die Naturwiss. 15 (1927), pp. 105; M. Born, Die Naturwiss. 15 (1927), pp. 238; W. Heisenberg, 

Zeit. Phys. 40 (1926), pp. 501; P. Jordan, Zeit. Phys. 40 (1926), pps. 661 and 809; P. A. M. Dirac, Proc. Roy. Soc. 

113 (1926), pp. 621. 
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which differs from the sum of the individual intensities | 1 |
2 + | 2 |

2 + … since the mixed terms 

1 2 1 2( )   +  + … have been added to them. One does not add the probabilities | k |
2 then, but 

one does superpose the complex amplitudes k . The simultaneous presence of two waves 1 and 

2 with closely-coincident properties (1 ~ 2 , 1 ~ 2 , s1 ~ s2), which will then lead to two currents 

of light-quanta with similar light quanta (p1 ~ p2 , E1 ~ E2 , s1 ~ s2), will then lead to a statistical 

density function for the light-quanta that is not simply the sum | 1 |2 + | 2 |2, but a density 

distribution that corresponds completely to the intensity distribution of the two waves 1 and 2 

with mutual interference, so one will have an interference of the probabilities for the presence of 

corpuscles at the individual locations in the spacetime continuum. One will also find entirely 

analogous relationships in the theory of material particles. Their distribution can also be calculated 

statistically with the help of a probability amplitude  as a solution to an oscillation equation, 

whereby the various solutions are once more capable of interference. 

 In that way, we have already touched upon the question of the domain of validity of the causal 

law that any later state can be determined from the current state, or when regarded empirically, 

that if the current state is observed with sufficient (arbitrary, resp.) precision then its later state can 

be calculated with sufficient (arbitrary, resp.) precision and can be established by observation. 

With the picture of quantum theory, in that statement one already finds the antecedent statement 

that a precisely-observed initial state is not only unattainable in practice, also intrinsically. 

Namely, if the physical phenomenon is governed by only the wave equations for the probability 

functions then that will mean merely that the current probability state of the corpuscle is coupled 

with a later probability state by a law, but the microscopically-exact initial state will go to a final 

state according to the laws of physics that is nothing like the final state microscopically, either 

theoretically or experimentally. From the probable initial distribution of corpuscles, one can 

always assume only a probable distribution in the final state, and indeed with all the more 

dispersion when the initial final states are further separated from each other in spacetime. One can 

now seek the laws that are still hidden to us from among the enveloping statistical laws of the 

physical phenomena, namely, the ones that the individual corpuscles obey, which will first lead to 

those observed probabilistic laws in the mean. 

 However, one has not the slightest hint regarding those hidden laws experimentally, rather it 

seems that the action quantity h fixes an intrinsic limit to microscopic observability. Conversely: 

A principle of the indistinguishability of certain individual states first creates space for the 

exhibition of quantum theory, and that principle is anchored empirically to the extent that 

experiments give us no reason to seek a much more complicated theory of distinguishable 

individuals in place of quantum theory, which is relatively simple in form. At the same time, 

everyone is naturally free to believe in a hidden causality between individuals. Similarly, one can 

also believe that someday infinitely-fast signals will be found by which the theory of relativity will 

then be stripped of its intrinsic meaning. 

 

 

 17. Limits of optical resolution. – It shall now be shown that on the basis of elementary optical 

experiments, the existence of the Planck quantum of action h, as the lower limit of precision for 

the measurement of an effect, has an equivalent in wave theory in the existence of a lower limit 



40 Optics, mechanics, and wave mechanics 

 

for the optical and harmonic resolution of wave-trains. In so doing, that quantum-theoretic 

restriction on precision will prove to be something that is known and “explained” in optics, and 

the corresponding explanation in mechanics will be prefaced. 

 In the theory of waves, there is a completely well-defined, not further divisible, smallest unit, 

namely, Laue’s elementary ray bundle. A ray bundle (1) consists of a bundle of parallel cones of 

rays whose vertices all lie on a small area f (=   ) and all possess the same opening angle 

 ( =   , while f shall be assumed to be perpendicular to the axis of the cone), and 

which belong to the frequency interval  and possess the time duration t, moreover. An 

elementary ray bundle is one for which the interval  satisfies the relation: 

 

t
   


 

   
     = 1  1  1 .    (8) 

 

In that way, each of the three factors shall be equal to 1 in their own right. The elementary ray 

bundle then indicates the lower limit on the distinguishability of differences in color, time, 

direction, and type of source for the radiation of waves, in the following sense: 

   t = 1 : In order to recognize the difference  between two frequencies  and  +  in 

an oscillating structure, one needs to know at least the time t  1 / , namely, the duration of a 

temporal beat. Conversely, in order to compose an aggregate of oscillations over a time interval 

t from purely-harmonic (i.e., temporally unlimited) oscillations, one will need harmonic 

components from an interval   1 / t. One can also express that as follows: Over a given time 

interval t, the  of a truncated oscillating structure is determined up to a quantity   1 / t, at 

best. For a given , the age of the aggregate of oscillations, i.e., the time since its emission, is 

determined up to quantities   1 / t at best, because it already possesses a time duration of t 

in its own right. 

    /  = 1 : In order to recognize the distance  between the source points for a 

monochromatic wave structure that is emitted from two source points and is perpendicular (almost 

perpendicular, resp.) to their connecting line, one needs a segment of arc along the ray with a 

magnitude of at least    /  , namely, the interval along that direction along which a spatial 

beat (e.g., bright and dark diffraction lines) plays out. On the other hand, in order to superpose a 

wave-aggregate of limits arc opening  from spherical waves, one needs the distance between 

the centers of the spherical waves to be a line segment    /  . One can also express that as 

follows: For a given distance  from the source, the direction of the emitted ray is determined up 

to an angle    /  , at best. For a given set of directions , the center of the ray is determined 

up to a magnitude of    / , at best. 

 Corresponding statements are true for    /  = 1. 

 In order to extend what was just considered to one or more centers that are emitting interfering 

spherical waves, we shall now consider the case of plane waves. The formal connection between 

(8) and the spherical wave Ansatz: 

 
 (1) M. von Laue, Ann. Phys. (Leipzig) 44 (1914), pp. 1197. See this Handbuch, Bd. 20, Chap. 9, nos. 4, et seq.  
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consists of the fact that one sets second-order terms in: 
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equal to 1. If one proceeds correspondingly with the Ansatz for plane waves in the s-direction: 

 

 = 2 ( ) /x y zi x y z
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 + +s s s , 

and sets the second-order terms in: 

 

x

x


s  = 

0

0

1 1
( ) xx x

 

 
+  +  

 
s  

equal to 1 then one will get: 
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  

     
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     
s s s  = 1  1  1         (9) 

as a counterpart to (8). 

 One can make statements in regard to (9) that correspond to what was said about (8), namely, 

for    t = 1, as above: 

 
1

x x


 
     

 
s  = 1. In order to recognize the difference  in an aggregate of plane waves that 

is composed of two different wavelengths and advances in the x-direction, the structure must 

possess a length of at least x = 
1

1:


 
  

 
 . In order to compose a plane-wave structure of length 

x out of purely-harmonic linearly-unbounded plane waves, one needs harmonic components from 

an interval of at least 
1



 
 

 
 = 

1

x
. 

 One can also express that in the form: For a given length x of a plane-wave aggregate,  is 

determined up to a magnitude of 
1



 
 

 
 = 

1

x
, at best. For a given , the position of the wave 

aggregate is determined up to a magnitude of x  1 : 
1



 
 

 
 . 
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 The experimental facts of wave optics that were just summarized shall now be translated into 

the language of the theory of light-quanta (1). With the help of Planck’s and de Broglie’s equation: 

 

E = h v , px = 
x

h


s ,  …, 

one will get from (8) and (9) that: 

 

E t  p    p   = h  h  h ,        (10) 

 

px x  py y  pz z = h  h  h .      (11) 

 

 That leads to the following statements about light-quanta as a consequence of the wave-optical 

theorems above: 

 E t = h. In order to establish the energy E of a light-quantum with a precision of E, one 

needs a train of light-quanta of time duration t = h / E, such that in that way the age of each 

light-quantum (viz., the time t since it was emitted) will be undetermined up to t. By contrast, 

should the age of each light-quantum be known up to t (which is the case for only a truncated 

train of time duration  t) then the energy of each individual light-quantum would be 

undetermined up to E = h / t. Therefore, E  t = h is the smallest energy-time interval inside 

of which distinguishing the differences in energy and age of light-quanta will no longer be possible. 

 p   = h: In order to establish the source-point of light-quanta that propagate 

perpendicularly (almost-perpendicularly, resp.) to the x-direction with a precision of , one will 

need a bundle of light-quanta with an angular opening of  = h / (p ), which will leave the 

direction of each light-quantum undetermined up to . 

 If one would like to know the direction of each light-quantum with a precision of , which is 

possible only in a bundle with an arc opening  , then the location of the origin of each 

individual light-quantum will be undetermined up to  = h / (p ) .  p   = h is the smallest 

interval of directions and source locations inside of which making a distinction will no longer be 

possible. 

 px x = h : In order to establish the impulse px of light-quanta with a precision of px , one 

will need light-quanta that are distributed along a segment x = h / px . If one would like to know 

the location of a light-quantum up to x then one would need a truncated train of length  x. 

However, px will be determined only up to px = h / x in it. px  x is the smallest region inside 

of which a distinction between the impulse and coordinate components of light-quanta will no 

longer be possible. 

 One can establish those statements by calculation in such a way that one will either completely 

abandon the idea of ascribing a well-defined value to E, t, x, y, x, px, py, pz, , , ,  for a light-

quantum and imagine that every light-quantum propagates over a region E, t, … that 

 
 (1) The theory of light-quanta for lattice diffraction was presented by W. Duane, Proc. Nat. Acad. America 9 

(1923), pp. 158. Furthermore, see G. Breit, ibidem, 9 (1923), pp. 238; A. H. Compton, ibidem, 9 (1923), pp. 359; P. 

S. Epstein and P. Ehrenfest, ibidem, 10 (1924), pp. 133; ibid. 13 (1927), pp. 400.  
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corresponds to the conditions (10), (11), or one can further consider the light-quanta to be in and 

of themselves points with sharply-defined values of position, time, impulse, and energy, but whose 

magnitude can, in no case, be physically established more precisely than the limits of error E t 

= h, px x = h, etc. If one accepts the second picture, so one would like to imagine that light-

quanta are absolutely sharp, then one would have to think that the ages of the individual light-

quanta are distributed in a statistically-disordered fashion over the time domain t = h / E for a 

value of E for a light-quantum train that is known up to E. Corresponding statements are true for 

the regions px  x = h, p   = h, p  y = h as elementary domains. Since an exact 

localization of the light-quantum in the spaces of energy, time, impulse, and coordinates is 

basically excluded by that, the picture of a sharp quantum can be regarded as one that is only suited 

to many purposes, but for which there is no possibility of measuring it exactly.  

 

 

 18. Interference of matter. – The connection between the corpuscular theory and the wave 

theory of optics that was just described can now be carried over to mechanics directly and will 

then lead to a novel picture as the foundations of the wave theory of matter (1). In classical 

mechanics, the energy E, the age t (time since emission), impulse px, py, pz, position x, y, z, etc., of 

each mass-point are regarded as physically well-defined data that are basically observable with 

arbitrary precision. However, if one pictures the mass-point as a mechanical wave-field that is 

associated with the Planck-de Broglie equations E = h , p = h /  then one will arrive at the 

equations for it: 

E t  p    p   = h  h  h ,        (12) 

 

px x  py y  pz z = h  h  h .      (13) 

 

just as one does for light-corpuscles, which express the following theorems that assert the 

interference of matter waves. 

 E  t = h. In order to establish the energy of freely-flowing mass-particles with a precision 

of E, one needs an aggregate of such particles (extracted from an atomic beam) of temporal extent 

t = h / E, such that in that way the age t of an individual particle (i.e., the time since it was 

emitted from the atomic radiator) will be undetermined up to t. Conversely, should the age t of 

the particle be known with precision t (that would be the case for only a truncated particle ray of 

time duration  t) then the energy E of each individual particle would remain determinate only 

up to E = h / t .  E  t = h is the smallest energy-time interval inside of which a more precise 

localization of the particle would no longer be possible. 

 p   = h : In order to establish the location of the source of particles that flow forth 

perpendicular to the x-direction with a precision of , one will need a ray bundle with an angular 

opening of at least  = h / p  , by which the direction of each particle will remain undetermined 

up to  . Conversely, should the direction of each particle be known with a precision of  

 
 (1) The fact that Einstein’s theory of gases can also be interpreted as a wave theory of matter, in the sense of de 

Broglie, was shown by Schrödinger, Phys. Zeit. 27 (1926), pp. 95.  
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(which is the case only for a ray bundle of opening  ), then the location of the source of each 

individual particle could be determined only up to  = h / p  . An exact localization of particles 

inside of a region   = h / p would not be possible. 

 px x = h : In order to establish the impulse px of a particle with a precision of px, one will 

need a section of a particle ray of length x = h / px , and in that way, the location of each 

individual particle will remain undetermined up to x. Conversely, in order to know the position 

of a particle up to x, one will need a truncated ray of length  x . However, for such a thing, the 

impulse of the particle can be determined only up to px = h / x. 

 Those statements about the limits of “mechanical resolution” can also be expressed in a form 

that reproduces the interference of light rays when one associates the mass-points with waves with 

the help of the Planck-de Broglie equations: 

 

E = h  , p = 
h


s  

 

and postulates a spatial and temporal interference of those waves. The limit of resolution of those 

waves will be characterized by equations (8), (9): 

 

 t  
   

 

   
  = 1  1  1 , 

 

yx zx y z
  

    
         
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ss s
 = 1  1  1 , 

 

whose derivation for light was explained thoroughly. The interference of matter then consists of 

the following: 

  t = 1 : If one lets two beams of atoms that include particles with the two values for kinetic 

energy E and E + E fall on a screen then the amount of matter that falls upon it per unit time 

cannot be constant in time, but must possess a slow, regular beat period in time of duration t = 

/h E . 

   / h = 1 : If one lets particles with the same impulse p start from two source-points that 

are separated by  then the number of particles per unit time that appear on a screen that is placed 

at a great distance cannot be constant for all angles  in a small region around  = 0 (which is 

perpendicular to the x-direction), but must exhibit maxima and minima with the angular period of 

 = h / (p  ). 

 x  (1 / ) = 1 : In a stream that consists of particles with two different values of impulse px 

and px + px , the density of matter along the path x is not constant, but will possess a spatial period 

of x = h / px . 

 Those statements about the interference of matter, which are complete reproductions of the 

ones for the interference of light with the help of the equations of association E = h , p = s h / , 

have still had no exact experimental confirmation in that special form up to now. 
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 However, convincing direct proof of the wave nature of ponderable matter comes from the 

experiments in the reflection of electron beams by crystal lattices that Davisson performed, 

together with Kunsman and German (1). They dealt with discovering just those maxima of 

selective reflection in certain directions that might be like the ones that would appear under the 

reflection of Röntgen rays by the crystal in question. In that way, they confirmed the de Broglie 

relation  = h : p, with the interpretation that was first given by W. Elsasser (2). The analogue of 

the Debye-Scherrer method was also examined: Thomson and Reid, as well as E. Rupp (3), 

found the diffraction rings that were well-known for Röntgen rays by passing a beam of electrons 

through thin metal foils. Finally, Dymond (4) found characteristic diffraction maxima for the 

reflection of electrons by helium gas atoms. It is also possible to interpret the Ramsauer effect as 

a diffraction phenomenon (5). 

 A conclusive indirect proof of the wave nature of matter is given by the experimentally-exact 

confirmed results that were indicated by the further development of wave mechanics for particles 

in force fields (e.g., electrons in the field of a nucleus or the field of light), which the next section 

will report on. 

 Due to the intrinsic impossibility of verifying the position, time, impulse, and energy data for 

a particle exactly, the depiction of a beam of atoms or electrons as something that consists of 

isolated individual corpuscles can be regarded as only an intuitive picture for many purposes that 

cannot be taken literally, since it does not take into account the very fact of its potential for 

interference. The same thing is then true for the pictures in the kinetic theory of gases (no. 21) and 

the image of the atom being constructed from electric corpuscles. 

 

 

 19. Uncertainty relation. – According to Heisenberg (6), the impossibility of making 

simultaneous exact observations of the conjugate quantities E and t, px and x, etc., can already be 

seen from both the point-mechanical and point-optical standpoints. Suppose that one establishes 

the momentary position x of a moving electron. That can be accomplished by illuminating the 

electron and observing the scattered light. However, due to the wave nature of light, the position x 

of the emission of scattered light is fixed only up to an error x   with the same order of 

magnitude as the wavelength. If one makes  ever smaller in order to make that error smaller then 

under the scattering of light by an electron, the electron will suffer an even-greater change in 

impulse px  h /  (viz., the Compton effect). The smaller the limit of error x on the 

determination of position, the larger will be the limit of error px on the determination of the 

impulse of the electron, and calculation will then yield the connection px  x  h. The same thing 

is true for light-quanta. That can happen when one sends an electron along its way and observes 

 
 (1) Davisson and Kunsman, Phys. Rev. 22 (1923), pp. 243. – Davisson and German, Nature 119 (1927), pp. 558; 

Phys. Rev. 30 (1927), pp. 705. 

 (2) W. Elsasser, Naturwiss. 13 (1925), pp. 711.  

 (3) G. P. Thomson and A. Reid, Nature 119 (1927), pp. 890; ibid., 120 (1927), pp. 802. – E. Rupp, Ann. Phys. 

(Leipzig) 85 (1928), pp. 711.  

 (4) E. G. Dymond, Phys. Rev. 29 (1927), pp. 433.  

 (5) L. Mensing, Zeit. Phys. 45 (1927), pp. 603.  

 (6) W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeit. 

Phys. 43 (1927), pps. 172 and 809; N. Bohr, Naturwiss. 16 (1928), pp. 245. 
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the location of the origin of an electron that is scattered by a light-quantum. However, due to the 

wave nature of matter, it can be established only up to an error of x  , in which  = h / p (p = 

electron impulse). Under electron scattering, the colliding light-quantum will suffer a change in 

impulse of px  h /  (Compton effect). The smaller the limit of error x in the determination of 

the position the light-quanta the larger will be the limit of error px in the determination of its 

impulse. 

 As Heisenberg remarked, one can consider the experimental impossibility of a simultaneous 

exact determination of the values of two canonically-conjugate quantities as the prerequisite for 

the presentation of quantum theory, just like the impossibility of sending signals faster than the 

speed of light is a prerequisite for the special theory of relativity. If there is an experiment that 

makes it possible to determine p and q sharply and simultaneously then that would contradict wave 

mechanics. The uncertainty relations: 

  px  x  h , 

  E   t  h 

 

are a counterpart to the “commutation relations” that were introduced in quantum mechanics 

(Chap. VII): 

px x – x px = 
2

h

i
, t E – E t = 

2

h

i
. 

  

 One will carry that uncertainty in any calculation when one subdivides the entire region for 

which the values of E, t, , , etc., are available for light (matter, resp.) into elementary cells of 

volume (12), (13): 

E t  p    p   = 3h , 

px x  py y  pz z = 3h , 

 

which is the smallest volume inside of which E, t, , , etc., can no longer be distinguished. The 

number of elementary cells that are found in a finite region (e.g., cavity, color range) is then the 

number of degrees of freedom in that region. The elementary cell is identical to the Laue 

elementary ray-bundle (8) by way of E = h, p = h /  . The number of degrees of freedom in a 

finite region is equal to the number of light (matter, resp.) waves in the elementary ray-bundle that 

contains them. 

 

 

 20. Corpuscular and wave theory. – The corpuscular theory of light, as well as that of matter, 

is characterized by corpuscular conservation laws for mass, energy, and impulse of isolated 

indestructible and recognizable particles of light or matter whose history can be followed, while 

the wave theory is characterized by interference phenomena for which light + light = dark, matter 

+ matter = vacuum will contradict the postulates of conservation. 

 For the empiricist, it suffices possess a theory that can predict the observed phenomena with 

sufficient precision in all of the cases that might occur and give the intrinsic limits of the precision 

to such predictions in any given case. That problem also shows up in wave mechanics, since it 
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initially gives a recipe for calculating a certain wave amplitude  in space and time (which is 

complete, moreover, i.e., it contains a phase) that is rooted in an undulatory sphere of ideas. The 

square of its absolute value   = |  |2 will then be interpreted as the intensity of the light (the 

density of the matter, resp.) in the sense that |  |2 is the probability, while  itself gives the 

“probability amplitude,” along with the phase, that light (matter, resp.) corpuscles can be found in 

that spacetime cell and can influence the apparatus that is found there.  

 It is characteristic that such effects always appear in a corpuscular way, e.g., as the material 

precipitation of isolated atoms or as photochemical effects of isolated light-quanta, but not as 

wave-aggregates that use the prediction of the effect in an essential way. The legacy of the origin 

of the wave no longer lies in its uncertainty, which initially enters into the calculations as the width 

of a light or matter ray diffraction line, and which can predict the points of impact for the individual 

particles only roughly when it is interpreted in a corpuscular context. However, in the final 

analysis, one can [as Darwin suggested (1)] regard that reinterpretation of the intensity-density as 

a corpuscular probability as a concession to our habit of explaining observational data in terms of 

corpuscles. One can just as well keep to the familiar undulatory interpretation of light precisely. 

Here, one must envision that the present place of matter in history is the same as the place of light 

before the time of Fresnel. 

 We would like to develop Darwin’s concept somewhat further. If we consider, say, an electron 

current then from the corpuscular viewpoint, a certain velocity distribution (say, Maxwell’s) will 

be created at every location. By contrast, from the undulatory viewpoint, one has a superposition 

of matter waves of different wavelengths. However, it amounts to the same thing when one speaks 

of a particle current or a wave-train. That is because when an experimenter can verify and isolate 

individual particles with velocities that lie above or below the mean velocity, those individual 

velocities are by no means present already in the total beam, but one can say that on the contrary, 

the observation apparatus itself creates those individual homogeneous velocities. Likewise, the 

spectroscope first generates the individual colors from white light, and it is only an abuse of 

language when one says that the colors are already “included” in the white light, since that 

inclusion means nothing but a reference to the spectroscopic experiment. If one had believed in 

the old quantum theory that the Stern-Gerlach experiment proved the unique existence of 

individual atoms in varying stationary states in the magnetized beam of atoms then one would now 

prefer to say that the atomic beam represents a wave-train that is split into certain components by 

the apparatus in question, while other components might possibly be stripped off in a different 

apparatus that would be, however, less characteristic of the original atomic beam than they would 

be of the apparatus itself. 

 Empirically, there also exists an essential difference between the predictions of the old and the 

new conceptions of things in certain cases. Let us consider, say with Darwin, a modified Stern-

Gerlach experiment. The atomic beam goes along the x-direction and passes through an 

inhomogeneous magnetic field that points parallel to the y-axis, in which it is split into a beam that 

is polarized along + y and one that is polarized along – y. The – y component will be screened out, 

while the + y component will go through a homogenous magnetic field that is directed parallel to 

the z-axis, and in which it will be split into two components that are parallel to + z and – z according 

 
 (1) C. G. Darwin, Proc. Roy. Soc. 117 (1927), pp. 268.  
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to the old theory. If they now further go through an inhomogeneous field that is parallel to y then 

they will again be directed along  y and should ultimately give two lines on a screen behind it. 

 By contrast, according to wave mechanics, the z-field has the effect of rotating the plane of 

polarization of the rays that enter it and are polarized along + y around z as the axis of precession 

with the Larmor frequency. Therefore, if the homogeneous z-field has precisely the length that 

would be necessary for the atoms that enter it and are polarized along + y to suffer a precession 

around the z-direction by n  180o (n = whole number), such that they will enter into the last 

inhomogeneous y-field with a polarization that is only in precisely the – y or + y direction, then 

they will no longer be split, and one should expect only one line on the screen. 

 

 

 21. Statistics of light quanta and gaseous atoms. – Define standing waves in a volume V 

with discretely-distributed wavelengths  in such a way that the walls will be nodal surfaces. 

According to Jeans (1), the number of eigen-oscillations in the region from  to  +  is equal to 

[see Chap. 8, eq. (4)]: 

Z = 2

4 1
V



 

 
 

 
 .     (14) 

 

If one would like to employ the frequency  = u : , instead of , with u = phase velocity, then one 

would have: 

1



 
 

 
 = 

r

u

 
  

 
 = 1

du

u u d

 



  
− 

 
 = 

g


, 

 

with the group velocity g, and one would then get: 

 

Z = 
2

2

4
V

u g


 .     (15) 

 

 The corpuscular interpretation of (1) with the help of the de Broglie association p = h /  gives 

the number of discrete impulse cells that lie in the range of impulse from p to p + p as: 

 

Z = 
2

3

4 p
V p

h


 .     (16) 

 

For light, those expressions are provided with a factor of 2 in order to account for the two degrees 

of freedom for polarization. With the corpuscular interpretation of (15), we can distinguish two 

special cases, the first of which is a light-quantum in vacuo (a non-dispersive medium) and the 

 
 (1) I. H. Jeans, Phil. Mag. 10 (1905), pp. 91. See also M. Planck, Vorlesungen über die Theorie der 

Wärmestrahlung. 
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second of which is that of mass-points  with no mutual couplings and in the absence of an external 

force-field (i.e., an ideal gas). We will then have: 

 

 = h  , 

and 

  2u g  = 3c  p
c

 
= 

 
 for light, 

  2u g  = 3v  ( )2v p  = =  for a gas, 

so from (15): 

Z = 
2

3 3

8
V

c h

 
  for light,     (17) 

Z = 
3/2

1/2

3

2 (2 )
V

h

 
    for a gas    (18) 

 

will be the number of discrete energy cells that belong to the energy interval  to  + . 

 If one counts N eigen-oscillations in increasing order of  from  = 0 onwards and integrates 

(17), (18) then one will get: 

 

Z () = 
3

3 3

8

3
V

c h

 
    conversely  (Z) = 

1/3

3

8

Z
hc

V

 
 

 
  (light), (17) 

Z () = 
3/2

3

2 (2 )

3 / 2
V

h

  


  conversely  (Z) = 

2/3
23

4 2

Z h

V 

 
 

 
 (gas),  (18) 

 

Z () is the number of the eigen-oscillation  = h ,  (Z) is the energy  = h  of the thZ  eigen-

oscillation. It depends upon volume. 

 

 (Z) = const. 1/3V −  for light,  (Z) = const. 2/3V −  for a gas.  (18) 

 

 We shall now ask what the statistical distribution of light or gas particles over the energy cells 

of volume V might be. Three particles a, b, c might be distributed over four cells (nos. 1, 2, 3, 4). 

One has the following twenty possibilities for the occupation of cells by particles: 

 

Cell no. 1 3 0 0 0 2 2 2 1 0 0 1 0 0 1 0 0 1 1 1 0 

          2 0 3 0 0 1 0 0 2 2 2 0 1 0 0 1 0 1 1 0 1 

          3 0 0 3 0 0 1 0 0 1 0 2 2 2 0 0 1 1 0 1 1 

         4 0 0 0 3 0 0 1 0 0 1 0 0 1 2 2 2 0 1 1 1 

 p3 = 1  p0 = 3 p2 = 1,   p1 = 1,   p0 = 1 p1 = 3,  p0 = 1 
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In the first four of those distributions, one has one cell with three particles and three cells with zero 

particles in each case (p3 = 1, p0 = 3). For the next twelve distributions, one has p2 = 1, p1 = 1, p0 

= 2, and for the last four distributions, one has p1 = 3, p0 = 1. 

 In Bose-Einstein statistics (1), all of those twenty distributions are regarded as equally 

probable, so they are counted with the same weight. That assumption means that one “distributes 

the cells over the particle numbers” by giving each cell that contains 0, 1, 2, or 3 particles the same 

probability. By contrast, with the corpuscular interpretation, in which three individual 

distinguishable particles a, b, c are distributed over the four cells according to probability, one 

would like to assign a weight to the distribution  

2

1

0

0

 that is four times as great as that of the 

distribution 

3

0

0

0

, because the latter can be realized in only one way, since all three particles fall in 

the first cell 
0

0

0

abc

, while the former can be realized in four ways 
0 0 0 0

0 0 0 0

abc abd acd bcd

d c b a
. That 

is what one does in Boltzman’s statistics of the ideal gas molecule, which leads to Maxwell’s law 

of distribution in statistical equilibrium. If Bose statistics deviates from that by counting each of 

the twenty distributions above with equal weight then that is based upon the fact that one gives up 

the picture of independent individual corpuscles. However, based upon Boltzmann’s statistics, 

one will also come to approximately the same statistical energy distribution as the Bose statistics 

when one imagines that the particle that is found in a cell is endowed with a phase and their 

energies are not simply added, but their amplitudes are superposed like the superposition of 

oscillations (2). 

 We shall also mention Fermi statistics (3), which differ from Bose statistics by the fact that the 

only distributions that are allowed are the ones for which no cell possesses more than one particle. 

Thus, in the example above, according to Fermi, only the last four distributions are allowed, while 

the first sixteen distributions are counted with weight zero. In general, with Fermi, only those 

distributions are allowed for which pn = 0 for n = 2, 3, …, and only p0 and p1 are non-zero. One 

can go from the results of Bose statistics to those of Fermi statistics with no further discussion by 

specializing to the case of pn = 0 for n > 1. Bose statistics is verified for light-quanta, while Fermi 

 
 (1) S. Bose, Zeit. Phys. 26 (1924), pp. 178. – A. Einstein, Berl. Ber. (1924), pp. 261; ibid. (1925), pp. 318. – E. 

Schrödinger, Phys. Zeit. 27 (1924), pp. 95.  

 (2) A. Landé, Zeit. Phys. 33 (1925), pp. 571.  

 (3) E. Fermi, “Zur Quantelung des idealen einatomigen Gases,” Zeit. Phys. 36 (1926), pp. 902. 



II. – Corpuscular and wave theories of light and matter. 51 

 

statistics is verified for material particles. The latter is a generalization of the Pauli principle (1) 

that no more than one electron can occupy a quantum state in an atom to an arbitrary system of n 

equivalent particles. 

 We shall not go into the development of the various statistical Ansätze for corpuscles of light 

and matter here. The result for light-quanta in thermodynamic equilibrium is the Planck law of 

radiation. For material particles, the departure from the classical Boltzmann statistics of the Bose-

Einstein and Fermi statistics becomes especially remarkable at low temperatures (“degeneracy 

phenomena”). 

 Their experimental confirmation is complicated by the fact that it is precisely at low 

temperatures that the Van de Waals molecular forces perturb the ideal behavior of gases. Thus, 

before one can develop a quantum theory of nonideal gases, an unambiguous experimental 

confirmation must be performed. The relationships for electrons, which are 2000 times lighter, are 

much more favorable, since, e.g., the conducting electrons in a piece of metal define a “gas” that 

degenerates into a molecular gas at much higher temperatures. Pauli (2) has adapted Fermi 

statistics to conducting electrons in particular in the context of the question of why conducting 

electrons in an external magnetic field do not give rise to a strong magnetization of the metal, 

although every electron possesses a magnetic moment of magnitude 1 magneton according to 

Uhlenbeck and Goudsmit. However, every cell can be occupied by not only one electron, but two 

of them, as long as their magnetic quantum numbers are different, i.e., when the magnetic axes of 

the two electrons point in opposite directions that are parallel and anti-parallel to the external field. 

The electron gas is already largely degenerate at ordinary temperatures, since most electrons crowd 

together in the cells of the least-possible number Z with the least-possible energy , such that they 

will be found in a cell with an oppositely-oriented electron, and in that way will be magnetically 

neutralized. 

 Sommerfeld (3) arrived at a comprehensive theory of conducting electrons by an advanced 

discussion of the properties of electron gases in external fields and a consideration of the gradients 

of temperature and density. There are formulas for the effects of Thomson, Peltier, Volta, and for 

the relationships between electrical and thermal conductors, etc., that go to the formulas for the 

classical (viz., Lorentz-Drude) theory of conducting electrons for high temperatures (low density, 

resp.), but for low temperatures and high densities, they exhibit characteristic degeneracies that 

are measured in the experiments, and in that way, confirm the Fermi statistics. 

 

____________ 

 

 
 (1) W. Pauli, Zeit. Phys. 31 (1925), pp. 765. Moreover, see Ornstein and Kramers, “Kinetische Herleitung des 

FERMIschen Verteilungsgesetzes,” Zeit. Phys. 41 (1927), pp. 481; W. Heitler, “Freie Weglänge und Quantelung der 

Molekültranslation,” Zeit. Phys. 44 (1927), pp. 161. 

 (2)  W. Pauli, “Über Gasentartung und Paramagnetismus,” Zeit. Phys. 41 (1927), pp. 81. 

 (3) A. Sommerfeld, “Elektrontheorie der Metalle auf Grund der FERMIschen Statistik,” Zeit. Phys. 47 (1928), pp. 

1; ibid. 47 (1928), pp. 43; Naturwiss. 15 (1927), pp. 825. 



 

CHAPTER III 

 

UNDULATORY MECHANICS OF CONSERVATIVE SYSTEMS 
 

 

 22. Optical-mechanical analogy. – In Chapter I, the close relationship between geometrical 

optics and classical mechanics was portrayed, which has its origin in the analogy between the index 

of refraction: 

n (q) = 
c

u
 = 

vacuum velocity

phase velocity
 

 

of light, which depends upon the position coordinates q, and the position-dependent quantity: 

 

n = 
2 [ ( )]m E U q

c
E

−
 ,             (1) 

 

for a system of mass-points with a potential energy function U (q) and the kinetic energy T = 
2 21

2

KL

K Lm g q q . The constant energy parameter E corresponds to the parameter  of color, 

which is thought to be constant and upon which the index of refraction depends. That analogy 

leads to the juxtaposition of curved light rays in a refracting field n (q) and the mechanical 

trajectories in a potential field U (q). Moreover, it leads to the juxtaposition of the eikonal surfaces 

 (q, t) = S (q) – c t, which are perpendicular to the light rays and advance with a phase velocity 

of u = c / n, and the action surfaces  (q, t) = S (q) – c t, which are “perpendicular” (in the non-

Euclidian sense of the line element 
KL

K Lg dq dq ) to the trajectories and which advance 

with the velocity: 

u = 
c

n
 = 

2 [ ( )]

E
c

m E U q


−
.            (1) 

 

In that way, S is determined by a complete integral S (q1, q2, …, 1, 2, …) to the eikonal equation: 

 

(grad S)2 = 
2n  = 

2

2

c

u
.          (2) 

 

 In geometrical optics, one further considers the wave functions: 

 

  = 
2 /ie   

 = 
2 ( ) /i S cte  −

  (optics) 

 

with the temporal period  = c /  . 

 One then determines  in such a way that  = c /  is identical to the color parameter , which 

is definitive of n. In the mechanical case, where n depends upon the parameter E instead, there is 
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initially no reason to fix the period  by a special choice of  = c /  in a special way. Here, quantum 

theory prefers a certain choice:  shall be chosen such that  = c /  has the same relationship to 

the energy parameter E as in the Planck relation  = E / h, so  = c h / E, which will make the 

periodic function of mechanics assume the form: 

 

 = 2 ( ) /i E S ct hce  − . 

