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 1. In a treatise on integral invariants and differential invariants of continuous groups, 
I recently showed (cf., these Berichte 1897, pp. 342 [here, art. XXVII, pp. 649]) that all 
integral invariants: 

dϕ ω∫  

 
of a given continuous group can be found by integrating a complete system. 
 Now, the desired quantity ϕ itself appears in the complete system in question as an 
independent variable, while on the other hand, a solution Φ of that complete system will 
yield an integral invariant only if Φ actually includes the quantity ϕ.  Moreover, since the 
complete system in question generally possesses solutions Φ that do not include ϕ, and in 
fact it can often happen that all solutions Φ are independent of ϕ, a discussion of the 
matrix of the complete system in question in each individual case will be required before 
a definitive answer can be given to the question that was posed of the existence of 
integral invariants of order m. 
 Now, from the nature of things, it is generally impossible to formulate a general 
theorem that resolves the question of the integral invariants of an arbitrary continuous 
group definitively, and at the same time, in an exhaustive way.  In fact, several essentially 
different possibilities can occur.  At least, one is in a position to present general theorems 
on the existence of integral invariants. 
 We shall prove such theorems in the first chapter of this treatise, and at the same time, 
we shall go into the connection between the two concepts of differential and integral 
invariants more closely. 
 
 
 2. In the second chapter, we imagine that we are given a linear, partial differential 
equation in three independent variables: 
 

0 = ( , , ) ( , , ) ( , , )
f f f

x y z x y z x y z
x y z

ξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

 ≡ Xf 
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to be integrated, and that we, perchance, know a first-order surface integral: 
 

( , , , , )x y z p q dxdyϕ∫  

or a first-order curve integral: 
 

( , , , , )x y z y z dxϕ ′ ′∫  ,
dy dz

y z
dx dx

 ′ ′= = 
 

 

 
that remains invariant under the (infinitesimal) transformation Xf. 
 We show that the existence of such an integral invariant will always imply a 
simplification of the integration of the equation Xf = 0.  However, at the same time, we 
recognize that various possibilities are conceivable.  Whereas it can happen that under 
certain circumstances the integration of Xf = 0 can be converted into performable 
operations, in other case, one can find that the existence of a certain integral invariants 
will offer no advantage over the discovery of Jacobi multipliers. 
 No matter how remarkable and elegant that the theorems of the second chapter might 
seem, they therefore do not completely resolve the − in itself specialized − question of 
simplifying the integration of an equation: 
 

0 = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 ≡ Xf 

 
that follows from the existence of a known, invariant, first-order surface or curve integral.  
On the other hand, one can by no means foresee whether the theories in the second 
chapter can be extended to n-dimensional spaces and to integral invariants of second and 
higher orders. 
 
 
 3. Therefore, in the third chapter, we shall embark upon another path, and indeed we 
shall apply the general methods of my theory of invariants.  In that way, in each 
individual case, we will find that the given integration problem will lead back to a 
completely bounded problem that arises completely in my theories, namely, the 
integration of differential equations of the finite transformations of a continuous group. 
 Finally, in the fourth chapter, we extend the concept of integral invariants to groups 
of contact transformations, and in that way we will find an opportunity to develop some 
general theories that merit a certain interest in their own right. 
 
 
 4. In my previous treatise, I already saw fit to strongly emphasize that the theory of 
integral invariants must be considered to be a chapter in my general theory of differential 
invariants.  Each chapter of the present treatise will confirm the validity of that way of 
looking at things.  In fact, the theories of this treatise are basically only consequences of 
my general theory of transformations.  If I nonetheless give weight to the results of this 
paper then that is based primarily upon the fact that my current developments will yield 
instructive illustrations of my general theory. 
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 I reserve the right to discuss various problems that are posed by the developments of 
this treatise, if only implicitly.  At the same time, I will even generalize the general 
concept of an integral invariant in several directions. 
 
 

Chapter I. 
 

General theorems on the existence of integral invariants. 
 

 5. If one is given a continuous group then several sets of differential invariants will 
always belong to that group whose form depends, not only upon the form of the group by 
itself, but also upon the circumstances that are associated with the transformations of the 
group. 
 For example, if the group in question consists of point transformations of the space x, 
y, z then these transformations can be performed on curves, surfaces, differential 
equations, families of surfaces, and in fact, many different things.  In particular, if the 
group is finite and continuous then there will always exist an infinite set of associated 
differential invariants in every case, that is, regardless of whether one considers curves, 
surface, differential equations, and so forth. 
 Things are quite different when the group is infinite.  Then, one cannot assert from 
the outset that infinitely many differential invariants will belong to this group, which 
might relate to surfaces (or curves), for example, while one generally knows that one can 
always apply the transformations of the group in situations that correspond to infinitely 
many differential invariants. 
 
 
 6. If one considers, for example, the group of all point transformations x1 = X(x, y, 
z), y1 = Y, z1 = Z, under which all volumes remain unchanged – that is, all transformations 
whose functional determinant: 
 

1 1 1x y z

x y z

∂ ∂ ∂±
∂ ∂ ∂∑  = 1, 

 
then one will easily recognize that no differential invariants of surfaces: 
 

J (x, y, z, p, q, r, s, t, …) 
 

that include z as a function of x, y can belong to that group, indeed, not even an invariant 
partial differential equation: 

Ω (x, y, z, p, q, r, s, t, …) = 0. 
 

 Namely, if z = ψ (x, y) were an integral surface of such an invariant differential 
equation Ω = 0 and z = χ (x, y) were any surface that did not fulfill Ω = 0 then the 
transformation: 

x1 = x,  y1 = y,  z1 = z + χ (x, y) – ψ (x, y), 
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which obviously belongs to the group, would take the integral surface z = ψ (x, y) of the 
invariant differential equation Ω = 0 to a surface z = χ (x, y) that does not satisfy Ω = 0, 
and that will contradict the assumed invariance of Ω = 0.  There is then no invariant 
partial differential equation Ω (x, y, z, p, q, …) = 0. 
 Surfaces then have no differential invariants J (x, y, z, p, q, r, s, t, …) under the group 
of all transformations x1 = X, y1 = Y, z1 = Z whose functional determinant is equal to 1.  A 
completely analogous reasoning shows that curves can also have no properties that 
remain invariant under that group, so no differential invariants of the form: 
 

U (x, y, z, y′, z′, y″, z″, …) ,
dy

y
dx

 ′ = 
 

…  

can exist. 
 
 
 7. On the other hand, consider the group: 
 

x1 = X,    y1 = Y,    z1 = Z (z, x, y), 
 
whose infinitesimal transformations possess the general form: 
 

ζ (x, y, z) 
f

z

∂
∂

. 

 
If one now seeks all associated differential invariants of surfaces then if one reasons 
precisely as one did in the previous case, one will, in turn, recognize that differential 
invariants of first order or higher J (x, y, z, p, q, r, …) do not exist.  By contrast, x and y 
will be differential invariants of order zero of our group, as well as every function of x 
and y. 
 
 
 8. It is probably worth observing that there are actually infinite groups in x, y, z for 
which there exist two and only two differential invariants of surfaces.  That is noteworthy 
due to the fact that as long as three independent differential invariants u, v, w of surfaces 
exist, one can always construct infinitely many differential invariants: 
 

w

u

∂
∂

 = 
v w

x y
 : 

v u

x y
,  

w

v

∂
∂

 = 
u w

x y
 : 

u v

x y
, … 

 
 On the other hand, if we imagine the transformations of the group: 
 

ζ (x, y, z) 
f

z

∂
∂
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being applied to curves then x and y will, in turn, be differential invariants of order zero.  
However, the existence of these two invariants will now suffice for the construction of 
infinitely many further invariants: 

y′ = 
dy

dx
, y″, y″′. 

 
 
 9. Thus, if one is given an (infinite) continuous group of point transformations of 
space x, y, z, and if its transformations were applied to surfaces then the following distinct 
cases could occur: 
 It is conceivable that absolutely no surface invariant J (x, y, z, p, q, r, s, t, …) exists, 
or that a single such invariant exists, or that there are two such invariants u, v, and none 
that are independent of u, v, or finally, that there are infinitely many independent surface 
invariants that can then be always derived from a complete system: 
 

I1, I2, J1, …, Jm 
 
by differentiation.  In that last case, the general form of the associated surface invariant 
will be: 

Ω 1
1 2 1 1

1

, , , , , ,
J

I I J J
I

 ∂
 ∂ 

… …  . 

 
 This example suffices to show that many essentially different cases can come about in 
the search for all differential invariants of a q-fold manifold under groups of point 
transformations of an n-fold space. 
 
 
 10. Under these circumstances, it should not be surprising that no simple and general 
law can be given for the appearance of integral invariants under (infinite) continuous 
groups that exhausts all possibilities.  However, we will present a series of theorems that 
afford an actual insight into the state of affairs. 
 In order to ease the discussion, we will first remain in three-fold space x, y, z. 
 
