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1. – Preliminary. 

 

 Let: 

(1)        

 

 

be the quadratic form that encompasses the measure of space and time, according to Einstein. 

 Suppose that the variable x0 = t can be physically interpreted as time, and that x1, x2, x3 represent 

the spatial coordinates, so –
0

2

0( )dxds =  or: 

 

(2)    

 

will be the (positive-definite) form that specifies the metric on the ambient space. 

 For the physical interpretation, it is convenient to separate the terms in dx0 (i.e., dt) in ds2 and 

write: 

 

(1)    

 

 The quaternary form on the right-hand side is indefinite (1) and can assume positive, negative, 

or zero values according to the circumstances. 

 A system of differentials dx0 = ct, dx1, dx2, dx3 are known to define a direction (d) in the quadri-

dimensional variety.  One says that (d) is temporal, spatial, or of null length according to whether 

ds2 proves to be positive, negative, or zero, respectively.  The hypothesis that when t varies by 

itself, it will yield a measure of time implies, in particular, that the direction: 

 

(dt  0, dx1 = 0, dx2 = 0, dx3 = 0) 

 

 
 (1) Even more precisely, consider it to be an algebraic form in dt, dx1, dx2, dx3 (in the neighborhood of a general 

point) and to be such that when it is reduced to its canonical form (by real linear transformations), the index of inertia 

(i.e., the number of negative coefficients) will be three. 
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is temporal.  It will then follow that g00 dt2 > 0, which justifies the position that: 

 

(3)      g00 = V 2, 

 

in which V is a real quantity that has the dimension of a velocity. 

 In the kinematic phenomenon of the motion of a point, x1, x2, x3 are well-defined functions of 

t and, any dt will remain uniquely subordinate to the differentials of the other three variables.  It is 

well-known that the postulate of elementary relativity that any material motion will proceed with 

a velocity that is less than that of light can be generalized by assuming that ds2 > 0 for any material 

point in motion, while one has ds2 = 0 for the propagation of light.  When one eliminates t, the 

equation of motion: 

xi = xi (t) (i = 1, 2, 3) 

 

will define a line in the ambient space – i.e., the trajectory of motion.  However, when interpreted 

in four-dimensional space, it will define the so-called time-lines (linea oraria) (1). 

 If one takes into account the qualitative specification that ds2 > 0 then the quantitative law that 

governs the motion of a material point will be included in Einstein’s variational principle: 

 

(4)         ds = 0, 

 

for variations (of the coordinates and t) that are zero at the extremes.  With expressive geometric 

imagery, one can say: The time-line of a material point is a temporal geodetic of the quadri-

dimensional metric [(1) or (1)]. 

 

 

2. – Light rays. Relativistic principle. Fermat’s principle. 

Coincidence under stationary conditions. 

 

 The formal application of (4) to the case of a time-line of null length cannot be materially 

performed (i.e., putting  inside the sign and proceeding with only the algorithm of the calculus of 

variations) due to the singularity that results from annulling ds.  However, it is known that it is 

enough to make a simple change of parameter in the differential equations that is equivalent to (4) 

in order to remove any trace of the singularity.  In that sense, the notion of null-length geodesic is 

perfectly legitimate, and one can assume that it is a fundamental postulate of geometric optics in 

Einstein’s theory, as stated by Hilbert (2), that: Light rays are null-length geodesics of the quadri-

dimensional metric [(1) or (1)]. 

 
 (1) For Weyl, they are “world-lines,” i.e. linea universale. [Cf., the Italian translation of the article “Spazio Tempo” 

that is due to Prof. Gianfrancheschi in vol. XVIII, 1909, of this journal, page 336.] Granted, the terminology that Weyl 

introduced has been generally accepted.  To me, it seems entirely preferable to appeal to the common usage in 

elementary kinematics, in which one calls the diagram in the plane (s, t) of a motion (with an arbitrary trajectory) that 

is defined by the equation s = s (t) the “time-line.”  If the motion is defined by the three equations xi = xi (t) then one 

will have an analogous quadri-dimensional diagram, and there is no reason to refer to it by a different terminology. 

 (2) “Die Grundlagen der Physik,” part II, Göttingen Nachrichten, 1917.  
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 Another inductive criterion for the definition of the course of light rays that is plausible a priori 

is to associate the equation ds2 = 0 with Fermat’s principle of the minimum time to travel between 

two generic points.  That is, to assume that: 

 