 

From now on, in contrast to Chapter I, we would now like to understand S to be usual action 

function (see no. 12) in mechanics, so we shall now write S, instead of S E / c, as we have up to 

now, such that we will now have: 

 

 = 
2 ( ) /i S Et he  −

,  = 
E

h
  (mechanics).        (4) 

 

In that way, S is determined from the equation: 

 

(grad S)2 = 
2

2

E

h
 with u = 

2 ( )

E

m E U−
,   (5) 

 

which is known in the form (no. 12): 

 

1

2m
(grad S)2 + U (q) – E = 0             (5) 

 

as the Hamilton-Jacobi partial differential equation (H. J. D).  in (4) will then represent the “de 

Broglie wave function.” Due to (1), the frequency and wavelength of the action wave are then: 

 

 = 
E

h
,   = 

u


 = 

2 ( )

h

m E U−
 = 

h

p
 ,   (6)  

 

in which p = 2 ( )m E U−  represents the total impulse of the mechanical system at the location q 

for the total energy E, and also in the general case of an N-point system. 

 

 

 23. Fundamental equation of wave mechanics (1). – The transition to the optical wave 

equation for  was carried out in no. 8, in which the differential quotient S / x in the eikonal 

 
 (1) E. Schrödinger, “Quantisierung als Eigenwertproblem,” Ann. Phys. (Leipzig) 79 (1926), pps. 361 and 489; 

ibid., 80 (1926), pp. 437. Abhandlungen zur Wellenmechanik, Leipzig, 1927. 
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equation (grad S)2 − 2 2/c u  = 0 was replaced with the operator 
2i x








, and it then took the form 

of the operator equation: 
2 2 2

2 22

c

i x u





  
+ −  

   
 = 0 , 

 

and when that was applied to a function , it gave the equation: 

 
2 2

22

c

i u


 



 
 − 

 
 = 0   , 

which goes to the wave equation: 

 + 
2 2

2

4

u

 
  = 0 .          (7) 

 

 With Schrödinger, the corresponding transition in mechanics shall now be carried out. One 

replaces: 

k

S

q




 with 

2 k

h

i q




, …              (8) 

 

in equation (5) and applies the operator equation that one obtains to a function . If we next 

consider the special case in which the system consists of only a single mass-point m, so (grad S)2 

possesses the form 

2
S

x

 
+ 

 
, then one will obtain the operator: 

2 2 2

2 22

h E

i x u

  
+ −  

   
 = 0 , 

and when it is applied to , i.e.: 
2 2

22

h E

i u
 



 
 − 

 
 = 0   , 

 

or ultimately, with the use of u = / 2 ( )E m E U−  : 

 

2

2

8
[ ( )] 0.

m
E U q

h


  + −  =           (9) 

 

That is Schrödinger’s oscillation equation for the function  (x, y, z). The temporal period  is 

then regarded as being determined from  = E / h . Therefore, if  (x, y, z) is a spatial function that 

solves the last equation then: 

 (x, y, z, t) =  (x, y, z)  
2 /i E t he 

     (9) 
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will be the associated spacetime function. The classical motion of a mass-point with the energy E 

in the potential field U (x, y, x) will be associated with a solution  of Schrödinger’s oscillation 

equation in space and time. 

 We now consider the general case of a mechanical system, whose classical energy possesses 

the form: 

E = T + U = 1
2

( )LK

L Lm g q q U q+  

 

as a function of the N coordinates qK and velocity, with the coefficients LKg  = KLg  that depend 

upon q. When equation (5) is written out in detail [see (28.b) in no. 9], it will assume the form: 

 

1
( )

2
LK

L K

S S
g U q E

m q q

 
+ −

 
  = 0  , 0

S
H q E

q

  
− =  

  
 (10) 

here. 

 Schrödinger’s prescription of replacing 
K

S

q




 with 

2 K

h

i q




 will now lead to a certain 

ambiguity in the desired oscillation equation. For example, if gLK depends upon position q then 

L K

LKg p p  will be identical to the commuted product L K

LKp g p . By contrast, LK

L K

g
q q


 

 
 is a 

different function from LK

L K

g
q q


 

 
, since gKL is not differentiated with respect to qL in the 

former, but it might be in the latter. In order to exclude that ambiguity from the outset, one must 

write the classical Hamiltonian function in a symmetrized form. For example, one can imagine, 

say, replacing L K

LKg p p  with the more symmetric form 1
6

( L K

LKg p p + five further permutations 

of the sequence of three factors), and reinterpreting things in terms of differential operators. 

According to Schrödinger, one can use the following symmetrization in place of that: If g 
 is the 

determinant of the 
LKg  then one starts from the symmetrized form: 

 

1 1
( )

2

K L

KL

L K

p g g p U q E
m g




+ − = 0 .   (11) 

 

Namely, if one replaces 
Kp  with h / 2i    / qK in that then that will give it the form: 

 
2

1 1
( )

2 2 L K K L

h
g U E

m i q qg
 







   
 + − 

  
 = 0 ,            (11) 

 

which can be written simply: 
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2

1
( )

2 2

h
U E

m i
 



 
  + − 

 
 = 0 ,    (11) 

 

according to no. 9. One has once more obtained the fundamental equation (9) then, except that 

now  means the generalized Laplace operator in a multi-dimensional space, into which the non-

Euclidian metric: 

(ds)2 = KL

K L

K L

g dq dq  

 

has been introduced. The domain of validity of the simple fundamental equation (9) has been 

extended considerably in that way. In particular, if the KLg  are spatially constant then the same 

thing will be true for g 
, and one can take the unsymmetrized form (10) to be the starting point of 

the transition from classical to undulatory mechanics. 

 One now asks whether and under what conditions finite solutions  (q) of the Schrödinger 

equation are present. As such conditions, the boundary conditions will appear first of all, say, 

( )q  must vanish strongly enough at infinity such that 
2

1| | Fdq dq  remains finite, or for a 

finite region of the qK (qK is, say, an angle that varies between 0 and 2), one can demand 

periodicity (single-valuedness, resp.) of . Now, for such “natural” boundary conditions that are 

given by the nature of the problem, there will generally exist only finite solutions  (q) when the 

parameter E in the oscillation equation possesses certain distinguished values E1, E2, … 

(eigenvalues), which belong to certain functions 1 (q), 2 (q), … (eigenfunctions) as solutions. 

Now, the physical statement of undulatory mechanics that the eigenvalue En that makes the 

Schrödinger equation for a mechanical system H (q, p) – E = 0 soluble is identical to the energy 

values of the system in the distinguished quantum states. The determination of the energy values 

is the reduced to the eigenvalue problem for a linear homogeneous partial differential equation in 

an N-dimensional coordinate space for natural boundary conditions that is associated with a 

classical mechanical system. 

 The associated eigenfunction n (q), when provided with the periodic time factor 
2 /ni E t h

e


, will 

then represent an oscillation process in that coordinate space (q-space). The eigenfunction can also 

be interpreted as the expression for certain physically-observable properties of the mechanical 

system, as will be explained later. Moreover, in some special cases, the oscillation equation can be 

arranged to be such that, along with the discrete spectrum of eigenvalues E1, E2, …, it also 

possesses a continuous spectrum of E-values in the interval Ea to Eb, which belongs to a continuous 

family of eigenfunctions a to b . That case appears, e.g., for systems of atomic electrons, which 

indeed possess all energy values between E = ionization energy and E = , in addition to the 

discrete quantum energies En . 

 

 

 24. Correspondence with the classical theory. – The formal relationship between classical 

and undulatory mechanics takes the form of the juxtaposition of the equation: 
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 H (q, p) – E = 0    or    ,
S

H q
q

 
 

 
 − E = 0   (Hamilton-Jacobi)  (12) 

and the oscillation equation in the form (10): 

 

, ,
2

h S
H q E

i q




   
−  

   
 = 0  (Schrödinger).       (12) 

 

One will see the relationship between the Schrödinger theory and the quasi-classical de Broglie 

theory with the action waves: 

 

 = 
2 /i S hA e  ,  where (grad S)2 = 

2

2

E

u
 = 2m (E – U)  (de Broglie),         (13) 

 

which are endowed with the period  = E / h , when one substitutes the solution Ansatz  = 
2 /i S hA e   in (11). The differential equation for S (q): 

 

2

h
S

i
  + (grad S)2 – 2m (E – U) = 0  (Schrödinger)      (13) 

 

will then remain. Except for the first term, which is proportional to h, that is identical to the 

classical determining equation for S in (13). For h = 0, Schrödinger’s oscillation function will go 

to de Broglie’s. 

 According to Jordan (1), one can also clarify the correspondence in the following way:  The 

classical equation (12) for S can be written in the form: 

 

, ,1
S

H q E
q

  
−  

  
 = 0       (14) 

 

as an operation that is performed on the constant function 1, i.e., as multiplication by 1. One now 

considers the differential equation: 

, ,1
2

S h
H q E

q i q

    
+ −  

    
 = 0            (14) 

 

or when written out in detail in symmetrized form (cf. 11): 

 

1 1
,1

2 2 2
KL

L K

S h S h
g g U E

m q i q q i qg  





        
+ + + −    

        
  = 0 . 

 
 (1) P. Jordan, Zeit. Phys. 40 (1927), pp. 809.  
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Since the differentiations give  1 / qL = 0 when one does the calculations, the last equation will 

reduce to the form (cf., no. 9): 

 

21
(grad )

2 2

h
S S

m i

 
 + 

 
 + U – E = 0 , 

 

which is identical to (13). However, that means that the Schrödinger equation can be reduced to 

the form (14) for S by the Ansatz  = 
2 /i S he 

, which is the counterpart to equation (14) for the 

classical action function. (14) goes to (14) when h = 0. 

 

 

 25. Equation of oscillation from a variational principle. – In the Lagrangian function L of 

the classical-mechanical system L = kinet. – pot. energy = H (q, p) = 2U, one formally replaces: 

 

Kp  = 
K

S

q




 with 

1

2 K

h

i q



 




 

 

and solves the variational problem: 

 

2

1

2

2

1
,  extremum,
2

as an auxiliary condition.

h
J L q dv

i q

J dv




 



 
=   =     


= 





   (15) 

 

The dv means the invariant volume element dv = g
dq1 dq2 … dqN . With the introduction of a 

Lagrange factor E, (15) will be equivalent to the variational problem: 

 

O = J1 + E J2 = − 1( , , )q NF q dq dq   , 

with 

F = 
2

2

2

1
( )

4 2
KL

K L K L

h
g g U E g

m q q

 




  
+ −

 
 , 

 

and the Euler variational equation: 

  

K
K K q

d F F

dq  

  
− 

   
 = 0 means 

Kq

Kq




 
 

 
. 

 

However, with the use of the function F that was just written down, that is identical to the 

Schrödinger equation in the form (11), (11). When one starts from the ordinary non-
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symmetrized Lagrangian function, that variational process will then lead automatically to the 

Schrödinger equation: 

 − 
2

2

8 m

h


 (E – U)  = 0 

 

with the correctly-symmetrized Laplacian operator . The variational problem for complex and 

time-dependent  is given in no. 35. 

 As one sees from the form of (11), the Schrödinger equation has a self-adjoint character, i.e., 

it possesses a symmetric differential operator that one can also read from back to front as: 

 

KL

K L L K

g g
q q

 

 
  

 

when one switches the sequence of differentiations. However, it is known that the eigenfunctions 

of a self-adjoint differential equation define an orthogonal system: 

 

( ) ( )m nq q dv   = 0   for m  n (dv = 1 2g dq dq
), (16) 

 

and indeed, the orthogonal system is complete, so every function a (q) that is orthogonal to m : 

 

( ) ( )na q q dv  = 0 

 

is a linear combination a (q) = ( )n nc q  of eigenfunctions n that differ from m and have 

constant coefficients cn . One can then normalize that eigenfunctions to 1, i.e., provide them with 

constant factors that make: 
2 ( )m q dv  = 1 ,     (17) 

 

if necessary. We shall not go into the special relationships that relate to a continuous spectrum of 

eigenvalues. 

 The equivalence of the Schrödinger equation with a variational problem that likewise 

guarantees the orthogonality and completeness of the system of eigenfunctions is also significant 

on the grounds that a transition to other coordinates is much easier to accomplish with the 

integrand of the variational problem than it is with the differential equation itself. Furthermore, in 

the search for approximate eigenfunctions, it is useful to be able to apply the much-faster-

converging approximation methods to the solution of the variation problem (e.g., the Ritz method), 

instead of applying the slowly-converging perturbation methods to the solution of the differential 

equation. 
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 26. Rotator with an axis fixed in space. – As an example (1), we shall consider a rigid body 

that can rotate around a fixed axis. Its single degree of freedom is the angle of rotation . If its 

moment of inertia is J and p = J   is its angular impulse then the classical total energy will be: 

 

  T + U = 21

2
p

J
 = E  (U = 0), 

and the wave equation will become: 
2 2

2 2

8d J
E

d h

 



−  = 0 

 

when uses the conversion (8). Its solution is: 

 

 = 
2

2

8
sin

E J
A

h


 

 
  − 

 
 

 . 

 

 Here, the factor of  must be a whole number n in order for  to be a single-valued and 

continuous function of the angle of rotation  () =  (  2) . That will give the condition: 

 

2

2

8 E J

h


 = n , i.e., En = 

2 2

28

n h

J
 

 

for the quantum condition for the energy of the rotator. The eigenfunctions will then read simply: 

 

n () = 
1


 sin (n  – n) . 

 

They are normalized to 1 by way of the factor 1/  . 

 

 

 27. Rigid rotator with a free axis. – When one introduces the polar coordinates  and , the 

impulses p and p , and the moment of inertia J, the classical energy will read: 

 

  T + U = 

2

2

2

1

2 sin

p
p

J






 
+  

 
 = E  (U = 0), 

 

so the wave equation (9), with  in polar coordinates ,  will be: 

 

 
 (1) For the following examples, see E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 489.  
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2 2

2 2 2

1 1 8
sin

sin sin

J E

h

  
 

    

   
+ + 

   
 = 0 . 

 

That is the differential equation of the spherical functions. In order for  to be single-valued and 

continuous on the sphere, the factor of  must be: 

 

  
2

2

8 J E

h


 = n (n + 1),  n = 0, 1, 2, … 

The energy levels are: 

En = 
2

2

( 1)

8

n n h

J

+
 = ( )

2
2

1 1
2 4 28

h
n

J
 + − 
 

 , 

 

accordingly, i.e., a formula with “half-integer” quanta, as would occur in the terms of band spectra. 

The associated eigenfunctions are the spherical functions: 

 

n = Yn (, ) = 
0

(cos )
( cos sin )sin

(cos )

mn
m n

m m m
m

d P
A m B m

d


  

=

+ , 

 

which can be normalized to 1. 

 

 

 28. Harmonic oscillator. – For the linear harmonic oscillator, the classical energy function 

reads: 

T + U = 
2

2 20(2 )1

2 2

m
p q

m


+  = E , 

 

if q means the distance from the mass-point to the rest position, 0 means the eigenfrequency, and 

p = m q  means the impulse. The wave equation (9) in q-space is then: 

 
22 2

20

2 2

(2 )8

2

md m
E q

dq h

 


 
+ −  

 
 = 0 . 

 

With the help of the abbreviation: 

x = 02 /q m h  ,         (18) 

one will get the equation: 
2

2

2

0

2d E
x

dx h






 
+ −  

 
 = 0            (18) 

 

for  as a function of the dimensionless quantity x. 



62 Optics, mechanics, and wave mechanics 

 

Now, the mathematical theory of that equation says that it is soluble for finite and continuous 

functions  only for special values of 2E / h 0, namely, for the eigenvalues: 

 

0

2E

h
 = 1, 3, 5, …, 2n + 1, … 

 

The thn  eigenfunction n (x) that belongs to the thn  eigenvalue: 

 

En = 0

2

h
 (2n + 1), 0 = nE

h
,    (18) 

 

when one affixes the time factor 
2 ni t

e


, is equal to: 

 

n (x) = 
2 /

( ) ni t E h

nH x e


 .            (19) 

 

The Hn (x) in that means the “
thn  normalized Hermite orthogonal function”: 

   

 

2

2

2 4

( 1)
( )

2 !

( 1) ( 1)( 2)( 3)
(2 ) (2 ) (2 ) .

1! 2!2 !

n n x

n nn

x
n n n

n

d e
H x

dxn

e n n n n n n
x x x

n

−

−
− −

−
= 

 


− − − −  
= − + − +  

  

 (19) 

 

The Hn (x) are mutually-orthogonal and normalized to 1: 

 

( ) ( )n mH x H x dx

+

−

  = 
0 for ,

1 for .

n m

n m




=
 

 
Figure 4. 
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The first five functions H0 (x) to H4 (x) are represented graphically in Fig. 4. It shows the similarity 

with the picture of the fundamental frequency and the harmonics of a string, and indeed and 

infinitely-long string with an inhomogeneous mass distribution that belongs to a position-

dependent phase velocity u = / 2 ( )E m E U−  along the q-axis, which corresponds to the 

position-dependent expression for the potential energy U (q) of the oscillators. The eigenfunctions 

are standing waves. The zeroes (i.e., nodes) of successive Hn (x) are separate from each other. 

Except for x = 3, all five functions approach the x-axis monotonically. Hn (x) has n finite zeroes 

and two zeroes at  , as well as n + 1 antinodes. 

 The eigenvalues En in (18) are given by odd multiples of h0 / 2. One will then get “half-

integer” quantum levels, in contrast to the whole-number levels En = n  h0, that establish the 

point-mechanical oscillator frequencies by quantum conditions. Experiments, especially with 

anharmonically oscillating systems, had already suggested the introduction of a special “zero-point 

energy” of magnitude h0 / 2 that would overlap with the whole-number quantized energy values. 

The new quantum theory does not require such an additional assumption. It also justifies the “half 

quantum numbers” that are often required by experiment in other cases. 

 

 

 29. Hydrogen atom (1). – The classical energy function, in polar coordinates r, , , reads: 

 

T + U = 
2

2 2 2

2 2 2

1 1 1

2 sin
rp p p

r r r
 



 

 
+ + − 

 
 = E 

 

here, and the Schrödinger equation (9), with the  in polar coordinates, will read: 

 

0 = 
2 2 2 2

2 2 2 2 2 2 2

2 1 1 1 8
sin

sin sin
E

r r r r r h r

      
 

    

      
+ + + + +  

       
 . 

 

We try to solve it by the Ansatz: 

 (r, , ) = X (r)  Y (, ) 

and find, by substitution, that: 

 

0 = 
2 2 2 2

2 2 2 2 2 2

2 1 1 8
( , ) sin

sin sin

X X X
Y E X Y

r r r r h r

    
  

    

          
 + + + + +      

          
 . 

 

That equation splits into two equations. Namely, if one sets the second square bracket equal to 

( 1)l l Y− +  : 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 361. Further, see, J. Waller, Zeit. Phys. 38 (1926), pp. 

635; C. Eckart, Phys. Rev. 28 (1926), pp. 927.  
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2

2 2

1 1
sin ( 1)

sin sin

Y Y
l l Y

    

   
+ + + 

   
 = 0  (l = 1, 2, …) 

 

then the equation for X (r) will remain: 

 
2 2 2 2

2 2 2 2

2 8 8 ( 1)X X l l
X E

r r r h h r r

       +
+ +  + − 

   
 = 0 . 

 

One has the equation of the spherical functions with the eigen-solutions Y = Yl (, ) for Y. 

Investigation of the remaining differential equation for X (r): 

 
2

2 2

2 ( 1)X X b l l
X a

r r r r r

  + 
+ +  + − 

   
 = 0 

 

will show that for every positive a, so for every positive energy E, it possesses solutions that are 

finite and continuous in the entire r-domain and converge to zero like 1/r at infinity. The 

eigenvalue (i.e., energy) spectrum is then continuous for positive E. 

 For negative E, one sees that it possesses solutions X (r) that are finite and continuous and 

converge to zero at infinity sufficiently fast only when: 

 

2

b

a−
 = n , i.e., 

22

2h E

  

−
 = n, and therefore n > l . 

   

The energy value is then: 

  En = −
2 4

2 2

2

h n

  
  (Bohr’s energy values) 

 

and that will yield the associated eigenfunctions as: 

 

Xnl (r) = fnl (x) = 
1

1

( 2 )

1!

kn l
l x

k

n lx
x e

n l kk

− −
−

=

+ −
 

− − − 
  , 

with the argument: 

x = 
2 2 E

r
h

 −
 = 

1

r

a n
 , with a1 = 

2

2 24

h

  
, 

 

in which a1 is radius of the first Bohr orbit for hydrogen. fnl (x) is known to be the (2l + 1)th 

derivative of the (l + n)th Laguerre polynomial. The eigenfunctions: 

 

nl (r, , ) = n (, )  Xnl (r) 



III. – Undulatory mechanics of conservative systems. 65 

 

can be normalized to 1. Fig. 5, which is taken from a paper by L. Pauling, shows the shape of the 

part of the  functions that depends upon r for various values of n and l. The number of nodes 

(zeros of ) is characteristic. It is equal n when one counts the zero at r = . The symbols K, L, M 

are the Röntgen symbols that belong to n, l. Fig. 6 shows the mean charge density distribution (see, 

no. 30) on the sphere of radius r, as measured by 2 . The vertical line divides the total charge into 

equally-large external and internal parts. The horizontal thick line along the abscissa axis shows 

the range of the electron orbit in the Bohr theory. For l > 0, the radial density function in the figure 

must be multiplied by a spatial angle function. 

 
Figure 5.      Figure 6. 

 

 We must pass over a discussion of the examples of system with more than one electron here. 

The examination of that problem has made it possible to explain a large number of questions in 

atomic physics that are connected with the spectra of higher atoms.  

 

 

 30. Continuous interpretation of the field scalar. – Whereas the point-mechanical theory of 

an N-body system admits a continuous family of orbits of the N mass-points in three-dimensional 

space, from which the older quantum theory selected a discrete number of “quantum orbits” with 

distinguished energy values E1, E2, … by a certain prescription, wave mechanics describes the 

state with the energy value Ek by an eigenfunction k in a space of 3N coordinates. In order to 

arrive at an interpretation of the -function, we next consider the special case of a single mass-

point in a temporally-constant potential field (e.g., the hydrogen electron in the field of a nucleus). 

The state of the system with an energy Ek is described by a scalar function k here that occupies 

all of three-dimensional space, instead of the 
thk  quantum orbit of Bohr’s theory. If the 
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eigenfunctions are normalized to 1, i.e., 2

k dv  = 1, then we can imagine that the total energy Ek 

of the state in all of space combined has the form: 

 

Ek = 2 ( )k kq E dv ,  2 ( )k q dv  = 1 , 

 

in such a way that the amount of energy in the volume element dv is equal to 2

k kE dv , so the 

amount per unit volume at the location q is equal to 2

k kE . 2

k  enters into that as a type of density 

function at the location q. One then arrives at the picture of the mass-point as not being restricted 

to the discrete Bohr quantum orbit, but being spread over all of coordinate space. For example, if 

 is the electric charge of the mass-point then a corresponding charge density  (q) = 2

k   will 

be created in the quantum state k, and a mass density  (q) = 2

k  , if  is the mass of the point. 

One thus arrives a picture in which space is continuously occupied with mass and charge density, 

which deviates from the discrete quantum orbits of Bohr’s theory. Now, the calculation of that 

distribution of density in special cases shows that they mainly originate in those regions of space 

where the Bohr quantum orbits also run (see, e.g., Fig. 6). The continuous charge distribution will 

also make itself felt externally then as the effect of other charged particles with forces that do not 

deviate very much from those of the Bohr orbits (1). 

 If one has a system of several electrons, when expressed in point-mechanical terminology, then 

k will be a function in 3N-dimensional space, and the same thing will be true of the density 
2

1 2 3( , , , )k Nq q q  = 2

1 2( , , , )k N r r r . The charge density at a location r in ordinary three-

dimensional space is then additively composed of the densities that each individual charge would 

generate there, namely: 

 

 (r) = 
2

1 1 1 1 1 1

1

( , , , , , , )
N

k L L N L L N

L

dv dv dv dv  − + − +

=

  r r r r r   (20) 

 

(Each r shall represent three coordinates, and similarly for dv.) 

 Moreover, in no. 16, we became acquainted with a statistical interpretation for the -function, 

instead of the continuous interpretation, and gave preference to it. 

 One will obtain the mean value of any point-mechanically defined physical quantity in the 

system, e.g., the mean moment in the state k, when one provides the function M = M (r1, r2, …, 

rN), which gives the moment of N point-charges in the configuration r1, r2, …, rN, with the density 

factor 2

1 2( , , , )k N r r r , and integrates over the entire coordinate volume dv = dv1 … dvN : 

 

M = 1 1 1 1 1 1( , , , , , , )L L N L L Ndv dv dv dv− + − +M r r r r r .  (20) 

 

 
 (1) A. Unsöld, Ann. Phys. (Leipzig) 82 (1927), pp. 355.  
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 Electrodynamically, radiation will emanate from an electric charge distribution  (q) in space 

only when the charge distribution (its moment, resp.) varies in time. Now,  = 2( )k q   is the 

charge distribution on the state k, which depends upon only the configuration, but not time. That 

explains the fact that the stationary quantum states do not radiate. As is known, that was physically 

quite hard to understand in Bohr’s theory of the quantum orbits of moving electrons and had to be 

added to it as a special postulate. 

 If one were to now understand k to mean, not the function of position above, but the 

eigenfunction, when provided with the factor 
2 /ki E t h

e


 that is periodic in time, then the results 

above would still be true when one now writes k k   everywhere, in place of 2

k , in which   

gives the complex conjugate to . That is because in  , one extends that time factor with its 

conjugate to 0e  = 1, and one will then get the same time-independent values for , M , etc., as 

above. 

 If we assume a result of the following section then we shall state at this point that a “transition 

density” is definitive of the transition from the state k to a state l : 

 
lk = 

2 ( ) /
( ) ( ) k li E E t h

k kq q e
  −

  = amplitude  period  time  factor.  (21) 

 

One notes that this “transition density” possesses the temporal period: 

 

 = 
1

( )k lE E
h

 −      (21) 

 

which agrees with the Bohr frequency condition. The combination principle then says that the 

periodic eigenfunction k of the initial state with k = Ek / h and the periodic l of the final state 

with l = El / h, when combined, will create the beat frequency  = k − l . The radiation will 

vanish when the transition density (21) possesses zero amplitude everywhere, or in the many-body 

problem, when the density that is defined on the model of (21): 

 

lk = 
2 ( ) /

1 1 1 1 1

1

( , , ) ( , , )k l

N
i E E t h

k N l N L L N

L

e dv dv dv dv
  −

− +

=

  r r r r r r  (21) 

 

possesses zero amplitude. If that case occurs for two special eigenfunctions l, k then no radiative 

transition can exist between the two states l and k, so the transition in question is forbidden. That 

will be applied in no. 32. 

 

 

 31. Eigenfunctions in the several-body problem (1). – We consider a system of N mass-

points that do not perturb each other, since the total potential energy U is constructed from the 

 
 (1) W. Heisenberg, “Mehrkörperproblem und Resonanz in der Quantenmechanik,” Zeit. Phys. 38 (1926), pp. 411; 

ibid., 39 (1926), pp. 499; ibid., 41 (1927), pp. 239.  
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potential energies ( )LU  of the individual particles by themselves. The Schrödinger oscillation 

equation in 3N-dimensional space for  (r1, r2, …, rN) will then read: 

 
2

( )

3

8
( )L

L LE U
h

 
   + −    r  = 0 ,    (22) 

 

in which L means the Laplace operator that arises from the kinetic energy of the thL  mass-point. 

One gets the solutions  here from the product Ansatz with the N factors: 

 

 (r1, …, rN) = (1) (2) ( )

1 1( ) ( ) ( )N

N  r r r ,     (23) 

 

which reduces (22) to the N equations (L = 1, 2, …, N): 

 
2

( ) ( ) ( )

3

8
( )L L L L

L LE U
h

 
   + − r  = 0 with  (1) ( )NE E+ + = E .  (23) 

 

Each of the individual equations has an infinite system of eigenvalues and eigenfunctions: 

 
( )

1

LE , ( )

2

LE , … with ( )

1

L , ( )

2

L , …, and in general  ( )L

kE  with  ( ) ( )L

k L r , 

 

and the original equation (22) will then possess the product solutions: 

 

kl…n =  (1) (2) ( )N

k l n    with Ekl…n = (1) (2) ( )N

k l nE E E+ + + ,  (24) 

 

in which k, l, …, n are any numbers that characterize the individual solution factors in . 

 We would now like to assume, in particular, that all N mutually non-interacting mass-points 

move in the same potential field 
(1) ( )U r  = 

(2) ( )U r  = … = 
( ) ( )NU r , say, all of them are in a field 

that depends upon only position, e.g., gas atoms in a closed vessel or mutually non-interacting 

electrons around a positive nucleus. The upper indices can then be dropped, because the series of 

eigenfunctions ( )

1

K , ( )

2

K , … will be identical to the series of eigenfunctions ( )

1

L , ( )

2

L , …, for 

which we would then like to write simply 1, 2, … The same thing is true of the eigenvalues, 

which define only the simply-infinite series E1, E2, … The wave equation of the N-body problem 

of N mutually non-interacting in the same potential field will then possess a solution: 

 
(1)

1 2( , , , )N r r r  = k (r1)  l (r2) … n (rN) , with E = Ek + El + … + En .  (25) 

 

Similarly: 

 
(1)

1 2( , , , )N r r r  = k (r1)  l (r2) … n (rN) , with E = Ek + El + … + En . (25) 
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is a solution with the same eigenvalue E = E, when the sequence k , l , …, n  is a permutation 

of the numerical sequence k, l, …, n. If all of the numbers k, l, …, n are different, i.e., if (25) 

consists of nothing but different -functions as factors, then the one eigenvalue: 

 

E = Ek + El + … + En = Ek + El + … + En  = Ek + El + … + En  = …  (26) 

 

will then be associated with a total of !N  mutually-distinct eigenfunctions: 

 
(1)  = k (r1) … n (rN) , (2)  = k (r1) … n (rN) ,  ( !)N = …,  (26) 

 

of the eigenvalue E, and one will refer to it as !N -fold degenerate. By contrast, if not all of the N 

numbers k, l, …, n are distinct, but they can be divided into groups of n1, n2, … mutually-equal 

numbers (n1 + n2 + … = N), then one will get only: 

 

G = 
1 2

!

! !

N

n n
      (26) 

 

distinct eigenfunctions (1) , 
(2) , …, ( )G  for the one eigenvalue E under permutation of the 

sequence, so it will be G-fold degenerate. Finally, if all k, l, …, n are equal to each other then E 

will belong to only one eigenfunction k (r1) k (r2) … n (rN), so E = Ek + El + … + En will be 

simply-degenerate and will usually just be called nondegenerate. 

 We now consider a G-fold eigenvalue. It belongs to not only the G eigenfunctions (1) , 
(2) , 

…, ( )G , which arise from, say, (1)  = k (r1) k (r2) … n (rN) by G permutations of the lower 

indices, but also to all linear combinations with arbitrary coefficients c : 

 

 = (1) (2) ( )

1 2

G

Gc c c  + + + ,    (27) 

 

which are themselves once more eigenfunctions of that G-fold degenerate eigenvalue. Of course, 

they are linearly composed from the G eigenfunctions 
(1)  to 

( )G . However, one can define G 

eigenfunctions from the coefficients cik with a non-vanishing determinant: 

 
(1) (1) (2) ( )

11 12 1

( ) (1) (2) ( )

1 2

,

..............................................................

..............................................................

,

G

G

G G

G G GG

c c c

c c c

  

  

 = + + +




 = + + + 

   (28) 

 

which are then linearly independent of each other. In that way, the cik in one of those rows can be 

chosen such that the function  that arises will be symmetric, i.e., nothing will change under a 

permutation of one rK with another rL . That will be the case when one chooses: 



70 Optics, mechanics, and wave mechanics 

 

sym. = 
1 2( ) ( ) ( )k l n N   r r r ,    (29) 

 

and sums over all G permutations of the sequence k, l, …, n.  sym. is then nothing but  = (1)  + 
(2) ( )G + +  with the factors c = 1. In another row of (28), one can choose the c such that  

will become antisymmetric, i.e., it will always change sign when one switches any rK with any 

another rL , namely: 

antisym. = 

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

k k k N

n n n N

  

  

r r r

r r r

   (30) 

 

(with all c equal to + 1 or – 1), since switching rK with rL is equivalent to switching two columns 

in the determinant. One will then see that there can no longer be any symmetric or antisymmetric 

function among the remaining G – 2 composite function  of (28), since otherwise not all G 

functions would be linearly independent. Moreover, antisym. will exist (and be non-zero) only 

when all functions k , l , …, n are different, because otherwise two or more rows in the 

determinant would be equal to each other, and that would make it vanish. antisym. will then be only 

G = !N -fold degenerate, where each of the N particles is in a different quantum state. 

 Whereas in the absence of mutual perturbations of the N particles, the coefficients c in (28) are 

arbitrary, things will be different when one introduces a perturbing potential that is symmetric in 

all particles and lets it converge to zero. One will indeed get the unperturbed solutions (28) again, 

but with well-defined coefficients c, and indeed, as perturbation theory shows, one will first get 

the symmetric solution, then the antisymmetric one, and finally G – 2 asymmetric solutions, which 

is a situation that Heisenberg recognized to be an analogue of the resonance phenomena in the 

classical mechanics of coupled systems. In particular, in the two-body problem, only the 

symmetric and antisymmetric solutions will remain: 

 

sym. 1 2 1 1

antisym. 1 2 1 1

1
[ ( ) ( ) ( ) ( )], ,

2

1
[ ( ) ( ) ( ) ( )],

2

k l l k k l

k l l k k l

E E E

E E E

   

   


 = + = + 



 = − = +



r r r r

r r r r

  (31) 

  

for an asymptotically-vanishing perturbing potential. The factor 1/ 2  is included in order to 

normalize to 1. For a different eigenvalue E  , one will have: 
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sym. 1 2 1 1

antisym. 1 2 1 1

1
[ ( ) ( ) ( ) ( )], ,

2

1
[ ( ) ( ) ( ) ( )], .

2

k l l k k l

k l l k k l

E E E

E E E

   

   

     

     


 = + = + 



 = − = +



r r r r

r r r r

  (31) 

 

If the perturbing potential that is symmetric in the particles increases then the symmetry 

(antisymmetry, resp.) will be preserved, but now the expressions for the right-hand sides of (31), 

(31) will be modified. 

 

 

 32. Forbidden combinations of systems of terms. – We shall now prove the theorem, which 

is important in the special case of a two-electron system, that a transition from a state that is 

described by a symmetric eigenfunction to an antisymmetric state is forbidden. In order to do that, 

we will form the stated equation: 

 

sym. 1 antisym. 1 1 sym. 2 antisym. 2 2

sym. 1 antisym. 1 1 sym. 2 antisym. 2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

dv dv

dv dv

   +   


 = −   −   

 

 

r r r r r r r r

r r r r r r r r
  (32) 

 

with the help of (31), (31). The left-hand side of that is the amplitude of the transition density 

(21), which is definitive of the transition from sym. to 
antisym.
 . 

 If one now formally switches the indices 1 and 2 on the right-hand side then that will show that 

the right-hand side is also simultaneously the negative of the left-hand side. Both sides must be 

equal to zero then. That proves the vanishing of the transition density, from which the fact that the 

combination is forbidden will follow (conclusion of no. 30). If the electron system is, say, in a 

state with a symmetric eigenfunction at some point in time then it will remain in it for all time 

when the transition to an antisymmetric or asymmetric state is forbidden. Now, experiments show 

that in reality only the states with antisymmetric eigenfunctions (cf., infra) will occur, which can 

also never go to symmetric or asymmetric states, due to the fact that the combination is forbidden. 

