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Chapter I – Weyl’s theory. 

 

 The idea of a “purely-local geometry,” which was first conceived by Riemann, is known to 

have recently experienced an extraordinarily beautiful and simple completion by Weyl. One can 

consider the Riemannian conception of space to be the elimination of the prejudice that the 

curvature behavior at one location in space must imply the curvature at all others. In order to give 

some sense to Riemann’s statement, it was then necessary that the yardstick that enabled one to 

determine the coefficients gik of the fundamental metric form: 

 
2ds  = i k

ikg dx dx  

would have to be a “rigid” yardstick. 

 By contrast, Weyl made it legitimate to assume that such a rigid yardstick would be contrary 

to a radical local geometry in which only the ratios of the gik at one location, and not their absolute 

values, could be reasonably fixed, and he correspondingly set the change dl in a gauge yardstick 

of length l under an infinitesimal displacement 
idx  equal to: 

 

dl = i

il dx ,      (1) 

 

in which the proportionality factors i are functions of position that are characteristic of the metric 

behavior of space, similar to the gik , or when one integrates (1): 

 
 (1) Presented, in part, at the session of the Gauvereins Württemberg of the D. Phys. Ges. Stuttgart on 18 December 

1926; cf., also a tentative survey report in Naturwiss. 15 (1927), pp. 187.  
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l = 0

i
i dx

l e
       (2) 

 

(l0 = l at the beginning of the displacement). The gauge is generally path-dependent (i.e., non-

integrable), unless the quantities: 

fik = i k

k ix x

  
−

 
          (3) 

 

vanish. One can say nothing about those quantities fik, except that their definition (3) (let the 

dimension of the manifold be four) will imply that: 

 

ik kl li

l i k

f f f

x x x

  
+ +

  
 = 0  i  k  l, i, k, l = 1, 2, 3, 4. (4) 

 

The formal agreement between those four equations and the one system of Maxwell equations: 

 

rot E + 
1

c
H  = 0 , 

 div H = 0 , 

 

along with some further formal analogies, led Weyl to the conclusion that i could be identified 

(up to a constant proportionality factor) with the components i of the electromagnetic four-

potentials, while the fik corresponded to the electromagnetic field strengths E, H. In a logical 

extension of the geometric interpretation of gravitation in terms of the variable curvature of 

Riemannian space, Weyl then imagined that the remaining part of physical effects – viz., the 

electromagnetic field – would likewise be a property of the metric behavior of space that was 

characterized by the variability of the gauge. One would then write: 

 

l = 0

i
i dx

l e
   ( = proportionality factor).   (2.a) 

 

 One must admire the sheer boldness that led Weyl to his study of the gauge-geometric 

interpretation of electromagnetism on the basis of nothing but that purely-formal association: In 

the theory of gravitation, it was a physical fact, namely, the principle of the equivalence of inertial 

and gravitational mass, that inspired Einstein’s geometric interpretation. By contrast, in the theory 

of electromagnetism, no such fact was known: That did not give one the right to imagine that the 

electromagnetic field might have a universal influence on the so-called rigid yardsticks (clocks, 

resp.). Quite the contrary, e.g., atomic clocks represent yardsticks whose independence of their 

prior history is confirmed by the sharpness of the spectral lines, which contradicts the non-

integrable metric (2.a) that Weyl assumed in a magnetic field. It would probably require an 

uncommonly-clear metaphysical conviction for Weyl to believe that despite such elementary 

experimental facts, one should not give up on the idea that nature must make use of those beautiful 
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geometric possibilities as being necessary. He held fast to his viewpoint and kept the contradiction 

that was just depicted out of the discussion by way of a somewhat-vague reinterpretation of the 

concept of “real measurements,” which generally gave his theory its concise physical meaning, 

but in that way surrendered much of its power to convince. 

  I shall not need to go into the details of that abstract formulation of the theory. Rather, I will 

show that it is precisely the concise original conception of Weyl’s theory that inherently gives it a 

much greater resilience than its creator has already made use of, namely, that one can glimpse in 

it nothing less than a logical path to undulatory mechanics, and it is from that viewpoint that one 

will first arrive at an immediately-understandable physical meaning. 

