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FOLIATIONS, ENERGIES, and LIQUID CRYSTALS. 
 

Rémi LANGEVIN 
 

 
 Riemannian geometry is an important tool in the theory of foliations.  If we are given 
a foliation F of a manifold V then we may: 

 
 1)  Assume that the manifold V is endowed with a metric g and study the Riemannian 
properties of the leaves of the foliations.  This approach, which is borrowed from Plante, 
Hector, etc., gives results that are all the more interesting since they are independent of 
the metric, g, if the manifold is compact. 
 
 2)  Construct functions on a manifold V that is already given a metric g, which are 
defined with the aid of the Riemannian geometry of the leaves of F, or the field of planes 

that are orthogonal to F.  This method generally gives results only when V has constant 

curvature.  Reinhart and Wood have metrically interpreted the Godbillon-Vey invariant 
(cf. [Re-Wo]) in this way.  Rogers in 1912, and then Asimov, Brito, Langevin and 
Rosenberg, Langevin and Leavitt, have already abundantly exploited this approach. 
 
 3)  Look for foliations – if they exist – that minimize a curvature integral that is 
calculated with the aid of the geometry of the leaf within the homotopy class of that plane 
field or its conjugate. 
 
 4)  On the contrary, if we are given the manifold V and the foliation F then we can 

investigate whether there exists a metric on M that gives the leaves of F some particular 

metric properties.  Gluck, Rummler, Sullivan, Haefliger have given conditions for there 
to exist a metric on M that makes the leaves minimal.  Carriére and Ghys have classified 
the foliations of codimension one such that there exists a metric that makes the leaves 
totally geodesic. 
 
Here, I will be concerned with viewpoints 2) and 3).  It will be interesting to see whether 
viewpoints 3) and 4) are related. 
 
 

I – Symmetric functions of curvature. 
 
Let P be a field of oriented hyperplanes on a Riemannian manifold M, and let X be the 

privileged unitary orthogonal vector field that is defined by the orientation of P.  We 

remark that the integral curves of X define a foliation of dimension one on M. 
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R.P. Rogers [Ro] has studied the matrix of the map DX when M is Euclidian space 3
R .  

We write this matrix at the point, x∈ 3
R , by using an orthonormal frame that is adapted to 

the situation, i.e., one such that: 
 

e1 = X(x); (e2, e3) is an orthonormal basis for P(x). 

 
One then has: 

D(x) = 2 2

2 3

3 3

2 3

0 0 0

0

X X
k

x x

X X

x x

 
 
 
 ∂ ∂
 

∂ ∂ 
 ∂ ∂
  ∂ ∂ 

, 

 
in which k is the curvature of the integral curve of X that passes through x. 
 When the field P is integrable, the block: 

 

II x =

2 2

2 3

3 3

2 3

( )

X X

x x
x

X X

x x

∂ ∂ 
 ∂ ∂ 
 ∂ ∂
  ∂ ∂ 

, 

 
is nothing but the matrix at x of the second fundamental form of the leaf that passes 
through x of the foliation defined by P. 

 In this case, and only in this case, is the matrix IIx symmetric. 

 We remark that we may express k, trace IIx, and 32

3 2

XX

x x

∂∂
−

∂ ∂
, which measures the 

asymmetry of IIx, “the old way,” i.e., in terms of the number div(X), and the vector rot(X). 
 One has: 
 

Div(X) = 31 2

1 2 3

XX X

x x x

 ∂∂ ∂
+ + ∂ ∂ ∂ 

 

 = trace IIx 
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 rot(X) =

31

3 2

3 1

1 3

1 2

2 1

XX

x x

X X

x x

X X

x x

 ∂∂
− ∂ ∂ 

 ∂ ∂
− 

∂ ∂ 
 ∂ ∂

−  ∂ ∂ 

, 

 

from which |k| = |X ^ rot X| and 32

3 2

XX

x x

∂∂
−

∂ ∂
 = |X · rot X| (the non-integrability term); we 

shall encounter these three terms later on. 
 More generally, when P is a transversally oriented hyperplane field on the 

Riemannian manifold M, we define the second fundamental form of P with the aid of the 

unitary vector N that is normal to P. 