 If we first consider the group of all translations and imagine that these 
transformations are applied to surfaces then we can recognize immediately that p, q, r, s, 
t, and absolutely all differential quotients of z with respect to x and y will remain 
invariant.  If we set: 
 

p = I1,  q = I2,  r = J1,  s = J2,  t = J3 
 
then we can bring each such differential invariant of a surface into the form: 
 

Ω 1
1 2 1 1

1

, , , , , ,
J

I I J J
I

 ∂
 ∂ 

… …  . 
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If we are given a non-developable surface then we choose I1 = p and I2 = q as Gaussian 
coordinates of the point on the surface.  Every (closed) curve on that surface will then be 
defined by a relation between I1 and I2 (that is, between p and q).  Any surface integral 
can then be brought into the form: 

1 2W dI dI∫ , 

 
regardless of whether it remains invariant under the group, and the associated domain of 
integration will then be defined by a certain equation between I1 and I2 . 

 However, it is immediately obvious that a surface integral 1 2W dI dI∫  will remain 

invariant under all transformations of our group if and only if W is itself a differential 
invariant of the group, and therefore the general form of an invariant surface integral will 
be: 

1 1
1 2 1 2 3 1 2

1 2

, , , , , , ,...
J J

J I I J J J dI dI
I I

 ∂ ∂
 ∂ ∂ 

∫  

in the present case. 
 
 
 11. One sees, with no further analysis, that these considerations and results can be 
extended to n-dimensional spaces and q-dimensional manifolds.  We can thus 
immediately state the following general theorem: 
 
 Theorem I.  If a one is given a (finite or) infinite continuous group of point 
transformations of space x1, … xq, z1, …, zm  that can be applied to the q-dimensional 
manifolds: 

z1 = ϕ1 (x1, …, xq), …,  zm = ϕm (x1, …, xq) 
 
in that space then it will always be possible to give a general form for all associated 
integral invariants in two cases: 
 If the group possesses more than q independent differential invariants: 
 

U 1
1 1

1

, , , , ,q m

z
x x z z

x

 ∂
 ∂ 
… … …  

then if: 
I1, …, Iq, J1, …, Js 

 
denote suitably-chosen invariants then all further differential invariants can be brought 
into the form: 

Ω 1
1 1

1

, , , , , , ,q s

J
I I J J

I

 ∂
 ∂ 
… … … ; 

one will then have: 

W∫ 1
1 1

1

, , , , , , ,q s

J
I I J J

I

 ∂
 ∂ 
… … …  dI1 … dIq 
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for the general form of the integral invariants of a q-dimensional manifold. 
 On the other hand, if the given group possesses q and only q mutually-independent 
differential invariants: 
 

Iκ 1
1 1

1

, , , , ,q m

z
x x z z

x

 ∂
 ∂ 
… … …   (κ = 1, …, q) 

then: 

Φ∫ (I1, … Iq) dI1 … dIq 

 
will be the general form of an integral invariant of the q-fold manifolds. 
 
 
 12. If we apply this general theorem to the group: 
 

ζ (x, y, z) 
f

z

∂
∂

, 

 
which admits no surface invariant Φ(x, y, z, p, q, r, …) besides x and y, for example, then 
we can deduce that the general formula: 
 

ψ∫ (x, y) dx dy 

 
will yield all associated integral invariants of surfaces. 
 By contrast, if we consider the group of all transformations: 
 
(A)    z1 = z,  x1 = ϕ (x, y, z),  y1 = ψ (x, y, z), 
 
whose infinitesimal transformations are: 
 

ξ (x, y, z) 
f

x

∂
∂

+ η (x, y, z) 
f

y

∂
∂

, 

 
then we will find no other surface invariant Ω (x, y, z, p, q, …) than z.  Therefore, the 
theorem above will give no information about the existence of invariant surface integrals. 
 We can always say one thing from the outset: Namely, if: 
 

1ϕ∫ (x, y, z, p, q, r, …) dx dy 

and 

2ϕ∫ (x, y, z, p, q, r, …) dx dy 
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are two invariant surface integrals then ϕ1 : ϕ2 will be a differential invariant, and 
therefore a function of z: 

1

2

ϕ
ϕ

= W (z). 

 
 However, we can now resolve the current question in the following way.  If: 
 

ϕ∫  (x, y, z, p, q, r, …) dx dy 

 
is an invariant surface integral then, no matter what functions of x, y, z the ξ and η might 
be (these Berichte, pp. 347 [here, art. XXVII, pp. 653, et seq.]), the relation: 
 

X′ ϕ + (ξx + ηy + ξs p + ηz q) ϕ = 0 
 
will exist, and as a result of the equation ϕ = 0, it will remain invariant under every 
transformation of the form (A).  Now, if ϕ were a function of only x, y, z then ϕ = 0 
would be an invariant surface, and in fact a plane: z = const.  However, our surface 
integral would then possess the form: 

ω∫ (z) dx dy, 

 
so it would not be an integral invariant, accordingly.  On the other hand, if the quantity ϕ 
actually includes differential quotients of z then ϕ = 0 would be an invariant partial 
differential equation; however, our group has no invariant differential equations. 
 There thus exist no integral invariants of surfaces at all for the infinite group: 
 

ξ (x, y, z) 
f

x

∂
∂

+ η (x, y, z) 
f

y

∂
∂

, 

 
and only a single differential invariant of surfaces, namely, z. 
 
 
 13.  We have previously considered the group of point transformation of space x, y, z 
whose functional determinant is equal to 1. 
 We saw that either surfaces or curves can have differential invariants under that 
group.  However, our considerations at the time can lead us further.  Namely, if there 

exists an invariant surface integral ϕ∫  dx dy or an invariant curve integral ψ∫  dx then 

the equation ϕ = 0 (the equation ψ = 0, respectively) would be invariant under the 
transformation of our group.  However, there are no such invariant equations.  Hence, one 
has: 
 
 Theorem 1.  Surfaces and curves in space have neither differential not integral 
invariants under the group of all transformations x1 = X, y1 = Y, z1 = Z whose functional 

determinant is equal to 1, and the only invariant space integral is dx∫  dy dz. 
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 14. We are close to posing the problem of finding all transformation groups Xf in 
three variables x, y, z that possess either no, or only one, or only two independent surface 
differential invariants: 

U (x, y, z, p, q, r, s, t, …), 
 
or even all groups Xf that leave invariant either no surface integral: 
 

V∫ (x, y, z, p, q, r, s, t, …) dx dy 

 
or a single such integral.  The problem that is formulated here meets up with no 
significance difficulties, although I have still not addressed the corresponding problem in 
n dimensions. 
 If the formula: 

( , )u vΨ∫  w dx dy, 

 
with the arbitrary function Ψ of two arguments u, v, yields all invariant surface integrals 
of a group in space x, y, z then, from the previous developments, that integral can have 
the form ∫ X (u, v) du dv, and u and v will be the only differential invariants of surfaces 
for the group in question. 
 
 
 15. In this treatise, we shall restrict ourselves to the developments that were given 
here on the existence of integral invariants.  However, we regard it as convenient to 
derive the most important of the results that we just presented from new considerations 
that are worthy of interest from several standpoints.  In order to simply the language and 
formulas, we restrict ourselves to groups in x, y, z.  However, it will not escape the 
attention of an intelligent reader that our developments can be extended immediately to n 
dimensions. 
 
 
 16. We imagine the coordinates x, y, z of a point on a surface have been given as 
functions of two parameters u, v that remain invariant under the transformations: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
of a given group.  On the other hand, we introduce the following notations for the partial 
derivatives of x, y, z with respect to u and v: 
 

 
x

u

∂
∂

 = x′, y

u

∂
∂

 = y′, z

u

∂
∂

 = z′, 
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x

v

∂
∂

 = x' , 
y

v

∂
∂

 = y' , 
z

v

∂
∂

 = z' , 

 

 
2

2

x

u

∂
∂

= x″, 
2x

u v

∂
∂ ∂

= x'
′ , … 

 
 Every function of x, y, z, p, q, r, s, t, … can be expressed as a function of the 
quantities: 

x, y, z, x' , y′, …, x″, x'′ , x" , …, 

 
while the converse is in no way always the case. 
 
 
 17. If one wishes that the quantities: 
 

Ω (x, y, z, x' , …, x″, …) 

 
should be functions of x, y, z, p, q, … (so Ω should be independent of the choice of the 
parameters u, v) then one would only have to demand that Ω must be a differential 
invariant of the infinite group: 
 

u1 = U (u, v), v1 = V (u, v), 
 

whose transformations define the transition from a system of parameters u, v to another 
system of parameters u1, v1 in the most general way.  We therefore set: 
 

δu = α (u, v) δt, δv = β (u, v) δt 
 
and understand α and β to mean arbitrary functions of u, v. We calculate the 
corresponding increments of x′, x' , y, y' , … when we consider that x, y, z remain 

invariant under changes in the parameters, and we demand that the corresponding 
increase in Ω: 

δ Ω = x x x'x x x'
δ δ δ∂Ω ∂Ω ∂Ω′ ′′+ + +

′ ′′∂ ∂ ∂
⋯ + … 

should be equal to zero. 
 One will get: 
 
 dx – x′ du – x' dv = 0,  δ (dx – x′ du – x' dv) = 0 

and 
 δx′ : δt = − x′ α′ − x' β′, x'δ : δt = − x′ 'α  − x' 'β , 

and further: 



Lie – On integral invariants and their use in the theory of differential equations. 11 

 δy′ : δt = − y′ α′ − y' β′, y'δ : δt = − y′ 'α  − y' 'β , 

 δz′ : δt = − z′ α′ − z' β′, z'δ : δt = − z′ 'α  − y' 'β  . 

