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Introduction 
 
Let M be a differentiable manifold and let ω be an exterior differential form on M; numerous 
examples justify the value of a general study of the pair (M, ω); such as: 
 
1) A field of contact elements of codimension p on M, i.e., a sub-bundle of codimension p of 

the tangent bundle, is defined, at least locally, by a non-null decomposable p-form. 
 
2) A Pfaff form ω without zeros such that ω ^ dω = 0 defines a foliation of codimension 1 on 

M. 
 
3) At the other extreme, if M is of odd dimension 2p + 1 and ω ^ dωp ≠ 0 at any point then the 

Pfaff form ω defines a classical structure called a “contact structure.” 
 
4) A 2-form ω (closed 2-form, resp.) of maximum rank on a manifold of even dimension 2p 

(i.e., ωp ≠ 0 at any point) defines an almost-symplectic (symplectic, resp.) structure. 
 
5) If M is a Riemannian manifold, then the minimal submanifolds of M are solutions of 

differential systems that are defined by canonical p-forms on the tangent bundle TM. 
 

 The preceding examples bring into play forms that are sufficiently regular: constant rank in 
1), class equal to 1 or 2 in 2), etc.  By contrast, a general study of the pair (M, ω) will be 
essentially a theory of singularities of the differential forms; this is the theory that is sketched in 
this work. 
 The notions of singularities of differentiable maps and vector fields are now classical; I begin 
the study of forms at an analogous viewpoint. 
 One so often hears the remark that the singularities of Pfaff forms must correspond to the 
singularities of vector fields (via a Riemannian metric, for example) that I must first deduce this 
little myth: any non-null vector field has the expression 1/ x∂∂  in a convenient local coordinate 
system; by contrast, it is practically impossible to classify the germs of non-null Pfaff forms up 
to isomorphism; the rank of the exterior differential dω will intervene in this classification, and, 
more precisely, the class (in the sense of E. Cartan) of ω; therefore, the points where the class 
changes will be the singular points of ω. 
 In the theory of differentiable maps (R. Thom [15], H. Levine [9]), the rank plays a central 
role. 
 In this work, we will be concerned with singularities of three types of objects: 
 

1) Exterior differential forms. 
 
2) Closed exterior differential forms. 
 
3) Pfaff equations, i.e., fields of tangent hyperplanes on a manifold (defined locally by an 

equation ω = 0, where ω is a Pfaff form with no zeroes). 
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 The role of the rank for differentiable maps will be played by the rank of an alternating 
multilinear form in the case of closed forms, and the class in the cases of forms that are not 
closed and Pfaff equations. 
 
 Chapter I is dedicated to rank in the exterior algebra of a vector space; there, one very closely 
studies the stratifications that are defined by sets of forms of a given rank in ΛpE*.  Due to the 
very elementary nature of this chapter, I believe it is quite original; in any case, I have found 
hardly a trace of the preoccupations that are found here in the classical works of Goursat and E. 
Cartan.  In the course of this study, I have become convinced that the search for invariants for 
forms of “intermediate” degrees that are more definitive than the rank will be undoubtedly 
interesting and amusing. 
 In Chapter II, with the aid of transversality theorems, I then study the generic nature of sets 
points where the rank or the class of a differential form (or a Pfaff equation) on a given 
differentiable manifold decreases.  Here is an example of a result in that direction: 
 Let M be a differentiable manifold of dimensions n and let ω be a Pfaff form on M; let ζd(ω) 
be the set of points where the class of ω is n – d; generically, ζd(ω) is a regular sub-manifold of 

M of codimension
2

)1( +dd
; in particular, the class is generally very large everywhere, and 

minorized by a quantity that has the approximate value n− n2 (cf. II.4.3.3). 
 One may then study singularities of higher order, as in the case of differentiable maps; I have 
realized this objective only in the case of closed 2-forms in dimension 4, and Pfaff equations in 
dimension 3, where one obtains a classification that is already satisfied by the generic 
singularities (II.3 and II.6) in orders 1 and 2. 
 Chapter III is essentially dedicated to the search for models of a given singularity; this 
amounts to classifying the germs of forms that present the singularity being considered, up to 
isomorphism. 
 One knows the classical models in a certain number of regular situations: volume form, 
closed 2-form of maximal rank, Pfaff form of maximal class (Darboux’s theorem).  Starting with 
these results, I may very easily show that in a very large number of cases the simplest 
singularities admit a model; for example, the simplest singularities of a Pfaff form in even 
dimension admit: 

ppdyxdyxdyx +++±= ⋯221
2
1 )1(ω , 

 
for a model.  The tools that are used here are the implicit function theorem, the theorem of 
existence and uniqueness of solutions to differential equations, and the divisibility properties of 
differentiable functions.  Meanwhile, given the simplicity of the situations envisioned, I have not 
had to use the differentiable preparation theorem. 
 On the other hand, I have included several remarks in this chapter (III.B) that relate to the 
notions of stability and infinitesimal stability for a germ of a differential form; in this context, 
one may pose a problem that is analogous to the one that was recently solved by J. Mather in the 
case of differentiable maps, but a different order of difficulty; it essentially amounts to a linear 
problem for the maps.  By contrast, a differential operator (of order 1) intervenes in the case of 
forms. 
 We do not begin to discuss the global problems of the theory here.  Nonetheless, we mention 
that one may make a homological study of the singular set of a differential form that is analogous 
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to the case of differentiable maps (cf. [8]).  On the other hand, one may cite several results that 
relate to the global stability of forms or Pfaff equations (in particular, see [7] and [14]). 
 Finally I have judged it useful to give a very brief summary of the theory of transversality in 
an Appendix; it was difficult for me to indicate the references that led directly to the results that I 
found necessary.  Above all, I insist on the transversality theorem that relates sections of a vector 
bundle, which is technically easier; for the sections of an arbitrary fiber bundle, one comes back 
to the preceding by a simple linearization procedure. 
 In conclusion, there are no new techniques in this work; one only applies the methods that 
are now available to a situation that has not been studied up till now and is certainly very rich in 
interest.  On the other hand, I regret that I have not given any applications of the theory that is 
sketched out here; it is possible that it provides a means of approach to the problem of the 
existence of structures that defined on a given manifold by differential forms without 
singularities (for example, the existence of a contact structure on a compact orientable manifold 
of dimension 3; cf., S.S. Chern [4]). 
 A part of the results in this work has been announced in two notes to the Comptes Rendus 
([11], [12]). 
 It remains for me to point out that Professor E. Calabi has independently obtained certain 
results that appear here (as well as others that do not), and that he has made remarks to me that 
allowed me to ameliorate certain points. 
 This article constitutes the essence of the work that I have presented as a doctoral thesis to 
the Faculté des Sciences de Grenoble.  I would like to heartily thank G. Reeb, who suggested this 
study to me, C. Chabauty, who graciously presided over the jury, and O. Galvani and R. Thom, 
for the interest that they have shown in my work and their participation in the jury. 



CHAPTER I 
 

RANK IN EXTERIOR ALGEBRA 
 

All of the vector spaces envisioned in this chapter are of finite dimension over R. 
 
 

1.  Notations – Definitions – Summary. 
 
 1.1  Let E be a vector space of dimension n; for any p (1 ≤ p ≤ n), one notates the pth exterior 
product of E by ΛpE. 
 If h: E → F is a linear map, then one notates the pth exterior product of h by: 
 

hp: ΛpE → ΛpF. 
 
 Let F be vector subspace of E and let i: F → E be the canonical injection. ip: ΛpF → ΛpE is 
an injection, and in the sequel one will always identify ΛpF and its image in ΛpE by ip. 
 By means of this identification, the following relations are verified ([2]): 
 

Λp(F1∩ F2) = ΛpF1∩ ΛpF2     (1) 
for any subspaces F1 and F2 of E. 

hp(ΛpE) = Λp[h(E)]     (2) 
where h: E → F is a linear map. 
 
 1.2.  DEFINITION ([2], pp. 72). – Let E be a vector space and let ω ∈ ΛpE be a p-vector of 
E.  The support of ω is the smallest subspace Sω ⊂ E such that ω  ∈ ΛpSω; its dimension is the 
rank of ω; the corank of ω is the codimension of Sω in E. 
 
 This definition is justified by relation (1). 
 
 PROPOSITION. – Let h: E → F be an injective linear map and let ω ∈ ΛpE; one has: 
 

h(Sω) = 
)(ωph

S . 

 
This is an immediate consequence of relations (1) and (2).  This result, when applied to an 
automorphism of E, shows that rank is an invariant of the canonical action of the linear group, 
Gl(E), in ΛpE. 
 The rank of a non-null p-vector of E is obviously between p and n = dim E; the preceding 
proposition, when applied to the injection i: Sω → E, permits us to consider ω as a p-vector of 
maximum rank in Sω . 
 
 1.3.  Let E be a vector space; E* will denote the dual of E and ΛpE*, the space of p-vectors of 
E*, which is identified with the space of alternating p-forms on E. 
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 One will notate the interior product of ω ∈ ΛpE* with x ∈ E by x  ω. 
 
 DEFINITION. – ([3], [5], [6]).  Suppose ω ∈ ΛpE*; one calls the subspace Aω ⊂ E that is 
defined by: 

Aω = {x ∈ E: x  ω = 0}, 

the associated space of ω. 
 
 PROPOSITION. – Suppose ω ∈ ΛpE*; the subspace Aω ⊂ E that is associated with ω and the 
subspace Sω ⊂ E* , which is the support of ω, are orthogonal. 
 
 The rank of a p-form on E is therefore likewise the codimension of its associated space in E. 
 In this context, the support of a p-form ω will also be called the associated system to ω. 
 
 Remark. − Suppose ω ∈ ΛpE*; let iω: E → Λ(p-1)E* be the linear map defined by iω(x) = x  

ω; let jω: Λ(p-1)E* → E*  be the linear map defined by jω(X) = (−1)p−1 X  ω.  It is immediate that 

jω is the transpose of iω; the image of jω is thus the orthogonal to the kernel of iω; i.e., the support 
of ω.  In other words, if ω is a p-form then the forms: 
 

ω(x1, …, xp−1),  (x1, …, xp-1 ∈ E) 
 
generate the support of ω in E*. 
 
 1.4  Immediate properties of rank. 
 
 1.4.1.  Let ω = α1 ^ … ^ αp be a non-null decomposable p-form; it is immediate that Sω is the 
subspace of E* that is generated by the independent k-forms α1, … ,αp; the rank of ω is therefore 
equal to p. 
 Conversely, if ω ∈ ΛpE* has rank p, like ω ∈ Sω, where dim Sω = p, then one has ω = λα1 ^ 
… ^ λαp , where (α1, … , αp) is a basis for Sω and λ is a convenient scalar; ω is therefore 
decomposable. 
 
 1.4.2.  Let ω ∈ Λ(n-1)E*, ω ≠ 0, with n = dim E; let Ω ∈ ΛnE*, Ω ≠ 0.  The linear map iΩ: E 
→ Λ(n-1)E* that is defined by iΩ(x) = x  Ω, is an injection; it is therefore an isomorphism since 

the dimensions of the source and target are equal.  There thus exists a vector x ≠ 0 such that ω = 
x  Ω; then x  ω = 0, i.e., x ∈ Aω; therefore the rank of ω is strictly less than n; it is therefore 

equal to n – 1, and ω is decomposable. 
 
 1.4.3.  One immediately deduces from 1.4.2 that a p-form may not be of rank (p + 1). 
 
 1.4.4.  Proposition. – Let ω and ω ′  be two p-forms on E (p ≥ 2); if dim( ωω ′∩ SS ) ≤ p – 2, 

then ωωωω ′′+ += SSS ; in particular, if ωω ′∩ SS  = {0} then )()( ωωω rankrank =′+ )(ω ′+ rank . 
 
Proof. – One considers the linear equation: 
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( ) 0x x xω ω ω ω′ ′+ = + =  (x ∈ E). 

 
It is clear that x  ω ∈ Λ(p-1)Sω and x  ω ′ ∈ Λ(p-1)Sω; however: 
 

}0{)1()1( =Λ∩Λ ′
−−

ωω SS pp , 

 
by hypothesis; one therefore has x  ω = 0 and x  ω ′  = 9, namely: 
 

ωωωω ′′+ ∩= AAA , 

 
and, by passing to orthogonal complements, ωωωω ′′+ += SSS . 

 
 1.4.5.  PROPOSITION. – Let ω ∈ ΛpE* and ω ′ ∈ ΛqE*, with: 
 

ωω ′∩ SS  = {0}; 

 
then ωωωω ′′∧ ⊕= SSS  and )()( ωωω rankrank =′∧  )(ω ′+ rank . 
 
 The proof is likewise very easy; we shall not give it. 
 
 

2.  General study of the sets p
pn,Σ . 

 
In all of what follows, we will let p

rn,Σ denote the set of elements of ΛpE* that have rank r (where 

n = dim E). 
 We propose to study the figure that is formed in ΛpE* by the sets p

rn,Σ  in a very detailed 

manner, and to compare these sets, which are invariant under the action of Gl(E), with the orbits 
of that group. 
 Before we begin this study for different values of p, we state a general result. 
 
 PROPOSITION. – Suppose ∅≠Σ p

rn, ; then: 

 
 a)  p

rn,Σ is a regular submanifold of ΛpE*  of dimension )( rnrC p
r −+ . 

 

 b)  p
rn,Σ is an algebraic sub-variety of ΛpE* , and: 

 
p

rn
rr

p
rn ′≤′

Σ∪=Σ ,, . 
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Proof. – We first remark that once one has eliminated the trivial case r = 0 one necessarily has r 
≥  p. 
 
 Let Gr,n-r be the Grassmannian of r-planes of E*.  Let rnr

p
r GF −→ , be the fiber bundle 

defined by the pairs (ν, α) where ν ∈ Gr,n-r, and α ∈ Λpν (the fiber over ν is therefore the vector 
space Λpν). 
  Set h(ν, α) = α ∈ ΛpE*; h is a continuous algebraic map. 
 From proposition 1.2, it is clear that p

rn
rr

p
rFh ′≤′

Σ∪= ,)( . 

 The set p
rn

rr
′≤′

Σ∪ ,  is an algebraic sub-variety of ΛpE* (since it is the set of ω ∈ ΛpE* such that 

the linear map iω: E → Λp−1E* is of rank less than or equal to r). 
 On the other hand, the set of pairs (ν, α) ∈ p

rF  such that α ∈ Λpν  is of maximum rank r 
(i.e., its support is ν) is an open set Ω, which non-vacuous, by hypothesis, therefore it is dense in 

p
rF ; since h(Ω) = p

rn,Σ , part b) is proved. 

 It is almost obvious that h defines a homeomorphism of Ω on p
rn,Σ . It remains to show that h 

is an immersion upon restriction to Ω. 
 Let (ν, α) ∈ Ω; let (e1, …, en) be a base of E, such that in the dual basis ),,( 1

∗∗
nee ⋯  of E* the 

forms ),,( 1
∗∗
ree ⋯  constitute a basis for ν; one lets w notate the supplement to v that is generated 

by ),,( 1
∗∗

+ nr ee ⋯ . 

 We can associate a trivialization ofprF : 
 

Hom(v, w) × Λpν → p
rF , 

 
with the basis ),,( 1

∗∗
nee ⋯  in a neighborhood of (v, α); to the point: 

 
),( σµj

ia , 
 
where i = 1, …, r,  j = r + 1, …, n,  σ = (σ1, …, σp), 1 ≤ σ1 < … < σp ≤ r, we can associate the 
pair ),( α ′′v  such that: 
 

1) v′ has ),,( 11 rr aeae ++ ∗∗ ⋯ for a basis, where ai ∈ w, such that: 
 

∑
+=

∗=
n

rj
j

j
ii eaa

1

. 

2) ∑ +=′
σ

σσµα )*( ae where: 

)()()*(
11 pp

aeaeae σσσσσ +∧∧+=+ ∗∗
⋯ . 
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 Formula 2) represents the expression for h in the chart considered forp
rF .  An immediate 

calculation shows that the expression for the derivative h′  of h at the point (v, α) with the 
coordinates };0{ σσ λµ ==j

ia  is: 

 









∧∧∧∧+=′ ∗

=

∗∗ ∑∑∑ pi
eeeh

p

i

j
i σσσ

σ
σ

σ
σσσ εληηε

1
1

);( ⋯⋯  

 

1, ,

( )i i

i r

e e eσ σ σ σ
σ σ

η λ ε∗ ∗

=

= + ∧∑ ∑
⋯

 

 
1 1

n r
j

i j
j r i

e e eσ σ σ
σ

η ε α∗ ∗

= + =

  = + ∧   
  

∑ ∑ ∑ . 

 
Therefore, =′ );( σηε j

ih 0 is equivalent to ησ = 0 for all α, and: 

 

1

r
j

i j
i

eε α
=

 
 
 
∑  = 0, 

 
for all i.  However, by hypothesis, the associated space to α in E has (er+1, …, en) for a basis; one 
therefore has j

iε = 0 for all i and j, andh′ is injective.  Q.E.D. 

 
 Remarks. 
 

1) If n and p are given, and r has its maximum value thenp rn,Σ is a dense open set in ΛpE*.  

2) It is clear that p
rn,Σ is always a closed set in ΛpE*. 

3) The set p
rn,Σ  of p-forms of rank p (i.e., decomposable ones) is always non-vacuous, and is 

an orbit of Gl(E) identically. 
 
 

3.  Trivial case. 
 

 We always set dim E = n. 
 
 3.1.  A form in E* is of rank 0 or 1 depending on whether it is null or not; the sets1

0,nΣ = {0} 

and 1
1,nΣ  = E* − {0} are therefore the orbits of Gl(E) in E*. 

 
 3.2.  A non-null n-form is of rank n, and written α1 ^ … ^ αn for a convenient basis for E*;  

n
n 0,Σ = {0} and n

nn,Σ  = ΛnE* − {0} are the orbits of Gl(E). 

 
 3.3.  A non-null (n – 1)-form is of rank (n – 1), and may be written α1 ^ … ^ αn-1 (α1, … , αn 
are independent in E*); 1

0,
−Σn

n = {0} and 1
1,

−
−Σn

nn  = Λn-1E* − {0} are the orbits of Gl(E). 
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4.  Case of 2-forms. 
 
 4.1.  Recall that: 
 
 PROPOSITION. – ([3], pp. 12, [5], pp. 31).  Any 2-form ω ∈ Λ2E* is of even rank, and the 
following conditions are equivalent: 
 

1) ω is of rank 2k. 
2) ωk ≠ 0 and ω(k+1) = 0 (ωk = ω ^ … ^ ω, k times). 
3) There exist independent forms α1, …, αk , β1, …, βk , ∈ E* such that: 
 

∑
=

∧=
k

i
ii

1

βαω . 

 

 Remark. – From proposition 1.4.4, it is clear that if ∑
=

∧=
k

i
ii

1

βαω  then since the forms αi 

and βi are independent, they constitute a basis for the support of ω. 
 
 4.2. PROPOSITION. − In Λ2E*, the sets 2

. cnnc −Σ=Σ  are identical to orbits of Gl(E); for any c 

(n – c even, 0 ≤ n – c ≤ n), Σc is a regular submanifold of Λ2E*, and: 
 

codim Σc = 
2

)1( −cc
 . 

