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Introduction

Let M be a differentiable manifold and let be an exterior differential form ofl; numerous
examples justify the value of a general study of the(dMy «); such as:

1) A field of contact elements of codimensipron M, i.e., a sub-bundle of codimensiprof
the tangent bundle, is defined, at least locally, byramdl decomposablp-form.

2) A Pfaff form wwithout zeros such thab” dw= 0 defines a foliation of codimension 1 on
M.

3) At the other extreme, ¥l is of odd dimension@2+ 1 andw” dad # 0 at any point then the
Pfaff form cwdefines a classical structure called a “contact struéture

4) A 2-form w(closed 2-form, resp.) of maximum rank on a manifoldw@nedimension 2
(i.e., d # 0 at any point) defines an almost-symplectic (symplectip.) structure.

5) If M is a Riemannian manifold, then timeinimal submanifolds ofM are solutions of
differential systems that are defined by canorpefirms on the tangent bundlé/.

The preceding examples bring into play forms thatsafficientlyregular: constant rank in
1), class equal to 1 or 2 in 2), etc. By contrast, argérstudy of the pairM, « will be
essentially a theory of singularities of the diffarainforms; this is the theory that is sketched in
this work.

The notions of singularities of differentiable mapd aactor fields are now classical; | begin
the study of forms at an analogous viewpoint.

One so often hears the remark that the singulamtig3faff forms must correspond to the
singularities of vector fields (via a Riemannian metigc example) that | must first deduce this
little myth: anynon-null vector field has the expressi@fdx, in a convenient local coordinate
system; by contrast, it is practically impossildectassify the germs afon-null Pfaff forms up
to isomorphism; the rank of the exterior differahtlcwwill intervene in this classification, and,
more precisely, thelass(in the sense of E. Cartan) af therefore, the points where the class
changes will be the singular points af

In the theory of differentiable maps (R. Thom [1H] Levine [9]), the rank plays a central
role.

In this work, we will be concerned with singulaeg of three types of objects:

1) Exterior differential forms.
2) Closed exterior differential forms.

3) Pfaff equations, i.e., fields of tangent hyperptaoa a manifold (defined locally by an
equationw= 0, wherewis a Pfaff form with no zeroes).
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The role of the rank for differentiable maps will played by therank of an alternating
multilinear formin the case of closed forms, and tlassin the cases of forms that are not
closed and Pfaff equations.

Chapter I is dedicated tankin the exterior algebra of a vector space; there vany closely
studies the stratifications that are defined by setsmfig of a given rank in"E*. Due to the
very elementary nature of this chapter, | believe tjuge original; in any case, | have found
hardly a trace of the preoccupations that are foundihere classical works of Goursat and E.
Cartan. In the course of this study, | have become noedithat the search for invariants for
forms of “intermediate” degrees that are more defiaitihan the rank will be undoubtedly
interesting and amusing.

In Chapter I, with the aid of transversality theoss | then study the generic nature of sets
points where the rank or the class of a differenfim (or a Pfaff equation) on a given
differentiable manifold decreases. Here is an exaofderesult in that direction:

Let M be a differentiable manifold of dimensiongnd letwbe a Pfaff form oM; let {4(c)
be the set of points where the classodé n — d; generically,(4(¢) is a regular sub-manifold of

d(d+1)

M of codimensionz— in particular, the class is generally very largergwhere, and

minorized by a quantity that has the approximate vakué2n (cf. 1.4.3.3).

One may then study singularities of higher order, &sdrcase of differentiable maps; | have
realized this objective only in the case of closed Pafom dimension 4, and Pfaff equations in
dimension 3, where one obtains a classification tkatlready satisfied by the generic
singularities (1.3 and 11.6) in orders 1 and 2.

Chapter 1ll is essentially dedicated to the searchniodelsof a given singularity; this
amounts to classifying the germs of forms that presentsiigularity being considered, up to
isomorphism.

One knows the classical models in a certain numbeegidlar situations: volume form,
closed 2-form of maximal rank, Pfaff form of maximalsdgDarboux’s theorem). Starting with
these results, | may very easily show that in a Varge number of cases the simplest
singularities admit a model; for example, the simpEsgularities of a Pfaff form in even
dimension admit:

w= (L2 X7)dy, +x,dy, +---+ X, dy,,

for a model. The tools that are used here are theicinfunction theorem, the theorem of
existence and uniqueness of solutions to differential expgtand the divisibility properties of
differentiable functions. Meanwhile, given the simpyiof the situations envisioned, | have not
had to use the differentiable preparation theorem.

On the other hand, | have included several remarks irchiaigter (111.B) that relate to the
notions ofstability andinfinitesimal stabilityfor a germ of a differential form; in this context,
one may pose a problem that is analogous to the one éisateaently solved by J. Mather in the
case of differentiable maps, but a different ordedifiiculty; it essentially amounts to a linear
problem for the maps. By contrast, a differential afmr(of order 1) intervenes in the case of
forms.

We do not begin to discuss the global problems of theryhhere. Nonetheless, we mention
that one may make a homological study of the singdaof a differential form that is analogous
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to the case of differentiable maps (cf. [8]). On thHeeothand, one may cite several results that
relate to the global stability of forms or Pfaff equasidin particular, see [7] and [14]).

Finally | have judged it useful to give a very brief sumyraf the theory of transversality in
an Appendix; it was difficult for me to indicate treferences that led directly to the results that |
found necessary. Above all, I insist on the trarsaddy theorem that relates sections of a vector
bundle, which is technically easier; for the sectionarorbitrary fiber bundle, one comes back
to the preceding by a simple linearization procedure.

In conclusion, there are no new techniques in this warkg;anly applies the methods that
are now available to a situation that has not beenestug till now and is certainly very rich in
interest. On the other hand, | regret that | have n@ngany applications of the theory that is
sketched out here; it is possible that it provides a me&rspproach to the problem of the
existence of structures that defined on a given manifold ifferehtial forms without
singularities(for example, the existence of a contact structura oompact orientable manifold
of dimension 3; cf., S.S. Chern [4]).

A part of the results in this work has been announcediannibtes to the Comptes Rendus
([11], [12)).

It remains for me to point out that Professor ElaBiahas independently obtained certain
results that appear here (as well as others that gpama that he has made remarks to me that
allowed me to ameliorate certain points.

This article constitutes the essence of the work Ithatve presented as a doctoral thesis to
the Faculté des Sciences de Grenoble. | would likeadilyethank G. Reeb, who suggested this
study to me, C. Chabauty, who graciously presided ovgutizfeand O. Galvani and R. Thom,
for the interest that they have shown in my work @i participation in the jury.
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RANK IN EXTERIOR ALGEBRA

All of the vector spaces envisioned in this chapter &fimice dimension oveR.

1. Notations — Definitions — Summary.

1.1 LetE be a vector space of dimensigrfor anyp (1< p <n), one notates thﬂ?h exterior
product ofE by APE.
If h: E — Fis a linear map, then one notatesplexterior product oh by:

hP: APE - APF.

Let F be vector subspace Bfand leti: F - E be the canonical injectioif: APF - APE is
an injection, and in the sequel one will always idenitif and its image IM\"E by iP.
By means of this identification, the following relat®are verified ([2]):

/\p(Fl N Fz) = /\pFl N /\pF2 (1)
for any subspacds, andF, of E.

hP(APE) = A"[h(E)] (2)
whereh: E - F is a linear map.

1.2. DEFINITION ([2], pp. 72). -Let Ebe a vector space and leil] APE be a p-vector of
E. The support ofwis the smallest subspa& [ E such thatw O APS,; its dimension is the
rank of a the corank ofwis the codimension of, % E.

This definition is justified by relation (1).
PROPOSITION. et h E - F be an injective linear map and let] APE; one has

h(S) =S, @
This is an immediate consequence of relations (1) and [2)s result, when applied to an
automorphism oE, shows that rank is anvariant of the canonical action of the linear group,
GI(E), in APE.

The rank of a non-nuf-vector ofE is obviously betweep andn = dim E; the preceding
proposition, when applied to the injectiarS,, —» E, permits us to considaep as ap-vector of
maximum rank irg, .

1.3. LetE be a vector spac&* will denote the dual oE and/APE*, the space of-vectors of
E*, which is identified with the space of alternatipdorms onE.
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One will notate thénterior productof w APE* with x DE byx | w

DEFINITION. — ([3], [5], [6]). Supposew 00 APE*; one calls the subspade, 0 E that is
defined by
A,={x0OE: x_| w=0},
theassociated spacd w

PROPOSITION. -Supposevd APE*; the subspac@é,, [ E that is associated witand the
subspace Sl E*, which is the support afj are orthogonal.

The rank of g@-form onE is therefore likewise the codimension of its asdedigpace ift.
In this context, the support ofpeform wwill also be called thassociated systeto w

Remark— Supposew APE*; let i,; E -~ APYE* be the linear map defined by(x) = x_|
@ letj; APPE* . E* be the linear map defined hy(X) = (1)’ * X | « It is immediate that
Jwis the transpose of; the image of,, is thus the orthogonal to the kernei gfi.e., the support
of w In other words, itwis ap-form then the forms:

(A(X]_, ceny Xp_]_), (Xl, ceny Xp.]_ ] E)
generate the support afin E*.
1.4 Immediate properties of rank.

141 Letw=am " ... ™ ap be a non-null decomposalgdorm; it is immediate thak, is the
subspace of* that is generated by the independieiffitrms s, ... ,ap; the rank ofwis therefore
equal top.

Conversely, ifw APE* has rankp, like w0 S, where dimS,, = p, then one haw= Aa »
.. MAay, where (1, ... , ap) is a basis folS, and A is a convenient scalatp is therefore
decomposable.

