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1. In atreatise on integral invariants and differentigériants of continuous groups,
| recently showed (cf., these Berichte 1897, pp. 342 [fmteXXVII, pp. 649]) that all
integral invariants:

j¢dw

of a given continuous group can be found by integratingnaptete system.

Now, the desired quantity itself appears in the complete system in question as an
independent variable, while on the other hand, a sol@iah that complete system will
yield an integral invariant only b actually includes the quantitg Moreover, since the
complete system in question generally possesses soldtitdret do not include, and in
fact it can often happen that all solutiosare independent ap, a discussion of the
matrix of the complete system in question in each individase will be required before
a definitive answer can be given to the question that pesed of the existence of
integral invariants of orden.

Now, from the nature of things, it is generally impbksito formulatea general
theorem that resolves the question of the integral iewisr of anarbitrary continuous
group definitively, and at the same time, in an exhaustase vin fact, several essentially
different possibilities can occur. At least, onenisiposition to present general theorems
on the existence of integral invariants.

We shall prove such theorems in the first chapter sfttkatise, and at the same time,
we shall go into the connection between the two qaiscef differential and integral
invariants more closely.

2. In the second chapter, we imagine that we are giviarear, partial differential
equation irthreeindependent variables:

of of of
0=46(XY,)—+nN(X ¥ )I—+{(xy = =Xf
0x oy 0

N
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to be integrated, and that we, perchance, know a fidgr@urface integral:

[#(xy.2 B9 dxd
or a first-order curve integral:

[pxy.zy. 9 (y:%’z:%j

that remains invariant under the (infinitesima§nsformatiorXf.

We show that the existence of such an integraariamt will always imply a
simplification of the integration of the equatixh = 0. However, at the same time, we
recognize that various possibilities are concewabWhereas it can happen that under
certain circumstances the integration Xff = 0 can be converted into performable
operations, in other case, one can find that thetence of a certain integral invariants
will offer no advantage over the discoveryJatobimultipliers.

No matter how remarkable and elegant that theréme® of the second chapter might
seem, they therefore do not completely resolve-the itself specialized- question of
simplifying the integration of an equation:

of of of
0=¢f—+n—+— =Xf
‘(ax ,76y Zaz

that follows from the existence of a known, invatjdirst-order surface or curve integral.
On the other hand, one can by no means foreseeherhéte theories in the second
chapter can be extendedrtalimensional spaces and to integral invariantsecbed and
higher orders.

3. Therefore, in the third chapter, we shall embgr&ruanother path, and indeed we
shall applythe general methods of my theory of invariantkl that way, in each
individual case, we will find thathe given integration problem will lead back to a
completely bounded problem that arises completely in my theories,lynathe
integration of differential equations of the finite transformations obratinuous group.

Finally, in thefourth chapter, we extend the concept of integral invasiam groups
of contacttransformations, and in that way we will find goportunity to develop some
general theories that merit a certain intereshairtown right.

4. In my previous treatise, | already saw fit to sggly emphasize that the theory of
integral invariants must be considered to be atenap my general theory of differential
invariants. Each chapter of the present treatilecanfirm the validity of that way of
looking at things. In fact, the theories of thisdtise are basically only consequences of
my general theory of transformations. If | nonétke give weight to the results of this
paper then that is based primarily upon the faat thy current developments will yield
instructive illustrations of my general theory.
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| reserve the right to discuss various problems ttepased by the developments of
this treatise, if only implicitly. At the same timé,will even generalize the general
concept of an integral invariant in several directions.

Chapter I.
General theoremson the existence of integral invariants.

5. If one is given a continuous group then several setdfefeltial invariants will
always belong to that group whose form depends, not only th@form of the group by
itself, but also upon the circumstances that are agsdowith the transformations of the
group.

For example, if the group in question consists of pwarisformations of the spaxe
y, z then these transformations can be performedcunmves surfaces differential
equations families of surfaces, and in fact, many differenhgfsi In particular, if the
group isfinite and continuous then there will always exist an irdirget of associated
differential invariants in every case, that is, re¢gssl of whether one considers curves,
surface, differential equations, and so forth.

Things are quite different when the groupnfinite. Then, one cannot assert from
the outset that infinitely many differential invarianwill belong to this group, which
might relate to surfaces (or curves), for example)enmne generally knows that one can
always apply the transformations of the group in sitagtithat correspond to infinitely
many differential invariants.

6. If one considers, for example, the group of all pdiahsformations = X(x, ,
2), y1 =Y, z1 = Z, under which all volumes remain unchanged — that is;aalsformations
whose functional determinant:
zia_xl%% =1,
0ox 0y 0z

then one will easily recognize that no differential maats of surfaces:

JXY,zpgrst ...

that includez as a function ox, y can belong to that group, indeed, not even an invariant
partial differential equation:
QXxVY,zp,qr,st..)=0.

Namely, ifz = ¢ (X, y) were an integral surface of such an invariant diffeaén
equationQ = 0 andz = y (x, y) were any surface that did not fulff? = O then the
transformation:

X=X, y1=y, z=z+xy(xy)-¢Ky),
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which obviously belongs to the group, would take the integirdacez = ¢/ (x, y) of the
invariant differential equatio® = 0 to a surface = x (x, y) that does not satisf) = 0,
and that will contradict the assumed invarianceQof 0. There is then no invariant
partial differential equatio® (x,y,z p, g, ...) = 0.

Surfaces then have no differential invarian{s,Jy, z, p, g, r, S, t, ...) under the group
of all transformations x= X, y1 =Y, zz = Zwhose functional determinant is equallto A
completely analogous reasoning shows that curves canhalge no properties that
remain invariant under that group, so no differential invasiaf the form:

uxyzy,z,y,7z,..) ( :%j

can exist.

7. On the other hand, consider the group:
X=X, yi=Y, za=2Z(zxY),

whose infinitesimal transformations possess theigaifiorm:
of
{(%Y, 2 —.
0z

If one now seeks all associated differential inwairs of surfaces then if one reasons
precisely as one did in the previous case, one wilturn, recognize that differential
invariants of first order or higher(x,y, z p, g, r, ...) do not exist. By contrast,andy
will be differential invariants of order zero of ogroup, as well as every function xf
andy.

8. Itis probably worth observing thttiere are actually infinite groups in ¥, z for
which there existwo and only two differential invariants of surfacesrlhat is noteworthy
due to the fact that as long as three independetehtial invarianta, v, w of surfaces
exist, one can always construct infinitely manyeténtial invariants:

vV u
Xy

uv
Xy

ow

ow

ou

ov

vwl o
Xyl

uwl
Xyl

On the other hand, if we imagine the transfornmegtiof the group:

(% y.2) %
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being applied t@urvesthenx andy will, in turn, be differential invariants of order per
However, the existence of these two invariants willvrsuffice for the construction of
infinitely many further invariants:

9. Thus, if one is given an (infinite) continuous group of paiahsformations of
spacex, Y, z, and if its transformations were applied to surfacea the following distinct
cases could occur:

It is conceivable that absolutely no surface invarigfx y, z, p, g, r, S, t, ...) exists,
or that a single such invariant exists, or that theeetwo such invariants, v, and none
that are independent af v, or finally, that there are infinitely many independsutface
invariants that can then be always derived froecompletesystem:

I, 12, J1, ..., Im

by differentiation. In that last case, the generainfof the associated surface invariant

will be:
3]
Q (Il,lz,Jl,...,Jl,a—lll j .