 
 From 4.1 (condition 3) and 2., the proof is obvious.  It is remarkable that the codimensions of 
these manifolds depend only on the corank; this phenomenon is reminiscent of the result 
concerning sets of matrices of given rank (for which the codimension is the product of the 
coranks of the source and target). 
 Meanwhile, the situation is different according to the parity of the dimension n of E. 
 If n is even then the admissible values of c are 0, 2, 4, 6, …, and the corresponding 
codimensions are 0, 1, 6, 15, … 
 If n is odd then the admissible values of c are 1, 3, 5, 7, …, and the corresponding 
codimensions are 0, 3, 10, 21, … 
 
 Remark 1. – For any ω ∈ Λ2E* one may indicate a local system of equations for the manifold 
Σc that passes through ω; one proceeds in the following manner: 
 
 One identifies the exterior forms of degree 2 with the anti-symmetric linear maps of E into 
E*. 
 One then lets (α1, …, αn) be a basis for E* such that: 
 

ω = α1 ̂  α2 + … + α2k−1 ̂  α2k , 
where 2k = n – c = rank(ω). 
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 The matrixω  that corresponds to ω is written: 
 









=

00

0I
ω , 

 
where I is the 2k × 2k anti-symmetric matrix: 
 























−

−

⋮⋮⋮⋮

⋯⋮⋮

⋯

⋯⋯

⋯⋯

01

1000

001

010

. 

 
 We then let Ω denote the open set of Λ2E* that is comprised of forms j

nji
iji ααλλ ∑

≤<≤

∧=
1

,  

such that j
kji

iji ααλ∑
≤<≤

∧
21

,  is of (maximum) rank 2k.  For any λ ∈ Ω, the corresponding anti-

symmetric matrix )( , jiλλ =  is defined by for i < j; set: 

 









=

DC

BA
λ , 

 
in which A is an anti-symmetric 2k × 2k matrix and C = − (transpose of B); as in ([9], Prop. 2, pp. 
6), one shows that λ ∈ cΣ∩Ω (c = n – 2k) if and only if D – CA−1B = 0; this shows that 

cΣ∩Ω is defined as the set of common zeroes of 
2

)1( −cc
independent functions since D is an 

anti-symmetric c × c matrix. 
 

 Remark 2. – From proposition 2, c
cc

c ′≥′
Σ∪=Σ  is an algebraic sub-variety of Λ2E*. 

 

 If 2+Σc is non-vacuous then we just showed that for any ω ∈ 2+Σc  the tangent at ω ∈ 

contains a basis for Λ2E*; we will then have proved that the set of singular points of cΣ is equal 

to 2+Σc  (if c does not have its minimum value). 

 Let (α1, …, αk) be a basis for E*; for any i, j (1 ≤ i < j ≤ n), the curve, t → ω + t αi ^ αj (t ∈ 

[0, 1]) is traced in cΣ , and its velocity at the origin of ω is αi ^ αj . Q.E.D. 

 
 Remark 3. – One knows that the bilinear forms of corank c in the space ⊗2E* define a regular 
submanifold Sc of codimension c2 ([9], pp. 5). 
 



 Chapter I – Rank in exterior algebra.                                                   13  

 On the other hand, cc SE ∩Λ=Σ *2 . 

 If the manifold Sc intersects the subspace Λ2E* of ⊗2E* in general position then the 
codimension of Sc in ⊗2E* will be equal to the codimension of Sc in Λ2E*; one sees that there is 
nothing else; the loss of codimension in the intersection is likewise increasing with c. 
 
 

5.  Case of forms of degree (n – 2). 
 
 5.1.   In Λn−2E*, rank may take only the values 0, n – 2, n (cf. 1.4.3).  A priori, one does not 
know if there always exist (n – 2)-forms of maximal rank n. 
 However, 2

2,
−

−Σn
nn , the set of forms of rank n – 2 − i.e., decomposable ones − is a submanifold 

of dimension: 
32)2(22

2 −=−+−
− nnCn

n ; 

 
when n > 3 one has 2n – 3 < dim Λn-2E*, and there necessarily exist (n – 2)-forms of rank n. 
 
 5.2.  Orbits of Gl(E) in Λn−2E* .  The results of this section will not be used in the sequel. 
 
 5.2.1.  Let Ω ∈ ΛnE* be a volume form on E, and let: 
 

hΩ: Λn−2E* → Λ2E* 
 
be the isomorphism that associates every ω ∈ Λn-2E* with the unique bivector X = hΩ(ω) such 
that ω = X  Ω; if Ω and Ω′ are two volume forms then hΩ(ω) and )(ωΩ′h are proportional, and 

one likewise has rank 2k; the integer k will be called the length of the (n – 2)-form ω.  One will 
denote the set of forms of length k by Sk . 
 
 5.2.2.  With the preceding notations, let: 
 

ω = X  Ω,  in which X = hΩ(ω). 
 
 If g is an automorphism of E then one has: 
 

g · ω = (g−1 · X)  (g · Ω). 
 
 However, g · Ω = ∆(g)Ω, where ∆(g) is the determinant of g.  If ω andω ′ are (n – 2)-forms 
then upon setting X = hΩ(ω) and )(ω ′=′ ΩhX , it is clear that: 
 

ω ′  = g · ω (g ∈ Gl(E)) 
is equivalent to: 

g ·X ′  = ∆(g)X . 
 
This shows that length is an invariant of the action of Gl(E). 
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 5.2.3.  Let ω = X  Ω be an (n – 2)-form of length k; from proposition 4.1, one easily 

deduces the existence of a basis (e1, …, en) of E such that if (α1, …, αn) denotes the dual basis 
for E* then one has: 

X = e1 ^ e2 + … + e2k−1 ^ e2k , 
Ω = λα1 ^ … ^ αn where λ = ± 1, 

so: 

ω = λ · ∑
=

k

i 1

α1 ^ … ^ α2i−2 ^ α2i+1 ^ … ^ αn . 

 
This shows that the set Sk is composed of at most two orbits of Gl(E). 
 
 a)  2k < n; upon possibly changing the sign of en and αn , one reduces ω to the “canonical 
form”: 

ω = ∑
=

k

i 1

α1 ^ … ^ α2i−2 ^ α2i+1 ^ … ^ αn . 

 
Sk is therefore an orbit of Gl(E) in Λn−2E*, which is bijectively related to Σk ∈ Λ2E* by hΩ . 
 
 b)  2k = n; from 5.2.1, − ω = g · ω is equivalent to: 
 

g · X = − ∆(g) · X. 
 
However, in the present case Xk is a non-null n-vector of E, and one necessarily has: 
 

g · Xk = ∆(g) · Xk = (−1)k ∆(g)k · Xk, 
namely: 

(−1)k = ∆(g)k−1. 
 
 b1)  If k is odd then this equality is impossible.  Any (n – 2)-form of length k therefore 
reduces to one of the two following “canonical expressions,” which characterize the open orbits 
of Gl(E) in Λn−2E*: 
 

ω1 = ∑
=

k

i 1

α1 ^ … ^ α2i−2 ^ α2i+1 ^ … ^ αn 

 
 ω2 = − ω1. 
 
By means of hΩ, these orbits divide Σk ⊂  Λ2E into two half-cones. 
 
 b2)  If k is even then one necessarily has ∆(g) = 1, and the automorphism g that is defined by: 
 
   g(ei) = ei+1  if  i  is odd, 

g(ei) = ei−1  if  i  is even 
answers the question. 
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 Sk is therefore the open orbit of Gl(E) in Λn−2E*. 
 
 5.2.4.  Remarks. 
 

1) It is clear that a form ω is decomposable if and only if it is of length 1; therefore, the open 
set of forms of maximal rank n is decomposed into the (disjoint) union: 

 

k
k

n
nn S

2

2
, ≥

− ∪=Σ . 

 
2) The length of an (n – 2)-form ω may be also defined as the minimal number k of 

decomposable forms ωi that are necessary in order to write ∑
=

=
k

i
i

1

ωω ; this definition does 

not use duality and obviously extends to forms of arbitrary degree. 
 
 

6.  Intermediate case (3 ≤ p ≤ n – 3). 
 
 6.1.  PROPOSITION. − p

rn,Σ is non-vacuous for 3 ≤  p ≤  n – 3 if and only if r = 0, p, p + 2, p 

+ 3, …, n. 
 
 Proof. 
 
 a)  If r ≤ r < n and p

rn,Σ is non-vacuous then 1
1,

+
+Σ p

rn is non-vacuous; indeed, let ω ∈ ΛpE* be a p-

form of rank r; since r is strictly less than n there exists a form α ∈ E* that does not belong to 
Sω; from proposition 1.4.5, the form ω ^ α is a (p + 1)-form of rank (r + 1). 
 
 b)  It therefore suffices to establish the proposition for p = 3 (the rest is deduced by 
recurrence upon using a). 
 
 b1)  It is obvious that 3

3,nΣ is non-vacuous. 

 
 b2)  If 3 ≤ r ≤ n – 2 and if 3

,rnΣ  is non-vacuous then3
2, +Σ rn  is non-vacuous; let α1, α2 ∈ E*, 

such that the plane that is generated by α1 and α2 is in general position with respect to Sω; let α3 
∈ Sω be non-null; from proposition 1.4.4, the form ω + α1 ^ α2 ^ α3 is of rank r + 2. 
 
 b3)  If 3 ≤ r ≤ n – 3 and if 3

,rnΣ  is non-vacuous then 3 3, +Σ rn  is non-vacuous; the proof is 

analogous to the proof for 2 upon using α1, α2, α3 ∈ E* to generate a 3-plane in general position 
with respect to Sω . 
 
 For the case p = 3, the proposition is deduced immediately from these remarks by recurrence 
on r. 
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 6.2.  PROPOSITION. – If p
rn,Σ is non-vacuous then the algebraic varietyp rn,Σ  admits the 

set p
rn

rr
′≤′

Σ∪ ,  as its set of singular points. 

 
 The proof may be made in analogous manner to the one in remark 1) of 4.2. 
 
 Remark. – I am ignoring the question of whether the stratification p

nΣ  of the space ΛpE* that 

is defined by the varietiesp
rn,Σ  is “coherent” (cf. Appendix, sec. 2.2). 

 
 6.3.  PROPOSITION. – For n ≤ 9 and 3 ≤ p ≤ n – 3, the dimension of Gl(E) is strictly less 
than that of ΛpE*; so the group Gl(E) admits a continuous infinitude of orbits in ΛpE*. 
 
 For sufficiently large n, rank is therefore a very coarse invariant of the forms of intermediate 
degree. 

 6.4.  Remarks. – Let ω be a p-form on E; we call any decomposition ∑
=

=
k

i
i

1

ωω  of ω into a 

sum of decomposable forms ωi, where k is the length of ω (cf. 5.2.3, remark 2)), a minimal 
expression for ω; if we are given such a minimal expression for ω then we denote the support of 
ωi by Fi; for any i = 1, …, k, Fi is a subspace of dimension p of E* and the Fi are all distinct (the 
dimensions of the pair-wise intersections are likewise necessarily less than p − 2); one denotes 
the collection of subspace Fi by F. 

 Let ∑
=

=
k

i
i

1

ωω and ∑
=

′=
k

j
j

1

ωω  be two minimal expressions for ω; let F andF ′  be the 

corresponding collections of subspaces. 
 
 CONJECTURE. – The collections F andF ′  are equal in E*; i.e., there exists an 
automorphism g of E such that for any i there exists a j with g(Fi) = jF ′ . 

 
 One may associate a numerical symbol to each class of equal collections (for example, the 
number k of subspaces, the dimensions of the sums 1 to 1, 2 to 2, …, k to k); the solution of the 
preceding conjecture will therefore permit us to attach a numerical symbol to any p-form that 
will be an invariant under the action of Gl(E) (furthermore, the rank will appear in the symbol; it 
will be the dimension of the sum of all of the spaces Fi). 
 One must then study the “admissible” symbols for each p; one may hope that the set of forms 
that admit a given symbol is a subvariety of ΛpE* in which the orbits of Gl(E) have a constant 
dimension. 
 

7.  The representation of Gl(E) in E*  ⊕ Λ2E*. 
 
In what follows, one sets F = E* ⊕ Λ2E* and g(α, β) = (gα, gβ) for g ∈ Gl(E) and (α, β) ∈ F. 
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 7.1.  Let (α, β) ∈ F; one calls the subspace S(α,β) of E* that is the sum of the supports of α 
and β the support of (α, β); the rank of (α, β) will be the dimension of S(α,β) .  It is obvious that 
the rank is an invariant under the action of Gl(E) on F. 
 (Remark:  At the beginning of this chapter we directly defined the support and rank of an 
arbitrary, but possibly non-homogenous, element of the exterior algebra of a space E.) 
 For an element of the form (0, β) the support and rank are those of the 2-form β that was 
studied in 4; let Ω be the open set of F that consists of the set of (α, β) such that α ≠ 0. 
 One sets: 





+=∧
=

=
.12

,2
),(

kpfor

kpfor
k

k

p βα
ββαγ  

 
 PROPOSITION. – For any pair (α, β) ∈ Ω, the following conditions are equivalent: 
 

a) rank(α, β) = r, 
b) γr(α, β) ≠ 0 and γr+1(α, β) = 0, 
c) γp(α, β) ≠ 0 for p ≤ r and γp(α, β) = 0 for p > r, 
d) There exist independent forms α1, …, αr ∈ E* such that: 

α = α1, and β = α1 ̂  α2 + … + α2k−1 ̂  α2k   if  r = 2k, 
α = α1, and β = α2 ̂  α3 + … + α2k ̂  α2k+1    if  r = 2k + 1. 

 
The proof is very simple if one starts with proposition 4.1. 
 
 Remark. – The rank of (α, β) is 2k if and only if β is of rank 2k and if α ∈ Sβ; the rank of 
(α, β) is 2k + 1 if and only if β is of rank 2k and α ∉ Sβ . 
 
 7.2.  In what follows, we will let Σc denote the set of (0, β) with rank(β) = n – c, and let Sd 
denote the set of (α, β) ∈ Ω of rank n – d (corank equal to d), where n = dim E. 
 
 PROPOSITION. – The sets Σc and Sd are orbits of Gl(E) in F; they are regular submanifolds 
of F, whose adherences are algebraic varieties; finally: 
 

    codim Σc = 
2

)1( −+ cc
n  

    codim Sd = 
2

)1( +dd
 

 
where n – c is even, with 0 ≤ n – c ≤ n and 0 ≤ d ≤ n – 1. 
 
 One denotes the stratification of F that is so defined by S. 
 
 Everything that relates to the sets Σc results from proposition 4.1.  From condition d) of 
proposition 7.1, the sets Sd are precisely the orbits of Gl(E) in Ω. 
 



 Chapter I – Rank in exterior algebra.                                                   18  

 n – d = 2k + 1: From 7.1 b), Sd is the set of (α,  β) such that βk+1 = 0 and α ^ βk ≠ 0; dS is the 

algebraic set that is defined by the equation βk+1 = 0; Sd is a dense open subset of the “cylinder” 
E* × Σn-k in an obvious way; from this, one deduces its codimension. 
 

 n – d = 2k: From 7.1. b), Sd is the set of (α, β) such that α ^ βk = 0 and βk+1 ≠ 0; dS is the 

algebraic variety of the equations α ^ βk = 0 and βk+1 = 0.  The projection π: F → Λ2E* takes Sd 
to Σn−k and, for β ∈ Σn−k, π−1(β) ∩ Sd is the set of (α, β) ∈ Ω such that α ∈ Sβ; one easily deduces 
that Sd is an open regular submanifold of F of codimension d(d + 1)/2. 
 
 7.3.  If we have the ultimate goal of studying the class of a Pfaff equation (cf. II.5) then it is 
useful to study the following notion: 
 
  DEFINITION. – The reduced rank of an element (α, β) ∈ Ω ⊂ E*  ⊕ Λ2E* (i.e., such that α 
≠ 0) is the odd integer 2k + 1 such that α ^ βk ≠ 0 and α ^ βk+1 = 0 (it is also the rank of the 3-
form α ^ β). 
 
 One lets cS′  ⊂ Ω denote the elements of reduced rank n – c (where n = dim E), and one seeks 

to describe the partition of Ω that this defines. 
 Let H be the group of jets of order 1 of non-null numerical functions at the origin of E; the 
group H is composed of pairs f = (λ, h), where λ is a non-null real number and h ∈ E*.  The 
formula: 

d(fω) = fdω + df ^ ω, 
 
in which ω is a Pfaff form, f is a function, and d is exterior differentiation, suggests that we make 
H act on F = E* ⊕ Λ2E* according to the rule: 
 

(λ, h) · (α, β) = (λα, λβ + h ^ α), 
 
so that the reduced rank becomes an invariant of the action of H; indeed, it suffices to remark 
that λα ^ (λβ + h ^ α)k = λk+1α ^ βk. 
 Now let (f, g) ∈ H × Gl(E) and (α, β) ∈ F; one sets: 
 

(f, g) · (α, β) = f · g(α, β) = (λ· gα, λ · gβ + h ^ gα), 
where f = (λ, h). 
 It is clear that one defines a law of operation of G  = H × Gl(E) in this way, which is a group 
that is endowed with the natural structure of a semi-direct product in F.  The reduced rank, which 
is invariant under the action of H and G = Gl(E), is invariant under the action ofG . 
 
 PROPOSITION. – The orbits of G in F are, on the one hand, the submanifolds Σc ⊂ {0} × 
Λ2E*, and, on the other hand, the setscS′  ⊂ Ω (n – c odd); cS′  is a regular submanifold of F with 

algebraic adherence and codimension
2

)1( −cc
 for any c such that n – c is odd and 1 ≤ n – c ≤ n. 
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 Proof. – One has (f, g)(0, β) = (0, λ · gβ) where (f, g) ∈ G and f = (λ, h).  It is then clear that 
the orbits ofG in 0 × Λ2E* are the sets Σc. 
 On the other hand, 1−∪=′ ccc SSS .  Set n – c = 2k + 1; let (α, β) ∈ Sc and show that 

cSG ′=),( βα .  Let f = (1, h), where h ∈ E* is such that h ^ α ^ βk ≠ 0.  The element (f, 1) · (α, β) 

= (α, β + h ^ α) has rank 2l + 2.  Therefore,G intersects Sc and Sc−1.  It therefore contains their 
union since the action ofG prolongs that of Gl(E).  On the other hand, cSG ′⊂),( βα , since the 

reduced rank is an invariant, and one has cSG ′=),( βα , precisely. 

 
 The set cS′  is then a submanifold, since it is the orbit of a Lie group; however, it is also the 

union of two regular submanifolds.  It is therefore a regular submanifold whose dimension is 
equal to that of Sc−1.  The rest of the proposition is immediate. 
 
 Remarks. 
 

1) The stratification that is defined in F by the sets cS′  ⊂ Ω and Sc ⊂ {0} × Λ2E* is therefore 

coherent (cf. Appendix, sec. 2.2). 
2) The stratification that is defined in F by the sets Σc and Sc ⊂ Ω, has the following very 

curious property: For any c, the set 1−∪ cc SS  is a regular submanifold of F of 

codimension 
2

)1( −cc
 . For odd (n – c), this results from the preceding proposition; for 

even (n – c), one simply deals with the product (E* − {0}) ×
2

cn−Σ  . 

