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 It is well-known that if one subjects a normal congruence of rays to an arbitrary number of 

refractions (or reflections, in particular) then one will get another normal congruence. The 

normality is then a character of the rectilinear congruences that is invariant under as many 

refractions as one pleases. We shall also see that it is the only invariant property. I propose to show 

that, in fact, two congruences of lines (which are both normal or not) are always deducible from 

each other by a finite number of refractions. More precisely, one refraction is sufficient for normal 

congruences, while two are needed for the others, in general. 

 The indices of refraction are assumed to be arbitrary, in particular, they are equal to – 1, which 

corresponds to reflections. Refringent surfaces must satisfy certain differential conditions. The 

existence of such surfaces and the degree of generality are inferred from the fundamental theorems 

of the theory of equations. 

 Thus, e.g., the transition surface between two normal congruences will remain well-defined 

when one fixes a point of it or (what amounts to the same thing) the continuation of an incident 

ray. 

 For the non-normal congruences, one can arrange the two refringent surfaces in such a way 

that 1 rays of the first congruence are transformed into 1 rays that are chosen at will from the 

second one, which then corresponds to a ruled surface and the individual rays in it. 

 

 

 1. – Let x1, x2, x3 denote Cartesian coordinates, while X1, X2, X3 are functions of those variables 

that are coupled by the identity: 
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will be rectilinear, provided that the direction cosines Xi keep constant values along the individual 

curve (2), i.e., if one has: 

 
 

On the other hand, (1) implies that: 

 

 
 

in any case, so upon subtraction, one will have: 

 

 
 

which expresses the idea that the differences: 

 

 
 

are proportional to X1, X2, X3, respectively. If one lets A represent the proportionality factor (viz., 

the abnormality of the rectilinear congruence considered) then one can write: 
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and one can infer the expression for A from that: 
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Differentiate (3) with respect to x1, x2, x3, respectively, and add them. That will give: 
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which can be written (1): 

 
 

 That equation explains the obvious geometrical fact that a rectilinear congruence cannot be 

normal to a surface without all the surfaces in the family being parallel. It will then, in fact, result 

that if A is annulled at one point then it will remain zero along the entire ray that passes through 

that point. 

 Now, when a surface meets the rays of a congruence normally, one must have A = 0 on it, and 

therefore, from the observation that was made, A must be identically zero. 

 (3) then say that X1, X2, X3 are the derivatives of the same function. 

 One might add that when that is the case, the congruence (2) will necessarily be rectilinear. 

Here, one has a known proposition by Hamilton (2): 

 A necessary and sufficient condition for a congruence (2) to be rectilinear and normal is that 

the expression X1 dx1 + X2 dx2 + X3 dx3 must constitute an exact differential. 

 

 

 2. – Consider the separation surface  between two optical media. If − X1, − X2, − X3 represent 

the direction cosines (in the sense of the propagation of light) of an incident ray on , while Y1, Y2, 

Y3 represent those of the corresponding refracted one (in the sense of propagation, as always), and 

n represents the relative index of the two media considered then the cosines of normal to the surface 

 will be proportional to X1 – n Y1, X2 – n Y2, X3 – n Y3 . That is equivalent to saying that for any 

displacement dx1, dx2, dx3 that belongs to , one must have: 

 

(5)       

 

 

 Having said that, if one is given two rectilinear congruences [C] and [C ] with direction cosines 

Xi and Yi , respectively, then one can regard [C ] as being produced from [C] by the index of 

refraction n as long as there exists a surface  on which (5) is valid. 

 If the two congruences [C] and [C] are both normal then ∑ 𝑋𝑖
3
𝑖=1  dxi , ∑ 𝑌𝑖

3
𝑖=1  dxi will be 

differentials of two particular functions U and U, and all of the surfaces of the family: 

 

U + n U = const. 

will satisfy the desired condition. 

 It then follows that the separation surface of two media can be imagined to be something that 

goes through an arbitrary point of space. 

 
 (1) More generally, the Ricci formulas lead to a relation of that type for geodetic congruences in an arbitrary space. 

See the recent note of A. Dall’Acqua: “Ricerche sulle congruenze di curve in una varietà qualunque a tre dimensioni,” 

Atti del R. Istituto Veneto, 1900.  

 (2) Darboux, Leçons sur la théorie générale des surfaces, t. II, page 275. 
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 In order to see the one-to-one correspondence between the rays of [C] and those of [C ], one 

again needs to assume that the surface in question does not consist of the rays of one of the two 

congruences; i.e., one has neither: 

 

 
 

 That is why one must exclude any surface U + n U = const. for which one might have – 1 + n 

cos  = 0, − cos  + n = 0 (where  denotes the angle between the directions of propagation of 

the rays of the two congruences at a generic point). 