This example suffices to show thmatiny essentially different cases can come about in
the search for all differential invariants of a g-fold manifold under groapgoint
transformations of an n-fold space.

10. Under these circumstances, it should not be surpribatgnb simple and general
law can be given for the appearance of integral inveriander (infinite) continuous
groups that exhausts all possibilities. However, wepsesent a series of theorems that
afford an actual insight into the state of affairs.

In order to ease the discussion, we will first remaithree-fold space, vy, z

If we first consider the group of all translations amndagine that these
transformations are applied to surfaces then we cagnée immediately that, g, r, s,
t, and absolutely all differential quotients bfwith respect tox andy will remain
invariant. If we set:

then we can bring each such differential invariant sdirdace into the form:

0J
Qll,1,,d,...,d,—= ,j .
(1 211 1a|l
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If we are given a non-developable surface then we chgesp andl, = q asGaussian
coordinates of the point on the surface. Every (closed)e on that surface will then be
defined by a relation betweenandl, (that is, betweep andq). Any surface integral
can then be brought into the form:

[wddt,,

regardless of whether it remains invariant under the grangbthe associated domain of
integration will then be defined by a certain equatiombehl; andl, .

However, it is immediately obvious that a surfaceg'raéjw dl, dl, will remain
invariant under all transformations of our group if and dhlW is itself a differential

invariant of the group, and therefore the general foranohvariant surface integral will

be:
8, 9J
| J(Il, |2,Jl,\12,J3,a—Ill ’al_i j di, dl,

in the present case.

11. One sees, with no further analysis, that theseiderations and results can be
extended ton-dimensional spaces and-dimensional manifolds. We can thus
immediately state the following general theorem:

Theorem |. If a one is given a (finite or) infinite continuowgoup of point
transformations of space,X... Xq, 21, ..., Zn that can be applied to the g-dimensional
manifolds:

2= @1 (X1, ooy Xg)s -ees Zn = Pm (X1, ..oy Xg)

in that space then it will always be possible teega general form for all associated
integral invariants in two cases:
If the group possesses more than q independdatatitial invariants:

0
U ()g)g Z,... zn,i j

then if:
I, ooyl Jn, oy Js

denote suitably-chosen invariants then all furtdéferential invariants can be brought

into the form:
aJ ,
Q [Il,...,lq,Jl,...,Js,a—lll j

one will then have:

[w (Il,...,lq,Jl,...,Js,% j dly ... dig
1
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for the general form of the integral invariants of a g-dimensional mahifol
On the other hand, if the given group possesses g and only g mutually-independent
differential invariants:

IK(&,...&,q,...zn,g—)z(ll,...j (k=1, ...,0)
then:
j¢UL._Ith._dh

will be the general form of an integral invariant of the g-fold manifolds

12. If we apply this general theorem to the group:
of
Z(Xl y, Z) —~
0z

which admits no surface invaria®(x, y, z p, q, I, ...) besidex andy, for example, then
we can deduce that the general formula:

Jwxy) dxdy

will yield all associated integral invariants of surfaces
By contrast, if we consider the group of all transfations:

(A) 2=z X =9 (XY 2, Y1=¢ X 2,

whose infinitesimal transformations are:
of of
XY, —+nXYy.2 —,
0x oy

then we will find no other surface invaria@t (x, y, z, p, q, ...) thanz. Therefore, the
theorem above will give no information about the exis¢eof invariant surface integrals.
We can always say one thing from the outset: Nanfely,

j ¢, Xy, zpqr,..)dxdy
and

j¢2(x, Y,z p, q,r, ...)dxdy
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are two invariant surface integrals thém : ¢, will be a differential invariant, and
therefore a function of

ﬁ=W(z).

2

However, we can now resolve the current questionariditowing way. If:
J¢ xYy.zpqr,..)dxdy

is an invariant surface integral then, no matter whattions ofx, y, z the { and 7 might
be (these Berichte, pp. 347 [here, art. XXVII, pp. 683%ed), the relation:

X'@+(tmy+ésp+nq¢=0

will exist, and as a result of the equatigrn= 0, it will remain invariant under every
transformation of the formA). Now, if ¢ were a function of only, y, zthen¢ = 0
would be an invariant surface, and in fact a plane: const. However, our surface
integral would then possess the form:

jw@dmm

so it would not be an integral invariant, accordinglyn t@e other hand, if the quantigy
actually includes differential quotients afthen ¢ = 0 would be an invariant partial
differential equation; however, our group has no invamiferential equations.

There thus exist no integral invariants of surfaces at all for theiie group:

of of
Sy, —+tnxy, 2 —,
0x oy

and only a single differential invariant of surfagc@amely, z.

13. We have previously considered the group of point transfaymat space, y, z
whose functional determinant is equal to 1.

We saw that either surfaces or curves can have diffalanvariants under that
group. However, our considerations at the time cad leafurther. Namely, if there

exists an invariant surface integrjélﬁ dx dyor an invariant curve integrzz[l ¢ dxthen
the equationg = 0 (the equationy = 0, respectively) would be invariant under the

transformation of our group. However, there are nd §aariant equations. Hence, one
has:

Theorem 1. Surfaces and curves in space have neither diffedentt integral
invariants under the group of all transformations=X, y1 =Y, zz = Z whose functional

determinant is equal tb, and the only invariant space integral jsdx dy dz
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14. We are close to posing the problem of finding all trams&tion groupsxf in
three variables, y, z that possess eithao, or onlyone or onlytwo independent surface
differential invariants:

Uuxy,zpagrst...),

or even all groupXf that leave invariant either no surface integral:
jV(x, Y,Z,p,qr,St ...)dxdy

or a single such integral. The problem that is fornedlahere meets up with no
significance difficulties, although | have still not adsised the corresponding problem in
n dimensions.

If the formula:

jw(u,v) w dx dy

with the arbitrary function¥ of two arguments, v, yields all invariant surface integrals
of a group in spacg, y, z then, from the previous developments, that inlecga have
the form| X (u, v) du dy andu andv will be the only differential invariants of suries
for the group in question.

15. In this treatise, we shall restrict ourselveshe tlevelopments that were given
here on the existence of integral invariants. Hmxewe regard it as convenient to
derive the most important of the results that wst presented from new considerations
that are worthy of interest from several standmirin order to simply the language and
formulas, we restrict ourselves to groupsxjny, z. However, it will not escape the
attention of an intelligent reader that our develepts can be extended immediatelynto
dimensions.

16. We imagine the coordinates y, z of a point on a surface have been given as
functions of two parametets v that remain invariant under the transformations:

of of of
Xf=¢—+n—+7—
56x ,76y Zaz

of a given group. On the other hand, we introdheefollowing notations for the partial
derivatives ok, y, z with respect ta andv:
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oxX _ oy _ 0z _
— =X, — =V, — =1z,
ov ov ov
°x _ 9°x _
—=X, = ,
ou? ouov
Every function ofx, y, z p, g, r, S, t, ... can be expressed as a function of the

guantities:

!

XY, Z %, Y, o, X' X Xy

while the converse is in no way always the case.