1.4.2 Let w0 A"YE* w# 0, withn = dimE; let Q O A"E*, Q 2 0. The linear majy: E
— N"YE* that is defined byq(X) = x_| Q, is an injection; it is therefore an isomorphism since
the dimensions of the source and target are equal. Thesexists a vector# 0 such thatw=
x_| Q;thenx_ | w=0, i.e.,x 0 A,; therefore the rank abis strictly less tham; it is therefore

equal ton — 1, andwis decomposable.
1.4.3 One immediately deduces from 1.4.2 thptfarm may not be of rankp(+ 1).

1.4.4 Proposition. -tet wand &' be two p-forms on Ep = 2);if dim(S_ n S, ) <p -2,
thenS,,, =S, +S,;in particular, if S, n S; = {0} thenrank(« + ") = rank(«.) +rank(a").

Proof. — One considers the linear equation:
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X |(w+d) = x |w+ x| =0 (x O E).
Itis clear thak_| wO APYS,andx | «'OAPYS,; however:
ANPPS n APPS  ={0},
by hypothesis; one therefore hag w=0andx | «' =9, namely:
A.,=A nA,,

and, by passing to orthogonal complemef§is,; =S, +S, .

1.4.5. PROPOSITION. ket w APE* and o' O AE*, with:

S, nS, ={0}

thenS , =S, 0OS, andrank(a Ca') =rank(a) +rank(a').

The proof is likewise very easy; we shall not give

2. General study of the set& | .

In all of what follows, we will leE?, denote the set of elements/JE* that have rank (where
n=dimE).
We propose to study the figure that is formed\fite* by the set&?, in a very detailed

manner, and to compare these sets, which are amtarnder the action @I(E), with the orbits
of that group.
Before we begin this study for different valuegppive state a general result.

PROPOSITION. -Supposex!, # [0 ; then

a) 2! is aregular submanifold gf°E* of dimensio®? +r(n-r).

b) X! is an algebraic sub-variety #&"E*, and:

sPo=05P..

n,r ;
r'sr



Chapter | — Rank in exterior algebra. 9

Proof. — We first remark that once one has eliminated kimkicaser = O one necessarily has
> p.

Let Ginr be the Grassmannian ofplanes ofE*. Let F.” - G, _ be the fiber bundle

defined by the pairs{ @) wherev O G; ., anda O APv (the fiber ovew is therefore the vector
spaceN\PV).

Seth(v, a) = a O APE*; his a continuous algebraic map.

From proposition 1.2, it is clear thb(F ") = Er Zh.

The setd 27 . is an algebraic sub-variety OPE* (since it is the set ofu 0 APE* such that

the linear map,; E — APE* is of rank less than or equal th

On the other hand, the set of pairsq) O F.° such thata 0 APy is of maximum rank
(i.e., its support i%) is an open se®, which non-vacuous, by hypothesis, therefore deisse in
F.P; sinceh(Q) =XF,, partb) is proved.

nr?

It is almost obvious thdt defines a homeomorphism ©fonZ . It remains to show that

iS an immersion upon restriction @
Let (v, @) 0 Q; let (e, ..., &) be a base d&, such that in the dual ba¢is,---,e;) of E* the

forms(e’,---,e) constitute a basis far, one letsw notate the supplement tcthat is generated
by(e’,, -, €).
We can associate a trivializationrf:

Hom({v, W x A’v - FP,
with the basige/,---,e;) in a neighborhood of/( a); to the point:

@&, u,),

wherei =1, ...,r, j=r+1,...,n, 0=(0, ..., ), 1< g1 < ... <G, <1, we can associate the
pair(Vv',a") such that:

1) V'has(e’+a,,---,e +a, ¥or a basis, whera 0 w, such that:

a = > ale/.

j=r+l

2) a'=) u,(e*+a), where:

(e* +a)a = (egl +aal) .- D(egp +aap)'
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Formula 2) represents the expressiontfan the chart considered f&f°. An immediate
calculation shows that the expression for the deveah’ of h at the point \{, @) with the
coordinate§a) =0; 1, = A,} is:

h(';n,) =Z/70e5 +Z)Ig(zp:e51 0---Oe, D---Ebgpj
=>"n,e+ Z A& 0(e]¢)

snet g ]

j=r+1

Therefore,h'(¢/;n7,) =0 is equivalent taj, = 0 for alla, and:

for alli. However, by hypothesis, the associated spaceinde has €+, ..., &) for a basis; one
therefore hag = 0 for alli andj, andh'is injective. Q.E.D.

Remarks.

1) If nandp are given, and has its maximum value th&t, is a dense open setME*.

2) ltis clear tha): . is always a closed set &PE*.
3) The sek} of p—forms of rankp (i.e., decomposable ones) is always non-vacuousisa
an orbit ofGI(E) identically.

3. Trivial case.

We always set dirk = n.

3.1. AforminE* is of rank 0 or 1 depending on whether it is rardinot; the sets; ,= {0}
and =}, = E* — {0} are therefore the orbits @I(E) in E*.

3.2. A non-nulln-form is of rankn, and writtena: » ... ® a, for a convenient basis f&*;
2r,={0}and Z;, =A"E* - {0} are the orbits ofI(E).

3.3. Anon-null (O — 1)-form is of rankr{ — 1), and may be writtem ~ ... * ana (1, ... , Oh
are independent iB*); = = {0} and =, = A"'E* - {0} are the orbits oGI(E).
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4. Case of 2-forms.

4.1. Recall that:

PROPOSITION. — ([3], pp. 12, [5], pp. 31Any 2-form w0 A’E* is of even rank, and the
following conditions are equivalent

1) wis of rank2k.
2) Jz0andd*Y=0 (S =w" ... " ktimes).
3) There exist independent forms ..., ok, [, ..., &, O E* such that

a):zk:ai ag .

k
Remark.— From proposition 1.4.4, it is clear thatuf Zai OB then since the forms;
i=1
and/ are independent, they constitute a basis for the suppar

4.2.PROPOSITION= In A’E*, the setg, =32 _ are identical to orbits of GE); for anyc

n.n-c

(n—ceven, & n—c<n), Z.is a regular submanifold dk’E*, and:

codimz, = C(Cz_l) .

From 4.1 (condition 3) and 2., the proof is obvious. Hemarkable that the codimensions of
these manifolds depend only on the corank; this phenomeneaminiscent of the result
concerning sets of matrices of given rank (for which ¢bdimension is the product of the
coranks of the source and target).

Meanwhile, the situation is different according to plaeity of the dimension of E.

If nis even then the admissible valuescofre O, 2, 4, 6, ..., and the corresponding
codimensions are 0, 1, 6, 15, ...
If nis odd then the admissible values ofare 1, 3, 5, 7, ..., and the corresponding

codimensions are 0, 3, 10, 21, ...

Remark 1— For anyw A’E* one may indicate a local system of equations fomtaaifold
2. that passes throughy one proceeds in the following manner:

One identifies the exterior forms of degree 2 with dhé-symmetric linear maps & into
E*.
One then letsdy, ..., a,) be a basis foE* such that:

w=a"a+ ... +axa”" Qux,
where X =n — ¢ =rank(a).
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The matrixe. that corresponds t@is written:

"5 o)

wherel is the Xk x 2k anti-symmetrianatrix:

-1 0
1 0O
0 0 -1
1 0

We then letQ denote the open set #fE* that is comprised of forms= Z)l. a, o

i
I<i<js<n

such that Z)l”.a'i [ is of (maximum) rank R For anyA 0 Q, the corresponding anti-

I<i<js2k

symmetric matrid = (A, ;) is defined by foi <j; set:

- (A B
A= :
< o
in which A is an anti-symmetrick2x 2k matrix andC = — (transpose oB); as in ([9], Prop. 2, pp.
6), one shows thal 0 QnZ_(c = n —2K) if and only ifD — CA'B = 0; this shows that

Qn 2. is defined as the set of common zeroesggiz_—l)independent functions sind2 is an

anti-symmetriac x ¢ matrix.

Remark 2— From proposition ZZ_C = [0 %, is an algebraic sub-variety OFE*,

c'=c

If = _.,is non-vacuous then we just showed that for any > the tangent atw(]

c+2 c+2
contains a basis fok’E*; we will then have proved thahe set of singular points df_c is equal
toz (if c does not have its minimum value).
Let (a, ..., ai) be a basis foE*; for anyi, j (1<i<j<n), thecurvef - w+ta " a; (tU
[0, 1]) is traced inZ_C, and its velocity at the origin @bis a; * a;. Q.E.D.

Remark 3— One knows that the bilinear forms of corarik the spac&l’E* define a regular
submanifoldS; of codimensiore? ([9], pp. 5).
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On the other hand, = A’E* nS,.
If the manifold S intersects the subspad¥E* of O’E* in general position then the

codimension of; in O%E* will be equal to the codimension of # A’E*; one sees that there is
nothing else; the loss of codimension in the intersaat likewise increasing witt
5. Case of forms of degreen(— 2).
5.1. InA"2E*, rank may take only the values®~ 2,n (cf. 1.4.3). A priori, one does not

know if there always exish(- 2)-forms of maximal rank.