 If one, in fact, allows only antisymmetric eigenfunctions then one will restrict oneself to those 

states of the total system in which (in the absence of coupling) every particle will lie in a different 

quantum state, because otherwise the determinant (30) would vanish. Now, Pauli proposed the 

principle that every electron in a multi-electron system must be (in the absence of coupling) 

intrinsically in a different quantum state. Here, the Pauli principle will then prove to be equivalent 

to the demand that only the antisymmetric eigenfunctions are allowed. 
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 The question of how to decompose multi-electron systems into non-combining systems of 

terms was solved conclusively by E. Wigner and F. Hund (1) once Heisenberg (2) and Dirac (3) 

had posed the basic questions in the simplest cases and clarified them. 

 As an example, following Heisenberg, we shall introduce the system of terms for helium, 

which consists of a positive nucleus and two electrons whose Goudsmit-Uhlenbeck spin impulses 

have two different possible directions, and can therefore give rise to two different states, which we 

would like to distinguish by the signs + and −. In the absence of mutual perturbations of the two 

electrons, the solution  to the Schrödinger equation will split into a product   , in which  

and  mean two solutions of the one-electron problem, and indeed according to the direction of 

the spin axis, we shall distinguish between  +  and  −
, and  +  and  − . Upon considering the 

mutual perturbation of the electrons, the following eight solutions  to the two-electron problem 

will then remain: 

 

 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,

       

       

+ + + + − − − −

+ − − + − + + −

 −   − 


 −   −  

r r r r r r r r

r r r r r r r r
 antisymmetric 

 

 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ).

       

       

+ + + + − − − −

+ − − + − + + −

 +   + 


 +   +  

r r r r r r r r

r r r r r r r r
 symmetric 

 

The four symmetric solutions among them are excluded by the Pauli principle. Of the four 

antisymmetric solutions, the two in the first row are possessed by a state of He in which both 

electrons have parallel spin impulses (+ + or − −, resp.), while the second row belongs to 

antiparallel spin impulses (+ − or − +, resp.). The first row corresponds to a triplet term, while the 

one corresponds to a singlet term (both of them represent two -functions that belong to the same 

eigenvalue). In particular, if both electrons “move on equivalent orbits” (i.e., when  = ) then the 

two -functions in the first row will be equal to zero, and the function in the second row: 

 

1 2 1 2( ) ( ) ( ) ( )   + − − +−r r r r  ,  
1 2 1 2( ) ( ) ( ) ( )   − + + −−r r r r  

 

will be non-zero. Equivalent orbits will then give only singlet terms. For example, only singlet 

terms will appear in the ground state of He (viz., both electrons are on orbits with the azimuthal 

quantum number l = 0), while the higher excited terms (l1 = 0, l2 = 1, 2, …) define singlet terms 

(para-helium) and triplet terms (ortho-helium). 

 

 

 
 (1) E. Wigner, Zeit. Phys. 40 (1926), pps. 492 and 883; ibid., 43 (1927), pp. 524. – F. Hund, Zeit. Phys. 43 (1927), 

pp. 788.  

 (2) W. Heisenberg, Zeit. Phys. 38 (1926), pp. 411; ibid., 39 (1926), pp. 499. – A related resonance process was 

also used as the basis for homopolar molecular couplings by Heitler and London, Zeit. Phys. 44 (2917), pp. 455.  

 (3) P. Dirac, Proc. Roy. Soc. 112 (1926), pp. 661.  
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 33. Bose and Fermi statistics. – In order to derive the thermodynamical properties of a system 

that is composed of N equivalent particles, one must first establish the statistical weight of the 

individual “states” of the system. 

 N mutually-noninteracting particles (e.g., ideal gas atoms or electrons around a nucleus with 

no coupling forces) might be distributed over the total energy E in the following way: 

 

E = n1 E1 + n2 E2 + … , n1 + n2 + … = N , 

 

in which Ek shall be the eigenvalue that belongs to the unperturbed eigenfunction k . According 

to (26), the state of the total system that is characterized by the numbers (n1, n2, …) can then be 

represented in: 

G = 
1 1

!

! !

N

n n
 

 

ways, namely, by G linearly-independent functions (1) , (2) , …, ( )G . If one regards all of those 

G states as distinct and counts each of them with the statistical weight of 1 then the state that is 

characterized by the numbers (n1, n2, …) will possess the total weight G. Boltzmann statistics also 

ascribes the same weight G to a state (n1, n2, …) in which each of the G distributions of N particles 

over the energy levels E1, E2, … is counted as an equally-probable state. 

 According to Bose, in order to obtain Planck’s law of radiation, in the distribution of M = n1 

+ n2 + … light quanta over the energy levels E1, E2, … one must count the distribution state that 

is characterized by the numbers (n1, n2, …) with weight 1. The G Boltzmann permutations of the 

individual light particles will then be regarded as indistinguishable in that way. If one, with 

Einstein, adapts Bose statistics to material particles (e.g., gas atoms, atomic electrons) then that 

will mean that of the G linearly-independent state functions 
(1) , 

(2) , …, 
( )G of the particle 

system, only one of then will be allowable, and it will be counted with the statistical weight 1. One 

will then remain consistent with Bose-Einstein statistics when one allows only the symmetric state 

function sym. to be that one. Indeed, it will not change under permutations of the individual 

particles [i.e., switching rK with rL in (29)]. Now, Bose statistics (the equivalent choice of 

symmetric eigenfunctions in the undulatory picture) are indeed exhibited by light, but not by 

matter. 

 The Pauli principle that no quantum state can possess more than one electron (†) is true for 

material particles (at least for the N-electron system of an atom). In the undulatory picture, that 

means that the unperturbed eigenfunctions k of the N electrons must all vanish (E = E1 + E2 + 

…+ EN, N = 1 + 1 + … + 1, G = !N ), or that the sequence (27) must vanish, resp., whenever not 

all k are different. However, that will be the case only when one allows the antisymmetric 

eigenfunction (30). 

 Fermi has adapted the Pauli principle to the N particles of an ideal gas, of which one then 

demands that it must be found in N different energy cells. In the undulatory picture, that means 

that of the G = !N  state functions (1), …, (G) of the total system, only one of them can be 

 
 (†) Translator: I believe he means “more one electron in the same spin state.” 
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regarded as existing, and indeed that will be the antisymmetric state function (30), because in that 

way, distributions of the N particles over less than N energy cells (i.e., some energy cells being 

occupied by more than one particle) will be excluded [because the determinant (30) will vanish 

when two or more cells are equal]. The Pauli principle and the Fermi statistics of material particles 

are then characterized by the demand that only antisymmetric state functions are allowed and must 

be counted with a statistical weight of 1. 

 

 

 34. Connection with matrix mechanics (1). – Here, a somewhat-different representation of 

quantum theory will be touched upon that will first be discussed in connection with Chapter VII, 

namely, the Heisenberg, Born, and Jordan approach to quantum mechanics. 

 We understand f to mean an operator, which we define by: 

 

{f, m} = nm

n

n

f  ,         (33) 

 

i.e., when the operation f is performed on a function m , the result shall be a series development 

in terms of functions n with certain constant coefficients (viz. generalized Fourier coefficients) 

that will first establish the sense of operation f when one gives precise values to those coefficients. 

If the functions n (q) are orthogonal to each other and normalized to 1 then we can inversely 

determine the coefficients mnf  from (33), which we shall also refer to as matrix elements of f, to 

be: 
mnf  = { , }n mf dv  ,          (34) 

 

when integrated over the entire space of the coordinates qK . The Schrödinger equation: 

 

{H, m } = Em m , 

 

with the operator H, can also be written in the form: 

 
nm

n

n

H   = Em m , 

 

from which it will emerge that the matrix elements of H will be equal to: 

 
nmH  = 0 for n  m ,  mmH  = Em .   (35) 

 

The Hamiltonian function H is a function of the pK and qK, which are coupled by finite or infinitely-

many additions and multiplications in it. In order to compose the matrix elements nmH  from the 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 734, and independently of him, C. Eckart, Phys. Rev. 28 

(1926), pp. 711.  
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matrix elements of the pK and qK, one must then know how the matrix elements of two operators f 

and g show up in the formation of the matrix elements of the operators f + g and f   g. Now, from 

(34), one has: 
nmf  = n mf dv  ,  nmg  = n mg dv  , ( )nmf g  = n mf g dv  . 

 

On the other hand, from a theorem in the theory of eigenfunctions (1): 

 

n mf g dv   = n l l m

l

f dv g dv      , 

which will then give: 

(f g)nm = nl lm

l

f g      (36) 

 

as the product rule. That is equivalent to the rule that the elements of a product of two determinants 

are composed from the elements of the original determinants. The sum rule reads simply: 

 

(f  g)nm = ( )n mf g dv   = n m n mf dv g dv      = nm nmf g .  (36) 

 

Now, one can then construct the matrix elements ikF  of a function F (p, q) that is formed from the 

p and q by summation and products of the matrix elements mn

Kp  and mn

Kq . 

 For Schrödinger, the operator pK shall mean 
2 K

h

i q




. Corresponding to (33), one can then 

infer here that: 

2
m

K

h

i q







 = {pK, m} = nm

K n

n

p  , 

 

and conversely, corresponding to (34), the values of its matrix elements will be: 

 

nm

Kp  = { }n K mp dv   = 
2

n m

K

h
dv

i q
 





 . 

 

 We further consider the operator pK qK – qK pK . One has: 

 

2
K m K m

K K

h
q q

i q q
 



  
− 

  
 ={pK qK – qK pK, m} = ( )nm

K K K K n

n

p q q p − , 

 

and conversely: 

 
 (1) That “completeness relation” will not be employed directly in the derivation of the same result in no. 65.  
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(pK qK – qK pK)nm = 
2

n K m K m

K K

h
q q dq

i q q
  



  
 − 

  
  = 

2
n m

h
dv

i
 


  

= 1
2

h

i
  for n = m and = 0 for n  m. 

 

The series development with just one term then follows from that: 

 

{pK qK – qK pK, m} = 
2

m

h

i



 ,    (37) 

 

i.e., the action of the operator pK qK – qK pK on m is equivalent to multiplication by the factor 

/ 2h i . One easily shows, correspondingly: 

 

( ) 0 for ,so { , } 0 ,

( ) 0 for all  and ,so { , } 0 ,

( ) 0 for all  and ,so { , } 0 ,

nm

K L L K K L L K m m

nm

K L L K K L L K m m

nm

K L L K K L L K m m

p q q p K L p q q p

p p p p K L p p p p

q q q q K L q q q q

 

 

 

− =  − = 


− = − =  
− = − =  

 (37) 

 

i.e., the latter operators are equivalent to multiplication by the factor zero. 

 Summarizing (37), (37), we then find that the operator pK pL is indeed equal to the operator 

L Kp p , and qK qL = qL qK , and finally pK qL = qL pK (for K  L), while pK qK is not equal to qK pK , 

since pK qK − qK pK is not, in fact, equal to zero, but to the operator h / 2i  as a product factor. 

That can be expressed somewhat differently by saying that whereas the operator pL commutes with 

the operator pK , qL commutes with qK, and pL commutes with qK (for K  L), pK does not commute 

with qK , and indeed we have the commutation relations: 

 

for ,
2

0 for ,

0, 0.

K L L K

K L L K K L L K

h
K L

ip q q p

K L

p p p p q q q q




= 

− =  
  
− = − = 

    (38) 

 

The Schrödinger eigenvalue problem is then equivalent to the following Heisenberg-Born-

Jordan problem: Construct the matrix elements mnH  of the operator H (p, q) from the matrix 

elements mn

Kp  and mn

Kq . If one observes the commutation rules (37), (37): 
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for
2   for , 0 for , 

0 for

0, 0

nl lm nl lm

K L L K

l

nl lm nl lm nl lm nl lm

K L L K K L L K

l l

h
n m

ip q q p K L K L

n m

p p p p q q q q




= 

− = = =  
 


− = − = 





 

  (39) 

 

then one seeks to assign constant values to the mn

Kp  and mn

Kq  such that: 

 
mnH  = 0 for m  n , 

 

as in (35), and only the mmH  will take on certain non-zero values. Those will then be the desired 

eigenvalues Em of the energy for the quantum-mechanical problem. 

 

____________ 

 



 

CHAPTER IV 

 

UNDULATORY MECHANICS OF TIME-VARYING SYSTEMS 
 

 

 35. Time-varying potential. – Whereas the stationary states of a system of mass-points in a 

potential field U (q) that did not depend upon time were treated in Chapter III, the transition 

between stationary states shall also brought under consideration now when they are created by 

time-dependent fields. If one now puts, e.g., the interaction energy between a system of electrons 

and incident light into a form in  which one employs the conservative potential U (q) of the electron 

system, extended by the time-dependent potential V (q, t) of the light field, in a classical way in 

order to exhibit the Hamiltonian function and reinterprets the fundamental classical equation in 

terms of the wave-theoretic one then, to the extent that one forgets the reaction of the electron 

system on the radiation, it will be inconsequential whether the classical theory takes the radiation 

damping into account, but in that way it is not at all representable by a potential function that 

depends upon position and time, but rather it will depend upon the state of the motion of the 

electron system. We will first see how to overcome that absence in Chapter V, where the 

interaction of the light with the atom will be treated as a legitimate part of the total system of atom 

+ light. Before we do that, we shall consider the simpler case, which is sufficient for many 

purposes, in which the total energy of the mass-point system is described classically by a kinetic 

energy and a potential one that shall depend upon time, in addition to position (e.g., a light field 

with no consideration given to the reaction). 

 It is known from classical mechanics that the time coordinate t is associated with negative 

energy (− E) as a harmonically-conjugate “impulse.” Whereas the conservative energy equation: 

 

H (q, p) – E = 0 ,           (1) 

 

when one appeals to an action function S (q) and: 

 

p1 = 
1

S

q




, …, pN = 

N

S

q




 (pK is conjugate to qK)  (1) 

 

will go to the conservative Hamilton-Jacobi differential equation for S : 

 

,
S

H q
q

 
 

 
 − E = 0 ,        (1) 

the non-conservative energy equation: 

 

H (q, t, p) – E = 0 ,           (2) 

 

with the help of an action function S (q, t) = S (q) – E t and: 
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p1 = 
1

S

q




, …, pN = 

N

S

q




, − E = 

S

t




,   (2) 

 

will go to the non-conservative Hamilton-Jacobi differential equation for S : 

 

, ,
S S

H q t
q t

  
+ 

  
 = 0 .       (2) 

 

 Now, the introduction of wave mechanics consists of saying that one replaces the quantities 

(2) in the Hamilton-Jacobi equation with the operators: 

 

pK ~ 
2 K

h

i q




, − E ~ 

2

h

i t




,    (3) 

 

and applies them to a coordinate function  (q1, …, qN, t): 

 

, , ,
2 2

h h
H q t

i q i t


 

    
+  

    
= 0 .    (4) 

 

 If one composes the classical Hamiltonian function H from the potential energy U (q, t) and 

kinetic energy, and the latter is a quadratic form in the impulse (non-relativistic mechanics), as in 

no. 22, then one will have, from (4): 

 
2

1

2 2 2

h h
U

i i t


 

  

  
 + + 

 
 = 0 , 

or, when written differently: 
2

2

8 4 i
U

h h t

    
 


 − +


 = 0  (wave equation),       (5) 

for the determination of ( , )q t . 

 If   is a solution of (5) then the complex-conjugate function  will be a solution of the 

conjugate equation: 

2

2

8 4
0 (wave equation).

i
U

h h t

    
 


 − − =


           (5) 

 

One can also derive the wave equations (5), (5) from a variational principle (cf., no. 25): In the 

“Lagrangian function” of the classical mechanical problem: 
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L = kin. – pot. + 
S

t




 = , ( , )

S S
T q U q t

q t

  
−  

  
,              (6) 

one uses the Ansatz  = 2 /i S he   to replace: 

 

and         

1 1
with or , resp.,

2 2

1 1 1
with ,

2 2 2

K K K

K K

S h h

q i q i q

S h h

t i q i q

 

   

 

   

  
− 

   




    + − 
    

        (6) 

 

and one then solves the variational problem: 

 

J = L dt dv     = extremum,    (6) 

i.e., when written out in detail: 

 

J = 
2

12
( )

8 4
KL N

K L K L

h h
g U g dq dq dt

q q i

 
   

  

  
+ + − 

  
  = 0 . (6) 

 

If one denotes the integrand, including the factor g
, by F here then the two Euler equations: 

 

L
L L q

d F d F F

dq dt 

     
+ −       

  = 0 , 

K
K K q

d F d F F

dq dt  

     
+ −        

  = 0 

 

will be identical to the wave equations (5), (5). 

 Now let U not depend upon t, in particular, i.e., U = U0 (q). If one then introduces the Ansatz 

 (q, t) = 
2 /( ) i E t hq e  −  [ ( , )q t  = 

2 /( ) i E t hq e  + , resp.] into (5) [(5), resp.] then what will 

remain for  (q) is the previous oscillation equation [Sec. III, (9)]: 

 

 − 
2

2

8

h

 
(U – E)  = 0  (oscillation equation)  (7) 

 

with the solutions n for the eigenvalue En such that the desired solution of the wave equation will 

read: 

n (q, t) = 
2 /

( ) ni E t h

n q e
 −

 .     (8) 
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[Observe that when n (q) is a solution to the real oscillation, ( )n q  will also be a solution to the 

same equation with the same eigenvalue.] 

 However, in the case of U = U0 (q), from the form of the wave equation (5) [(5), resp.], it will 

possess not only the solution (8) with the index n, but also all linear combinations of such solutions 

with differing n and arbitrary constant coefficients an : 

 

 (q, t) = 2 /
( ) ni E t h

n na q e
 −

 .    (9) 

 

 However, if U also depends upon t, so U = U0 (q) + U1 (q, t), with the time-varying perturbing 

potential U1 then one can always exhibit  (q, t) in the form of the series (9) as a development in 

the eigenfunctions n (q), but with the time-dependent coefficients an (t) : 

 

  (q, t) = 2 /
( ) ( ) ni E t h

n na t q e
 −

 ,   = 2 /
( ) ( ) ni E t h

n na t q e
  .  (10) 

 

The physical meaning of such a composite solution, in particular the meaning of the coefficients 

an, with and without time dependency, will be explained in the following no. 36. 

 

 

 36. Conservation laws. – If one multiplies (5) by   and (5) by  and forms, in one case, the 

sum and in the other, the difference of the equations thus-obtained then one will get the two 

equations: 

24
div (  grad  grad ) | |

i

h t

 
    


− −


 = 0   (11) 

and     

2

2
2 2

2

4
div (  grad  grad ) | |

8
2 | grad | | | ,

i

h t

U
h

 
    

 
 

 
− −  


 

= +  
  

   (12) 

 

when one uses the following formulas: 

 

 = div grad  and   = div ( grad ) – grad  grad  ,  (13) 

 

which are also true in multi-dimensional space with a non-Euclidian metric. If one now integrates 

(11) and (12) with dv = g
 dq1 dq2 … and considers suitable boundary conditions for  at 

infinity (periodicity conditions on the angle coordinates, resp.) then the contribution div ( ) dv  

will drop out with the use of Gauss’s theorem, and what will remain are the following equations 

[viz., the Schrödinger and Born conservation laws (1)]: 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 81 (1926), pp. 109; M. Born, Zeit. Phys. 40 (1927), pp. 167.  
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2| |
d

dv
dt

  = 0 ,     (14) 

 
2

2 2

2
| grad | ( , ) | |

8

h
U q t dv 

 

 
+ 

 
  = 

4

h
dv

i t t

 
 



  
− 

  
 . (15) 

 

Next, (14) gives us the right to normalize: 

 

dv   = 1 ,      (14) 

 

since the value 1 does not, in fact, change in time. From now on, we can interpret    = |  |2 as 

the relative density,  |  |2 =  as the charge density,  |  |2 =  as the mass density in coordinate 

space in the state that is represented by  (q, t). (14) will then imply that the total amount of charge 

and mass will be conserved, even though the density at the individual locations q in coordinate 

space changes in time. 

 If one now uses the series development (10) for  then one will have: 

 

   = 2 ( ) /2 2| | | | n mi E E t h

n n n m n ma a a e
   − −

+   .          (16) 

 

If one integrates that, while recalling (14) and the orthogonality and normality of the n , then one 

will have: 

1 = dv   = | a1 |
2 + | a2 |

2 + | a3 |
2 + …    (16) 

 

One can correspondingly regard  as a representative of a state in which either each individual 

atom is just as well in the quantum state 1 as 2, etc., or simultaneously in all quantum states, but 

distributed over the individual states with the relative weights | a1 |
2, | a2 |

2, …, or also a state in 

which many of the atoms are in state 1, while the others are in state 2, etc., and with the relative 

frequencies 2

1a , 2

2a , etc. With the first picture, according to (10),  represents a beat (Schwebung) 

of the oscillations that belong to the individual states with the individual amplitudes an (t). The 

total density |  |2 that prevails at each location q in space is therefore not equal to the sum 
2 2| |n na   of the partial differences | n |

2 of the individual quantum states, provided with the 

weighting factors | an |
2, but as (16) shows, it is further augmented by a double sum that is ascribed 

to a typical interference of the partial oscillations: One does not add the partial densities together, 

but one superposes the partial oscillations an n into the total oscillation amplitude , whose square  

first gives the total density afterwards. 

 If one substitutes the series (10) in the right-hand side of (15) then it will reduce to: 

 
2

| |n nE a . 
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We would like to regard that as the total energy E of the state that  represents, which will give us 

all the more right to also interpret the left-hand side of (15): 

 
2( , )| |U q t dv  = U 

 

as the total potential energy in the state . 

 

 

 37. Hydrodynamical interpretation. – Along with the spatially-distributed potential energy, 

yet another term appears on the left-hand side of (15) that can be interpreted as a spatially-

distributed kinetic energy of a current. However, as Madelung showed (1), only part of the term 

can be regarded as a kinetic energy of a current. The remainder can be interpreted as an “internal” 

stress energy (cf., infra). The current density j that belongs to the density  = |  |2 can be read off 

from (11) when one regards (11) as a hydrodynamical equation of continuity: 

 

div j + 
t




 = 0 with 

2| | ,

(  grad  grad ).
4

h
j

i

  

   
 

= =



= − 


 (17) 

 

One obtains the mass and charge density from  upon multiplying by  and . 

 Madelung arrived at an especially clear form for the hydrodynamical representation when he 

put the solution  to the wave equation (6): 

 
2

2

8 4
U i

h h t

    
 


 − +


 = 0 

 

into the form that has been customary since the time of de Broglie’s mechanics: 

 

 = 2 /i S he   ,      (18) 

 

in which the real quantities  and S both depend upon q and t. Conversely, the hydrodynamical 

meaning of  and S will then follow from (17), (18): 

 

 = |  | =  , S = ln
4

h

i



 

 
 
 

 = real part of 
4

h

i
ln  .  (18) 

 

Introducing the Ansatz (18) into the wave equation and separating the real and imaginary 

components will lead to the following two equations for  and S : 

 
 (1) E. Madelung, “Quantentheorie in hydrodynamischer Form,” Zeit. Phys. 40 (1926), pp. 322.  



84 Optics, mechanics, and wave mechanics 

 

2
2

2
(grad ) 2 2

4

h S
S U

t
   




 −  − +


= 0    (18) 

and 

 S + 2 (grad   grad S) − 2
t







 = 0 .   (18) 

 

After multiplying by a, one can also write the last equation in the form: 

 
2 2

div grad S
t

 



  
+ 

 
 = 0 . 

 

It will then represent a hydrodynamical continuity equation [cf., (17)] with: 

 
2

2  density,  grad  current density,

1
 grad  flow velocity.

j S

j
S


 



 


= = = = 



= = =


v

  (19) 

 

On the other hand, if one divides (18) by 22   and takes its gradient then one will get the relation: 

 

− 
2

2 2

grad 
grad 

8

U h 

   


+  = 

21
2
grad 

t


+



v
v . 

Due to the formulas: 

 

21
2
 grad B  = (B grad B) + [B rot B]  and 

t





B
 + (v grad) B = 

d

dt

B
, 

from: 

rot v = 
1


 rot grad S = 0 , 

one will ultimately get: 

− grad U + 
2

2 2
grad 

8

h 

  


= 

d

dt


v
,         (20) 

 

which can be written in the form Ka + Ki = K. Whereas v / t means the change in velocity at a 

fixed spatial point, dv / dt is the substantial acceleration of a point that moves with the fluid. On 

the left-hand side, − (grad U) /  corresponds to an external force Ka per unit fluid mass, and 

2

2 2
 

8

h 

  


  represents a force function of the internal forces Ki per unit mass, whose gradient 
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contributes to the acceleration of the points of the continuum. When the Ansatz (18) is introduced 

into equation (14), it will show that the total amount 2dv  of fluid will remain continually 

constant. 

 One can already see the necessity of introducing that internal force in the following example: 

A hydrogen atom is found in an energy state En . As will be established later, | n |
2 dV will then 

mean the probability that the electron will be found in precisely the volume dV with a total energy 

of En . If dV lies at a distance r from the nucleus then for a sufficiently-large r, the potential energy 

− 2 / r will be more weakly negative than the given total energy En such that only a negative 

residual magnitude will remain for the kinetic energy 
21

2
v , which will belong to an imaginary 

velocity v, i.e., the electron will be found in dV with a probability of 
2

n dV , but with an imaginary 

velocity, which is naturally absurd. The solution to the paradox lies in just the fact that one cannot 

interpret the negative residual magnitude as kinetic energy alone. The same reason for saying that 

| n |
2 dV can be interpreted as the occupation density of the electron in dV will turn (17) into: 

 

grad grad 

4

h

i

 

   

 
− 

 
 = v 

 

as the expression for the real velocity of the electron in dV. However, that will be mechanically 

possible only when the potential energy − 2 / r has a suitable negative internal potential energy 

Ui added to it, which is taken to be large enough that the energy balance: 

 

En = − 

2
21

2iU
r


+ + v  

will be true. 

 In special case of a time-constant potential function U0 (q),  will be equal to, e.g., 
2 /ni E t h

n na e
 −

  with time-constant coefficients. 

 

 = 
2  =   = 

2 2 ( )n na q  

 

is then time-constant in any event, i.e., one is dealing with a stationary state of flow that is even 

static (v = 
1


grad S = 0), moreover, since (18) will be: 

S = (ln ln )
4

h

i
 


−  = − En t 

here and have vanishing gradients. 

 Apart from its greater intuitive appeal, the hydrodynamical interpretation of the function 

( , )q t  has yet another special significance due to the fact that it suggests that one can couple the 

wave-mechanical state of an atom with the surrounding electrodynamical field by regarding the 
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hydrodynamical charge and current densities   and  j as the sources and points of application 

of electrodynamical fields according to Maxwell’s theory. However, one must notice immediately 

that one will contradict experiments in that way, because in the special case of | an |
2 = 1, ak = 0 for 

k  n (atom in the state n) with  = 
2 /

( ) ni E t h

n q e
 −

 , (17) will give j = 0, and in that way according 

to Maxwell’s theory, there will be no radiation, whereas in reality, an atom in the state n will emit 

a ray spontaneously. 

 However, there are other ways of seeing that the above values of  and j that are derived for 

the state  [for the state of N1 = | a1 (t) |
2 atoms in the state 1, etc., with the statistical picture] have 

nothing to do with the emission and absorption of radiation by that collection of atoms. That is 

because if one imagines, say, all N atoms being pushed together without mutually perturbing each 

other, then no forces will appear between the parts of different atoms, just as in the separated state. 

The values of j and  that were calculated by the method above will remain unchanged under that 

compaction, while it is known that the Maxwell radiation that is emitted from separated systems 

of atomic electrons is completely different from that of compacted systems of electrons. We shall 

take that lack of utility of the continuous interpretation of the -function for calculating the 

interaction with radiation to be a good reason for later replacing the continuous interpretation with 

another one, namely, the statistical interpretation. 

 It is instructive to also present the argument above with the influence of a magnetic field. 

According to no. 51, eq. (6), the Schrödinger equation will then read: 

 
2

2

8 4
grad 

i

h h t c

     
    



 
 −  − − 

 
A  = 0 ,        (21) 

 

with  as the scalar potential and A as the vector potential that act upon the charge . A calculation 

that is analogous to one above, along with the use of div A = 0 and the Ansatz  = 
2 /i S he  , will 

lead to: 
2

2  density, grad  current density,

1
grad  current density,

j S
c

j
S

c

 
 





 

 
= = = + =  

 


  = = + =    

A

v A

  (22) 

 

and to the equation of motion: 

 

d

dt


v
 = 

2

2

1
grad [ , rot ] grad

8

h

c t c

 
 

  

  
− − + + 

 

A
v A ,   (22) 

 

when one consistently drops relativistic terms with 2 2/ cA . Due to the facts that: 

 



IV. – Undulatory mechanics of time-varying systems. 87 

 

E = − grad  − 
1

c
A ,  H = rot A, Ki = 

2

2
grad

8

h 

  


,   (23) 

 

an “internal force” Ki will be added to the usual force Ka of the external field. 

 

 

 38. Wave packets (1). – If one has a solution  (q, t) for which   =  possesses considerable 

values only in a small neighborhood of a coordinate point P0 at a time point t0, but relatively-small 

values at some distance from P0, then one speaks of a “wave packet” that is concentrated into a 

small space around P0 . If t increases then one will generally find, first of all, a change in the 

location of the maximum of  and secondly, a broadening that can lead to a complete dissipation 

of the maximum over the course of time. Now, the change in location of the wave packet has a 

strong similarity to the motion of a mass-point in classical mechanics. Namely, if one multiplies 

equation (20): 

( )
d

dt
v  = − grad U + 

2

2
grad

8

h 

  

 
 
 

 

 

by  = 2  and integrates over the entire space dV then the integral over the last term on the right 

will drop out with the help of partial integrations (2), and what will remain is: 

 

( )
d

dV
dt

  v  = ( grad )U dV  − . 

 

One can write that equation in the form: 

 

( )
d

dt
 v  = aK , 

 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 79 (1926), pp. 489.  

 (2) The x-component is: 

 

  
2
grad  x







 =  gradx  −   gradx  = gradx ( ) – 2   gradx  

  = gradx ( ) – 2 {div (gradx   grad ) – grad   grad gradx } 

 = gradx ( ) – 2 {div (gradx   grad ) + gradx (  grad )2 – 2 [grad , rot grad ]x . 

 

The last term vanishes here because rot grad = 0, and what will remain is: 

 

2
grad  x







 = 

x




[  + (grad )2] – 2 div (gradx   grad ) . 

 

If the right-hand side is integrated over all of space with dx dy dz then that will give zero when  vanishes strongly 

enough at infinity, along with its derivatives. 
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with the mean values of the acceleration and force: 

 

d

dt

v
 = 

d
dV

dt


v
, 

aK  = ( grad )U dV−  , iK  = 
2

2

2
grad

8

h
dV




  


  = 0 , 

 

i.e., the center of mass of the wave packet moves as if only the external force acts upon the entire 

wave packet, while the internal force cancels out completely. If the wave packet is densely 

concentrated around its center of mass then the result that was just found can also be expressed: 

The acceleration of the center of mass of the wave packet is consistent with an external force 

( grad )U−  that prevails at the location of the wave packet in the sense of Newton’s equations. 

According to that law, which Ehrenfest (1) found and is still true in the absence of a magnetic 

field (23), it would be very tempting to relate that to the original Schrödinger viewpoint that 

material particles, electrons, etc., are nothing but wave packets. However, that would contradict 

the fact that wave packets generally dissipate in the course of time. In order to pursue that effect, 

we consider electrons (2) that are flowing freely in the x-direction with the Hamiltonian function 

H (p, q) = 
21

2
xp


, so it will have the wave equation: 

t




 =  

2
2

2
a

x




  with  

2a  = 
4

i h

 
. 

 

That has the form of the equation of heat conduction. We shall consider its general solution: 

 

 (x, t) = 

2

2

( )

4
1

(0, )
2

x

a td e
a t



  


+ −
−

−

              (24) 

 

for the following special form of the initial state: 

 

 (x, 0) = 
2 2/2x i xC e  − +  

 

( and  are arbitrary real constants), so: 

 

 (x, 0) =  (x, 0)   (x, 0)  = 
2 22 /xC e − . 

 

The initial state represents a wave packet with a maximum that gets steeper as  gets smaller. 

After some calculations, the general solution (24) then leads to the following density distribution 

for the wave packet at time t: 

 
 (1) P. Ehrenfest, Zeit. Phys. 45 (1927), pp. 455.  

 (2) Some more-complicated cases of electrons in electric and magnetic fields were treated by C. G. Darwin, Proc. 

Roy. Soc. 117 (1927), pp. 258. Furthermore, see Kennard, Zeit. Phys. 44 (1927), pp. 326. 
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   = 

2

2/
2

( )

h
x t

c t e



 

 
− −  

  , 

in which: 

2 = 
2 2

2

2 2 24

h t


  
+ , 

 

i.e., a displacement of the wave packet with the velocity h  / 2  that flattens out as time 

increases. In particular, the initial width (i.e., 2 = 24 ) will double after a length of time equal 

to: 

t = 

22
3

h

  
 . 

 

For  = 1.7  10−24 g (H-atom) and  = 10−8 cm (atomic diameter), one has t  10−13 sec. By 

contrast, for  = 10−3 g and  = 10−3 cm, one will have t  10 sec = 
111

3
10  years. Due to that 

tremendous length of time, the idea that macroscopic masses might be wave packets does not 

initially contradict anything from an experimental standpoint. On the other hand, experiments also 

show the existence of “microscopic” particles (electrons, -particles, etc.) that do not dissipate, no 

matter how old they get. 

  For that reason, we will regard the hydrodynamical interpretation of the -field as a picture 

that is useful for only imagining the properties of the -function, but we shall not speak of the 

hydrodynamical quantities  and j as the density and current density of real matter itself. Rather, 

in what follows, we shall pursue an entirely different sort of statistical interpretation of the -

field. 

 Before we treat it systematically in nos. 39, et seq., we would like to illustrate it here in the 

example of the wave packet. Therefore, we have a -function whose magnitude |  |2 at time t0 

has a value that is appreciable only in the close neighborhood of a coordinate point P0 . The value 

of |  |2 dv at time t0 will then be interpreted as the probability that the system exists in precisely 

the volume element dV at the point P, and indeed let that probability be appreciable only close to 

P0 at just that time t = 0. However, the probability density |  |2 for any later or earlier time t can 

now be calculated inevitably (i.e., causally) from that arbitrarily given initial probability density 

in coordinate space v with the help of Schrödinger’s spacetime differential equation for . One 

can also express that as follows: One gives initial positions to a large number of systems of the 

same type such that the initial number of systems in the region dv will be proportional |  |2 dv. 

The statistical distribution |  |2 of the ensemble of systems at a later or earlier time t will then be 

governed by Schrödinger’s equation for . However, that says absolutely nothing about the 

individual fate of an isolated system in the ensemble. That is connected with the fact that the 

energies and velocities of the individual systems of the ensemble at time t = 0 are not at all 

determined for our spatial distribution of the system at the time t0 . In contrast to that, the sharper 

the peak of |  |2 at the time t0 and at the point P0, i.e., the sharper the initial position of the system 



90 Optics, mechanics, and wave mechanics 

 

is constricted, the more that the various eigenfunctions 1, 2, … in the eigenfunction 

development: 

 (q, t) = 
2 /

( )ki E h

k k

k

c e q
   

 

will be assigned appreciable coefficients ck (t0) in the construction of , i.e., the more that the 

system of the ensemble already belongs to the various energy and impulse values with frequencies 
2

1 0( )c t : 
2

2 0( )c t :
2

3 0( )c t : … at time t0 . Conversely, if only systems in the one energy state Ej were 

present at time t0 then their spatial distribution would be given by the density function |  j (q) |2, 

which does not define a sharp peak, but a broad spatial region for the initial spatial positions of the 

individual systems. (For the reciprocity of the precision of the values of the coordinates and 

velocities, or time and energy, cf. no. 19.) 