 
 We calculate the increments δx″, x'δ ′ , and so on, in a corresponding way.  We will 

have: 
δ (dx′ − x″ du – x'

′ dv) = 0 

and 
dδx′ − x″ dα δt − x'

′ dβ δt – δx″ du – x'δ ′  dv = 0, 

and furthermore: 
 

d (− x′α′ – x' β′ ) – x″(α′ du + 'α dv) – x'
′ (β′ du + 'β dv) – (δx″ : δt) du – ( x'δ ′  : δt) dv 

= 0, 
from which: 
 δx″ : δt = − 2x″ α′ – 2x'

′ β′ – x′α″ – x' β″, 

 x'δ ′  : δt = − 2x″ α′ – 2x'
′ β′ – x′α″ – x' β″, 

 x"δ : δt = − 2x' 'α′ – 2x" 'β  – x′ "α  – x' "β , 

and so on. 
 If we denote a summation over x, y, z by ∑ then we will obtain the following 
expression for δΩ: 
 

 − δΩ : δt = ( ) ( )x x x x' ' ' 'x x'
α β α β∂Ω ∂Ω′ ′ ′ ′+ + +

′∂ ∂∑ ∑  

   + (2 2 )x x x x' 'x
α β α β∂Ω ′′ ′ ′ ′ ′ ′′ ′′+ + +

′′∂∑  

 + ( ( ) )x x x x x' ' ' " ' ' 'x'
α α β β α β∂Ω ′′ ′ ′ ′ ′ ′ ′+ + + + +

′∂∑  

 + (2 2 )x x x x' ' " ' " ' "x"
α β α β∂Ω ′ ′+ + +

∂∑  

 + …, 
 
in which we have now written out the increments in the first and second order derivatives 
explicitly. 
 
 
 18. Now, should δΩ equal zero then α′, 'α , β′, 'β , α″, …, might also have that value.  

Therefore (from my general theory of differential invariants), Ω must fulfill all of the 
linear, partial differential equations that we obtain when we successively set the 
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coefficients of α′, 'α , β′, 'β , α″, … equal to zero.  By a slight conversion, we succeed in 

bringing these equations into the following form: 
 

 U1f = 2x x x'x x x' ' "

∂Ω ∂Ω ∂Ω′ ′′ ′+ +
′∂ ∂ ∂∑ ∑ ∑ + … = 0, 

 

 U2 f = 2x x x x' "x x x x' "

   ∂Ω ∂Ω ∂Ω ∂Ω′ ′′   − + −
   ′ ′′∂ ∂ ∂ ∂   

∑ ∑ + … = 0, 

 

 U3 f = 2x x x' ' "x x x'

∂Ω ∂Ω ∂Ω′+ +
′ ′′ ′∂ ∂ ∂∑ ∑ ∑ + … = 0, 

 

 U4 f = 2x x x x x' ' "x x x x x' ' "

   ∂Ω ∂Ω ∂Ω ∂Ω ∂Ω′ ′′ ′   + + + +
   ′ ′′ ′∂ ∂ ∂ ∂ ∂   

∑ ∑ + … = 0, 

 

 x
x

∂Ω′
′′∂∑ + … = 0,      x

x'

∂Ω′
′∂∑ = 0,      x

x"

∂Ω′
∂∑ + … = 0, 

 

 x' x

∂Ω
′′∂∑ + … = 0,      x' x'

∂Ω
′∂∑ = 0,      x' x"

∂Ω
∂∑ + … = 0, 

 
 …………………………………………………………….. 
 
 We expressly emphasize that the three expressions U1 f, U2 f, U3 f fulfill relations of 
the form: 

(U1 U2) = − 2U1 f,  (U1 U3) = U2 f, (U2 U3) = − 2U3 f, 
 
and that they therefore generate a three-parameter group that is composed the same as the 
general projective group of a simple manifold.  We further remark that we have: 
 

(U1 U4) = (U2 U4) = (U3 U4) = 0, 
 
and that U1 f, U2 f, U3 f, U4 f therefore generates a four-parameter group that has the same 
composition as the general linear homogeneous group of a two-fold manifold. 
 
 
 19. We would now like to assume that our group Xf possesses differential invariants 
that depend upon only x, y, z, p, q, r, s, t, and that Φ and Ψ are two such invariants that 
are given as functions of x, y, z, x′, x' , …, x″, …  Φ and Ψ are then solutions of the 

aforementioned linear, partial differential equations.  We can also say that Φ and Ψ are 
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differential invariants of the infinite group that subsumes all Xf of the originally-given 
group, as well as all possible parameter transformations: 
 

α (u, v) 
f

u

∂
∂

+ β (u, v) 
f

v

∂
∂

. 

 
In any case, it is clear that Φ, as well as Ψ, remain invariant under every infinitesimal 
transformation of the form: 
 

δu = α (u, v) δt, δv = β (u, v) δt, δx = 0,      δy = 0,      δz = 0, 
 
and that one therefore has: 

δ Φ = 0,  δΨ = 0. 
If we now set: 

dΦ – Φ′ du – 'Φ dv = 0, dΨ – Ψ′ du – 'Ψ dv = 0 

 
then we will recognize, by means of calculations that are identical in form to the ones on 
pp. 11, that the derivatives Φ′, 'Φ , Ψ′, 'Ψ  will take on the increments: 

 
 δ Φ′  = − (Φ′α′ + 'Φ β′ ) δt, 'δ Φ  = − (Φ′ 'α + ' 'βΦ ) δt, 

 δ Ψ′  = − (Ψ′α′ + 'Ψ β′ ) δt, 'δ Ψ  = − (Ψ′ 'α + ' 'βΨ ) δt . 

 
If we introduce the notation: 

' '

′ ′Φ Ψ
Φ Ψ  = ∆ 

 
for the functional determinant of Φ and Ψ and then calculate the increment δ∆ of ∆ then 
that will imply that δ∆ possesses the value: 
 

δ∆ = − (α′  + 'β ) ∆δt. 

 
 We state, and will prove, that it emerges from this that the integral: 
 

∆∫  du dv 

 
remains invariant under all transformations Xf of the original group, and therefore 
represents an integral invariant of that group. 
 
 
 20. In order to prove that, we would like to look for analytical criteria that a function: 
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ϕ (x, y, z, x′, x' , …, x″, …) 

must fulfill when the integral: 
 

ϕ∫  (x, y, z, x′, x' , …, x″, …) du dv 

 
admits all transformations Xf of the originally-given group. 
 From our previous developments, it is first requisite that ϕ should represent a 
differential invariant of that group.  However, some further conditions get added to this 
that characterize the behavior of the quantity ϕ under changes of the parameters u, v. 
 As we know (these Berichte, pp. 353 [here, art. XXVII, pp. 658, et seq., no. 12]), 
there exists an equation of the form: 
 

ϕ = F (x, y, z, p, q, r, s, t, …) 
x y

x y' '

′ ′
 ≡ F ⋅⋅⋅⋅ D, 

 
and we know the behavior of the two quantities F and D under the transition from the 
parameters u, v to the new parameters: 
 

u1 = U (u, v),  v1 = V (u, v). 
 
F indeed keeps its form under such a change, while one has: 
 

1 1

1 1

x y

u u

x y

v v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

 = 

1 1

1 1

:

u vx y

u u u u
x y u v

v v v v

∂ ∂∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 . 

 
Under the infinitesimal transformation: 
 

δu = α (u, v) δt, δv = β (u, v) δt, δx = δy = δz = 0, 
 
the functional determinant: 

D = 
x y

x y' '

′ ′
 

will then take on the increment: 
δD = − (α′ + 'β ) D δt, 

 
so the quantity ϕ = F ⋅⋅⋅⋅ D will take on the increment: 
 

δϕ = δF ⋅⋅⋅⋅ D + F ⋅⋅⋅⋅ δD = − (α′ + 'β ) F ⋅⋅⋅⋅ D ⋅⋅⋅⋅ δt, 
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or, what amounts to the same thing: 
 

δϕ = − (α′ + 'β ) ⋅⋅⋅⋅ ϕ ⋅⋅⋅⋅ δt. 

 In this way, we next get the: 
 
 Theorem 2.  The requirement that the quantity: 
 

( , , , , , , , , )x y z x x y x'ϕ ′ ′ ′′∫ … …  du dv 

 
should be an integral invariant of a continuous group whose infinitesimal 
transformations are represented by the general symbol: 
 

Xf = ξ (x, y, z) 
f

x

∂
∂

+ η(x, y, z) 
f

y

∂
∂

+ ζ (x, y, z) 
f

z

∂
∂

 

 
will be formulated analytically when we, on the one hand, demand that ϕ should be a 
differential invariant of the group Xf, and on the other hand, that under any infinitesimal 
change of the parameters: 
 

δu = α (u, v) δ t, δv = β (u, v) δ t, 
 
ϕ shall take on the increment: 

δϕ = − ϕ (α′ + 'β ) δ t. 

