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FOLIATIONS, ENERGIES, and LIQUID CRYSTALS.

Rémi LANGEVIN

Riemannian geometry is an important tool in the thedrfpliations. If we are given
a foliation§ of a manifoldVv then we may:

1) Assume that the manifoldis endowed with a metrig and study the Riemannian
properties of the leaves of the foliations. This appgnoavhich is borrowed from Plante,
Hector, etc., gives results that are all the morera@sting since they are independent of
the metricg, if the manifold is compact.

2) Construct functions on a manifoldthat is already given a metri; which are
defined with the aid of the Riemannian geometry of theele®fF, or the field of planes
that are orthogonal t§. This method generally gives results only whehas constant

curvature. Reinhart and Wood have metrically interprétedGodbillon-Vey invariant
(cf. [Re-W0]) in this way. Rogers in 1912, and then AsimBwito, Langevin and
Rosenberg, Langevin and Leavitt, have already abundantlyitexpthis approach.

3) Look for foliations — if they exist — that minimizecarvature integral that is
calculated with the aid of the geometry of the leahinithe homotopy class of that plane
field or its conjugate.

4) On the contrary, if we are given the manif¥lénd the foliatior§ then we can
investigate whether there exists a metridvbithat gives the leaves gfsome particular

metric properties. Gluck, Rummler, Sullivan, Haefligevéhgiven conditions for there
to exist a metric on M that makes the leaves mininGrriére and Ghys have classified
the foliations of codimension one such that theret&xdasmetric that makes the leaves
totally geodesic.

Here, | will be concerned with viewpoints 2) and 3)wilt be interesting to see whether
viewpoints 3) and 4) are related.

| — Symmetric functions of curvature.

Let P be a field of oriented hyperplanes on a Riemannian mdmpland letX be the

privileged unitary orthogonal vector field that is definedtbg orientation ofP. We
remark that the integral curvesXtefine a foliation of dimension one &h
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R.P. Rogers [Ro] has studied the matrix of the mXpwhenM is Euclidian spacR®.
We write this matrix at the pointJR®, by using an orthonormal frame that is adapted to

the situation, i.e., one such that:
er = X(X);

One then has:

0 O 0

D) =| k 0X, 0X,
0%, 0Xg

0X, 0X,

ox,  0X,

(&2, &) is an orthonormal basis f¢1(x).

in whichk is the curvature of the integral curveXothat passes through
When the fieldP is integrable, the block:

X, X,
0 0
= 2 9% (x),
0X, X,
0x, O0X,

is nothing but the matrix at of the second fundamental form of the leaf that passes

throughx of the foliation defined by.
In this case, and only in this case, is the matgigyinmetric.

We remark that we may exprelstrace I, an%%ﬁ X, , Which measures the
X X
asymmetry of |, “the old way,” i.e., in terms of the number dy( and the vector raX).

One has:

0X, , 9%,
oX,  0X,

Div(X) :{‘Zzl + j

= trace |}
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oX, 09X,
o, ox,

rot(X) = 0X, X, |
ox,  0X%,
X, 09X,
ox, 0%

from which k| = X~ rot X| and X, _0Xs
0 0X,

shall encounter these three terms later on.
More generally, whenP is a transversally oriented hyperplane field on the

= X - rotX| (the non-integrability term); we

Riemannian manifold1, we define the second fundamental fornfPokith the aid of the
unitary vectom that is normal t@.

(X, Y) = <OxN, Y>(X) (X andY are vectors oP).

Remark 1: Upon calculating the matrix of the map, X — OxN, in a “Frenet frame,&;
OGN

=N, & :||D N ”, &, ..., 641 P, one obtains, moreover, information about theterbi
N
of the fieldN, because:
0O 0 0 O
k
W= 0 I wherek = [|OnN ||
0

(if OxN = 0 for some convenient franeg, ..., €,+1 0f P).

Remark 2: Like Rogers, B.L. Reinhart [Re] was interestedha symmetry of the
form, lly; of course, the symmetry ofl&t every point is equivalent to the integrabibty

the fieldP.
Remark 3: [Re] The plane field® will be calledtotally geodesic if every geodesic
that is tangent to a poirtof P is an integral curve dP. Reinhart proved tha® is totally

geodesic if and only if the symmetry of the secanmtiamental form of is identically

null.

Remark 4. Upon following, step-by-step, the proof that vgwgen by Do Carmo of
the fact that a developable surface admits genmeatat its non-flat points, one may
prove the following proposition:
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n+1

Proposition (*): LetP be a hyperplane field & whose Gaussian curvatufgx) =
det Il(x) is identically null. Letx be a point such that trace#i 0. There exists a linBx
that passes throughsuch that the fiel@® is constant alon®y in a neighborhood of.