 Now, every more or less sharp initial distribution of the positions of the individual systems, 

i.e., every more or less indistinct initial distribution of the velocities of the individual system, 

belongs to a well-defined initial position and initial velocity of the center of mass of the system 

distribution. The law of Ehrenfest that was proved (cf., supra) says that the center of mass 

advances as an isolated system that is given its initial position and initial velocity would advance 

according to classical mechanics. 

 The rapid broadening of an initially sharp spatial system distribution is attributed to the 

associated large uncertainty in the initial velocity distribution. Conversely, for an initial 

distribution over a large spatial region, the associated initial velocities of the system points will be 

less scattered, and the broadening of the spatial region will correspondingly take place more 

slowly. It hardly needs to be mentioned that it would completely contradict the conception of things 

that was just presented if one regarded a wave packet with a certain initial spatial extent as an 

aggregate of extended matter (massive object) and then hoped to glimpse an image of a spatial 

blurring of the massive object in the broadening of the wave packet in time. In contrast, the 

statistical interpretation is based upon the picture of each individual system occupying a sharply-

defined coordinate point at each moment and the idea that the statistical distribution of the point 

positions at time t can be calculated from a given statistical distribution of many such spatial points 

at time t0 . 

 

 

 39. Field theory and corpuscular theory. – We might now go into the duality between the 

wave and corpuscular theories more generally. 

 As is known, the wave theory of light, as opposed to the older seemingly-surpassed emission 

theory, has gained a new opponent in the form of Einstein’s theory of light quanta, which is built 

upon the fact that many optical observations are not consistent with the picture of a continuous 

spreading of light energy and impulse. Here, one recalls the photoelectric effect, i.e., release of 

individual electrons from the individual locations on irradiated metal by incident light long before 

sufficient light energy in the form of continuous waves has been achieved at those locations. 

Moreover, the energy E of the emitted electrons does not depend upon the intensity, but on the 

color  of the light (E  h). That was further verified by the experiments of Bothe and Geiger, 
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which showed a direct coupling of a process of atomic emission or light scattering with a 

simultaneous process of absorption of finite energy. That and many other phenomena support the 

Einstein hypothesis that light does not propagate continuously, but in the form of corpuscular light 

quanta whose energy and impulse are connected with the frequency  and wavelength  that might 

present themselves by the relations E = h , p = h /  . Of course, in that way, due to the fact of the 

interference and wave nature of the radiation that is supported by the latter, the light corpuscles 

can likewise be ascribed a higher degree of reality, as one was accustomed to do for material 

corpuscles, such as the indestructible electrons and protons of cathode ray and canal ray 

experiments (but has abandoned in the meantime). The attempt to regard light quanta as a 

narrowly-confined aggregate of waves that comes about by the superposition of suitable solutions 

to Maxwell’s equations could never get to the heart of the matter, first of all, due to the appearance 

of the quantity h, which is alien to Maxwell’s equations, and furthermore, due to the fact that when 

a narrowly-confined wave-aggregate impinges upon something with an inhomogeneous index of 

refraction, e.g., a semi-transparent mirror, a scattering or division of the wave-aggregate must 

occur, which contradicts the experiments that have led to the assumption of the indivisibility of 

light quanta.  

 Exactly the same thing is true of the theory of matter. Here, supported by the results of the 

kinetic theory of gases and the study of electrons, the corpuscular nature of matter seems to have 

triumphed over the older continuum theories. However, quantum mechanics, in the form that 

Schrödinger gave it, is compelled by the wealth of quantum-mechanical phenomena to juxtapose 

an undulatory theory of matter with point mechanics. However, complications will appear in that 

way that correspond completely to the ones in the optical case, since the assumption that point-

like electrons and the systems that are constructed from them, such as atoms and molecules, are 

indestructible corpuscles is so convincing (one imagines, say, the trajectory of an -particle in the 

Wilson cloud chamber) that it would seem difficult, with no further analysis, to go over to an 

undulatory theory of matter in which that indestructibility and distinguishability of the particle 

should no longer be true, at least to a certain degree. 

 Now it is, of course, possible to define wave-aggregate withing the context of wave mechanics 

that behave like mass-points in many respects, since that is just what the optical-mechanical 

analogy shows. For example, one can (no. 38) construct a wave-packet that occupies a very narrow 

space and moves like a classical mass-point from a superposition of solutions to the equation of 

undulation with suitable phases and amplitudes (just as light quanta can be approximated by wave 

bundles). However, if one gives a greater or lesser degree of inhomogeneity to the “index of 

refraction” that the wave-aggregate encounters at some location, i.e., a non-constant or even 

discontinuous behavior of the potential at that location, then the wave-aggregate will be scattered 

or divided there and will no longer have the character of a mass-point. However, according to 

experiments, an electric particle will still be recognized to be unchanged as a mass-point after a 

collision. The undulatory conception of mechanics will then give only one aspect of the experiment 

in any event. 

 The same duality would exist here that exists in optics then if it were not for the fact that there 

is an overarching concept here as well as there. It consists of the statistical interpretation of the 

wave-theoretic results in the sense that the wave function  is referred to as a measure of the 

probability that corpuscular particles are found at the individual locations in space and time. 
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 The statistical picture shall be discussed in more precise detail in the following sections on the 

basis of the fundamental equation of wave mechanics and its solutions. 

 

 

 40. Statistical interpretation of the wave function. – With the use of the coordinates q and t 

and the conjugate impulse p and – E, a quantum-mechanical system H (q, t ; p) will have the wave 

equation: 

{H (q, t ; p) − E,  (q, t)} = 0  with − E = +
2

h

i t




, p = 

2

h

i q




. 

 

 One asks what the physical interpretation of a given solution  (q, t) would be when one keeps 

to the picture in which the mechanical system H (q, t ; p) is kinematically related to a point-

mechanical system, i.e., it can be found in only one configuration at one moment, but not, say, fill 

up a whole region dv with a certain density at time t. Dynamically, however, the succession of 

different configurations q shall not be governed by classical mechanics, but by quantum laws of a 

statistical type. According to an idea that was first expressed quite clearly by Dirac and Born (1), 

and then successfully pursued by Jordan (2),  (q, t) should be interpreted as a probability 

amplitude and |  |2 as the probability that an atom that is described by the Hamiltonian function 

H (q, t; p) will be found in the region dv of coordinate space at time t. Assume that  (q, t) is 

normalized to 1, i.e., dv   = 1. The fact that this is possible follows from the constancy of 

dv   that is assured by (14). 

 

 Example 1. – Consider, in particular, the normalized eigen-solution: 

 

 (q, t) = 
2 /

( ) ni E t h

n q e
 −

 

 

for an eigenvalue En for a conservative system. Here, according to the definition that was just 

given: 

dv   = n n dv   = | n (q) |2 dv 

  

is the probability that the coordinates of the atom lie in dv for an energy value of En . Statistically, 

that means that in the presence of many mutually-independent atoms of the same type that are all 

in the state n, the relative number of systems that are found in dv will be equal to 2 ( )n q dv . 

 

 Example 2. – Consider the general solution: 

 

 (q, t) = 
2 /

( ) ( ) ni E t h

n na t q e
 −

     (25) 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 113 (1926), pp. 621; M. Born, Zeit. Phys. 38 (1926), pp. 803.  

 (2) P. Jordan, Naturwiss. 15 (1927), pp. 105; Zeit. Phys. 40 (1927), pp. 661 and 809. 
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that is constructed from the normalized eigenfunctions n (q) and time-dependent quantities an (t) 

for a non-conservative system that might emerge from a conservative system with the eigen-

solutions n (q) by a perturbation. 

 We then assume that  is normalized to 1: dv  = 1. We can then interpret dv   as the 

probability that the particle occupies dv. The total probability that particles exist somewhere in 

space is: 

1 = dv  = 
2| |na  

 

[the latter is similar to (16)]. It is composed additively from the | an |
2, which then refer to the 

partial probabilities that the particle is somewhat in space, but occupies the state n, in particular. 

Finally, one would like to interpret: 

| an |
2 | n (q) |2 dv 

 

as the probability that the particle is in the state n and occupies the volume dv. However, in truth, 

the probability that particles enter into any state, and in so doing dv, is equal to, say, 
2 2| | | |n n

n

a dv , but from (25), it is equal to: 

dv   = 
2 ( ) /2 2| | | | n mi E E t h

n n n m n ma dv a a e dv
   − −

+  , 

 

which has an additional interference term. A superposition enters in place of the simple addition 

of the partial probabilities, since the probability amplitudes an n with the phase factors 2 /ni E t h
e

−  

combine additively with the total amplitude , and it is only the square of the latter that gives the 

intensity   of the probability itself. That interference of probabilities exhibits the peculiarity of 

quantum theory as undulatory mechanics in a characteristic way, and as Jordan (1) had shown, 

one can, conversely, start from the postulate of the interference of probabilities and successfully 

reconstruct quantum theory. 

 The probability-theoretic interpretation of the existence of one atom in the state n and volume 

element dv is equivalent to the following statistical interpretation: Let a very large number of 

mutually-independent atoms of the same type be present. The relative number of atoms that are 

found in the state n in an arbitrary configuration is 2| ( ) |na t , i.e., it behaves like: 

 

N1 : N2 : … = 
2 2

1 2| | : | | :a a  …, 

in which: 

 N1 + N2 + … = N = const.      (conservation of particle number), 

 

because 
2| |na  is constant in time. 

 If one were to use a function that is not normalized to 1, but “normalized to N”: 

 

 
 (1) P. Jordan, Zeit. Phys. 40 (1927), pps. 661 and 809.  
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 (q, t) = 
2 /

( ) ( ) ni E t h

n nc t q e
 −

  with 
2

nc = N , 

 

then 
2 ( )nc t  would be given directly by the number Nn of systems in the state n. 

 

 Example 3 (which will be referred to in no. 45). – Consider a wave function  (N1, N2, …) that 

depends upon the “coordinates” N1, N2, … and is the solution of a certain transformed wave 

equation. We once more interpret  as the probability amplitude and |  (N1, N2, …) |2 as the 

probability that the system occupies the “coordinate point” N1, N2, … 
2

1 2| ( , , ) |N N    

correspondingly gives the probability that the system will occupy the coordinate point 1N  , 2N  , ... 

The “coordinates” N1, N2, … that characterize the “position” of the system might have the 

following meaning: The total system consists of a number of mutually-independent subsystems of 

the same type, of which N1 are in the state 1, N2 are in the state 2, etc. For a large ensemble of total 

systems |  (N1, N2, …) |2 will then give the relative number of total systems that are found in 

precisely the state N1, N2, …, i.e., their subsystems are distributed over the states 1, 2, … with the 

numbers N1, N2, … In this example, we see that the statistical interpretation of  can will be quite 

different according to the meaning of the “coordinates.” 

 Whereas the normalized eigen-solutions n (q) of a conservative system are fixed once and for 

all, the series  (q, t) = n na   can still have a very different form according to the form of the 

functions an (t). Now, wave mechanics determines the an (t) only to the extent that it fixes the time 

evolution of the an (t) for arbitrarily-given initial values an (t0). That is, one assumes the 

distribution of a distribution of many independent atoms over the state n at time t when the initial 

distribution is given. By contrast, that does not determine the fate of an individual system that is 

now found in precisely the state n after a certain amount of time t has evolved. Wave mechanics 

then includes no causal determination of the states that follow each other from an individual 

isolated system. Rather, it only calculates the probability that the isolated system in a given initial 

state will reach new states. 

 If one perceives the quantum mechanics of electrons to be the final regulator of all things (for 

the time being, there is no reason for assuming that there are further hidden mechanisms that might 

be at work) then one would have to give up on the causal determinism of classical theory in favor 

of only a statistical determinism of physical events. For macroscopic observations, exact causality 

will then present itself as asymptotically statistically legitimate then. However, the more detailed 

the microscopic relationships are considered, the more strongly that uncertainties and dispersions 

will play a role, since they have their empirical counterparts in the chiefly quantum-theoretic 

fuzziness of observation. 
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 41. Forced quantum transitions (1). – Let the effect of a perturbing potential F (q, t) be 

imposed upon a mechanical system that is described by the Hamiltonian function 
o ( , )H q p = T + 

o ( )U q  when it is unperturbed. The wave equation of the system, with H = oH  + F is then: 

 

,
2

h
H

i t




 
+ 

 
 = 

o , ( , ) , ( , )
2 2

h h
H q F q t q t

i q i t


 

    
+ +  

    
 = 0 .  (26) 

 

We take a solution to that equation to be a series in the eigenfunctions n of the unperturbed 

equation: 

with   

2 /

2 /

( , ) ( ) ( ) ( ) ( ) ,

( ) ( ) .

m

m

i E t h

m m m m

m m

i E t h

m m

q t b t q a t e q

b t a t e





  −

−

= =



=



 

      (26) 

In that way, bm (t) includes the phase factor 2 /mi E t h
e

− , which is rapidly-varying in time, while 

( )ma t  varies only slowly with t. (The phase is m = Em t : h.) 

 According to no. 40: 

| bm (t) |2 = | am (t) |2 = Nm (t) 

 

means the number of atoms in the state n. Instead of asking how that number would change in time 

under the influence of the perturbing field directly, we first examine the simpler question of how 

the am (t) or bm (t) would change in time (dbm / dt = mb ). 

 If one substitutes the series (24) then one will get: 

 

o0 { }
2

.
2

m m m m m m

m m m

m m m m m m m

m m m

h
b H F b b

i

h
b E F b b

i

  


  


=  +  +

= + +

  

  

  (26) 

 

 One develops the F m in that into an eigenfunction series: 

 

F (q, t) m (q) = ( ) ( )km m

k

F t q  ,    (27) 

whose coefficients Fkm (t) are determined to be: 

 

Fkm (t) = ( ) ( , ) ( )k mq F q t q dv   = ( )mkF t            (27) 

 

 
 (1) M. Born, “Das Adiabatenprinzip in der Quantemechanik,” Zeit. Phys. 40 (1926), pp. 167.  
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due to the orthogonality and normalization of the k (q). One calls Fkm a matrix element (1) of 

( )F q . The splitting of H (q, p, t) into 
0 ( , )H q p  + F (q, t) in that shall be done in such a way that 

the matrix elements Fnn vanish when the part of the perturbing energy that does not give rise to 

vanishing Fnn is attributed to the principal energy oH . One will then have: 

 

Hkm = Fkm for m  k,  Hkk = Ek , Fkk = 0 .  (27) 

 

Substituting the series (27) in (26) will give: 

 

0 = 
2

k k k km m k

k m

h
b E F b b

i




 
 + + 

 
   . 

 

Multiplying that equation by a certain k and integrating over dv will ultimately give: 

 

 0 = 
2

k k km m k

m

h
b E F b b

i
+ +   for k = 1, 2, …, 

for which we write: 

 

− 
2

k

h
b

i
  = ( ) ( )km m

m

H t b t  with Hkm = 
for

.

km

k kk

F m k

E F m k




+ =
  (28) 

 

That is the law for that temporal change in the bk . If one introduces equation (26) into that then 

one will get the following equation for the slowly-varying ak : 

 

− 
2

k

h
a

i
  = 

2 ( ) /
( ) ( ) k mi E E t h

km m

m

F t a t e
 −

 .   (28) 

 

We contrast the last two equations with the starting equation (26) in the form: 

 

− 
2

h

i



 = {H, }.     (29) 

 
 (1) In general, the matrix element of a function A (q, p) relative to the eigenfunctions m of a Hamiltonian function 

will refer to the quantities Akm =  ,
2

( ) ( )
k m

h
q

i q
q A q dv


 

 
 

 
 , where each  is possibly provided with a time 

factor, such that: 

km
dA

dt
 = 

2
( )

k m km

i
A

h


 

 
− 

 
. 

 

(For matrix algebra, see no. 65, as well as no. 34.) 
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 Now, in order to pursue the time evolution of the ak or bk, equations (28), (28) must be 

integrated. In the first approximation, for a small time interval from t = 0 to t, the slowly-varying 

quantities am (t) on the right-hand side of (28) can be treated as constants, and one will find that 

integration in the first approximation will give: 

 

ak (t) = 
(1)(0) ( ) (0)k km m

m

a f t a+  ,    (30) 

with 

(1) ( )kmf t  = − 2 ( ) /

0

2
( ) k m

t

i E E t h

km

i
F t e

h

 −
 ,   (30) 

 

and in particular, 
(1)

kkf  = 0, due to (27). The first approximation no longer suffices for large times, 

but the rigorous solution can also be represented by a series: 

 

ak (t) = (0) ( ) (0)k km m

m

a f t a+  ,    (31) 

 

in which the fkm now deviate from the quantities 
1

kmf , but can be given by a series development 

fkm = 
1

kmf  + … that Born gave. 

 One can best recognize the physical meaning of fkm (t) in the special case where only one a 

[say, al (0)] is non-zero at time t = 0, i.e., all atoms are in the state l at time t. From (31), one will 

then have: 

ak (t) = fkl (t)  al (0) , Nk (t) = | ak (t) |
2 = | fkl (t) |

2  Nl (0) = wkl (t)  Nl (0) 

 

at time t. Here, one will refer to | fkl (t) |
2 = wkl (t) as the transition probability that an atom will 

jump from the state l to the state k during the time t, and | fkl (t) |
2 Nl is the probability that Nl atoms 

will go from l to k. fkl (t) itself is then appropriately referred to as the probability amplitude for a 

transition l → k to occur during t. 

 In general, for arbitrary initial values ak (0), the ak (t) are coupled to the ak (0) according to (31) 

by the linear addition law: 

ak (t) − ak (0) = ( ) (0)km m

m

f t a , 

 

while the absolute value of the square is given by the law: 

 

| ak (t) − ak (0) |2 = 
2 2| ( ) | | (0) | (0) (0)km m km kl m l

m m l

f t a f f a a +  ,  (32) 

 

which one refers to as the law of superposition, and can write in the form [when ak (0) = 0, Nk (0) 

= 0]: 
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Nk (t) = ( ) (0) (0) (0)km m km kl m l

m m l

w t N f f a a +  .       (32) 

 

Along with the principal terms wkm Nm (0), which are proportional to the numbers Nm (0) in the 

states m, it also includes interference terms, each of which relates to the presence of two states m 

and l. The fact that the probabilities appear, not in a law of addition, but a law of superposition, is 

an essential fact in wave mechanics and can be referred to as the interference of probabilities (see 

also no. 40). 

 For potential functions F (q, t) that vary slowly in time, Born could derive the asymptotic 

vanishing of the transition probabilities from one state to another. The numbers Nk would then 

remain constant in time, as Ehrenfest’s adiabatic theorem demands. 

 

 

 42. Quantum transitions in a radiation field. – The time-dependent perturbation now 

consists of an electric field E (t) of constant direction, in particular. One must then replace the 

perturbation energy F (q, t) with: 

 

F (q, t) = − M (q) E (t) cos (E, M) ,    (33) 

 

in which (E, M) is the time-constant angle between the direction of the field and the electrical 

moment vector M (q) of the system of electrons in the configuration q. From the previous section, 

the transition probability wkn during time t will then be, in the first approximation: 

 

wkn (t) = 
2

(1)

knf  = 

22

22

0

2
| cos( , ) | ( ) km

t

i t
t e dt

h

 − 
 

 
M E M E ,  (34) 

 

when one uses (30) and the definition (27) of the matrix element of M (q) cos (M, E). We can 

see the meaning of the last factor in a random radiation field as follows: Let E (t) be represented 

between times 0 and t1 by the Fourier integral: 

 

E (t) = 2i te d

 
+

−

 E ,          (35) 

 

whose coefficients E are inversely calculated to be: 

 

E = 
1

2

0

( ) km

t

i t
t e dt

−

E ,  such that E− = E ,  (35) 

 

from which the identity will follow: 
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d  
+

−

 E E  = 
1

2

0

( )

t

i tt dt e d

 
+

−

−

 E E  = 
1

0

( ) ( )

t

t t dtE E , 

i.e.: 

2| d 
+

−

 |E  = 
1

2

0

( ) |

t

t dt |E .     (35) 

 

Now, the mean density of the radiation energy is: 

 

 = 21
( )

4
t


E  = 

1

2

1 0

1
( ) |

4

t

t dt
t  |E ,            (36) 

 

and due to (35), one will have: 

 

 = 2

1

1
|

4
d

t
 



+

−

 |E  = 
0

d 


 , with  = 
2

1

1
|

2 t



|E .         (36) 

 

Finally, with the use of (35), the transition probability (34) to be calculated will then be: 

 

wkn (t) = 

2

2 22
| cos ( , ) | |kn

h


 
 
 

M E M |E . 

 

If one sets 
2||E = 2 t   (kn) here, corresponding to (36), and gives cos2 (E, M) the value 1/3, 

in the event that the direction of E fluctuates irregularly in all directions, then the desired transition 

probability during the time t will ultimately become: 

 

wkn (t) = 

3
2

2

8
| | ( )

3
kn kn t

h


  M     (37) 

in which  (kn) gives a monochromatic section of the spectrum  = 
0

( ) d  


  of the random 

radiation, and Mkn is defined as in (27). One will also get the same value (37) for the inverse 

transition probability from k to n that is forced by the radiation field  (kn). 

 Along with the transition probabilities wkn and wnk that are forced by the radiation field  (kn), 

there are also spontaneous transition probabilities from n to k, where En > Ek, but not from k to n. 

One can include them in the calculations only when one considers the reaction of the electron 

system to the field. That will be done in Chapter V, where atoms and fields will be considered 

together as a quantum-mechanical system. The flaw in the method above, which does not lead to 

spontaneous radiation, consists of the fact that the electromagnetic field “consists of only light 

quanta,” or better yet, it is coupled with the atom in a quantum way that contradicts the classical 
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Ansatz F (q, t) = − (M, E). The interaction between light and matter cannot be consistently 

achieved by translating Hamilton’s equation for a point-like atom into a continuous 

electromagnetic field, but rather one must start from a point-mechanical atom in a corpuscular 

light field and simultaneously make the transition to the wave theory of light and matter. 

 

 

 43. Spontaneous transitions. – As was shown in no. 40, the function: 

 

 (q, t) = 
2 /

( ) ( ) ki E t h

k k

k

a t q e
 −

     (38) 

 

can be used to characterize a state in which | ak |
2 = Nk atoms of an aggregate are found on the 

energy level Ek (k = 1, 2, …). On the other hand: 

 

  = 
2 ( ) /l ki E E t h

k l k l

k l

a a e
  −

  =  (q, t)   (38) 

 

was seen to be a sort of density that statistically gave the probability that an atom would occupy a 

unit volume at the coordinate point q at the time t. 

 However, that density  and the associated current density j had nothing do with the absorption 

and emission of radiation by the ensemble of atoms directly, as was explained in no. 37. 

Nonetheless, it might be mentioned here without proof in connection with formula (38) how one 

has calculated the intensity of the spontaneous emission from an ensemble of atoms that are first 

in the state l and can then go to various lower states k. 

 One takes the “transition density per atom” to be the quantity: 

 

kl (q, t) = 
2 ( ) /l ki E E t h

k l e
  −

,     (39) 

 

i.e., a term in the development (38), but with k la a  = 1. In sec. 50, the fact that the charge density 

  lk can function as the source of the spontaneous electrodynamical radiation per atom under the 

transition l → k will then be given a wave-mechanical basis. We remark that the temporal period 

of the “transition density”: 

lk = l kE E

h

−
 

 

fulfills the Bohr frequency condition precisely. In that way, lk seems to be the beat frequency 

between the frequency l = El / h of the initial state and that l = El / h of the final state. 

 The intensity of the radiation is calculated from the electric moment that belongs to the 

transition density in the following way: 
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 If X (q) means the x-component of the electron moment for the atom in question in the 

coordinate position (q1, q2, …) of its electron system, and if the various configurations are occupied 

with the relative frequency density lk (q, t) then the mean x-moment will be: 

 

( ) ( , )lkX q q t dv  = 2
( ) ( ) ( ) lki t

l kX q q q dv e
   = 

2 lki t

lkX e


,  (40) 

 

with the factor Xlk as the amplitude and lk as the frequency. Now, from classical electrodynamics, 

Nl atoms whose moments oscillate with the amplitude Xlk and frequencies lk would spontaneously 

radiate the energy: 
4

4 2 2 2

3

4
4 2

3

64
( )

3

64
.

3

l lk lk lk lk

l lk lk

dE dt N X Y Z
c

dt N
c








=    + + 


=   


M

    (41) 

 

The same expression will also be derived consistently for the quantum-theoretical spontaneous 

radiation in no. 49, eq. (36). 

 If the basic expression lk (q, t) is time-constant in a special case then (40) will also be time-

constant. That would be possible only when Xlk , Ylk , Zlk vanish. The radiation (41) would then be 

equal to zero, i.e., for a time-constant lk , the radiative transition l → k would not take place (it 

would be “forbidden”). The same thing would also be true for the transitions l → k and k → l under 

the influence of incident light since they are also coupled with the existence of the moment 

amplitudes 
2

lkM  = 
2 2 2

lk lk lkX Y Z+ +  (Chap. V). 

 According to (41), the energies per unit time that are radiated by Nl atoms in the state l under 

the transitions to the states k, m, n (i.e., the intensities) behave like: 

 

Jlk : Jlm : Jln = 
4 2 4 2 4 2: : :lk lk lm lm ln ln  M M M            (42) 

 

 If the frequencies lk , lm , ln differ from each other only slightly then one will have the 

approximate intensity ratios: 

Jlk : Jlm : Jln = 
2 2 2: :lk lm lnM M M      (42) 

 

for the spectral lines lk , lm , ln , … under spontaneous transitions from l. 

 

___________ 

 



 

CHAPTER V 

 

INTERACTION OF RADIATION AND MATTER  
 

 

 44. Operator calculus. – In Sec. IV, it was shown how one can go from the classical Hamilton 

energy equation of a system with N degrees of freedom H (q1, …, qn, t, p1, …, pN) – E = 0 to the 

associated wave-mechanical differential equation. One replaces the impulse pk and – E in the 

(suitably-symmetrized) Hamiltonian function with the operators: 

 

pk → 
2 k

h

i q




  and – E → 

2

h

i t




,    (1) 

 

and applies the operator thus-obtained: 

 

, ,
2 2

h h
H q t

i q i t 

  
+ 

  
 to  (q, t) . 

 

The solution  will then correspond to certain physical properties of the quantum-mechanical 

systems. 

 In order to obtain solutions, it is often preferable to go from the originally-chosen coordinates 

and impulses q, p to new canonically-conjugate ones q , p  in which the solutions are easier to 

find. The Hamiltonian function ( , , )H q t p   , when transformed into the new coordinates, will then 

lead to the new operator: 

, ,
2 2

h h
H q t

i q i t 

  
  + 

  
 to ( , )q t    . 

 

Naturally, the solutions    are completely different functions from the original ones  (q, t). 

However, our main interest is in the search for the quantities that can be derived from the  and  

   that will possess precisely the same values for  that they do for   , so they will be invariant 

under whatever coordinate system q or q  we happen to been chosen as a basis. That is because it 

is only such invariants that are capable of representing physically-measurable quantities that are 

independent of the coordinate system that we might choose. One such invariant is, e.g., the energy, 

which has the eigenvalue En in wave mechanics. In fact, it can be proved (Chap. VII) that the 

eigenvalues of the equations: 

 

, , ,
2

h
H q t E

i q




   
−  

   
 = 0  and , , ,

2

h
H q t E

i q




   
  −  

   
 = 0 
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will be the same, while the eigenfunctions n (q) and ( )n q    that belong to the eigenvalue En are 

completely different. The same thing will generally be true of the matrix components (pp. 92, 

footnote 2) of any function F (q, p) = ( , )F q p   : It can be shown that the Fkl are equal to the klF  . 

Thus, they are capable of being interpreted physically since they are invariants. 

 Under the replacement pk → 
2 k

h

i q




, any function of the coordinates q and the canonically-

conjugate impulses p will become an operator that can be applied to a function  of the 

coordinates. 

 The transition to new coordinates and impulses (operators, resp.) initially affects only the 

operator H – E in the Schrödinger equation, and only secondarily affects the -functions as 

solutions of it. It is therefore important to clarify the simplest rules for calculating with operators. 

 Due to the product rule of differentiation: 

 

d
ab

dx
 = 

db da
a b

dx dx
+ , 

one has: 

1 1

1 12 2

h h
q q

i q i q
 

 

 
−

 
= 

2

h

i



 ,     (2) 

while: 

2 2

1 12 2

h h
q q

i q i q
 

 

 
−

 
 = 0  .     (2) 

 

 If one drops the function symbol  from those equations then one will get the operator 

equations: 

 

1 1

1 12 2

h h
q q

i q i q 

 
−

 
= 

2

h

i
, while   2 2

1 12 2

h h
q q

i q i q 

 
−

 
= 0 , 

 

or ultimately, when one understands pK to mean the operator h / 2i  / qK : 

 

p1 q1 – q1 p1 = 
2

h

i
,  while  p1 q2 – q2 p1 = 0 .   (3) 

 

The last two expressions mean nothing but an abbreviated notation for equations (2), (2). (3) states 

that the operator p1 = 
12

h

i q




 will indeed commute with q2 in the order of the product (p1 q2 = 

2 1q p ), but p1 does not commute with q1, as is shown by (2), (2), which are (3) when written out 

in detail. Thus, the product rule of commutation is not valid for a conjugate pair of coordinates and 

impulses (operators). 
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 Upon reverting to the detailed notation (2), one will easily prove the following general rules 

for the commutation of products: 

for ,
2

0 ,

0, 0,

for .
2

K L L K

K L L K K L L K

K

K

h
K L

p q q p i

K L

p p p p q q q q

h
p

i q






= − =  

  


− = − = 

=

 



    (4) 

Along with that, when x1, x2, x3 are three functions that depend upon the 2N quantities q1, …, qN, 

p1, …, pN arbitrarily, the laws of association and distribution for addition will be true: 

 

(x1 + x2) + x3 = x1 + (x2 + x3) ,  (x1 x2) x3 = x1 (x2 x3) , 

 

x1 (x2 + x3) = x1 x2 + x1 x3 , x1 = 0  or x2 = 0  when  x1 x2 = 0 , 

 

and more generally, the commutative law of addition: 

 

x1 + x2 = x2 + x1 . 

 

One can then calculate with the quantities qK and the operators pK = 
2 K

h

i q





 precisely as one 

does with ordinary numbers, except that one must observe the non-commutativity of the order of 

multiplication that corresponds to (4) (1). According to (4), every qK commutes with every qL, but 

every qK will commute with every other pL only when L  K. In general, we would like to call two 

functions ( , )Kq p q  and ( , )Kp p q  canonically conjugate when the substitution of pK = 
2 K

h

i q





 

produced the operator relations: 

 

, , , ,
2 2 2 2

K K K K

K K K K

h h h h
p q q q q q p q

i q i q i q i q
 

   

          
    −        

          
 = 

2

h

i



, 

 

etc., or when written more concisely: 

 

K K K Kp q q p   −  = 
2

h

i
,  etc., as in (4).  (4) 

 

 
 (1) The operator calculus for “q-numbers” was introduced by P. A. M. Dirac as the formal foundation for quantum 

theory. Proc. Roy. Soc. 109 (1925), pp. 642; ibid. 100 (1926), pp. 561. See, moreover, C. Eckhart, “Operator-

calculus,” Phys. Rev. 28 (1926), pp. 711.  
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As an example, we consider a system 2N quantities qK and pK that we assume to be canonically 

conjugate [i.e., ones that are subject to eq. (4)] and construct the following quantities from them: 

 

Kq  = 
2 /Ki p h

Kq e
−

,  Kp  = 2 /2
Ki p h

K

i
e q

h

 +
 ,   (5) 

 

which we assert are canonically conjugate i.e., subject to eq. (4). In order to prove that we first 

consider the equation: 

 

2 /

1 1

2

12

1

( , , ) ( , , )

1 1
1 , ( , , , , )

1! 2!

( , , 1, , ) ,

K Ki p h q

N N

K N

K K

K N

e f q q e f q q

f q q q
q q

f q q q






 


 = 


   
=  +   

   
= 



 (6) 

in which the last one follows from Taylor’s theorem. We will then have: 

 

{ , }K K K Kp q q p    −  = 
2 / 2 / 2 / 2 /2 2

K K K Ki p h i p h i p h i p h

K K K K

i i
e q q e q e e q

h h

    
 + − − +   

−   
   

 

 = 2 / 2 /

1 1

2 2
( , , , , ) ( , , , , )K Ki p h i p h

K K N K K N

i i
e q e q q q q q q q

h h

  
 − −

−  

 = 2 /

1 1

2 2
( , , 1, , ) ( , , , , )Ki p h

K K N K K N

i i
e q q q q q q q q

h h

 
 − −  

 = 
1 1

2 2
( 1) ( , , 1 1, , ) ( , , , , )K K N K K N

i i
q q q q q q q q

h h

 
 + + − −  

 = 
1

2
( , , , , )K N

i
q q q

h


  , 

 

so, in operator notation: 

K K K Kp q q p   −  = 
2

h

i
. 

 

One proves the remaining commutation relations (4) for the Kq  and Kp  correspondingly. The 

operators Kq  and Kp  that are defined by (5) are therefore conjugate again. Conversely, one can 

also use the assumption that Kq  and Kp  are canonically conjugate (4) to prove that the same thing 

is true of pK and qK . 

 One can derive the following formulas as counterparts to (6). If 1, 2, … are any fixed 

quantities of dimensions p1, p2, …, resp., then one will have: 
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2 /
( )

2
K Ki q h

K

h
e q

i q

  





 = 

2 / 2 /

2
K K K Ki q h i q h

K

K

h
e e

i q

     



+


 = 2 /

,
2

K Ki q h

K

K

h
e

i q

   


 
+ 

 
, 

 

or when written as an operator equation: 

 
2 /K Ki q h

Kp e


  = 
2 /

( )K Ki q h

K Ke p
 +  .           (7) 

 

One easily proves the following, more general, equations with the help of that relation when 

( , )f q p  is any function that can be developed in powers of pK : 

 

1 12 ( )/

1 1( , ) N Ni q q h
f q p e

  + +
 = 1 12 ( )/

1 1 1( , )N Ni q q h
e f q p

   + +
 +    (8) 

 

or when read in the opposite direction: 

 

1 12 ( )/
( , )N Ni q q h

K Ke f q p
  + +

 = 1 12 ( )/
( , ) N Ni q q h

K K Kf q p e
   + +

− .   (8) 

 

 Let it be pointed out that identities that follow from the commutation relations (4) here under 

the reinterpretation pK → 
2 K

h

i q





 had already been proposed as the fundamental law of 

“quantum algebra” by Heisenberg, Born, and Jordan, as well as Dirac, before Schrödinger had 

proposed wave mechanics, in order to calculate with the help of observable quantities by using 

certain rules that were obtained from a bold generalization of the correspondence between classical 

mechanics and the quantum theory of discrete electron orbits. The operator interpretation of those 

quantum-algebraic relations had already been stressed by Born and Wiener, and Lanczos had 

previously introduces a continuous spatial function that was applied to the operators in a manner 

that did not deviate too much from Schrödinger. Schrödinger himself and Eckart subsequently 

found the complete equivalence of the “quantum mechanics” that was based upon quantum algebra 

and the undulatory mechanics. 