Howevers?,, the set of forms of rank — 2~ i.e., decomposable oness a submanifold
of dimension:

C'Z2+2(n-2)=2n-3;
whenn > 3 one has®2— 3 < dimA™?E*, and there necessarily exist4{ 2)-forms of rani.
5.2. Orbits of GI(E) in A"E*. The results of this section will not be used ingaquel.
5.2.1 LetQ OA"E* be a volume form o, and let:
ho: A"E* . NEX

be the isomorphism that associates ewery A™?E* with the unique bivectoX = ha(c) such
that w=X | Q;if Q and Q' are two volume forms them(«) and h,, (w) are proportional, and

one likewise has rankk2the integek will be called thdengthof the f — 2)-formaw One will
denote the set of forms of length k by S

5.2.2 With the preceding notations, let:
w=X | Q, inwhichX =hg(q).
If g is an automorphism d& then one has:
g-w=@"X_| @

However,g - Q = A(Q)Q, whereA(qg) is the determinant af. If wanda'are fi — 2)-forms
then upon settin& = ho(«) andX' =h, ('), it is clear that:

«' =g-w (gUOGIE))
is equivalent to:
g- X' =A(g)X.

This shows thaength is an invariant of the action of (G).
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523 Letw=X | Q be an f — 2)-form of lengthk; from proposition 4.1, one easily

deduces the existence of a basis (.., &,) of E such that if &, ..., an) denotes the dual basis
for E* then one has:
X=e e+ ... +ex-1"ex,
Q=xan"... ", whered =+ 1,
SO:

k
w=A- z ... Naio™N Gl N . N an.
i=1

This shows that the s& is composed of at most two orbits@HE).

a) 2k < n; upon possibly changing the signe@fand a,, one reducesgvto the “canonical
form™

k
w= z n... 2™ G ... Ny,
i=1

S is therefore an orbit dBI(E) in A"?E*, which is bijectively related t&, 0 A’E* by hg .

b) 2k=n; from5.2.1- w=g - wis equivalent to:

g-X=-A(g) - X.
However, in the present ca¥&is a non-nulh-vector ofE, and one necessarily has:
g-X‘=A(g) - X = (1) A(g)" - X"
namely:
(-1 =49
b)) If k is odd then this equality is impossible. Any-{ 2)-form of lengthk therefore

reduces to one of the two following “canonical expressiombkich characterize the open orbits
of GI(E) in A"2E*;

k
w = z n™... "2 G "N ay

By means ohq, these orbits divid&, 0 A’E into two half-cones.
by) If kis even then one necessarily Ag) = 1, and the automorphisgthat is defined by:
g(e) =ex if i isodd,

ge) =ex if i iseven
answers the question.
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S is therefore the open orbit 6i(E) in A" 2E*.
5.2.4 Remarks.

1) Itis clear that a fornawis decomposable if and only if it is of length 1; theref the open
set of forms of maximal rankis decomposed into the (disjoint) union:

=08,

k=2

2) The length of an f — 2)-form w may be also defined as timinimal number kof

k

decomposabléorms « that are necessary in order to wiite Za), ; this definition does
i=1

not use duality and obviously extends to forms of arbittagree.

6. Intermediate casg3<p<n-3).

6.1. PROPOSITION=- XF is non-vacuous faB< p< n—3ifand only if r=0,p, p+ 2,p
+3, ...,Nn

Proof.

a) If r <r <nand? is non-vacuous thexf;.,is non-vacuousndeed, letwd APE* be ap-

form of rankr; sincer is strictly less tham there exists a fornr 0 E* that does not belong to
S, from proposition 1.4.5, the form” ais a @ + 1)-form of rank ( + 1).

b) It therefore suffices to establish the propositimn p = 3 (the rest is deduced by
recurrence upon usira).

by) It is obvious thak? ,is non-vacuous.

b,) If3<r<n-2andifZ} is non-vacuous the¥j ., is non-vacuous; lets, a» O E¥,

such that the plane that is generatedrbgnd a, is in general position with respect3g; let a3
0 Sy be non-null; from proposition 1.4.4, the foeot a1 ™ a» ™ as is of rankr + 2.

bs) If 3<r<n-3andif], is non-vacuous theix}

n,r+.
analogous to the proof for 2 upon usimg a», as [0 E* to generate a 3-plane in general position
with respect t&,, .

s IS non-vacuous; the proof is

For the case = 3, the proposition is deduced immediately from thesearks by recurrence
onr.
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6.2. PROPOSITION. df X! is non-vacuous then the algebraic variET:y admits the
setd 2. as its set of singular points

The proof may be made in analogous manner to the apenark 1) of 4.2.

Remark~— | am ignoring the question of whether the stratifice> ? of the spacé\"E* that
is defined by the varieties], is “coherent (cf. Appendix, sec. 2.2).

6.3. PROPOSITION. +For n< 9and3 < p < n - 3,the dimension of @) is strictly less
than that ofAPE*; so the group GE) admits a continuous infinitude of orbitsNIE*.

For sufficiently largen, rank is therefore a very coarse invariant of the foomintermediate
degree.

k
6.4. Remarks— Let wbe ap-form onE; we call any decompositian= Za), of winto a
i=1
sum ofdecomposabléorms w, wherek is thelength of w (cf. 5.2.3, remark 2)), aninimal
expressiorfor «j if we are given such a minimal expression dothen we denote the support of
aw by Fi; for anyi =1, ...,k Fj is a subspace of dimensiprof E* and theF; are all distinct (the
dimensions of the pair-wise intersections are likewiseessarily less thgn— 2); one denotes
the collection of subspadg by F.

Kk Kk
Let w:Za), and w:Zw} be two minimal expressions foq let F andF' be the
i=1 j=1
corresponding collections of subspaces.

CONJECTURE. —-The collections F anBH' are equal in E i.e., there exists an
automorphism g of E such that for any i there exists a j Wft) g F; .

One may associate a numerical symbol to each cfasgual collections (for example, the
numberk of subspaces, the dimensions of the sums 1 to 1, 2.tq Rto k); the solution of the
preceding conjecture will therefore permit us to attaamumerical symbol to ang-form that
will be an invariant under the action Gf(E) (furthermore, theank will appear in the symbol; it
will be the dimension of the sum of all of the spa€gs

One must then study the “admissible” symbols for gadme may hope that the set of forms
that admit a given symbol is a subvarietydE* in which the orbits ofGI(E) have a constant
dimension.

7. The representation ofGI(E) in E* O A%E*.

In what follows, one sets = E* 0 A’E* andg(a, ) = (ga, gf) forg O GI(E) and @, /) O F.
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7.1. Let (a, ) U F; one calls the subspa&g, 5 of E* that is the sum of the supports of
and S the supportof (a, f); therank of (a, §) will be the dimension 0§,p. It is obvious that
the rank is an invariant under the actiorGdfE) onF.

(Remark At the beginning of this chapter we directly defined support and rank of an
arbitrary, but possibly non-homogenous, element of theriex algebra of a spaée)

For an element of the form (@) the support and rank are those of the 2-f@tthat was
studied in 4]et Q be the open set of that consists of the set (O, £) such thato # 0.

One sets:

k —
v.(@.5) :{,3 k for p_2k,
aldp® for p=2k+1

PROPOSITION. +or any pair(a, £ 0 Q, the following conditions are equivalent

a) rank(a, p) =r,

b) w(a, B # 0andy.1(a, B =0,

c) w(a, P #0forp<randp(a, p) =0forp>r,

d) There exist independent formasg ..., a; 0 E* such that
a=m, and LB=oa"@+ ... +ax1" ax If r= 2Kk,
a=m, and LB=m"az+ ... +tax" dx If r=2k+1.

The proof is very simple if one starts with propositié 1.

Remark— The rank of €, f) is X if and only if S is of rank X and if a O Sg the rank of
(a, P is Xk + 1if and only ifgis of rank X anda U Ss.

7.2. In what follows, we will lez. denote the set of (&) with rank({) = n —c, and let$
denote the set ot £) [0 Q of rankn —d (corank equal td), wheren = dimE.

PROPOSITION. The setg. and G are orbits of G[E) in F; they are regular submanifolds
of F, whose adherences are algebraic varietigglly:

codimZ. = n+ cc-1
codim§; = @

where n —cis even, wilhs n—c<nand0O<d<n-1.
One denotes the stratificationBfthat is so defined b$

Everything that relates to the seéis results from proposition 4.1. From conditidh of
proposition 7.1, the se& are precisely the orbits &fI(E) in Q.
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n—d=2k+ 1: From 7.1 b)S; is the set ofd, B) such thajf** = 0 anda ~ f# 0; S, is the

algebraic set that is defined by the equafiit = 0; S, is a dense open subset of the “cylinder”
E* x 2« in an obvious way; from this, one deduces its codimension.

n —d =2k: From 7.1. b)S; is the set of ¢, ) such thata » = 0 andf** # 0; S, is the

algebraic variety of the equations® 5= 0 and8** = 0. The projectionz F — A’E* takesS
to 4 and, forB0 Znu, 7B n S is the set ofd, B) 0 Q such thate O S, one easily deduces
thatS; is an open regular submanifoldfebf codimensiord(d + 1)/2.

7.3. If we have the ultimate goal of studyitite class of a Pfaff equatidnf. I11.5) then it is
useful to study the following notion:

DEFINITION. — Thereduced ranlof an elementd, /) 0 Q 0O E* O A’E* (i.e., such thair
# 0) is the odd integerk2+ 1 such thatr » f# 0 anda ~ £“* = 0 (it is also the rank of the 3-
forma ™ p).

One letsS, O Q denote the elements of reduced rankc(wheren = dimE), and one seeks
to describe the partition €1 that this defines.

Let H be the group of jets of order 1 of non-null numericaictions at the origin dE; the
groupH is composed of pairs= (A, h), whereA is a non-null real number ardd] E*. The
formula:

dfa) =fdw+df * w

in which wis a Pfaff formf is a function, and is exterior differentiation, suggests that we make
H act onF = E* O A’E* according to the rule:

(A.h)-@ B =Aa AB+h"a),

so that the reduced rank becomedramariant of the action of Hindeed, it suffices to remark
thatAda ™ A\B+h" a)=1"an §
Now let {, g O H x GI(E) and @, £ U F; one sets:

f9-@ph=f-9aph=AgaA1-g8+h"ga),
wheref = (4, h).
It is clear that one defines a law of operatiorGof= H x GI(E) in this way, which is a group
that is endowed with the natural structure of a semgetliproduct ir. The reduced rank, which

is invariant under the action bff andG = GI(E), is invariant under the action @f.