 

 

Chapter II – De Broglie’s undulatory mechanics and Weyl’s theory. 

 

 What I am calling “de Broglie’s theory” is that still-incomplete precursor to undulatory 

mechanics in which the wave function for the motion of one electron (to which we shall confine 

ourselves here): 

 = 
2 ( ) /iiW x h

e


,  i = 1, 2, 3, 4    (5) 

 

emerges from a complete solution W of the Hamilton-Jacobi partial differential equation: 

 

i

ii

i

W e W e

x c x c

   
−  −   

   
 = − 2 2

0m c ,    (6) 

 

in which the integration constants are determined in a known way such that  will be a single-

valued function of space, i.e., W will be additively-periodic with a whole-number multiple of the 

Planck constant as its period. 

 When one gets serious about the radical continuum conception of matter, with the solution of 

the discontinuously-bounded electron in field quantities that vary continuously in space and time, 

as was suggested by de Broglie’s theory and more consistently by the theory that Schrödinger 

considered later (1), one will arrive at an especially-definitive complication when one examines 

the sense that one might assign to metric statements inside of the undulatory continuum, if at all. 

That is because in that oscillating and fluctuating infinitely-broad medium that enters in place of 

the bounded electron, one finds no discontinuities that cannot be understood nor rigid bodies that 

might permit one to establish a metric as a reproducible yardstick. 

 I do not at all agree with the opinion that in order to speak of geometry in the atomic domain, 

one must give a prescription for measurements that can be performed. Indeed, one cannot speak 

of such a thing in the theory of the electron either. However, if one would like to give any well-

 
 (1) It is known to lead to compelling reasons for reinterpreting the entire undulatory formalism statistically, which 

was proposed by, above all, Born and his collaborators. To the extent that the charge density can be reinterpreted as 

a statistical weighting function, it is not difficult to see that this indeterminacy in regard to the applicability of the law 

of identity to which we will refer here must be translated accordingly. However, since that conception initially rejects 

any interpretation in space and time, there is little of interest in its relation to Weyl’s theory of space. 
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defined meaning to the specification of a metric then it seems to me that at the very least one can 

demand is the specification of some real object (as a “prototype”) to which the metric statements 

will already relate, such as an electron diameter or distance, etc., although such a statement might 

still have a very problematic connection with a performable measurement. 

 However, such a real object does not exist in the undulatory continuum. The law of identity is 

not applicable to the πάντα ῥεῖ (†) of standing and travelling waves, since there are no features of 

a continuum that would be suitable for defining a reproducible measurement. The main position 

that one is placed in here would be completely hopeless if it were not for the fact that Weyl, in his 

generalization of the Riemannian conception of space, had already addressed a type of space in 

which it is precisely that non-reproducibility of the gauge unit that is intended to be a logical 

postulate in a radical local geometry. If that theory had once been a superfluous burden in the 

world-view of the theory of discontinuous electrons, since one indeed believed that the electrons 

should possess reproducible measurable quantities, then the situation has changed fundamentally 

now. One is almost compelled to go back to the general Weyl conception of space and attempt to 

apply it to the Schrödinger continuum. A simpler connection now reveals itself. 

 

 

 § 1. – We shall first assume that we already possess a yardstick l that varies according to the 

Weyl prescription (2.a) and move it around in the -field, and indeed it will move with the flow 

velocity of matter, which is group four-velocity: 

 

iu  = 
idx

d
 = 

0

1 i

i

W e

m x c

 
−  

 
 .    (7) 

 

 I assert that with that obvious prescription on the path, Weyl’s scalar l will be numerically 

identical to the de Broglie field scalar . There are two clarifications that must be made: 

 A factor of  was left undetermined in Weyl’s gauge. I shall make the hypothesis for it that it 

equals 2 i e / h c. Thus: 

l = 0

2
exp i

i

i e
l dx

h c


 .     (2.a) 

 

Ultimately: I shall not employ precisely the  in equation (5), but the five-dimensional  that is 

equipped with the factor 
2

02 /i m c h
e

 
, which corresponds to the suggestions of Klein, Fock, and 

Kudar, in which  is understood to mean the proper time (1). One now has: 

 

 = 
2

02 ( ) /i W m c h
e

 +
     (5.a) 

 
 (†) Translator: “Everything flows.” This is a reference to the philosophy of Heraclitus that the universe exists in 

an eternal state of flux. 