 In this Chapter V, we will employ the rules of calculation extensively above in order to 

abbreviate many otherwise-complicated formulas. The possibility of concerning ourselves with 

the operators that act upon the -function more than that function itself is based upon just the 

aforementioned irrelevance of going into non-invariant functions more precisely when one would 

like to go beyond observable (viz., invariant) physical quantities and matters of legitimacy. One 

will find a related overview of the quantum algebra of invariant quantities in Chap. VII. 

 

 

 45. Occupation numbers as coordinates. – In what follows, we will treat the transition 

probability from a state n to another state m in a mechanical system, say, a molecule that consists 

of one or more atoms or a solid or gaseous aggregate that consists of many molecules, etc. To that 

end, it would be useful for us to take the system, which we would like to simply call the atom, to 

be a member of a large ensemble of atoms of the same type (i.e., they possess the same Hamiltonian 
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and are mutually independent) in which at any time, N1 atoms lie in state 1, N2 atoms are state 2, 

etc. N1 + N2 + … = N is the total number of atoms in the ensemble. We further consider a second, 

third, etc., ensemble of N such atoms, but for which occupancy of the states is kN  , kN  , …, resp. 

Let the probability of finding an ensemble in that set of all ensembles being in the occupancy state 

kN   at time t be called 2| ( , ) |kN t  , and let the probability of an ensemble of the set being in the 

state kN   at that same time be 2| ( , ) |kN t  . ( , )kN t   and ( , )kN t   are the associated probability 

amplitudes. If the value of 2| ( , ) |kN t   decreases up to time t2, while that of 2| ( , ) |kN t   increases, 

then that means that there will be a transition probability from the occupancy state kN   to the 

occupancy state kN  . 

 Whereas up to now  was always considered to be a function of the coordinates q and t, like 

Dirac (1), we have arrived at probability amplitudes  in which the occupation numbers Nk appear 

as coordinates. We will arrive at their connection with Chapter IV (especially no. 41), in which  

was generally represented in the form: 

 

 (q, t) = ( ) ( )k k

k

b t q  

 

as a solution of the fundamental equation (2): 

 

{ , }
2

h
H

i
 


+  = 0 , 

 

when we interpret the magnitude | bk (t) |
2 as the number of atoms that are found in precisely the 

state k, such that: 

 

| bk (t) |
2 = Nk (t) and 

2| ( ) |k

k

b t  = ( )k

k

N t  = N = const. 

 

Since bk (t) itself can still be complex, one sets: 

 

bk = 
2 /ki h

kN e
− 

, with kN  = amplitude, k = phase,  (9) 

and we will get: 

 (b1, b2, …, q, t) = k k

k

b  ,   = k k

k

b  . 

 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), pp. 243.  

 (2) The Fourier coefficients bk (t) are rapidly-varying, bk = exp ( 2 / )
k k

a i E t h− , as opposed to the slowly-varying 

ak (t). The k (t) are the eigen-solutions to the conservative equation {H0 – E, } = 0, in which H0 is the “unperturbed” 

part of H, and F = H − H0 is the perturbing function (see number 41). 
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Due to the equation for the time variation of the b that was derived in no. 41: 

 

2
k kn n

n

h
b H b

i
+   = 0 ,     (9) 

 

that can also be written in the form: 

 

 = k k

k

b  ,  
2

k kn n

k n

h
H b

i
 


+   = 0 .   (10) 

 

In that way, we would like to split H (q, t, p) into 0 ( , )H q p  + F (q, t), in such a way that the matrix 

elements Fnn will vanish, since the part of the perturbation energy F (q, t) that would give rise to 

non-vanishing Fnn is included in 0H . One will then have: 

 

Hkn = Fkn for k  n ,  Hnn = En and Fnn = 0 .  (10) 

 

 Now, 
2

k

h
b

i

   is defined to be the impulse conjugate to the coordinate bk , i.e., 
2

h
b

i

  shall 

be an abbreviation for the operator 
2

k

h

i
 , and b  shall mean an abbreviation for  / bk . One 

will then have the operator identities [cf., (2), (2), and (4)]: 

 

1, 0 ( ),

0, 0,

k k k k k k k k

k l l k k l l k

b b b b b b b b l k

b b b b b b b b

   

   

− = − = 


− = − = 

   (11) 

for 

kb
 = 

kb




. 

 

 We now understand ( , )H b b
 to mean the operator: 

 

( , )H b b
 = k kn n

k n

b H b ,     (12) 

 

and when that is applied to  = l l

l

b  , since applying nb
 =  / bk to l (q) will give zero, we 

will find that: 

{H, } = k kn n

k n

b H  , 
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such that (10) will go take on the form: 

 

,
2

h
H

i t




 
+ 

 
 = 0  for  (b, q) = ( )n n

n

b q .  (13) 

 

Formally, that equation has the appearance as Schrödinger’s fundamental equation, except that in 

the latter,  is a function of q and t, while in (13) it is a function of q and b1, b2, …, with time 

entering implicitly in the bk (t). In what follows, we will be less concerned with the dependency 

on q than we will be on the dependency on the b. Since the operator ( , )H b b  in the differential 

equation (13) does not include the coordinate q, the solutions  of (13) will be simply functions 

1 2( , , )b b  in which each b contains time implicitly. 

 Now, Dirac further went from the canonical variables bk and 
2

k

h
b

i

  = 
2 k

h

i b





 to new 

canonical coordinates and impulses (operators), and indeed in such a way that Nk = | bk |
2 would 

now take on the role of coordinates. That was achieved by the transformation: 

 

bk = 
2 /ki h

kN e
− 

, kb
 = 

2 /ki h

ke N
 

    (14) 

 

to the new canonical variables Nk and k = 
2 k

h

i N





. The fact that the commutation rules: 

 

, 0 for
2

0, 0

k k k k k l l k

k l l k k l l k

h
N N N N l k

i

N N N N




 −  =  −  =  


− =   −   = 

  (14) 

 

do, in fact, arise from the commutation rules (1) for the bk under the transformation that was given 

(11) follows in the same way that (4) followed from (5). 

 In the new canonical variables Nk k , the operator ( , )H b b
 in (12) will now become the 

operator: 

H (N, ) = 
2 / 2 /k ki h i h

k kn n

k n

N e H e N
 −  

  with k = 
2 k

h

i N




, 

 

which will make the operator in the fundamental (13) go to: 

 

2 / 2 /

2
k ki h i h

kn k n

k n

h
H N e e N

i t

 



−  
+


 = 0 .   (14) 
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If one applies it to a function  then  will be a function of the continuous coordinates N1, N2, …, 

each of which can take on all values between 0 and . The restriction of the coordinate values Nk 

to whole numbers, or rather, restricting the changes in the Nk to whole numbers, is just a result of 

quantum mechanics that can be derived immediately. 

 

 

 46. Transition probabilities. – The last equation can be put into the form: 

 

1 1( , , , , , ) 1 ( , , 1, , 1, )
2

k n kn k k k n

k n

h
N N N H N N N N N

i
 +  +  − +  = 0   (15) 

 

with the help of formulas (6). Only the terms with k  n are written in out the double sum. For k = 

n, one must add the simple sum: 

 

1( , , , )kk k k k

k

H N N N N  = 1( , , , )k k k

k

E N N N .  (15) 

 

 We regard  (N1, N2, …, Nk, …) (see also Example 3 in no. 40) as the probability amplitude 

that an atomic ensemble that belongs to a set of atomic ensembles will be found in the occupation 

state N1, N2, … at time t.   (N1, …, Nk – 1, …, Nn + 1, … is then the probability amplitude at that 

same time for an ensemble in the set to have an occupation state that differs from the first one by 

the fact that there is one less atom in the state k and one more atom in the state n. The temporal 

variation of the former probability amplitude is coupled with the amplitudes of the latter 

probabilities by equation (15). In order to simplify the notation, we now understand N and M to 

means the function N (N1, N2, …) and M (M1, M2, …), in place of (15), one can write, more 

concisely: 

0 = 
2

N NM M

M

h

i
 +  H  ,     (16) 

 

in which the sum extends over all distributions M that deviate from the distribution N by the fact 

that one N is increased by 1 and another is reduced by 1, and in that way, there will be a term N = 

M that corresponds to (15). The meaning of the coefficients HNM can be read off by a comparison 

with (15), (15). For example, from (15), one will have HNN = k k

k

N E , which we would like to 

also write as En : 

HNN = EN = k k

k

N E           (16) 

 

as the total energy of the atom in the occupancy state N. 

 One can go from the equation (16) for rapidly-varying functions N to the one for slowly-

varying functions N when one introduces the Ansatz: 
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N = 
2 /Ni E t h

N e


  .       (17) 

 

One will then get [cf., the transition from (28) to (28) in no. 41] the equation for  : 

 

0 = 
2 ( ) /

2
N Mi E E t h

N NM M

M

h
e

i





−
 + F  with FNM = 

for

0 .

NM N M

N M




=

H
  (18) 

 

 The physical meaning of the HNM (FNM , resp.) also corresponds to the meaning of the Hnm (Fnm, 

resp.) that was treated in no. 41. The integration of (18) for the time interval 0 to t [cf., the integral 

of (28) in no. 41] will lead to the series: 

 

N (t) – N (0) = ( ) (0)NM M

M

f t  ,    (19) 

 

and in the first approximation, namely, for small time intervals over which the M vary only 

slightly: 

(1) ( )NMf t  = − 2 ( ) /

0

2
N M

t

i E E t h

NM

i
e dt

h

 −

F .   (20) 

 

 If the time interval from 0 to t is taken to be small enough that FNM can also be regarded as 

constants then one will get: 
(1) ( )NMf t  = ( )2 ( ) /

1 : ( )N Mi E E t h

NM N Me E E
 −

 − −F     (21) 

 

upon integration. The coefficients of the development fNM (t) in the series (19) are the probability 

amplitudes, while the | fNM |2 = wNM are the probabilities that an atomic ensemble will jump from 

the occupation state M to N during the time t. Precisely as in no. 41, there is a law of interference 

of probabilities that follows as a consequence of the law of addition (19) for probability 

amplitudes. 

 The peculiarity of the problem that was treated here of the transition of an atomic ensemble 

from an occupancy state M = (M1, M2, …) to the occupancy state N = (N1, N2, …) now implies that 

the quantities HNM (FNM , resp.) that lead to the transition amplitudes fNM will differ from zero only 

the following case, which one reads off from (15): 

 

1 1

Final distribution Initial distribution 

, , , , , , , 1, , 1, 1

NM NM

k n k n kn k n

N M

N N N N N N F N N

= 


= = − + = + 

F H
 (22) 

 

i.e., the coordinates Nk, which were continuous from the outset, can either remain the same or 

change by  1, so in succession they can jump by only integer multiples of 1. In detail, (22) means 

the following: Under the transition from initial distribution of the atomic ensemble to the final 
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distribution, one atom will jump from the state n to the state k. The asymmetry in the transition 

producer 1kn k kF N N +  is only apparent, since one can imagine that the atom that is making 

the jump is one of the (Nn + 1) atoms that were found in the state n to begin with, and that the same 

atom will be one of the Nk atoms that are found in the state k at the end. (22) is also equivalent to 

the following table: 

 

1 1

Final distribution Initial distribution 

, , 1, , 1, , , , , , 1

NM NM

k n k n kn k n

N M

N N N N N N F N N

= 


= + − = = + 

F H
 (22) 

 

For example, if all Nk = 0, except Nn = 1, to begin with then then the transition probability for the 

atom to go from the state n to the state k is calculated from FNM = 1 1knF   = Fkn , i.e., simply 

from the matrix element of the perturbation energy. One sees quite clearly here that in order for 

the transition from n to k to be possible, it is not necessary for, say, one or more atoms to lie in the 

state k before the transition (as is sometimes incorrectly concluded from wave mechanics). 

 

 

 47. Interaction of light and electrons. – In conjunction with P. Dirac (1), we will now 

specialize the perturbing potential F (q, t) and investigate the interaction of light quanta and 

electrons in order to arrive at a quantum theory of absorption, emission, scattering of light, and 

dispersion. In so doing, the simplest formulas from the relativistic classical mechanics of electrons 

in an electromagnetic field might be assumed. They will be recalled in Chapter VI, moreover. 

 In a perturbing field with a scalar potential  and a vector potential with components Ax, Ay, 

Az, the energy equation reads: 

2

2 2 2

2

1
( )x xp E c

c c


  

 
+ + − + + 

 
A  = 0 . 

 

Therefore, the Hamiltonian function is now: 

 

H = E = 

1/2
2

2 2

0 x xc c p
c


  

  
 + + + −  

   

A  . 

 

We consider the unperturbed case to be the presence of just the scalar potential , which shall be 

time-independent, moreover (e.g., motion in the field of a nucleus) with the Hamiltonian function: 

 

H0 = E0 = 2 2 2

0c c p  + − .    (23) 

 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), pp. 243.  
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When one neglects 2 2/v c  in comparison to 1 and the terms in A3 then one will get: 

 

H = E = H0 + 
2

2

2
( )

2c c

 


+vA A      (24) 

approximately.  

 That equation represents a mixing of the corpuscular theory of matter with the field theory of 

light. In order to arrive at a consistent field theory of light + matter, it is next necessary to describe 

the interaction of electrons and light corpuscles (light quanta) by a point-mechanical Hamiltonian 

that is then translated into wave mechanical form. In that way, the atom, with its degrees of 

freedom, is contrasted with the light field, with its degrees of freedom, which is introduced 

mathematically as a system of harmonic oscillators that interact perturbatively with the atom, in a 

certain sense. Physically, those oscillators are the elementary eigen-oscillations of the light that 

fills up the space. For our purposes, it is especially appropriate to use Laue’s elementary bundle 

of rays (cf., no. 17, and further no. 9), such that there will be: 

 
2

3

8
V d

c


       (25) 

 

elementary ray bundles in a volume V and in the frequency interval dv, which agrees with the 

Jeans number for the eigenfrequencies of both directions of polarization. That number of 

elementary ray bundles with one direction of polarization that then falls upon an aperture of solid 

angle d (instead of 4) will then be: 

 

 = 
2

3
V d d

c


   elementary ray bundles in V d d .  (25) 

 

In the corpuscular theory of light, each of them will be occupied by a while number Nk of energy 

quanta hk . However, we would not like to assume that Nk is a whole number here, but initially 

assume that Nk lies in the continuous domain from 0 to . The state of light in space will then be 

characterized by all (possibly rational) numerical values Nk of light units hk which lie on the 

individual (on the thk ) ray bundles and the phases k of those ray bundles. 

 Now, in order to obtain the perturbation between the latter and the atom, we next consider only 

the thk  ray bundle with the (continuously-varying) occupation number Nk and phase k , and ask 

what vector potential Ak that it would generate might be. The mean energy density of the ray 

bundle that is generated in the volume V is Nk h k / V. On the other hand, the mean electromagnetic 

field density of the ray with frequency  is equal to: 

 

( )2 21

8
+E H  = 21

8
E  = ( )

2

2

1

4 c
A  = 

2 2
2

2 2

1 4

4 c c

 


A = 

2
2

2c


A . 
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Upon setting both densities equal to each other, it will follow that 
2

kA  = 
2

kNc h

V
 , and when we 

make Ak periodic with the phase factor cos (2 k / h), we will finally have: 

 

| Ak | = 
22

cos 2
2

k
k

k

h c
N

h V



 

  
 

 
.    (26) 

 

Ak itself points in the direction of the electric vector Ek = − /k cA . The total vector potential A is 

the superposition of all contributions k. In that way, A is expressed in terms of the corpuscular data 

Nk and k . 

 Before substituting that in the Hamiltonian (24), we need to symmetrize: 

 

2
2 cos k

kN
h

  
  

 
 = 

2 / 2 /k ki h i h

k kN e e N
 −  

+  = k kb b+  [cf., (14)]. 

 

With the abbreviations: 

 

| v |  cos (Ak, v) = vk  and  cos (Ak, Al) = cos kl , 

 

the Hamiltonian (24) will then become: 

 
2 2 2

0 2
( ) ( ) ( )

2 2 2
k k k k k l l k k

k k kk k l

hc hc
H H b b b b b b N h

c V c

 


     

  = +   + +  +  + +  v ,   (27) 

 

when we add the unperturbed light energy. 

 With Dirac, one can understand that equation as follows: It is the Hamiltonian for a mechanical 

system with infinitely-many degrees of freedom, namely, the cavity V with its eigenfrequencies 

(ray bundles k = 1, 2, 3, …, ) in a “configuration” in which the eigenfrequency coordinates 

possess the values b1, b2, … and the canonically-conjugate impulses possess the values: 

 

1
2

h
b

i


, 2

2

h
b

i


, …, 

 

or also when one employs the transformation: 

 

bk = 
2 /ki h

kN e
− 

, kb
 = 

2 /ki h

ke N
 

,            (28) 
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for the values of the coordinates Nk and conjugate impulses k . In that way, one will arrive at the 

coordinates and impulses of the electron that are included in H0 and the factors vk . 

 

 

 48. Transition probabilities (1). – The transition from the point-mechanical Hamiltonian (27) 

to the wave-mechanical operator comes about by reinterpreting the impulses kb
 in terms of the 

operators  / bk [the impulses k in terms of 
2 k

h

i N




, resp.] and constructing the wave equation 

(16): 

− 
2

N

h

i
  = NM M

M

H ,     (28) 

 

in which  is a function of the continuous coordinates bk or Nk . When we observe the conversion 

(6): 
2 /

1( , , , )ki h

ke f N N
 

 = f (N1 , …, Nk  1, …) 

 

and write simply , instead of  (N1 , N2 , …) and  (Nk + 1), instead of  (N1 , N2 , …, Nk + 1, 

…), for brevity, then the equation above can be written out in detail as: 

 

0

2

2

( 1) 1 ( 1)
2

cos

2 2

( 1, 1) ( 1) ( 1, 1)

( 1) ( 1, 1) ( 1)( 1) ( 1, 1) .

k k

k

k k k k k

k k

kl

k l k l

k l k l k l k l

k l k l k l k l

h
H N h

i

h
N N N N

V

h

V

N N N N N N N N

N N N N N N N N





 



   


−  =  +  




 +    − + +  +  




+ 

  − − + +  − + 


+ +  + − + + +  + +  







v

   (29) 

 

We already see here that the numbers Nk always change by only  1, which corresponds with the 

considerations in no. 46, i.e., that only whole light quanta can ever be exchanged. From the result 

that was obtained, with Dirac, we will read off the probabilities of the various optical processes 

of emission, absorption, scattering, etc. However, in order to do that we must make an extension 

in scope. Namely, operators H0 and vk that act upon  in (29) include the coordinates q and 

impulses p of the electron, such that all functions  that occur will include the argument q, in 

addition to the Nk . In no. 45, it was shown that one could also introduce numbers 
1N , 

2N , … as 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), pp. 243.  



116 Optics, mechanics, and wave mechanics 

 

coordinates of the electron, instead of q, which refer to the distribution over the possible quantum 

states 1, 2, … for an entire ensemble of bound electrons of the same type. Correspondingly,  will 

be a continuous function of the arguments: 

 

1 2 1 2( , , , , , )N N N N       (30) 

 

for a family of electrons and light quanta. If we restrict ourselves to the case in which only one 

electron is present, and indeed in the initial state m and in the initial state n then the operator H 

on the right-hand side of (29), which depends upon q and p must be replaced with its matrix 

element Hnm (see pp. 92, footnote), so we must now write nm

kv  for vk and (H0)
nm = 0 for H0 . (28) 

will then assume the following form: 

 

− 
2

nh

Ni

 
  

 
 = nm

NM

M

m

M

 
 

 
H  ,          (31) 

 

in which the upper index n (m, resp.) shall refer to the electron state, while the lower one N (M, 

resp.) shall refer to the light coordinates. The values HNM are read off from (29), and nm

NMH  shall 

give their matrix elements relative to the eigenfunctions n (q) and m (q) of the electron whose 

eigenvalues are equal to En and Em . We then have taken an equation for the rapidly-varying 

quantities  that is analogous to equation (16). The Ansatz [cf., (17)]: 

 

n

N

 
  

 
 = 2 ( ) /N ni t E E h

n
e

N

 + 
  

 
 

 

then leads to the equation for the slowly-varying quantities  [cf., (18)]: 

 

− 
2

nh

Ni

 
 

 
 = 2 ( ) /N M n mi t E E E E hnm

NM

M

m
e

M

 − + − 
 

 
F  ,         (32) 

 

in which only the terms with N  M are of any interest to us since they are definitive of the light 

conversions. 

 The integration over time then leads to a series [cf., (19)]: 

 

0t t

n n

N N
=

   
 −    

   
 = 

0

( )nm

NM

M t

m
f t

M
=

 
 

 
 ,    (33) 

 

whose coefficients ( )nm

NMf t  mean the transition amplitudes from the light state M to N with a 

simultaneous jump of the electron from m to n. The magnitudes of their squares are the associated 

transition probabilities ( )nm

NMw t . In detail, upon considering the various sums of terms in (29) in 
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the first approximation, one will get the emission, absorption, and scattering probabilities, and in 

the second approximation, one will get the dispersion phenomena, as will be shown in what follows 

in connection with Dirac. 

 

 

 49. Emission, absorption, scattering (1). – The integration of (32) leads to the transition 

amplitudes [cf., (21)]: 

 

( )nm

NMf t  = ( )2 ( ) /
1 N n M mi E E E E t hnm

NM e
 + − −

 −F : (EN + En – EM – Em) 

 

in the first approximation and the transition probabilities: 

 

( )nm

NMw t  = 
2 2

| | 2 1 cos ( )nm

NM N n M m

t
F E E E E

h

 
 − + − − 

 
 : (EN + En – EM – Em)2 . (34) 

 

 The emission of a light quantum hk under an atomic jump m → n corresponds the radiation 

from the final state N = N1, N2, … to the initial state M = N1, …, Nk − 1, … The associated 

coefficient nm

NMF  = nm

NMH  is, as one can read off from (29): 

 

nm

NMH  = 
2

nm

k k

k

h
N

V


 
v   

( 1)M k k

N k k

E N h

E N h





= − 
 

= 
. 

 

With a different notation for the initial and final state, that is equivalent to: 

 

nm

NMH  = 1
2

nm

k k

k

h
N

V 
 +M  

( 1)

M k k

N k k

E N h

E N h





= 
 

= + 
   (34) 

 

when one introduces the electric moment M =  r,  M  =  v . If one further sets: 

 

Em – En = nm  h  
M N

m n

→ 
 

→ 
,  EM – EN = − h k , 

 

to abbreviate, then one will arrive at the emission probability: 

 

( )nm

NMw t  =  2 21
| | ( 1) 1 cos 2 ( ) : ( )nm

k k nm k nm k

k

N t
V h

    
 

+ − − −M .  (35) 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), pp. 243; moreover, see A. Landé, Zeit. Phys. 42 (1927), pp. 835; 

L. Landau, ibidem, 45, pp. 430; G. Wentzel, ibidem, 43 (1927), pp. 524; E. Fues, ibidem, 43 (1927), pp. 726; F. 

Bloch, Phys. Zeit. 29 (1928), pp. 58; J. C. Slater, Proc. Mat. Acad. Amer. 13 (1927), pp. 7. 



118 Optics, mechanics, and wave mechanics 

 

It is not proportional to the number Nk of light quanta in the initial state, but to Nk + 1. One calls 

the part that is proportional to Nk the induced emission of radiation, and the part that is proportional 

to 1, the spontaneous emission. The emitted light quantum k does not need to possess, say, the 

same frequency as the nm that belongs to the atomic jump, but generally the emission probability 

will become larger as the denominator 2( )nm k −  becomes smaller. The Bohr frequency condition 

is not sharply fulfilled then. (35) will then give the intensity distribution of the broad spectral line 

about the maximum k = mn that is emitted by the atomic jump m → n.  

 One will get the total spontaneous emission probability in the volume V in a solid angle d 

and with frequencies in the interval d from (35) when one replaces Nk + 1 with 1 and multiplies 

by the number k = 2 2/k k kc V d d    of the associated elementary ray bundles (25). V drops out 

of (35) with that: 

2

3 2

1 cos 2 ( )1
| |

( )

nm nm k
k k k k

nm k

t
d d

hc

  
  

  

− −
  

−
M  . 

 

If one would like to obtain the emission probability for all colors k by integrating over k from 0 

to  then that will show that the integral does not converge, because the contribution of the higher 

frequencies will decrease too slowly (like dk /k). That will happen because for very high 

frequencies, i.e., small wavelengths, it is not permissible to replace the field that acts on the 

electron in its instantaneous position with the field that acts on it in its rest position in the point-

mechanical Ansatz. If one imagines getting around the difficulty regard convergence by a suitable 

modification for large k then only the k in the neighborhood of mn would contribute essentially 

to the integral, such that one can replace the factor k with mn in the integration. One will then 

find the emission probability for arbitrary colors in the dk-cone: 

 

2 2

3

1
| | 2nm

k k nmd t
h c

  


M  = 

2

3

2 nmnm
k k

t d
d

hc dt


 M  = 

3 3
2

3

8 nmnm
k k

t
d

hc

 
  M ,  (36) 

 

in which one identifies nm

kM  with: 

nm

k

d

dt
M  = 

2 nm

nm k

i

h


 M . 

 

One will obtain the total spontaneous emission probability of the atom that jumps from the state m 

to n when one replaces dk with 4, adds a factor of 2 to account for the two directions of 

polarization, and replaces the mean value of the k-components with a factor of 1/3: 

 
2| |nm

kM  = 21
3

| |nmM . 

 

If one then multiplies that by hk then one will get the total energy per atom and per unit time that 

emanates from a large ensemble of atoms of the same type: 
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dE

dt
 = 

4 4
2

3

64
| |

3

nmnm

c

 
M          (36) 

 

under the transition m → n. That expression coincides with the one that was used in no. 43, eq. 

(41) for radiation and will then justify the Ansatz that was employed there for the “transition 

density” nm  as the source of classical radiation. 

 What is definitive of the absorption of a light quantum hk in the final state N = N1, N2, … 

under the radiation to the initial state N = N1, …, Nk + 1, … The associated coefficient nm

NMH  in 

(29) is: 

nm

NMH  = 1
2

nm

k k

k

h
N

V


 
+v  

( 1)M k k

N k k

E N h

E N h





= +  
 

=  
 . 

That is equivalent to: 

 

nm

NMH  = 
2

nm

k k

k

h
N

V 
M   

( 1)

M k k

N k k

E N h

E N h





= 
 

= − 
 .    (37) 

 

That differs from (34) by the factor kN , instead of 1kN + , so the ratio of the emission 

probability to the absorption probability is: 

 

emission probability

absorption probability
 = 

1k

k

N

N

+
.    (38) 

 

One can employ that relation as the basis for Einstein’s proof of the Planck radiation law. 

 The scattering of a light quantum does not encompass the Compton effect, since 
2 2/v c  was 

neglected above. We consider the transition to the final state N = N1, N2, … from the initial state 

M = N1, …, Nk + 1, …, Nl – 1, … In (29), that corresponds to: 

 

nm

NMH  = 
2 cos

2 1
2 2

kl
l k

k l

h
N N

V


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+


  

( 1) ( 1)M k k l l

N k k l l

E N h N h

E N h N h

 

 

= + + − 
 

= + 
. 

 

Such a term will, in fact, occur twice in the double sum. Instead of it, we shall use: 

 

nm

NMH  = 
2 cos

1
2

kl
l k

k l

h
N N

V

 

   
+  

( 1) ( 1)

M k k l l

N k k l l

E N h N h

E N h N h

 

 

= + 
 

= − + + 
 (39) 

 

for the transition from a light quantum hk to a light quantum hl . According to (34), that will lead 

to the transition probability: 
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nm

NMw  = 
4 2

2 2 2

cos 1 cos 2 ( )
( 1) 2

4 ( )

kl l k nm
l k

k l l k nm

t
N N

V V

     

      

− − −
+  

  − −
.  (39) 

 

Upon multiplying by k = 2 3/k k kc V d d    and l = 2 3/l l lc V d d    [see (25)], one will get the 

transition probability from the ray bundle dk dk to the bundle dl dl : 

 
4 2

2 2 6 2

cos 1 cos 2 ( )
( 1)

2 ( )

kl l k nm
l k k l k k l l

l k nm

t
N N d d d d

c

     
     
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− − −
+ 

− −
.  (39) 

 

The case of nm = 0 for the initial state Nl = 0 holds a special interest, i.e., scattering from an atom 

that remains unchanged into a bundle dl dl that is free of rays. If one integrates over dl, in 

addition, and gets around the difficulty pertaining to convergence as on pp. 114 then one will get: 

 
4

2 2

2 2 6
cos 2

2
kl k k k k k lN t d d d

c


      

 
     (40) 

 

for the probability of a scattering process from dk dk to dl to occur during the time t. The 

radiant energy that falls upon a unit area in unit time with a certain polarization is K (k) dk dk 

then, and the radiation density will then be  (k) = 2 38 /k k kN h c   [cf., (25)], so: 

 

K (k) = 
2

2

k kN h

c


 .     (40) 

 

If one then substitutes Nk = 2 3( ) /k kc h K  in (40) and multiplies by hk then one will get the 

scattered energy per electron per unit time from dk dk to dl : 

 

dE

dt
 = 

4
2

2 4
cos ( )kl k k k ld d d

c


    


K         (41) 

 

for an incident area density of radiation K (k) dk dk . The kl in that gives the angle between the 

electric vector of the incident and scattered rays. (41) duplicates a result that is known from the 

theory of classical oscillators. 
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 50. Dispersion. – In order to do justice to the dispersion phenomena, according to Dirac (1), it 

will be necessary to consider the integration of (32) in the second approximation. In place of (32), 

we shall write, more briefly (2): 

 

− ( )
2

m

h
a t

i
 = 

2 ( ) /
( ) m ni E E t h

mn n

n

F a t e
 −

  (Fmn = 0 for m  n). (42) 

 

We shall use the solution in the first-approximation [cf., (21)]: 

 

am (t) = am (0) + ( )2 ( ) /
(0) 1 : ( )m ni E E t h

mn n m n

n

F a e E E
 −

− −  

 

for the special case in which all systems are in the initial state k, ak (0) = 1, am (0) = 0 for m  k. 

 With the use of the abbreviation: 

nk = 
1 for

0

n k

n k

=



 

one will then have: 

am (t) = mk + ( )2 ( ) /
1 : ( )m ni E E t h

mn m n

n

F e E E
 −

− −  .   (42) 

 

If one substitutes that first approximation into the right-hand side of (42) then one will get: 
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 = 
2 ( ) / 2 ( ) /m k m ni E E t h i E E t hmn nk mn nk

mk

n nn k n k

F F F F
F e e

E E E E

 − − 
− + 

− − 
  . 

 

Integrating that equation for m  k will give: 

 

am (t) = 
2 ( ) / 2 ( ) /

1 1m n m ni E E t h i E E t h

mn nk mn nk
mk

n nn k m k n k m n

F F F Fe e
F

E E E E E E E E

 − −  − −
−  +  

− − − − 
  .  (43) 

 

In the second sum k , it cannot happen that a term will become infinite due to the vanishing of a 

denominator Er – Es , since the factor Frs is in the numerator, and it will vanish whenever r = s. By 

contrast, in the first term on the right-hand side of (43), the denominator Em – Ek cannot be rendered 

harmless by a simultaneous vanishing of the numerator Fmk . For Em that lie close to Ek, that first 

 
 (1) P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), pp. 710.  

 (2) From eq. (42) to (44), n must be switched with m (rem. by the editor).  
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term will far exceed the second n then. For those m for which Em lies close to Ek, the n can 

simply be dropped, and one will then get the sum: 

2| |m

m

a  = 

2

2

2
2 1 cos ( )

( )

m k

mn nk
mk

m n n k n k

E E t
F F h

F
E E E E

 
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 − 
− −

   

 

for those m. If Em is the small distance between the energy levels that are distributed in the 

neighborhood of Ek in the sum then one can replace the  with 
1

m

m

dE
E   and integrate from Em 

= 0 to , since only the energies Em  Ek contribute essentially to the integral. Under the assumption 

that Fmk and Fmn vary only slowly with m at each location, one will then get: 

 

2| |m

m
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2
24mn nk

mk

m n n k m

F F t
F

E E h E


− 

− 
  ,   (44) 

 

which is the total probability of occupying the state whose energy equals Em (is approximately 

equal to the energy Ek of the initial state, resp.) at time t. Contributing to that are, first of all, a 

direct transition (Fmk) and secondly, an indirect transition (Fmn  Fnk) by way of a detour through 

intermediate states. 

 We now imagine that calculation as being performed on equation (32) and get: 
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N

N

t  = 

2
24

q

nq qm
nm NM NM
NM q m n

Q Q M N

t
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
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

F F
F    (45) 

 

as the total probability of occupying states of the system of light + electron whose energies are 

equal to n

NE  = EN + En (almost equal to the energy m

ME  = EM + Em of the initial state, resp.) at time 

t. The values of nm

NMF  = nm

NMH  can now be once more be read off from (29). 

 We take the initial state to be M and the final state to be N in (39), but with Nl = 0 (scattering 

of k-light into the previously radiation-free state k) so: 

 

nm

NMF  = nm

NMH  = 
2 cos

2

kl
k

k l

h
N

V

 

   
  and n

NE  = h l .  (46) 

 

 As an intermediate state 
q

Q

 
 
 

, we shall employ a state of the atom q such that the transition 

q m

Q M

 
 
 

 is the absorption of a k and the transition 
n q

N Q

 
 
 

 is the emission of a l . According to 

(34) and (37), that will belong to: 
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, ,
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qm qm nq nq
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h h
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   


= = 


− = − − = + 

H M H M
  (46) 

 

in which q must be such that: 

 
n m

N ME E−  = h (mq + qn + l − k)  0 . 

 

We shall not consider further intermediate states. With (46), (46), (46), (45) will imply that: 

 

2| ( ) |
n

n

N

N

t  = 

2
2 2

2 2

4 1
cos

4

qm nq qm nq

l k k l
k kl

l l k mq l mq l

t h
N

h V

 


        

 
 − +    + − 


M M M M

 (47) 

 

is the total probability of occupying state whose energies n

NE  lie close to the initial energy m

ME  at 

time t, i.e., the total probability for the conversion of a light quantum k into l at the expense of 

an atomic jump. 

 One will come to dispersion in the process for which the vanishing and newly-created light 

quantum indeed possess different direction, but almost the same frequency (k = l). Due to the 

fact that n m

N ME E−  = 0, that will then imply that the atomic states n and m are identical ( nE  = ).mE  

In that way, when one writes k = l = n and multiplies by k l = 2 4 6( / ) l l k kV c          

[cf., (25)], (47) will imply that: 

 

 

2
2 2

2 5
cos

qm nq qm nq

l k k l
k l k k kl

nq nq

h
N t

h c

 
   

    

 
    − +  + − 


M M M M

  (48) 

 

is equal to the number of light quanta that leave the ray bundle  k and are scattered into the 

cone l during t. 

 One can formally reduce the creation of scattered light quanta to the emission of scattered light 

by a classical dipole of moment M with the component Ml in the direction of the electric vector. 