PROPOSITION. -The orbits ofG in F are, on the one hand, the submanifdd§l {0} x
A’E*, and, on the other hand, the s8ts] Q (n — c odg; S, is a regular submanifold of with

algebraic adherence and codimens%gz_—l) for any c such that n — c is odd ah& n — c<n.
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Proof. — One hasf( g)(0, B = (0,4 - gB) where {, g) O G andf = (4, h). It is then clear that
the orbits o5 in 0 x A’E* are the set&..

On the other han®. =S 0S_,. Setn —c =2k + 1; let @ A/ 0O & and show that
G(a,p) =S,. Letf=(1,h), whereh 0 E* is such thah * a™f#0. The element,(1)- (a, B
= (a, B+ h " a) has rank R+ 2. ThereforeG intersectsS. andS.-1. It therefore contains their
union since the action & prolongs that of3I(E). On the other hand3 (a, 5) O S., since the

reduced rank is an invariant, and one®és, 8) = S, , precisely.

The setS; is then a submanifold, since it is the orbit of a Lieugr; however, it is also the

union of two regular submanifolds. It is therefore a ragsubmanifold whose dimension is
equal to that 0&-1. The rest of the proposition is immediate.

Remarks.

1) The stratification that is defined F by the set§, [0 Q andS O {0} x N’E* is therefore
coherent(cf. Appendix, sec. 2.2).

2) The stratification that is defined i by the set&. andS O Q, has the following very
curious property: For ang, the setS S, is a regular submanifold of of

c(c-1
2

codimension

. For odd @ — 9, this results from the preceding proposition; for

even (1 — g, one simply deals with the produ&t*(- {0}) x ZE .

2



CHAPTER I
SINGULARITIES OF THE RANK AND CLASS OF A DIFFERENT! AL FORM

1. Generalities; notations and definitions.

1.1. LetR (R, resp.) k= 0, 1< p<n) denote the vector space of jets of orklef exterior
differential forms ¢losedexterior differential forms, resp.) of degneat the origin oR".

Denote the dual tR" by Ry,; one therefore hds® = 7" = AR, .

For anyk andk’ = k, denote theestriction homomorphisms by: F” - For oo R - FP,
resp.

For anyp andk > 1, exterior differentiation defines a homomorphidr,” - F.°;* whose
image is%";".

Now, for anyk > 0, letLy be the Lie group of invertibldk @ 1)-jets ofR" into R", with source
and target O (i.e., the jets of orddér« 1) of the germs of diffeomorphisms that preserve the
origin of R"). Fork' >k, one further denotes the restriction homomorphismxlhy. — L.

For anyk > 0, the rule for changing the variables of a differéritiem defines a natural law
of operation folLx onF,”andF".

These laws of operation commute with the restrictimmphisms.

DEFINITION. — One calls any submanifaldof F.”(£P”, resp) that is regular and invariant
underLy ap-form(closed p-formsingularity of order k.

1.2. Let M be ann-dimensional manifold of cla§s”with a denumerable neighborhood
basis.
One denotes by:

T™M andT*M the tangent and cotangent bundleMof
APT*M thep™ exterior power of* M,

AT, M the vector bundle d¢jets of sections ofAPT*M,
NPT, M the fiber bundle ok-jets ofclosedp-forms.

One remarks that"T*M =APT /M .

The fiber bundl&°T, M has fiber typ&,” and structure groupy. Similarly, A7, M has
fiber type£? and structure groulp.

For anyk and k' =k, one denotes theestriction morphism byo A°T.M - APT M, or
O NPTIM - APTM
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For anyk > 1, one notates the bundle morphism that is defined tariex differentiation byd:
AT M o APPT M.

One letd (M) denote the space dffferential p-forms (closed-forms, resp.) oM with k
times continuously differentiable coefficients, whick &ndowed with theC*topology
(Appendix, sec. 1.2).DP(M) (D°(M), resp.) denotes the spaceCdfp-forms (closedp-forms,

resp.), which is endowed with t6€ -topology.
Let wOD2(M), andk < k'. One letgkw denote the section 6fT, M that is defined by
JkafX) = k-jet of watx.

1.3. Let = O F,”be ap-form singularity of ordek. Since this submanifold is invariant under
the structure groupy, it defines a submanifold ok°T, M (fibered ovemM with fiber typeX) in a
natural way, which we notatgM).

Therefore letw D) (M), wherek < k' <. The sel(«) of pointsx 0 M such thajka(x)

0 Z(M) will be called thesingular set of typ& of « the points o2 («) will be calledsingular
points of type of w

One defines the singular points and singular set ofsedlmrm, for a given singularity, in a
similar manner.

In this chapter, | propose to define a certain numbesingfularities that are related to the
notions ofrank and class of a differential form, and then to study the generdture of the
corresponding singular sets with the aid of transveysaithniques.

More precisely, for any and a givenk, one seeks to define faite stratification (cf.

Appendix, sec. 2.20f FP(FP, resp) by its singularitiessuch that one obtains a “maximum of

information” about the behavior of a differential foroon a manifoldvl at each point whepw
Is transversdo this stratification.
There exists no actualystematic methothat permits us to construct an “optimal natural

stratification” ofF,”.

Here, | use theank as an invariant of order 0O, tlmdassas an invariant of order 1, and |
employ the same strategy for the construction of itigutarities of higher order as in the case of
differentiable maps (only for the closed 2-forms in elision 4 and Pfaff equations in dimension
3).

1.4. Remarks.

1) The sense given to the term “singularity” here isttéelbbroader than its usual intuitive
sense. Therefore, ibis a Pfaff form then a point wheteis of maximum class may be
considered to be a singular pointcodf a given type.

2) Let = OF’(FP, resp.) be a singularity of codimension Let M be a manifold of
dimensionn, and letwOD}2 (M) (Df(M), resp.), wherek'> k + 1. One then knows
(Appendix, sec. 6 and Tw is transverse ok(M) generically iD>(M) (D2(M),
resp.). The singular s&a), if it is nonvacuous, will then be regular submanifold\bf
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of codimensiorc. In what follows, this will always be summarized I texpression:
“H ) is generically a regular submanifold of codimengidn

Moreover, we note that, from a theorem of Math&B}[pp. 29), ifc < n then there always
exists gp-form wsuch thajcwis transverse ta(a) andZ(«) is non-empty.

2. Rank and its singularities.

2.1. It is clear thatF”= %P = APR,, whereR, = (R")*. On the other hand,, is the group
Gl(n, R), and the law of operation defined in 1.1 is the natasalthat was already considered in
Chap. I. The study made in this chapter shows that th2 Jefrecall that in\"R, this amounts

to the set of forms of rank are singularities of order 0, and give us the codimessid these
singularities.

If M is a manifold of dimension then for each integgy one considers the stratification of
27 (M) that is comprised of the submanifolds,(M). From the transversality theorems
(Appendix, Th. 6), the subsetBf (D", resp.) that is comprised of forms (closed formsp.Jes

that are transverse to this stratification is achesli set fol > 1. We now detail a few aspects of
this generic situation.

2.2. THEOREM. —Let Mbe a manifold of dimension=n7. For 3< p < n - 2,the set of p-
forms of D,” that are of maximum rank n at every point qfida dense Eopen set. This result

is also true forD,".

Indeed, from |, prop. 2, the codimension Df, is strictly greater than whenever <n,

provided than>7 and 3 p<n- 2. Thus, a form that is in general position witlpegs to the
manifolds X" (M) may not be of rank less thanat any point. On the other hand, from the

Appendix, sec. 6, these forms constituté'aopen set. For the second part of the theorem, one
applies theorem 7 of the Appendix.

2.3. Forp =1,n- 1, n, the situation is very simple since the rank may takg oo values
then. Generically, the zeroes ofaform constitute a compact submanifold of codimension 1 in
M; the zeroes of a Pfaff form (closed or not) orrilj-form are isolated.

2.4. Generic behavior of the rank of a 2-form.Taking 1.4.2 into account, we set:

Ma{c; cis evenand @ < nj for n even

r(n) = "
Ma{c; cis odd and % < nj for n odd.

Let = be the stratification oh’R, that is defined by the sefs (the set of 2-forms of corart.
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2.4.1 — One then has:

PROPOSITION. -Let M be a manifold of dimension n. The s¢k)Tof 2-formsw U
D2(M) (D?(M), resp.)that are transverse to the stratificati®fM) 0 A°T*M is a dense &
open set for k1.

Such a 2-form has the following properties

a) The rank ofwis greater than or equal to n ) at every pointan asymptotic
expression of this minorant is-A/2n .

b) For c < r(n), the set 2,(«) of points of Mwhere wis of rank n — c is a regular
submanifold of codimensiafc —1)/2, if it is non-vacuous.

This result is an immediate consequence of Theorener@afk 2) of the Appendix and
Theorem 7 for closed forms.

Examples— If n = dimM = 4, then the corank is necessarily even. Generjcal(y) is
vacuous, i.e.wwhas no zero, anih(«) is a (closed) hypersurface bt wis of maximum rank 4
on the open séy(@) =M - Zx(a).

If n=dimM = 6, thenZe(a) is generically vacuousafhas no zero)z4(a) is composed of
isolated points, anBlx(«) is a hypersurface such tRgt(w) = Z(a) [ Za(&).