 
 
 21. It is now easy to see that the previously-given functional determinant: 
 

∆ = 
' '

′ ′Φ Ψ
Φ Ψ  

 
actually fulfills all requirements that are placed upon the quantity ϕ, in which it is 
obviously assumed that Φ and Ψ represent the differential invariants of the group Xf that 
remain invariant under changes of the parameters. 
 On the one hand, we have, in fact, already seen that under the infinitesimal 
transformation: 
 

δu = α (u, v) δ t, δv = β (u, v) δ t, δx = δy = δz = 0, 
 
 ∆ will take on the increment: 

δ∆ = − (α′ + 'β ) ∆ ⋅⋅⋅⋅ dt. 
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On the other hand, since Φ and Ψ, like u and v, remain invariant under the infinitesimal 
transformation of the given group Xf: 
 

δu = 0,      δv = 0,      δx = ξ δ t, δy = η δ t, δz = ζ δ t, 
 
we can, with no further analysis, possibly by following through on the equations: 
 

δ (dΦ – Φ′ du – 'Φ dv) = 0, δ (dΨ – Ψ′ du – 'Ψ dv) = 0, 

 
conclude that the derivatives of Φ and Ψ with respect to u and v also represent 
differential invariants of our group Xf, and it follows immediately from this that ∆ also 
represents a differential invariant of the group Xf. 
 
 
 22. The functional determinant ∆ thus actually fulfills all requirements that must be 
placed upon the desired quantity ϕ, and we can therefore state the following noteworthy 
theorem: 
 
 Theorem II.  If Φ and Ψ are differential invariants of a surface z = f (x, y) under a 
certain continuous group of point transformations of space x, y, z then the formula: 
 

u u

v v

∂Φ ∂Ψ
∂ ∂
∂Φ ∂Ψ
∂ ∂

∫  du dv 

 
will always yield an integral invariant of the group.  It is therefore our assumption that u 
and v will refer to parameters that remain invariant under the transformations of the 
group in question. 
 Moreover, if W (x, y, z, p, q, r, s, t, …) is any differential invariant of the group then: 
 

u uW

v v

∂Φ ∂Ψ
∂ ∂
∂Φ ∂Ψ
∂ ∂

∫  du dv 

 
will always be an integral invariant, and all integral invariants of the group in question 
that relate to surfaces will be found in that way. 
 
 The integral invariant of a surface that is presented here: 
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u uW

v v

∂Φ ∂Ψ
∂ ∂
∂Φ ∂Ψ
∂ ∂

∫  du dv 

 
can obviously be brought into the form: 
 

W∫  dΦ dΨ, 

 
and the theorem that was just stated, which can be extended to n dimensions with no 
further analysis, will therefore coincide with the general theorem I that was formulated on 
pp. 6. 
 
 

Chapter II 
 

The use of invariant first-order surface integrals. 
 

 23. We would like to assume that we have been given a linear, partial differential 
equation in x, y, z: 
 

0 = ξ (x, y, z) 
x

ξ∂
∂

 + η (x, y, z) 
y

ξ∂
∂

 + ζ (x, y, z) 
z

ξ∂
∂

 ≡ Xf 

 
to be integrated, and that we happen to know an associated first-order integral invariant: 
 

(1)     ( , , , , )

x x

u vx y z p q
y y

u v

ϕ

∂ ∂
∂ ∂⋅
∂ ∂
∂ ∂

∫  du dv 

 
that refers to a general surface: z = Z (x, y).  We would like to show that this situation will 
always yield essential simplifications of the integration of the equation Xf = 0. 
 However, we expressly point out that the developments of this chapter, as interesting 
as they might seem from the standpoint of function theory, are to be in no way regarded 
as definitive from a group-theoretic viewpoint.  As we will show in the next chapter, the 
general theory of invariants, which I have already based upon my theory of continuous 
groups for about twenty years now, then allows us to not just prove that one can employ 
the existence of an integral invariant to simplify the difficulties in integration, but it also 
allows us to decide which simplifications can be achieved in which individual cases. 
 It is precisely in the latter situation that one finds the most essential part of the 
profound significance of my general theory of invariants, whose essence – indeed, whose 
existence – continues to remain unknown to mathematicians. 
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 24. As we know, our assumption that the infinitesimal transformation Xf leaves the 
surface integral ∫ ϕ dx dy invariant finds its analytical expression in the existence of the 
equation: 
(2)     X′ϕ + (ξx + ηy + ξz p + ηz q) ϕ = 0, 
 
in which X′ f arises from Xf by a single extension, and possesses the form: 
 

(2′)    { ( ) ( )}

{ ( ) ( )} .

x z x y x y

y z y z y z

f f f
X f

x y z

f
p p p q p

p

f
q p p q p

q

ξ η ζ

ζ ζ ξ ξ η η

ζ ζ ξ ξ η η

 ∂ ∂ ∂′ = + + ∂ ∂ ∂
 ∂+ + − + − + ∂
 ∂+ + − + − + ∂

 

 
 The fundamental equation (2) next asserts that the first-order partial differential 
equation: 

ϕ (x, y, z, p, q) = 0 
 

admits the infinitesimal transformation, and it then follows from my general theory that 
the two first-order partial differential equations: 
 

ϕ (x, y, z, p, q) = 0, ξ p + η q – ζ = 0 
 
(if they do not coincidentally reduce to one equation) will possess ∞1 common integral 
surfaces: 

u (x, y, z) = const., 
 

which can, at any rate, be found by integrating a total differential equation: 
 

dz – P (x, y, z) dx – Q (x, y, z) dy = 0, 
 
and therefore by integrating a first-order ordinary differential equation.  In this, u (x, y, z) 
is eo ipso a solution of the linear, partial differential equation Xf = 0, and we can thus find 
the missing solution v, in any event, by integrating a new first-order differential equation. 
 It is, moreover, always possible, to avoid this last integration in such a way that the 
integration of the equation: 

0 = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 ≡ Xf 

 
can be reduced to the solution of a single first-order ordinary differential in any event, as 
long as an integral invariant: 

ϕ∫  (x, y, z, p, q) dx dy 
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of Xf is given, and ϕ does not vanish at the same time as ζ p + η q – ζ. 
 We would like to confirm the validity of that assertion. 
 To that end, we must generally go back quite a ways, and indeed, we will appeal to 
my theory of infinitesimal contact transformations, on the one hand, and to the 
connection between Jacobi’s theory of multipliers and my general theory of 
transformations that I discovered, on the other. 
 
 
 25. In my theory of contact transformations, I have shown that every infinitesimal 
contact transformation of the space x, y, z is determined completely by a single function 
W of x, y, z, p, q – viz., my so-called characteristic function – and that the symbol Bf of 
the infinitesimal transformation question possesses the form: 
 

Bf = 
W f W f W W f

p q W
p x q y p q z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
− W W f W W f

p q
x z p y z q

 ∂ ∂ ∂ ∂ ∂ ∂ + − +  ∂ ∂ ∂ ∂ ∂ ∂   
, 

 
moreover, or, with the use of the Poisson bracket symbol [], the form: 
 

Bf = [W f] – W 
f

z

∂
∂

. 

 
 I further show that from two infinitesimal contact transformations: 
 

B1f = [W1 f] – W1
f

z

∂
∂

,  B2f = [W2 f] – W2
f

z

∂
∂

, 

 
one can always derive a well-defined third contact transformation: 
 

Bf = [W f] – W
f

z

∂
∂

, 

 
whose characteristic function W possesses the form: 

 

W = [W1 W2] – W1
2W

z

∂
∂

+ W2
1W

z

∂
∂

, 

 
and indeed the connection between B1f, B2f, and Bf is given by the formula: 
 

Bf = B1 (B2 (f)) – B2 (B1 (f)) . 
 In particular, if we set: 

W1 = ϕ, W2 = ξ p + η q – ζ 
then we will have: 
 

W = [ϕ, ξ p + η q – ζ] – ϕ (ξz p + ηz q – ζz) + ϕz (ξ p + η q – ζ) . 
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However, from our assumption, equation (2) will be valid: 
 
 ξ ϕx + η ϕy + ζ ϕz + {ζx + ζz p – p (ξx + ξz p) – q (ηx + ηz p)}ϕp 
 + {ζy + ζz q – p (ξy + ξz q) – q (ηy + ηz p)}ϕq 
 + (ξx + p ξz + ηy + q ηz) ϕ = 0, 
 
or, what amounts to the same thing, the equation: 
 
(3)  0 = − [ϕ, ξ p + η q – ζ] – ϕz (pξ + qη – ζ) + (ξx + pξx + ηy + q ηz) ϕ, 
 
and thus the expression above for W will take on the remarkable form: 

 
(4)     W = ϕ (ξx + ηy + ζz) . 

 
 We note the result that we just obtained as a theorem: 
 
 Theorem 3.  If the first-order surface integral: 
 

ϕ∫  (x, y, z, p, q) dx dy 

 
admits the infinitesimal point transformation: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
then the two infinitesimal contact transformations: 
 

 Af = [ϕ, f] – ϕ 
f

z

∂
∂

, 

 Bf = [ξ p + η q – ζ, f] – (ξ p + η q – ζ])
f

z

∂
∂

 

will fulfill the relation: 
 

(5)  A (B(f)) – B (A(f)) = [ϕ (ξx + ηy + ζz), f] – ϕ (ξx + ηy + ζz)
f

z

∂
∂

, 

 
 as well as the equivalent relation: 
 
(5′)  A (B(f)) – B (A(f)) = (ξx + ηy + ζz) Af + ϕ [ξx + ηy + ζz, f] . 
 