 (1) This conception of t, which goes back to Kudar, Ann. Phys. (Leipzig) 81 (1926), pp. 632, agrees completely 

with the recently-discussed interpretation as the angle coordinate of the proper rotational motion of the electron 

[Naturwissenschaften 15 (1927), pp. 15], because that angle of rotation is regarded as a clock that moves with the 

electron. It therefore transforms like proper time. 
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or 

= 
2

0

2
exp i

i

i W
dx m c

h x




 
+ 

 
 . 

 

That quantity  should be compared with the Weyl gauge (2.a) that gets carried along the current 

of the continuum. One will get: 

 

l


 = 2

0

0

1 2
exp i

ii

i W e
dx m c

l h x c




   
−  +  

  
 , 

 

in which the 
idx  are carried along the flow that is given by (7) 

 

= 2

0

0 0

1 2
exp i

ii

i

i W e W e d
m c

l h x c x c m

 


     
 −  −  +   

     
 . 

 

As a result of the Hamilton-Jacobi differential equation (6), the integrand is equal to − 2

0m c , so 

one will get: 

l


 = 

0

1 2
exp const.

i

l h

 
 

 
 = const.    (8) 

 

 The physical object that behaves like Weyl’s metric has then been found, viz., the complex 

amplitude of the de Broglie wave. It will then have the same effect in an electromagnetic field that 

Weyl had postulated for his gauge, and to which he had to assign a purely metaphysical existence 

(as an unused term in the physics of his era). It is, so to speak, the prototype of the Weyl metric. 

Just as in the theory of gravitation we are free to speak of deflected light rays and masses or their 

geodetic motion in a Riemannian space, (8) will make it possible for us to geometrically interpret 

the de Broglie oscillation process for matter and the influence of the electromagnetic potential in 

terms of a Weyl space that is filled homogeneously with matter, but whose metric connection is 

not integrable. 

 According to (2.a), the gauge will be constant in the absence of an electromagnetic field. One 

must then obtain a constant value for the de Broglie wave function when one follows it along the 

associated current, i.e., group velocity (v, which is always < c). That would seem to contradict de 

Broglie’s fundamental result that the phases of his waves advance with a much larger phase 

velocity (u = 2 /c v ). However, that is not applicable here, since it was not precisely the de Broglie 

 that was employed above, but the extended five-dimensional one, which is dispersion-less, and 

the distinction between group and phase velocity will go away here. One also easily convinces 

oneself immediately that the plane wave: 
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  = 
2

20 0
0

2 2

2
exp

1 1

m c m vi
t x m c

h




 

  
  − − −

  − −  

  ( = v / c) 

 

does in fact exhibit constant phase when one follows it with the velocity v. 

 A further objection that we are comparing  to a density with a length l here likewise seems 

to present no difficulty. One must compare  to 3l −  from the outset, which would mean only a 

change in the choice of the undetermined factor . It would probably be more natural to infer from 

the connection that was revealed here that Weyl’s gauge l is assigned the same dimension to begin 

with as that of de Broglie’s . No such statement can be made within the context of Weyl’s theory, 

since nothing is known about the “nature” of l in it. 

 

 The failure to understand the complex form for the transportation of line segments seems to 

present a grave difficulty. In that way, it is not permissible to, say, restrict oneself to the real part. 

One can see a counterpart for that in the fact that the wave function itself  is regarded as 

essentially complex, or better yet, it represents a combination of two physical state quantities, 

namely,   and the real part of (h / 2 i) ln  . In that sense, one must also understand that in the 

variational problem of wave mechanics,  and   are varied independently of each other. However, 

I would not like to pause to discuss here whatever it should mean that every line segment is 

regarded as a complex quantity and what it should mean that the entire Weyl variability of the 

measure of the line segment is presented as a change in only the phase while preserving the 

absolute value. 