 
II x(X, Y) = <∇XN, Y>(x)  (X and Y are vectors of P). 

 
Remark 1:  Upon calculating the matrix of the map, W: X → ∇XN, in a “Frenet frame,” e1 

= N,  e2 =
|| ||

N

N

N

N

∇
∇

, e3 , …, en+1 ∈ P, one obtains, moreover, information about the orbits 

of the field N, because: 

W =

0 0 0 0

0

0
x

k

II

 
 
 
 
  
 

  where k = || ∇NN || 

 
(if ∇NN = 0 for some convenient frame e2 , …, en+1 of P). 

 
 Remark 2:  Like Rogers, B.L. Reinhart [Re] was interested in the symmetry of the 
form, IIx; of course, the symmetry of IIx at every point is equivalent to the integrability of 
the field P. 

 Remark 3:  [Re] The plane field P will be called totally geodesic if every geodesic 

that is tangent to a point x of P is an integral curve of P.  Reinhart proved that P is totally 

geodesic if and only if the symmetry of the second fundamental form of P is identically 

null. 
 Remark 4:  Upon following, step-by-step, the proof that was given by Do Carmo of 
the fact that a developable surface admits generatrices at its non-flat points, one may 
prove the following proposition: 
 



Foliations, Energies, and Liquid Crystals 4 

 Proposition (1):  Let P be a hyperplane field of 1n+
R whose Gaussian curvature K(x) = 

det IIx(x) is identically null.  Let x be a point such that trace IIx ≠ 0.  There exists a line Dx 

that passes through x such that the field P is constant along Dx in a neighborhood of x. 

 We define functions that are symmetric in the curvature( )i xσ +  of P by: 

 

Det(Id + tII x) =
0

( )
n

i
i

i

n
x t

i
σ +

=

 
 
 

∑ . 

 
 Theorem:  [BLR] When the manifold Mn is compact and has constant curvature C the 

integrals ( )
n iM

xσ +
∫  do not depend on the hyperplane field P; more precisely: 

 

/ 2 / 2

( ) / 2

0
n

i n

iM

n
C vol M if i is even

x i

if i is odd

σ +

  
  =   



∫ . 

 
(We remark that if n is even and Mn admits an oriented hyperplane field then one has 
X(Mn) = 0, and therefore C = 0.) 
 This result may be partially extended to singular foliations when the codimension of 
the singular set is sufficiently small (A singular foliation is a field P defined on (Mn – Σ), 

where Σ is a reasonable subset of Mn, for example, a stratified set whose strata of 
maximal dimension are of dimension at least (n – 2)). 
 
 Theorem:  Let P be a hyperplane field on a compact manifold of constant curvature, 

Mn.  If the codimension of the singular set is greater than or equal to i then one has: 
 

/ 2 / 2

( ) / 2

0
n

i n

iM

n
C vol M if i is even

x i

if i is odd

σ +

  
  =   



∫  

 
(C is the sectional curvature of M) such that the integral: 
 

| ( ) |
n iM

xσ +
∫ , 

is convergent. 
 Some complementary partial results that imply the singular set are given in [La1] and 
[LS]. 
 

                                                
1 This proposition was undoubtedly known to the ancients.  I would like to find a reference, preferably one 
dating back more than fifty years. 
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 These first results are somewhat deceiving since they do not depend on the geometry 
of the field P or its integrability. 

 Nevertheless, we retain the result that foliations of codimension one of manifolds of 
constant curvature verify a family of theorems that are analogous to the Gauss-Bonnet 
theorem that is verified by hypersurfaces of even dimension in Euclidian space.  
Similarly, since the integral: 

( )
V

K x dx∫ = const. K(V) 

 
of the Gaussian curvature of V does not depend on the embedding Vn ⊂ 1n+

R , but only on 
the topology of V, the associated curvature of the foliation F (F and M are oriented if the 

symmetric curvature function considered is σi) do not depend on F when the curvature of 

M is constant. 

 The integral | ( ) |
V

K x dx∫  of the modulus of the Gaussian curvature of a surface 

in 3
R contains considerable information about the geometry of the embedding V2 ⊂ 3

R ; in 
particular, the fact that this integral attains its minimum value: 
 

m(V) = min | ( ) |
V

K x∫   (V has a given topology). 