 
 26. In order to be able to define a formula from the important formula that was just 
found (which is, for us, even more important, if also specialized), we would next like to 
prove that the system of equations: 
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(6)    ϕ (x, y, z, p, q) = 0, ξ p + η q – ζ = 0 
 
admit the transformation Bf, as well as the infinitesimal transformation Af. 
 The fact that our system of equations (6) admits the infinitesimal contact 
transformation: 

Bf = [ξ p + η q – ζ, f] – (ξ p + η q – ζ) 
f

z

∂
∂

 

 
is based upon the fact that this transformation, in turn, represents the extension of the 
infinitesimal point transformation: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
. 

One has: 

 B (ξ p + η q – ζ) = [ξ p + η q – ζ, ξ p + η q – ζ] − (ξ p + η q – ζ) 
( )p q

z

ξ η ζ∂ + −
∂

 

    = − (ξ p + η q – ζ) 
( )p q

z

ξ η ζ∂ + −
∂

 

and 

B (ϕ) = [ξ p + η q – ζ, ϕ] − (ξ p + η q – ζ) 
z

ϕ∂
∂

, 

 
or, if one considers equation (3): 
 

B (ϕ) = (ξx + pξx + ηy + qηz) ϕ, 
and, as above: 

B(ξ p + η q – ζ) = − ( )p q

z

ξ η ζ∂ + −
∂

(ξ p + η q – ζ). 

 
 The last two equations show that the expressions B(ϕ) and B(ξp + ηq – ζ) will vanish, 
due to the system of equations ϕ = 0, ξp + ηq – ζ = 0, and that this system of equations 
will actually admit the infinitesimal contact transformation Bf. 
 Moreover, one has: 
 

A(ξ p + η q – ζ) = [ϕ, ξ p + η q – ζ] – ϕ ( )p q

z

ξ η ζ∂ + −
∂

, 

  
or, upon considering the formula (3): 
 

A(ξ p + η q – ζ) = − ϕz (pξ + qη − ζ) + ϕ (ξx + ηy + ζz), 
 
and on the other hand: 

A (ϕ) = [ϕ ϕ] – ϕ 
z

ϕ∂
∂

. 



Lie – On integral invariants and their use in the theory of differential equations. 22 

 The expressions A(ξp + ηq – ζ) and A(ϕ) also vanish then, due to the system of 
equations ϕ = 0, ξ p + η q – ζ = 0, which therefore also admits the infinitesimal contact 
transformation Af.  We then have the: 
 
 Theorem 4.  If the first-order surface integral: 
 

ϕ∫  (x, y, z, p, q) dx dy 

admits the infinitesimal point transformation: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
then the system of two first-order partial differential equations ϕ = 0, ξ p + η q – ζ = 0 
will admit one of the two infinitesimal contact transformations: 
 

Af = [ϕ f] – ϕ f

z

∂
∂

  and Bf = [ξ p + η q – ζ, f] – (ξ p + η q – ζ) 
f

z

∂
∂

. 

 
The first-order differential equations ϕ = 0, ξ p + η q – ζ = 0 (when they are not 
coincidentally identical) defines a system in involution, moreover, since the left-hand side 
of the equation that we found before, namely: 
 
(3)   [ϕ, ξ p + η q – ζ] = − ϕz (ξ p + η q – ζ) + (ξx + pξx + ηy + q ηz) ϕ, 
 
will vanish due to the fact that ϕ = 0, ξ p + η q – ζ = 0.  This system in involution has, eo 
ipso, ∞1 integral surfaces u(x, y, z) = c. 
 
 
 27.  A three-dimensional manifold then exists in the five-dimensional space x, y, z, p, 
q, whose equations: 

ϕ = 0,  ξ p + η q – ζ = 0 
we solve for p and q: 

p = P (x, y, z),  q = Q (x, y, z). 
 
We can then consider the quantities x, y, z to be coordinates of the individual points of 
that three-dimensional manifold. 
 As we know, that manifold admits the two infinitesimal transformations: 
 

 Af = ( ) ( ) ( )p q p q x z y z

f f f f f
p q p q

x y z p q
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂+ + + − − + − +

∂ ∂ ∂ ∂ ∂
 

and 

 Bf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
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 + {ζx + pζz – p(ξx + p ξz) – q(ηx + pηz)}
f

p

∂
∂

 

 + {ζy + qζz – p(ξy + qξz) – q(ηy + qηz)}
f

q

∂
∂

, 

 
which, as we saw, are related by: 
 
(5′)  A (B(f)) – B (A(f)) = (ξx + ηy + ζz) Af + ϕ [ξx + ηy + ζz , f]. 
 
 If we now consider x, y, z to be the coordinates of the individual points of our three-
dimensional manifold then we can say that the truncated infinitesimal transformations: 
 

 Af = (ϕp)p = P, q = Q 
f

x

∂
∂

+ (ϕq)p = P, q = Q 
f

y

∂
∂

+ (pϕp + qϕq − ϕ)p = P, q = Q 
f

z

∂
∂

 

and 

 Bf = ξ(x, y, z)
f

x

∂
∂

+ η(x, y, z)
f

y

∂
∂

+ ζ(x, y, z)
f

z

∂
∂

 

 
will show us how that three-dimensional manifold transforms. 
 We would like to show that Af  and Bf  fulfill the relation: 
 

( ( )) ( ( ))A B f B A f−  = (ξx + ηy + ζz) Af . 
 
 In order to verify that assertion, we remark that the coefficients of ∂f : ∂x, ∂f : ∂y, ∂f : 
∂z on both sides of the identity equation (5′) must agree, and therefore that one must have 
the three relations: 
 
 A(ξ) − B(ϕp) = (ξx + ηy + ζz) ϕp , 
 A(η) − B(ϕq) = (ξx + ηy + ζz) ϕp , 
 A(ζ) − B(pϕp + q ϕq – ϕ) = (ξx + ηy + ζz) (pϕp + q ϕq − ϕ), 
 
respectively.  We make the substitution p = P(x, y, z), q = Q(x, y, z) on both sides of these 
three relations and thus obtain (cf., my Theorie der Transformationsgruppen, Bd. I, pp. 
110, formula (3)) the equations: 
 
 ,(( ) )p p P q QA Bξ ϕ = =− = (ξx + ηy + ζz) ⋅⋅⋅⋅ (ϕp)p = P, q = Q , 

 ,(( ) )q p P q QA Bη ϕ = =− = (ξx + ηy + ζz) ⋅⋅⋅⋅ (ϕq)p = P, q = Q , 

 ,(( ) )p p P q QA B p qζ ϕ ϕ ϕ = =− + − = (ξx + ηy + ζz) ⋅⋅⋅⋅ (pϕp + qϕq − ϕ)p = P, q = Q , 

 
which show us that the relation that we announced, namely: 
 
(7)     ( ( )) ( ( ))A B f B A f−  = (ξx + ηy + ζz) Af , 
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actually exists identically. 
 With that, we have the: 
 
 Theorem 5.  If the first-order surface integral: 
 

ϕ∫  (x, y, z, p, q) dx dy 

 
admits the infinitesimal point transformation: 

Xf = ξ(x, y, z) 
f f f

x y z
η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
of the space x, y, z, and thus the two equations ϕ = 0, ξp + ηq – ζ = 0 will give the values 
p = P (x, y, z), q = Q (x, y, z) when one solves them for p and q, then between Xf and the 
infinitesimal point transformation: 
 

Af = (ϕp)p = P, q = Q 
f

x

∂
∂

+ (ϕq)p = P, q = Q 
f

y

∂
∂

+ (pϕ p + qϕ q – ϕ) 
f

z

∂
∂

 

 
there will exist the relation: 
(7)     ( ( )) ( ( ))A B f B A f−  = (ξx + ηy + ζz) Af . 
 
 
 28. Before we go any further, we would like denote the increments in the quantities x, 
y, z under the transformation by α, β, γ, resp., in order to simplify the formulas and 
correspondingly set: 

Af  = α (x, y, z) ( , , ) ( , , )
f f f

x y z x y z
x y z

β γ∂ ∂ ∂+ +
∂ ∂ ∂

. 

 
 Formula (7) next shows that the two linear, partial differential equations: 
 

Xf = 0,  Af = 0 
 
always possess one (and, in general, only one) common solution u (x, y, z), from which, it 
will be immediately clear that equation: 
 

u = an arbitrary constant 
 

will yield the aforementioned integral surfaces of the system in involution: 
 

ϕ (x, y, z, p, q) = 0, ξp + ηq – ζ = 0. 
 
However, we can infer even more from formula (7), namely, that when v (x, y, z) denotes 
any solution of Xf = 0 that does not simultaneously fulfill Af = 0, the quantity Av  = Φ, 
which obviously fulfills the relation: 
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XΦ + (ξx + ηy + ζz) Φ = 0, 
 
will represent a multiplier of the linear partial differential equation Xf = 0. 
 We formulate the result that is then obtained (which merits some attention, even 
though it will play no role in what follows) as follows: 
 
 Theorem 6.  If:  

ϕ∫ (x, y, z, p, q) dx dy 

 
is an integral invariant of the infinitesimal transformation: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 
and if the two equations ϕ = 0, ξp + ηq – ζ = 0 yield p = P(x, y, z), q = Q(x, y, z) upon 
solving them then if v (x, y, z) represents a solution of the linear, partial differential 
equation Xf = 0 that does not, at the same time, fulfill the equation: 
 

0 = , , ,( ) ( ) ( )p p P q Q q p P q Q p q p P q Q

f f f
p q

x y z
ϕ ϕ ϕ ϕ ϕ= = = = = =

∂ ∂ ∂+ + + −
∂ ∂ ∂

 ≡ Af , 

 
then the quantity Af  will always be a Jacobi multiplier of the equation Xf = 0. 
 