 

 

 § 2. – Nonetheless, the objection that we alluded to above still exists, namely that experiments 

contradict the non-integrability of the gauge. One can now foresee already how that difficulty must 

be resolved: Quantum theory allows matter to have only a discrete series of equations of motion, 

and one suspects that those distinguished motions will allow one transport the gauge only in such 

a way that the phase will have made precisely a whole number of circuits upon returning to the 

starting point, such that despite the non-integrability of the transport of line segments, the gauge 

will always be realized in a single-valued way at every location. In fact, one recalls the resonance 

property of the de Broglie waves, which is the same way that the older Sommerfeld-Epstein 

quantum condition first reinterpreted the de Broglie condition so successfully. That is generally 

coupled with the phase velocity, but as a result of the five-dimensional extension of the wave 

function, the oscillation process will be dispersion-less, and as a result, our current velocity will 

be identical to the phase velocity. In that way, and as a result of the identity of the wave function 

 with Weyl’s metric, it would then seem to have been already proved (1) that Weyl’s metric will 

also take part in the resonance of the de Broglie waves when I follow it along the quantum-

theoretically possible matter current, and despite the non-integrability of the differential expression 

(2.a) in the electromagnetic field, it will still lead to a single-valued measurement at every location. 

 
 (1) That terminology is imprecise and will be soon rectified.  
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Had one included the single-valuedness of the metric as a generally-known fact of experiment in 

Weyl’s theory axiomatically, then one would be logically led to the system of discrete states of 

motion of “classical” quantum theory and their de Broglie waves. 

 I would not like to leave this subject without making note of the fact that the resonance property 

of the Weyl line metric that we proposed as a characteristic law of undulatory mechanics here was 

already alluded to by Schrödinger (1) in 1922 as a “remarkable property of quantum orbits” and 

he proved it in a number of examples without knowing what it meant at the time. He also drew 

attention to the possibility that  = 2 i  e / h c, but without giving preference to a different choice 

of . Thus, Schrödinger already had the characteristic wave-mechanical periodicity available to 

him at the time that he later encountered once more from a completely different viewpoint. 

 For that reason, it would perhaps not be superfluous for me to also prove Schrödinger’s 

suggestion independently of the wave-mechanical connections as a law of “classical” quantum 

theory, as it was originally intended. I then assert: When the line exponent in the Weyl metric is 

led around a closed quantum orbit, it will be a whole-number multiple of Planck’s constant: 

 

i

i

e
dx

c
  = n h .      (9) 

 

In order to prove that, one utilizes the relation that was employed in § 1 already: 

 

i

ii

W e
dx

x c

 
−  

 
  = − 2

0m c d  = − 

2

2

0 1
v

m c dt
c

 
− 

 
 . 

 

As a result of the quantum condition: 
3

1

i

i
i

W
dx

x=




   = n h , 

one will then get: 

4

4

i

i

W e
dx dx

x c

 
−  

 
  = − n h − 

2

2

0 1
v

m c dt
c

 
− 

 
 . 

 

Assuming that an energy integral exists, one will have: 

 

4

4

W
dx

x




 = − (Ekin + Epot) dt , 

so 

− i

i

e
dx

c
  = − n h + 

2

2

0 kin pot1
v

m c E E dt
c

 
  − − + + 

  
 

 . 

 

 
 (1) E. Schrödinger, Zeit. Phys. 12 (1922), pp. 13.  
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The integral on the right-hand side vanishes here as a result of the relativistic generalization of the 

virial theorem (1) under the assumption that the potential is homogeneous of degree – 1 in the ix , 

from which the assertion (9) will follow immediately. 

 One sees from that derivation that one can prove the single-valuedness of Weyl’s metric only 

under two assumptions. Those assumptions (in particular, the first one) are obviously very 

essential, and one can certainly not get around them completely. It guarantees certain stationary 

relationships in space that one is first permitted to speak of spatially-closed orbits in the 

Minkowski world, which is a statement that generally depends entirely upon the choice of 

reference system. That is why one must refer to those assumptions as conditions for the possibility 

of applying the law of identity to space. 