The energy that is emitted from the dipole into the cone of angles l during time t is now: 

 

  
3 4 2

3

8 l
l

t

c

 
 

M
  [cf., (36)], 

 

so the number of light quanta h that are emitted by it will be: 
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3 3 2

3

8 l
l

t

hc

 
 

M
. 

 

When that is set equal to (48), that will give the same effect as creating a classical dipole moment 

Ml =  rl : 

Ml = 

2

2

3 3
cos

8

qm nq qm nq

k k k l k k l
kl

nq nq

N h

h c

 
 

      

  
 − +  + − 


r r r r

.  (49) 

 

One can simplify that expression. First of all [cf., (40)], the field strength amplitude that belongs 

to the ray bundle Nk k k is: 

 

2

8
k

c


E  = K () k k = 

3

2

kN h

c


k k , 

so 

Ml = 
2

2 2

1

8

k

h



 


E
 . 

 

According to Dirac, the absolute value | … | can also be converted when one sets qnr  = 2 qn

qni r  

and relates cos kl to qn

kr , qn

lr , and qn and . Dirac ultimately obtained: 

 

Ml = 
2 qn nq qn nq

l k k lk

q nq nqh



   

 
 +  + − 


r r r rE
 , 

 

and when one replaces the vector component Ml with M and the component rl with the vector r: 

 

M = 
2 qn nqqn nq

kk k

q nq nqh



   

 
 +  + − 


r rE r r
        (50) 

 

will be the dipole moment that gave rise to the scattering that was described in (48) classically. 

Now, (50) coincides with a dispersion formula that was present by Kramers and Heisenberg (1), 

in conjunction with Ladenburg on the basis of conclusions that followed from the correspondence 

principle. The closer that  lies to one of the transition frequencies nq of the atom from its state n 

= m to an intermediate state q, the greater that M will be. Indeed, maxima of M will occur at 

 
 (1) H. A. Kramers, Nature 113 (1924), pp. 673. – Kramers and Heisenberg, Zeit. Phys. 31 (1925), pp. 681. 

Classically, rnq corresponds to the amplitude of the upper frequency (n – q) 0 of an (anharmonic) oscillator. 
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locations  = nq with positive nq , as well as locations  = − nq with negative nq , which 

correspond to transitions in atoms from the state n to lower and higher states, respectively. 

 

___________ 

 



 

CHAPTER VI 

 

RELATIVISTIC WAVE MECHANICS  

 

 

 51. Relativistic electron in a field (1). – The relativistic electron requires special treatment, 

since its kinetic energy is not, as was assumed up to now, a quadratic function of the coordinates. 

In order to next look for the Hamilton-Jacobi equation for the electron in a field, we shall use the 

coordinates: 

x1, x2, x3, x4 = x, y, z, i c t, 

 

as is customary in the theory of relativity, and introduce the mass  and the proper time increment 

d by: 

 = 0

21



−
,  d = 

21dt  − ,  = 
v

c
,  0 = rest mass.  (1) 

 

If differentiation with respect to t is suggested by a dot then one will have the identity: 

 

2 2 2 2 2

1 2 3 4 0

0

1 1
[( ) ( ) ( ) ( ) ]

2 2
x x x x c    


+ + + +   0 .   (1) 

 

In the absence of an external field, the quantities kx  will be impulse pk , and the latter equation 

will take the form: 

2 2 2 2 2 2

1 2 3 4 0p p p p c+ + + +  = 0  (p4 = − 
E

i c
, x4 = i c t).   (1) 

Its wave-mechanical conversion 
2

k

k

h
p

i x

 
= 

 
 will then be: 

 
22

2 2

02

2

k k

i
c

x h

 
 

  
+ 

  
  = 0 , 

2

2 2

0

2i
c

h


  

 
+  

 
 = 0 , 

 

and it possesses the particular solution (homogeneous plane wave): 

 

 (x1, x2, x3, x4) = 1 1 4 42 ( ) /i p x p x h
Ae

 + +
, 

 

 
 (1) E. Schrödinger, “Quantisierung als Eigenwertproblem, 4. Mitteilung,” Ann. Phys. (Leipzig) 81 (1926), pp. 

109. – O. Klein “Elektrodynamik und Wellenmechanik vom Standpunkt des Korrespondenzprinzips,” Zeit. Phys. 41 

(1927), pp. 407. – W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie,” Zeit. Phys. 40 (1926), pp. 

177. – P. A. M. Dirac, Proc. Roy. Soc. 111 (1926), pp. 405. 
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in which the otherwise-arbitrary constants pk have to satisfy the condition (1). One gets the general 

solution  by summing over the various particular solutions that belong to the different systems 

of values for the constants (p1, p2, p3, p4), but in each case, the pk must satisfy the condition (1): 

 

 = 1 1 4 42 ( )/

1 2 3 4( , , , )
i p x p x h

A p p p p e
 + +

 . 

 

The coefficients A (p1, p2, p3, p4) are the probability amplitudes for the existence of an electron 

with the impulse values p1, p2, p3, p4 . 

 In the presence of a field, one once more first seeks the point-mechanical generalization of (1) 

and then reinterprets that wave-mechanically. The electromagnetic field is derived from a four-

vector  (potential) with the components: 

 

  1, 2, 3, 4 = Ax, Ay, Az, i  (vector and scalar potential). 

 

The six-vector F (viz., the field) is defined by: 

 

Fik = k i

i kx x

 
−

 
 = − Fki , or briefly Rot  = F .  (2) 

 

The customary notation for the field components is: 

 

F23, F31, F12, F41, F42, F43 = Hx, Hy, Hz, i Ex, i Ey, i Ez, 

 and (2) means that: 

H = rot A, E = − grad  − 
1

c
A . 

As an auxiliary condition for , one takes: 

 

1 4

1 4x x

 
+ +

 
 = 0 ,  or briefly Div  = 0 .  (2) 

 

The equations of motion of the electron: 

 

0
kdxd

d d


 

 
 
 

 = − Rotk
ik

i

dx

c d




 ,  or briefly 0

kdxd

d d


 

 
 
 

 = − , Rotkdx

c d





 
 

 
 

 

will take the canonical form: 

kdx

d
 = 

k

H

p




, kdp

d
 = − 

k

H

x




 

 

when one understands H (x, p) to mean the function: 
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H = 

2 2

2

1 1 4 4 0

0

1 1

2 2
p p c

c c

 




    
+  + + +  +    

     

,   (3) 

 

which emerges from the left-hand side of the identity (1) by the replacement: 

 

0
kdx

d



 = kx  = pk + k

c


 .     (4) 

 

The identity (1) then assume the form H (x, p) = 0. One then obtains the Hamilton-Jacobi 

equation from that by introducing an action function S (x1, …, x4) with pk = S / xk in the form: 

 

or more briefly 

2

2

1 0

0 1

2

2

0

0

1 1
, 0

2 2

1 1
grad 0.

2 2

S S
H x c

x x c

S c
c











     
= +  + + =   

       

 

+  + =  
  

        (4) 

 

 The de Broglie theory constructs the wave function  = 
2 /i S he 

 from a complete solution S of 

that equation. 

 The transition to Schrödinger’s wave mechanics will come about then one replaces pk, not 

with S / xk , but with the operator 
2 k

h

i x




, and constructs the equation: 

 

2

2

0

0

1 1
Grad , 0,

2 2 2

h
c

i c


 

 

   
+  + =  

   

   (5) 

 

in place of H (x, p). That equation for  (x1, x2, x3, x4), which several authors (1) posed 

simultaneously, can also be obtained, as Gordon showed (2), as the Euler equation (  = conjugate 

of , 
kx = 

kx




, 

kx = 
kx




): 

k
k k x

d L L

dx  

  
− 

   
 = 0 

for the Lagrangian function: 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 81 (1926), pp. 109. – V. Fock, Zeit. Phys. 39 (1926), pp. 226. – J. 

Kudar, Ann. Phys. (Leipzig) 81 (1926), pp. 632. 

 (2) W. Gordon, further see H. Bateman, Proc. Nat. Acad. Amer. 13 (1927), pp. 326; Phys. Rev. 30 (1927), pp. 

55. – E. Guth, Zeit. Phys. 41 (1927), pp. 235.   
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L = 

2

022 2
k kx k x k

k

ci i

h c h c h

    
     

   
+  −  +    

    
  . 

 

When one goes to the conjugates, x4 is always treated like a real quantity in so doing, so one does 

not, say, set 4x  = − x4 . 

 In detail, when one observes (2), (5) will read: 

 
2 2

2 2 2

0

2 2 2
2  Grad 

i i i
c

hc h c h

    
   

    
+  +  +    

     

 = 0 .        (6) 

 

If one introduces the special solution Ansatz  = 2 /i S he   then the defining equation for S will be 

true: 
2

2 2

0Grad 
2

h
S S c

i c






 
+ +  + 

 
 = 0 , 

 

which differs from the classical equation (4) by only the first term, which is proportional to h. 

 By contrast, in optics of the light quantum equation: 

 

2 2 2 2

1 2 3 4p p p p+ + +  = 0  
2 2 2

4 1 2 3,
i E i h h

p p p p
c c c

  
= = + + = 

 
 , 

 

when one replaces pk with 
2 k

h

i x




, the wave equation will become   = 0, which does not 

include h. 

 We shall consider some special cases. 

 

 a) In the absence of a force field ( = 0), one will get from (6): 

 
2

2 2

0

2i
c

h


  

 
+  

 
 = 0 .     (6) 

 

 b) In a static force field, one introduces the Ansatz  = 
2 ni t

n e
  in (6), in which n no longer 

depends upon t, and n means a constant. One will then obtain the equation for n : 

 
2 2

2 2 2 2

02 2

2 2 1
2  grad ( )n n n

i i
h c

hc h c c

   
      

  
 + + − − +    

   
A A  = 0 , (6) 

 

with the eigenvalues hn for the energy and the normalized eigen-solutions n . 
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 c) When the solution Ansatz  = 
2

02 /

1 2 3 4( , , , )
i c t h

x x x x e
  −   is introduced into (6), that will 

give the following equation for   : 

 
222

2 20
02 2 2 2

81 4 2
  grad + , ( )

i i

c t h h c c t h c

       
       


       

 − −  + − +  −   
    

A A  = 0 . 

 

If one neglects the terms that possess the factor 21/ c  or include the field potential quadratically 

then the will give the non-relativistic equation: 

 
2

0
02

8 4
  grad

i

h h c t

    
     


   

 −  + − 
 

A  = 0 ,   (6) 

 

which represents the generalization of the non-relativistic Schrödinger equation in the presence 

of a magnetic field. 

 

 

 52. Hydrodynamical interpretation and radiation. (1). – One can associate every eigen-

solution  of the wave equation (6) with a space-time flow field that is given by a current vector 

J with the components J1, …, J4 that fulfills the continuity equation Div J = 0. One multiplies (6) 

by   and the equation conjugate to (6) by  and subtracts them. Due to the fact that Div  = 0, 

the equation that arises: 

 

2
( ) 2 ( Grad + Grad )

i

hc

 
       − +   = 0 

can then be put into the form: 

 

Div J = 0  with  J = 
4

Grad + Grad 
2

h i

i hc

 
     



 
+  

 
 . (7) 

 

One gets the usual form div ( v) +  / t = 0 for the continuity equation from Div J = 0 from the 

relation: 

J1 =  vx , J2 =  vy , J3 =  vz , J4 =  i c  . 

 

 
 (1) W. Gordon, Zeit. Phys. 40 (1926), pp. 117.  
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Upon introducing the rest density 0 = 
2

2
1

v

c
  −  = | |

i

c
J  and the proper-time differential d = 

2

2
1

v
dt

c
 − , one will get the four-velocity B with the components Bk = dxk / d : 

 

B1 = 1dx

d
 = 

2

2
1

x

v

c
−

v
 = 1

0

J
, …, B4 = 

dt
i c

d
 = 

2

2
1

i c

v

c
−

 = 4

0

J
,  (8) 

 
2

k B  = − 2c ,  J2 = − 2 2

0c  .    (9) 

 

 In a static field, one composes the general solution of (6) from the eigen-solutions of (6): 

 

 (x1, …, x4) = 
2

1 2 3( , , ) ni t

n n

n

b x x x e
      (10) 

 

with arbitrary constant coefficients bn . The current vector J can then be written in the form: 

 

in which:  

( )

( ) 4
 Grad  Grad  ,

4

lm

l m

l m

lm

m l l m l m

b b

h i

i hc

 
     




= 






  = − +  
  

J J

J

      (11) 

 

corresponding to (7), which has the components: 

 

2 ( )( )

1

1 1

2 ( )( )

4

4
( ) ,

4

.
2

l m

l m

i tml lm l m
x m l l m

i tml lm l m
l m

h i
e

i x x hc

h h
i c e

i c c

  

  

   
    



  
  

−

−

  
= = − +    

   


 + 
= = +    

  

J v

J

  (12) 

 

Just as one did with the “transition density” 
( )lm  in no. 30, so can one introduce the “transition 

current” J(lm) here as the source of electromagnetic radiation (Gordon): When the electron jumps 

from the state l to the state m in the field , the current field J(lm) shall be regarded as the source 

of a secondary radiation field with the retarded potential *: 
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* = 
( )

/
1 2 3

[ ]1
lm

t r c dx dx dx
c r

−


J

,    (12) 

 

as in Maxwell’s theory. On the basis of that assumption, W. Gordon succeeded in calculating the 

frequency and intensity of the secondary light field * that is radiated during the transition of a 

free electron from the state of motion l to m in the field of a primary light source  (Compton 

scattering of light). Moreover, one sees from (12), (12) that under the transition lm, the secondary 

field * will possess the temporal period lm = l – m = (El − Em) / h, which corresponds to the 

combination principle and the Bohr frequency condition. 

 It is interesting to introduce the Ansatz that was used before (no. 37): 

 

 = 1 42 ( , , )/

1 4( , , )
i S x x h

x x e
  , so 2  =   , S = ln

4

h

i



 

 
 
 

  (13) 

 

into the wave equation (6) ( and S are real). Upon separating the real and imaginary parts, that 

will give two equations for  and S: 

 

2 2 2
2 2 2

02 2
(Grad ) 2 Grad 0,

4

2Grad Grad 2 Grad 0.

h
S S c

c c

S S
c

 
    




  

 
− −  −  + =  

 


 
+  + = 

  (13) 

 

Due to the fact that Div  = 0, the second one can also be written in the form: 

 

Div J = 0, with J = 
2 Grad S

c




 
+  

 
 ,   (14) 

while the first one can be written in the form: 

 
2 2

2

0 2

0 0

1 1
Grad 

2 2 8

h
S c

c

 


   

 
+  + − 

 
 = 0 .   (14) 

 

That should be compared to the classical equation (4). Due to (8), one has: 

 

2

0  = − 
2

2c

J
,      (14) 

 

and from (14), (14), the four-velocity B = J / 0 will then become: 
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B = 
2

0

Grad S
c

 



 
+  

 
 with 0 = 

2

2c
−
J

 = 
2

2

0 2 2 2

0

1
4

h

c


 

  
−  . (15) 

 

 We now seek the equations of motion of the current, by analogy with Madelung’s 

hydrodynamical equations of motion (no. 37) for non-relativistic undulatory mechanics. In order 

to do that, we start from the identity for an arbitrary four-vector: 

 

d

d

B
 = (B Grad) B  and  1

2
Grad B2 = (B Grad) B + [B, Rot B], 

 

in which d / d described the change in B when one advances along the flow. In particular, for B 

= B 0 , one will have: 

d

d
(0 B) = 0 (B Grad) B = − 0 [B, Rot B] , 

 

since 1
2

Grad B2 = 1
2

Grad 2( )c−  = 0 . One can then write the latter as: 

 

d

d
(0 B) = − 

0

, Rot


 
 
 

J
B  = − 0

2 2

0

,Rot ,Rot


  

   
− −   

    

JJ J
B B  , 

 

and finally, since 
2

Rot


 
 
 

J
 = Rot Grad S

c

 
+  

 
 = 

c


 Rot  , one will have: 

 

( )
d

d
B = 

2

0 0 0 0

,Rot ,Rot ,Rota i
c c

 

    

      
= −  − − = + = −      

      

J J
B B K K B  (16) 

 

for the force per unit mass. The potential that acts on the current is given by: 

 

 =  + 0

2

0

c c

   

 
− 

 
J  = 5

c

 
 +  

 

B
 , 

 

when one understands 5 to mean the scalar quantity: 

 

5 = 
2

0 0

2

0

1
c  

  

 
− 

 
 .        (16) 

 

 In the classical electrodynamics of charge fluid matter, and “external field” does not appear as 

the applied force per unit mass, but the force: 
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K = − 
0

,Rot
c





 
 

 
B  

 

per unit mass, in which the six-vector field Rot  = F is coupled with the current density by 

Maxwell’s equations with the current density J: 

 

iv F = J, iv F   = 0 , (
12F  = F24 , etc.), 

 

and the charge per unit mass is given by  / 0 . By contrast, in the context of the wave-mechanical 

current, nothing is said about that or any similar coupling of J and , but rather,  is the external 

field potential in that case, which is independent of the current, and it is extended to an applied 

potential  by an “internal stress potential” (B / c) 5 . 

 One will get a first approximation for the quantum-theoretic current for 2 2cv  (i.e., when 

one neglects relativistic effects) when one uses the approximation: 

 

0

2

0



 
 = 

2

2 2 2

0

1
8

h

c



  


−


, 

 

instead of (15), while neglecting 
2

1

c
  in comparison to  in  . In that approximation, one 

will get the equation of motion as: 

 

d

d
B  = − 

0

,Rot
c





 
 

 
B  + Ki with  Ki = 

2

2

0

 grad 
8

h 

  

 
 
 

 

 

for the three spatial components of Ki , while the fourth component of Ki will vanish completely in 

that approximation. The additional force Ki in that then depends upon only the density 
2  and its 

spatial differential quotients and is identical to Madelung’s non-relativistic additional force [(23), 

in no. 37] for the “internal” potential. Upon integrating the latter equation of motion over space, 

the integral of the additional force will vanish, precisely as it did in no. 38, and what will result is 

a center of mass theorem that the center of mass of the streaming fluid (“wave packet”) moves like 

a mechanical mass-point under the influence of only the external force that acts upon it. 

 By contrast, in a higher approximation, when one considers the relativistic terms, the internal 

force at each location will not only depend upon the density distribution of the current there, but 

also on its velocity distribution. As a result, the center of mass theorem will no longer be true, but 

rather, that additional force will also have an essential meaning for the motion of the wave packet 

as a whole. Therefore, whereas in the non-relativistic mechanics of the -current, a wave packet 

will behave like a mass-point that moves according to classical mechanics, that relationship 

between mass-points and wave-packets will disappear in relativistic quantum mechanics. 
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 53. Five-dimensional conception of wave mechanics (1). – One will get an especially 

symmetric form for wave mechanics of the electron by the process of O. Klein, V. Fock when one 

adds a fifth coordinate x5 to the coordinates x, y, z, i ct = x1, x2, x3, x4 in a purely-formal way such 

that the wave function  will depend upon that fifth coordinate periodically. Namely, if one 

defines: 

 (x1, x2, x3, x4, x5) =  (x1, x2, x3, x4)  0 52i c x
e

 
 

 

then one can also write 
5

n

nx




 instead of 02

n
i c

h

 


 
 

 
 and in place of (6), one can now pose the 

equation for  (x1, …, x5): 
2

2

2 2 2

0 5 0 5

2 (Grad ) 1
c x c x

  
 

 

     
 + + + 

    

 = 0 .  (17) 

 

In the absence of the field ( = 0), (17) reduces to the form: 

 

5 0, =  i.e., 
2 2 2 2 2

2 2 2 2 2 2

5

1

x y z x c t

         
+ + + − 

     
 = 0 (17) 

with the solution: 

 = 1 1 5 52 ( ) /i p x p x h
a e

 + +
  with  

5
2

1

0,k

k

p
=

=   (17) 

or when one introduces the abbreviations: 

 

p1 = px ,  p2 = py , p3 = pz , p4 = 
i E

c
 = 

i h

c


, p5 = 0 c , 

 

 = 1 1 0 52 ( ) /i h t p x c x h
a e

  − + + +
, 

 

 will now represent plane wave in x, y, z, x5-space whose phase propagates in time with a velocity 

v that is given by: 

 

2

1

v
 = 

22 2 2

0yx z
pp cp

h h h h



   

      
+ + +      

      
= 

2

1

c
, i.e. ,v c=   (18) 

 

i.e., with the universal velocity c, which is independent of  = E / h. The propagation in x, y, z, x5-

space is dispersionless. However, the trace of the plane-waves in x, y, z-space (x5 = const.) 

propagates with the velocity u, which is given by: 

 
 (1) O. Klein, Zeit. Phys. 37 (1926), pp. 895; V. Fock, Zeit. Phys. 39 (1926), pp. 226; P. Ehrenfest and G. 

Uhlenbeck, Zeit. Phys. 39 (1926), pp. 495.  
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h h h  

    
+ +    

    
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2 2

0

2 2 2

1 c

c h




− , 

so: 

u = 
2 2 2 4

0

c h

h c



 −
 = 

2 2

4 5

h

p p



− −
 = 

2 2 2

x y z

h

p p p



+ +
 .   (18) 

 

u depends upon  (de Broglie dispersion law), so the associated wavelength will be: 

 

 = 
u


 = 

2 2 2

x y z

h

p p p+ +
 = 

2 2 4

0

hc

E c−
, 

 

and it will always be real, since 2

0 c , as the rest energy, is always smaller than E. 

 If an electromagnetic field is present then we seek to solve the general equation (17) by the 

Ansatz: 

 = 2 /i S he   = 1 4 0 52 [ ( , , ) ]/

1 4( , , )
i S x x c x h

x x e
  +

 with 
5

S

x




 = c 0 .  (19) 

 

That will again lead to the two equations (13) for  and S [(14), (14), resp.]. In particular, (14) 

can then be written in the five-dimensional form: 

 

2

Grad 0,S
c

 
+  = 

 
  

2
5

1

k

k k

S

x=

 
+  

 
  = 0 ,   (19) 

 

when one, with F. London (1), defines the scalar quantity (16): 

 

5
c


  = c 0 − 0

2

c 


 = c 0 − 

2
2 2

0 24

h
c




 
−  . 

  

5 then plays the role of a fifth electromagnetic potential component, along with 1 to 4, but in 

such a way that the components 1 to 4 depend upon the relativistic reference system, while 5 

is a scalar (i.e., invariant). 5 is the relativistic counterpart to the Madelung potential of the 

internal forces of the -field acting upon itself (no. 37). If 1 to 4 = 0 then  = const.,   = 0, 

and 5 = 0.  

 One can eliminate the four components of the matter current J1, …, J4 in (14) with the quantity: 

 

 
 (1) F. London, Zeit. Phys. 42 (1927), pp. 375. 
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J5 = 2

5

5

S

x c




 
+  

 
 = 

2
2 2 2

0 24

h
c


 

 
−  = c 0 ,  (19) 

 

such that (14) can then be written in the form: 

 
5

2

1

k

k =

 J  = 0 ,  J = 
2 Grad S

c




 
+  

 
.   (20) 

 

The four-dimensional continuity equation also keeps the form Div J = 0 in five dimensions, since 

J5 = / x5 = 0, because a depends upon only x1, …, x4 . The flow velocity in the x5-direction that 

belongs to J5 will be described as an extension to the four components B1, …, B4 of (15) by: 

 

B5 = 5dx

d
 = 

2
2 2

5 0 2

5

:
4

S h
c c

x c




 

 
+  − 

 
 = c 

 

with the help of (19), and due to the fact that: 

 

B5 = c  and  
4

2

1

k

k =

 B  = − 2c , one will then have 
5

2

1

0.k

k=

= B  (21) 

 

 The material points of the continuum will be such that, along with their temporal motion in x1, 

x2, x3-space, they will also be assigned a certain advance in the x5-direction: 

 

dx5 = c  d  5
5

dx
c

d

 
= = 

 
B .    (21) 

 

In that way, the streamlines in the x1…x4-world will belong to certain streamlines in the x1…x5-

world. 

 A five-dimensional line-element d that is parallel to the current J will be “orthogonal to the 

current, because 
5

2

1

k

k =

 J  = 0 means that J is orthogonal to itself. One will then have: 

and therefore, from (20):  

( ) 0,

Grad 

d

S d d
c




 


=



 = − 


J

         (22) 

along a five-dimensional world-line element d. 
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 If one follows  = 2 /i S he   = ln 2 /i S he  +  along a streamline then one will have: 

 

d ln  = 
d


 = 

ln 2
Grad 

d i
S d

d h

 




 
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 
, 

and with the use of (22): 

d


 = 

5

ln 2
k k

k

i
dx

x h c

   
−  

 
  .    (23) 

 

Therefore,  will vary when one advances along the five-dimensional current according to the 

formula (1): 

 = 2 /i S he   = 
0

5

2 ln
exp

2
k k

k

i h
dx

h c i x

  




  
−  +  

  
  ,  (24) 

 

which is a result that be important in what follows. The formal advantage of the five-dimensional 

notation is expressed especially in the simplicity of the boxed formulas compared to the ones in 

the previous number. One should compare (17) with (6), (17) with (1), (18) with (18), (19) 

with (14), and (21) with (9). 

 

 

 54. Weyl’s theory of electromagnetism (2). – The relation concerning the change in the 

Schrödinger state function  along a streamline of the associated matter current that was just 

derived is significant in Weyl’s general-relativistic foundation of electromagnetism as a metric 

property of the space-time continuum (as an extension of Einstein’s explanation for gravitation). 

We might briefly summarize the foundations of Einstein’s and Weyl’s theories then. In the theory 

of general relativity, the space-time events are measured without referring to a special coordinate 

system in such a way that one associates neighboring events (two world-points with three spatial 

and one imaginary time coordinate) with the “world distance” ds according to a certain 

prescription: The measurement shall involve yardsticks and clocks that are appropriate to an 

inertial system (small free-falling boxes) and exist at the world-point in question. (ds)2 will then 

be defined by the measurement result: 

 
2 2

1 4dX dX+ +  = 
2 2 2 2 2dX dY dZ c dT+ + −  = 

2ds ,   (25) 

 

in which dX, …, dT mean the readings in the inertial system. The yardsticks and clocks shall be 

calibrated in such a way that any two world-points of a light ray will possess the world distance ds 

= 0, so any yardstick will be taken to represent a unit of length and any clock to be a unit of time 

(which is how the numerical value of the constant c is first determined). The theory of relativity 

then states that the result of a measurement of ds for any two world-points in question will always 

 
 (1) F. London, Zeit. Phys. 42 (1927), pp. 375.  

 (2) H. Weyl, Ber. Preuss. Akad. Wiss. (1918), pp. 465. Ann. Phys. (Leipzig) 59 (1919), pp. 101.  
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be the same, regardless of which of the many comoving inertial systems there are used to measure 

ds. 

 If the world-points are now described by coordinates x1, …, x4 (= i c t) in an arbitrary non-

inertial curvilinear coordinate system then the distance ds between two neighboring world-points 

that was measured above can also be expressed in terms of the associated coordinate differences 

in the form: 
2ds  = ik

i k

i k

g dx dx           (26) 

 

with metric coefficients ikg  that depend upon the position (x1, x2, x3, x4) and can be determined by 

inertial measurements of ds in various directions at each world-location. 

 If one bases the description of the world-point on a different arbitrary coordinate system 1x , 

…, 4x   then the metric coefficients 
ikg   in the measurement of ds: 

 

2ds  = 
ik

i k

i k

g dx dx    

 

in an inertial system and using the coordinate differences kdx  between any two world-points 

would turn out differently. 

 Einstein’s original theory initially assumed that the measurement was based, as it was in 

Riemannian geometry, in the fact that two distant line segments being measured could be 

compared with each other by transporting the unit yardsticks and unit clocks to distant world-

points and regarding them as unchanged. However, Weyl considered that invariance of the 

calibration units under transport (Riemannian “geometry at a distance”) to be a restrictive 

assumption that would be meaningful only if the forces (viz., electromagnetic fields) that prevail 

in the world-region where the measurements are being made are constant. By contrast, according 

to Weyl, one should generally expect a distortion of the yardsticks and clocks under transport due 

to the field in such a way that a new definition of the units of length and time would be required 

for any small world-region. If one would then wish to compare the segment ds with a distant 

segment ds  at all then one must first make some assumptions about the change in the yardsticks 

and clocks under transport in the field. Now, Weyl arrived at a consistent “local geometry” by the 

assumption that the evolution of a material process could be described world-lengths ds of different 

magnitudes according to the position at which it took place, and indeed ds would change under a 

displacement (“parallel to itself”) according to the linear formula: 

 
2( )ds  = 

2 k

k

k

ds K x   ,     (26) 

 

in which K means a constant, and the coefficients 
k  are certain functions of the world-

coordinates. One will then have: 
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2

2

( )ds

ds


 = 2ln ds  = k

kK x   , 

and when one integrates that: 

2ds  = 
2

0( )
k

kK dx

ds e
 ,     (27) 

 

one will have a formula for the change in 
2ds  under finite parallel displacement. However, one 

can establish the differing quantity dS: 

 

2dS  = 
21

ds


  with 2( )dS = 2 k

k

k

dS K x      (27) 

 

as the length of the line element for a different gauge, where  is an arbitrary coordinate function 

that characterizes the gauge, and the k are different functions accordingly. 

 On the contrary, the connection between the metric coefficients 
ikg  and ikG  for one and the 

same coordinate system, but different gauges, is implied by: 

 
2ds  = 

ik

i k

i k

g dx dx   and  2dS  = 
ik

i k

i k

G dx dx  

in the form: 

 ikG  = 
1 ikg


  ( = gauge function). 

 One will then get: 

2ds  = 
2

0

1 ln
( ) exp k

k

k

ds K dx
K x

  
  +  

  
    (29) 

 

as the formula for the length ds of the line element under transport in that new gauge. 

 Now, in general, the change in 2ds  will depend upon the path of displacement, since 2ds  is 

not integrable. It is only when the integrand in the exponent is a complete differential, namely, 

when the rotation components: 

ikF  = Rotik  = 
k i

i kx x

 
−

 
 = − kiF         (30) 

 

vanish, that the change in 2ds  will be independent of the path along which the line element is 

taken from the starting point to the endpoint. Namely, 
ln ln

i k k ix x x x

    
−

   
 (i.e., Rot Grad ln ) 

will vanish identically, so due to (28), one will always have: 

 

Rot  = Rot  , 
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independently of the arbitrary gauge function . However, if ikF  = 0, but k is not equal to zero, 

then one can always choose the gauge function  in such a way that 
k  = k +  ln  / xk will 

vanish. 

 However, the k generally do not need to be arranged such that ikF  = Rotik  vanishes. 

Nonetheless, one always has the identity: 

 

Rotikl F = 
ik kl li

l i k

F F F

x x x

  
+ +

  
 = 0 for ikF  = Rotik  .  (31) 

 

However, those equations will go to precisely the Maxwell equations rot E + 
1

c
H  = 0 , div H = 0 

of electrodynamics when one sets: 

 
41 42 43( , , )F F F  = i E ,  

23 31 12( , , )F F F  = H ,   (31) 

 

i.e., k is identified with the electromagnetic potentials Ax , Ay , Az , i  , whose Rotik  are known 

to determine the field strengths. The other pair of Maxwell equations rot H − 
1

c
E  = 

1
j

c
, div E = 

 can be written in the form: 

ik

k k

F

x




  = Ji .      (32) 

 

 In Weyl’s theory, the electromagnetic potentials are nothing but the metric coefficients k of 

the change in length of a line element under parallel displacement. Moreover, due to the fact that 

Rot (Grad ln )   0, the potential k will lead to the same field strengths as the potentials 
k  = 

1 lnk

kK x


 +


. Therefore, whereas the potentials are determined only up to the additive function 

Grad ln , the field strengths are independent of the special choice of gauge function . Just as in 

Einstein’s theory, the properties of gravitation (e.g., equality of inertial and gravitational mass) 

will become understandable when one attributes gravitation, not to forces in a Euclidian space, but 

to a deviation from the Euclidian metric, Weyl’s theory makes electromagnetic understandable 

when one attributes it, not to forces in a Riemannian space, but to a deviation from the 

Riemannian metric that comes from the variability of the magnitude of the units under transport 

(Weyl’s local geometry). 

 However, Weyl’s theory, in the general form above, next leads to a conflict with experiments 

(1). For example, let ds =  be the period of a clock that is at rest in an inertial system. In a constant 

pure electrostatic field (1 = 2 = 3 = 0, 4 = i  = const.),  will change according to (27): 

 

 
 (1) See, especially, A. Einstein, Ber. Preuss. Akad. Wiss. (1918), pp. 478.  
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0




 = 

/2K i icdt

e
  = 0( ) /2K c t t

e
− − . 

 

Now, if the clock is kept in the field only during the time t – t0 then its period will always be greater 

or lesser (according to the sign of the constant K, which is assumed to be real) then the period of 

the same clock when it is always found in a zero field. In particular, that must manifest itself in an 

ongoing perturbation of the spectral lines of an atom under a temporary cessation of the field. Now, 

such an effect, which would prevent the appearance of sharp spectral lines, contradicts all 

experiments. However, the next number will refute that objection. 

 

 

 55. Periodicity of Weyl’s mass along quantum paths. – F. London gave a way of getting 

around that contradiction in the form of a “remarkable property of quantum paths” (1) that 

Schrödinger found in the older Bohr theory: When the line integral extends over a spatially-

closed quantum path: 
4

1

k

k

k

dx
c



=

  = − n h ,              (33) 

 

it will give a whole-number multiple of Planck’s constant. With F. London, we can prove that 

equation, which Schrödinger showed in an example, relativistically as follows: According to (4), 

for the mechanical path of an electron , one will have: 

 

0
kdx

d



 = k

k

S

x c


+ 


 , 

and therefore, from (4): 

 

4

1

k k

k k

S
dx

x c



=

 
+  

 
  = −

2

0 c d   = −
2

2

0 2
1

v
c dt

c
 −  . 

 

If one integrates that over a spatially-closed periodic quantum path then, as a result of the quantum 

condition: 
3

1

k

k k

S
dx

x=




   = n h , 

one will get the relation: 

 

4

4

14

k

k

k

S
dx dx

x c



=


+ 


   = − n h − 

2
2

0 2
1

v
c dt

c
 − . 

 

 
 (1) E. Schrödinger, Zeit. Phys. 12 (1922), pp. 13.  
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Now, for a quantum path in a stationary electromagnetic field, the energy E of the electron is 

described by: 

S

t




 = − E ,  4

4

S
dx

x




= − E dt , 

so as a result: 

4

1

k

k

k

dx
c



=

  = − n h + 
2

2

0 2
1

v
c E dt

c


 
− − + 

 
 

 .   (33) 

 

Now, the integral on the right-hand side vanishes. [That is because: 

 

22
2 0

0 pot.2 2

2

1

1

cv
c E dt

c v

c




 
 
 − − + +
 

− 
 

  = 
2

0
pot.

2

2
1

v
E dt

v

c



 
 
 +
 

− 
 

  = 
3

pot

1

k
k

k

dx
v E dt

dt


=

 
+ 

 
 , 

 

and upon partial integration over the closed periodic path, that will be: 

 

= 
3

pot

1

k k

k

d
x v E dt

dt


=

 
− + 

 
  = 

3
pot

pot

1

k

k k

E
x E dt

x=

 
+ 

 
 , 

 

as a result of the equation of motion: 

k

d
v

dt
 = − pot

k

E
x




. 