 The theorem that was just presented will become invalid when a relation of the form: 
 

Af  = ρ ⋅⋅⋅⋅ Xf 
 
exists.  However, the relation (7) will then have the form: 
 

− Xρ ⋅⋅⋅⋅ Xf = (ξx + ηy + ζz) ρ ⋅⋅⋅⋅ Xf, 
 

and correspondingly one has the equation: 
 

X (ρ) + (ξx + ηy + ζz) ⋅⋅⋅⋅ ρ = 0, 
 
which states directly that r represents a multiplier of Xf = 0.  If we preserve the notations 
of Theorem 6 then we will have: 
 
 Theorem 7:  If the expressions Af and Xf of Theorem 6 are coupled by the relation: 
 

Af = ρ ⋅⋅⋅⋅ Xf 
then ρ will be a multiplier of Xf = 0. 
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 29. We will now show that it is always possible to give a multiplier of our equation Xf 
= 0.  To that end, we would like to employ the following theorem, which we presented 
some time ago (cf., e.g., Math. Ann., Bd. XI [pp. 508, this coll., v. IV, art. III, § 10, no. 
23]): 
 
 
 Theorem 8:  If the linear, partial differential equation: 
 

0 = 
f f f

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
 ≡ Uf 

 
admits the infinitesimal transformation: 
 

Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 
and if, as a result, one has the relation: 
 

X Uf – UX f = λ ⋅⋅⋅⋅ Uf, 
 
and if M is a multiplier of the equation Uf = 0 then the quantity: 
 

X (log M) + 
x y z

ξ η ζ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 + λ 

 
will be a solution of the equation Uf = 0. 
 
 We apply this theorem to the aforementioned equation Af = 0 and set: 
 

Af = 
f f f

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, 

 
for brevity.  We will now have the equation: 
 
(7)    ( ( )) ( ( ))X A f A X f−  = − (ξx + ηy + ζz) ⋅⋅⋅⋅ Af , 
 
and in the present case we will have: 
 

ξx + ηy + ζz + λ = 0, 
 
which once more says that the quantity X (log M) will represent a solution of Af = 0, as 

long as M refers to a multiplier of Af = 0: 
 



Lie – On integral invariants and their use in the theory of differential equations. 27 

A  (X log M) = 0. 
 
 If we combine this result with the previous results (cf., Theorem 6) then we can say: 
 
 Theorem 9:  If the expressions: 
 

Af = 
f f f

x y z
α β γ∂ ∂ ∂+ +

∂ ∂ ∂
, Xf = 

f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
(as in the foregoing developments) are related by: 
 

A (X (f)) – X ( A (f)) = (ξx + ηy + ζz) ⋅⋅⋅⋅ Af  
 
then every solution v of Xf = 0 will yield the multiplier Av  of Xf = 0, and every multiplier 
M of Af = 0 will yield a solution of Af = 0, namely, X (log M). 
 
 If we set f equal to log M in the identity (7): 
 

A (X (f)) – X ( A (f)) = (ξx + ηy + ζz) ⋅⋅⋅⋅ Af  
 
and remark that A (X (log M)) then vanishes then we will get the equation: 
 

X ( A (log M)) + (ξx + ηy + ζz) ⋅⋅⋅⋅ (log )A M = 0, 
 
which states that A (log M) represents a multiplier of Xf = 0, if M denotes a multiplier of 
Af = 0.  However, under that assumption, one will have the equation: 
 

A (log M) + αx + βy + γz = 0, 
 
and therefore the quantity αx + βy + γz , which we can always exhibit, will be a multiplier 
of Xf = 0. 
 
 
 30. In order to stress the importance of the result that was just found, we formulate it 
as a theorem: 
 
 Theorem III.  If the surface integral: 
 

ϕ∫  (x, y, z, p, q) dx dy 

 
remains invariant under the infinitesimal transformation: 
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Xf = 
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
then it will be possible to find a multiplier of the equation Xf = 0.  Namely, if the 
equations: 

ϕ (x, y, z, p, q) = 0, ξp + ηq – ζ = 0 
 
yield p = P(x, y, z), q = Q (x, y, z) when one solves them, and if we set: 
 

,p P q Q
p

ϕ

= =

 ∂
 ∂ 

= α (x, y, z), 
,p P q Q

q

ϕ

= =

 ∂
 ∂ 

= β (x, y, z), 

 

,p P q Q

p q
p q

ϕ ϕ ϕ
= =

 ∂ ∂+ − ∂ ∂ 
= γ (x, y, z) 

 
then the quantity αx + βy + γz will be a multiplier of Xf = 0. 
 If the equation ϕ = 0 is linear in p and q: 
 

ϕ ≡ Ap + Bq – C, 
and if the determinant: 

A B

ξ η
 ≡ 0 

 
then our analysis will become invalid.  By contrast, if ϕ is linear in p and q, while the 
determinant above is not equal to zero then we will get an actual multiplier of Xf = 0. 
 If the quantity ϕ is not linear in p and q then values p = P(x, y, z), q = Q (x, y, z) that 
emerge by solving the equations ϕ = 0, ξp + ηq – ζ = 0 will be multi-valued functions of 
x, y, z, in general.  The multiplier αx + βy + γz will also represent a multi-valued function 
of x, y, z then inside of a domain in which ξ, η, ζ, … are regular and single-valued.  In 
general, we will then find several multipliers of Xf = 0, and correspondingly, by dividing 
two multipliers, a solution of Xf = 0 whose integration will amount to a quadrature in the 
adverse case. 
 
 
 31. As we expressly pointed out, the theorem that was just stated will become invalid 
when ϕ is linear in p and q and possesses the special form: 
 

ϕ ≡ σ (ξ p + η q) + ω, 
 
moreover.  We then directly pose the question of what sort of advantage we can infer in 
this special case from the known integral invariants. 
 We easily recognize that this case actually occurs.  Namely, if u (x, y, z) and v (x, y, z) 
are two solutions of Xf = 0 then, as we saw before, the integral: 
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x z x z

y z y z

u pu v pv

u qu v qv

+ +
+ +∫  dx dy, 

 
or, when written out in detail, the integral: 
 

x x z z x x

y y y y z z

u v u v u v
p q

u v u v u v

  + + 
  
∫  dx dy, 

 
will be an invariant of Xf, and there will actually exist a relation of the form: 
 

ϕ = σ (ξ p + η q – ζ) 
here. 
 A special discussion of the aforementioned exceptional case might be in order. 
 If: 

( )Ap Bq C+ −∫ dx dy 

 
is an integral invariant of the transformation Xf, and therefore not all of the two-rowed 
determinants of the matrix: 

(M)     
A B C

ξ η ζ
 

 
vanish then we can always arrange that: 
 

A B

ξ η
 ≡/  0 

 
by a suitable permutation of the coordinates x, y, z.  We therefore need to concern 
ourselves with only the assumption that all two-rowed determinants of the matrix (M) 
vanish, and that correspondingly: 
 

ϕ ≡ Ap + Bq – C ≡ ω (ξ p + η q – ζ). 
 
 If we substitute this value for ϕ into the fundamental equation: 
 

X′ ϕ + (ξx + pξz + ηy + qηz) ϕ = 0 
 
then we will obtain the relation: 
 
 Xω ⋅⋅⋅⋅ (ξ p + η q − ζ) + ω (pXξ + qXη – Xζ) 
 + ωξ { ζx + pζz – p(ξx + pξz) – q(ηx + pηz)} 
 + ωη { ζy + qζz – p(ξy + qξz) – q(ηy + qηz)} 
 + (ξx + pξz + ηy + qηz) ω (ξ p + η q − ζ) = 0 
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and ultimately the equation: 
 

(ξ p + η q − ζ) {X (ω) + (ξx + ηy + ζz) ω} = 0, 
 
which says that ω represents a multiplier of Xf = 0. 
 We have then succeeded in completing the previous results, and we can 
correspondingly state the following theorem: 
 
 Theorem IV:  If we know a first-order surface integral: 
 

ϕ∫  (x, y, z, p, q) dx dy 

 
that remains invariant under the [infinitesimal] transformation: 
 

Xf =
f f f

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂
 

 
then it will always be possible to find a multiplier of the equation Xf = 0.  If the rules of 
Theorem III give no multiplier of Xf = 0, even after permuting the symbols x, y, z, then 
ϕ will be linear in p and q and possess the form: 
 

ϕ = ρ (ξ p + η q − ζ), 
 
and then ρ itself will represent a multiplier of Xf = 0. 
 On the other hand, if M is an arbitrary multiplier of Xf = 0 then: 
 

M∫ (ξ p + η q − ζ) dx dy 

 
will always be an integral invariant of Xf. 
 
 The Jacobi multiplier theory of an equation: 
 

ξ fx + η fy + ζ fz = 0 
 
thus takes the form of a special case, in a certain sense, of the theory of invariant surface 
integrals. 
 