 Most of the time, trajectories will not be exactly periodic, but only quasi-periodic. Under 

suitable continuity assumptions, one can then prove that the Weyl metric will coincide with its 

original value at the starting point to a sufficiently good approximation and up to an arbitrarily-

small given amount. One does not need to demand any more than that. 

 The fact that the transport of the gauge element with the velocity (7) will always have matter 

as a consequence in that way seems especially satisfying, because a transport with any other 

velocity would not be possible quantum-mechanically (mechanically, resp.) However, I would like 

to defer a more rigorous justification of those connections and their inclusion into an 

epistemologically-based theory of measurement for later, since an essentially different viewpoint 

will have to be singled out. If we have also seen how Weyl’s ideas have found an unanticipated 

incorporation into the present physical intuitions then I nonetheless do not believe that one should 

be over-satisfied with that success. I have placed the continuum picture of quantum mechanics in 

the foreground here in a biased way that does not correspond to my beliefs. Anyway, it would 

 
 (1) I do not know of any proof of the relativistic generalization of the virial theorem in the literature, so I would 

like to present one here. One has: 

 

2 2 2 3
2 0 0

0 pot pot pot
2 2

1

1 .

1 1

i

i

i

m c m vv dx
m c E dt E dt p E dt

c dtv v

c c

=

   
   

     
− − + + = + = +     

         − −      
      

    

 

Under product integration, while observing the periodicity condition, that will be: 

 
3

pot

1

.i i

i

dp
x E dt

dt=

 
= − + 

 
  

 

As a result of the equations of motion, one will have poti

i

Edp

dt x


= −


, so one will then get: 

 
3

pot

pot

1

.i

i
i

E
x E dt

x=

 
= + 

 
  

 

The integrand will vanish here as a result of Euler’s theorem on homogeneous functions. 
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seem desirable to me to next pursue those ideas to their logical conclusions. In that spirit, what 

will be developed in the following chapter should be considered to be largely provisional. I hope 

to return to the whole connection with more general physical viewpoints soon. 

 

 

Chapter III – Quantum-mechanical reinterpretation of Weyl’s theory. 

 

 The investigations in the previous chapter were expressly concerned with the early stage of 

quantum mechanics that is characterized as the “de Broglie theory.” They will then become false 

when one would like to adapt them to the Schrödinger theory directly, at least in the domain where 

the two theories overlap. However, one can already say that in any event our results must remain 

asymptotically correct in the limit of large quantum numbers, since both theories will merge into 

each other then. 

 One can then characterize the advance of the Schrödinger form of wave mechanics by the fact 

that it involved the “incorporation” of the trajectories of classical mechanics, which de Broglie 

had initially attributed to a wave only superficially by way of (5), in the calculations for a 

connected wave continuum. In geometric optics, the consideration of the isolated individual 

trajectories is physically equivalent to that of the wave fronts. By contrast, in wave optics, an 

isolated wave-ray will experience a certain influence due to its neighbor when it is incorporated 

into a front of rays. The fact that this influence is expressed is the characteristic statement of 

Schrödinger’s theory when it describes the wave function  by a wave equation instead of a 

Jacobi differential equation (6). Upon splitting into imaginary and real components, the 

Schrödinger wave equation for  = 
2 /| | iW he   (W real) will read: 

 
2

2 2

2

| |
0 ,

2 | |

| | 0.

i

ii

i

k

k k

h W e W e
m c

i x c x c

e W e

x m x c



 



     
+ −  −  + =     

      


     
−  =        

  (10) 

 

In that representation, one recognizes the counterpart to the de Broglie theory in the appearance 

of the term | | / | |  . At the same time, it will also be obvious here that one is dealing with a 

problem with two unknown real functions. The second equation is the continuity equation of the 

current whose four components are included in the curly brackets. 