17. If one wishes that the quantities:

)

QMXY,z X, ...X, ..
should be functions of, vy, z, p, q, ... (S0Q should be independent of the choice of the

parameteray, v) then one would only have to demand tGatmust be a differential
invariant of the infinite group:

u=U(Uv), i=V(u,V),

whose transformations define the transition from stesy of parameteng v to another
system of parametets, v; in the most general way. We therefore set:

a=a((uVv 4, v=Luv &
and understandr and S to mean arbitrary functions ofi, v. We calculate the
corresponding increments af, x, Yy, ¥, ... when we consider that, y, z remain

invariant under changes in the parameters, and we demahdht#h corresponding
increase inQ:
60=2501 51+ 50,
ox’ 0% oX

should be equal to zero.
One will get:

dx—x du—xdv=0, O(dx—x du—-xdvy)=0

and
X . d=-Xd-x /[, o%x:a&=-xXa -x 3,

and further:
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:ad=-yd-yp oy:d=-ya -y A,
x&:.ad=-Zd-zp, 0z:&=-Za -V [ .

We calculate the incremengg”, o% , and so on, in a corresponding way. We will
have:
O(dX =x"du-xdv)=0
and
dX -X'"dad - x dB8 & — &' du—ox dv=0,
and furthermore:

d-Xa'-xpB)-x"(a’du+ adv)—x (f'du+ Sdv) — (X' : &) du— (6% : &) dv

= O,
from which:
X' A& =-X'a-2x[-xXa"—x S,
oX :d=—-2X"a'-2X B'—Xa”"— x 3",
ox:d==-2xa-2x.8 —-Xa. —x 3,
and so on.

If we denote a summation overy, z by > then we will obtain the following
expression foeX2:

Q. , ., , 0Q
-X:a& :Z&(xa+xﬁ)+za(><a.+xﬁ)

+ Z%(anar_i_zxﬁr_{_xan_*_ XIB")

+ 3 X o+ x (@ + B)+ x B+ Xa'+ XB)
ox

+Z§7§'2(2x'a. +2% B+ Xa + xB)

+

in which we have now written out the increments infttet and second order derivatives
explicitly.

18. Now, shoulddX2 equal zero thew’, a:, B, B, a”, ..., might also have that value.

Therefore (from my general theory of differential inaats), Q must fulfill all of the
linear, partial differential equations that we obtain wh&e successively set the
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coefficients ofa’, a., B8, B, a”, ... equal to zero. By a slight conversion, we succeed i
bringing these equations into the following form:

00 < 00 00
U]_f :Zxaﬁ'Z)(a'i'ZZ)(a'{'...—o
20 00 3
f = ' =
v Zanx x} ZZ{XN ax} %
aQ 60
f = -
Usf =3 % ZZXM 2 Kot =0,

90 00, 00
Usf = X — |+2 X —= — |+ ...=0,
: ZLXa X } Z( o Xt ax}

0Q 0Q 6Q
X —=+ 0, X—=0, =0,
ox" Z ox' Z 6x.
0Q 0Q 0Q
_+ = 0’ X ~ 7 01 X - + = 01
2 X5 w0 2o

We expressly emphasize that the three expreskiphdJ, f, Us f fulfill relations of
the form:
(Ul Uz) =- 2U1 f, (U1 U3) = Uz f, (Uz U3) =- 2U3 f,

and that they therefore generate a three-parameter dratuis tomposed the same as the
general projective group of a simple manifold. We furteenark that we have:

(Ul U4) = (Uz U4) = (U3 U4) =0

and thatJ; f, U, f, U3 f, U4 f therefore generates a four-parameter group that hasuhe
composition as the general linear homogeneous group af-éotevmanifold.

19. We would now like to assume that our grokippossesses differential invariants
that depend upon only y, z p, g, r, S t, and that® andW¥ are two such invariants that
are given as functions of vy, z X, x, ..., X", ... ® andW¥ are then solutions of the

aforementioned linear, partial differential equatioMe can also say th& andW¥ are
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differential invariants of the infinite group that subssrall Xf of the originally-given
group, as well as all possible parameter transfornmgtion

a(u, v) %+,[>’(u, V) %

In any case, it is clear th&t, as well as¥, remain invariant under every infinitesimal
transformation of the form:

&=a(u v d, &=LV & X=0, &=0, &=0,

and that one therefore has:
0P =0, M =0.
If we now set:
dd - du— P, dv=0, d¥ —-$¥' du—W.dv=0

then we will recognize, by means of calculations thatidentical in form to the ones on
pp. 11, that the derivativel', @, , %', W, will take on the increments:

oD =—(Pa'+dB)& b =- (P a+dA) 4,
SW =-Wa+Wp)d oW =-Wa+Wg)da.

If we introduce the notation:
q)I LIJI

o w8

for the functional determinant @f andW¥ and then calculate the increme¥t of A then
that will imply thatdA possesses the value:

A=-(a +8)A&.
We state, and will prove, that it emerges from thed the integral:

jAdudv

remains invariant under all transformatiok$ of the original group, and therefore
represents an integral invariant of that group.

20. In order to prove that, we would like to look for anelgl criteria that a function:
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PGY,ZX, X, .., X", .00)
must fulfill when the integral:

j¢ XY,z X, %, ..,x", ..)dudv

admits all transformationsf of the originally-given group.

From our previous developments, it is first requisitat t#h should represent a
differential invariant of that group. However, some Hertconditions get added to this
that characterize the behavior of the quargitynder changes of the parametgrs.

As we know (these Berichte, pp. 353 [here, art. XXV, 658,et seq. no. 12]),
there exists an equation of the form:

p=FXV,Zzpqrst...) =F [D,

Xy
Xy

and we know the behavior of the two quantitieandD under the transition from the
parametersl, v to the new parameters:

u=U (u, V), vi =V (u, V).

F indeed keeps its form under such a change, while one has:

O 0y| | ox dy| o v
ou, 0u | _|ou dul.| du Adu
ox 0y | |ox dy|'|au dy
a_vla_\/1 ov ov| | ov oV

Under the infinitesimal transformation:

a=a(uVv 4, o =6V 4, X=0y=0a=0,
the functional determinant:
_[xy
=1, v

will then take on the increment:
D=-(a’+ [B)D 4,

so the quantity = F [D will take on the increment:

M=FD+FID=-(a'+ B)FDO%
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or, what amounts to the same thing:

op=-(a’+4) Op OX.

In this way, we next get the:

Theorem 2. The requirement that the quantity:
[y 2% % ¥, %,.) dudy

should be an integral invariant of a continuous oo whose infinitesimal
transformations are represented by the general ymb

of of of
Xf=¢X Y, 2 —+n(Xy,2 —+{ (%Y. 2 —
0x oy 0z

will be formulated analytically when we, on the drend, demand thap should be a
differential invariant of the group Xf, and on tb#her hand, that under any infinitesimal
change of the parameters:

a=a(u V) ot, o =[£(u, V) ot,

@ shall take on the increment:

op=-¢(a’+f) ot

21. It is now easy to see that the previously-givarcfional determinant:

q)I LIJI

A=lo w

actually fulfills all requirements that are placagon the quantityp, in which it is
obviously assumed th& andW represent the differential invariants of the grodiphat
remain invariant under changes of the parameters.