We define functions that are symmetric in the curvatjife) of P by:

Det(ld +tll,) :ima:(x)ti .

i=0

Theorem: [BLR] When the manifoldM" is compact and has constant curvatDiie
integraIsJ'Mnai*(x) do not depend on the hyperplane fietdmore precisely:

cir2 n/2
jMna:(x) = i/2
0 if i isodd

jvol M" ifiiseven

(We remark that if is even andM" admits an oriented hyperplane field then one has
X(M") = 0, and therefor€ = 0.)
This result may be partially extended to singdddiations when the codimension of

the singular set is sufficiently small (A singufaliation is a fieldP defined on 1" — %),

where ¥ is a reasonable subset ®I', for example, a stratified set whose strata of
maximal dimension are of dimension at least )).

Theorem: LetP be a hyperplane field on a compact manifold ofstamt curvature,
M". If the codimension of the singular set is gretitan or equal tothen one has:

i/2 n/2 n Lo
. C"| . _|volM" ifiiseven
anUi (X) = i/2
0 if i isodd
(Cis the sectional curvature bf) such that the integral:
[ lar el
is convergent.

Some complementary partial results that implydimgular set are given in [kaand
[LS].

! This proposition was undoubtedly known to the anciehtgould like to find a reference, preferably one
dating back more than fifty years.
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These first results are somewhat deceiving since theypiddepend on the geometry
of the fieldP or its integrability.

Nevertheless, we retain the result that foliatiohsodimension one of manifolds of
constant curvature verify a family of theorems tha analogous to the Gauss-Bonnet
theorem that is verified by hypersurfaces of even dimansn Euclidian space.
Similarly, since the integral:

J'V K (x)dx = constK(V)

of the Gaussian curvature \éfdoes not depend on the embeddifig] R™™, but only on
the topology otV, the associated curvature of the foliat®iF andM are oriented if the

symmetric curvature function consideredzsdo not depend of when the curvature of
M is constant.
The integraj'le(x)ldx of the modulus of the Gaussian curvature of aaserf

in R®contains considerable information about the geoyratthe embeddiny? O R?; in
particular, the fact that this integral attainsnitsimum value:

m(V) = minJ'V| K (x)| (V has a given topology).

The same type of result is verified by foliatiorisorfaces.

Theorem: Let ¥ be the homotopy class of a direction field on toeus T2
=R?*/Z 07 (endowed with the flat metric derived from the Hilian metric orR?).
The taut leaves, i.e., the ones that minimize the intepghbl (x) px in the homotopy

classlt are:
1) the linear foliations;
2) the ones that are obtained from a linear foliatidse leaves have rational slope by

adding a finite number of Reeb components, in whoserior the sign of the
geodesic curvature is constant:
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Remark: All of the leaves of the foliatiop *(F) of the universal covering R* - T?

are convex (i.e., the boundary of a convex subdRf pf
Proof: cf. [Lay] or [Lay].

Theorem: LetF be a foliation of a closed surface of constant curea¢-1) that has
only isolated points for singularities. Then:

J k()| < (6log 2-3log 3) (S |,

in whichk is the curvature of the leaves.

Remark: The singularities of isolated type are:

-

Proof: cf. [La-Le].

Il — Energies.

a) Foliations of Surfaces. Now letSbe a closed surface of constant curvattirelt
is natural to study the integlzél(lqz(x) +kZ(x))dx, in whichk; andk, are the geodesic

curvatures off andg", which is more similar to an energy than the irme@ k(x) |-

Being given a transversally orientable foliatignon the flat torus is equivalent to

being given a functio® T?> — S'. The functiondX) is the angle that the leaf that passes
throughx makes with the horizontal. The nokfi{x) + k3(x) is the energg(6)(x), of the

function @ that was defined by Eells and Samson [Ee-Sa]s ifhplies that the map8
that minimize the integral:

E(9 =] Ik +KZ(¥]dx,

in their homotopy class are harmonic, i.e., linéathe present case. (This would make
them the quotient of functiomg R* — R of the form:



Foliations, Energies, and Liquid Crystals 7

6(x,y)=ax+ by, abOZ).
We have proved the:

Proposition: The foliations of the flat toru$?> =R?/Z? that minimize the integral
E®, §°) = LJ‘f +k? in their homotopy class are described by an adgde= (angleF,

horizontal) that is a linear function dn.

E. Ghys has remarked that the same question mgyobed in the interior of a
conjugacy class of foliations. He has also conjext that there will be no representative
that minimizesE(F, §) for a foliation ofT? that is the suspension of a diffeomorphism of
S that is different from the identity and has fixeoints.