 There is no question that we presently give preference to the ideas of Schrödinger’s theory 

over those of de Broglie without reservation, due to the better agreement with experiments in the 

former. We must see that the discrepancy between Schrödinger’s theory and that of Weyl is no 

oversight in Schrödinger’s theory. 

 If one observes that the deviations will characteristically break down for small quantum 

numbers then there can be no doubt as to where the difficulty arises: All of the competency of 

Weyl’s theory is, so to speak, tailored to classical mechanics, and therefore to de Broglie’s theory, 

which is associated with it. As a result, one would not at all expect or demand that it should already 
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be suited to Schrödinger’s theory. Rather, the problem must be to complete the step in Weyl’s 

now-dated theory that would correspond to the one that led from de Broglie to Schrödinger. It 

must be modified corresponding to the quantum-mechanical correction to classical laws in its own 

right. 

 One can foresee the direction that the correction to Weyl’s metric might take. Up to now, it 

was assumed that the four potentials i that provide a complete description of the electromagnetic 

field are the only thing that is definitive of the displacement of line segments (2.a). The situation 

has changed now in that the Schrödinger  is added to the four state quantities of the field i as 

a fifth one, which presents the field quantities i symmetrically in many respects [above all, in its 

representation by a variational problem (1)]. Matter, which is banished from the field behind 

impenetrable boundary surfaces or relegated to its singularities in its electron-theoretic conception, 

is now spread out over all of space, and whereas in Weyl’s theory, one has every right to imagine 

that a yardstick in “empty” space is influenced by only the electromagnetic potentials that prevail 

there, one will now have to account for the fact that the older separation between impenetrable 

matter and the  ὸ (†) has vanished, and one will always find oneself in the interior, so to speak, 

of the everywhere-penetrable (2) new substance |  |. 

 One should then expect that in addition to the external electromagnetic field quantities, one 

will also have to consider internal ones that depend upon only |  |. Madelung (3) gave the 

“potential” for that internal action of the -field on itself. I would like to propose the relativistic 

generalization of it as: 

e 5 = 

2

2

0 2 2

0

1 | |
1 1

2 | |

h
m c

i m c



 

 
  − +  

  
 

 .   (11) 

 

 The word “potential” must be used with care. 5 does not correspond to the “scalar” potential 

4 that figures relativistically as the temporal component of a four-vector since is it also a scalar 

invariant relativistically. Correspondingly, 5 cannot govern the change in a line segment along a 

certain world-direction either. If one wishes to assume that it has any influence on the gauge at all 

then it can depend upon only the magnitude of the four-dimensional displacement of the line 

segment, but not on its direction. If one correspondingly introduces a fifth coordinate by way of 

the world-line element dx5 = c d ( = proper time) that is not independent of the remaining dxi, 

but is coupled to them by the condition (4): 

 

 
 (1) E. Schrödinger, Ann. Phys. (Leipzig) 82 (1927), pp. 265.  

 (†) Translator: “empty, void, vacuum.” 

 (2) That is because  satisfies a linear differential equation, and therefore the superposition principle. However, 

the property of impenetrability seems to find its quantum-mechanical expression in the form of the Pauli exclusion 

principle. [P. Ehrenfest, Naturwissenschaften 15 (1927), pp. 161] 

 (3) E. Madelung, Zeit. Phys. 40 (1940), pp. 322.  

 (4) The appearance of that five-dimensional quadratic form is entirely reasonable in the spirit of Weyl’s demand 

of gauge invariance. The world-line element d (dx5, resp.) is indeed a relativistic invariant, but not a gauge invariant 

(the transition to a different gauge will change d), but the vanishing of the quadratic form (12) is probably gauge 

invariant. Obviously, one must understand Kaluza’s five-dimensional Ansätze in that sense. 
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2 2 2 2 2

1 2 3 4 5dx dx dx dx dx+ + + + = 0     (12) 

then one might suspect that: 

l = 
5

0

1

2
exp i

i

i

i e
l dx

h c



=

 
 

 
     (13) 

 

represents the quantum-mechanical generalization of Weyl’s line metric. 