On the one hand, we have, in fact, already seah @inder the infinitesimal
transformation:

a=a(u, V) ot, ov=[£(u,V) ot, X=0y=x=0,

A will take on the increment:
A=-(a’+ [)A Dt
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On the other hand, sinege andW, like u andv, remain invariant under the infinitesimal
transformation of the given grou{s:

a=0, o=0, &X=~£&0ot, oy =1 ot, o= { ot,
we can, with no further analysis, possibly by followihgough on the equations:

F(dD - du—d, dv) =0, SdY W du— W dv) =0,

conclude that the derivatives @ and W with respect tou and v also represent
differential invariants of our groulf, and it follows immediately from this th&t also
represents a differential invariant of the grotip

22. The functional determinat thus actually fulfills all requirements that must be
placed upon the desired quantgyand we can therefore state the following noteworthy
theorem:

Theorem Il. If ® andW are differential invariants of a surface=zf (x, y) under a
certain continuous group of point transformatiorispace xy, z then the formula:

90 ¥
J' ou ou du dv
90 ¥
ov ov
will always yield an integral invariant of the grpu It is therefore our assumption that u
and v will refer to parameters that remain invariaimder the transformations of the

group in question.
Moreover, if WX, Y,z p, g, I, S t, ...) is any differential invariant of the group then:

9% ¥

IW ou ou| g 4y
v Y

OVW

will always be an integral invariant, and all integd invariants of the group in question
that relate to surfaces will be found in that way.

The integral invariant of a surface that is presenézd:h
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o9 o¥
IW du ou du dv
e 0¥
ov ov
can obviously be brought into the form:

jw do dv,

and the theorem that was just stated, which can lEn@atl ton dimensions with no
further analysis, will therefore coincide with the geal theorem | that was formulated on

pp. 6.
Chapter I

Theuse of invariant first-order surfaceintegrals.

23. We would like to assume that we have been given arlirgartial differential
equation irx, y, z

0=<‘(x,y,z)% +17 (%Y, z)g—j + (X, z)% = Xf

to be integrated, and that we happen to know an assofitatenrder integral invariant:

oX 0x
ou v
9y oy
ou ov

() [#xy.zpa du dv

that refers to a general surfages Z (x, y). We would like to show that this situation will
always yield essential simplifications of the integmatof the equatioiXf = 0.

However, we expressly point out that the developmehtkis chapter, as interesting
as they might seem from the standpoint of functi@oti, are to be in no way regarded
as definitive from a group-theoretic viewpoint. As wel wilow in the next chapter, the
general theory of invariantsvhich | have already based upon my theory of continuous
groups for about twenty years now, then allows usotgust prove that one can employ
the existence of an integral invariant to simplify thiéiculties in integration, but it also
allows us to decide which simplifications can bkei@aged in which individual cases.

It is precisely in the latter situation that one firth® most essential part of the
profound significance of my general theory of inaats whose essence — indeed, whose
existence — continues to remain unknown to mathematicians
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24. As we know, our assumption that the infinitesimal $famationXf leaves the
surface integral ¢ dx dyinvariant finds its analytical expression in the existevicthe
equation:

(2) X+ (t+m+é&ptnq¢=0,

in which X”f arises fronXf by a single extension, and possesses the form:

SR S .
X f—fax+/76y+iaz
f
) HO 4P~ HE+ PE) - A+ w)}g—p
HE,+a0,~ HE+ pE) — dn m)}g—;.

The fundamental equation (2) next asserts thatfitekeorder partial differential
equation:

p(xy,zpa)=0

admits the infinitesimal transformation, and itrifellows from my general theory that
the two first-order partial differential equations:

pX¥,zp, =0, ¢ép+ng-4¢=0

(if they do not coincidentally reduce to one ecumtiwill possesso’ common integral
surfaces:
u(x,y, 2 = const.,

which can, at any rate, be found by integratingtal differential equation:
dz—-P (X, y,2dx—-Q (X, y,2 dy=0,

and therefore by integrating a first-order ordindifferential equation. In this (X, y, 2)

is eo ipsoa solution of the linear, partial differential eqionXf = 0, and we can thus find
the missing solutiom, in any event, by integrating a new first-orddfedential equation.

It is, moreover, always possible, to avoid th& lmtegration in such a way that the
integration of the equation:
of of of
=f—+n—+7{— =
0 56x ,76y Zaz Xt

can be reduced to the solution of a single firsleoiordinary differential in any event, as
long as an integral invariant:

[¢ xy.zp adxdy
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of Xfis given, ands does not vanish at the same time ast 79— ¢.

We would like to confirm the validity of that assertio

To that end, we must generally go back quite a ways,iradeed, we will appeal to
my theory of infinitesimal contact transformationsn the one hand, and to the
connection betweenJacobi's theory of multipliers and my general theory of
transformations that | discovered, on the other.

25. In my theory of contact transformations, | havevehdhat every infinitesimal
contact transformation of the spacey, z is determined completely by a single function
Wofx,y, z p, q— viz., my so-calle¢haracteristic function- and that the symbd@f of
the infinitesimal transformation question possessefotine

oW of 6W6f 6W ow of (GW awjaf 6W dWjo f
Bf = ——+—— +q—-W|——-|—+p +0—
op 0x aqay ap Jq 0z \ ox 0z Jop ay dz)ac

moreover, or, with the use of tR®issonbracket symbol [], the form:

Bf = [Wf — Wﬂ
0z

| further show that from two infinitesimal contacirisformations:

of of
Blf:[\Nlﬂ—Wl—, Bzf:[\Nzﬂ—Wz—,
0z 0z

one can always derive a well-defined third contact transftion:

Bf—[QUf]—QUg—f

whose characteristic functi®¥ possesses the form:

6W oW,

oz '

Qﬂ:[\N]_WZ]_

and indeed the connection betwdgfy B,f, andBf is given by the formula:

Bf =B, (B (f)) —B2 (B1 (f)) -
In particular, if we set:
Wi = ¢, Wo=¢p+nq-¢
then we will have:

=g {p+na-J-9¢(&p+n0-4) +d.({p+719-4) .
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However, from our assumption, equation (2) will be valid:
SOtNPy+ P +{G+ GP—p (&t &P) —q (1 + 70} fp

+{{+&q-p(&+&Q —q(ny+7:.P)} g
+(&+p &ty +tan) =0,

or, what amounts to the same thing, the equation:
(3) 0=-[g,{p+na-q—-¢:(pS+an—4) + (& +ps+ 1y +a ) ¢,
and thus the expression above F8will take on the remarkable form:
4) W=¢(&ty+4).
We note the result that we just obtained as a theore

Theorem 3. If the first-order surface integral:

[¢ xy.zp adxdy

admits the infinitesimal point transformation:

of of of
Xf=f—+n—+{—
56x ,76y Zaz

then the two infinitesimal contact transformations:

Af:[¢,f]—¢%,

Bf=[{p+ nq—éﬂ—(5p+f7q—ﬂ)%

will fulfill the relation:
(5) ABM)-BAM) =[@(&+ny+ Q). fl-d (&t + Zz)%,
as well as the equivalent relation:

(5) AB(N) -BAM) = &+ my+ QAT+ P [&+ 1y + & ]

26. In order to be able to define a formula from the imgratrformula that was just
found (which is, for us, even more important, if alpesalized), we would next like to
prove that the system of equations:
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(6) p(xy.zp,q=0, ¢p+ng-{=0

admit the transformatioBf, as well as the infinitesimal transformatiah
The fact that our system of equations (6) admits thenite@imal contact
transformation:

Bf=[Ep+na-4 M- (Ep+nd—0 %

is based upon the fact that this transformation, in ttepresents the extension of the
infinitesimal point transformation:

_ g0 0, 0
Xf_€(6X+,76y+Zaz'
One has:
B(Ep+f7q—0=[<‘p+f7q—éfp+/7q—4—(gp+,7q_g)a(fp;’;q—f)
== (Ep+nq-0 6(Ep+af7q—i)
z
and

B(4)=[Ep+7q—C 4 - (Ep+79—0 ‘Z—f

or, if one considers equation (3):

B () = (& +péct+ 1y +am) &,

and, as above:

B(ép+na—9 :_a(5p+a/27q—z) (Ep+nag-29.