 



 
CHAPTER II 

 
SINGULARITIES OF THE RANK AND CLASS OF A DIFFERENTI AL FORM 

 
1.  Generalities; notations and definitions. 

 
 1.1.  Let p

kF ( p
kF , resp.) (k ≥ 0, 1 ≤ p ≤ n) denote the vector space of jets of order k of exterior 

differential forms (closed exterior differential forms, resp.) of degree p at the origin of Rn. 
 Denote the dual to Rn by Rn; one therefore has0 0

p p p
nF = = Λ RF . 

 For any k and kk ≥′ , denote the restriction homomorphisms by ρ: p
kF ′  → p

kF or ρ: p
k′F → p

kF , 

resp. 
 For any p and k ≥ 1, exterior differentiation defines a homomorphism d: p

kF → 1
1
+

−
p

kF  whose 

image is 1
1

p
k

+
−F . 

 Now, for any k ≥ 0, let Lk be the Lie group of invertible (k + 1)-jets of Rn into Rn, with source 
and target 0 (i.e., the jets of order (k + 1) of the germs of diffeomorphisms that preserve the 
origin of Rn).  For kk ≥′ , one further denotes the restriction homomorphism by ρ: kL ′  → Lk .  

 For any k ≥ 0, the rule for changing the variables of a differential form defines a natural law 
of operation for Lk on p

kF and p
kF . 

 These laws of operation commute with the restriction morphisms. 
 
 DEFINITION. – One calls any submanifold Σ of p

kF ( p
kF , resp.) that is regular and invariant 

under Lk a p-form (closed p-form) singularity of order k. 
 
 1.2.  Let M be an n-dimensional manifold of class∞C with a denumerable neighborhood 
basis. 
 One denotes by: 
 
 TM and T*M  the tangent and cotangent bundles of M, 
 ΛpT*M   the pth exterior power of T*M, 
 MTk

p *Λ   the vector bundle of k-jets of sections of ΛpT*M, 

 *p
k MΛ T   the fiber bundle of k-jets of closed p-forms. 

 
One remarks that ΛpT*M = *

0
p MΛ T . 

 The fiber bundle MTk
p *Λ  has fiber type p

kF  and structure group Lk .  Similarly, *p
k MΛ T  has 

fiber type p
kF  and structure group Lk . 

 For any k and kk ≥′ , one denotes the restriction morphism by ρ: MTk
p *

′Λ → MTk
p *Λ , or 

ρ: *p
k M′Λ T → *p

k MΛ T . 
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For any k ≥ 1, one notates the bundle morphism that is defined by exterior differentiation by d: 
MTk

p *Λ → 1 *
1

p
k M+

−Λ T . 

 One lets )(MD p
k denote the space of differential p-forms (closed p-forms, resp.) on M with k 

times continuously differentiable coefficients, which is endowed with the Ck-topology 
(Appendix, sec. 1.2).  Dp(M) (Dp(M), resp.) denotes the space of∞C p-forms (closed p-forms, 

resp.), which is endowed with the∞C -topology. 
 Let ω ∈ )(MD p

k′ , and k ≤ k′ .  One lets jkω denote the section of MTk
p *Λ that is defined by 

jkω(x) = k-jet of ω at x. 
 
 1.3.  Let Σ ⊂ p

kF be a p-form singularity of order k.  Since this submanifold is invariant under 

the structure group Lk, it defines a submanifold of MTk
p *Λ (fibered over M with fiber type Σ) in a 

natural way, which we notate Σ(M). 
 Therefore let ω ∈ )(MD p

k′ , where ∞≤′≤ kk .  The set Σ(ω) of points x ∈ M such that jkω(x) 

∈ Σ(M) will be called the singular set of type Σ of ω; the points of Σ(ω) will be called singular 
points of type Σ of ω. 
 One defines the singular points and singular set of a close form, for a given singularity, in a 
similar manner. 
 In this chapter, I propose to define a certain number of singularities that are related to the 
notions of rank and class of a differential form, and then to study the generic nature of the 
corresponding singular sets with the aid of transversality techniques. 
 More precisely, for any p and a given k, one seeks to define a finite stratification (cf. 
Appendix, sec. 2.2) of p

kF ( p
kF , resp.) by its singularities, such that one obtains a “maximum of 

information” about the behavior of a differential form ω on a manifold M at each point when jkω 
is transverse to this stratification. 
 There exists no actual systematic method that permits us to construct an “optimal natural 
stratification” of p

kF . 

 Here, I use the rank as an invariant of order 0, the class as an invariant of order 1, and I 
employ the same strategy for the construction of the singularities of higher order as in the case of 
differentiable maps (only for the closed 2-forms in dimension 4 and Pfaff equations in dimension 
3). 
 
 1.4.  Remarks. 
 

1) The sense given to the term “singularity” here is a little broader than its usual intuitive 
sense.  Therefore, if ω is a Pfaff form then a point where ω is of maximum class may be 
considered to be a singular point of ω of a given type. 

 
2) Let Σ ⊂ p

kF ( p
kF , resp.) be a singularity of codimension c.  Let M be a manifold of 

dimension n, and let ω ∈ )(MD p
k′  ( ( )p

k M′D , resp.), where k′ ≥ k + 1.  One then knows 

(Appendix, sec. 6 and 7) jkω is transverse of Σ(M) generically in )(MD p
k′  ( ( )p

k M′D , 

resp.).  The singular set S(ω), if it is non-vacuous, will then be regular submanifold of M 
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of codimension c.  In what follows, this will always be summarized by the expression: 
“S(ω) is generically a regular submanifold of codimension c.” 

 
 Moreover, we note that, from a theorem of Mather ([13], pp. 29), if c ≤ n then there always 
exists a p-form ω such that jkω is transverse to Σ(ω) and Σ(ω) is non-empty. 
 
 

2.  Rank and its singularities. 
 
 2.1.  It is clear that pF0 = 0

p
F  = ΛpRn, where Rn = (Rn)*.  On the other hand, L0 is the group 

Gl(n, R), and the law of operation defined in 1.1 is the natural law that was already considered in 
Chap. I.  The study made in this chapter shows that the sets p

rn,Σ  (recall that in ΛpRn this amounts 

to the set of forms of rank r) are singularities of order 0, and give us the codimensions of these 
singularities. 
 If M is a manifold of dimension n then for each integer p one considers the stratification of 

)(Mp
nΣ  that is comprised of the submanifolds )(, Mp

rnΣ .  From the transversality theorems 

(Appendix, Th. 6), the subset ofplD ( p
lD , resp.) that is comprised of forms (closed forms, resp.) 

that are transverse to this stratification is a residual set for l ≥ 1.  We now detail a few aspects of 
this generic situation. 
 
 2.2.  THEOREM. – Let M be a manifold of dimension n ≥ 7.  For 3 ≤ p ≤ n – 2, the set of p-
forms of pD1 that are of maximum rank n at every point of M, is a dense C1-open set.  This result 

is also true for 1
p
D . 

 
 Indeed, from I, prop. 2, the codimension of p

rn,Σ  is strictly greater than n whenever r < n, 

provided that n ≥ 7 and 3 ≤ p ≤ n – 2.  Thus, a form that is in general position with respect to the 
manifolds )(, Mp

rnΣ  may not be of rank less than n at any point.  On the other hand, from the 

Appendix, sec. 6, these forms constitute a C1-open set.  For the second part of the theorem, one 
applies theorem 7 of the Appendix. 
 
 2.3.  For p = 1, n − 1, n, the situation is very simple since the rank may take only two values 
then.  Generically, the zeroes of an n-form constitute a compact submanifold of codimension 1 in 
M; the zeroes of a Pfaff form (closed or not) or an (n−1)-form are isolated. 
 
 2.4.  Generic behavior of the rank of a 2-form.  Taking I.4.2 into account, we set: 
 

















 ≤−








 ≤−

=
.

2

)1(
;

,
2

)1(
;

)(
oddnforn

cc
andoddisccMax

evennforn
cc

andevenisccMax
nr  

 
Let Σ be the stratification of Λ2Rn that is defined by the sets Σc (the set of 2-forms of corank c). 
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 2.4.1. – One then has: 
 
 PROPOSITION. – Let M be a manifold of dimension n.  The set T(Σ) of 2-forms ω ∈ 

)(2 MDk ( 2( )k MD , resp.) that are transverse to the stratification Σ(M) ⊂ Λ2T*M is a dense Ck-

open set for k ≥ 1. 
 
 Such a 2-form has the following properties: 
 

a) The rank of ω is greater than or equal to n – r(n) at every point; an asymptotic 

expression of this minorant is n − n2 . 
 

b) For c ≤ r(n), the set Σc(ω) of points of M where ω is of rank n – c is a regular 
submanifold of codimension c(c – 1)/2, if it is non-vacuous. 

 
 This result is an immediate consequence of Theorem 6 (remark 2) of the Appendix and 
Theorem 7 for closed forms. 
 
 Examples. − If n = dim M = 4, then the corank is necessarily even.  Generically, Σ4(ω) is 
vacuous, i.e., ω has no zero, and Σ4(ω) is a (closed) hypersurface of M.  ω is of maximum rank 4 
on the open set Σ0(ω) = M − Σ2(ω). 
 If n = dim M = 6, then Σ6(ω) is generically vacuous (ω has no zero), Σ4(ω) is composed of 

isolated points, and Σ2(ω) is a hypersurface such that )(2 ωΣ = Σ2(ω) ∪ Σ4(ω). 

 For even n, 6 ≤ n ≤ 14, the description of the generic behavior of the rank remains the same, 
i.e., only Σ2(ω) and Σ4(ω) (and obviously Σ0(ω)) may be non-vacuous.  They have codimensions 

1 and 6, respectively, and Σ4(ω) is a locus of singular points for )(2 ωΣ . 

 If n = 5 then the corank is necessarily odd.  Generically, Σ5(ω) is vacuous (no zero) and Σ3(ω) 
is a (closed) submanifold of codimension 3.  ω has the maximum rank of 4 on the open set: 
 

Σ1(ω) = M − Σ3(ω); 
 
the description for n = 7, 9, works the same way. 
 
 2.4.2. – PROPOSITION. – For k ≥ 2, the singular sets of the rank of a 2-form in T(Σ) 
⊂ )(2 MDk  (T(Σ) ⊂ 2( )k MD , resp.) are isotopically stable.  

 
 Proof. – First, this proposition signifies that if ω ∈ )(2 MDk is transverse to Σ(M) then there 

exists a neighborhood V of ω (for the Ck-topology) such that if c V (?) then the stratifications 
Σ(ω) and Σ(ω ′ ) of M that are formed of the singular sets Σc(ω) and Σc(ω ′ ) are isotopic.  This 
result is an immediate consequence of theorem 4.2 of the Appendix since the stratification Σ(M) 
is coherent, like the stratification Σ of Λ2Rn (recall that the strata Σc ⊂ Λ2Rn are the orbits of the 
group L0 = Gl(n, R)). 
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3.  ”Generic” singularities of a closed 2-form in dimension 4. 
 
 3.1.  Description of the generic situation.  Let M be manifold (compact, for the sake of 
specificity) of dimension 4.  The situation that is described in the following paragraphs for a 
closed 2-form ω on M is generic in 2

3 ( )MD , the space of closed 2-forms that are at least three 

times continuously differentiable (recall that this signifies that the set of closed 2-forms that have 
the properties specified above is residual in2

3 ( )MD ); indeed, the same will be true for dense C3-

open set). 
 
 3.1.1.  The set Σ(ω) of points where ω has corank 2 (hence, rank 2) is a (compact) 
submanifold of codimension 1 (if it is non-vacuous); ω is not zero at any point of M. (cf. II. 2.4.1, 
example 1)). 
 
 Remark. – Σ2(ω) is oriented in a canonical way; indeed, let x ∈ Σ2(ω), and let Ω be a volume 
form on a neighborhood of x in M.  One has ω2 = f · Ω.   By the definition of Σ2(ω), f(x) = 0.  In 
the generic situation )(xf ′ is a non-null linear form.  Its kernel is TxΣ2(ω), which inherits an 

orientation from the pair (Ω(x), )(xf ′ ).  If one changes the sign of Ω then f and f ′change sign, 
and the induced orientation does not change. 
 
 3.1.2.  Letω ′ be the restriction of ω to Σ2(ω), and let Σ2,2(ω) be the set of points whereω ′ is 
null.  Σ2,2(ω) is a (compact) submanifold of codimension 3 in M (or codimension 2 in Σ2(ω)).  It 
is therefore a finite union of closed simple curves of M.  On the other hand, one sets 
Σ2,0(ω) = Σ2(ω) − Σ2,2(ω). 
 
 3.1.3.  At each point, x ∈ Σ2(ω), ω(x) is, by the definition of Σ2(ω), a 2-form of corank 2 on 
TxM.  The associated space Aω(x) is therefore a plane.  It is clear that Σ2,2(ω) is the set of points x 
∈ Σ2(ω), such that Aω(x) ⊂ TxΣ2(ω).  If x ∈ Σ2,0(ω), then the associated plane to ω is transverse to 
TxΣ2(ω); the intersection is a line. One thus defines a field of directions D on Σ2,0(ω) that is also 
the field that is associated to the induced form ω ′ .  This field is canonically oriented. It suffices 
to choose a volume form Ω on Σ2(ω) that is positive with respect to the orientation of canonical 
orientation of Σ2(ω) and consider the vector field X that is defined at each point by the linear 
equation, ω ′ = X  Ω.  The field X is defined up to a positive factor, and it is obviously 
supported by D. 
 Let Σ2,2,1(ω) be the set of points x ∈ Σ2,2(ω) such that the line TxΣ2,2(ω) is included in the 
plane Aω(x).  Σ2,2,1(ω) is a set of isolated points. 
 One sets Σ2,2,0(ω) = Σ2,2(ω) − Σ2,2,1(ω).  At any point x ∈ Σ2,2,0(ω), TxΣ2,2 and the plane Aω(x), 
are transverse in TxΣ2(ω). 
 Consider a point x ∈ Σ2,2(ω).  Since the section: 
 

ω ′ : Σ2(ω) → Λ2T*Σ2(ω) 
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is null at this point, it Jacobian at x is a linear map Txω ′ : TxΣ2 → 2
2 ΣΛ ∗

xT .  By using a positive 

volume form on T*Σ2 and the corresponding duality isomorphism of 2
2 ΣΛ ∗

xT with TxΣ2, 

Txω ′ defines an endomorphism: 
Λω(x): TxΣ2 → TxΣ2 . 

 
This endomorphism is defined up to a positive homothety (according to the choice of volume 
element). 
 One may also define Λω(x) in the following fashion: let Ω be a positive volume form and let 
X be the vector field that was constructed in the preceding paragraph; the point x is a zero of X.  
The Jacobian of X at x is then the matrix Λω(x) that corresponds to the volume Ω(x) on ΤxΣ2(ω).  
One may therefore say that Λω(x) is the Jacobian of the direction field D at x (x ∈ Σ2,2). 
 By construction, Λω(x) has a rank that is less than or equal to 2.  Indeed, sinceω ′ is annulled 
at the points of Σ2,2(ω), the line tangent to it is certainly contained in the kernel of Λω(x). 
 On the other hand, Λω(x) always has a zero trace. Indeed, sinceω ′ is closed, the auxiliary 
vector field X that was constructed above verifies θ(X)Ω = 0.  It is therefore unimodular. 
 The generic situation that was described in 3.1.3 may be then stated more precisely: 
 

a) Λω(x) has rank 2 at every point x ∈ Σ2,2(ω).  The kernel of Λω(x) is the tangent to Σ2,2(ω) 
at x; the image of Λω(x) is Αω(x). 
 

b) Σ2,2,0(ω) is the set of points x such that Λω(x) is not nilpotent.  This matrix has one null 
proper value, and the other two are non-null and opposite.  They are thus pure imaginary 
or real.  The first case defines the subset )(0,2,2 ωeΣ  of “elliptical points,” and the second 

set )(0,2,2 ωhΣ  defines the “hyperbolic points.” 

 
c) The points of Σ2,2,1(ω) separate the elliptic and hyperbolic arcs.  One may call them 

“parabolic.”  At such a point, the proper values of Λω(x) are all null, and the image of 
Λω(x), which is always Αω(x), contains the tangent to Σ2,2(ω). 

 
 3.2.  To convince the reader, we give an example of each of the types of singular points that 
were described above. 
 

 3.2.1.  At every point of Σ0(ω) (i.e.: ω has maximum rank 4) there exist (from Darboux’s 
theorem; see the following chapter) local coordinates (x, y, z, t) such that: 
 

ω = dx ^ dy + dz ^ dt. 
 

 3.2.2.  At every point of Σ2,0(ω) there exist local coordinates, (x, y, z, t), in which: 
 

ω = x dx ^ dy + dz ^ dt. 
 
This fact will be proved in III.A, 4.2.2. 
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3.2.3. 
a) Now here is an example of a form on R4 that presents a point of type )(0,2,2 ωeΣ  (pure 

elliptic) at the origin: 

ω = dx ^ dy + z dz ^ dt + dt
z

tyxzd ∧







−+

3

3

. 

 
In this case, Σ2(ω) is defined by x = 0 (one has ω2 = x dx ^ dy ^ dz ^ dt); a positive volume 
element on Σ2(ω) is dy ^ dz ^ dt.  On the other hand: 
 

ω ′ = z dy ̂  dz + t dy ^ dt – z2 dz ^ dt. 
 
The associated vector field is defined by: 
 

t
z

z
t

y
zX

∂
∂+

∂
∂−

∂
∂−= 2 . 

 
Σ2,2(ω) is therefore the y-axis.  The integral curves of the field X are “helices of the axis Oy.” 
 

 Remark. – At an elliptic point x of Σ2,2(ω) the tangent to is canonically oriented.  Indeed, at 
such a point, Λω(x) defines a “quadrant” in the image plane that is transverse to Σ2,2(ω).  This 
plane is therefore oriented, and since the tangent space to Σ2 is also, one thus deduces an 
orientation for the line TxΣ2,2(ω). 

 
b) One obtains an example of a hyperbolic point (type )(0,2,2 ωhΣ ) by changing a sign in the 

preceding example: 

ω = dx ^ dy + z dz ^ dt + dt
z

tyxzd ∧







−−

3

3

. 

 
 Remark. – I have ignored the issue of whether the germ of a closed 2-form that presents an 
elliptic or hyperbolic singular point is isomorphic (in the sense of III.A, 1.1.2) to the 
corresponding example above.  Meanwhile, see III.B, 2.2, on this subject. 

 
 3.2.4.  The remark made in 3.2.2 a) shows that there are at least two types of parabolic points,  
according to whether the elliptic arc “begins or ends there.”  Here are two examples that 
correspond to these two behaviors: 
 

ω = dx ^ dy + z dz ^ dt + dttz
zy

txxzd ∧







−−±+ 2

32

32
2 . 

 
In the two cases, Σ2,2(ω) is defined by x = 0.  One has: 
 

ω ′ = z dy ̂  dz ± y dy ^ dt – z(z + 2t) dz ^ dt. 
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The corresponding vector field X is: 
 

t
z

z
y

y
tzzX

∂
∂+

∂
∂

∂
∂+−= ∓)2( . 