(5)        dt = 0, 

 

in which it is intended that dt is coupled with t and the spatial coordinates, and their differentials 

will give ds2 = 0.  In regard to that, one should note that whereas in the quadri-dimensional 

geometric principle (4), one must keep not only the xi , but also t, zero at the extremes of the 

interval of integration, nevertheless,  one must obviously suppress that last condition in (5), since 

otherwise it would reduce (5) to merely an identity.  Moreover, it is enough to consider the meaning 

of the principle in order to infer its precise analytical formulation.  Meanwhile, one must refer to 

the three-dimensional space x1, x2, x3 (whose line element is dl) and regard the starting and stopping 

points as fixed, as well as the instant when the light signal started.  One can then address the search 

for the path that minimizes the duration of the trip  dt when it is subordinate to the differential 

constraint ds2 = 0.  That will imply that  ds2 = 0, which can be considered to be a (first-order 

differential) relation between t, the variations (which are arbitrary, but zero at the extremes), dxi, 

and their differentials d t, d xi , respectively.  When one imposes the condition on t that it must 

be zero at the beginning, it will remain determined uniquely as a function of the xi along the curve 

that joins the extreme positions.  One can say that (5) expresses the idea that such a curve must be 

determined in such a way that t is also zero at the end no matter how one chooses the xi (at the 

intermediate points).  The differential translation of (5) is obtained as follows: 

 If one imagines that the equation ds2 = 0 has been solved for dt then one will have: 

 

dt = f (t ; x1, x2, x3 ; dx1, dx2, dx3) , 

 

in which f is a function that is homogeneous of degree one with respect to dx1, dx2, dx3 .  Under 

stationary conditions (i.e., when the coefficients of ds2 do not depend upon t), even f is exempt 

from that condition, and the principle (5), when one replaces dt with f, will assume a purely-

geometric character, which will lead to the equations: 

 

 
 

In general, it also necessary to introduce the identity: 

 

 dt –  f = 0 

 

and to recall the usual method of multipliers, so one must replace (5) with the equivalent condition: 

 

 [ dt +  ( dt –  f)] = 0, 

0 ( 1,2,3).
i i

f f
d i

dx x
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in which t is zero at only one of the extremes. 

 One will get the differential equations: 

 

 
 

with the condition that  + 1 = 0, along with the one that  t must remain arbitrary at the two 

extremes.  For f / t = 0, the first differential equation, when combined with the limit conditions, 

will yield  = − 1, so one will recover the equations in the stationary case, as one must. 

 I have already had occasion to avail myself of Fermat’s principle under static conditions (1) – 

i.e., when not only are all of the coefficients of ds2 independent of t, but one also annuls the cross 

terms in dt (viz., g0i = 0).  As a result, Weyl (2) has noted that there is an essential equivalence 

between the two criteria (viz., Hilbert’s and Fermat’s) under such conditions.  Weyl’s proof is not 

really complicated, but it still requires some formal steps.  I propose to establish (more generally 

and also with more simplicity) the equivalence of the two principles of geometric optics – viz., 

(quadri-dimensional) geodetics and minimum time − for any stationary metric. 

 

 

3. – Proof. 

 

 As I have already pointed out, one should consider the null-length geodetics to be something 

that is derived from temporal geodetics (ds > 0) in the limit.  In order to do that, when one lets c 

denote an arbitrary constant that is identified with the speed of light in the absence of any 

perturbing circumstances, one usually sets: 

 

(6)    

 

 

(7)      

 

 

in which the function L admits finite partial derivatives (because one excludes the possibility that 

it annuls the ds, and therefore the quantity under the radical). 

 (4) can be written: 

 

(4)         L dt = 0 . 

 

 
 (1) “Statica einsteiniana,” Rend. della R. Acc. dei Lincei 26 (1st sem. 1917), pp. 470. 

 (2) “Zur Gravitationstheorie,” Ann. Phys. (Leipzig) 54 (1917), 127-128. 
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 The variation that is performed on the coordinates x1, x2, x3 classically leads to the Lagrange 

equations: 

 

(8)      

 

 

 Given the origin of (4) from (4), one needs to treat t like the spatial coordinates, and therefore 

subject it to variation (which is zero at the extremes), as well.  However, that will not lead to any 

new conditions.  Indeed, after integrating by parts, one will have: 

 

 
 

which is a necessary consequence of (8). 

 Under the hypothesis that characterizes the stationary case that L does not contain t explicitly, 

one will get: 

 

(9)       

 

in which the constant E can be interpreted as the total energy of the moving point (1). 

 When one multiplies that by L, the left-hand side can be written: 

 

 
 

 By virtue of (7), L2 is a polynomial of degree two in 1x , 2x , 3x .  It already takes a form that is 

split into three addends that are homogeneous of degrees 0, 1, 2, respectively.  From Euler’s 

theorem on homogeneous functions, the linear terms in the difference 
23
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
−


  will disappear, 

since they reduce to c2 (V 2 + v2) .  With that, when (9) is multiplied by L, that will give: 

 

(9)      

 

 The left-hand side is essentially positive, as well as  1
2

c2 V 2 (which is considered to be 

endowed with a non-zero lower limit in the present context).  The product E L can be regarded as 

a function of x and ix  that remains regular and non-zero, even when L converges to zero.  Under 

those hypotheses, the constant E will clearly tend to infinity. 