The last two equations show that the expresdi§@sandB(&p + 17 — ¢) will vanish,
due to the system of equatiogs= 0, &p + 7q — ¢ = 0, and that this system of equations
will actually admit the infinitesimal contact transfieationBf.

Moreover, one has:

5(5P+/7q—5),

Ap+nag-9=[g.ép+na-{-¢ P

or, upon considering the formula (3):

Ap+nq-=—¢.pé+an—- + @ (&+mny+ &),

and on the other hand:
¢

Al =1o9l-0—
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The expression&(p + 79 — ¢) and A(@) also vanish then, due to the system of
equationsp = 0,ép + 7q— ¢= 0, which therefore also admits the infinitesimalteah
transformatiorAf. We then have the:

Theorem 4. If the first-order surface integral:

[¢ xy.zp adxdy
admits the infinitesimal point transformation:

of of of
Xf=¢—+n—+7C—
5ax ,76y Zaz

then the system of two first-order partial diffeiahequationsg = 0,ép+7g—-{=0
will admit one of the two infinitesimal contacthisformations:

A=lpn-p 2L and Bi=£p7a-4-(€prna-0 L

The first-order differential equationg = 0, £ p+ 7 q — {= 0 (when they are not
coincidentally identical) defines a system in ini@in, moreover, since the left-hand side
of the equation that we found before, namely:

(3) 6, ¢p+nad-=-¢.(p+nq-4 + (& +psk+ 1y +an) ¢,

will vanish due to the fact thgt=0,{p+ /7 q— = 0. This system in involution has, eo
ipso, ! integral surfaces (x, y, 2) =c.

27. A three-dimensional manifold then exists in the five-@usional space, v, z p,
g, whose equations:
¢=0,¢p+ngq-¢=0
we solve forp andq:
p=P(xYy 2, a=Q(Kx Yy 2.

We can then consider the quantities, z to be coordinates of the individual points of
that three-dimensional manifold.
As we know, that manifold admits the two infinitesinrainsformations:

of of of of of
Af=¢ —+¢ —+ + -P)—— (¢ + — (¢ + -
¢an ¢qay (pg,+ap, ¢)az (@ p¢z)ap (9, qﬁ)aq
and
of of of
Bf=&—+n—+{—
56x ,76y Za
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f
(Gt PG —P(E+P &) =l + pnz)}g—p

f
+ {4 +ad—p(& +a&) — o7y +qnz)}g—q,

which, as we saw, are related by:

() AB(N) -BAM) = &+ + G AT+ P [+ 1y + &, 1]

If we now considex, y, zto be the coordinates of the individual points of dueé-
dimensional manifold then we can say that the truddateitesimal transformations:

— of of of
Af = (Pp)p=p.q=0 &ﬁL (Pg)p=P,q=Q 6_y+ (PPo + APq = P)p=p.q=0Q %z

and

= of of of
Bf =8x v, —+nxy, 29—+ {xy 29—
0x oy 0z

will show us how that three-dimensional manifold tfanss.
We would like to show thafAf and Bf fulfill the relation:

A(B()—B(A( ) = (&+ 1y + &) Af.

In order to verify that assertion, we remark that ¢cbefficients odf : 0x, of : dy, of :
0z on both sides of the identity equation) (Bust agree, and therefore that one must have
the three relations:

A(S) = B(@p) = &+ 1y + &) Po,
A(n) —B(@g) = (&+ 1y + &) @p,
A - B(pgp+ A @q—9) = &+ 1y + &) (PP + 4 P — 9),

respectively. We make the substitutpr P(X, y, 2), d = Q(X, ¥, 2 on both sides of these
three relations and thus obtain (cf., Mlyeorie der TransformationsgruppeBd. I, pp.
110, formula (3)) the equations:

Z\f—g(@p)p:p,(FQ): (&+ny+ &) Odo)p=p.q=0q .,
'Kﬂ—g((%)p:p,(FQ)Z (&t 1y + &) UPa)p=p.a=q,

Al =B((PP+ B, =) b ) = (& + 11y + &) TP + AP — Plp=P.q=0q ,
which show us that the relation that we announced, lyame

(7) A(B(f)) - B(A f)) = (&+ 1+ &) Af,
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actually exists identically.
With that, we have the:

Theorem 5. If the first-order surface integral:

[¢ xy.zp adxdy

admits the infinitesimal point transformation:
Xt= &y, Landegd
T ox oy 0z

of the space x, y, z, and thus the two equatgon®, &p + 17q — { = O will give the values
p=P(XYV,2,q=0Q (XY, 2 when one solves them for p and g, then betweendftre
infinitesimal point transformation:

—~ f of of
AT = (#b-ra-0 5+ (do-ra-o ot B9t 0a-0) S
there will exist the relation: o B
(7) AB(f) - B(A f)) = (&+my+ &) Af.

28. Before we go any further, we would like denote the inemain the quantities
y, z under the transformation by, £, ) resp., in order to simplify the formulas and
correspondingly set:

—~ of of of
Af =a(xy,2 —+B(%Y,)—+y(X ¥ ).
0x oy 0z

Formula (7) next shows that the two linear, paditierential equations:

always possess one (and, in general, only one) consmlutionu (X, y, 2), from which, it
will be immediately clear that equation:

u = an arbitrary constant
will yield the aforementioned integral surfacested system in involution:

¢y, zp,a)=0, {p+nq-J=0.