 
The manifold Σ2,2(ω) is defined by x = y = z = 0.  The proper value equation for the Jacobian Λ 
of X at the point (0, 0, t0) of (?) is λ(λ2 ± 2 t0) = 0.  One verifies that the elliptic arc “starts” at the 
origin (t > 0) in the case (− y2/2) and ends there (t < 0) in the case (+ y2/2). 
 I also ignore whether any germ of a 2-form that presents a parabolic point is isomorphic to 
one of the two examples above. 
 
 

3.3.  Justification of the genericity of the situation described in 3.1. 
 

One works in the space 2
1F  of jets of order 1 of closed 2-forms at the origin of R4.  I will 

construct a sequence of singularities in21F  such that the transversal position of j2ω with respect 

to these singularities (where ω is a closed 2-form) will imply the behavior that was specified in 
3.1. 
 We write any jet in the form ω = ω0 + ω1, where ω0 is a 2-form with constant coefficients, 
and ω1 is a closed 2-form with linear homogenous coefficients. 

 
 3.3.1.  One first considers the stratification 21 0 2 4′= Σ ∪ Σ ∪ ΣF  of 2

1F , where Σi denotes the 

set of ω such that ω0 is of corank i; Σ0, 2Σ′ , Σ4 are regular submanifolds of21F of codimension 0, 

1, 6 (from Proposition I, 4.2). 
 

 3.3.2.  One now stratifies the submanifold 2Σ′ .  It is a (vector) bundle over the set of ω0 of 

rank 2.  One works in a fiber, upon remarking that for any ω ∈ 2Σ′  there exists a basis for R4 in 
which ω0 = dx ^ dy. 
 Then let ω1 = h dz ^ dt + …, where h, … are linear forms. 
 It is clear that “ω is transverse to Σ2 ⊂ 2Σ′ ” is equivalent to “h is a non-null linear form.” 

 One then decomposes 2Σ′  into 22 Σ ′′∪Σ  where 2Σ ′′  is the set of ω such that h ≡ 0. 2Σ ′′  is a 

regular submanifold of codimension 4 in Σ2 ; therefore, it has codimension 5 in 2
1F . 

 
 3.3.3.  Let ω = ω0 + ω1 = dx ^ dy + h dz ^ dt + … ∈ Σ2.  Let H notate the kernel hyperplane of 
h. 
 One defines 2,2Σ′  ⊂ Σ2 to be the set of ω such that the restriction of the form dx ^ dy to the 

hyperplane H is null.  This is equivalent to 0=
∂
∂=

∂
∂

t

h

z

h
.  These conditions define a submanifold 

of codimension 2 in Σ2 ; therefore it has codimension 3 in 2
1F .  One sets Σ2,0 = Σ2 − 2,2Σ′ . 
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 3.3.4.  Suppose we have an element ω ∈ 2,2Σ′ .  One easily sees that it is possible to choose a 

basis for R4 such that ω0 = dx ^ dy, and: 
ω1 = x dz ^ dt + … 

 
One now works in the set of elements of2,2Σ′  whose expression is as above, and with a fixed 

basis. 
 More precisely, one sets: 

ω1 = x dz ^ dt + k dy ^ dz + l dy ̂  dt + … 
 

where k, l, … are linear forms. 
 Let 1ω  be the restriction of ω1 to H, which is the hyperplane x = 0 here.  One 

has dtdyldzdyk ∧+∧=1ω , wherek andl denote the restrictions of k and l to x = 0.  To them, 

one associates the endomorphism Λ of H that is defined by the matrix: 
 

























∂
∂

∂
∂

∂
∂

∂
∂−

∂
∂−

∂
∂−

t

k

z

k

y

k
t

l

z

l

y

l
000

 

 
(of course, this is what corresponds to the Λω(x) we previously envisioned).  The only relation 

between these coefficients, which expresses that ω1 is closed, is: 0=
∂
∂+

∂
∂−

t

k

t

l
  (i.e., Λ has null 

trace). 
 One sets Σ2,2 = 2,22,2 Σ ′′−Σ′ , where 2,2Σ ′′ denotes the set of ω such that Λ is of rank ≤ 1. 2,2Σ ′′  is 

an algebraic variety of codimension 2 in2,2Σ′ , and therefore of codimension 5 in 21F . 

 Finally, Σ2,2,1 ⊂ Σ2,2 will be defined by the equation: 
 

0
2

=
∂
∂⋅

∂
∂+









∂
∂−=

∂
∂⋅

∂
∂+

∂
∂⋅

∂
∂−

z

k

t

l

t

k

z

l

t

l

t

l

z

l
. 

 

Since this has rank 1, the three coefficients
t

k

∂
∂

, 
t

l

∂
∂

,
z

k

∂
∂

 may not all be null in Σ2,2 (Λ will have 

rank 1).  Σ2,2,1 is therefore a regular submanifold of 21F  of codimension 4.  The submanifold: 

 
Σ2,2,0 = Σ2,2 − Σ2,2,1 
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is then the set of ω such that Λ has two (opposite) non-null proper values.  The 

subset e
0,2,2Σ ( h

0,2,2Σ , resp.) corresponds to the case where the determinant 
z

k

t

l

t

k

∂
∂⋅

∂
∂+









∂
∂−

2

 is 

positive (negative, resp.). 
 

 3.3.5.  One thus stratifies the space of jets of order 1 of closed 2-forms into: 
 

2
1 0 2,0 2,2,0 2,2,1 2 2,2 4′′ ′′= Σ ∪ Σ ∪ Σ ∪ Σ ∪ Σ ∪ Σ ∪ ΣF  

 
(the strata are classified in order of increasing codimensions 0, 1, 3, 4, 5, 5, 6).  By construction, 
this stratification is invariant under the group L1 of 2-jets of automorphisms. 
 From theorem 7 of the Appendix, the set of ω ∈ 2

3 ( )MD  such that j1ω is transverse to the 

stratification induced in 2
1 ( )M∗Λ T  by the preceding is residual; it is easy to verify that such a 

form has the properties that are indicated in 3.1. 
 
 

4.  Class and its singularities. 
 
 4.1.  Consider the vector spacepF1  of jets of order 1 of differential p-forms at the origin of Rn 

(1 ≤ p ≤ n); let 
d: pF1 → 1

0
+pF  = Λp+1Rn 

 
be the linear map that is defined by exterior multiplication and let: 
 

ρ: pF1 → pF0 = ΛpRn, 

the linear map of restriction. 
 

 DEFINITION. – Let ω1 ∈ pF1 .  The support of ω1 in Rn is the subspace that is the sum of the 

supports (cf. I, 1.2) of ρ(ω1) and d(ω1).  The class of ω1 is the dimension of its support. 
 

 The associated space to ω1 is the intersection of the associated spaces to ρ(ω1) and d(ω1).  It 
is orthogonal to the support of ω1.  The class of ω1 is therefore the codimension of the associated 
space as well. 
 Class obviously invariant under the action of the group L1. 
 If M is a manifold and ω ∈ pF1  is a p-form on M then the class of ω at x ∈ M will be the 

class of  j1ω(x).  The associated space to j1ω(x) is also called the characteristic space of ω at x. 
 

 Remark. – The class of a closed form is equal to its rank. 
 

 4.2.  PROPOSITION. – ([12])  Let M be a manifold of dimension, n ≥ 7.  For 2 ≤ p ≤ n – 2, 
the set of p-forms in pD1 that have maximal class n at every point is residual. 
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Proof. 
 

a) For 3 ≤ p ≤ n – 2, this is an immediate consequence of Theorem II, 2.2, since a form of 
maximal rank is necessarily of maximal class. 

 
b) For p = 2, consider the morphism d: MT ∗Λ 1

2 → Λ3T*M that is defined by exterior 

differentiation.  Let S be the stratification of MT ∗Λ 1
2 that is the reciprocal image under d 

of the stratification Σ3(M) (cf. II, 2.1).  The codimension of S is equal to that of Σ3(M), 
since d is a submersion.  Therefore, for n ≥ 7, codim S > n. 

 
 From Remark 1 of sec. 6 of the Appendix, the set of ω ∈ )(1 MD p  such that j1ω(x) is 
transverse to S (i.e., intersects no non-open strata) is a dense open set.  This set is also that set of 
ω such that dω has maximum rank at every point.  Its class is, a fortiori, maximal, and the 
proposition is proved. 

 
 4.3.  Case of Pfaff forms.  This section uses the notations and results of I.7. 

 
 4.3.1.  Consider the projection π: 1

1F  → Rn ⊕ Λ2Rn = F, defined by π(ω1) = (α, β) = (ρ(ω1), 

d(ω1)).  The class of ω1 is the rank of π(ω1), in the sense of I, 7.1. 
 Let ζ notate the stratification of 1

1F  that is the reciprocal image of S by π.  One sets 

)(1
cc Σ=Σ′ −π and )(1

dd S−= πζ .  cΣ′  is therefore the set of 1-jets ω1 of Pfaff forms such that 

ρ(ω1) = 0 (i.e., ω1 is a zero of order 0), and d(ω1) is a 2-form of corank c.   ζd is the set of jets ω1 
that are not zero of order 0, and have co-class d.  The submanifoldsrΣ′  constitute a stratification 

of the vector subspace that is the kernel of ρ in 1
1F .  The manifolds ζr stratify the open setΩ′  that 

is complementary to the kernel of ρ. 
 

 4.3.2.  Let us compare the stratification ζ with the set of orbits of L1 in
1

1F . 

 Since class is an invariant, the orbits of L1 are contained in the strata of ζ. 
 On the other hand, the space11F  is identified in a natural fashion with Rn ⊕ (⊗2Rn).  By 

means of this identification, the map π is defined by: 
 

π(α, β ) = (α, β), 
 

where β denotes the anti-symmetrization of β .  The group L1 is identified by the set of pairs (a, 

b), where a ∈ Gl(n, R) and b ∈ ),(2 nn
sHom RR  (the space of symmetric bilinear maps of Rn × Rn 

into Rn).  As a brief calculation shows, the action of L1 on 1
1F is then expressed by: 

 
(a, b) · (a,β ) = (α ⊗ a, α ⊗ a + β ⊗ ⊗2a). 

 From this, one deduces: 
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1) In the kernel of ρ, i.e., the set of (α, β ) such that α = 0, the action of L1 is identified with 
that of Gl(n, R).  There is therefore an infinitude of orbits. 

 
2) Let (α, β ) ∈ Ω′  (i.e., α ≠ 0).  There then exists a b ∈ ),(2 nn

sHom RR such that the 

bilinear form α ⊗ β is equal to the opposite of the symmetric part of β .  From this, it 

results that (1, b) · (α, β ) = (α, β).  This remark suffices to prove that L1(α, β ) = 

π−1[Gl(n, R) · (α, β)].  One has therefore proved the: 
 
 PROPOSITION. – In the open set Ω′ , which is the set of jets ω1 such that ρ(ω1) ≠ 0 (i.e., 
they are no null of order 0), the orbits of L1 are the submanifolds ζd. 

 
 Remarks. 

 
1) The fact that ζ0 is an orbit of L1 in the preceding proposition may be considered to be the 

version that Darboux’s theorem takes for order 1 of (cf. III.A, 4.1.3 and 4.1.4). 
 
2) Let M be a manifold of dimension n.  One has an exact sequence: 
 

0 → ⊗2T*M → →∗ ρMT1 T*M → 0, 
 

but there is no canonical decomposition of the bundleMT ∗
1  into a Whitney sum T*M ⊕ (⊗2T*M). 

 
 4.3.3.  From I, 7.2, the subsetscΣ′ and ζd of 1

1F , which define the stratification ζ are 

singularities of order 1 of the Pfaff forms. 
 Let M be manifold of dimension n.  For any Pfaff form ω on M, one lets Z(ω) denote the set 
of zeroes of ω, and let ζd(ω) denote the set of singular points of ω of type ζd (i.e., the set of 
points where ω is different from 0 and has co-class d). 
 
 Remark. – A singular point of type ζd of a Pfaff form ω is a point x where: 
 

a) ω ^ dωk ≠ 0 and dωk+1 = 0 if d = n – (2k + 1), i.e., if the class is odd. 
 

b) ω ≠ 0, dωk+1 ≠ 0, and ω ^ dωk = 0 if d = n – 2k; i.e., the class is even. 
 
 The stratification ζ(M) of ∗

1T  that issues from ζ is of codimension 1 and coherent.  From the 
Appendix (Th. 6 and I, 7.2), one has the 
 
 THEOREM. – ([11])  In )(1 MDk , for k ≥ 2 the set T(ζ) of forms ω such that j1ω is transverse 

to ζ(M) is a dense open set.  Any form ω ∈ T(ζ) has the following properties: 
 

a) It is transverse to the zero section of T*(M).  Z(ω) is a closed set of isolated points.  dω is 
of maximal rank at each point of Z(ω), 
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b) For any d (0 ≤ d ≤ n – 1), if the singular set ζd(ω) is non-vacuous then it is a regular 

submanifold of M of codimension
2

)1( +dd
. 

 
c) The class of ω is everywhere greater than or equal to n – f(n), where f(n) = Max{p: p(p 

+ 1)/2 ≤ n} .  An asymptotic expression for n – f(n) is n – n2 . 
 
 Remarks. 
 

1) For ω ∈ T(ζ), ζd(ω) ∪ ζd−1(ω) is always a regular submanifold of M of 

codimension
2

)1( +dd
 if it is non-vacuous.  Indeed, from I, 7.3, ζd(ω) ∪ ζd−1(ω) is a 

submanifold of MT ∗
1 and j1ω is tranverse to it, since it is transverse to ζd(ω) and ζd(ω). 

 
2) Let x ∈ Z(ω) be a zero of ω ∈ T(ζ).  x will be adherent to ζd(ω) if and only if d = 0 (since 

ζ0 is obviously a dense open set in M) or d = 1, when the ambient dimension n is odd. 
 
 Examples. 
 

1) Dim M = 3:  ζ1(ω) is the set of points where ω ^ dω = 0, with ω ≠ 0.  Generically, this is a 
hypersurface.  ζ2(ω) is the set of points where dω = 0 and ω ≠ 0.  Its codimension is 3, so 
it amounts to a closed set of isolated point, in general.  

Finally, )()()()( 211 ωωζωζωζ Z∪∪= .  )()( 21 ωζωζ ∪  is again a hypersurface of M, 

which will be closed if and only if ω has no zero. 
 
2) Dim M = 5:  Class is generically greater than or equal to 3.  For a form ω ∈ T(ζ) with no 

zero (if it exists), )()( 21 ωζωζ ∪  will be a closed hypersurface of M, since ζ2(ω) is a 
closed submanifold of codimension 3 in M. 

 
3) Dim M = 8:  Generically, class is everywhere greater than or equal to 5, i.e., for ω ∈ T(ζ), 

one has ω ^ dω2 ≠ 0 at any point of M – Z(ω).  ζ1(ω) is a hypersurface, ζ2(ω) is a 
submanifold of codimension 3, and ζ3(ω) is a submanifold of codimension 6.  Moreover, 
one has: 

)()()()( 3211 ωζωζωζωζ ∪∪= , )()()( 322 ωζωζωζ ∪= , 

 
so ζ3(ω) is closed.  Z(ω) is disjoint from ζ1(ω).  )()( 21 ωζωζ ∪  and )()( 32 ωζωζ ∪  are 

submanifolds of codimensions 1 and 3, respectively. 
 
 4.3.4.  PROPOSITION. –  There is isotopic stability of the singular sets of the class in T(ζ) ⊂ 

)(1 MDk  for k ≥ 3. 

 
 This signifies that any ω ∈ T(ζ) admits a neighborhood U such that for any ω ′  ∈ U, the 
stratifications of M that are defined the singular sets of the class of ω and ω ′ , respectively, are 
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exchanged by an isotopy of M.  This proposition is an immediate corollary of the Appendix, Th. 
4.2, since the stratification ζ(M) is coherent. 
 
 4.4.  Case of (n – 1)-forms.  The situation is very simple here.  If ω is an (n – 1)-form on a 
manifold M of dimension n then we let Z(ω) denote the set of its zeroes, and S(ω), the set of 
zeroes for dω.  Therefore, in )(1 MDk , for k ≥ 2, the following properties are generic and define a 

dense open set: 
 

a) ω is transverse to the zero section of Λn−1T*M, and Z(ω) is therefore a closed set of 
isolated points. 

 
b) dω is transverse to the zero section of ΛnT*M, and S(ω) is therefore a hypersurface in M. 

 
c) S(ω) is closed and disjoint from Z(ω). 

 
 In this case, S(ω) is the set of points where the class of ω is equal to (n – 1). 
 The situation for closed (n – 1)-forms is also quite simple: Generically, a closed (n – 1)-form 
is transverse to the zero section of the bundle Λn-1T*M, and thus admits isolated zeroes. 
 
 

5.  The class of a Pfaff equation and its singularities. 
 
 5.1.  Let M be a manifold.  One lets P → M denote the projective bundle that is associated 
with the vector bundle T*M → M (i.e., the set of lines in T*M), and let ∗

0T denote the open subset 

of T* that is comprised of non-null forms, and let q: ∗
0T  → P be the canonical projection. 

 One calls any section of the projective bundle over M a Pfaff equation.  In what follows, we 
consider only sections that are at least once continuously differentiable. 
 A Pfaff equation may also be interpreted as a sub-bundle of T*M in the form of a line bundle, 
or again, by passing to the orthogonal complement, as a sub-bundle of codimension 1 in the 
tangent bundle to M (a field of tangent hyperplanes on M). 
 One denotes the space of k-times continuously differentiable sections of the bundle P by 
Γk(M) (1 ≤ k ≤ ∞ ) (cf. Appendix, sec. 1.2). 
 Let σ be a section of P and U, an open set of M.  A Pfaff form ω that is defined and non-null 
at every point of U is called a covering of σ on U if σ = q ⊗ ω on U.  A Pfaff equation admits 
coverings locally, but not necessarily a global covering. 
 

 5.2.  If ω andω ′ are two coverings of a Pfaff equation σ over an open subset U then one has 
ω ′ = f · ω, in which f is an everywhere non-null function on U.  From this, one deduces: 
 

pp dfd ωωωω ∧⋅=′∧′ +1  
for any integer p. 
 This justifies the: 
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 DEFINITION. – A Pfaff equation σ is said to have class 2p + 1 at a point x ∈ M if any 
covering ω of σ in a neighborhood of x is such that ω  ^ dω ≠ 0 and ω ^ dωp+1 = 0 at x. 
 
 Therefore, the class of a Pfaff equation at a point is an odd number.  It may also be 
interpreted as the reduced rank (cf. I, 7.3) of the pair (ω, dω) in which ω is an arbitrary local 
covering of σ.  It is an invariant of order 1 of the equation at each point, i.e., it may be defined on 
the bundle J1P of jets of order 1 of the sections of P. 
 
 5.3.  In this section, one uses the notations and results of I, 7 and II, 4.3. 
 Denote the projection deduced from q: ∗

0T  → P, by q~ = j1q: J1 ∗
0T  → J1P. 

 The fiber type of  J1 ∗
0T  is the open setΩ′  of 1

1F , which is the set of jets ω1 such that ρ(ω1) ≠ 
0 (see II, 4.3). 
 One denotes the fiber type of J1P by P1, and one further notates the projection deduced from 
q~  by q~ : Ω′ → P1 (P1 is the manifold of 1-jets of Pfaff equations at the origin of Rn). 
 The Lie group L1 of 2-jets of automorphisms at the origin of Rn acts canonically on P1 
(change of variables in a Pfaff equation), and the actions of L1 on P1 and are comparable with q~ . 