It will be interesting to define the energy of @idtion of a Riemannian manifold
more generally.

Questions:  If § is transversally oriented and of codimension @ae, one, with the
aid of an atlas adapted to the foliation, defingoton of energy that coincides with the
energy of the section of the (unitary?) tangentdteito M that is defined by the vector
normal tog?

The energy that was defined by Eells and Samseady answers the questiorgiis
given by the fibers of a Riemannian submersion.

A first step towards generalizing this constructic something pointed out by
Kamber and Tondeur [Ka-To]

Recall: A (“bundle-like”) Riemannian foliation is a fotian of a Riemannian
manifold M such that one may give any submanifold that isstrarse to the foliation a
Riemannian metric in such a way that:

1) The holonomy diffeomorphisms are isometries.

2) The submersions of the chads— T, are Riemannian submersions.

(U; is a distinguished open subset ands transversal tdJ;; it is given the invariant
transverse metric.)

Just as one may define a harmonic Riemannian gslimea Riemannian foliation
will be calledharmonic if all of the submersions of the chatisonto the transversal,
which are given a metric that satisfies 1) anda®,harmonic maps.

Let Q be the normal bundle to the foliation. The oritwg projectionTyM — Qy (Q«
is the normal space atto the leaf of§ that passes througd), may be seen as a form on

M with values inQ. A scalar product may be defined on this spacemfis. Cf. [Ka-
To]y, [Ka-Tob.
One sets:

E(3) =3 |I7#f.

Proposition: [Ka-To}i, [Ka-Tol,. For a Riemannian foliatiof of a compact manifold
M the following three conditions are equivalent:
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1) 3§ is a critical point oE(g),
2) 3§ is harmonic,
3) The leaves of are minimal submanifolds 4.

b) Curvature integrals and sections. Define the intersection of a vector field
onR*with an affine planéd to be the following field om:

XH(¥) = prX(x),

in which py is the orthogonal projection onkbandx is a point oH.
Observation: The trace of? = X" on the plane is a line field that is orthogonal to

the intersection oX with H.
Proof: It suffices to apply the theorem of three perpendisular

The trace of° onH is transversally oriented by the projection of theteeX. We let
ky notate the geodesic curvature of the leaves of thatifirlis that is defined by.

Theorem: [La]2: If W is an open subset Rfthat is given a plane fiel® then one

has:
J‘A&ZJ‘HnW kg - .[WU '

in which Az » is the space of affine planesRn.

Moreover, the integré\!val = jw divX depends only on the boundary conditions. In

particular, ifP is periodic andV is a fundamental domain then one bvasl =0, sinceP

is the lift of a plane field on the tord@8 in this case.
Physical observations of a liquid crystal that iscdéed by the fieldX do not give us

the sign ofky. Although one may also ([Lg]interpret the integraIJ% IH nWlkg [, we

would rather try to interpret the integral:

J‘ASYZJ‘Hans ’

which seems more like an energy integral.
Unfortunately, for a general plane figRithere exists a subset of the affine plahef

non-zero measure such that the trace ohH admits singularities. This implies that the

integral:
! :J‘ASYZJ‘HHW ks '
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diverges, since the foliation traced By admits a quadratic singularity for the
H 2
mtegraI,J'H - kg -

It will be interesting to find a relation betweerr thtegrals:

" :jwaz, |p:jW|T [FotT f,

and a convergent integral that is obtained byistaith |.
We may hope for such a relation to exist if thedff® has null Gaussian curvature

since the set of planes @&f has measure zero &, in that case, which implies that

almost anyH intersectsP in a foliation without singular points.
An example of such a field is the following one:

sina
X =| cosa |,
0
for which:
0 0O
DX=0 0 a|,
0 0O

. . X . . : .
in which |a | :%—, with z being the rotational axis of the structure.
z

If X4 is such thatr(z) = const. =a then the plane fiel® has a trace oH that consists
of the foliationgpr whose leaves are convex. (This foliation is tfieof a taut foliation.

Cf. [La]y).
The free energy of a cholesteric liquid crystad tiee form:

Al dimX F +B| X - rotX —a [ + C| Xy - rotX [.

The field X, that was constructed above corresponds to a emafign with zero free
energy; it essentially represents the equilibrigzates a is then the vertical period of the
field Xq. Cf., [C.P.K], [De Ge].

The observations made by Cladis, Kleman, and Rs&ra[C-K-P], probably exhibit
the intersection of the field;, which, as we have remarked, is orthogonal tardee of

P, and is therefore the lift of a taut foliation Ot
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