However, we can infer even more from formula (Amely, that whew (X, y, 2) denotes
any solution ofXf = 0 that does not simultaneously fulfllf = 0, the quantityAv = &,
which obviously fulfills the relation:
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XO+ (&+ny+ &) d=0,

will represent a multiplier of the linear partial @féntial equatioXf = 0.
We formulate the result that is then obtained (whuoérits some attention, even
though it will play no role in what follows) as folies:

Theorem 6. If:
[ #(xy.2p,q) dxdy

is an integral invariant of the infinitesimal transformation:

of of of
Xf=¢—+n—+{—,
5ax ,76y Zaz

and if the two equationg = 0, & + nq — { = Oyield p=P(x, y, 2, q = Q(X, Y, 2 upon
solving them then if X, y, 2) represents a solution of the linear, partial di#atial
equation Xt Othat does not, at the same time, fulfill the ecprati

0= (¢p)p=P,CFQ%+(¢q) ;;qug_;+(p¢ /Rt /) R Qg—]; Af,

then the quantityAf will always be a Jacobi multiplier of the equatigh= 0.
The theorem that was just presented will becomlichwhen a relation of the form:
Af = pXf
exists. However, the relation (7) will then hake form:
—XpOXF = (& + 1y + &) p K,
and correspondingly one has the equation:

X+ (&+mn+&Dp=0,

which states directly thatrepresents a multiplier off = 0. If we preserve the notations
of Theorem 6 then we will have:

Theorem 7: If the expressiong\f and Xf of Theorem 6 are coupled by the relation:

Af = p [IXf
thenp will be a multiplier of X& 0.
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29. We will now show that it islways possibléo give a multiplier of our equatioxf
= 0. To that end, we would like to employ the followingdrem, which we presented
some time ago (cf., e.g., Math. Ann., Bd. Xl [pp. 508, tbik,cv. IV, art. Ill, § 10, no.
23)):

Theorem 8: If the linear, partial differential equation:

0= aﬂtﬁ— ﬂEUf
0X az

admits the infinitesimal transformation:

and if, as a result, one has the relation:
X Uf—UX f=A [,

and if M is a multiplier of the equation BfOthen the quantity:

0¢ 91 04
X(IogM)+(aX oy 6zj +A

will be a solution of the equation BfO0.
We apply this theorem to the aforementioned equatibs 0 and set:

Af = aﬂ+,[>’—+ us
0x oy az

for brevity. We will now have the equation:
(7) X(A() = AX(f)) == (&+ 1+ &) OAF,
and in the present case we will have:

Stiy+t&+A=0,

which once more says that the quanktyiog M) will represent a solution oAf = 0, as
long asM refers to a multiplier ofAf = 0:
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A (XlogM) = 0.
If we combine this result with the previous results, (Eheorem 6) then we can say:

Theorem 9: If the expressions:

— of of of of of of
Afzg—+pB—+y—, Xf=é—+n—+{—
0x 'Bay yaz 5ax ,76y Zaz

(as in the foregoing developments) are related by:
AX () =X (A(f)) = (&+ 1y + &) A

then every solution v of Xf0 will yield the multiplier Av of Xf= 0,and every multiplier
M of Af = Owill yield a solution ofAf = 0, namely, Xlog M).

If we setf equal to logM in the identity (7):
AX () =X (A() = (&+ 1y + &) TAF
and remark thafA (X (log M)) then vanishes then we will get the equation:
X (A(log M)) + (& + 17y + &) TA(log M)= 0,

which states thafA (log M) represents a multiplier o¢f = 0, if M denotes a multiplier of
Af = 0. However, under that assumption, one will havesthetion:

A(logM) + ax + B, + =0,

and therefore the quantity + 3 + ), which we can always exhibit, will be a multiplier
of Xf=0.

30. In order to stress the importance of the result was just found, we formulate it
as a theorem:

Theorem |11. If the surface integral:
[¢ xy.zpodxdy

remains invariant under the infinitesimal transfation:
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of of of
Xf=¢—+n—+7—
5ax ”ay Zaz

then it will be possible to find a multiplier ofehequation Xf= 0. Namely, if the
equations:

¢(XaYaZapaCI):0, gzp+/7q—Z:0

yield p=P(x, Y, 2, 9 =Q (X, Y, 2 when one solves them, and if we set:

[glj =a(xy, 2, [%j =BV, 2,
p p=P,=Q aq p=P,0=Q

p——+ Q——¢j =y 2
9 p=P.G=Q

then the quantityr + 3, + )5 will be a multiplier of X 0.
If the equationp = Ois linear in p and Q:

$=Ap+Bqg-C,
and if the determinant:

i
0

§ 1
then our analysis will become invalid. By contrabtp is linear in p and g, while the
determinant above is not equal to zero then wegetlan actual multiplier of X O.

If the quantityg is not linear in p and g then valuessP(x, y, 2), 9 = Q (X, Y, 2) that
emerge by solving the equatiops= 0, &p + n7gq — ¢ = O will be multi-valued functions of
X, Y, z, in general. The multiplie + B, + ); will also represent a multi-valued function
of X, y, z then inside of a domain in whi€hy, ¢, ... are regular and single-valued. In
general, we will then find several multipliers df=X0, and correspondingly, by dividing

two multipliers, a solution of Xf O whose integration will amount to a quadrature i th
adverse case.

31. As we expressly pointed out, the theorem that wassfased will become invalid
wheng is linear inp andqg and possesses the special form:

p=o(p+na+a

moreover. We then directly pose the question of whdtef advantage we can infer in
this special case from the known integral invariants.

We easily recognize that this case actually occursnala if u (x, y, 2) andv (x, y, 2)
are two solutions oXf = 0 then, as we saw before, the integral:
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u,+ pu, v+ py
J. dx dy,
u, +qu, v+ Qqy
or, when written out in detail, the integral:
I{UX Cle| S lea va}dxdy
Uy Vy Uy Vy uz Vz

will be an invariant oXf, and there will actually exist a relation of the form

p=0(p+nqg-4
here.

A special discussion of the aforementioned exceptmase might be in order.
If:

[ (Ap+Bag- Q dx dy

is an integral invariant of the transformati®fy and therefore not all of the two-rowed
determinants of the matrix:

ABC
(M) ‘ ‘

¢nd

vanish then we can always arrange that:
‘A B‘ £0
§n

by a suitable permutation of the coordinakesy, z We therefore need to concern
ourselves with only the assumption that all two-eodwdeterminants of the matrik}
vanish, and that correspondingly:

¢=Ap+Bq-C=w(Sp+7q-J).
If we substitute this value fa# into the fundamental equation:
X'@+(tp&ztmy+an) ¢=0

then we will obtain the relation:

Xwdép+nqg-4) + w(pXé+agXn—XJ)
+ wE{ §+ ple—p(& + p&) —a(7x + P}
+awn{{+a&—p(&y +as) —a(y + a7.)}
+ (&+p& iy +an) w(ép+nq-¢)=0
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and ultimately the equation:

(p+na-O{X(+ (&+my+4) =0,
which says thaturepresents a multiplier off = 0.
We have then succeeded in completing the previous resaftd, we can
correspondingly state the following theorem:

Theorem IV: If we know a first-order surface integral:

[¢ xy.zp adxdy

that remains invariant under the [infinitesimal] transformation:
of of of
Xf=f—+n—+{—
5ax ,76y Zaz

then it will always be possible to find a multiplef the equation X 0. If the rules of
Theorem lIl give no multiplier of Xf 0, even after permuting the symbols x, y, z, then
@ will be linear in p and g and possess the form:

p=p(p+na-y),

and thenp itself will represent a multiplier of Xf 0.
On the other hand, if M is an arbitrary multiplief Xf= Othen:

[M(&p+na-Qdxdy
will always be an integral invariant of Xf.
TheJacobimultiplier theory of an equation:
Efx+nfy+{f,=0
thus takes the form of a special case, in a certairesehthe theory of invariant surface
integrals.
32. We summarize the most important results of theshgations in this chapter into

the following theorem:

Theorem V: If one knows a surface integral:

[ #(xy.2p,q) dxdy
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that remains invariant under the infinitesimal transformation Xf then #atdan always
be utilized for the integration of the equation=>4®.
The unfavorable case is then tlgapossesses the form:

p=p(lp+na-y4),

so p will then be a Jacobi multiplier of Xf 0, and since, on the other hand, the integral:
[ M(ép+na-qadxdy

always remains invariant when M denotes a multipbé Xf = 0, the known surface
integral in the present case will accomplish orilg tletermination of the latter solution
by quadrature.