 
The same type of result is verified by foliations of surfaces. 
 
 Theorem: Let  be the homotopy class of a direction field on the torus T2 
= 2 / ⊕ℤ ℤR  (endowed with the flat metric derived from the Euclidian metric on 2

R ).  

The taut leaves, i.e., the ones that minimize the integral
2 1| ( ) |

T
x dxσ∫  in the homotopy 

class  are: 
 
1) the linear foliations; 
 
2) the ones that are obtained from a linear foliation whose leaves have rational slope by 

adding a finite number of Reeb components, in whose interior the sign of the 
geodesic curvature is constant: 
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 Remark:  All of the leaves of the foliation p−1(F) of the universal covering p: 2
R  → T2 

are convex (i.e., the boundary of a convex subset of2
R ). 

 
 Proof:  cf. [La1] or [La2]. 
 
 Theorem:  Let F be a foliation of a closed surface of constant curvature (−1) that has 

only isolated points for singularities.  Then: 
 

| ( ) |
S

k x∫  ≤ (6 log 2 – 3 log 3) | χ(S) |,  

 
in which k is the curvature of the leaves. 
 
 Remark:  The singularities of isolated type are: 
 

…

 

… 
 
Proof: cf. [La-Le]. 
 
 

II – Energies. 
 
 a)  Foliations of Surfaces.  Now let S be a closed surface of constant curvature C.  It 

is natural to study the integral 2 2
1 2( ( ) ( ))

S
k x k x dx+∫ , in which k1 and k2 are the geodesic 

curvatures of F and F⊥, which is more similar to an energy than the integral | ( ) |
S

k x∫ . 

 Being given a transversally orientable foliation F on the flat torus is equivalent to 

being given a function θ: T2 → S1.  The function θ(x) is the angle that the leaf that passes 
through x makes with the horizontal.  The norm2 2

1 2( ) ( )k x k x+  is the energy e(θ)(x), of the 

function θ that was defined by Eells and Samson [Ee-Sa].  This implies that the maps θ 
that minimize the integral: 

E(θ) =
2

2 2
1 2[ ( ) ( )]

T
k x k x dx+∫ , 

 
in their homotopy class are harmonic, i.e., linear, in the present case.  (This would make 
them the quotient of functions q: 2 →R R  of the form: 
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( , )x yθɶ = ax + by, a, b ∈ℤ ). 
 
We have proved the: 
 
 Proposition:  The foliations of the flat torus T2 = 2 2/ℤR  that minimize the integral 

E(F, F⊥) =
2

2 2
1 2T

k k+∫  in their homotopy class are described by an angle θ(x) = (angle F, 

horizontal) that is a linear function on T2. 
 E. Ghys has remarked that the same question may be posed in the interior of a 
conjugacy class of foliations.  He has also conjectured that there will be no representative 
that minimizes E(F, F⊥) for a foliation of T2 that is the suspension of a diffeomorphism of 
S1 that is different from the identity and has fixed points. 
 It will be interesting to define the energy of a foliation of a Riemannian manifold 
more generally. 
 
 Questions:  If F is transversally oriented and of codimension one, can one, with the 

aid of an atlas adapted to the foliation, define a notion of energy that coincides with the 
energy of the section of the (unitary?) tangent bundle to M that is defined by the vector 
normal to F? 

 The energy that was defined by Eells and Samson already answers the question if F is 

given by the fibers of a Riemannian submersion. 
 A first step towards generalizing this construction is something pointed out by 
Kamber and Tondeur [Ka-To]1: 
 
 Recall:  A (“bundle-like”) Riemannian foliation is a foliation of a Riemannian 
manifold M such that one may give any submanifold that is transverse to the foliation a 
Riemannian metric in such a way that: 

1) The holonomy diffeomorphisms are isometries. 
2) The submersions of the charts Ui → Ti are Riemannian submersions. 