 Let σ1 ∈ P1.  Let ω1 ∈ Ω′  such that q~ (ω1) = σ1.  The reduced rank of π(ω1) ∈ Ω ⊂ Rn 

⊕ Λ2Rn (where π: 1
1F  → Rn ⊕ Λ2Rn is the surjection that was defined in II, 4.3.1) is independent 

of the choice of ω; it is the class of σ1. 
 One denotes the set of σ1 ∈ P1 that are of co-class d − i.e., of class n – d − by Cd (0 ≤ d ≤ n – 
1). 
 
 PROPOSITION. – The orbits of the group L1 in P1 are the sets Cd (0 ≤ d ≤ n – d odd).  For 

each d, Cd is a regular submanifold of P1 of codimension
2

)1( +dd
.  One has, moreover: 

 

d
dd

d CC ′≥′
∪= . 

 
One lets C denote the stratification of P1 comprised of the submanifolds Cd.  It is a coherent 
stratification (since it is defined by the orbits of a Lie group). 
 
 Proof. 
 

a) Let H be the Lie group of jets of order 1 of non-null numerical functions at the origin of 
Rn.  The multiplication of a form by a function defines a law of operation of H onΩ′ .  With the 
notations of II, 4.3.2, this law is given by the rule: 
 

f · ω1 = (λα, h ⊗ α + λ β ) where (α, β ) ∈ Ω′ ⊂ Rn ⊕  ⊗2 Rn, 
and f = (λ, h) ∈ (R – {0}) × Rn = H. 

  
It is clear that P1 is the quotient ofΩ′ by the action of H. 
 

b) If one sets, for f ∈ H, g ∈ L1, ω1 ∈ Ω′  then: 
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(f, g) · ω1 = f · (g · ω1), 
 
and one then remarks that this rule defines a law of operation on the semi-direct product 1G = H 

× L1 (L1 operates in H in an obvious fashion) inΩ′ .  This law of operation is such that the orbits 
of L1 in P1 are the projections (byq~ ) of orbits of 1G  inΩ′ . 
 

c) The action of 1G  in Ω′  and the action of G  in Ω (cf. I, 7.3.) are compatible with the 
surjection π: Ω′  → Ω. It then results from Propositions I, 7.3 and II, 4.3.2, that the orbits 
of 1G  in Ω′  are the sets )(1

dS′−π .  They are therefore regular submanifolds of Ω′  with 

the same codimensions as the manifoldsdS′ .  One also has: 
 

)()( 11
d

dd
d SS ′

−

≥′

− ′∪=′ ππ . 

 
 From b), the orbits of L1 in P1 are therefore the sets Cd.  Finally, since the manifold )(1

dS′−π  
is invariant under H, it results from a) that the set Cd is a regular submanifold of P1 of the same 
codimension as )(1

dS′−π , namely, d(d – 1)/2.  On the other hand, the projection Ω′:~q  → P1 
obviously preserves the properties that relate to adherences. 
 
 Remarks. 
 

1) P1 is obviously an algebraic variety.  One may easily verify that the sets Cd are algebraic 
submanifolds of P1, and that the set of singular points of dC  is 2+dC . 

 
2) If the ambient dimension n is even then the class must be odd.  The admissible values of 

d are then 1, 3, 5, …, and the corresponding codimensions of the strata Cd are 0, 3, 10, 
…, resp.  The stratification C then has codimension 3 in this case. 

 
 If the ambient dimension n is odd then d must be even.  The codimensions of the strata Cd are 
then 0, 1, 6, 15, …, and the codimension of C is 1. 
 
 

5.4.  Generic behavior of the class of a Pfaff equation. 
 
If we are given a manifold M then the stratification C of P1, which is invariant under the 
structure group L1 of J1P, induces a stratification C(M) of J1P for which the strata have the same 
codimensions as the ones in C, and which is coherent. 
 One then has, as a corollary to the Appendix, sec. 6.2, the: 
 
 THEOREM. – Let M be a manifold of dimension n.  In Γk(M), k ≥ 2, the set T(C) of Pfaff 
equations σ such that j1s is transverse to C(M) is a dense open set. 
 
Examples. 
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1) Dim M = 3:  for σ ∈ T(C), the set C2(σ) of points where the class is 1 is a closed surface 
of M (if it is non-vacuous).  The class is 3 outside of this surface. 

 
2) Dim M = 5:  generically, the class is everywhere greater than or equal to 3.  C2(σ) is a 

closed hypersurface for σ ∈ T(C). 
 

3) Dim M = 4:  the class may be only 1 or 3.  The set C2(σ), where the class drops to 1 is 
generically a closed submanifold of codimension 3. 

 
Remarks. 
 

1) For a “generic” Pfaff equation (in the sense of the preceding section), the class is very 
large everywhere.  It is minorized by a quantity whose asymptotic expression is (as in the 

case of the rank of a 2-form or the class of a 1-form) n − n2 . 
2) Since the stratification C is coherent, there is isotopic stability of singular sets of the class 

of a Pfaff equation in Γk(M), whenever k ≥ 3. 
 

 
6.  Generic singularities of a Pfaff equation in dimension 3. 

 
6.1.  Let M be a (compact) manifold of dimension 3.  The following situation, which relates to a 
Pfaff equation σ on M, is generic (in Γk(M) for k very large): 
 

1) The set C2(σ) of points of M where the class of σ is 1 (co-class = 2) is a (compact) 
surface. 

 
2) For any point x ∈ M, we denote the plane that is defined by the equation σ by Px ⊂ TxM. 
 
Therefore let C2,1(σ) ⊂ C2(σ) be the set of points x such that Px = TxC2(σ).  C2,1(σ) is a set 
of isolated points. 

 
 Set C2,0(σ)  = C2(σ) − C2,1(σ).  Px and TxC2(σ) are in general position on C2,0(σ), so they have 
a line as their intersection.  σ therefore induces a field of directions D on C2,0(σ), such that the 
points of C2,1(σ) are its singularities.  
 

3) One may make the generic situation at the points of C2,1 more precise in the following 
manner: 

 
 Let x ∈ C2,1(σ), and let ω be a (local) covering of σ over a neighborhood of x.  Letω ′ denote 
the restriction of ω to C2(σ); by definition,ω ′ is annulled at x.  The Jacobian ofω ′ defines a linear 
map, 

Txω ′ : TxC2(σ) → )(2 σCTx
∗ ; 

 
i.e., a bilinear form on TxC2(σ). 
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Since C2(σ) is the locus of zeroes of the product ω ^ dω, one easily shows that Txω ′ is a 
symmetric bilinear form.  Generically, it will be non-degenerate at any point of C2,1(σ).  This 
form may further interpreted as the Jacobian at the point x of the direction field D.  From this 
viewpoint, the preceding remark signifies that the singular points of the field D in C2(σ) may be 
only foci (or centers) or collars. 
 
 6.2.  The proof of the preceding assertions is not difficult.  It suffices to define a convenient 
stratification of the manifold of 2-jets of Pfaff equations such that an equation σ that has the 
preceding properties of j2σ is transverse to this stratification.  I confine myself to giving an 
example of each of the types of singularities that we just enumerated. 
 

1) At a point where the class of σ is 3, from Darboux’s theorem (cf. III, A, 4.1.3), there exist 
local coordinates (x, y, z) in which σ may thus be defined by the equation: 

 
dx + y dx = 0. 

 
2) At a point of C2,0(σ), there exist (cf. III, 4.3) local coordinates in which s may be defined 

by the equation: 
x dx + (1 + y) dz = 0. 

 
3) I ignore the question of whether there exists a model at a point of C2,0(σ).  The following 

Pfaff equations present a singular point of type C2,0(σ) at the origin (x = y = z = 0), 
which are a collar and a focus (or center), respectively: 

 

0)1(
3

3
2

1 =++







++= dzy

x
yxzdω , 

0)1(
3

3
2

2 =++







++= dzy

x
yxzdω . 

 
 For example, in the case of ω1, dω1 = dy ^ dz: 
 

ω1 ^ dω1  = (z + x2) dx ^ dy ^ dz. 
 

 The surface C2(σ) has the equation, z + x2 = 0.  The induced form is: 
 
    ω ′  = 2ydy – 2x(1 + y + x2) dx. 

 
 The quadratic form Txω ′  is then y2 – x2. 
 I propose to ultimately return to this point. 



CHAPTER III 
 

LOCAL STUDY OF SINGULARITIES 
 

A. LOCAL MODELS 
 

1.  Generalities. 
 
 1.1.  One lets p

kD , k ≥ 0, ( p
kD , k ≥ 1, resp.) denote the vector space of germs of (closed, resp.) 

exterior differential forms of degree p at the origin of Rn, with coefficients that are k-times 
continuously differentiable.  One sets Dp = pD∞ and Dp = p

∞D . 

 Let Lk be the group of germs of automorphisms at the origin of Rn that are k-times 

continuously differentiable.  One sets L = L∞ . 

 
 DEFINITION. – Two germs ω and ω ′ , resp., are called Cr-isomorphisms if there exists a g 
∈ Lr (with 1 ≤ r ≤ k + 1) such that: 

ω ′  = g*ω, 
 
in which g* ω denotes the inverse image of ω by g. 
 
 If r = k =∞  then ω andω ′  will simply be called isomorphic. 
 
 1.2.  The notations that are concerned with the jet spaces are the same as in chapter II. 
 For any ω ∈ p

kD ′ , one lets jk :
p
kD ′  → p

kF  ( k′ ≥ k) notate the restriction homomorphism that is 

defined by jk(ω) = jet of order k of ω at 0.  In a similar fashion, one defines the restriction 
homomorphism: 

jk : 
p

kD  → p
kF  

(the space of k-jets of closed p-forms). 
 Let Σ ⊂ p

kF  be a singularity of order k of a p-form.  An essential problem is the classification 

of the germs ω in p
kD ′ ( k′ ≥ k) that present the singularity Σ (i.e., such that jkω ∈ Σ) from the 

standpoint of the relation of Cr-isomorphism (1 ≤ r ≤ k′ + 1). 
 
 DEFINITION. – A singularity Σ ⊂ p

kF ( p
kF , resp.) is called rigid if all of the germs ω ∈ Dp 

(Dp, resp.) such that jkω ∈ Σ are isomorphic. 

 
 Any element of Σ, which we interpret to mean a differential form with polynomial 
coefficients (of degree less than or equal to k), will then be called a (local) model for the 
singularity. 
 We remark that, in this case Σ is an orbit of Lk in

p
kF ( p

kF , resp.) and for any k′ ≥ k,  ρ−1(Σ) ⊂  

is an orbit of kL ′ . 
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 The primary objective of this chapter is to commence the study of singularities from the 
standpoint just defined. 
 
 1.3.  I now recall a result that concerns the Lie derivative. 
 If X is a vector field and ω is a differential form then we notate the Lie derivative of ω with 
respect to X by θ(X)ω.  If X and ω are of class Ck then θ(X)ω is of class Ck−1.  One recalls that 
θ(X)ω = d(X  ω) + X  dω. 

 Now let Xt be a “time-dependent” vector field that is defined by Ck (k ≥ 1) on U × [0, 1], in 
which U is an open neighborhood of 0 in Rn such that X(0, t) = Xt(0) for any t. 

 The differential equation
dt

dx
= X(x, t) defines a map ϕ:U ′ × [0, 1] → Rn (where is an open 

neighborhood of 0), such that: 
 

t

tx

∂
∂ ),(ϕ

= X(t, x) and ϕ(x, 0) = x, 

for any x ∈U ′ . 
 ϕ is Ck and for any t ∈ [0, 1], the map ϕt defined by ϕt(x) = ϕ(x, t) defines an element of Lk, 

and ϕ0 is the identity. 
 Let ωt be a one-parameter family of differential forms that is defined and Ck on U × [0, 1].  

One notates the “velocity of deformation” at the time t by 
t

t
t ∂

∂
=

ωωɺ . 

 PROPOSITION. – With the preceding givens and notations, the following conditions are 
equivalent: 
 

a) θ(Xt)ωt = tωɺ , 

b) tt ωωϕ =∗ )( 0 . 

 
 Proof. – One sets αt = ∗− )( 1

tϕ (ωt).  An elementary calculation shows that: 

 

])([)( 1
ttttt

t X
t

ωθωϕαα
−==

∂
∂ ∗− ɺɺ , 

 
If one assumes a) then one has=tαɺ 0, but α0 = ∗− )( 1

tϕ (ω0) = ω0, since ϕ0 is the identity.  

Therefore, αt = ω0 for any t. 
 
 1.4.  Before proceeding, I need to make the following two remarks.  Let ω ∈ p

kD ′  be a germ of 

a differential form at the origin of Rn, whose natural coordinates are (x1, …, xn).  One denotes the 
restriction of ω to the hyperplane x1 = 0 by ω0.  One denotes the canonical projection of Rn on 
that hyperplane by π. 
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 1.4.1.  If k ≥ 1 and if 
1x∂

∂ ζ ω = 0 and
1x∂

∂ ζ dω = 0, i.e., 








∂
∂

1x
θ ω = 0 and ω = 0, then one 

has: 
ω = π*( ω0). 

 
In other words, the form ω is uniquely expressed with the aid of the coordinates xi (2 ≤ i ≤ n) and 
their differentials. 
 

 1.4.2.  If k  ≥ 1 and if
1x∂

∂ ζ ω = 0 and 
1x∂

∂ ζ ω = f · ω (in which f denotes a Ck−1 function), i.e., 

if
1x∂

∂ ζ ω = 0 and: 










∂
∂

1x
θ ω = f · ω 

then one has: 
ω = hπ*( ω0), 

 
in which h is a Ck−1 function that is equal to 1 when x1 = 0. 
 
 

2.  Case of n-forms. 
 
2.1.  First consider the simplest case, for which: 
 

Σ = n
nnn

nn F RΛ=⊂Σ 0, , 

 
is the set of non-null n-forms.  A germ ω ∈ n

kD  presents the “singularity”n
nn,Σ  if it is non-null; it 

is therefore the germ of a volume form. 
 
 THEOREM. – For k ≥ 0, any germ of a volume form ω ∈ n

kD  is Ck-isomorphism to the germ 

that is defined by the expression: 
dx1 ^ … ^ dxn 

 
(x1, …, xn denote the coordinates in Rn). 
 
 This result is classical and trivial.  If: 
 

ω = f(x1, …, xn) dx1 ^ … ^ dxn 
 
is a volume germ − i.e., f(0) ≠ 0 − then the change of variables: 
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   X1 = ∫
1

0 2 ),,,(
x

n dtxxtf ⋯ , 

   Xi = xi  for i = 2, …, n 
 
brings us to the indicated “canonical” form and defines a Ck-automorphism. 
 
 2.2.  One further considers the set nn

n F10, ⊂Σ  composed of non-null jets of order 1 whose 

image under ρ: nF1  → nF0  is null. A germ ω ∈ n
kD (k ≥ 1) is such that j1ω ∈ n

n 0,Σ  if and only if ω is 

annulled at 0 transversally to the zero section of bundle of n-forms. 
 
 THEOREM. – ([12]) For k ≥ 3 any germ ω ∈ n

kD  such that j1ω ∈ n
n 0,Σ  is Ck−2-isomorphic to 

the germ that is defined by the expression: 
 

x1 dx1 ^ … ^ dxn. 
 
 Proof. – Let ω = f(x1, …, xn) dx1 ^ … ^ dxn be the expression for ω in natural coordinates.  By 
hypothesis, f is Ck, f(0) and df is non-null at 0.  The equation f = 0 determines a germ of a 
hypersurface S the set of zeroes of ω.  We shall establish a result that is more precise than is 
necessary for the present situation because it will relate to what follows.  The theorem is an 
obvious consequence of it. 
 
 LEMMA. – Let ω ∈ n

kD (l ≥ 3) such that j1ω ∈ n
n 0,Σ .  Let S be the germ of the hypersurface of 

zeroes of ω.  If u1, …, un are Ck functions (3 ≤ k ≤ l) that are null at and independent by 
restriction to S then there exists a function u1 of class Ck−2 that is null at 0 such that: 
 

a) (u1, …, un) is a system of local coordinates, 
b) ω = ± u1 du1 ^ … ^ dun (the sign is determined by the given of ω, u2, …, un). 

 
 Proof. – The independence of the functions u2, …, un on S signifies that df ^ du2 ^ … ^ dun ≠ 
0 at the origin.  The functions (f, u2, …, un) therefore constitute a system of local Ck coordinates.  
In this system, one has: 

ω = h(f, u2, …, un) df ^ du2 ^ … ^ dun; 
 
the function h is of class Ck−1.  One obviously has h(0, u2, …, un) = 0, and dh is non-null at the 

origin; i.e., 0)0( ≠
∂
∂
f

h
.  There thus exists one (and only one) function g such that: 

h(f, u2, …, un) = f · g(f, u2, …, un). 
 
 The function g is of class Ck−2 and non-null at the origin.  To prove the lemma it then suffices 
to establish the existence of a function u1 that is of class Ck−2 and verifies the equation: 
 

∫ ⋅=
f

n dtuutgt
u

0 2

2
1 ),,,(
2

⋯ε , 
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in which ε = sign of g(0). 
 (One will then have ω = ε u1 du1 ^ … ^ dun.) 
 Now: 

∫∫ ⋅⋅⋅=⋅
1

0 2
2

0 2 ),,,(),,,( dxuuxfgxfdtuutgt n

f

n ⋯⋯  

                = f2 · ϕ(f, u2, …, un), 
 
and ϕ is a function of class Ck−2 that is non-null at the origin and has the same sign as g.  The 
function: 

εϕ⋅⋅= fu 21  

answers the question. 
 
 2.3.  Remark. – The singularities n

nn,Σ  and n
n 0,Σ  are the only singularities that are generically 

presented (II, 2.3).  We just showed that they are rigid.  The problem of classification is therefore 
completely solved in the case of n-forms. 
 
 

3.  Case of (n – 1)-forms. 
 
 3.1.  Let 1

1
1

,
−− ⊂Σ nn

nn F  be the set of jets ω1 of order 1 of (n − 1)-forms such that j0(ω1) ≠ 0 and 

dω1 ≠ 0.  A germ ω ∈ 1−n
kD   (k ≥ 1) is such that j1ω ∈ 1

,
−Σn
nn  if and only if ω and dω are non-null at 

0.  1
,
−Σn
nn  is therefore an open singularity in 1

1
−nF . 

 
 THEOREM. – For k ≥ 2, any germ ω ∈ 1−n

kD  such that j1ω ∈ 1
,
−Σn
nn   is Ck−1-isomorphic to the 

germ that is defined by the expression: 
 

(1 + x1) dx2 ^ … ^ dxn. 
 
 Proof. – Let D be the direction field associated to ω (which defined at each point by the line 
associated to ω).  Let u2, …, un be n – 1 independent Ck first integrals of the differential equation 
D that are null at 0.  One then has: 

ω = h du2 ^ … ^ dun, 
 
where h is a function of class Ck−1 that is non-null at the origin.  One may choose functions u2, 
…, un in such a way that h(0) = 1.  However, dω = dh ̂  du2 ^ … ^ dun ≠ 0 at the origin.  The 
functions u1 = 1 – h, u2, …, un thus define a Ck−1 system of local coordinates at the origin in 
which ω has the required expression. 
 