 
 32. We summarize the most important results of the investigations in this chapter into 
the following theorem: 
 
 Theorem V:  If one knows a surface integral: 
 

ϕ∫ (x, y, z, p, q) dx dy 
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that remains invariant under the infinitesimal transformation Xf then that fact can always 
be utilized for the integration of the equation Xf = 0. 
 The unfavorable case is then that ϕ possesses the form: 
 

ϕ ≡ ρ (ξ p + η q − ζ), 
 
so ρ will then be a Jacobi multiplier of Xf = 0, and since, on the other hand, the integral: 
 

M∫ (ξ p + η q − ζ) dx dy 

 
always remains invariant when M denotes a multiplier of Xf = 0, the known surface 
integral in the present case will accomplish only the determination of the latter solution 
by quadrature. 
 If ϕ does not possess the form ρ (ξ p + η q − ζ) then the equations: 
 

ϕ (x, y, z, p, q) = 0, ξ p + η q − ζ = 0 
 
can be solved for p and q in any event after a suitable permutation of the quantities x, y, 
z: 

p = P (x, y, z),  q = Q (x, y, z). 
If one then sets: 
 

(ϕp)p=P,q=Q = α, (ϕq)p=P,q=Q = β,  αP + βQ = γ 
 
then the quantity αx + βy + γz will always be a Jacobi multiplier of the equation Xf = 0.  
Furthermore, the total differential equation: 
 

dz – P (x, y, z) dx – Q (x, y, z) dy = 0 
 
will be integrable then, and its integral u (x, y, z) will always be a solution of Xf = 0, 
whose missing solution will then be given by quadrature. 
 If ϕ is not linear in p and q then P and Q, as well as α, β, γ, will be multi-valued 
functions of x, y, z, in general, and the formula αx + βy + γz will then give several 
multipliers of Xf = 0 whose integration will require only performable operations in this 
case. 
 The example in which a relation of the form: 
 

αp + βq – γ = σ (ξ p + η q − ζ) 
 
exists deserves special attention; namely, σ would then be a multiplier, and αx + βy + γz : 
σ would be a solution of Xf = 0. 
 
 One can now address the question of how the integration of an equation Xf = 0 
simplifies when one knows a curve integral ∫ ψ (x, y, z, y′, z′) that admits Xf from the 
outset in a completely analogous way. 
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Chapter III 
 

Making the greatest possible use of known integral invariants. 
 

 33.  In the previous chapter, we addressed the question of how the integration of the 
linear, partial differential equation: 
 

0 = ξ (x, y, z) 
f

x

∂
∂

+ η (x, y, z) 
f

y

∂
∂

+ ζ (x, y, z) 
f

z

∂
∂

≡ Xf 

 
simplifies when a first-order integral invariant of the infinitesimal transformation Xf: 
 

(1)     ϕ∫  (x, y, z, p, q) dx dy 

 
happens to be known from the outset.  We succeeded in deriving several beautiful results, 
from which it emerged that one can always utilize the existence of such an invariant for 
the integration of the equation Xf = 0.  In certain special cases, it was, moreover, possible 
to prove that our theorems allowed us to derive the greatest possible benefit from the 
situation in question.  However, we have still not established precisely what 
simplification that the presence of a known first-order integral invariant (1) will imply in 
complete generality. 
 Now, my general theory of invariants allows one to resolve definitively not only the 
problem that was just described, but in fact any such problem. 
 
 
 34. In order to ease the discussion, we temporarily restrict ourselves to the following 
problem, which still possesses a very general character: 
 
 How does the integration of the linear, partial differential equation: 
 

0 = ξ1 (x1, …, xn, z1, …, zm)
1

f

x

∂
∂

+ …+ ξn (x, z)
n

f

x

∂
∂

+ ζ1
1

f

z

∂
∂

+ … + ζm

m

f

z

∂
∂

≡ Xf 

 
simplify when an integral invariant: 
 

2
1 1

1 1 2
1 1

, , , , , , , , ,n m

z z
x x z z

x x
ϕ
 ∂ ∂
 ∂ ∂ 

∫ … … … …  dx1 dx2 … dxn 

 
of the infinitesimal transformation Xf is known from the outset? 
 
 If we imagine, for the moment, that we already know the finite equations: 
 
 xκ′  = χκ (x1, …, xn, z1, …, zm, c) (κ = 1, …, n), 

 zκ′  = ψi (x1, …, xn, z1, …, zm, c) (i = 1, …, m), 
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of the one-parameter group Xf then we will known how ϕ and Xf will behave by the 
introduction of new variables x′, z′.  Indeed, Xf remains invariant while ϕ will be 
reproduced with a factor, and one correspondingly has the equation: 
 

(2)  1
1 1

1

, , , , ,
z

x z
x

ϕ
 ′∂′ ′ ′∂ 
… … … = 1

1 1
1

, , , , ,
z

x z
x

ϕ
 ∂
 ′∂ 
… … … : 1

1

n

n

xx

x x

 ′ ′ ∂∂±   ∂ ∂   
∑ ⋯ , 

where: 

ix

xκ

′ ∂
 ∂ 

= 
1

m
ji i

j j n

zx x

x z xκ =

∂′ ′∂ ∂+
∂ ∂ ∂∑ , 

and furthermore: 
 

(3)   ( , ) ( , )i j
i ji i

f f
x z x z

x z
ξ ζ∂ ∂′ ′ ′ ′+

′ ′∂ ∂∑ ∑  = ( , ) ( , )i j
i ji i

f f
x z x z

x z
ξ ζ∂ ∂+

∂ ∂∑ ∑ . 

 
 We will show that everything depends upon whether or not the transformations of the 
one-parameter group Xf are the only ones that fulfill our equations (2) and (3).  In the 
former case, we can show that the integration of the equation Xf = 0 will not require 
quadratures, but it can be performed by executable operations. 
 
 
 35. If there are even more transformations: 
 

ix′  = χi (x, z), jz′  = ψi (x, z) 

 
that fulfill both of our condition equations (2) and (3) then the form of these condition 
equations will show that all of these transformations define a group, which can be mixed 
under some circumstances, but it will then include an invariant continuous subgroup G. 
 In calculations, everything will take the following form: 
 If one considers the quantities ix′  and jz′  in the two equations: 

 

(2)   1
1 1

1

, , , , ,
z

x z
x

ϕ
 ′∂′ ′ ′∂ 
… … …  = 1

1 1
1

, , , , ,
z

x z
x

ϕ
 ∂
 ∂ 
… … … : 1

1

x

x

 ′∂±  ∂ 
∑ …, 

 

(3)   ( , ) ( , )i
i

f f
x z x z

x zκ
κ

ξ ζ∂ ∂′ ′ ′ ′+
′ ′∂ ∂∑ ∑ = ( , ) ( , )j

j

f f
x z x z

x zκ
κ

ξ ζ∂ ∂+
∂ ∂∑ ∑  

 
to be unknown functions of the x and z, and if one gradually assigns the values 1x′ , …, 

nx′ , 1z′ , …, mz′  to the quantities f in the latter equation then one will obtain a series of 

partial differential equations that determine all of the x′ and z′ as functions of x and z.  
The differential equations, in turn, yield what I have preferred to call the defining 
equations of the finite transformations of the desired group G. 
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 Here, the most general system of solutions x1, …, xn, z1, …, zm will emerge from a 

special system of solutions 1x′ , …, nx′ , 1z′ , …, mz′  by way of equations: 

 
xi = 1 1( , , , , , )i n mF x x z z′ ′ ′ ′… … , zi = 1 1( , , , , , )n mx x z zκ ′ ′ ′ ′Φ … …  

 
that define a group, and in fact the group G. 
 Our differential equations can then be brought into the form: 
 

1 1
1 1

1 1

, , , , , , , , ,n m

x z
L x x z z

x zκ
 ′ ′∂ ∂′ ′ ′ ′ ∂ ∂ 
… … … …  = Bκ (x, z), 

 
in which the Lκ denote differential invariants of the group G, and they define a complete 
system of differential invariants, moreover. 
 
 
 36. The integration of the equations Lκ = Bκ will, however, be governed by the group 
G in a known way. 
 If the finite transformations of the group Xf are the only transformations that fulfill 
our demands – in other words, if the group G includes no other transformations besides 
the finite transformations of the one-parameter group Xf – then among the differential 
invariants Lκ, one will find m + n – 1 of them that are of order zero: 
 

( )1 1, , , , ,n mL x x z zκ ′ ′ ′ ′… …  (κ = 1, …, m + n − 1), 

 
namely, the solutions of the equation: 
 

0 = ( ) ( )1 1, , , , , ,i n m
i

f f
x x z z x z

x zκ
κ

ξ ζ∂ ∂′ ′ ′ ′ ′ ′+
′ ′∂ ∂∑ ∑… … . 

 
One therefore derives m + n – 1 equations in the 1x′ , …, nx′ , 1z′ , …, mz′  and the  1x′ , …, 

nx′ , 1z′ , …, mz′  : 

Ωκ (x, z, x′, z′) = 0 
 
from the equations Lκ = Bκ (by eliminating all derivatives of the x′ and z′ from the x and 
z).  These equations determine all paths of the infinitesimal transformation Xf directly, 
because they yield all ∞1 positions x′, z′ that belong to an arbitrary initial position. 
 