 

If one now makes the assumption that Epot is a homogeneous function of degree – 1 in the xk 

(Coulomb potential) then the integrand will vanish as a result of Euler’s theorem on homogeneous 

functions.] All that remains of (33) is the theorem (33) that was to be proved. 

 However, with its help, it will follow from (29) that when one carries the Weyl length ds 

around a spatially-closed quantum path, it will return to its initial value ds0 when the still-

undetermined factor K in (29) is taken to be: 

 

K = − 
2i

h c

 
,      (34) 

 

and  is stationary, i.e., it depends upon position, but not time. That result will refute the objection 

to Weyl’s theory (no. 54, conclusion), in the event that one lets Weyl’s measure of length wander 

around only stationary Bohr quantum orbits, and the restriction of the allowed motion to such a 

situation is entirely natural within the context of Bohr’s theory. 
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 56. Quantum-mechanical reinterpretation of Weyl’s theory. – However, the Bohr orbits 

that are distinguished by quantum conditions are superseded by the -states of Schrödinger’s 

theory, and the previous result will once more be called into question. Nonetheless, according to 

F. London (1), Weyl’s theory can be extended in such a way that it is also appropriate to undulatory 

mechanics. Indeed, according to no. 52, the state  (x1, x2, x3, x4) corresponds to a current for which 

the coordinate increments x1, x2, x3, x4 will have a certain relationship to each other at every 

world-point. In no. 53, a fifth coordinate x5 with x5 = c t ( = proper time) was introduced such 

that  would change along a five-dimensional streamline according to formula (24): 

 

 = 
0

5

2 ln
exp

2

k

k

k

i h
dx

h c i x

  




  
−  +  

  
  .   (35) 

 

 Now, London also extended Weyl’s theory to five dimensions by associating the 

displacements x1 to x4 with a displacement x5 = c d and then replaced Weyl’s equation (26) 

with: 

2( )ds  = 
5

2

1

k

k

k

ds K dx
=

  , 

so corresponding to (29): 

2ds  = 2

0

5

1 ln
( ) exp k

k

k

ds K dx
K x

  
  +  

  
  ,   (36) 

 

in which 1 to 5 are functions of x1 to x4 . As in Weyl’s theory, one will then get Maxwell’s 

equations precisely when one identifies 1 to 4 with the electromagnetic potentials but identifies 

4 with the London potential (16). Namely, since the partial derivatives of 1 to 5 with respect 

to x5 vanish, the components Rotik5 in (31): 

 

Rotikl F = 0 (in which ikF  = Rotik )  (37) 

 

add nothing new to the Maxwell equations. If one now uses the special value for K in (34), namely, 

K = − 2i   / hc, then the exponential functions in (35) and (36) will coincide, and with London, 

one will get: 

0




 = 

2

2

0

ds

ds
, 

2ds


 = 0

2

0ds


.      (38) 

 

In the five-dimensional extension of Weyl’s theory, the magnitude of 
2ds  will then change under 

translation of the gauge along a five-dimensional streamline by the same ratio as the -function. 

The thing that behaves just like the Weyl measure will be the complex amplitude of the 

Schrödinger undulation as long as one lets the measure drift along the five-dimensional current. 

 
 (1) F. London, Zeit. Phys. 42 (1927), pp. 375; Naturwissensch. Bd. 15, Heft 8.  
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In particular, 2ds  will return to its initial value 2

0ds  when one traverses a period of  along the 

streamline. 

 

 

 57. Circular electron in the absence of a field. – The quantum mechanics of the relativistic 

electron that was developed up to now in this chapter started from the model of a charged mass-

point. However, in the language of model building, according to Uhlenbeck and Goudsmit, the 

electron possesses a mechanical angular impulse 
1

2 2

h


 that is coupled with a magnetic moment 

with the “anomalous” magnitude of: 

 

1 magneton = 
02 2

h

c



 
 ,     (39) 

 

in place of the “normally”-expected value of 1/2 magneton. Attempts to introduce that electron 

spin into wave mechanics go back to Pauli (1), Darwin (2), Jordan (3), Frenkel (4), Ivanenko and 

Landau (5), and Richter (6), among others, which arrived at the particular conclusion that the 

apparent electron spin was not an additional hypothesis that one was forced to add to the theory of 

the point electron after the fact, but was developed as a natural consequence of a simpler 

fundamental equation of wave mechanics. That requirement corresponded completely to the theory 

that Dirac (7) had presented by means of an alteration of the previous fundamental equation (5): 

 
2

2 2

0 ,k k

k

p c
c


 

   
+  +  

   
  = 0, where pk = 

2 k

h

i x




.   (40) 

 

According to Dirac, one must deal with four different wave functions 1, 2, 3, 4 that satisfy 

the coupled system of equations: 

 

0 ,k k

k

i p c   
 

+ 
 

  = 0 for  = 1, 2, 3, 4,   (41) 

 

which is linear in the pk, in the absence of a field. The coefficients k in that are therefore operators 

that do not include the p and q, so they will commute with them. However, if k is applied to  

then the result {k , } will be defined by the series: 

 
 (1) W. Pauli, Zeit. Phys. 43 (1927), pp. 601.  

 (2) C. G. Darwin, Proc. Roy. Soc. 116 (1927), pp. 227.  

 (3) P. Jordan, Zeit. Phys. 44 (1927), pp. 1.  

 (4) J. Frenkel, 47 (1928), pp. 786.  

 (5) D. Ivanenko and L. Landau, Zeit. Phys. 48 (1928), pp. 340. 

 (6) C. F. Richter, Proc. Nat. Acad. America 13 (1927), pp. 476.  

 (7) P. A. M. Dirac, Proc. Roy. Soc. 117 (1928), pp. 610.  
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{k , } = k






 


 ,          (42) 

 

which has constant coefficients 
k



 whose values will be given soon. Those coefficients shall be 

regarded as matrix components of the operator k , which corresponds to the equation that arises 

from (42) upon multiplying by    and integrating over space: 

 

k dv     = k dv

 


  


 



   = 
k



,    (43) 

 

in which the  are assumed to be mutually orthogonal and normalized to 1. 

 Since  includes the index  = 1, 2, 3, 4 here, the number of -solutions quadrupled in 

comparison to the family of solutions that was previously considered. However, that will be 

reduced to one-half that much (cf., infra). 

 Now, Dirac demanded that the operators k should have a form that in the absence of a field, 

the previous wave equation of the point electron in the absence of a field will emerge from the 

Ansatz (41): 

 2 2 2

0 ,kp c  +  = 0 .          (44) 

 

If one now applies the operation to (41) then one will get the equation: 

 

0 = 0 0 ,l l k k

l k

i p c i p c     
    

− +  +    
    

   

 = 2 2 2 2

0( ,k k k l l k k l

k k l

p p p c       


 
+ + + + 

 
  , 

 

and that will be the previous equation (44) when one demands of the operators  that: 

 
2

k  = 1,  k l + l k = 0  for k  l.  (45) 

 

That requirement will be fulfilled when k are defined by the following matrix components 
k



: 
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1 2

3 4

0 0 0 0 0 0 1

0 0 0 0 0 1 0
, ,

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0
, .

0 0 0 0 0 1 0

0 0 0 0 0 0 1

i

i

i

i

i

i

i

i

 

 

− −    
   

−    = =   


   


   −    


−    
       

= =   
−    

   − −    

   (46) 

 

In the absence of a field, Dirac’s Ansatz will then give nothing new about the theory of point 

electron (but it probably will in the presence of a field, cf., no. 58). The rules for  in (45) can also 

be summarized in the form: 

 

k l + l k = 2  kl (kl = 1 for k = l and = 0 for k  l).  (47) 

 

 We shall now show the invariance of the Dirac wave equation under Lorentz transformations 

of the coordinates. One will obtain the form four-vector p from the four linear equations (rotation 

in x1, x2, x3, x4-space): 

kp  = kl l

l

a p  (k, l = 1, 2, 3, 4)  (48) 

with the orthogonal numerical coefficients a : 

 

kl km

k

a a = lm , km lm

m

a a = kl .            (48) 

 

Introducing that into the wave equation (41) will then give: 

 

 0 ,n ni p c    +  = 0 ,     (49) 

in which: 

n   = nm m

m

a  ,     (49) 

 

i.e., 1 to 4 transform like a four-vector. From (49), one will have: 

 

k l l k      +  = ( )km ln m n n m

m n

a a    +  = 2 km lm

m

a a = 2 kl ,   (50) 

 

such that the k   in the new coordinate system obey the same relations (37) as the k did in the 

original coordinate system. 
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 Dirac further showed that the Lorentz transformation is, at the same time, a canonical 

transformation that is always allowed quantum-mechanically. 

 Instead of employing the  in (46), one can also take other    as a starting point for fixed 

coordinates, which arise from the ones above by an arbitrary orthogonal transformation (49). They 

do not need to be Minkowskian (1, 2, 3 real, 4 imaginary) to begin with. For example, instead of 

(46), one can start with the -matrices: 

 

1 2

3 4

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0
, ,

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 0
, ,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

i

i

i

i

 

 

− −    
   

−    = =   


   


   −    


−    
    −   

= =   
   
       

        (50) 

 

without changing any of the physical results. 

 In full generality, one can also employ: 

 

n   = −1 n  

 

as the starting matrices, instead of the n , where  is an arbitrary four-dimensional matrix, and 

−1 is its reciprocal: 

( ) jk

n   = 1( ) ( ) ( )js st tk

n

s t

−  . 

 

 

 58. Circular electron in a field. – The transition to arbitrary electromagnetic fields will be 

completed when one replaces the impulse components pk with pk + (e / c) k with the four-potential 

k . Dirac then obtained the fundamental linear equation of the electron: 

 

0 ,k k k

k

i p c
c




  

  
+  +  

  
  = 0    (51) 

 

as a generalization of (41). If one then multiplies that by the conjugate operator, so one defines: 

 

0 0 ,l l l k k k

l k

i p c i p c
c c



 
    

       
− +  + +  +       

       
   = 0 , 
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then upon multiplying things out, one will get: 

 
2

2 2 2

0 ,k k k k l k k l l

k k l

c p p p
c c c



  
    

      
+ +  + +  +      

      
   = 0 . (51) 

 

Since 2

k  = 1, the first two terms are identical to the previous wave equation (40) for the electron 

in the field. However, since k l = − l k for k  l, they must be combined with the term: 

 

1 2 1 1 2 2 2 2 1 1 ,p p p p
c c c c



   
  

       
+  +  − +  +  +       

       
 

 = 1 2 1 2 2 1 2 1 1 2( ) ,p p p p
c




  

 
 −  −  +  + 

 
 

 = 2 1
1 2

1 22

h

c i x x



  



  
 − + 

  
 = 12 1 2Rot

2

h

c i



  


  +  

 

With the help of the abbreviations: 

 

Rotkl  = Fkl = − Flk and  
2

k l

h

i
 


  = Gkl = − Glk ,   (52) 

 

one will ultimately obtain the total wave equation in the form: 

 
2

2 2 2

0

0 0

1 1
( , ),

2 2 2
k k k

k

c p
c c



 
  

 

   
+ +  +  

   
 F G = 0 ,   (53) 

 

with the scalar product (F, G), which consists of six terms. If one introduces the notations: 

 

23 31 12 14 24 34

23 31 12 14 24 34

, , , , , ,

, , , , ,

x y z x y z

x y z x y z

i i i

i i i

= = = = − = − = − 


= = = = + = + = + 

F H F H F H F E F E F E

G Q G Q G Q G P G P G P
  (54) 

 

then one will get the supplementary term in the form: 

 

0

( , )
2 c




F G  = 

0 0

( , ) ( , )
2 2c c

 

 
+H Q E P .    (54) 

 

One can then think of the wave equation as something that arises from a classical energy function 

with supplementary terms that suggest that the electron possesses a supplementary magnetic 
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energy of 
0

( , )
2 c




H Q  and a supplementary electric energy of 

0

( , )
2 c




E P  that originate in a 

proper magnetic moment of q = 
02 c




Q  and a proper electric moment of p = 

02 c




P , which is 

imaginary, as one sees from (56). Wave-mechanically, Q and P (G, resp.) are then the operators 

that were given in (54) and act on  in sense of the defining equation: 

 

{Gkl, } = kl









 G .          (55) 

 

In detail, when one employs (46) and (52), one can then derive: 

 

Qx = 

0 1 0 0

1 0 0 0

0 0 0 12

0 0 1 0

h



 
 
 
 
 
  

, Qy = 

0 0 0

0 0 0

0 0 02

0 0 0

i

ih

i

i



− 
 
 
 

− 
  

,     Qz = 

1 0 0 0

0 1 0 0

0 0 1 02

0 0 0 1

h



 
 

− 
 
 
 − 

,   (56) 

 

i Px = 

0 0 0 1

0 0 1 0

0 1 0 02

1 0 0 0

h



 
 
 
 
 
  

, i Py = 

0 0 0

0 0 0

0 0 02

0 0 0

i

ih

i

i



− 
 
 
 

− 
  

,  i Pz = 

0 0 1 0

0 0 0 1

1 0 0 02

0 1 0 0

h



 
 

− 
 
 
 − 

, (56) 

 

and one will have: 

2

xQ  = 2

yQ  = 2

zQ  = 

2

1 0 0 0

0 1 0 0

0 0 1 02

0 0 0 1

h



 
 
  
  

   
  

 = − 2

xP  = − 2

yP  = − 2

zP .   (57) 

 

 In order to derive the energy term for an electron in a central electric field, Dirac went over to 

polar coordinates by a canonical transformation and then found solutions that would coincide, in 

the first approximation, with the results that were also confirmed by experiment that Darwin (1) 

had achieved from the incomplete wave equation (40) by adding a suitable term that represented 

the electron spin. The great advance of the Dirac equation lies in the fact that it accounted for 

those phenomena in an uncontrived way and with no supplementary hypotheses. 

 
 (1) C. G. Darwin, Proc. Roy. Soc. 115 (1927), pp. 1.  
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 Sommerfeld’s relativistic fine structure of H-atom terms, which Goudsmit regarded as an 

effect of a top impulse, was derived by Gordon (1) on the basis of Dirac’s theory. The Zeeman 

effect and the line intensities were derived by Dirac himself (2). 

 The necessity of introducing an imaginary electric moment P, along with the real magnetic 

moment Q [ 2Q  is a positive operator, while P2 is a negative one, cf., (57)] in order to obtain a 

relativistically-invariant theory was first recognized and employed by Frenkel (3). 

 The necessity of completing the transition from point to top electrons is the reason for why we 

must forgo reporting upon the stimulating “Untersuchungen zum Problem der Quantenelektrik” 

by G. Mie (4). 

 

______________ 

 

 
 (1) W. Gordon, Zeit. Phys. 48 (1928), pp. 11.  

 (2) P. A. M. Dirac, Proc. Roy. Soc. 118 (1928), pp. 351.  

 (3) J. Frenkel, Zeit. Phys. 47 (1928), pp. 786.  

 (4) G. Mie, Ann. Phys. (Leipzig) 85 (1928), pp. 711.  



 

CHAPTER VII 

 

QUANTUM ALGEBRA AND TRANSFORMATIONS 
 

 

 59. Correspondence. – The coupling between the classical and undulatory mechanics for a 

system with the coordinates q1, …, qN and canonically-conjugate impulses p1, …, pN comes about 

by a reinterpretation of the impulse in terms of operators: 

 

pK = 
2 K

h

i q




, − E = 

2

h

i t




. 

 

In that way, the Hamilton equation: 

H (q, p) = E = 0 

 

will then become the Schrödinger partial differential equation: 

 

, , ( , )
2 2

h h
H q q t

i q i t


 

   
+  

   
 = 0   (q, t) . 

 

That reinterpretation might now be suggested by using boldface for the q and p = 
2

h

i q




and 

functions of them. The equation: 

H (q, p) – E = 0 

 

shall then mean precisely the same thing as the foregoing equation, namely, when the operator 

,
2 2

h h
H q

i q i t 

  
+ 

  
 is applied to a function  (q, t), that will be equal to the 0 operator applied 

to , i.e., 0  . One then has the commutation rules for the p and q : 

 

2 2
K K

K K

h h
q q

i q i q
 

 

 
−

 
 = 

2

h

i



, etc., 

i.e.: 

, 0 for  ,
2

0, 0.

K K K K K L L K

K L L K K L L K

h
L K

i


− = − =  


− = − = 

p q q p p q q p

p p p p p q q p

  (1) 

 



VII. – Quantum algebra and transformations. 153 

 

Moreover, the usual rules of calculation concerning association and distribution are still true, but 

commutation is allowed only for addition of p and q, but not multiplication (1). One can then 

calculate with the p and q just as one does with ordinary numbers, except that one must observe 

the commutation rules (1), which must also subsume the coordinate t and the conjugate impulse 

− E . In that way, one arrives at an algebra of the quantities q and p. It is the foundation for 

quantum mechanics, as it was already presented before Schrödinger’s theory by Heisenberg, 

Born, Jordan (2) and Dirac (3) as a method obtaining a numerical relationship between observable 

quantities that would reproduce classical mechanics only incompletely. In that way, the exhibiting 

of those commutation rules was the end result of a systematic comparison of the classical-

mechanical expectation that quantum-mechanical reality should be a quantitative sharpening of 

Bohr’s correspondence principle. We would like to pursue the correspondence between classical 

mechanics and the quantum mechanics that is built upon quantum algebra in more detail. 

 The correspondence is exhibited by the association: 

 

[x, y] = 
L L L L L

x y y x

p q p q

    
− 

    
   classically,  (A) 

 

[x, y] = (x y – y x)   quantum-theoretical,  (B) 

 

which assigns two meaning to the Poisson bracket [x (q, p), y (q, p)], namely, a classical one and 

a quantum-theoretical. In (A), x and y mean arbitrary functions of q and p. In (B), x and y mean 

the same functions of q and p, except that the sequence of the factors x and y in the product must 

be symmetrized, so in place of x = p q, one shall have, e.g., x = 1
2

(p q + q p), in order for the 

commutability to also be ensured by the quantum-algebraic function. 

 If one sets x (q, p) = pK , y (q, p) = qL , in particular, then one will get: 

 

  [pK, qL] = 1 for K = L, = 0 for K  L . 

 

The correspondence (A) → (B) will then lead to the demand that: 

 

[pK, qL] = 1 for K = L, = 0 for K  L .   (2) 

 

One will be correspondingly led to the demands that: 

 

[pK, pL] = 0 , [qK, qL] = 0 .     (2) 

 

 
 (1) Cf., no. 44. 

 (2) W. Heisenberg, Zeit. Phys. 33 (1925), pp. 33; M. Born and P. Jordan, ibidem, 34 (1925), pp. 858; ibid., 35 

(1926), pp. 557. 

 (3) P. A. M. Dirac, Proc. Roy. Soc. 109 (1925), pp. 642; ibid., 110 (1926), pp. 561; ibid., 111 (1926), pp. 281; 

ibid., 112 (1926), pp. 611.  
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However, (2) and (2) are identical to commutation rules (1) that were cited above, due to the 

meaning (B) of the Poisson bracket in quantum theory. That was the path along which the 

commutation rules were first found. 

 If one sets x and y on the right-hand side of (A) equal to x (p, q) and qK in one case and equal 

to pK and y (q, p) another time then one will get the following special equation from (A): 

 

( , )
[ , ],

( , )
[ , ].

K

K

K

K

x q p
x q

p

y q p
p y

p

 
=  


 =

 

         (3) 

 

The correspondence (A) → (B) then requires that the quantum-algebraic differential quotients 

must be defined as follows: 

2
[ , ] ( ) ,

2
[ , ] ( ).

K K K

K

K K K

K

i

h

i

h





 
= = −  


 = = −

 

x
x q x q q x

p

y
p y p y y p

q

        (4) 

 

 In order to learn about the quantum operation that corresponds to the classical differential 

quotient with respect to time t, we consider the canonical equations of motion in classical 

mechanics: 

Kq  = 
( , )

K

H q p

p




, Kp  = − 

( , )

K

H q p

q




 (K = 1, 2, …, N) , (5) 

 

take an arbitrary function z (q, p), and define: 

 

z  = L L

L L L

z z
q p

q p

  
+ 

  
  = 

L L L L L

z H z H

q p p q

    
− 

    
  = [H, z]  (5) 

 

as an expression that summarizes the canonical equations of motion and subsumes (5) as the 

special cases z = qK and z = pK . We now employ the correspondence of the Poisson brackets in 

order to quantum-theoretically define: 

 Let the dotted form z  of a q-function z (q, p) with respect to a certain Hamiltonian function 

H (q, p) be the function: 

z  = [H, z] = 
2i

h


(H z – z H) .    (6) 

 

z  corresponds to the time derivative z  of the classical theory, and for z = qK (z = pK, resp.), (6) 

will correspond to the classical canonical equations of motion: 
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Kq  = 
2i

h


(H qK – qK H) , Kp  = 

2i

h


(pK H – H pK) .   (6) 

 

For the special case z (q, p) = H (q, p), it will further follow from (6) that: 

 

H  = [H, H] = 0 .     (6) 

 

The dotted form of the Hamiltonian function vanishes. That is the quantum-mechanical 

counterpart to the law of conservation of energy H  = 0 in classical mechanics. 

 

 

 60. Canonical transformations. Angle variables (1). – In order to solve the quantum-

mechanical problem, it is usually necessary to go from the original variables qk, pk to the new 

variables Qk, Pk by a transformation: 

 

QK = QK (q1, …, qN, p1, …, pN) , PK = PK (q1, …, qN, p1, …, pN) . 

 

The demand that the new variables, like the old ones, are once more canonical, i.e., they must 

satisfy the commutation rules: 

[ , ] 1 for , for ,

[ , ] 0, [ , ] 0,

K L

K L K L

K L K L= =  


= = 

P Q

P P Q Q
   (7) 

 

will be fulfilled by any transformation of the form: 

 

QK = 
1( , )−

T q p   qK  T (q, p) , PK = 1−
T   pK  T ,        (8) 

 

in which T (q, p) is an arbitrary function of the q, p, and 1−
T  means its reciprocal, which is defined 

by 1−
T  T = T  1−

T  = 1. Upon applying it to the sums and products of the p and q, one will easily 

arrive at the more general formula: 

 

F (Q, P) = F ( 1−
T q T, 1−

T p T) = 1−
T F (q, p) T .   (8) 

 

 Let a mechanical system be classically characterized by a certain Hamiltonian function F (q, 

p) and quantum-mechanically by a symmetrized Hamiltonian function H (q, p). 

 One might now ask about the quantum-theoretical energy values (spectral terms), and later 

about the frequencies, intensities, and polarizations of the light that is emitted by the system. The 

solution will be achieved in the following way: One goes from the coordinates q and impulses p 

to the new coordinates w (viz., the angle variables) and impulses J (action variables) by a canonical 

transformation: 

 
 (1) M. Born, W. Heisenberg, and P. Jordan, Zeit. Phys. 35 (1926), pp. 667; P. Jordan, ibidem, 37 (1926), pp. 

383; G. Wentzel, ibidem, 37 (1926), pp. 80.  
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wK = 1( , )−
T q p   qK  T , JK =  1−

T   pK  T , so F (w, J) = 1−
T F (q, p) T 

  

in which the transforming function T (q, p) is chosen such that in addition to the canonical character 

of the w and J, which is ensured by (9) with no further conditions, namely: 

 

[ , ] 1 for , for ,

[ , ] 0, [ , ] 0,

K L

K L K L

K L K L= =  


= = 

J w

J J w w
   (10) 

 

the following conditions are also fulfilled: 

 

 a) If one replaces the q and p in the Hamiltonian function H (q, p) with the functions qK (w, 

J), pK (w, J) that follow by inversion of (9) then the function that thus arises H (q (w, J), p (w, J)) 

= ( , )
H w J  will include only the J, but not the w : 

 

H (q, p) = ( )
H J . 

 

 b) The functions qK (w, J), pK (w, J) shall have the following forms as a series: 

 

qK = ( )( ) i

K e 



 w
q J ,  pK = ( )( ) i

K e 



 w
p J .   (11) 

 

The ( w) in that describes an abbreviation for 1 w1 + … + N wN , and the associated coefficient  

( )K


q J  would be denoted more precisely by 1

1( , , )N

K N

 
q J J , and 



 is written as an 

abbreviation for 
1 N 

  , where each K is summed over all whole numbers from −  to + . 

The pK and qK are then periodic in the w with period 2. 

 If the condition b) is fulfilled then it will follow that any function x (p, q) that is composed 

from the p and q by any combination of addition and multiplication can be represented in the 

corresponding form of a series: 

 

x (p, q) = ( )( ) ie 



 w
x J .     (11) 

 

Due to (8) in no. 44, that is identical to: 

 

x (p, q) = 
( )

2

i h
e  







 
+ 

 
 w

x J .    (11) 

 

x (p, q) will also be periodic of period 2 in the w then. 
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 Now let the transformation to angle and action variables w and J be effected by a suitably-

chosen transforming T, so the transformed Hamiltonian function is found to be ( )
H J . That will 

then give rise to the Schrödinger equation: 

 

, ( )
2

h
H w

i w




    
  

  
 = { ( )}E w  .    (12) 

 

If the ( )H J  in that is developed in the power series: 

 

( )H J  = 1 2

1 1 2( ) ( ) ( ) N

N NA J J J
 

 


      (12) 

 

then the oscillation equation 
2

K

K

h
J

i w

 
=  

 
: 

 
1 2

1 2

1 1 2
1

1 2

( , , )
2

N
N

N N
N

N

h
A w w

i w w w

    

   





+ + +

    
 

   
  =  

1( , , )NE w w    (13) 

 

will be solved by the Ansatz ( )w 
 = 

( )i n wB e , which is: 

 

1( , , )Nw w   = 1 1( )N Ni n w n w
C e

+ +
      (14) 

 

when written out in detail, and in which n1, …, nN are arbitrary numerical values. If one chooses 

the latter to be whole numbers then one will succeed in making ( )w 
 periodic in the w with 

period 2. When the Ansatz (14) is substituted in (13), that will give the eigenvalue that belongs 

to (14): 
1 2

1 2

1 1 2( ) ( ) ( )
2

N

N

N N

h
A n i n i n i

i

  

 

 
 

+ + +

 
   

 
 = E ,   (15) 

 

which one can denote more precisely by 
1 Nn nE . One can normalize the still-undetermined factor 

C of  such that one has: 
2 2

1

0 0

Ndw dw

 

     = 1 , 

i.e.: 

C = 
/2(2 ) N −

. 
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The eigenvalue problem will then be solved when one succeeds in turning the Hamiltonian 

function into a function 
1( , , )N


H J J  of the action variables alone by a canonical transformation 

(q, p) → (w, J). The eigenfunctions will then be the exponential functions (14) with whole-number 

n1, …, nN, and from (15), (12), the eigenvalue will possess the simple form: 

 

E = 1 2, , ,
2 2 2

Nn hn h n h
H

  

  
 
 

 .    (15) 

 

One can subsequently express that result without speaking of Schrödinger’s undulatory 

mechanics as a result of quantum algebra in the following way: 

 If one succeeds in going from the Hamiltonian function H (p, q) to angle and action variables 

w, J by a canonical transformation T such that H will go to a function 
1( , , )N


H J J  then one 

will get the quantum-theoretic energy values when one replaces the arguments J1, …, JN in the 

latter function with the quantities n1 h / 2, …, nN h / 2 with whole-number n1, …, nN . 

 

 

 61. Canonical transformations (continuation). – In classical mechanics, one will get a 

canonical transformation of the q, p into new variables Q, P that does not change the form of 

Hamilton’s equations of motion, when one poses the equations: 

 

qk = 
k

S

p




, Pk = 

k

S

Q




 [S (Q, p)] 

 

with the help of an arbitrary “action function,” solves them for Qk = Qk (q, p), Pk = Pk (q, p). 

 In quantum mechanics, as well: 

 

qk = 
k





S

p
, Pk = 

k





S

Q
 S (Q, p)   (16) 

 

represents a canonical transformation, i.e., one that preserves the commutation rules. Namely, as 

will be soon shown, (16) can be put into the form: 

 

Qk = 1

K

−
T q T ,  Pk = 1

K

−
T p T , [T (Q, p)],        (16) 

 

when T and S can be chosen in a certain corresponding way. According to Jordan (1), the 

connection between the function S and the function T that mediates the same transformation is as 

follows: 

 Let S (Q, q) be developed in the form: 

 

 
 (1) P. Jordan, Zeit. Phys. 38 (1926), pp. 513.  
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S (Q, q) = 
1

( ) ( )
m

s s

s=

 f Q g p      (17) 

 

as the sum of m products, the first factor of which is a function that depends upon only Q and the 

second of which depends upon only p. The factors do not commute with each other. With Pauli, 

one now defines the exponential function e x y
, in which the factors x and y are functions of 

quantum quantities that do not commute, by the series: 

 

e x y = 
0 !

r r

r r



=


x y

.          (18) 

 

Its generalization is the exponential function: 

 

1

exp
m

s s

s=

 
 
 
 x y  = 

1 1

1 2

1 1

1 0 0 1 2! ! !

m m

m

r rr r

m m

r r r mr r r

  

= = =


 

x x y y
,   (18) 

 

in which the x-factors shall precede the y-factors. It is only when the x commute with the y that 

one can also write: 

s se x y
 = 1 1 2 2 m me e e

x yx y x y
. 

 

Like Jordan, we would now like to show that the transformed T (q, p), which mediates the same 

transformation as S (Q, p), is given by the exponential function: 

 

T (q, p) = 
2

exp ( , )
i

h




 
 
 

S Q p ,    (19) 

 

in which ( , )S Q p  shall mean [cf., (17)]: 

 

( , )S Q p  = S (Q, p) − K K

K

 Q p = 
1

( ) ( )
m

s s K K

s K=

− f Q g p Q p .  (20) 

 

In order to prove the formula (19), one observes that it will follow from the general differential 

formulas (4): 

T qK – qK T = 
2 K

h

i





T

p
, pK T − T pK = 

2 K

h

i





T

q
 

that: 

PK = 1

K

−
T p T  = pK + 

1

2 K

h

i

− 



T
T

q
,  QK = 1

K

−
T q T  = qK − 

1

2 K

h

i

− 



T
T

p
. 

 



160 Optics, mechanics, and wave mechanics 

 

If one replaces the differential quotients of T in the right-hand sides of these with the functions 

that follow from (19) and observes that according to (8), one will have: 

 

1 ( )s

−
T f q T  = fs (Q) ,  

1 ( )s

K

− 



f q
T T

q
 = 

( )s

K





f Q

Q
, 

 

then one will, in fact, get the transformation formulas (16) precisely. 

 The special case of the point transformation is characterized by the generator: 

 

S (Q, p) − ( )K K

K

 v Q p ,     (21) 

so 

qK − 
K





S

p
= ( )Kv Q ,  PK = 

K





S

Q
 = 

( )K
K

K K







v Q
p

Q
. 

Here, one has: 

( , )S Q p  = [ ( ) ]K K K

K

−  v Q Q p , 

so: 

T (q, p) = 
2

exp ( , )
i

h




 
 
 

S q p  = 
2

exp [ ( ) ]K K K

K

i

h

 
−  

 
 v q q p  .  (21) 

 

The transformed T, which is mediated by the point transformation qK = ( )Kv Q , is then a more 

complicated transcendental function of the q and p. 

 

 

 62. Transformations in wave mechanics. – In wave mechanics, one deals with the solution 

of the differential equation: 

, , ( )
2

h
H q E q

i q




  
−  

  
 = 0 ,    (22) 

 

which can be made easier in some situations by the introduction of new coordinates. It is the point 

transformations q = q (Q) that first come under consideration, by which the fundamental equation 

will go to the form: 

( ), , ( ( ))
2

h dQ
H q Q E q Q

i dq q




  
−  

  
 = 0 . 

 

In its place, we would like to write more concisely: 

 

, , ( )
2

h
H Q E Q

i Q








  
−  

  
 = 0 ,    (23) 
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with the eigenfunctions: 

( )n Q   = n (q (Q)) , 

 

and the same eigenfunctions En as in the original equation (22). 

 General canonical transformations in wave mechanics were first treated by F. London (1) 

following the example of Jordan’s transformation in quantum mechanics. Starting from an 

arbitrary function T (q, p), one defines the operator ,
2

h
T q

i q

 
 

 
 and sets: 

 

QK = 1

KT q T− , 
2 K

h

i Q




 = 

1

2 K

h
T T

i q

− 


.   (24) 

 

In that way, an operator ,
2

h
F Q

i Q

  
 

 
 will go to the operator [cf., (8)]: 

 

,
2

h
F Q

i Q

  
 

 
 = 1 ,

2

h
T F q T

i q

−



 
 

 
 = ,

2

h
F q

i q

 
 

 
 .   (24) 

 

 The Schrödinger equation for the desired eigenfunctions ( )Q   and eigenvalues E  of the 

Hamiltonian operator then reads: 

, , ( )
2

h
H Q E Q

i Q




 



  
−  

  
 = 0 .    (25) 

 

We will now show that this possesses the same eigenvalues as the original equation (22) (which 

was just now shown for only point transformations). To that end, we use (24) to write: 

 

1 , , ( )
2

h
T H q T E q

i q




−



  
−  

  
 = 0 , 

 

instead of (22) and apply the operator T: 

 

, , ( )
2

h
H q T T E q

i q





  
−  

  
 = 0 . 

If we set: 

T   (q) = ( )q 
, i.e.,  (q) = 

1 ( )T q− 
,         (26) 

 

in that then we will get: 

 
 (1) F. London, Zeit. Phys. 40 (1926), pp. 193.  
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, , ( )
2

h
H q E q

i q








  
−  

  
 = 0 , 

 

and finally when one replaces the symbols q with Q : 

 

, , ( )
2

h
H Q E Q

i Q








  
−  

  
 = 0 .    (27) 

 

If one compares (27) with (25) then that will show the agreement between the eigenvalue E and 

E . The connection between the eigenfunctions that is mediated by the transforming T is given by 

(26): 

1

( ) , ( ) ,
2

( ) , ( )
2

n n

n n

h
Q T Q Q

i Q

h
q T q q

i q

 


 




− 

 
=  

 

 
=  

 

 where QK = 1

KT q T− , PK = 1

KT p T− .  (28) 

 

 The situation in which the domain of existence for the q does not need to coincide with that of 

the Q requires special consideration. Let q be, say, a length coordinates −   q  + , and let Q 

be an angle 0  Q  2. How that difficulty in this special case will resolve itself automatically 

will be shown in the example in no. 64. 

 When the transforming T includes the argument p in a fractional or negative power, the 

transformations will give rise to non-whole-number and negative “differentiations” 
2

n

n

h

i q




. We 

shall not go into their meaning, but only remark that the formula: 

 
n kx

n

d e

dx
= 

n kxk e  

 

that occurs in the transformation to angle variables should also be adapted to fractional and 

negative n. 

 (28) gives and answer to the following question: Suppose that we know the eigenfunction 

n(q), which we would like to refer to as the probability amplitude, that belongs to the energy 

value En , and that for the energy value En , the coordinates qK are found in certain locations qK. 

How large is the probability amplitude ( )n Q   that the functions QK (q, p) will have certain values 

QK ? The answer (28) assumes the one has found the transforming T that will mediate the canonical 

transformation Q P → q p. 

 We now consider the special case in which the coordinate Q1, which appears as an argument 

in the probability amplitude 
1 2( , , , )n NQ Q Q  , is equal to the Hamiltonian function Q1 = H (q, 
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p). One will then have Q1 = 1

1T q T−  = H (q, p), so q1 T = T H, and with the use of En n (q) = 

( )nH q , (28) will imply that: 

 

( )n nE q   = En T n (q) = T En n (q) = T H n (q) = q1 T n (Q) . 