For evem, 6 < n < 14, the description of the generic behavior of the rankains the same,
i.e., only2,(a) andZ4(a) (and obviouslyZ(«)) may be non-vacuous. They have codimensions
1 and 6, respectively, azd(«) is a locus of singular points g (w) .

If n =5 then the corank is necessarily odd. Generica(y) is vacuous (no zero) anrd(a)
is a (closed) submanifold of codimension@has the maximum rank of 4 on the open set:

21(@) =M - Z3(w;

the description fon = 7, 9, works the same way.

2.4.2 — PROPOSITION. For k = 2, the singular sets of the rank of a 2-formTi(X)
ODZ (M) (T(X) O DZ(M), resp.)are isotopically stable.

Proof. — First, this proposition signifies thatd ] D (M) is transverse t&(M) then there

exists a neighborhood of w (for the C*-topology) such that if & (?) then the stratifications
>(a) andZ(a') of M that are formed of the singular s&igc) andZ.(«') are isotopic. This
result is an immediate consequence of theorem 4 2eofAppendix since the stratificatiai{M)

is coherent, like the stratificatich of A’R, (recall that the strata. 0 A’R, are the orbits of the
grouplLo = Gl(n, R)).
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3. "Generic” singularities of a closed 2-form in dimensiont.

3.1. Description of the generic situation.Let M be manifold (compact, for the sake of
specificity) of dimension 4. The situation that is didmd in the following paragraphs for a
closed 2-formwonM is generic inD7(M), the space of closed 2-forms that are at least three
times continuously differentiable (recall that this siigsi that the set of closed 2-forms that have
the properties specified above is residudPfiiM ) ); indeed, the same will be true for dei@e
open set).

3.1.1 The setZ(a) of points wherew has corank2 (hence, rank 2)s a (compact)
submanifold of codimensidn(if it is non-vacuous)wis not zero at any point . (cf. 1l. 2.4.1,
example 1)).

Remark—2,(a) is oriented in a canonical wayndeed, le [ Z,(«), and letQ be a volume
form on a neighborhood ofin M. One hasy =f - Q. By the definition o&,(a), f(xX) = 0. In
the generic situatioh’(x)is a non-null linear form. Its kernel iBZ,(«), which inherits an

orientation from the paiQ(x), f'(x)). If one changes the sign @fthenf andf'change sign,
and the induced orientation does not change.

3.1.2 Leta'be the restriction ofvto 2,(a), and letz, () bethe set of points wheté is
null. Z,2(a) is a(compact submanifold of codimensidin M (or codimension 2 ix,(c)). It
is therefore a finite union of closed simple cuna&sM. On the other hand, one sets

Z20() = Zo(W) — Z22(W.

3.1.3 At each pointx [ Zx(@), aX) is, by the definition ok,(«), a 2-form of corank 2 on
T«M. The associated spabg(X) is therefore a plane. It is clear tRab(a) is the set of points
0 22(a), such thalh (xX) O TeZo(a). If x O Z,0(@), then the associated planedxs transverse to
Tx22(a); the intersection is a line. One thus defindeld of directiondD on 2,0(«) that is also
the field that is associated to the induced fatm This field is canonically orientedt suffices
to choose a volume for@ onZ,(«) that is positive with respect to the orientatidrcanonical
orientation of2>(«) and consider the vector fieM that is defined at each point by the linear
equation,«.'= X | Q. The field X is defined up to a positive factor, and it is a@wsly
supported by.

Let X5,1(c) be the set of points 0 Z,,(¢) such that the lindyZ,,(a) is included in the
planeAX). Z221(a) is a set of isolated points.

One set2220() = 222() — 2221(a). At any pointx U Z220(a), Tx222 and the pland.(x),
are transverse (4.

Consider a point [ 2,,(a). Since the section:

@' T - NT*H()
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is null at this point, itJacobianatx is a linear mafxa': Tx22 —» A’TZ,. By using a positive
volume form onT*Z, and the corresponding duality isomorphism AfT S, with T2,

Txa' defines an endomorphism:

This endomorphism is defined up topasitive homothety (according to the choice of volume
element).

One may also defind(X) in the following fashion: le© be a positive volume form and let
X be the vector field that was constructed in the prageparagraph; the poimtis a zero oK.
The Jacobian oX atx is then the matriX\(x) that corresponds to the volurf¥x) on 7;2,(c).
One may therefore say thatfx) is the Jacobian of the direction fieldlat x (x [J Z;2).

By construction/\(X) hasa rank that is less than or equal 20 Indeed, since'is annulled
at the points ok,2(a), the line tangent to it is certainly contained inkkenel of/A (X).

On the other hand).x) always has a zero tracéndeed, sinca'is closed, the auxiliary
vector fieldX that was constructed above verif#X)Q = 0. It is thereforeinimodular.

The generic situation that was described in 3.1.3 malydrestated more precisely:

a) NJX) has rank2 at every point XJ 2,2(«). The kernel of\(X) is the tangent t& ()
at x the image of\ (X) is AX).

b) 32.0(q) is the set of points x such thai(x) is not nilpotent. This matrix has one null
proper value, and the other two are non-null and oppositey are thus pure imaginary

or real. The first case defines the subSgt (w) of “elliptical points; and the second
sets’, ,,(w) defines the Hyperbolic points.

c) The points ofz,,:(c) separate the elliptic and hyperbolic arc€One may call them
“parabolic”’ At such a point, the proper values Af(x) are all null, and the image of
AX), which is always4.(X), contains the tangent & »().

3.2. To convince the reader, we give an example of eacheafyfies of singular points that
were described above.

3.2.1 At every point ofzo(a) (i.e.: whas maximum rank 4) there exist (from Darboux’s
theorem; see the following chapter) local coordinétey, z, X such that:

w=dx"dy+dz"dt.
3.2.2 At every point o&,0(a) there exist local coordinates, §, z, ), in which:
w=x dx~dy +dz”dt.

This fact will be proved in Ill.A, 4.2.2.
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3.2.3
a) Now here is an example of a form &% that presents a point of typg,,(w) (pure

elliptic) at the origin:

3
w=dx"dy+zdz dt + d(xz+ty—%j (dt.

In this caseXs(c) is defined byx = 0 (one hagd = x dx” dy ~ dz dt); a positive volume
element ork,(a) isdy ~ dz™ dt. On the other hand:

a'=zdyrdz+tdy”rdt—Zdz”dt.
The associated vector field is defined by:

X :—zzi—ti+zg.
dy 0z ot

222(a) is therefore thg-axis. The integral curves of the fietdare “helices of the axi®y.”

Remark— At anelliptic point x of 2, 2(¢) the tangent to is canonically oriented. Indeed, at
such a point/\(X) defines a “quadrant” in the image plane that is trassveo2,2(¢«). This
plane is therefore oriented, and since the tangent djpaZe is also, one thus deduces an
orientation for the lind,2,2( ).

b) One obtains an example ohgperbolicpoint (typ@:gyzo(a))) by changing a sign in the
preceding example:

3
w=dx"dy+zdz dt+ d(xz—ty—%j Odt.

Remark— | have ignored the issue of whether the germ désed 2-form that presents an
elliptic or hyperbolic singular point issomorphic (in the sense of LA, 1.1.2) to the
corresponding example above. Meanwhile, see I11.B,¢h this subject.

3.2.4 The remark made in 3.2.2 a) shows that there aeasttwo types of parabolic points
according to whether the elliptic arc “begins or endsrdli Here are two examples that
correspond to these two behaviors:

2

3
w=dx"dy+zdz dt + d(xz+2txiy7—%—tzzj (dt.

In the two cases<,,2(a) is defined by = 0. One has:

a'=zdyrdzxydyrdt—2z(z+ 2) dz" dt.
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The corresponding vector fieKlis:

0 0 0
X=-2(z+2t) —Fy—+z2—.
( )6y+yaz ot

The manifoldZ,,(a) is defined by =y =z =0. The proper value equation for the Jacoban
of X at the point (0, Q) of (?) isA(A? £ 21t) = 0. One verifies that the elliptic arc “startt’the
origin (t > 0) in the case{(y?*/2) and ends there € 0) in the caseHy*/2).

| also ignore whether any germ of a 2-form thaspnts a parabolic point is isomorphic to
one of the two examples above.

3.3. Justification of the genericity of the situation descried in 3.1.

One works in the spacé;’ of jets of order 1 of closed 2-forms at the origihR*. 1 will
construct a sequence of singularities5ih such that the transversal positionjab with respect

to these singularities (wheeis a closed 2-form) will imply the behavior thaasvspecified in
3.1.

We write any jet in the fornw= w + @, wherea is a 2-form with constant coefficients,
and i is aclosed2-form with linear homogenous coefficients.

3.3.1 One first considers the stratificatioh* =,0%',0%, of £*, whereZ; denotes the

set of wsuch thatw is of corank § %o, %), 54 are regular submanifolds &F of codimension 0,
1, 6 (from Proposition |, 4.2).

3.3.2 One now stratifies the submanifold,. It is a (vector) bundle over the setaf of
rank 2. One works in a fiber, upon remarking thatdoy w %', there exists a basis & in
which ay = dx” dy.

Then letaa =h dzMdt + ..., whereh, ... are linear forms.

L}

It is clear that &is transverse t&, U Z," is equivalent to h is a non-null linear form.”
One then decomposes, intoX, 0%, whereX’, is the set ofw such thath = 0. X, is a
regular submanifold afodimensiortin %, ; thereforejt hascodimensiorb in %?.