 
 37. We then assume that the group G includes only two infinitesimal transformations, 
namely, Xf and Yf.  The equations: 
 

X′ f = 0,  Y′ f = 0 
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then define a complete system with m + n – 2, or even m + n – 1, solutions: 
 

Lκ (x′, z′), 
 
which can be regarded as differential invariants of order zero of the group G.  One then 
certainly finds all of the equations of the form: 
 

Lκ (x′, z′) = Lκ (x, z) 
 
among the equations Lκ = Bκ .  We will find these equations, or a system of equations that 
is equivalent to them, namely: 

Wi (x, z, x′, z′) = 0, 
 
when we drop all of the derivatives of the x′ and z′ with respect to the x and z from the 
equations Lκ = Bκ by elimination.  If one assigns fixed values to the x and z in the systems 
of equations Wi = 0 that are found in that way then one will obtain a two-dimensional 
region in the space of x′, z′, in general, that contains the ∞1 paths of Xf.  One then finds 
the paths by quadrature. 
 
 
 38. One finds the finite equations of the group G in all situations by integrating 
auxiliary equations whose number and properties are determined from the group G in a 
way that I gave some time ago.  Once the finite equations of the group G have been 
found, one will determine the finite equations of the subgroup Xf, and thus, at the same 
time, the paths of Xf.  In this, if the group contains only a bounded number of parameters 
then it will only be necessary to perform certain quadratures.  That follows immediately 
from my general theorem that, as long as the finite equations of any continuous, finite 
group have been found, one can always find the finite equations of any subgroup − and in 
particular, the path of every infinitesimal transformation of the group, as well − by 
performing certain quadratures. 
 
 
 39. We now assume that the group G is infinite, and that we have already found its 
finite equations by integrating the required auxiliary equations.  We will show that the 
determination of the paths of Xf then demands only certain quadratures. 
 If the group G is intransitive then one will find the zero-order invariants of that group 
by elimination. 
 We can find all finite transformations of the space x, z that commute with all 
transformations of the group G without integrating, moreover.  These new 
transformations define a group Γ in their own right that includes Xf.  If the group G is 
infinite and transitive then the group Γ must be intransitive.  Its zero-order invariants, 
which represent solutions of Xf = 0, eo ipso, will be found without integration. 
 We now know all zero-order invariants of the group G, and likewise all zero-
invariants of the group Γ.  One thus finds all invariants of the group g that consists of the 
common transformations of the groups G and Γ without integration.  At the same time, 
one finds the finite equations of the group g whose transformations commute with each 
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other pair-wise, and thus with Xf, as well.  One then finds the still-missing solutions of the 
linear, partial differential equation Xf = 0 by certain quadratures that are independent of 
each other. 
 Everything then comes down to the determination of the finite equations of the group 
G.  If the transformations of that group have been found then the integration of Xf = 0 
will require only certain quadratures, in any case. 
 We reserve the right to present the resolution of the problem that we posed here, 
which we sketched out in a brief form, in a more rigorous form, and at the same time, to 
illustrate it by some examples. 
 
 
 40. It is easy to see that the general theories that were developed here can be 
generalized in several directions with no further discussion. 
 For example, one can assume that we have certain infinitesimal transformations X1f, 
X2 f, …, Xq f that determine a complete system: 
 

X1f = 0, X2 f = 0, …, Xq f = 0, 
 
and that one knows certain common integral invariants: 
 

1 1dϕ ω∫ , 2 2dϕ ω∫ , …, dν νϕ ω∫  

 
of all Xf from the outset.  One can ask what sort of simplifications in the integration of 
the complete system could be gleaned from this situation. 
 Then again, one can assume that a complete system X1f = 0, …, Xq f = 0 to be 
integrated has been given and that certain common integral invariants are known from the 
outset, and likewise, certain common differential invariants of all Xκ f .  In every 
individual case, my general theory of invariants will allow one to decide how the 
circumstances that present themselves can be utilized for the integration of the complete 
system. 
 Finally, one can assume that one is dealing with a certain complete system X1f = 0, 
…, Xq f = 0 with certain known infinitesimal transformations Y1f, Y2f, …, and certain 
known integral and differential invariants, as well as certain invariant systems of 
differential equations to be integrated.  My theory of invariants will resolve every 
problem of that kind in a definitive way. 
 I have already dealt with various special problems of this nature thoroughly for some 
time now.  For example, my integration of an equation Af = 0 with a known multiplier 
and known infinitesimal (or finite) transformations belongs to them. 
 
 
 41. We shall not refrain from expressly proving that the foregoing developments 
implicitly resolve an interesting problem, namely, that of the determination of all 
transformations under which a given integral or several such integrals (differential 
expressions or equations, resp.) remain invariant. 
 For example, if one wishes to find all transformations of space x, y, z under which a 
first-order surface integral: 
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ϕ∫  (x, y, z, p, q) dx dy 

 
remain invariant then one will define the equation: 
 

ϕ (x, y, z, p, q) = 
( , , , , )x y z p q

x y

ϕ
 ∂ ∂ ±   ∂ ∂  

∑
x h

. 

 
If one replaces the quantities p and q with their values as functions of: 

 

p, q, 
x

∂
∂
x

, 
y

∂
∂
y

, …, 
z

∂
∂
z

 

 
then one will obtain the defining equations of the most general group G whose 
transformations leave the given integral invariant. 
 
 
 42. In general, it is advantageous to look for the infinitesimal transformations of the 
group G first.  To that end, one defines the equation: 
 

X′ ϕ + (ξx + ηy + p ξz + q ηz) ϕ = 0 
 
and demands that it should be valid for the p and q identically (1). 
 
 

Chapter IV 
 

Integral invariants of groups of contact transformations. 
 

 43. In this chapter, we will extend the concept of integral invariant to groups of 
contact transformations.  In order to simply the discussion and the formulas, we shall 
restrict ourselves to transformations in x, y, z, p, q.  The extension to n dimensions, like 
the restriction to the truncated contact transformations (i.e., to transformations in x1, .., xn, 
p1, …, pn), involves no complications. 
 We denote the infinitesimal transforms of a given group of contact transformations of 
the space x, y, z with the symbol: 
 

                                                
 (1) Carda, who studied my theories under me at Leipzig, recently determined all point transformations 
of the space x, y, z under which the integral: 

2 21 p q+ +∫  dx dy 
 
of the surface space remains invariant.  The aforementioned theory will give a simple resolution of that 
problem. 
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[W f] – W 
f

z

∂
∂

= Xf, 

and let: 

( , , , , , , , )
' '

x y
x y z p q r s t

x y

′ ′
Ω ⋅∫  du dv, 

 
in which the parameters u, v are not transformed, be an invariant second-order surface 
integral of that group, while x′, 'x , y′, 'y  denote the partial derivatives of x and y with 

respect to u and v, as before. 
 If we now set: 

' '

x y

x y

′ ′
 = ∆ 

then we will get: 

X (∆) = 
( ) ( )

' '

p qW W

x y

′ ′
+ 

( ) ( )' 'p q

x y

W W

′ ′
, 

and with the use of the symbols: 
 
 Φx + Φz p + Φp r + Φq s = A Φ, 
 Φy + Φz p + Φp s + Φq t = B Φ 
that will yield: 

X (∆) = {A (Wp) + B (Wq)}∆, 
 
and correspondingly Ω  will be determined by the equations: 
 

( ) ( )p qX AW BWΩ + + Ω  = 0. 

 
 r, s, t will take on increments of: 
 

δr = ρ δω, δs = σ δω, δt = τ δω 
 
under our infinitesimal transformations Xf, which can be found in a known way. 
 
 
 44. We define the infinitesimal transformation: 
 

[Wf] – Wfz + ρ fr + σ fs + τ ft – {AWp + BWq} Ω 
f∂

∂Ω
≡ Uf 

 
and remark that this transformation in the variables x, y, z, p, q, r, s, t, and Ω leaves not 
only the two systems of equations: 

dz – p dx – q dy = 0 
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and 
dz – p dx – q dy = 0, dp – r dx – s dy = 0, dq – s dx – t dy = 0 

 
invariant, but, at the same time, the equation: 
 

Ω – Ω (x, y, z, p, q, r, s, t) = 0. 
 
 Therefore, if U1 f and U2 f are two such transformations with the characteristic 
functions W1 and W2 then the transformation: 
 

U1(U2(f)) – U2(U1(f)) 
 

will also leave each of the three systems of equations above invariant, and this 
transformation U1(U2(f)) – U2(U1(f)) will then possess a form that is entirely similar to 
that of U1(f) and U2(f).  From my rules, its characteristic function will be the quantity: 
 

[W1 W2] – W1 2W

z

∂
∂

+ W2 1W

z

∂
∂

. 

 
 
 45. In that way, we recognize that all Uf that belong to the given group of contact 
transformations define an extended group in the variables x, y, z, p, …, Ω. 
 If that extended group has invariants Φ that are not all free of Ω, and one finds, by 
solving an equation: 

Φ (x, …, Ω) = a = const. 
for Ω, the value: 

Ω = Ω (x, y, z, p, q, r, s, t) 
then: 

Ω∫  dx dy 

 
will be an invariant second-order surface integral of our group of contact transformations. 
 One determines all invariant surface integrals of order three and higher in an entirely 
analogous way.  One sees, with no further analysis, how the general theorems on groups 
of contact transformations that were presented in chapters I and III can be extended. 
 The application of these theories to first-order partial differential equations, canonical 
systems, and so on, deserves special attention. 
 
 

__________ 
 
 
 

 
 