 

The equation ( )n nE q   = En  T n = q1  T n , The probability amplitude ( )n q   will have a non-

vanishing value only for q1 = En , and ( )n Q   can have a non-vanishing functional value only for 

Q1 = En . In other words, ( )n Q   will have an infinitely-steep maximum there and vanish 

everywhere else. 

 The connection between the operator ,
2

h
T q

i q

 
 

 
 that mediates a canonical transformation: 

 

QK = 1

KT q T− , 
2 K

h

i Q




 = 

1

2 K

h
T T

i q

− 


   (29) 

 

and the operator that generates the same transformation with the equations of transformation: 

 

qK = 

,
2

K

h
S Q

i q

p



 
  

 


, 

,
2

K

h
S Q

i q

Q



 
  

 


 = 

2 K

h

i Q




   (30) 

 

is significant. If the connection between the functions T (q, p) and S (Q, p) were given according 

to Jordan then according to London, one would get the corresponding connection between the 

operators T and S from: 

 ,
2

h
T q

i q

 
 

 
 = 

2
exp ,

2

i h
S q

h i q






  
  

  
,    (31) 

in which: 

,
2

h
S Q

i q

 
 

 
 = 

1

( )
2

m

s s

s

h
f Q g

i q=

 
  

 
   and S 

 = S − 
2

K

K K

h
Q

i q





 , (32) 

 

as in (17), (20). In the special case of the point transformation qK = vK (Q), (21) will 

correspondingly become: 

,
2

h
T q

i q

 
 

 
 = exp [ ( ) ]K K

K K

v q q
q

 
−  

 
 . 

 

In this case, when one uses (26) and (18), one will have: 
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( )q   = T  (q) = exp [ ( ) ] ( )K K

K K

v q q q
q


 

−  
 

 . 

However, that is a Taylor series: 

 

( )q   =  (q1 + [v1 (q) – q1] , q2 + [v2 (q) – q2] , …) =  (v (q)) . 

 

If one now writes the symbol Q instead of q in the relation thus-found ( )q   =  (v (q)), so: 

 

( )n Q   = n (v (Q))    (point transformation),   (33) 

 

then one will have the result that for point transformations qK = vK (Q), the eigenfunction ( )n Q 

in the new variables will go to the eigenfunction  (q) in the old variables by the substitution qK = 

vK (Q) as a special case of the general connection (26): 

 

( )n Q   = , ( )
2

n

h
T Q Q

i Q




 
 

 
 (general canonical transformation). (34) 

 

 

 63. Angle variables in wave mechanics. – Let us now succeed in introducing new coordinates 

w such that the original Hamiltonian operator ,
2

h
H q

i q

 
 

 
 will become an operator 

2

h
H

i w

  
 

 
 that does not include w as an argument, but only  / w, and which can be developed 

in powers of  / w with coefficients that are independent of w, i.e., constants: 

 

( )
2

h
H w

i w




  
 

 
 = ( )

2

h
A w

i w

 

 





  
 

 
  = ( )E w 

 . 

 

(For the sake of simplicity, we shall now consider a system with only one degree of freedom.) That 

eigenvalue problem can then be solved immediately by the Ansatz ( )w 
 = 

wB e
, and has the 

eigenvalue: 

E () = 
2

h
A

i











 
 

 
  = 

2

h
H

i





  
 
 

 ,    (35) 

 

in which B is determined from the boundary conditions. In classical mechanics, the angle variables 

are the conjugate coordinates w and impulses J for which the Hamiltonian function will be a 

function of only the J, while the position coordinates are periodic in the w with a period of 2. In 

wave mechanics, corresponding angle variables are distinguished in such a way that the 
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Hamiltonian operator does not depend upon w, but only on  / w (to arbitrarily high order), while 

the eigenfunctions shall be periodic in w as functions of the position coordinates with period 2. 

Now, the latter demand fixes the boundary condition that was left open in (35) and ultimately 

gives: 

( )n w   = 
1

2

i nwe


, En = 
2

h n
H



  
 
 

        (n = 0, 1, 2, …)     (36) 

 

as the solution of the eigenvalue problem. In that way, the factor B = 1/ 2  is determined by the 

normalization: 
2

0

( ) ( )n nw w dw



    = 1 . 

 

 Now, one often demands that in addition to ( )n w   = 
1

2

i nwe


, the eigenfunctions n (q) 

should belong to the same eigenvalue En when they are given in the original coordinates. 

According to London, that problem can be solved as follows: Let S (q, J) be the generator of the 

transformation: 

w = 

,
2

h
S q

i w

J



 
  

 


,  

2

h

i q




 =  

,
2

h
S q

i w

q



 
  

 


 

 

that mediates the transition from q to w, and let it be represented is the form of a series: 

 

,
2

h
S q

i w

 
 

 
 = 

1

( )
2

m

s s

s

h
f q g

i w=

 
  

 
 , S 

 = 
0

( )
2

m

s s

s

h
f q g

i w=

 
  

 
  , 

 

with f0 (q) = − q, 0
2

h
g

i w

 
 

 
 = 

2

h

i w




. If one knows the transforming ,

2

h
T w

i w


 
 

 
 that 

belongs to the same transformation then from (26) and (18), the desired representation will be 

given by: 

n (w) = ,
2

i n wh
T w e

i w


 
 

 
 = 

0

2
exp ( )

2

m
inw

s s

s

i h
f w g e

h i w



=

  
  

  
  

= 
1

0 0

0 0

0

2 2
( ) ( )

!m

r rm m
r r

inw

r r

i i
f w g w

h h
e

r

 

 

 

 





 
 

= =


= =

=

   
   

   
 

 


. 
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However, when the first operation 
2

r h
g

i w





 
 

 
 that results is applied to i n we , it will be identical 

to the multiplication by 
2

r i n wh
g n e




 
 

 
, and one will then get the total result: 

 

n (w) = ,
2

i n wn h
T w e




 
 

 
 = 

0

2
exp ( )

2

m
inw

s s

s

i nh
f w g e

h



=

  
   

  
   

 

= 
0

2
exp ( )

2

m
inw

s s

s

i nh
i n w f w g e

h



=

  
− +    

  
  = 

2
exp ,

2

i n h
S w

h





  
  
  

 , 

 

or finally when one formally replaces the symbol w with q : 

 

n (q) = 
2

exp ,
2

i nh
S q

h





  
  
  

 .    (37) 

 

Since the quantities q and n h commute in S (all of the differential operations have already been 

performed), an ordinary exponential function will be present in (37), such that one no longer needs 

to appeal to the series representation of S at all. That is why London’s (1) result (37) is more 

meaningful in the eigenvalue problems because it shows how to represent the eigenfunctions 

( )n q  of a quantum-mechanical system (here, it will initially have one degree of freedom) in 

terms of arbitrary coordinates q as images of the exponential (trigonometric, resp.) functions, 

which are the prototype for all oscillatory processes. 

 Moreover, London’s formula n = 
2 /i S he 

 represents the exact limit of an approximation 

procedure for solving the wave equation that was given before by Wentzel and Brillouin. Wentzel 

(2) employed the de Broglie Ansatz in order to solve the wave equation: 

 

 (q) = 
2i

y dq
he



, so y = 
2

h

i



 


,    (38) 

 

which will reduce the wave equation to a Riccati differential equation in y (q). Its solution can 

then be replaced with a series in increasing powers of h : 

 

y (q) = 
0

( )
2

s

s

s

h
y q

i



=

 
 

 
  , 

 

 
 (1) F. London, Zeit. Phys. 40 (1926), pp. 193.  

 (2) G. Wentzel, Zeit. Phys. 38 (1926), pp. 518. 
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whose zeroth approximation y0 (q) corresponds to classical mechanics y0 = p, 0y dq  = p dq , 

while the higher approximation terms give a successive approximation to quantum mechanics. If 

one then calculates y dq  around a closed path in a region where all n zeroes (i.e., nodes) of the 

eigenfunction n lie, so in which y = 
2

h

i



 


 possesses n poles with residue h, then that will the 

values of the integral as: 

  y dq  = n h     (n = whole number = number of nodes). 

 

According to Wentzel, one will then get the Sommerfeld-Wilson quantum condition p dq  = 

nh as the zeroth approximation to the fundamental equation of wave mechanics for the 

determination of the eigenvalues. Moreover, as Wentzel shows in several examples, the series 

development will truncate after a few terms in many cases, such that one will get a finite number 

of approximations to the rigorous solution of the eigenvalue problem. 

 Guided by the optical-mechanical analogy, Brillouin (1) considered y (q) to be a wave function 

of a generalized eikonal S by the Ansatz: 

 

y (q) = 2 ( ) /i S q he  ,     (39) 

 

and developed S (q) in powers of h. In that way, the classical action function appeared as a first 

term (the factor of 0h ). The connection between the eikonal and the action function that generates 

the the canonical transformation to angle variables was clarified in London’s examination [cf., 

(37). 

 

 

 64. Harmonic oscillator. – London’s (2) example of the harmonic oscillator will serve to 

illustrate the canonical transformations in wave mechanics. 

 The wave equation of the oscillator: 

 

−
2 2

2 21
22 2

( )
( )

8

h q
q q

q


 




+


 = E  (q) ,    (40) 

 

will be canonically transformed by means of the generator: 

 

1 ,
2

h
S q

i x

 
 

 
 = 

2 2
2

2 2
2

2 2 8

h h
i q q

i x x




 

  
+ − 

  
 

into a variable x: 

 

 
 (1) L. Brillouin, C. R. Acad. Sci. Paris 183 (July 1926), pp. 24.  

 (2) F. London, Zeit. Phys. 40 (1926), pp. 193.  
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( )
( )

2 4

h x h
x x

x

  


 




+


 = ( )E x  , 

 

and then transform that to the angle variable w by means of: 

 

  2 ,
2

h
S x

i w

 
 

 
 = − ln

2

h
x

w


 


   (point transformation) 

so one will have: 

( )
( )

2 4

h w h
x w

i w

  


 




+


 = ( )E w  . 

 

One easily verifies that ( )n w   = 
i n we [ ( )n x   = 

2

2
exp ,

2

i nh
S x

h





  
  
  

 = 
nx ], with the eigenvalues 

En = ( )1
2

2

h
n




+ , are single-valued solutions to the last two equations. It is the transition to the 

eigenfunctions n (q) that is of interest here. One finds from (31), (32) with the help of the 

generators S1 by the action of the operator: 

 

  ,
2

h
T x

i x

 
 

 
 = 

1

2
exp ,

2

i h
S x x

h i x x





   
−  

   
 

  = 
2

2

2

2
exp 2

2 4

h
x i x x

h x x x

 




   
− + + − 

   
 

  = 
2

2

2

2
exp exp ( 2 1) exp

2 4

h
x x i

h x x

 




     
−  −      

      
 

  

on ( )n x   = nx . One then gets n (x) step-wise: 

 

 n (x) = , ,
2

nh
T x x

i x

  
  

  
 

 

 = 
22

exp exp ( 2 1)
2

x x i
h x

 


   
−  −   

   
 

 

2 4/ 2
4 ( 1) 4 ( 1)( 2)( 3) 4

4 1! 2!

n n nn
h n n n n n n

x x x
h h h

  



− −      − − − −  
+ + +                      
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The operation exp ( 2 1)x i
x


 

− 
 

 that must now be performed is the substitution x → 2 :i x  

 

n (x) = 
2

/ 22

2exp
4

n
x

h
h

 



−  
 
 

 

2 4

2 ( 1) 2 ( 1)( 2)( 3) 2
2 2 2

1! 2!

n n n

n n n n n n n
i x x x

h h h

  
− −      − − − − 

 − + − +           
       

. 

 

In that way, one will have found a new system of orthogonal functions, even if they are not the 

ones that are known already as the Hermite polynomials: 

 

n (x) = 
22

2
2

const. exp
x

h
nH x

h

 
−  

    
 

 . 

 

 

 65. Matrix algebra. – If H (p, q) is a certain symmetrized Hamiltonian function, while En and 

n (q) are the eigenvalues and normalized eigenfunctions of the associated Schrödinger equation 

{H – E, } = 0, and if F (q, p) is an arbitrary function, moreover, the one understands the matrix 

components of the function F (q, p) relative to the Hamiltonian function H (q, p) to mean the 

quantities: 

Fmn = ( ) , ( )
2

m n

h
q F q q dv

i q
 



 
 

 
 .          (41) 

The schema: 

F = 

11 12 13

21 22 23

31 32 33

 
 
 
 
 
  

F F F

F F F

F F F
 

 

is the matrix F with the components Fmn . The definition (41) is identical to the following one: Let 

F (q, p) be the transformer from the q, p to other canonical variables Q, P, namely: 

 

QK = 1

K

−
F q F , PK = 1

K

−
F p F .            (42) 

 

H (q, p) will then transform into ( , )H Q P  with the same eigenvalues En as before, but the 

transformed eigenfunctions ( )Q 
. According to (28), the connection between the n (q) and the 

( )n Q   is then: 
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1 1( ) , ( ) , i.e., { , },
2

( ) , ( ) , i.e., { , }.
2

n n n n

n n n n

h
q F q q q F

i

h
Q F q q Q F

i

   


   


−  − 

 

 
= =  

  


  
= =  

  

        (43) 

 

If one now makes the development Ansatz: 

 

( )n q   = ( )mn m

m

q F  

 

then one will calculate the coefficients Fmn in the development to be: 

 

Fmn = ( ) ( )m nq q dv  

  = ( ) , ( )
2

m n

h
q F q q dv

i q
 



 
 

 
 , 

 

which are equal to the quantities that were defined in (41). That is, the matrix elements Fmn of an 

arbitrary function F (q, p) are the coefficients in the development of the series: 

 

( )n q   = ( )mn m

m

q F .        (44) 

 

We shall now derive the basic rules of calculation for the metric components (1). From the 

definition (41), one will the addition law for two different functions F (q, p) and G (q, p): 

 

(F  G)mn = Fmn  Gmn , and furthermore (F + G)mn = (G + F)mn . (45) 

 

In order to derive the law of multiplication, i.e., to express the components (FG)mn in terms of the 

components Fkl and Gkl , we use F, G, and FG as the transformer for the following transformation 

(42) to new variables and new eigenfunctions: 

 

 KQ  = 1

KF q F− , KP  = 1

KF p F− , with ( )n Q   , 

 KQ  = 1

KG q G− , KP  = 1

KG p G− , with ( )n Q   , 

 KQ  = 1( ) ( )KFG q FG− , 
KP  = 1( ) ( )KFG p FG− , with ( )n Q   . 

 

With the help of (43), (44), one will then have: 

 

 
 (1) In connection with this, cf., F. London, Zeit. Phys. 40 (1926), pp. 193.  
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  l   = {F, l} = ml m

m

 F , 

  l   = {G, l}  = l n l

l

 G , 

  n   = {F G, n} = ( )mn m

m

 FG . 

 

With the use of the first two of those three equations, we can convert the last of them into: 

 

( )mn m

m

 FG  = {F G, n} = { , }l n l

l

F  G  = { , }l n l

l

F  G  = l n ml m

l m

  G F  

 

which implies the multiplication rule: 

 

(F G)mn = ml l n

l

 F G .       (46) 

 

It has the form of the known rule by which the elements of the product determinant F  G can be 

composed from the elements of the determinants F and G. In that way, F  G is not always equal 

to G  F, but from (45) one does have F + G = G + F . It follows further from (46) that: 

 

(F G H)mn = ml l n kn

l k

F G H  , etc.      (46) 

 

 Now that the components of the matrices that result from arbitrary functions F (q, p) and G (q, 

p) by addition and multiplication have been expressed in terms of the components of F and G 

themselves, the question still remains of what the general non-vanishing values of the components 

of (FG − GF)mn would be. As a special case, we consider F = pK , G = qL , and with the use of 

(41), we will get: 

 

(pK qL – qL pK)mn = ( ) ( )
2 2

m L L n

K K

h h
q q q q dv

i q i q
 

 

  
−  

  
  = 0 for K  L, 

 

 = ( ) ( )
2

m n

h
q q dv

i
 


  = 

for
2

0 for

h
m n

i

m n



 
= 

 
  

 for K = L . 

 

If one understands ik to have the value 0 for i  k and the value 1 for i = k then the latter result can 

be written: 

  (pK qL – qL pK)mn = 0 for  K  L, 
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(pK qL – qL pK)mn = 
2

mn

h

i



. 

 

All of the rules of association, distribution, and commutation can be summarized as follows: 

 

( ) ( ) , ( ) ( ) ,

( ) ,

0 or 0 when 0,

( ) ( ) 0, but ( ) ( ) is ordinarily 0,

+ + = + +   =   


+ =  + 


= =  = 
+ − + =  −  



F G H F G H F G H F G H

F G H F G F H

F G F G

F G G F F G G F

  (47) 

and indeed, one will have, in particular: 

 

0, 0,

0 for , ,
2

K L L K K L L K

K L L K K K K K

h
K L

i

− = − = 



− =  − = 


1

p p p p q q q q

p q q p p q q p
  (48) 

 

in which 1 is understood to mean the matrix with the components mn (“identity matrix”). (47) are 

the usual laws of determinant algebra, and (48) gives the commutation rules for the special 

determinants pK and qK . (47), (48) are formally the same rules that were true in no. 44 for the 

operators F (q, p), …, and in particular for the qK and pK themselves. Operator calculations 

(calculating with “quantum quantities”) and matrix calculations (calculating with determinants) 

are formally identical when one observes the elementary commutation rules, although one must 

observe that the components of the matrices are always defined only with respect to a certain 

Hamiltonian H (p, q) [with respect to any two of its eigenfunctions m (q) and n (q), resp.]. 

 Since the Schrödinger equation says that H (q, p) n (q) = En n (q) , the matrix element of 

the Hamiltonian function will be: 

 

Hmn = 1,
2

m n

h
H q dv

i q
 



 
 

 
  = m n nE dv   = En  mn .  (49) 

 

Hmn is a a diagonal matrix, i.e., only the elements in the diagonal m = n can be non-zero. In general, 

due to (41), one will have: 

Fmn = 
nmF ,       (49) 

moreover. 

 We now ask how we might express the matrix components of the function ( , )x q p  in terms of 

those of x (q, p) itself. Now, in (5), we defined: 

 

( , )x q p  = 
2i

h


(H x – x H) , 
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so due to (46) and (49), we will then get: 

 

mnx  = 
2i

h


(H x – x H)mn = 

2
( )mk kn mk kn

k

i

h


− H x x H  

when we set:   

( )

( )

2
( ) 2 ,

.

mn

mm nn mn mn

mnmm nn m n

i
i

h

E E

h h







= − =  


− − = =



H H x x

H H
        (50) 

 

Division can be introduced when we define the matrix 1F −  by the equation: 

 
1F F −  = 1F F−  = 1,  i.e., 1

mk kn

k

−F F  = 1

mk kn

k

−F F  = mn .  (51) 

 

 One can regard  (q) as a vector field with infinitely-many “components” 1 (q), 1 (q), 

3 ( ) ,q  … along the “axes” 1, 2, 3, … The ( )n q   can then be regarded as the components of that 

vector field  (q) along new rotated axes 1*, 2*, 3*, …, because the “coordinate transformation: of 

the vector components: 

( )n q  = ( )mn m

m

q F  

 

will be mediated by a coefficient schema Fmn , which fulfills the orthogonality relations: 

 

lj lk

l

F F  = jk     ( = 1 for j = k, = 0 for j  k),   (51) 

 

which one proves by the following sequence of equations: 

 

jk = j k dv  

  = lj l ik i

l i

dv   F F  = lj ik li

l i

F F  = lj lk

l

F F . 

 

 

 66. Invariance of the matrix components. – It is essential for the possibility of physically 

interpreting the matrix components Gmn of a function G (q, p) relative to a certain Hamiltonian 

function H (p, q) that the values Gmn must not change when one goes from the q, p to the new 

canonical variables Q, P, and in that way go from H (q, p) to ( , )H Q P . F. London (1) proved that 

as follows: Define: 

 
 (1) F. London, Zeit. Phys. 40 (1926), pp. 193.  
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  Gmn = ( ) , ( )
2

m n

h
q G q q dq

i q
 



 
 

 
 , 

  
mn

G  = ( ) , ( )
2

m n

h
q G Q Q dQ

i Q
 



 



 
 

 
 , 

 

under which H (p, q) and n (q) will become ( , )H Q P  and ( )n Q  , resp., under the transformation 

(42), and G (q, p) = ( , )G Q P , so ( , )G q p  = 1( , )F G q p F − . Now, with the help of (43), (44), here 

we have: 

  
mn

G  = ( ) , ( )
2

m n

h
q G q q dq

i q
 



 



 
  

 
 , 

  = 1( ) ( )im i jn j

k j

q FGF q dq −   F F  

  = 1( )im ij jn

i j

− F FGF F  = 1

im ik kl lj jn

i j k l

−F F G F F , 

 

and finally, from (51), (51), one will have: 

 

mn

G  = mk kl ln

k l

  G  = Gmn , 

 

which proves the invariance, i.e., the matrix components of G (q, p) relative to the  (q) are equal 

to the matrix components of ( , )G Q P
 relative to ( )Q  . At the same time, the eigenvalues En are 

also equal to 
nE , as was shown before in no. 62. 

 

 

 67. Matrix mechanics. – The solution to the quantum-mechanical problem in operator 

calculus (no. 60) consists of finding a canonical transformation of the variables q, p to new 

variables w, J for a given function H (q, p) such that: 

 

 (a) The Hamiltonian function in the new variables depends upon only J. 

 

 (b) The variables q and p can be represented as series: 

 

qK = ( ) ( )( ) i

K e 



 w
q J ,  pK = ( ) ( )( ) i

K e 



 w
p J . 

 

The values En of the energy will then be equal to 
2

n h
H



  
 
 

. However, one will also arrive at the 

same energy values with the use of only the matrix components: For a given function H (q, p), 

when one uses the rule of calculation: 
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(x y)mn = mk kn

k

 x y ,          (52) 

one seeks a system of values: 

(pK)mn ,  (qK)mn 

that fulfills the canonical conditions: 

 

( ) 0 for ,

( ) ,
2

( ) 0, ( ) 0,

K L L K mn

K K K K mn mn

K L L K mn K L L K mn

K L

h

i




− = 



− = 

− = − = 

p q q p

p q q p

p p p p q q q q

   (53) 

which further: 

 

 (a) makes the Hamiltonian matrix a diagonal matrix: 

 

Hmn = 0    for m  n ,      (54) 

and 

 

 (b) satisfies the condition (49): 

 

qmn = nmq ,  pmn = nmp .     (55) 

 

 One will arrive at such a system of values when one initially starts from any system of 

quantities ( )K mn
q , ( )K mn

p  that at least satisfies the rules (52), (53), (55), and then goes to variables 

qK, pK that also satisfy the conditions (54) by a suitable canonical transformation: 

 

( )K mnq  = 1( )K mnT q T− ,  ( )K mnp  = 1( )K mnT p T− . 

 

 Moreover, according to equation (50), which can also write as a matrix relation: 

 

x  = 
2i

h


(H x – x H) ,      (56) 

and in particular, for x = qK or x = pK : 

 

Kq  = 
2i

h


(H qK – qK H) , or Kp  = 

2i

h


(H pK – pK H),  resp. (57) 

 

Those identities are the canonical equations of motion for matrix mechanics, just as (6) were the 

ones for operator mechanics. For x = H, one will get: 
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H  = 0 , i.e., ( )mnH = 0 .    (58) 

 

That is the law of conservation of energy in matrix mechanics. 

 The possibility that one can solve the quantum-mechanical problem of determining the energy 

eigenvalues Em for a given system H (q, p) with the use of only matrix components and the relations 

between them was regarded by Heisenberg, Born, and Jordan (1), who were the founders of 

matrix mechanics, as an epistemological advantage over Schrödinger’s theory, which addressed 

the determination of eigenfunctions m of partial differential equations. That is because the forms 

of the eigenfunctions depend upon the random choice of coordinate system q, p or Q, P or w, J, 

etc., so the eigenfunctions cannot be represented as physically-invariant quantities, as opposed to 

the invariant matrix components. 

 One interprets the components Hmm as energy values, while the components xmn are the 

amplitude functions x (q, p) as the amplitudes that are definitive of the radiation of frequency ( )mn  

= (Em – En) / h , 

 

 

 68. Generalized probability amplitudes. – In Schrödinger’s wave mechanics, the 

eigenfunction k (q) was interpreted as the probability amplitude, while | k (q) |2 dv was 

interpreted as the probability that the system occupied the coordinate interval dv for a given energy 

value Ek . Now, with Jordan (2), one can ask, more generally, what the probability amplitude 

( , )q   might be for the system to occupy the position q for given values K of any parameters 

that are introduced as functions K (q, p) . [Up to now, we have ordinarily taken 1 to be the energy 

function 1 (q, p) = − H (q, p).] Once more, let: 

 

q1, …, qN, p1, …, pN, or briefly  qK, pK 

 

be the coordinates and impulses (i.e., operators), which satisfy the canonical commutation rules: 

 

pK qK − qK pK = 
2

h

i
,  pK qL − qL pK =  0 for K  L .       (59) 

Furthermore, let: 

K = K (q, p) ,  K = K (q, p)    (60) 

 

be new transformed coordinates and canonically-conjugate impulses, and indeed let the kinematic 

connection between the p, q and the ,  be given by the transforming T (p, q) in the form: 

 

K = K (q, p) = 1

KT q T− , K = K (q, p) = 1

KT p T−  (,  → p, q). (61) 

 

 
 (1) W. Heisenberg, Zeit. Phys. 33 (1925), pp. 879; M. Born and P. Jordan, ibidem, 34 (1925), pp. 856; 

Heisenberg, Born, and Jordan, ibidem, 35 (1926), pp. 557. 

 (2) P. Jordan, “Über eine neue Begründung der Quantenmechanik,” Göttinger Nachr. (1926), pp. 161. 
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One now asks what a generalized probability amplitude  (q, ) might be that solves the following 

system of 2N differential equations: 

 

, , ( , ) 0,
2 2

, , ( , ) 0
2

K

K

K K

h h
q q

i q i

h
q q

i q

  
  

   


   
+ =  

   

  
− =  

  

 (K = 1, 2, …, N).     (62) 

 

As will be soon shown, those equations for  (q, ) first of all, include the Schrödinger equation 

as a special case, and secondly, the function  (q, ) possesses properties that characterize it as a 

probability amplitude and |  |2 dv as a probability that the qK will be found in the interval dv for a 

given value of . The fact that here the one function  (q, ) can be simultaneously subject to 2N 

differential equations is possible only because the K and K define a canonical system and emerge 

from the q, p by means of the one function T (q, p). 

 The equations do, in fact, first include the Schrödinger equation as a special case. Namely, if 

one takes the new coordinate 1 (p, q) to be minus the Hamiltonian function – H (p, q), and 

accordingly takes 1 = − E, 1 = + t, then the pair of equations for K = 1 will go to: 
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1 2 2
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   
− =   

    


   
− + =      

   (63) 

 

The latter is Schrödinger’s equation of oscillation, which is the analogue of the classical energy 

equation H (p, q) – E = 0. With the Ansatz  = 
2 /i S he −

, the former will go to an equation for S: 

 

1 2 2
1 2 2

( , , , , , )
, , ( , , , , , )
2

S q q Eh
t q q q E

i q E


 



   
+  

   
 = 0 ,  (64) 

 

which is an analogue of the classical equation t + S / E = 0 for the action function S. However, 

along with the pair of equations (63), N − 1 further pairs of equations will appear for K = 2, 3, …, 

N that are the classical counterparts to the Jacobi equations K − S / K = 0 [no. 12, (42)]. 

 In order to exhibit  (q, ) as secondly a type of probability amplitude, Jordan proved the 

following theorem: If  (q, ) is the solution to equations (62) that belongs to the transformation 

(61) ,  → p, q then  (Q, q) will further be the solution to the equations: 
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p Q q Q q
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
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
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   (65) 

 

that belongs to a transformation: 

 

qK = qK (Q¸P) = 1

KS Q S− , pK = pK (Q¸P) = 1

KS P S−  (p, q  → P, Q),  (66) 

 

and ultimately  (Q, ) is the solution to the equations: 
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   (67) 

 

that belongs to the direct transformation (,  → P, Q): 

 
1 1 1

1 1 1

( , ) ( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ( , )

K K K K K

K K K K K

q p S P S S Q S S Q P S A P Q

q p S P S S Q S S Q P S B P Q

   

   

− − −

− − −

= = = =


= = = = 
 (67) 

 

then, as can be proved immediately: 

 

dQ   (Q, ) = ( , ) ( , )dQ Q q q dq   .         (68) 

 

However, that is the law for combining the probability amplitude: 

 

 (Q, ) from  (Q, ) and  (Q, ) . 

 

Since it is the amplitudes, and not the probabilities themselves, that are being combined here 

according to the rule (68), Jordan saw in (68) an interference of probabilities. 

 In order to prove (68), one uses the operator ,
2

h
S Q

i Q

 
 

 
 in order to put (67) into the form 

1 1{ [ ] , }S S S S− −    = 0 , i.e., from (67), in the form: 
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  (68) 

 

If one now switches the symbol q with Q in (62) then a comparison with (68) will show that 

( , )S Q   =  (Q, ), so one will have: 

 (Q, ) = 1 , ( , )
2

h
S Q Q

i Q
 



−  
 

 
 ,       (69) 

 

and due to the generality of the parameter , that equation is somewhat more general than equation 

(28) of London’s transformation theory, which takes the energy parameter En to be a particular 

value for . One can now multiply (69) by an arbitrary function f () on the right and left and 

integrate over  : 

( , ) ( )d Q f    = 1 , ( , ) ( )
2

h
S Q d Q f

i Q
   


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 

 
 , 

 

such that it will ultimately result that: 
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S Q d Q f
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  



 
 

 
  = ( , ) ( )d Q f     .         (69) 

 

One now chooses S (Q, P) to be equal to 
1( , )T Q P−

, in particular, i.e., one transforms ,  → p, q 

and back again p, q → ,  . One will especially have: 

 

BK (P, Q) = T (Q, P) K (Q, P) T (Q, P) = QK , and likewise AK (Q, P) = PK , 

 

in place of (67) and with the use of (64), such that (67) will imply that (we write  instead of , 

in particular): 
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Q Q

 
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    (70) 

 

Due to the first of those equations,  (Q, ) will depend upon only the differences QK – K : 

 

 (Q, ) =  (Q1 – 1, …, QN – N) . 
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Due to the second one,  can be non-zero only when Q1 = 1, and at the same time Q2 = 2, etc. 

In that way,  can be normalized such that ( , )d Q    has the value 1. (Only the location 1 = 

Q1 , 2 = Q2 , … contributes to the integral.). If one now substitutes 1T −  for S in equation (69), and 

accordingly substitutes  for , then when one writes q instead of Q and appends an arbitrary 

function f, it will become: 

1 , ( )
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h
T q f q

i q

−  
 

 
 = ( , ) ( )d q f     ,   (71) 

 

which is a relation between the function T that transforms ,  to p, q and the probability amplitude 

 (q, ) that is associated with it by way of (62). The latter appears in (71) as a “generating 

function” of the operator 1 ,
2

h
T q

i q

−  
 

 
. Therefore, (71) is a consequence of (61), (62). When 

one appeals to an arbitrary function F, it will correspondingly follow from (65), (66). If one sets 

the arbitrary function here F (Q) =  (q, ) then one will get the following formula from (69): 

 

 (Q, ) = ( , ) ( , )dq Q q q     , 

which proves (68). 

 

 

 69. Angle variables. – The search for the solution  (q, ) of (62) will then be complete when 

one succeeds in going over to angle variables: One might find a transforming S (Q, P) such that 

(67) will assume the special form: 

 

AK (Q, P) = − QK , BK (Q, P) = PK .        (73) 

 

We then write QK = wK , PK = JK (angle variables). In that way, (67) will become: 
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    (73) 

 

Those equations will now be solved immediately by: 

 

 (w, ) = 
2

exp K K

N

i
w

h




 
 
 

  ,    (74) 

 

and from (69), one will get the solution to the original equations (62): 
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in which the symbol w can be replaced with q. If ,
2
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 can be represented as a series: 
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h
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then one will get the solution from (74) (cf., no. 63) in the explicit form: 

 

 (q, ) = 
2

( ) ( ) expm m K K
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i
u q v q
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 70. Sharpness in the observation of physical quantities. – The answer to a very general 

question is included in equations (62) for the probability amplitude  (q, ) : 
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    (76) 

 

The Schrödinger equation: 
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H q H q
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would be solved for the eigenvalues Hn of the parameter H by the eigenfunctions n (q) that belong 

to H (q, p), relative to which the matrix of H (p, q) will become a diagonal matrix (Hmn = 0 for m 

 n, Hnn = Hn). In an entirely corresponding way, one will have solved: 
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for the eigenvalues 1, 2, … by way of eigenfunctions 1 (q), 2 (q), …, relative to which the 

function  (q, p) will give a diagonal matrix: 
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Just as the eigenfunctions n (q) of (77) give the probability amplitudes for a coordinate value q 

to be occupied for a given H = Hn , so do the eigenfunctions n (q) of (78) give the probability 

amplitudes that a coordinate value q will be occupied for a given value of  (q, p) = n . 

 The probability amplitude ( )n Q  for the functions QK (q, p) to have the values QK for given 

n is then determined from the differential equation that belongs to the transforming function 

( , )Q P   =  (q, p): 
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 = 0 .    (80) 

 

 If one takes Q1 (q, p) to be the function  (q, p) itself, in particular, then as was shown in the 

corresponding case in the middle of no. 62, 2| ( ) |n Q  will have a non-vanishing value in the form 

of an infinitely-sharp maximum only for Q1 = n . By contrast, if all QK (q, p) are different from 

( , )q p  then 2| ( ) |n Q will possess maxima that are more or less sharp for certain values of the 

QK . Finally, if Q1 =  (q, p) and P1 =  (q, p), in particular, in which  means the canonical 

conjugate to , then it will follow from the transformation ( , )Q P   =  (q, p), i.e.,   (, Q2, …, 

, P2, …) = , that the operator  
 is equal to 

2

h
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


, such that from (80), one will have: 
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  
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That equation will be solved by the probability amplitude: 

 

2( , , )n Q   = 
2 /

2( , ) ni h

n Q e
    ,            (82) 

 

with the probability function: 
2| ( ) |n Q  = | n (Q2, …) |2,                 (83) 

 

which no longer includes the argument  at all, but is equally-large for all values of . We have 

then found that: 

 For a given value n of the function  (q, p), the probability that  (q, p) itself has a certain 

value  will be concentrated around the sharp value  = n . By contrast, the probability that the 

quantity  (q, p) that is conjugate to  will have a certain value  is distributed uniformly over the 

entire range of variability for  with no preference given to any special value of . On the other 

hand, any other function QK (q, p) will possess a probability function with maxima that are more 
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or less indistinct for any given value  (q, p) = n . Physically, that means that for a given  (q, p) 

= n , the determination of the quantity QK (q, p) will be possible with only greater or lesser 

uncertainty, which is characterized by the course of the function 2| ( ) |n Q . On the contrary, a 

determination of the quantity  (q, p) that is conjugate to  is not possible at all. 

 In that way, the question of finding the ultimate limits of the precision that are obtainable in 

the observation of any physical quantity QK (q, p) for a fixed value n of another physical quantity 

( , )q p  will become a quantum-theoretic problem. 

 

__________ 

 