 It should be noted that from the optical viewpoint those two directions must form angles of the 

same type with the normal to the surface (i.e., both acute or both obtuse, according to the direction 

that is assumed to be positive along the normal). That demands that the two binomials – 1 + n cos 

, − cos  + n must have the same sign, i.e., that  is not greater than the complement to the 

limiting angle. 

 Suppose that the two congruences [C] and [C ] have a ray g in common (and opposite to the 

positive direction along it), so the aforementioned restriction will certainly be verified inside of g, 

because one has cos  = 1 on g, and the two binomials – 1 + n cos , − cos  + n will remain 

equal. 

 In the case of reflections, that will be true for any , and the only exception that will remain is 

the value  = , from what was said. 

 Starting from the hypothesis that the two congruences [C] and [C ] are normal, the left-hand 

side of (5) cannot be an exact differential, in general. Nothing less than a family of surfaces  will 

exist as long as the Xi + n Yi are proportional to the derivatives of the same function. That will lead 

to the condition: 

 
 

 

 

 

 

 

and when one introduces the abnormalities A, A of the two congruences [C], [C ] and observes 

(3), that will simplify to: 

 

(6)     A + n2 A – n (A + A ) cos  = 0 . 

 

That is not an identity, since there can exist at most one refringent surface , etc. 

 In (6), we have an indirect confirmation of the Malus-Dupin theorem. Indeed, it asserts the 

impossibility of passing from a normal congruence to another congruence that is not normal or 
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vice versa. In truth, if one supposes that [C] is normal, but not [C ], then the existence of a surface 

 will demand that n – cos  = 0, which will exclude the existence of a one-to-one correspondence 

between the rays of the two congruences. 

 

___________ 
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 3. – Let [C] and [C] be two non-normal congruences. We wish to see if we can determine a 

third one [] that is joined to both of them by refraction. 

 Say that  is the transition surface between [C] and [], while 1 / n is the index of refraction 

for that transition. Let  be the surface that joins [] to [C ] and let n be the relative index of 

refraction. x1, x2, x3 will be coordinates of an arbitrary point P on . 

 The ray in [] that passes through P will cut  at a certain point P, whose coordinates will be 

denoted by y1, y2, y3 . 

 Set: 

 
so one must have: 

 

(7)       

 

on , and: 

 

(8)     

 

on , in which the Xi are understood to mean functions of x1, x2, x3, while the Yi are functions of 

y1, y2, y3. 

 Conversely, if one can determine six functions xi, yi of the two parameters u, v for which (7), 

(8) are verified, and neither of the determinants: 
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are annulled then one will have the means to pass from one [C] to [C ] by way of two refractions. 

 In the first place, the set of all points xi (u, v) will truly constitute a surface (as opposed to a 

curve) as long as not all of the minors of the matrix: 

 

 
 

are annulled at the same time when   0. For the same reason, the surface  effectively cuts the 

congruence [C]. Analogous statements are true for  and [C ]. 

 The points P (x1, x2, x3) and P (y1, y2, y3) on the two surfaces that represent equal values of the 

parameters u, v will be coupled in that way. 

 Select a generic ray of [C] and let P be precisely its intersection with . By virtue of (7), PP 

will be a refracted ray. It is, in turn, refracted upon crossing , and from (8), its continuation is 

given by the ray of [C ] that passes through P. That proves the assertion. 

 One must then establish that one can satisfy the simultaneous system (7), (8) with functions of 

the two parameters u, v for which neither  nor  are annulled. 

 The system (7), (8) is equivalent to the following four partial differential equations: 
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(10)      

 

 

 

to which, one must add the integrability conditions: 

 

 

 
 

 Using the notation (
𝜑 𝜓
𝑢 𝑣

) to denote the Jacobian determinant of the generic functions ,  

with respect to the variables u, v and recalling (3), one will have immediately: 

 

 

 

(11)   

 

 

which will give: 

n A  + n A  = 0 

when summed. 

 That system of equations will obviously remain invariant under an arbitrary change of the two 

independent variables u, v. One can fix them by either identifying them with two of the unknowns 

xi, yi or, more generally, by adding two more equations to the system, namely: 

 

(12)     H4 = 0 , K4 = 0 

 

[which are not invariant with respect to the transformations u = u (u, v), v = v (u, v)]. 