If ¢ does not possess the fom(ép + 7 g — ) then the equations:

p(Xy,zp,g=0, ép+ng-4¢=0

can be solved for p and q in any event after aablet permutation of the quantities x, vy,
z

p=P(xYy 2, a=Q(Kx Yy 2.
If one then sets:

(Pp)p=Pa=q = @, (Podp=Pa=0 = B aP+ =y

then the quantityr, + B, + y; will always be a Jacobi multiplier of the equatigfi= 0.
Furthermore, the total differential equation:

dz—-P (X, y,2dx—-Q(X, y,2dy=0

will be integrable then, and its integral (&, y, 2) will always be a solution of Xf 0O,
whose missing solution will then be given by quadea

If ¢ is not linear in p and q then P and Q, as wellms5, y; will be multi-valued
functions of x, y, z, in general, and the formala+ 3, + ) will then give several
multipliers of Xf= 0 whose integration will require only performable ogtgons in this
case.

The example in which a relation of the form:

ap+Bg-y=0(Ep+nq-y4)

exists deserves special attention; namelwould then be a multiplier, ang + 3, + )4 :
owould be a solution of Xf 0.

One can now address the question of how the integrafican equationXf = 0
simplifies when one knows eurve integral] ¢ (X, y, z y’, Z) that admitsXf from the
outset in a completely analogous way.



Lie — On integral invariants and their use in the thedwifferential equations. 32

Chapter Il
M aking the greatest possible use of known integral invariants.

33. In the previous chapter, we addressed the question ofHeimtegration of the
linear, partial differential equation:

of of of
0=¢(X Y, —+n (%Y, 2 —+ (XY, 2 —=Xf
0x oy 0z

simplifies when dirst-order integral invariant of the infinitesimal transfatmon Xf:

(1) [ ¢ (v, 2 p o) dxdy

happens to be known from the outset. We succeeded inndeseveral beautiful results,
from which it emerged that one can always utilize tkistence of such an invariant for
the integration of the equatioff = 0. In certain special cases, it was, moreovessipte
to prove that our theorems allowed us to derive thatgsé possible benefit from the
situation in question. However, we have still notabbshed precisely what
simplification that the presence of a known first-era¢egral invariant (1) will imply in
complete generality.

Now, my general theory of invariants allows one t®ohee definitively not only the
problem that was just described, but in fact any such proble

34. In order to ease the discussion, we temporarilyiceésturselves to the following
problem, which still possesses a very general character:

How does the integration of the linear, partiaffdiential equation:

0=& (X, ..., Xn, 21, ...,zm)i+ Lt & (X z)i+ Zli+ . of
0% X,

—=Xf
0z, 0z,

simplify when an integral invariant:

9z 0°
.[¢(xl,...,>q1,q,...,zn,a)(1 "o

j dxg dxo ... dX,
of the infinitesimal transformation Xf is knownrfrdhe outset?

If we imagine, for the moment, that we already krnib&/finite equations:

¢ = Xe (X1, .o X0, 21, ...y Zim, ©) (k=1, ...,n),
Z = (X, ooy Xy 2, vy Zm, C) i=1,..m),
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of the one-parameter grodff then we will known howg and Xf will behave by the
introduction of new variables’, Z. Indeed,Xf remains invariant whilep will be
reproduced with a factor, and one correspondingly hasdbation:

where:
ox, ) Ox, “F0z 0%

and furthermore:
() ZE(X i) ZZ(X 2) ZE(XZ) ZZ( 2)

We will show that everything depends upon whetharot the transformations of the
one-parameter grou)f are the only ones that fulfill our equations (2d&g3). In the
former case, we can show that the integration efe@quationXf = O will not require
guadratures, but it can be performedelrgcutableoperations.

35. If there are even more transformations:
X =xX(%2, z=¢h(x2

that fulfill both of our condition equations (2) ct3) then the form of these condition
equations will show thall of these transformations define a groughich can be mixed
under some circumstances, but it will then incladanvariantcontinuoussubgroupG.

In calculations, everything will take the follovgriorm:

If one considers the quantitie§ and Z; in the two equations:

3) PRACE Z’)— Y 4 (%, 2)——25(XZ)— > 4% Z)

J

to be unknown functions of theandz and if one gradually assigns the values ...,
X, z, .., Z, to the quantities in the latter equation then one will obtain a eerdf

partial differential equations that determine all the x and Z as functions of x and z.
The differential equations, in turn, yield what &ve preferred to call the defining
equations of the finite transformations of the debgroup G.
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Here, the most general system of solutiens.., tn, 31, ..., 3m Will emerge from a

I

special system of solutions, ..., X, z, ..., Z, by way of equations:

62 R X s )y 5= 0K X 2 )

that define a group, and in fact the grd@aip
Our differential equations can then be brought into tha:fo

L{)(i,...,)(q,é,...,zq,g—ﬁ % j =B« (X, 2),

in whichthe L, denote differential invariants of the group G, and they define a complete
system of differential invariants, moreover.

36. The integration of the equatiohg = B, will, however, be governed by the group
G in a known way.

If the finite transformations of the grouff are the only transformations that fulfill
our demands — in other words, if the gra@pncludes no other transformations besides
the finite transformations of the one-parameter grgtip- then among the differential
invariantsL,, one will findm + n— 1 of them that are of order zero:

Lo (X X0 20y 2) (k=1,...,m+n-1),

namely, the solutions of the equation:

0= &(Xooo X % ZJZ-;*Z o % z)%.

One therefore derive® + n — 1 equations in the, ..., X, z, ..., z, and the x, ...,

! ! !

Xy Zy oeey 2o
Q(x,zx,Z)=0

from the equationk, = B, (by eliminating all derivatives of thé andz from thex and

2). These equations determine all paths of the inBimtal transformation Xf directly
because they yield ali* positionsx, Z that belong to an arbitrary initial position.

37. We then assume that the grd@pncludes onlytwo infinitesimal transformations,
namely,Xf andYf. The equations:

X'f=0, Y'f=0
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then define a complete system with+ n — 2, or everm + n — 1, solutions:
LK (X’l Z)l

which can be regarded as differential invariants of order aethe groupG. One then
certainly finds all of the equations of the form:

L« (X,Z) =L« (X 2

among the equations, = B,. We will find these equations, or a system of equatioais
is equivalent to them, namely:
W (%, z X,Z)=0,

when we drop all of the derivatives of tkeandZ with respect to th& andz from the

equationd . = B, by elimination. If one assigns fixed values toxf@dz in the systems
of equationsW = 0 that are found in that way then one will obtairwa-tlimensional
region in the space of, Z, in general, that contains tk€ paths ofXf. One then finds
the paths by quadrature.