 
 (1) Cf., in addition to the previously-cited “Statica einsteiniana” (pages 465-468), the article “ds2 einsteiniani in 

campi newtoniana. I. Generalità e prima approssimazione,” ibidem, 2nd semester 1917, pp. 309. 
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 On the other hand, as was observed before in the cited note on Einsteinian statics, for any 

motions that have the same total energy E, one can replace (4), in which one supposes that  t is 

annulled at the extremes of the integration interval, with an analogous principle that presents the 

major advantage that it no longer requires that condition.  To that end, it is enough to observe that 

  dt = 0 when  t is zero at the extremes, and consequently, (4) will be equivalent to   (L – E) 

dt = 0, or even to 1
L

dt
E


 

− 
 

  = 0 for E  0 .  Finally, in the latter, one can drop the constraint 

that  t is annulled at the extremes, because when one moves  inside the sign and applies it to dt 

(in which it appears explicitly in terms of the ix ), one will have, materially: 

3

1

1
i

i i

L
dt L E x

E x


=
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− − 

 
 , 

which is annulled by virtue of (9). 

 We have therefore learned that for an assigned (non-zero) value of E, the equation of motion 

can be summarized in the formula: 

(10)     1
L

dt
E


 

− 
 

  = 0 . 

 The function under the sign can be written 1 –  
2L

E L
, in which it appears that it will stay regular 

and tend to unity under the hypothesis that L converges to zero when one keeps in mind the 

observed behavior of the denominator E L .  Now, it is exactly that hypothesis that makes one pass 

from the material motion to the limiting case of light propagation.  If one expects regularity then 

the passage to the limit can be exchanged with the operator  , and (10) will then give rise to 

Fermat’s principle: 

  dt = 0 . 

Q. E. D 

 

 

4. – Geometric complements. 

 

 One can obviously make any direction (d) in quadri-dimensional space (t, x1, x2, x3) – i.e., to 

any system of increments (dt, dx1, dx2, dx3) – correspond to a (velocity) vector v in the physical 

space with the line element dl, by which, one means, more precisely, in the tangent Euclidian space 

(at a generic point from which one considers the aforementioned increments). 

 Assume that the contravariant system of that vector with respect to the metric (2) consists of 

the ratios: 

 
 If one gives them the form: 

 

( 1,2,3).i
i

dx
x i

dt
= =

idx dl

dl dt
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then one will exhibit the direction parameters dxi / dl, and therefore the positive factor dl / dt will 

measure the length of the vector.  When referred to the position (6), one will have: 

 

 
for the square of that length. 

 Another vector w that is a function of position and time exclusively (merely position under 

stationary conditions, resp.) can be made to correspond with the triad g0i (which is covariant with 

respect to arbitrary transformations of only the spatial coordinates) when one assumes that the triad 

is the covariant system for the vector.  Therefore, when one lets a(ik) denote the coefficients of the 

form that is reciprocal to (2) and sets: 

 

(11)     

 

one will have the length of that vector in w and (for w > 0) the moments (i.e., the reciprocal system 

to the parameters) of its direction in the ratios g0i / w .  One should note that if the spatial 

coordinates x have the dimensions of length then the coefficients aik of dl2, and therefore their 

reciprocals a(ik), will be pure numbers, while the coefficients g0i of the cross terms in dt will have 

the dimensions of a velocity.  Therefore, the vector w can be interpreted as a velocity, just like v.  

That conclusion (which should be obvious) will remain valid even when one leaves the dimensions 

of the coordinates x1, x2, x3 undetermined. 

 If one given  as the angle between v and w (both of which are supposed to be non-zero, for 

the moment) then based upon the metric (2), one will have: 

 

 
and therefore, the identity: 

 

(12)    

 

 Assuming all of that, on the basis of (3), (6), and (12), the expression (1) for ds2 can be written: 

 

ds2 = dt2 (V 2 + 2v w cos  – v2) . 

 

 That makes it obvious that the condition ds2 = 0, which characterizes the propagation of light, 

defines the velocity v as a function of position and the direction of the ray, as well as time, in the 

general case in which the coefficients of ds2, along with those of V, w, and , depend upon t. 

 Let  and p represent the ratios (which are both positive and pure numbers) v / V and w / V, 

resp., so one will have the following second-degree equation for  : 

 

(13)       − 2p cos   −  = 0, 
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whose roots have – 1 for their product, and therefore one of them is positive, while the other is 

negative.  From its meaning, v must be positive, so that (13) will define it uniquely. 

 When all of the cross terms in dt are annulled (viz., the static case), one will have w = 0, so  

= 1, and v will coincide with V.  In general, one will have p > 0, and the discrepancy in V (at a 

fixed position and instant) will depend upon the direction of the ray, or rather, the angle  that it 

forms with w.  One also has v = V for any ray that is perpendicular to w.  Of course, (13) then 

shows that the maximum and minimum values of  will correspond with  = 0 and  = , resp.  

That is to say, the maximum velocity of propagation: 

 

 
will be found along w; the minimum: 

 
 

will be found in the same direction, but in the opposite sense. 

 As one sees, except for the static case, the propagation of light in physical space has a behavior 

that is not only anisotropic, but even irreversible. 

 

__________ 

 

2( 1 )V p p+ +

2( 1 )V p p+ −