 
(Ui is a distinguished open subset and Ti is transversal to Ui; it is given the invariant 
transverse metric.) 
 Just as one may define a harmonic Riemannian submersion, a Riemannian foliation 
will be called harmonic if all of the submersions of the charts Ui onto the transversals Ti, 
which are given a metric that satisfies 1) and 2), are harmonic maps. 
 Let Q be the normal bundle to the foliation.  The orthogonal projection TxM → Qx (Qx 
is the normal space at x to the leaf of F that passes through x), may be seen as a form on 

M with values in Q.  A scalar product may be defined on this space of forms.  Cf. [Ka-
To]1, [Ka-To]2. 
 One sets: 

E(F) = 1
2 ||π||2. 

 
Proposition:  [Ka-To]1, [Ka-To]2.  For a Riemannian foliation F of a compact manifold 

M the following three conditions are equivalent: 
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1) F is a critical point of E(F), 

2) F is harmonic, 

3) The leaves of F are minimal submanifolds of M. 

 
 b)  Curvature integrals and sections.  Define the intersection of a vector field 
on 3
R with an affine plane H to be the following field on H: 

 
X|H(x) = pHX(x), 

 
in which pH is the orthogonal projection onto H and x is a point of H. 
 Observation:  The trace of P = X⊥ on the plane H is a line field that is orthogonal to 

the intersection of X with H. 
 Proof:  It suffices to apply the theorem of three perpendiculars. 
 The trace of P on H is transversally oriented by the projection of the vector X.  We let 

kg notate the geodesic curvature of the leaves of the foliations that is defined by P. 

 
 Theorem:  [La]2: If W is an open subset of3R that is given a plane field P then one 

has: 

3,2
1gA H W W

k σ
∩

=∫ ∫ ∫ , 

 
in which A3,2 is the space of affine planes in3R . 
 

 Moreover, the integral 1W W
div Xσ =∫ ∫  depends only on the boundary conditions.  In 

particular, if P is periodic and W is a fundamental domain then one has1W
σ∫ = 0, since P 

is the lift of a plane field on the torus T3 in this case. 
 Physical observations of a liquid crystal that is described by the field X do not give us 

the sign of kg.  Although one may also ([La]1) interpret the integral, 
3,2

| |gA H W
k

∩∫ ∫ , we 

would rather try to interpret the integral: 
 

3,2

2
gA H W

k
∩∫ ∫ , 

 
which seems more like an energy integral. 
 Unfortunately, for a general plane field P there exists a subset of the affine plane H of 

non-zero measure such that the trace of P on H admits singularities.  This implies that the 

integral: 

I =
3,2

2
gA H W

k
∩∫ ∫ , 
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diverges, since the foliation traced by P admits a quadratic singularity for the 

integral, 2
gH W

k
∩∫ . 

 It will be interesting to find a relation between the integrals: 
 

IH = 2
1W

σ∫ , IP =
2| |

W
T rotT⋅∫ , 

 
and a convergent integral that is obtained by starting with I. 
 We may hope for such a relation to exist if the field P has null Gaussian curvature 

since the set of planes of P has measure zero in A3,2 in that case, which implies that 

almost any H intersects P in a foliation without singular points. 

 An example of such a field is the following one: 
 

X =

sin

cos

0

α
α

 
 
 
 
 

, 

for which: 

DX =

0 0 0

0 0

0 0 0

α
 
 
 
 
 

, 

 

in which | α | =
X

z

∂
∂

, with z being the rotational axis of the structure. 

 If Xα is such that α(z) = const. = α then the plane field P has a trace on H that consists 

of the foliation FP whose leaves are convex.  (This foliation is the lift of a taut foliation.  

Cf. [La]1). 
 The free energy of a cholesteric liquid crystal has the form: 
 

A| dim X |2 + B| X · rot X – α |2 + C| X1 · rot X |2. 
 
 
The field Xα that was constructed above corresponds to a configuration with zero free 
energy; it essentially represents the equilibrium state.  α is then the vertical period of the 
field Xα .  Cf., [C.P.K], [De Ge]. 
 The observations made by Cladis, Kleman, and Pieranski, [C-K-P], probably exhibit 
the intersection of the field X1, which, as we have remarked, is orthogonal to the trace of 
P, and is therefore the lift of a taut foliation of T2. 
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