 3.2.  Because of the remarks of II, 4.4, it is natural to define that singularity 1

2
1

1,
−−

− ⊂Σ nn
nn F , 

which is the set of jets ω2 of order 2 of (n – 1)-forms such that dω2 ∈ n
n 0,Σ  (cf. III, 2.2) and j0(ω2) 

≠ 0.  If ω is a germ in 1−n
kD (k ≥ 2) then one will have j2(ω) ∈ 1

1,
−

−Σn
nn  if and only if ω is non-null 
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and if dω is annulled transversally to the origin (ω is therefore of class n – 1 at the origin).  It is 
obvious that 1

1,
−

−Σn
nn  is a singularity of codimension 1 in 1

2
−nF . 

 Let ω ∈ 1−n
kD (k ≥ 2) such that j2(ω) ∈ 1

1,
−

−Σn
nn .  One may consider the direction field D 

associated with ω and the hypersurface S of zeroes of dω.  It is clear that the order of contact of 
the field D and the surface S at the origin is an invariant of the )( ∞C isomorphism class of the 

germ ω.  Therefore, if one considers − in R3 (x, y, z coordinates), for example − the germs that 
are defined by the expressions: 
 
   ω1 = (1 + x2) dy ^ dz, 
   ω2 = (1 + xy – x3) dy ^ dz, 
   ω3 = (1 + xz – x2y – x4) dy ^ dz 
 
then the associated direction field D is the field parallel to the x-axis in all three cases.  On the 
other hand: 
   dω1 = 2x2 dx ^ dy ^ dz, 
   dω2 = (y – 3x2) dx ^ dy ^ dz, 
   dω3 = (z – 2xy – 4x3) dx ^ dy ^ dz, 
 
and the equations of the surfaces defined by the zeroes are (S1) x = 0, (S2) y – 3x2 = 0, (S3) z – 2xy 
– 4x3 = 0, respectively.  In the first case, the field D is transverse to S1, i.e., the restriction of ω1 
to S1 is non-null.  In the second case, the projection that is defined by the integral curves of D 
(i.e., the projection parallel to Ox) defines a fold (in the sense of Whitney [17]) of the surface S2 
in the plane yOz.  The restriction of ω2 to S2 presents the singularity 1

0,1
−
−Σn

n  at the origin.  In the 

latter case, the projection of S3 in yOz parallel to Ox defines a cusp (in the sense of Whitney 
[17]).  Here again, the restriction of ω3 to S3 represents the singularity 1

0,1
−
−Σn

n  at the origin. 

 These remarks show that the germs of ω1, ω2, ω3 at the origin are not Ck-isomorphic (k ≥ 4). 
 One defines the singularity 1

2
1

0,1,
−−

− ⊂Σ nn
nn F  to be the set of jets ω2 such that: 

 
1) dω2 ∈ n

n 0,Σ , 

2) The restriction of ω2 to the hypersurface of zeroes of dω2 is non-null. 
 

 These conditions define an open set in1 1,
−

−Σn
nn , and therefore a singularity of codimension 1. 

 
 THEOREM. – ([12]) For k ≥ 5, any germ ω ∈ 1−n

kD  such that j2ω ∈ 1
0,1,

−
−Σn

nn  is Ck−4-

isomorphic to one of the germs defined by the expressions: 
 

ndxdx
x

∧∧







+= ⋯2

2
1

1 2
1ω , 

ndxdx
x

∧∧







−= ⋯2

2
1

2 2
1ω . 
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 Proof. – Let S be the hypersurface of zeroes of dω and let D be the direction field associated 
with ω.  S is transverse to D since the restriction of ω to S is non-null.  We notate this restriction 
byω ′ . 
 The manifold S is of class Ck−1, andω ′ is a volume germ of class Ck−2 at the origin in S.  From 
Th. 2.1, there exist Ck−2 local coordinates2u , …, nu  in S such that: 

 
ω ′  = 2ud ^ …^ nud .     (1) 

 
One then prolongs the functions 2u , …, nu  to a neighborhood of 0 in Rn and keeps them constant 

on the integral curves of D.  One thus obtains functions 2u , …, nu  that are always of class Ck−2  

and, by construction, they are independent upon restriction to S. 
 Upon applying the lemma of paragraph 2.2 to (dω, u2, …, un), one finds a function u1 of class 
Ck−4  such that (u1, …, un) is a system of local coordinates at the origin, and: 
 

dω = ±  u1 du1 ^ …^ dun .      (2) 
 

We study the expression for ω in the coordinates (u1, …, un).  One obviously has: 
 

ω = h(u1, …, un) du1 ^ …^ dun , 
 
in which, by construction, the functions u2, …, un comprise a system of first integrals of D.  

However, (1) is equivalent to h(0, u2, …, un) = 1 and (2) is equivalent to 1
1

h
u

u

∂ = ±
∂

.  One 

therefore has: 

h = 1 ±  
2

2
1u

      Q.E.D. 

 Remarks. 
 

1) Let ω be a germ such that j2(ω) ∈ 1
0,1,

−
−Σn

nn .  At any point that does not belong to the 

surface S the linear equation X  dω = ω defines a non-null vector in the line that is 

associated to ω.  The vector field that is thus associated to the form ω1 (ω2, resp.) of the 

preceding theorem is X1 = 
1

1

1 2

1

x

x

x ∂
∂









+ : 

 












∂
∂









+−= .,

2

1

1

1

1
2 resp

x

x

x
X . 

 
 This field is directed towards S in the case of ω2 and directed towards the exterior in the case 
of ω1.  This observation illustrates the fact that ω1 and ω2 may not be isomorphic. 
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2) I will ignore the issue of whether the higher-order singularities that correspond to orders 
of contact higher than 1 for the associated field D and the hypersurface S are rigid. 

 
 3.3.  In II, 4.4, we saw that an (n – 1)-form ω may generically present isolated zeroes that are 
disjoint from the set of zeroes of dω.  We simply mention that at such a point one may 
canonically associate ω with the germ of vector fields X that are defined by linear equation X  

 dω = ω. Like ω, X is annulled at the point considered.  All of the invariants of the field X are 

invariants of ω. 
 
 3.4.  Case of closed (n – 1)-forms.  I recall only the following classical result:  Any germ of 
a closed (n – 1)-form ω ∈ 1n

k
−

D  (k ≥ 1), which is non-null at the origin is Ck-isomorphic to the 

germ dx2 ^ … ^ dxn . 
 On the other hand, we remark that if Ω denotes an n-form without zeroes (volume form), and 
if X denotes a vector field then the form ω = X  Ω is closed if and only if the Lie derivative 

θ(X)Ω is null, since θ(X)Ω = X  dΩ + d(X  Ω). 
 The study of a closed (n – 1)-form is therefore very close to the study of a unimodular vector 
field (i.e., one that preserves a volume). 
 
 

4.  Cases of closed 2-forms and Pfaff forms. 
 
 4.1.  Darboux’s theorem.  This theorem establishes the existence of “canonical forms” for 
the germ of a closed 2-form of maximum rank (in either even or odd dimension) and the germ of 
a Pfaff form of maximum class.  I shall not give a complete of it here, since it is found in 
numerous places in the literature ([3], [5], [6], [10], [18]).  The central idea of the proof that one 
finds in the school of J. Moser ([14]), and seems most natural to me, takes into account 
considerations regarding the stability and infinitesimal stability of differential forms. 
 First recall that Σ0 (Σ1, resp.) denotes the open set of elements of Λ2 Rn = 2 2

0 0F = F  (the 

vector space of jets of order 0 of 2-forms, which may or may be closed) with n = 2p even (n = 2p 
+ 1 odd, resp.) that have maximum rank 2p (the corank is then 0 or 1, respectively). 
 On the other hand, ζ0 denotes the open set of11F (the space of jets of order 1 of Pfaff forms at 
the origin of Rn) that is composed of the jets of class n (cf. II, 4.3.1). 
 
 4.1.1.  THEOREM. – Let ω ∈ 2

kD  (k ≥ 1) be a germ of a closed 2-form at the origin of Rn, 

with n = 2p such that j0ω ∈ Σ0.  Then ω is Ck-isomorphic to the germ that is defined by the 
expression: 

dx1 ^ dy1 + … + dxp ^ dyp 
 
(in which x1, …, xp, y1, …, yp, denote the natural coordinates in R2p). 
 
 Proof. – Consider the form ω0 with constant coefficients that is equal to the expression for ω 
at the origin, and set: 

ωt = ω0 + t · (ω – ω0)   for any   t ∈ [0, 1]. 
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 Therefore ω1 = ω, and for any t ∈ [0, 1], ωt is of maximum rank at the origin. 
 The 2-form α = ω − ω0 is Ck and closed.  There thus exists a Pfaff form β with Ck 
coefficients that one may take to be null at the origin and has the property that α = dβ. 
 Now, since the ambient dimension is 2p and the form ωt has rank 2p in a neighborhood of the 
origin, the linear equation, 

Xt  ωt = β, 
 
determines the germ of a vector field Xt, which is null at the origin and of class Ck for any t ∈ [0, 
1]. 
 For any t one then has the relation: 
 

θ(Xt)ωt = d(Xt  ωt) + Xt  dωt = α, 

since ωt is closed. 
 If one then considers the differential equation: 
 

),()( xtXxX
dt

dx
t == , 

 
and if one notates the solution that verifies ϕ0(x) = x by ϕt(x), then one has ϕt(x) = 0 for any t, 
since X(t, 0) = 0.  The function ϕ is therefore defined and Ck on [0, 1] × U, in which U denotes a 
sufficiently small neighborhood of 0 in Rn.  Therefore, for any t ∈ [0, 1], ϕt is a germ of a 
diffeomorphism that preserves the origin, and, from III.A, 1.3, one has, by construction: 
 

tt ωωϕ =∗ )( 0  for any t. 

 
 Therefore, ϕ1 defines a Ck-isomorphism of ω onto ω0.  As a result, from I, 4.1, to arrive at the 
stated expression of the theorem, it suffices to make a linear change of variables in ω0. 
 
 4.1.2.  THEOREM. – Let ω ∈ 2

kD  (k ≥ 2) be the germ of a closed 2-form at the origin of Rn 

with n = 2p + 1 such that j0ω ∈ S1.  Therefore, ω is Ck-isomorphic to the germ that is defined by 
the expression: 

dx1 ^ dy1 + … + dxp ^ dyp 
 
(in which z, x1, …, xp, y1, …, yp, denote coordinates in R2p+1). 
 
 Proof. – One has a direction field D that is defined at each point by the line associated to ω 
(which is of corank 1).  This field is of class Ck. 
 
 Let S be a hypersurface element that is transverse to D at the origin (for example, a 
hyperplane).  The restrictionω  of ω to S verifies the hypotheses of theorem 4.1.1.  There thus 
exist functions 1x ,…, px , 1y , …, py  that constitute a Ck system of local coordinates at the origin 

in S, such that: 
ω  = 1xd ^ 1yd + … + pxd ^ pyd . 
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 Now let x1, …, xp, y1, …, yp, be the first integrals of D that are obtained by 
prolonging 1x ,…, px , 1y , …, py , which we complete into a system of coordinates: 

 
Ck: (z, x1, …, xp, y1, …, yp). 

 

 In this system, one obviously has 
z∂

∂
 ω = 0.  From III.A, 1.4.1, since the expression for ω 

is Ck−1 with respect to its coordinates, one will have: 
 

ω = dx1 ^ dy1 + … + dxp ^ dyp 
 
provided that k – 1 ≥ 1.        Q.E.D. 
 
 4.1.3.  THEOREM. – Let ω ∈ 1

kD (k ≥ 3) be the germ of a Pfaff form at the origin of Rn with 

n = 2p + 1 such that j1ω ∈ ζ0 ; i.e., ω ^ dω ≠ 0.  ω is then Ck-isomorphic to the germ that is 
defined by the expression, 

dz + dx1 ^ dy1 + … + dxp ^ dyp . 
 
 Proof. – One has dω ∈ 2

1k−D , and, from 4.1.2, there exist functions x1, …, xp, y1, …, yp such 

that: 

dω = ∑
=

p

i 1

dxi ^ dyi . 

 

The differential form ∑
=

=
p

i
ii dyx

1

ω  is therefore Ck−2, and such that d(ω − ω ) = 0.  Therefore, ω 

− ω  = dz, in which z is a Ck−1 function that is null at the origin.  One has precisely: 
 

ω = dz + ∑
=

p

i 1

xi dyi , 

 
because the functions z, x1, …, xp, y1, …, yp are independent, since ω ^ dωp = p! dz ^ dx1 ^ dy1 ^ 
… ^ dxp ^ dyp ≠ 0. 
 
 
 4.1.4.  THEOREM. – Let ω ∈ (k ≥ 3) be the germ of a Pfaff form at the origin of Rn with n = 
2p such that j1ω ∈ ζ0 ; i.e., ω ≠ 0 and dωp ≠ 0.  ω is then Ck−2-isomorphic to the germ defined by 
the expression: 

(1 + x1) dy1 + x2dy2 + … + xpdyp . 
 
 Proof. – By hypothesis, the (2p – 1)-form ω ^ dωp-1 is non-null and Ck−1.  Let D be the 
direction field associated with this form.  If X is a non-null vector field carried by D then one has 
X  (ω ^ dωp−1) = 0, namely: 
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(X  ω) · dωp−1 – ω ^ (X  dωp−1) = 0, 
 
which implies X  ω = 0 and X  dω = f · ω since dω is of rank 2p. 
 Therefore, let S be an element of a hypersurface that is transverse to D at the origin.  The 
restrictionω  of ω to S verifies the hypotheses of theorem 4.1.3.  There thus exist Ck−1 local 
coordinates 1y , 2x , 2y ,…, px , py  at the origin in S such that: 

 
ω  =  1yd + 2x 2yd +…+ px pyd . 

 
 Let y1, x2, …, yp be first integrals of D that are obtained by prolonging 1y , 2x ,…, py .  From 

the remark at the beginning of III.A, 1.4.2, one has: 
 

ω = h ·ω ′ , 
 
in which ω ′ = dy1 + x2dx2 +  …+ xpdyp and h is a Ck−2 function that is equal to 1 on S. 
 On the other hand, one has: 
 
   dωp = (dh ω̂ ′  + h ω ′d )p =  
     = p(p – 1)! hp-1 dh ^ dy1 ^ … ^ dxp ^ dyp ≠ 0. 
 
Therefore, h, y1, x2, …, yp are independent.  The change of variables: 
 
    X1 = h – 1, 
    Xi = h · xi for 2 ≤ i ≤ p, 
    Xj = yj  for 2 ≤ j ≤ p 
 
is Ck−2 and puts ω into the required form. 
 
 4.2.  We shall now examine the simplest singularities of the class of a Pfaff form and the rank 
of a closed 2-form. 
 
 4.2.1.  As far as Pfaff forms are concerned, it is natural to first envision the case of germs ω 
that enjoy the following properties: 
 

i) j1ω ∈ ζ1, i.e., the class of ω at 0 is n – 1. 
 

ii)  ω is generic from the point of view of II, 4.3.3, i.e., the map that is defined by x → j1ω(x) 
is transverse to ζ1.  The class of ω therefore remains equal to (n – 1) at the points of a 
hypersurface S = ζ1(ω) that passes through the origin. 

 
iii)  The restriction of ω to S is of maximal class (n – 1). 
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 Indeed, these three conditions express properties of j2ω.  More precisely, they define an open 
set of ρ−1(ζ1) (in which ρ: 1

2F  → 1
1F is the restriction of the homomorphism of the space of jets of 

order 2 into the jets of order 1), hence a submanifold of codimension 1 of 1
2F ; i.e., a singularity 

of order 2.  This singularity will be denoted by ζ1,0 . 
 
 THEOREM. – ([12]) Let ω ∈ 1

kD , in which k ≥ 7 (k ≥ 6, resp.), be the germ of a 1-form at the 

origin of Rn, in which n = 2p = 1 (n = 2p, resp.), such that j2ω ∈ ζ1,0.  ω is therefore Ck−6-
isomorphic (Ck−5-isomorphic, resp.) to one and only one of the germs defined by expressions: 
 

± z dz + (1 + x1) dy1 + x2 dy2 + … + xp dyp , 
 
(to one and only one of the germs: 
 

ppdyxdyxdy
x

+++







± ⋯221

2
1

2
1 , 

resp.). 
 
 Proof. 
 
 a)  n = 2p + 1.  In this case, condition i) signifies that ω ^ dωp = 0 and dωp ≠ 0 at the origin.  
Condition ii) signifies that the n-form ω ^ dωp is annulled transversally at the origin, and thus 
presents the singularityn

n 0,Σ (in the sense of III, A, 2.2).  The locus of zeroes is a germ of the 

hypersurface S of class Ck−1.  Condition iii) signifies that the restrictionω  of ω to S verifiesω  ≠  
0 and ωd ≠ 0 at the origin.  In particular, the direction field D that is associated with dω is 
transverse to S. 
 The formω  is Ck−1.  From theorem III.A, 4.1.4, there exist Ck−4 local coordinates1x , 

…, px 1y , …, py  at the origin of S such that: 

 
ω  = (1 + 1x ) 1yd + 2x 2yd  + … + px pyd . 

 
Let x1, …, xp, y1, …, yp be the first integrals of D defined by the prolongations of1x , …, px 1y , …, 

py .  From Lemma III.A, 2.2, applied to ω ^ dωp, there exists a Ck−6 function such that: 

 
ω ^ dωp = ± z dz ^ dx1 ^ … ^ dyp .    (1) 

 
 One obviously has dω = dx1 ̂  dy1 + … + dxp ^ dyp (from III.A, 1.4.1).  Therefore, if ω ′ = (1 + 
x1) dy1 + x2 dy2 + … + xp dyp then one has ω −ω ′  = df, since f is a Ck−5 function.  df is null on S; 
one may thus take f to be null on S.  Therefore: 
 

ω ^ dωp = df ^ pdω ′ = (p – 1)!
z

f

∂
∂

dz ^ dx1 ^ … ^ dyp 
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in the system of coordinates (z, x1, …, xp, y1, …, yp).  By comparison with (1), one immediately: 
 

df = !
)!1( −p

z
 dz. 

 
The expression for ω in the Ck−6 coordinate system: 
 

(z, x1, …, xp, y1, …, yp) 
is therefore: 

ω = ±
)!1( −p

z
 dz + (1 + x1)dy1 + x2dy2 + …+ xpdyp , 

 
an expression that one easily transforms into the indicated form of the theorem. 
 
 b)  n = 2p.  This time, one has dωp = 0 and ω ^ dωp−1 ≠ 0 at the origin.  dωp presents the 
singularity n

n 0,Σ .  Let S be the hypersurface of zeroes of dωp (S is of class Ck−1).  From iii), the 

restrictionω  of ω to S is such that 1−∧ pdωω  ≠ 0.  The direction field D that is associated with 
the (n – 1)-form ω ^ dωp−1 is therefore transverse to S. 
 
 If we apply theorem III.A, 4.1.3, toω  then one chooses Ck−3 local coordinates1y , 2x , 

…, py at the origin in S such that ω  = 1yd + 2x 2yd  + … + px pyd .  Let y1, x2, …, yp  be the first 

integrals of D that are defined by the prolongations of 1y , …, py . 