3.3.3 Letw=w+ w =dx*dy+hdz dt+ ... 0%, LetH notate the kernel hyperplane of
h.

One definesy’,, I 3, to be the set ofusuch that the restriction of the fomm ~ dy to the

hyperplaneH is null. This is equivalent %r—] :% =0. These conditions define a submanifold
2

of codimension 2 i, ; therefore it hasodimensior8in 7. One set&,0=5,~- %,,.
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3.3.4 Suppose we have an elemeni] 3',,. One easily sees that it is possible to choose a

basis forR* such thatw = dx” dy, and:
@ =xdz~hdt+ ...

One now works in the set of element9f whose expression is as above, and with a fixed

basis.
More precisely, one sets:
@ =xdzNdt+kdyrdz+Idy~dt+ ...

wherek, |, ... are linear forms.
Letacw, be the restriction ofay to H, which is the hyperplanex = 0 here. One

hasz, = kdy Odz+ Idy 0dt, wherek andl denote the restrictions &fandl to x = 0. To them,
one associates the endomorphismaf H that is defined by the matrix:

0 0 0
_o o _d
oy 0z ot
k ok ok
oy 0z ot

(of course, this is what corresponds to thgx) we previously envisioned)The only relation

between these coefficients, which expressesdhad closed, |s—%+% =0 (i.e.,A has null

trace).
One setg,, = ¥, —-%%,, whereZ’, ,denotes the set @bsuch that\ is of ranks 1. 37, is

an algebraic variety of codimension Zly,, and therefore of codimension 5.
Finally, 2,21 0 3, > will be defined by the equation:

AP (A

0z ot ot 0z ot ot 0z

Since this hasank 1, the three coefﬂmengsr g— % may not all be null irEz, (A will have

rank 1). 2, , 1is therefore a regular submann‘oldﬁ? of codimension 4. The submanifold:

2220=222" 2221
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is then the set ofw such thatA has two (opposite) non-null proper values. The
9l ok
ot oz

(k) .
subsek®,. (=" ,,, resp.) corresponds to the case where the determ al}-ft + IS
2,2,0 2,2,0 at

positive (negative, resp.).
3.3.5 One thus stratifies the space of jets of orderdasied 2-forms into:

ﬁ.z = ZO D ZZ,OD Z 2,2,0D Z 2,2,1D 2"4] 2"2,p Z

(the strata are classified in order of increasing codsoas 0, 1, 3, 4, 5, 5, 6). By construction,
this stratification is invariant under the groupof 2-jets of automorphisms.

From theorem 7 of the Appendix, the setafl D?(M) such thagj,wis transverse to the
stratification induced iM\*7Z,”(M) by the preceding igesidual it is easy to verify that such a
form has the properties that are indicated in 3.1.

4. Class and its singularities.

4.1. Consider the vector spakEg¢ of jets of order 1 of differentigd-forms at the origin oR"
(A<p<n);let
d: FP - FP? =AR,

be the linear map that is defined by exterior multipiccaand let:

o FP o FP=AR,,
the linear map of restriction.

DEFINITION. —Let g O F,”. The support otu in R, is the subspace that is the sum of the
supportg(cf. I, 1.2) of (1) andd(cai). The class oty is the dimension of its support.

The associated spate «j is the intersection of the associated spacgxd9) andd(w). It
is orthogonal to the support ef. The class otu is therefore the codimension of the associated
space as well.

Class obviously invariant under the action of the group

If M is a manifold andw 0 F,” is ap-form onM then theclass ofwat x O M will be the
class ofj;afx). The associated spacgia(Xx) is also called theharacteristic space abat x.

Remark— The class of a closed form is equal to its rank.

4.2. PROPOSITION. — ([12])Let M be a manifold of dimension,>n7. For2<p<n -2,
the set of p-forms iD,” that have maximal class n at every point is residual.
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Proof.

a) For 3<p<n- 2, this is an immediate consequence of Theoretha|,since a form of
maximal rank is necessarily of maximal class.

b) For p = 2, consider the morphismk A°T/M - A®T*M that is defined by exterior
differentiation. LetS be the stratification o¥°T,”M that is the reciprocal image undr

of the stratificatior=3(M) (cf. Il, 2.1). The codimension & is equal to that o¥3(M),
sinced is a submersion. Therefore, foe 7, codimS > n.

From Remark 1 of sec. 6 of the Appendix, the setwofl D”(M) such thatj;a(X) is
transverse t& (i.e., intersects no non-open strata) is a dense sgienThis set is also that set of

w such thatdw has maximunrank at every point. Its class is, a fortiori, maxXinand the
proposition is proved.

4.3. Case of Pfaff forms.This section uses the notations and results of I.7.

4.3.1 Consider the projectiom F'! » Ry [ AR, = F, defined byra) = (a, B = (o),
d(a)). Theclassof @ is the rank of ), in the sense of I, 7.1.

Let { notate the stratification ofF,' that is the reciprocal image of By 7 One sets
S =m'(Z)andl, = (S,). Z. is therefore the set of 1-jeta of Pfaff forms such that
A ) =0 (i.e.,a is a zero of order 0), arfcy) is a 2-form of corank. {4 is the set of jetgn
that are not zero of order 0, and have co-alas$he submanifolds, constitute a stratification

of the vector subspace that is the kerngd ofF;'. The manifolds; stratify the open s€' that
is complementary to the kernel af

4.3.2 Let us compare the stratificatigiwith the set of orbits df; inF;'.

Since class is an invariant, the orbitd. pfire contained in the strata®f

On the other hand, the spage is identified in a natural fashion witR, O (0°R,). By
means of this identification, the mags defined by:

a,B) = (a, B,

where 8 denotes thanti-symmetrizatiomf 8. The group.; is identified by the set of paira,(
b), wherea 0 Gl(n, R) andb O Hon?(R",R") (the space of symmetric bilinear mapsJfx R"
into R"). As a brief calculation shows, the actiorLebn Fis then expressed by:

(a,b-@pB)=(@0a ala+p00%).
From this, one deduces:
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1) In the kernel of, i.e., the set ofd, ) such thatx = 0, the action of; is identified with
that ofGI(n, R). There is therefore an infinitude of orbits.

2) Let (a,5) 0 Q' (ie., a # 0). There then exists a OHon?(R",R")such that the
bilinear forma O B is equal tothe opposite of the symmetric pat3. From this, it

results that (1p) - (@, B8) = (a, . This remark suffices to prove thhi(a, 8) =
THGI(n, R) - (@, A]. One has therefore proved the:

PROPOSITION. 4n the open sef)’, which is the set of jetgy such thato(w) # O (i.e.,
they are no null of ordeD), the orbits of k. are the submanifoldg;.

Remarks.

1) The fact that(p is an orbit ol; in the preceding proposition may be considered to be the
version that Darboux’s theorem takes for order 1 ofl(cA, 4.1.3 and 4.1.4).

2) LetM be a manifold of dimensiom One has an exact sequence:

0 - O°T*M - T'M (OIF -~ T*M - 0,
but there is neanonicaldecomposition of the bundig™ into a Whitney sun*M [J (O%T*M).

4.3.3 From |, 7.2, the subséisand s ofFll, which define the stratificatiord are

singularities of order 1 of the Pfaff forms.

Let M be manifold of dimension. For any Pfaff formrcwonM, one letsZ(«) denote the set
of zeroes ofw and let{y(«) denote the set of singular points @fof type {4 (i.e., the set of
points wherewis different from 0 and has co-clags

Remark— A singular point of typ&y of a Pfaff formwis a pointx where:
a) w ddf %0 andddS™ = 0ifd = n—(2k + 1), i.e., if the class is odd.
b) w# 0,ddf™ # 0, andw” dof = 0 ifd = n —2k; i.e., the class is even.

The stratification{(M) oleD that issues frong is of codimension 1 and coherent. From the
Appendix (Th. 6 and |, 7.2), one has the

THEOREM. — ([11]) InD; (M), for k= 2 the set ) of formswsuch that jwis transverse
to (M) is a dense open set. Any fonl T({) has the following properties:

a) Itis transverse to the zero section 6{Nl). Z(«) is a closed set of isolated pointdwis
of maximal rank at each point of{ @,
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b) For any d(0 <d < n - 1),if the singular sets(«) is non-vacuous then it is a regular
submanifold of M of codimensioI d2+1) :

c) The class otwis everywhere greater than or equal to n(R) ,fwhere tn) = Max{p: p(p
+ 1)/2< n}. An asymptotic expression for n(R)fis n —Jon.

Remarks.

1) For w O T({, (U {g-1(aw) is always a regular submanifold oM of
d(d+1)

codimensionT+ if it is non-vacuous. Indeed, from I, 7.3(w O {-1(a) is a

submanifold oT,"M andj; wis tranverse to it, since it is transversedad and ().

2) LetxUZ(a) be a zero otw T({). x will be adherent td4(¢) if and only ifd = 0 (since
{o is obviously a dense open seMhord = 1, when the ambient dimensians odd

Examples.

1) DimM = 3: {i(«) is the set of points whew” dw= 0, withw# 0. Generically, this is a
hypersurface.{(a) is the set of points whertkw= 0 andw# 0. Its codimension is 3, soO
it amounts to a closed set of @ isolated point, in  general
Finally,{ (@) = {(w) 0 ,(w) 0 Z(w). {,(w)0¢,(w) is again a hypersurface M,
which will be closedif and only if whas no zero.

2) Dim M =5: Class is generically greater than or equd.t For a formw 0 T({) with no
zero (if it exists),{;(w) 0 ¢, (w )will be a closed hypersurface bf, sincea(d) is a
closed submanifold of codimension 3\h

3) Dim M = 8: Generically, class is everywhere greaten tihraequal to 5, i.e., faw T(J),
one hasw” dof # 0 at any point oM — Z(«). &(a) is a hypersurfaced(q) is a
submanifold of codimension 3, agé «) is a submanifold of codimension 6. Moreover,
one has:

{1(w) =¢(w) 0, (w) 0 5(w), (W) ={,(w) 0 (W),

so {3(w) is closed. Z§) is disjoint from{i(«). ¢, (w)0{,(w) and {,(w) O {,(w) are
submanifolds of codimensions 1 and 3, respectively.