 In order to verify the identity of (12) with Schrödinger’s wave function, we must next give 

the path along which the generalized line metric (13) is translated. We would once more like to 

prescribe that the transport should have the current velocity. However, in so doing, we must 

observe that the components iu  of the four-velocity are no longer given by (7), although the 

representation of the current in the second equation (10) relates to the splitting off of the factor 

e   as a rest charge density. Due to (10.1), the velocity components that are split off in that way 

would not, in fact, fulfill the identity of the four-velocity (1): 

 

k

ku u  = 
k

kdx dx

d d 
 = − 2c .          (12) 

Rather, we must write: 

5

kdx

dx
 = ku

c
 = 

0

k

e W e

m c x c

 



 
 −  

 
 ,       (7.a) 

in which the factor: 

 = 

2

2 2

0

1 | |
1

2 | |

h
e

i m c


 

 

 
+  

 
 = 52

0

1
1e

m c
 

 
−  

 
  (14) 

 

has been split off as the “rest charge density.” 

 In that notation, one gets: 

e 5 = 
2

0 1m c
e



 

 
− 

 
 ,          (11.a) 

 

and the five-dimensional form (2) of the first Schrödinger equation will read: 

 
5

1

i

ii
i i

W e W e

x c x c=

   
−  −   

   
  = 0 .       (10.a) 

 

 
 (1) Unless otherwise stated to the contrary, the summation over equal indices from 1 to 4 will alwaysbe  understood 

in what follows, as it was up to now.  

 (2) One should observe in this that 5 is initially an undetermined unknown in its own right. It is known that it is 

still a source of wonder why the same thing is not true for the potentials 1, 2, 3, 4, as one might expect. [E. 

Schrödinger, Ann. Phys. (Leipzig) 82 (1927), pp. 265.]  One has W / x5 = m0 c [cf., (5.a)]. 
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 We shall now compare the segment l (13) with the Schrödinger scalar  along the current 

(7.a). We will then get for  / l that: 

 

 
l


 = 

5

10

| | 2
exp i

i

i i

i W e
dx

l h x c

 

=

  
−   

  
 . 

 

(7.a) will then imply that this: 

 

 = 
4

5 5 5

10 5

| | 2
exp i

ii
i i

i e W e W e W e
dx dx

l h mc x c x c x c

   

=

       
−  −  + −      

       
  

 

and (11.a) will give: 

 

 = 
5

5

10

| | 2
exp i

ii
i i

i e W e W e
dx

l h mc x c x c

   

 =

    
−  −    

    
  

 

 = 
0

| |

l


. 

 

The last step is true due to (10.a). One will not get  / l = const. next, but: 

 

l


 = 

0

| |

l


,      (8.a) 

 

which is a single-valued function of position (1). However, the potentials k are established 

physically only up to an additive gradient. If I introduce: 

 

 
 (1) One can express that method of proof more logically in the spirit of five-dimensional geometry as follows: 

  

ii

W e

x c


− 



 
 
 

 is parallel to the five-current ji = 
ii

e W e

m x c
 


− 



 
 
 

, 

  
i

dx  shall be chosen to be parallel to the five-current 
i

j . 

 The five-current is orthogonal to itself 
5

1

0i

i

i

j j
=

 
= 

 
 . Thus, ji is also orthogonal to 

i
dx , and therefore 

5

1

0.i

i

i
i

W e
dx

cx=

 
−  = 

 
  

 I would like to thank Herrn A. Landé for communicating this beautiful formulation to me. In that way, the fifth 

component of the five-current will be j5 =  c . 
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k

  = k − ln | |
2 k

h c

i e x







 

 

in place of them, which will leave the electromagnetic field strengths untouched, then it will follow 

that  / l = const. 

 The single-valuedness of the gauge that moves along with the current, which goes back to the 

resonance of the waves, now carries over from de Broglie’s theory to Schrödinger’s with no 

further discussion, such that we do not have to add anything to the arguments in Chapter 2 here. 

 

 Stuttgart, Inst. d. techn. Hochschule, 27 February 1927. 

 

___________ 

 