 From lemma III.A, 2.2, applied to dωp, there exists a Ck−5 function x1 such that: 
 

dωp = ± x1dx1 ^ dy1 ^ … ^ dxp ^ dyp .     (1) 
 
 One easily shows that ω = f ·ω ′ , in which: 
 

ω ′ =  dz + x2 dy2 + …+ xp dyp , 
 
and f is a Ck−4 function that equals 1 on S.  One then has: 
 

dωp = (df ̂ ω ′ + ω ′fd )p = p(p – 1)!  fp−1

z

f

∂
∂

x1dx1 ^ dy1 ^ … ^ dxp ^ dyp . 

 

 On account of (1), one deduces that fp = 1 ± 
)!1(2

2
1

−p

x
.  The expression for ω in the Ck−5 

coordinate system (x1, y1, …, yp) is therefore: 
 

ω = 
p

p

x
/12

1

)!1(2
1 









−
± (dx1 + x2dy2 + …+ xpdyp), 
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an expression that is easy to reduce to the indicated expression of the theorem. 
 
 Remarks. 
 

1) In the case n = 2p + 1, the expressions: 
 

± z dz + (1 + x1) dy1 + …+ xp dyp , 
 

are easily distinguished geometrically by the behavior of the vector field X that is defined by the 
linear equation: 

X  (ω ^ dωp) = dωp. 
 

This field is defined only outside of the singular surface S (z = 0).  In one case, it points towards 
S, and in the other, it points away from S. 
 

 One has analogous remarks for n = 2p. 
 

2) The preceding theorem shows that the singularity ζ1, 0 is the disjoint union of two rigid 
singularities. 

 
 4.2.2.  In the case of closed 2-forms, one must consider the germs ω at the origin of Rn, 
where n = 2p, which admits the following properties: 
 

i) ω is of corank 2 at the origin; i.e., j0ω ∈ Σ2, or furthermore, ωp = 0 and ωp−1 ≠ 0 at the 
origin. 
 

ii)  ω is generic from the standpoint of II, 2.4; i.e., ω is transverse to Σ2.  The set Σ2(ω) of 
points where ω is of corank 2 is then a germ of a hypersurface. 

 
iii)  The restriction of ω to Σ2(ω) is of maximum rank 2p – 1. 

 
 These are properties of the jet of order 1 of ω at the origin, which defines a subset Σ2,0 ⊂ 2

1F .   

This subset is clearly an open set of ρ−1(Σ2), where ρ: 2
1F  → 2

0F .  It is therefore a submanifold of 

codimension 1. 
 
 THEOREM. – Let ω ∈ 2

kD  (k ≥ 6) be a germ of a closed 2-form at the origin of Rn with n = 

2p such that j1ω ∈ Σ2,0 .   ω is then Ck−5-isomorphic to the germ: 
 

x1 dx1 ^ dy1 + dx2 ^ dy2 + … + dxp ^ dyp . 
 
 Proof. – One easily finds a Pfaff form α such that dα = ω and j2ω ∈ ζ1,0 .  One applies 
theorem III.A, 4.2.1, to α.  One thus obtains: 
 

ω = dα = ± x1 dx1 ^ dy1 + dx2 ^ dy2 + … + dxp ^ dyp . 
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One makes the sign disappear by modifying y1, perhaps. 
 
 4.3.  We further mention an interesting to theorem III, A, 4.2.1, that relates to the Pfaff 
equations in odd dimension, n = 2p + 1. 
 Suppose we have a Pfaff equation σ that is generic from the standpoint of theorem II, 5.4.  
and C2(σ), viz., the set of points where σ is of co-class 2, is a hypersurface.  Consider a point of 
C2(σ) such that the restriction of σ to C2(σ)  is of maximal class 2p – 1 at this point.  One easily 
shows that in a neighborhood of such a point σ may be defined by a Pfaff form that presents the 
singularity ζ1,0 at this point.  From this, it results that  in a convenient local coordinate system σ 
is defined by the form: 

z dz + (1 +x1) dy1 + x2 dy2 + … + xp dyp. 
 
 

5. 
 
I will now show several examples of singularities for differential forms, such that the 
classification of the germs that present these singularities involves parameters.  They therefore 
amount to non-rigid singularities that admit an infinitude of models. 
 

 
5.  Examples of non-rigid singularities 

 
 5.1.  For n = 3, consider the singularity of order 1 of the closed 2-forms Σ3,0 ⊂ 2

1F  that is 

defined by the property: A germ ω ∈ D2 presents the singularity Σ3,0, (i.e., j1ω ∈ Σ3,0) if and only 

if ω is annulled transverse to the origin. 
 Consider one such germ.  Let Ω be a germ of a volume form, and let X be the vector field 
that is defined by ω = X  Ω.  Let Λ be the Jacobian matrix of X at the origin (X is annulled at 

this point).  Λ has null trace, because ω is closed, so X is therefore unimodular.  By the 
transversality condition, Λ has rank 3.  The proper value equation for Λ is therefore of the form 
λ3 + pλ + q = 0, where q ≠ 0.  The number r = p · q−2/3 is then an invariant of ω, and therefore of 
j1ω ∈ Σ3,0 .  Indeed, if one makes another choice of volume for Ω then Λ is multiplied by a scalar 
and r = p · q−2/3 is unchanged. 
 We therefore set, for example: 
 

ωp = (x2 + px3) dx2 ^ dx3 + x3 dx3 ^ dx1 – x1 dx1 ^ dx2 , 
 
where x1, x2, x3 denote the natural coordinates in R3 and p is a scalar.  For each p, ωp presents the 
singularity Σ3,0 at the origin and r(ωp) = p.  ωp andω ′  might not be isomorphic if p ≠ p′ . 
 
 5.2.  We now place ourselves in dimension 5.  A germ ω ∈ D2 will be said to present the 

singularity Σ3,0 ⊂ 2
1F  if: 
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a) ω is transverse to Σ3,0 ⊂ 2
0F (the set of forms of corank 3, hence, of rank 2).  Σ3(ω) is then 

(cf. II, 2.4.1, example 4) a germ of a surface (of codimension 3). 
b) The restriction of ω to Σ3(ω) is non-null. 

 
 Let Ω be a volume germ at the origin of R5, and define a vector field X by the equation ω2 = 
X  Ω.  X is annulled at the points of Σ3(ω).  For any x ∈ Σ3(ω), the Jacobian Λx of X at x is of 

rank 3 and has null trace.  Its proper value equation is of the form λ2(λ3 + p(x)λ + q(x)) = 0.  One 
immediately verifies that the function r(x) = p(x)q(x)−2/3 is an invariant of the germ ω (r is a germ 
of a function at the origin in Σ3(ω)). 
 A very large class of functions may be obtained in this manner: for example, consider the 2-
forms: 
 ωp = (x2 + px3) dx2 ^ dx3 + x3 dx3 ^ dx1 – x1 dx1 ^ dx2 

  + 
4x

p

∂
∂

x2 x3 dx4 ^ dx3 +
5x

p

∂
∂

x2 x3 dx5 ^ dx3 + dx4 ^ dx5, 

 
in which x1, …, x5 denote the coordinates in R5, and: 
 

p(x4, x5) = s(x4) + t(x5) 
 
with s and t being arbitrary ∞C functions. 
 
 

B.  STABILITY AND INFINITESIMAL STABILITY  
 
In this part, all of the objects considered will be assumed to be ∞C . 
 

1.  Stability of the germ of a differential form. 
 
 1.1.  Let M be a manifold ω ∈ Dp(M) (Dp(M), resp.), a p-form (closed p-form, resp.) on M, 

and x, a point of M.  ω will be called stable at x if the following condition is realized: (compare 
with [9], pp. 44). 
 For any neighborhood U of x there exists a ∞C –neighborhood V of ω in Dp(M) (Dp(M), 

resp.) such that for any ω ′  ∈ V there exists c U (?) such that the germs of ω at x and ω ′ at x′ are 
isomorphic. 
 One easily recognizes that this property indeed depends on the germ of ω at x.  One arrives at 
the definition of a stable germ. 
 
 1.2.  THEOREM. – All of the models indicated in the first part of this chapter define stable 
germs. 
 
 Proof. – All of these cases realize the following situation:  One has a singularity Σ of order k 
that is rigid, and a form ω in Rn such that: 

a) jkω(0) ∈ Σ, 
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b) jkω is transverse to S at 0. 
 

 A classical argument (which is analogous to the isotopy lemma) then shows that, for any 
neighborhood U of 0, there exists a Ck+2-neighorhood V of ω, such that for any ω ′ ∈ V, there 
exist x′ ∈ U, with )(xj k ′′ω ∈ Σ.  Stability results immediately since Σ is rigid. 

 
 

2.  Infinitesimal stability. 
 
 2.1.  In what follows, one denotes the space of germs of ∞C vector fields at the origin of Rn 
by χ. 
 Let ω ∈ Dp (Dp, resp.).  One then lets Tω: χ → Dp (Tω: χ → Dp, resp.) denote the R-linear 

map defined by Tω(X) = θ(X)ω for any X ∈ χ (not without having remarked that the Lie 
derivative of closed form with respect to a field is a closed form). 
 It is natural to make the: 
 
 DEFINITION. – Let ω ∈ Dp (Dp, resp.).  The germ ω is said to be infinitesimally stable if the 

map Tω: χ → Dp (Tω: χ → Dp, resp.) is surjective. 

 
 Remark. – One must take care to observe that the notions of infinitesimal stable closed and 
non-closed forms are distinct. 
 
 THEOREM. – Let ω ∈ Dp be an infinitesimally stable germ.  The germ dω ∈ Dp+1 is 

therefore infinitesimally stable. 
 
Proof. – From the formula, it is obvious that: 
 

d(θ(X)ω) = θ(X)dω. 
 
 2.2.  One may weaken the preceding definition by passing to jets of infinite order of forms 
and vector fields.  One thus obtains the algebraic notion of formal stability. 
 One of the fundamental problems of the theory that is sketched out in this work is to establish 
the equivalence of the notions of stability, infinitesimal stability, and formal stability.  I have not 
begun this problem. 
 By careful calculations that I will not impose on the reader, one may establish the 
infinitesimal stability of the germs defined by the models that were obtained in the first part of 
this chapter. 
 I prefer to conclude with the following proposition, which is interesting in itself, and which 
seems to me to give a good idea of the problems that are posed in this type of questions, as long 
as the situation envisioned in very simple. 
 
 PROPOSITION. – The germs of closed 2-forms at the origin of R4 that are defined by the 
expressions: 
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ω = dx ^ dy + z dy ^ dz + d 







−+

3

3z
tyxz  ^ dt, 

ω ′ = dx ^ dy + z dy ^ dz + d 







−−

3

3z
tyxz  ^ dt 

 
are formally stable.  (They amount to examples of the elliptic and hyperbolic points that were 
indicated in II, 3.2.3). 
 
 Proof. – I will indicate this in the case of ω.  The modifications that are necessary for the 
case ofω ′ are obvious. 
 

a) The infinitesimal stability of ω is equivalent to the possibility of finding a germ of a 
vector field X ∈ χ such that: 

θ(X)ω = d(X  ω) = τ = dπ 
 

for any germ of a closed 2-form τ = dπ (π ∈ D1). 
 

Let Mω denote the module (over the ring D0 of germs of ∞C functions at the origin of R4) of 
germs Pfaff forms of the form X  ω.  The infinitesimal stability of ω is then equivalent to 

existence of a function f ∈ D0 such that π – df ∈ Mω for any π ∈ D1; i.e., the equality D1 = Mω + 
dD0. 

 
b) LEMMA 1. – A germ π ∈ D1 belongs to Mω if and only if π(m) belongs to the support 

Sω(m) of ω at m for any point m. 
 

 The necessity is obvious since the interior products X  ω constitute the support Sω(m) at 
each point m. 
 To show that the condition is sufficient, one may remark − without using the particular 
expression for ω – that the rank of the linear equation X  ω = π, behaves generically (i.e., that 

ω is transverse to Σ2), and use a recent theorem of J. Mather. 
 However, the direct proof is very simple: 
 One first verifies that one has ω = (dx – z dz – t dt) ^ (dy + z dt) at the points of Σ2 (i.e., such 
that x = 0).  From this, one deduces that a form π ∈ D1, π = α dx + β dy + γ dz + δ dt, belongs to 
the support of ω at each point if and only if the functions zα + γ and tα – zβ + δ are annulled 
identically for x = 0, i.e., are divisible (in the ring D0) by the function x. 
 On the other hand, the equation X  ω = π, in which: 
 

t
d

z
c

y
b

x
aX

∂
∂+

∂
∂+

∂
∂+

∂
∂= , 

is equivalent to: 
a – zd = − α,         (1) 

              a – zc – td = β,         (2) 



 Chapter III – Local study of singularities.                             56  

          zb – (x – z2)d = γ       (3) 
 za + tb + (x – z2)c = δ      (4) 

 
 (1) and (3) give xd = − (zα + γ).  From this, one deduces that d, zα + γ are divisible by x, and 
(1) gives b: 
 (1), (2) and (4) give xc = tα – zβ + δ.  One deduces c from this and (2) gives a.  

Q.E.D. 
 

c) Let 0D be the ring of germs of differentiable functions at the origin of the hyperplane 
Σ2(ω) (defined by x = 0) and let 1D  be the module of germs of Pfaff forms at the origin in Σ2(ω).  
One lets ωM denote the 0D – viz., the module of restrictions of the elements of Mω to Σ2(ω)  

 
 LEMMA 2. – The infinitesimal stability of ω is equivalent to the condition: 
 

ωM + 0Dd = 1D . 

 
 This necessity of this condition is obvious. 
 
 Sufficiency:  We first remark that for any τ ∈ 1D  such thatτ = 0 (τ = restriction of τ to 
Σ2(ω)) there exists function h (which is null on Σ2(ω)) with τ – dh = 0.  Indeed, if τ = α dx + β dy 
+ γ dz + δ dt thenτ = 0 is equivalent to β = γ = δ = 0 for x = 0.  If h = x · α then all of the 
coefficients of τ – dh are null on Σ2(ω).  Now let π ∈ D1.  By hypothesis, there exists a function f 

such that ωπ Mdf ∈− , hence, σπ =− df , where σ ∈ Mω, namely, σπ −− df  = 0.  From the 

preceding remark, there exists a function h such that π − df – σ – dh ∈ Mω, which gives π – d(f + 
h) ∈ Mω . 

Q.E.D. 
 
 Remark. – One has not used the particular definition of Mω here, but only the fact that it is 
defined by conditions at only the points of Σ2(ω). 
 

d) Let X be the vector field in the hyperplane Σ2(ω) that is associated with the restrictionω ′  
of ω;  one has: 

t
z

z
t

y
zX

∂
∂+

∂
∂−

∂
∂−= 2  

(cf. II. 3.2.3 a)). 
 

 LEMMA 3. – A form π ∈ 1D  belongs to ωM  if and only if X  π = 0. 

 
 The necessity is obvious. 
 Conversely, let π = β dy + γ dz + δ dt be such that X  π = 0, i.e., − z2β – tγ + zδ = 0 or z(−zβ 

+ δ) = tγ.  t is therefore divisible by z in D0, and there exists a function α(y, z, t) such that γ = − 
zα; but then – zβ + δ = − tα.  From a), it then results that the form α dx + β dy + γ dz + δ dt 
belongs to Mω . 
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Remark. – This is where one uses the fact that j1ω is transverse to the singularity Σ2,2 . 
 

e) From lemmas 2 and 3, the infinitesimal stability of ω is equivalent to the following 
condition: 
 For any π ∈ 1D , there exists a function f ∈ 0D  such that 
 

X  df = X  π. 
I.e.: the partial differential equation: 
 

δγβ ztz
t

f
z

z

f
t

y

f
z +−−=

∂
∂+

∂
∂−

∂
∂− 22 ,   (E) 

 
has a ∞C solution f(y, z, t) for any functions β, γ, δ.  The left-hand sides form the ideal J of 
functions that are null on Σ2,2(ω), precisely (z = t = 0). 
 By definition, one comes down to the study of the condition: 
 
 The partial differential equation: 

h
t

f
z

z

f
t

y

f
z =

∂
∂+

∂
∂−

∂
∂− 2      (E) 

has a solution for any h ∈ J. 
 

f) To my knowledge, there is no actual general method for the study of partial differential 
equations with singularities.  In this particular case, I will simply show that it is possible to solve 
the preceding equation (E) in a formal series. 
 Let [h] = ∑

≥0,, rqp

ap,q,r y
p zq tr be the Taylor development of the unknown function f. 

 By identifying the series developments of both sides of (E), one obtains the system of 
equations: 
 

(Ep,q,r), p, q, r ≥ 0:  − (p + 1)bp+1, q−2, r – (q + 1)bp, q+2, r−1 + (r + 1) bp, q−1, r+1 = ap, q, r . 
 

 I shall call the sum of the indices of a coefficient its height. 
 I shall only give a summary of the proof, which is a little neater here. 
 It is clear that the system of equations that is being considered decomposes into two disjoint 
systems: (Ep,q,r), q + r odd, and (Ep,q,r), q + r even. 
 In the first case, one easily shows that for given p0 and k0 the system (Ep0,q,r), q + r = k0 
forms a system of equations that is independent of the height p0 + k0 in the unknowns. One then 
solves the first system by recurrence on p0 and k0. 
 In the second case, one envisions the subsystems: 
 

S2k = (Ep,q,r; 2p + q + r = 2k). 
 

They are disjoint systems.  One shows that S2k is an independent system of equations by 
recurrence on q + r. 
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 Remarks. 
 

1) In the case of the examples of “parabolic” points (cf. II, 3.2.4), one shows the 
equivalence of infinitesimal stability and stability in the same fashion, with the condition that the 
partial differential equation: 

h
t

f
z

z

f
y

y

f
tzz =

∂
∂+

∂
∂

∂
∂+− ∓)2(  

 
has a solution f for any h ∈ J, in which J is the ideal of functions that are null on Σ2,2(ω) (i.e., h is 
null for y – z = 0). 
 I have acquired the conviction (without nevertheless writing down an explicit proof) that 
there is also formal stability in this case. 

 
2) To me, these considerations seem to reasonably motivate the conjecture:  The generic 

singularities of a closed 2-form in dimension 4 (cf., II, 3) are all rigid. 
 



APPENDIX 
 

TRANSVERSALITY THEOREMS FOR SECTIONS OF FIBER BUNDL ES 
 
 

1.  Topologies on the space of sections. 
 
 1.1.  All of the manifolds envisioned here will be finite-dimensional over R, ∞C (unless 
stated to the contrary), and have a denumerable basis of neighborhoods. 
 Let M be a manifold and let π: E → M be a fiber bundle over M.  One denotes the vector 
bundle of jets of order k of sections of E (0 ≤ k ≤ ∞ ) by πk: Jk → M. 
 Let Dk be the vector space of sections of E of class Ck.  If ω ∈ Dk then one lets jkω denote the 
section of JkE that is defined at each point x ∈ M by the jet of order k of ω at x. 
 One will denote the vector space of ∞C sections of E by D. 
 