4.3.4 PROPOSITION. -There is isotopic stability of the singular sets of the clasgdh(T
Dy (M) for k= 3.

This signifies that anyv [ T({) admits a neighborhood such that for any.’ O U, the
stratifications oM that are defined the singular sets of the claseahd «.’, respectively, are
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exchanged by an isotopy bf. This proposition is an immediate corollary of thepandix, Th.
4.2, since the stratificatiof{M) is coherent.

4.4. Case ofr{ — 1)-forms. The situation is very simple here. dfis an ( — 1)-form on a
manifold M of dimensionn then we letZ(«) denote the set of its zeroes, &jd), the set of
zeroes fodw Therefore, inD; (M), for k> 2, the following properties are generic and define a

dense open set:

a) wis transverse to the zero section/df'T*M, andZ(«) is therefore a closed set of
isolated points.

b) dwis transverse to the zero sectiom\dT™*M, andS(«) is therefore a hypersurfacehh
c) Y is closed and disjoint fro@( ).

In this caseY o) is the set of points where the classuwi$ equal torf— 1).
The situation for closedh(- 1)-forms is also quite simple: Generically, a abge— 1)-form
is transverse to the zero section of the bundier*M, and thus admits isolated zeroes.

5. The class of a Pfaff equation and its singularities.

5.1. Let M be a manifold. One leB - M denote the projective bundle that is associated
with the vector bundl@*M - M (i.e., the set of lines ifi* M), and letT,’denote the open subset

of T* that is comprised of non-null forms, and ¢gtT,” — P be the canonical projection.

One calls any section of the projective bundle dWea Pfaff equation In what follows, we
consider only sections that are at least once contihudifferentiable.

A Pfaff equation may also be interpreted as a sub-bwfdr*M in the form of a line bundle,
or again, by passing to the orthogonal complement, sishébundle of codimension 1 in the
tangent bundle t¥ (a field of tangent hyperplanes bt).

One denotes the space lofimes continuously differentiable sections of the dlarP by
M(M) (L<k< o) (cf. Appendix, sec. 1.2).

Let obe a section d? andU, an open set d¥l. A Pfaff form wthat is defined and non-null
at every point ol is called acovering ofocon Uif c=q 0 wonU. A Pfaff equation admits
coverings locally, but not necessarily a global cawgri

5.2. If wanda'are two coverings of a Pfaff equatiorover an open subskt then one has
' =T - a in whichf is an everywhere non-null function &h From this, one deduces:

o Odw' = P BoOdw®
for any integep.
This justifies the:
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DEFINITION. — A Pfaff equatioro is said to havelass2p + 1 at a pointx [ M if any
coveringwof gin a neighborhood of is such thatw ~ dw# 0 andw” ddf** = 0 atx.

Therefore, the class of a Pfaff equation at a p@nan odd number. It may also be
interpreted as theeduced rank(cf. I, 7.3) of the pair ¢4 da) in which wis an arbitrary local
covering ofa:. It is an invariant of order 1 of the equation at gamiht, i.e., it may be defined on
the bundlel'P of jets of order 1 of the sections®f

5.3. In this section, one uses the notations and resulis7aind 11, 4.3.

Denote the projection deduced fropT, - P, by §=j:q: J'T - J'P.

The fiber type oleTOD is the open s&@' of F!, which is the set of jeta) such thaip(w) #
0 (see ll, 4.3).

One denotes the fiber type 8P by P, and one further notates the projection deduama fr
g by q: Q' - Py (P1 is the manifold of 1-jets of Pfaff equations a tirigin ofR).

The Lie groupL; of 2-jets of automorphisms at the origin Rf acts canonically orP;
(change of variables in a Pfaff equation), andatt@ons of; onP; and are comparable witl.

Let o1 O P1. Letaw O Q' such thatq(w) = ai. Thereduced rankof 7£aw) O Q O R,
O AR, (wherett F! - R, O AR, is the surjection that was defined in 1I, 4.3 )ndependent

of the choice oty it is theclassof oi.
One denotes the set gf [1 P; that are of co-class di.e., of class1 —d-byCy (0<d<n-—
1).

PROPOSITION. -The orbits of the group; in P, are the set€y (0<d<n-dodd. For

each d, Gis a regular submanifold ofFof codimensiogy. One has, moreover:

One letsC denote the stratification d?;, comprised of the submanifold®. It is a coherent
stratification (since it is defined by the orbitisaoLie group).

Proof.
a) Let H be the Lie group of jets of order 1 mdn-null numerical functions at the origin of

R". The multiplication of a form by a function dedima law of operation ¢f onQ'. With the
notations of Il, 4.3.2, this law is given by thderu

f-a=Ua,hOa+A8) where ¢,8)0 Q 0OR,0 O?R,
and f=(\, h)O(R-{0}) xR, =H.

It is clear thaP; is the quotient aR’ by the action oH.

b) If one sets, fof O H, gLy, ca OQ" then:
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9 -w=f @ w),

and one then remarks that this rule defines a law oftiparon the semi-direct produ@ = H
x L; (L, operates ifd in an obvious fashion) @'. This law of operation is such that the orbits
of Ly in P, are the projections (tiy) of orbits ofG, inQ'.

c) The action ofG, in Q' and the action oG in Q (cf. I, 7.3.) are compatible with the
surjectionrz Q" — Q. It then results from Propositions |, 7.3 and4lB.2, that the orbits
of G, in Q' are the setg'(S,). They are therefore regular submanifoldsf with
the same codimensions as the manif§jds One also has:

7S = 0 (s)).

From b), the orbits af; in P; are therefore the sets.CFinally, since the manifold™(S))
is invariant undeH, it results from a) that the s€ is a regular submanifold & of the same
codimension ag™*(S;), namely,d(d — 1)/2. On the other hand, the projectiqnQ’ - P;
obviously preserves the properties that relatelh@i@ences.

Remarks.

1) P is obviously an algebraic variety. One may eagdify that the set€, are algebraic
submanifolds oP;, and that the set of singular points@f is C,., .

2) If the ambient dimension is even then the class must be odd. The adnesgidlies of
dare then 1, 3, 5, ..., and the corresponding codsimen of the strat&y are 0, 3, 10,
..., resp. The stratificatio@ then has codimension 3 in this case.

If the ambient dimensiom is odd therd must be even. The codimensions of the sttata@re
then O, 1, 6, 15, ..., and the codimensioiCa$ 1.

5.4. Generic behavior of the class of a Pfaff equation.

If we are given a manifoldM then the stratificatiorC of P;, which is invariant under the
structure grouph., of J'P, induces a stratificatioB(M) of J'P for which the strata have the same
codimensions as the onesGnand which is coherent.

One then has, as a corollary to the Appendix, 8&¢.the:

THEOREM. —Let M be a manifold of dimension n. (M), k > 2, the setT(C) of Pfaff
equationso such thatjsis transverse to (1) is a dense open set.

Examples.
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1) DimM = 3: foro U T(C), the setC,(0) of points where the class is 1 is a closed surface
of M (if it is non-vacuous). The class is 3 outside of shiface.

2) Dim M = 5: generically, the class is everywhere greater thiaequal to 3.C,(0) is a
closed hypersurface farJ T(C).

3) Dim M = 4: the class may be only 1 or 3. TheGg), where the class drops to 1 is
generically a closed submanifold of codimension 3.

Remarks.

1) For a “generic” Pfaff equation (in the sense of the guleég section), the class is very
large everywhere. It is minorized by a quantity whasgmptotic expression is (as in the

case of the rank of a 2-form or the class of a 1-farm)/2n .
2) Since the stratificatio is coherent, there is isotopic stability of singulkstissof the class
of a Pfaff equation im(M), whenevek > 3.

6. Generic singularities of a Pfaff equation in dimensio.

6.1. Let M be a (compact) manifold of dimension 3. The followirtgagion, which relates to a
Pfaff equationoonM, is generic (i (M) for k very large):

1) The set g o) of points of M where the class ofis 1 (co-class =2) is a (compac}
surface.

2) For any poinx [0 M, we denote the plane that is defined by the equationPx [J TxM.

Therefore let (o) O Cx(0) be the set of points x such thatPT,Cx(0g). Co1(0) is a set
of isolated points.

SetCy(0) =Cy(0) — C21(0). PxandT«Cy(0) are in general position dBy o( 0), S0 they have
a line as their intersectiono therefore induces feld of directionsD on G ¢(0), such that the
points ofC; 1(0) are its singularities.

3) One may make thgenericsituation at the points @@,; more precise in the following
manner:

Letx 0 Cy1(0), and letwbe a (local) covering afrover a neighborhood of Lete'denote
the restriction oftwto Cy(0); by definition,e.'is annulled ak. The Jacobian af’ defines a linear
map,

Tva': TXCy(0) - T.C,(0);

i.e., abilinear formon T,Cx(0).



Chapter Il — Singularities of the rank and class of @wdfftial form. 37

Since Cy(0) is the locus of zeroes of the product” day one easily shows thaixa'is a
symmetricbilinear form. Generically,it will be non-degeneratat any point ofC; ;(0). This
form may further interpreted as the Jacobian at thet poaf the direction fieldD. From this

viewpoint, the preceding remark signifies that the singodants of the fieldD in C,(0) may be
onlyfoci (or centers) ocollars.