38. One finds the finite equations of the groGpin all situations by integrating
auxiliary equations whose number and properties are deterim@ the grougs in a
way that | gave some time ago. Once the finite equatdribe groupG have been
found, one will determine the finite equations of the sulpgiXf, and thus, at the same
time, the paths aXf. In this,if the group contains only a bounded number of parameters
then it will only be necessary to perform certain quadraturélsat follows immediately
from my general theorem that, as long as the finite @npsabf any continuous, finite
group have been found, one can always find the finite emsatif any subgroup and in
particular, the path of every infinitesimal transforimatof the group, as welt by
performing certain quadratures.

39. We now assume that the groGpis infinite, and that we have already found its
finite equations by integrating the required auxiliary equnsti We will show that the
determination of the paths ®f then demands only certain quadratures.

If the groupG is intransitive then one will find the zero-order inaauts of that group
by elimination.

We can find all finite transformations of the spagez that commute with all
transformations of the groupG without integrating, moreover. These new
transformations define a grouipin their own right that includeXf. If the groupG is
infinite and transitive then the grodpmust be intransitive.lts zero-order invariants,
which represent solutions of Xf0, eo ipso, will be found without integration.

We now know all zero-order invariants of the gro@p and likewise all zero-
invariants of the group. One thus finds all invariants of the group g that consists of the
common transformations of the groups G @ndithout integration. At the same time,
one finds the finite equations of the grogipvhose transformations commute with each
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other pair-wise, and thus wibf, as well. One then finds the still-missing solutions of the
linear, partial differential equation X 0 by certain quadratures that are independent of
each other.

Everything then comes down to the determination of thieefequations of the group
G. If the transformations of that group have been folnech the integration oXf = O
will require only certain quadratures, in any case.

We reserve the right to present the resolution ofpifeblem that we posed here,
which we sketched out in a brief form, in a more rigorfous, and at the same time, to
illustrate it by some examples.

40. 1t is easy to see that the general theories thae wieveloped here can be
generalized in several directions with no further usswon.

For example, one can assume that we have certamitesfmal transformationXif,
Xof, ..., Xyf that determine a complete system:

X]_f = O,Xzf = 0, ,qu = 0,

and that one knows certain common integral invariants:

[ #da.[ g,da,, ..., [ 4,d

of all Xf from the outset. One can ask what sort of singalifons in the integration of
the complete system could be gleaned from this situatio

Then again, one can assume that a complete system O, ..., X, f = 0 to be
integrated has been given and that certain common ihtegaaiants are known from the
outset, and likewise, certain common differential irevatis of all X, f . In every
individual case, my general theory of invariants willbal one to decide how the
circumstances that present themselves can be utilizeétidantegration of the complete
system.

Finally, one can assume that one is dealing with aicecomplete systei;f = 0O,
..., Xgf = 0 with certain known infinitesimal transformatioig, Y-f, ..., and certain
known integral and differential invariants, as well astaie invariant systems of
differential equations to be integrated. My theoryimfariants will resolve every
problem of that kind in a definitive way.

| have already dealt with various special problemsisfhature thoroughly for some
time now. For example, my integration of an equafdr O with a known multiplier
and known infinitesimal (or finite) transformationddoggs to them.

41. We shall not refrain from expressly proving that the doireg developments
implicitly resolve an interesting problem, namely, tladt the determination of all
transformations under which a given integral or sevetalh integrals (differential
expressions or equations, resp.) remain invariant.

For example, if one wishes to find all transformatiohspacex, y, z under which a
first-order surface integral:
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[ ¢ (v, 2p q)dxdy
remain invariant then one will define the equation:

¢xy.zp9
Or \( db
Zi(ax)[ayj

If one replaces the quantitiesandq with their values as functions of:

¢, 3 p 09 =

o % 0
PG ox ay oz

then one will obtain the defining equations of thst general grougs whose
transformations leave the given integral invariant.

42. In general, it is advantageous to look for ihinitesimal transformations of the
groupG first. To that end, one defines the equation:

X' ¢+ (&+my+pé&tqn)¢=0

and demands that it should be valid for prendq identically ¢).

Chapter IV
Integral invariants of groups of contact transformations.

43. In this chapter, we will extend the concept ofegral invariant to groups of
contact transformations. In order to simply thecdssion and the formulas, we shall
restrict ourselves to transformationsxiny, z, p, q. The extension ta dimensions, like
the restriction to the truncated contact transfaiona (i.e., to transformations 1, .., X,

Pi1, --., Pn), iNVolves no complications.

We denote the infinitesimal transforms of a gigeaup of contact transformations of

the space, y, zwith the symbol:

() Carda who studied my theories under me at Leipzig, recentlymi@ted all point transformations
of the space, y, zunder which the integral:

[J1+p*+q® dx dy

of the surface space remains invariant. The aforeamsat theory will give a simple resolution of that
problem.
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[W —WE:Xf,
0z

and let:

!

X
XV,

jﬁ(x,y,z,nqr,st)til ‘dudv

in which the parameteng v are not transformed, be an invarigetond-ordersurface
integral of that group, whil&, x, y’ y. denote the partial derivatives wfandy with

respect tar andv, as before.

If we now set:
Xy _
X Y|
then we will get:
! W ! XI
Xy = | ) ] Y |
Xy W) (W)

and with the use of the symbols:

P+ D, p+Ppr +Pgs=AD,
Py+P,p+tP,s+Pyt =B P
that will yield:
X (B) ={AW,) +B (W)}A,
and correspondingl® will be determined by the equations:
X(Q)+(AW, + BW)Q = 0.
r, s, t will take on increments of:

ad =pdw B=00w A =T1ow

under our infinitesimal transformatioXd, which can be found in a known way.

44. \We define the infinitesimal transformation:

[WH — W, + pf, + ofs + 7T — {AW, + BW} Q g—;s Uf

and remark that this transformation in the variahley, z, p, g, r, s, t, andQ leaves not
only the two systems of equations:
dz—-pdx—-qdy0
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and
dz—-pdx—-qdy 0, dp—rdx—sdyg0, dg—sdx—-tdgO0
invariant, but, at the same time, the equation:
Q-QY,zp0qrst=0.

Therefore, ifU; f and U, f are two such transformations with the characteristic
functionsW; andW, then the transformation:

U1(U2(f)) — U2(Ua(f))

will also leave each of the three systems of equstiahove invariant, and this
transformationU;(Ux(f)) — Ux(Ua(f)) will then possess a form that is entirely simiiar
that ofU4(f) andU(f). From my rules, its characteristic function viaé the quantity:

[Wl Wz] -W aWZ +W, 6VV1 ]
0z 0z

45. In that way, we recognize that &lf that belong to the given group of contact
transformations define an extended group in the variablez, p, ..., Q.
If that extended group has invariadisthat are not all free d@, and one finds, by
solving an equation:
® (% ...,Q) =a=const.
for Q, the value:
Q=Q(XY,z2p 0TSt
then:

jﬁdxdy

will be an invariant second-order surface integral of oaugof contact transformations.
One determines all invariant surface integrals of odleetand higher in an entirely
analogous way. One sees, with no further analysis,the general theorems on groups
of contact transformations that were presented in ehgyptand Il can be extended.
The application of these theories to first-order phdifferential equations, canonical
systems, and so on, deserves special attention.