 1.2.  PROPOSITION – DEFINITION. – The sets: 
 

VU = {ω ∈ Dk:  jkω(M) ⊂ U}, 
 
in which U ⊂ JkE is an open set, constitute the basis for a topology on Dk that is called the 
Whitney Ck-topology. 
 
 (If M is compact then this is the topology of “uniform convergence” on M of the sections of 
E and their partial derivatives up to order k.) 
 The Whitney ∞C –topology on D is defined as the projective limit of the Ck-topologies on the 
spaces Dk . 
 One recalls that Dk , when endowed with the Ck-topology (0 ≤ k ≤ ∞ ), is a locally convex 
topological vector space that is, moreover, a Baire space. 
 A subset of Dk will be called residual if it contains a denumerable intersection of dense open 
sets.  A property that defines a residual set will be called generic on Dk . 
 
 1.3.  PROPOSITION. – For any k′ ≥ k, kD ′  is Ck-dense in Dk. 

 
This is a consequence of lemma 6 of [19]. 
 
 1.4.  Let π: B → M be an arbitrary ∞C  locally trivial fiber bundle.  Let Γk be the set of Ck 
sections of this fiber bundle. One may define the Ck-topology on Γk in the same way as in 1.2 by 
using open sets of the fiber bundle JkB. 
 One may also define a “manifold” structure on Γk (0 ≤ k ≤ ∞ ) that is modeled on the space of 
sections of the vector bundle in the following manner: 
 

a) Let V → B be the vector bundle on B comprised of vectors that are tangent to the fibers of 
B.  One gives, once and for all, a ∞C  “second order” differential equation on B such that for any 
y ∈ B and any v ∈ V with origin y the solution of this equation that is defined by the initial 
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conditions (y, v) is traced out in the fiber π−1(π(y)).  One denotes the value of this solution at time 
t = 1 by exp(y, v) (for v sufficiently “small”). 

 
b) Let σ ∈ Γk (0 ≤ k ≤ ∞ ).  One then considers the vector bundle Es → M, which is the 

inverse image of V by σ.  It is clear that the exponential map defined in b) induces an injection of 
a convenient open Ck-neighborhood of the null section of Eσ into Γk. 
 One thus defines a chart on Γk that is modeled on Dk(Es).  One easily verifies that these charts 
form an atlas on Γk whose subordinate topology is the Ck-topology precisely. 
 This viewpoint will be useful in what follows (cf. 4.3 and 6.2). 
 
 

2.  Distributions.  Stratifications. 
 
 2.1.  Let N be a manifold.  One calls any function ∆ that associates a subspace ∆x of TxN − 
viz., the tangent space to N at x − to each point x ∈ N a distribution on N.  A distribution ∆ will 
be called coherent if for every point x and every v ∈ ∆x there exists an open neighborhood U at x 
and a ∞C vector field X on U such that X(x) = v and xxX ′∆∈′)(   for any x′ ∈ U. 

 
 PROPOSITION. – Let V be a ( ∞C ) regular submanifold of N, and let F be a closed set of N 
that is included in V.   The distribution ∆ that is defined by ∆x = TxV for x in F and ∆x = TxN 
elsewhere is coherent. 
 
 2.2.  One defines a stratification of a manifold N to be any partition S = (Si)i∈I of N such that: 
 

a) Each Si (or stratum) is a ( ∞C ) submanifold of N. 
b) For any integer p, the union of the strata of dimension less than or equal to p is a closed 

subset of N. 
 

 The codimension of a stratification of N is the minimum of the codimensions of the non-open 
strata. 
 If S is a stratification of N, then for x ∈ N one will let TxS notate the subspace of TxN that is 
tangent at x to the strata of S that contains x. 
 The distribution that is associated to a stratification S is defined by ∆x = TxS. 
 A stratification will be called denumerable if the set of strata is denumerable, and if each 
stratum is a regular submanifold of N. 
 A stratification is called coherent if the associated distribution is, as well. 
 
 Examples. 
 

1) A foliation of N defines a coherent stratification. 
 

2) The orbits of a Lie group that acts on N constitute a coherent stratification; the images of 
the left-invariant vector fields on the group globally realize the required prolongations. 
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 Remark. – One defines a stratification of class Ck on a manifold in an analogous fashion: the 
strata will be submanifolds of N of class Ck, and with the condition of coherence the vector fields 
will be of class Ck−1 (k ≥ 1). 
 
  2.3.  PROPOSITION. – Let S be a coherent stratification of a manifold N.  S is then locally 
trivial.  
 
 This signifies that for any point x ∈ N there exists a chart ϕ: U → Rn of N at x (n = dim N) 
such that: 
 

a) ϕ(U) = Bn−p × Bp, in which Bn−p, Bp denote open cubes of Rn−p and Rp, and p = dimension 
of the stratum that passes through x. 

b) Each plaque ϕ−1({ u} × Bp), u ∈ Bn−p is contained in a stratum of S. 
 

 The proof is by recurrence on p (n arbitrary ≥ p).  The proposition is trivial for p = 0.  
Suppose that it has been established for dimension (p – 1). 
 Now let v ∈ TxS, v ≠ 0.  Since S is coherent there exists a local vector field X that is tangent 
to the strata such that X(x) = v.  Let H be an element of the hypersurface in N that is transverse to 
X at x.  LetS′ be the stratification that is induced by S in H (indeed, H is transverse to the strata in 
a neighborhood of x). S′ is coherent.  If v′ ∈ TxS∩ TxH, then one considers a local field Y (in N) 
that is tangent to S and prolongsv′ , and at each point y ∈ H one projects Y(y) into TyH parallel to 
X(y).  One thus constructs a field in H that is tangent toS′ and prolongsv′ .  In H, the stratum that 
passes through x is of dimension p – 1.  From the recurrence hypothesis, let ϕ ′ :U ′ → Rn-1 be a 
chart of H at x that realizes conditions a) and b) forS′ .  It is clear that one may prolong to a chart 

ϕ:U → Rn−1 × R (perhaps by reducingU ′ ) such that ϕ*(X) =
t∂

∂
, where t denotes the nth 

coordinate.  One therefore easily verifies that ϕ has properties a) and b) for S, because the 
integral curves of the field X are traced in the strata of S. 
 
 Remarks. 
 

1) We have proved, in a precise way, that a coherent stratification at a point x is locally 
trivial at x. 

2) The preceding proof also works for a coherent stratification of class Ck, k ≥ 2 without 
modification; one will then obtain trivializations of class C1.  It is clear that a locally 
trivial stratification is coherent.  The preceding proposition therefore shows that 
coherence is equivalent to local triviality. 

 
 

3.  Transversality. 
 
 3.1.  Let M and N be manifolds, where N is endowed with a distribution ∆.  A differentiable 
map f: M → N is called transverse to ∆ at x ∈ M if: 
 

f ′ (TxM) + ∆f(x) = Tf(x)N, 
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wheref ′denotes the linear map that is tangent to f.  One may thus also speak of a 1-jet 

transverse to ∆.  The map f is transverse to ∆ on a subset K ⊂ M if it is transverse to ∆ at any 
point of K.  If K = M then one says that f is transverse to ∆. 
 
 Remark. – A submersion is transverse to any distribution. 
 
 3.2.  Suppose that N is endowed with a stratification S.  A map f: M → N, which is assumed 
to be at least C1, is called transverse to the stratification S if it is transverse to the distribution 
that is associated with S. 
 
 PROPOSITION. – Let f: M → N be a map of class Ck (k ≥ 1) that is transverse to a 
stratification S = (Si)i∈I of N.  Let f-1(S) = Σ = (Σi) i∈I be the partition of M that is defined by Σi = 
f−1(Si) for any i ∈ I.  Σ is a stratification of class Ck of M, and: 
 

codimM Si = codimN Si 
 
if Σi is non-vacuous.  Moreover, Σ is denumerable (coherent, resp.) if S is denumberable 
(coherent, resp.). 
 
 All of these assertions are obvious, except for the one that concerns the coherence of Σ.  For 
this, upon using proposition 2.3, one is immediately reduced to the case where f is a submersion, 
and the conclusion is immediate in this situation since S is locally trivial, from the rank theorem. 
 
 Remark. – If f is transverse to the stratification S, and if codimN Si > dim M, then Si is 
necessarily vacuous.  In particular, if codimN S > dim M then Σ reduces to the trivial stratification 
(viz., just one stratum that equals M). 
 
 3.3.  PROPOSITION. – Let ∆ be a coherent distribution on the manifold N.  The set of 1-jets 
of M into N that are transverse to ∆ is an open set of the manifold J1(M, N). 
 
 COROLLARY. – Let E → M be a vector bundle, and let ∆ be a coherent distribution on the 
manifold JkE.  For r > k, the set of sections ω of E such that ωk is transverse to ∆ is a Ck-open set 
on Dr. 
 
These propositions are very easy to prove. 
 
 

4.  Isotopy theorem. 
 
 4.1.  ISOTOPY LEMMA. – Let M be a compact manifold, and let N be a manifold that is 
endowed with a coherent stratification S.  Let: 
 

H: M × [0, 1] → N 
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be a Ck homotopy of M into N such that for any t ∈ [0, 1] the map Ht: M → N that is defined by 
Ht(x) = H(x, t) is transversal to S.  One sets St = )(1 SH t

− .  Therefore, if k ≥ 2, there exists a Ck−1 

isotopy , of M such that gt(Σ0) = Σt  for any t ∈ [0, 1]. 
 
 One recalls that a Ck-isotopy of M is a Ck-homotopy g: M × [0, 1] → M such that for any t ∈ 
[0, 1], gt is a (Ck) automorphism of M, and g0 = identity of M. 
 On the other hand, gt(Σ0) = Σt  signifies that for any x ∈ M, gt goes from the stratum of Σ0 
that passes through x to the stratum of Σt that passes through gt(x). 
 
 Proof. – Let Σ = H−1(S) be the (Ck) stratification of M ′ = M × [0, 1] that is defined by the 
inverse image of S by H. 
 
a) There exists a vector field Y of class Ck−1 onM ′  such that: 
 

1)  For any y ∈ M ′ , Y(y) is tangent to the strata of S at y, 

2)  The ”vertical” component (viz., the one  tangent to the factor [0, 1]) of Y is
t∂

∂
 at each 

point. 
 

 Indeed, there exists a tangent vector that has properties 1) and 2) at each point ofM ′  because 
the strata of Σ are transverse to the “horizontals” M × { t}.  This remark, combined with the 
coherence of Σ (cf., proposition 3.2), permits us to locally construct a field that has properties 1) 
and 2).  A partition of unity on then permits us to construct the stated field. 
 

b) The integration of the field Y (which at least C1 by hypothesis) obviously furnishes the 
desired isotopy (this is where the hypothesis of compactness intervenes). 

 
 4.2.  ISOTOPY THEOREM. – Let E → M be a vector bundle whose base M is compact, and 
let S be a coherent stratification of JkE.  Let r > k + 2.  For ω ∈ T(S) ⊂ D, viz., the set of sections 
ω such that jkω is transverse to S, one lets S(ω) notate the stratification of M that is the inverse 
image of S by jkω.  Then, for any ω ∈ T(S), there exists an open neighborhood V of ω in Dr such 
that: 
 

a) V ⊂ T(S). 
 

b) For any ω ′ ∈ V, there exists an isotopy ϕt of M such that ϕ1(Sω) = ω ′S . 

 
 Indeed, from 3.3, T(S) is open in Dr .  Therefore, let V be a convex open neighborhood of ω 
that is included in T(S).  Ifω ′ ∈ V then the homotopy H: M × [0, 1] → JkE that is defined by: 
 

H(x, t) = (1 – t)jkω(x) + tjk )(xω ′  
 
verifies the hypotheses of lemma 4.1, and the theorem is established. 
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 4.3.  Extension to the case of an arbitrary fiber bundle.  Let π: B → M be an arbitrary 
locally trivial fiber bundle.  Let S be a coherent stratification of the fiber bundle JkB.  Theorem 
4.2 remains valid in T(S) ⊂ Γr (r ≥ k + 2), viz., the set of sections σ of B such that jkσ is 
transverse to S.  Indeed, one is immediately reduced to the preceding theorem by using a chart of 
Γr (cf., 1.4). 
 

 
 5.  Sard’s theorem and the fundamental lemma of the theory. 

 
 5.1.  SARD’S THEOREM. – Let M and N be manifolds – not necessarily Ck – of dimensions 
m and n, respectively.  Let f: M → N be a differentiable map.  If the differentiability class of f is 
greater than or equal to Max(1, m – n + 1) then the set of regular values of f is residual in N (its 
complement has measure zero in N). 
 
 (Recall that y ∈ N is called a regular value of f if for any x ∈ f−1(y) the rank of f at x is equal 
to n.) 
 For a proof of this theorem, see R. Abraham, J. Robbin [1], pp. 37. 
 
 5.2.  FUNDAMENTAL LEMMA. – Let M, V, N be manifolds, and let H: M × V → N be a 
Ck-morphism.  If v ∈ V then one lets Hv: M → N notate the morphism defined by Hv(x) = H(x, v).  
Let S be a denumerable stratification of N.  If: 
 

a) k ≥ Max(1, m – codim S + 1) where m = dim M, 
 

b) H is transverse to S on U×V, where U is an open set of M, 
 
then the set of v ∈ V such that Hv is transverse to S on U is dense in V. 
 
 Indeed, let p: M × V → V be the canonical projection, and let Σi = H−1(Si)∩ (U×V).  One 
easily sees that for any v ∈ V, Hv is transverse to Si on U if and only if v is a regular value of the 
restriction of p to the manifold Si .  Hypothesis a) permits us to apply Sard’s theorem for each i, 
and the fundamental lemma is proved.  (This is where one resorts to the hypothesis of the 
denumberability of S.  In V, a denumerable intersection of residual sets, in the sense of 5.1, is 
dense.) 
 

6.  The transversality theorem. 
 
 6.1.  THEOREM. – Let E → M be a vector bundle, and let S be a denumerable stratification 
of JkE.  For r ≥ k + 1, the set T(S) of ω ∈ Dr such that jkω: M → JkE is transverse to S is a 
residual set of Dr . 
 
 Proof (summary). – Since M has a denumerable basis, it suffices to show that for any x ∈ M 
there exists a neighborhood U of x such that the set TU(S) of ω ∈ Dr that verify “jkω is transverse 
to S on U” is residual (since a denumerable intersection of residual sets is residual). 
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a) Density of TU(S).  Let V be the JkE at x.  By a standard procedure – viz., using a 
trivialization of the bundle E – one constructs a continuous map P: V → D, such that: 
1)  jkP(v) = v for any v ∈ V, i.e., that P is a prolongation. 
2)  P(0) = 0. 
3)  P(v) is ∞C  for any v. 
4)  The map H : M×V → JkE, which defined by: 
 

H (y, v) = jkP(v)(y), 
 
is a submersion on U×V, since U is a sufficiently small neighborhood of x in M. 
 Therefore, if ω ∈ rD ′ , in which: 
 

r ′ ≥ k + Max(1, m – codim S + 1)  (m = dim M), 
 

then the map H: M ×V → JkE that is defined by: 
 

H(y, v) = jkω(y) + jkP(v)(y) = jk(ω + P(v))(y) 
 

is, moreover, a submersion on U×V.  From the fundamental lemma 5.2, the set of v such that jk(ω 
+ P(v)) is transverse to S on U is dense in V.  Since P is continuous, one has proved the density 
of TU(S) rD ′∩ in rD ′ .  However, rD ′  is dense in Dr (Proposition 1.3), so TU(S) is dense in Dr . 

 
b) One subsequently proves that TU(S) is a denumerable intersection of open sets (which, 

from a), are dense), and is therefore a residual set, in the following fashion: The strata of S have a 
denumerable basis of neighborhoods (as regular submanifolds of J*E).  One thus covers each 
stratum with a denumerable family of closed sets of JkE.  For each of these closed sets, the set of 
ω such that jkω is transverse on U to the corresponding distribution that is defined in proposition 
2.1 is, from 2.1 and 3.3, an open set.  It is clear that TU(S) is equal to the intersection of these 
open sets. 
 

 Remark. – In certain cases, one may add an interesting specialization of this. 
 
 1)  If codim S > m = dim M then TU(S) is a dense open set in Dr for r ≥ k + 1. 
 

It suffices to justify “open.”  However, in this case, the phrase “jkω is transversal to S” signifies 
simply that for any x ∈ M, jkω(x) does not belong to any non-open stratum of JkE.  From 
property b) of the definition of a stratification, this defines an open set of JkE. 
 One immediately deduces from this that T(S) is an open dense set in Dr for r ≥ k. 
 

 2)  If S is a coherent stratification of JkE then T(S) is a dense open set in Dr for r ≥ k + 1. 
 
 From the corollary 3.3., this is immediate. 
 
 
 



 Appendix.  Transversality theorems for sections of fiber bundles.               66  

 6.2.  Extension to the case of an arbitrary fiber bundle.  If π: B → M is an arbitrary fiber 
bundle and S is a denumerable stratification of JkB then one has a theorem that is identical to the 
preceding in Γr, r ≥ k + 1: 
 If σ ∈ Γr then one proves the theorem on a neighborhood of σ by reducing to the case of the 
preceding theorem with the aid of the chart defined in 1.4. (This amounts to a linearization 
technique.) 
 
 Remark. – This theorem is essentially the most general one that one may obtain (in finite 
dimensions).  For the example, the classical transversality theorem, which relates to the maps of 
a manifold M into a manifold N that is endowed with a denumerable stratification S is a trivial 
consequence of it; one applies the preceding theorem to the sections of the trivial bundle M×N → 
M, when endowed with the stratificationS′ = M×S. 
 

 
7.  Case of differential forms. 

 
We always let M be a ∞C manifold with a denumerable basis.  The notations that relate to the 
cotangent bundle of M are those of II. 1.  In this case, in addition to theorem 6.1, one must first 
state a transversality theorem that relates to closed differential forms. 
 The set of closed p-forms of class Ck, which we notate by ( )p

k MD  (k ≥ 1), is endowed with 

the Ck-topology that is induced from )(MD p
k .  It is also a locally convex topological vector space 

and a Baire space. 
 
 THEOREM. – Let S be a denumerable stratification of MTk

p ∗Λ (the bundle of k-jets of 

closed p-forms).  The set T(S) of ω ∈ S such that jkω is transverse to S is a residual set, provided 
that r ≥ k + 1. 
 
 The proof is analogous to that of theorem 6.1.  It suffices to show that one may define a 
“family of perturbations” P for each point x ∈ M that permits us to deform any closed form into 
a transverse closed form in a neighborhood of x.  For this, let V be the fiber at x of 

MTk
p ∗

+
−Λ 1
1 (the bundle of jets of order k + 1 of not necessarily closed p-1-forms), and letP

~
: V → 

Dp−1(M) be a “prolongation” that has the properties of 6.1a).  Then the map P: V → Dp(M) that is 

defined by P(v) = )(
~

vPd (in which d denotes the exterior derivative) has the required properties 
to achieve the proof as in 6.1. 
 
 Remarks. 
 

1)  As in 6.1, one may confirm, moreover, that T(S) is open if the codimension of S is greater 
than the dimension of M, or if S is coherent. 

2)  The perturbations performed in the proof of the theorem involve only exact p-forms.  One 
therefore says that T(S) is residual in each cohomology class of( )p

k MD . 
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