 However, suppose that we start with functions xi, yi of just one variable u that verify the two 

equations (9). In general, it will be possible to satisfy the remaining equations of the system, 

namely, (10), (11), (12), which are six in number, with some other functions of the two variables 

u, v that reduce to the given functions of just u for a certain value of v = v0 . We will prove that 

rigorously later on. For the moment, we assume that it is known that our system (9), (10), (11), 

(12) has been integrated completely, so (9) will also be (which is verified by construction only 

when v has the value v0), which will persist for any value of v. 

 Indeed, when one takes (10) into account, (11) will be equivalent to: 
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Since H1 and K1 are annulled for v = v0 , the same thing will be true for any other value of v. 

 The six functions xi (u), yi (u), which will be integrals of (9) when one takes the aforementioned 

steps, can be chosen in such a way that 1 rays of [C] are transformed, ray by ray, into 1 rays that 

belong to [C ]. 

 In order to prove that, suppose that: 

(13)    xi = xi (u, )   (i = 1, 2, 3) , 

(14)    yi = yi (u, )   (i = 1, 2, 3) 

 

define the two ruled surfaces  and  of [C] and [C ], respectively, and above all, u = const. 

represents a rectilinear generator, while  = const.,  = const. represent orthogonal trajectories, 

and it is understood that the rays that represent the same value of u will correspond to each other. 

One can also assume that  and  represent lengths when measured along the rectilinear generators 

upon starting from one of the orthogonal trajectories, and that u measures the arc-length along that 

trajectory: With those hypotheses, one will have: 

 

 
 

Furthermore, the xi / u for  = 0 and the yi / u for  = 0 represent direction cosines. 

 Constrain the parameters  and  to be functions of u in such a way that (9) is satisfied, i.e., 

when written out explicitly: 
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,  for which the coefficients: 
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which are integrals of (9) that are still determined by (9), and from them, the refringent surfaces 

 and , in such a way that for v = v0 they will correspond precisely to the two assumed systems 

of 1 rays. 

 

 

 4. – The two congruences [C] and [C ] have a common ray g , and – X1, − X2, − X3 will coincide 

precisely with Y1, Y2, Y3, respectively, along g. 

 The values of the abnormality will become non-zero at the points of g. 

 We want to show that all of the restricting inequalities that ensure the existence of the integral 

system and the one-to-one character of the correspondence between the rays of the two congruence 

will be effectively satisfied, at least within a sufficiently-small neighborhood of g. In other words, 

if we are given an arbitrary ruled surface  of [C] and a ruled surface  of [C ] that have a ray g 

in common and a correspondence between their rectilinear generators for which g is the uniting 

ray then there will exist (and they are specified uniquely by the indices of refraction and the 

condition that they must pass through given points P0, P0 of g) two refringent surfaces  and  

that are suitable for transforming [C] into [C ] (more precisely, for transforming a sufficiently-

small pencil of rays around g in [C] into an analogous pencil in [C ]). 

 For simplicity, take the line g to be the x3-axis and choose two non-coincident points P0, P0 

along it arbitrarily, and assume that their coordinates are the initial values of our functions xi, yi . 

 Locate the origin of the coordinates at the midpoint of the segment P0, P0 (= 2l > 0), and 

choose P0 P0 to be the positive direction of the x3-axis. One will then have: 
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axes are parallel to those bisectors. Let 2 denote the angle between the two tangents in question. 

The values of xi / u , yi / u for u = u0 (viz., the direction cosines of those tangents) will then be 

of the type: 

 

 
 

in which one can further assume that 0 <  <  / 2 . 

 We begin by asserting that the coefficients of d / du, d / du in (9) are not annulled with the 

initial values (16). In fact, they become n – 1, n – 1, which are properly non-zero, because n = 1 

or n = 1 would imply the absence of refraction, and we are essentially supposing that refraction 

(or reflection) exists. We determine the functions  and  of u from (9), substitute them in (13), 

(14), and in that way infer six functions: 

 

(17)    x1 (u) , x2 (u) , x3 (u) ; y1 (u) , y2 (u) , y3 (u) 

 

that satisfy (9) and reduce to the values (15) for u = u0 . 

 In regard to the values of the derivatives of those functions for u = u0 , one has meanwhile has 

from (9) that: 

 
On the other hand: 

 
so 

 
Analogous statements are true for: 

 

 
 

By definition, the initial values of the derivatives of the functions (17) are: 

 

 

(18)    

 

 

 

31 2cos , sin , 0,
xx x

u u u
 

 
= = − =

  

31 2cos , sin , 0,
yy y

u u u
 

 
= = =

  

3 3

0 0

0, 0.
dx dy

du du

   
= =   

   

1 1 1 1
1 ,

dx x x xd d
X

du u du u du

 



  
= + = +

  

1 1

0 0

cos .
dx x

du u


   
= =   

   

2 1 2

0 0 0

, , .
dx dy dy

du du du

     
     
     

31 2

0 0 0

31 2

0 0 0

cos , sin , 0,

cos , sin , 0.

dxdx dx

du du du

dydy dy

du du du

 

 

     
= = − =     

     


     = = =           
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 Having said that, consider the system (10), (11), to which one adds the auxiliary equations 

(12), which are specialized, e.g., by: 

 

 

(12)  

 

 

 

 Everything now comes down to showing that for u = u0, xi = 𝑥𝑖
0, yi = 𝑦𝑖

0, the six equations (10), 

(11), (12) can be solved for the derivatives xi / v , yi / v , and that the values that one infers for 

those derivatives do not annul  or . Indeed, with that, the integral system of (10), (11), (12), 

which reduces to the functions (17) of just u for an arbitrary value v0 of v, will satisfy all of the 

desired conditions. 

 In order to prove that, we note that in the first place, for the values (16) and (18), equations 

(10) and our auxiliary equations (12) will reduce to: 

 

(10)  

 

 

(12)   

  

 

One then has: 

 
The identity: 

 
 

(in which, as usual, ij denotes zero or unity according to whether the indices i and j are distinct or 

coincident, resp.) gives: 

 

 
 

and when one introduces the values (16) and (18), the right-hand side will become: 

 

 
which will be equal to unity, by virtue of (12). 

1 2 1 2
0 0

0 0 0 0

sin cos , sin cos .
x x y y

v v v v
   

          
− = +  = − +       

          

2 1
( , 1,2,3)ij

i j i j

r r r
i j

x y r x y


   
= − + =      

23 3 3

, 1 , 1 1

1 1
,

i j i j i j

i j i j ii j i j

x y x y x yr r r

u v u v u vx y r x y r= = =

       
− = +     

        
  

1 1 2 2

0 0 0 0

cos sin

,
2

y x y x

v v v v

l

 
             

− − −          
             

1 1 2 2
4

1 1 2 2
4

0,

0.

x x x x
H l

u v u v

y y y y
K l

u v u v

   
 − + =    


     − − =

    

3 3

0 0

0, 0,
x y

v v

    
= =   

    

1 2 1 2

0 0 0 0

cos sin , cos sin .
x x y y

l l
v v v v

   
          

+ = − − =       
          
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 With that, (11) will assume the form: 

 

 

(11)     

 

 

 

 One infers the four derivatives: 

 

 
 

from the last set of equations and (12), as long as the tangent planes to the two ruled surfaces  

and  at P0, P0 do not meet at a right angle, i.e., cos 2 is non-zero. 

 From its geometric significance, that condition is independent of the way by which the 

auxiliary equations (12) were specialized. Moreover, one can see that directly by observing that 

since the auxiliary equations are arbitrary, if the system has to imply non-infinite values for: 

 

 
 

then the same thing must be true for: 

 
 

 Now, the square of the matrix of coefficients of: 

 

 
 

in those three expressions is equal to cos2 2 / 2l 2 and will be annulled when cos 2 = 0 . On the 

other hand, if one lets k denote the value of: 

 

 
 

then pursuant to (11), the following three equations must be valid: 

 

1 2 1 2

0 0 0 0

, , ,
x x y y

v v v v

          
       

          

1 2 1 2

0 0 0 0

, , ,
x x y y

v v v v

          
       

          

23

0 0

, 1

, , .
i j

i j i j

x yr

u vx y=

  
  −        



1 2 1 2

0 0 0 0

, , ,
x x y y

v v v v

          
       

          

23

, 1

i j

i j i j

x yr

u vx y=

  
−        


1 2
0

0 0 0

1 2
0

0 0 0

1
sin cos ,

1
sin cos .

x x

v v n A

y y

v v n A

 

 

     
 = − − = −   

    


      = − + =         
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(for  =  / 4, k  0), but as one soon recognizes, that would require that: 

 

 
which is not true, in general. 

 Therefore, if we exclude the case in which 2 is a right angle then the equations of our system 

will be soluble with respect to the derivatives: 

 

 
and 

 
will prove to be non-zero, as is necessary. 

 It is useful to add, in regard to an observation that was made at the end of § 2, that in the domain 

under consideration the solution to the problem is possible, not just geometrically, but also 

physically. 

 

_________ 

 

23

, 1

,
i j

i j i j

x yr
k

u vx y=

  
− =       


0 0

1 1
2 0,l

n A n A
+ + =

 

0 0

, ,i ix y

v v

    
   

    

0 0

0 0

1 1
,

n A n A
 = −  =

 

0

0

,
k

n A
−  =

0

0

k

n A
 =

 