6.2. The proof of the preceding assertions is not difficlitsuffices to define a convenient
stratification of the manifold of 2-jets of Pfaff equats such that an equati@nthat has the
preceding properties Q$o is transverse to this stratification. | confine nifyse giving an
example of each of the types of singularities thajuseenumerated.

1) At a point where the class ofis 3, from Darboux’s theorem (cf. Ill, A, 4.1.3), thenast
local coordinatesx(y, 2) in which g may thus be defined by the equation:

dx +y dx=0.
2) At a point ofC; o(0), there exist (cf. I, 4.3) local coordinates in whigmay be defined
by the equation:
x dx+ (1 +y)dz=0.
3) I ignore the question of whether there existsalelat a point ofC; o(0). The following

Pfaff equations present a singular point of type(o) at the origin X =y = z = 0),
which are a collar and a focus (or center), respegtivel

3
W, = d(xz+ y? +X?j+ (1+y)dz=0,

3
w, = d(xz+ y? +X?j +(L+y)dz=0.

For example, in the case af, daw =dy”~ dz
@ Nda = Z+xX°) dx~dy~dz

The surfac&,(0) has the equatioz,+ x> = 0. The induced form is:
' =2ydy— (1 +y +X°) dx.

The quadratic forri,a' is theny? — .
| propose to ultimately return to this point.



CHAPTER I
LOCAL STUDY OF SINGULARITIES

A. LOCAL MODELS

1. Generalities.

1.1. One letd/, k=0, (DF, k=1, resp.) denote the vector spacg@&imsof (closed, resp.)
exterior differential forms of degree at the origin ofR", with coefficients that aré&-times
continuously differentiable. One s@8=D/andD’ =D .

Let £x be the group of germs of automorphisms at the origirRbfthat arek-times

continuously differentiable. One seis= L., .

DEFINITION. —Two germswand «', resp, are called G-isomorphisms if there exists a g
0Ly (with1<r<k+ 1)such that

in which ¢ wdenotes the inverse imagecwby g
If r =k =00 thenwanda' will simply be calledsomorphic.

1.2. The notations that are concerned with the jet spaeetharsame as in chapter II.
For anywO D/}, one letgx : D} — F” (k'=K) notate the restriction homomorphism that is

defined byj«(«) = jet of orderk of wat 0. In a similar fashion, one defines the restmcti
homomorphism:

jk: ka - ~7:kp
(the space df-jets of closeg-forms).
LetZ O F” be a singularity of orddsof ap-form. An essential problem is the classification
of the germswin D/} (k'=Kk) that present the singulariy (i.e., such thajxw O %) from the
standpoint of the relation &'-isomorphism (kr < k' + 1).

DEFINITION. — A singularityz 0 F° (AP, resp) is called rigid if all of the germg [ D?
(DP, resp) such thatjw ¥ are isomorphic.

Any element ofX, which we interpret to mean a differential form wigolynomial
coefficients (of degree less than or equalk}pwill then be called a (localinodel for the
singularity.

We remark that, in this cageis an orbit olLx inF,” (£, resp.) and for ank’' 2 k, o) O
is an orbit ofL,..
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The primary objective of this chapter is to commeriee dtudy of singularities from the
standpoint just defined.

1.3. I now recall a result that concerns the Lie derivativ

If X is a vector field andvis a differential form then we notate the Lie detive of cwwith
respect toX by 6(X)aw If X and ware of clas* thenB(X) wis of classC™. One recalls that
BX)w=d(X_| w) +X_| dw

Now letX; be a “time-dependent” vector field that is defined@yk = 1) onU x [0, 1], in
which U is an open neighborhood of ORY such thatX(0, t) = X(0) for anyt.

The differential equatio%%(z X(x, t) defines a mag:U' x [0, 1] — R" (where is an open
neighborhood of 0), such that:

a¢§i"t):xa, x)  and  @(x 0)=x

for anyx U ".
¢ is C* and for anyt O [0, 1], the mapg; defined byg(x) = ¢(x, t) defines an element af,
and ¢ is the identity.
Let w be a one-parameter family of differential formsttisadefined andC* onU x [0, 1].
0

One notates the “velocity of deformation” at thedinby @, = e

PROPOSITION. -With the preceding givens and notations, the following conditions are
equivalent

a) BX)w = aw,,
b) ¢ (w,) = w,.

Proof.— One setsr = (¢,")"(aw)). An elementary calculation shows that:

oa,
ot

=a, =) @ -0(X)w],

If one assumes a) then one bas0, but ap = (¢,")"(w) = @, since ¢ is the identity.
Therefore,a: = ap for anyt.

1.4. Before proceeding, | need to make the following two rématetw D, be a germ of
a differential form at the origin @®", whose natural coordinates axg (.., X,). One denotes the
restriction ofwto the hyperplana = 0 by . One denotes the canonical projectiorRBfon
that hyperplane byr
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1.4.1 Ifk=1 and ifiiw: 0 andiida): 0, i.e., 6 i w= 0 andw= 0, then one
0X, 0%, 0x,

has:
w= T ( w).

In other words, the fornwis uniquely expressed with the aid of the coordinatéad<i < n) and

their differentials.

1.4.2. Ifk 21 and ifaiia): 0 andaiia):f - (in whichf denotes &< function), i.e.,
X

1 1

ifiia): 0 and:
0%,

H(ij w=f-w
0x,

w=hrt(w),

then one has:

in whichh is aC* function that is equal to 1 when = 0.

2. Case oh-forms.

2.1. First consider the simplest case, for which:

s=3" OF' =AR,,

is the set of non-nuli-forms. A germwD,’ presents the “singularity;  if it is non-null; it
is therefore the germ of a volume form.

THEOREM. —For k= 0, any germ of a volume foraO D, is C-isomorphism to the germ

that is defined by the expression
dxg ... Mdx,

(X1, ..., X, denote the coordinates R").
This result is classical and trivial. If:
w=1f(Xg, ..., X)) dxe ™ ... Mdx,

is a volume germ i.e.,f(0) # 0 — then the change of variables:
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Xu= [ (6%, %)t
Xi = X for i=2,...n

brings us to the indicated “canonical” form and defin€$-automorphism.

2.2 One further considers the sef, O F" composed ofionnull jets of order 1 whose
image undep: F" — F"is null. A germwOD,/ (k= 1) is such thatwO X}, if and only if wis
annulled at Qransversallyto the zero section of bundle mforms.

THEOREM. — ([12])For k= 3 any germw D, such thatjwX ] is C“%-isomorphic to
the germ that is defined by the expression

X1 dxg N M dX.

Proof.— Let w=1f(x1, ..., X)) dx ... *dx, be the expression favin natural coordinates. By
hypothesisf is C*, f(0) anddf is non-null at 0. The equatidn= 0 determines a germ of a
hypersurfaces the set of zeroes ai We shall establish a result that is more preciae th
necessary for the present situation because it wadtedo what follows. The theorem is an
obvious consequence of it.

LEMMA. — Let wO Dy (I = 3) such thatjwOX,. Let Sbe the germ of the hypersurface of

zeroes ofaw If uy, ..., u, are C functions(3 < k < 1) that arenull at and independent by
restriction to Shen there exists a function of classC* that is null at0 such that

a) (ug, ...,Un) is a system of local coordinates,
b) w=xu dw " ... *du, (the sign is determined by the giverncgt, ..., up).

Proof.— The independence of the functians..., u, on Ssignifies thadf ~ dw, * ... *du, #
0 at the origin. The function§ (i, ..., u,) therefore constitute a system of lo€4lcoordinates.
In this system, one has:
w=h(f, Uz, ..., uy) df A dwp ~ ... Mduy;

the functionh is of classC*™. One obviously habk(0, us, ..., uy) = 0, anddh is non-null at the
origin; i.e., % (0) #0. There thus exists one (and only one) functjeaich that:

h(f, up, ...,un) =f-g(f, U, ..., Upy).

The functiong is of clas<C% and non-null at the origin. To prove the lemmidén suffices
to establish the existence of a functiarthat is of clas€“? and verifies the equation:

ur _

f
) £j0tEg(t,u2,~~-,un)dt,
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in which &£ = sign ofg(0).
(One will then havev= gu; du * ... *du,.)
Now:

[ty u,)dt = £2 0 xCg(f Bu,,+-,u,)dx
=£2 . @(f, Uz, ..., Un),

and ¢ is a function of clas€*? that is non-null at the origin and has the same a&gm The

function:
u, =20 Qe

answers the question.

n
n,n

2.3 Remark~— The singularities and X[, are the only singularities that are generically

presented (Il, 2.3). We just showed that they are riglte problem of classification is therefore
completely solved in the casersforms.

3. Case ofif — 1)-forms.

3.1. Let £ O F"™ be the set of jetsy of order 1 of § — 1)-forms such thg(a) # 0 and
daw #0. AgermwOD;™ (k=1) is such thajy w0 ZQ;} if and only if wanddware non-null at
0. =+ is therefore an open singularityfi™.

,n

THEOREM. —For k= 2, any germw D™ such thaj,w0 =7 is C~isomorphic to the
germ that is defined by the expression:

(1 +x) dxe ™ ... Mdx,.

Proof.— LetD be thedirection field associated taw (which defined at each point by the line
associated t@). Letus, ..., u, ben— 1 independer€ first integrals of the differential equation
D that are null at 0. One then has:

w=hdy” ... "du,

whereh is a function of clas€** that is non-null at the origin. One may choosecfionsu,,

..., Up in such a way that(0) = 1. Howeverdw=dh” du, * ... *du, # 0 at the origin. The
functionsu; = 1 —h, Uy, ..., U thus define &C** system of local coordinates at the origin in
which whas the required expression.

3.2. Because of the remarks of II, 4.4, it is natural torgethat singularity=, .+, O F,™,
which is the set of jetap of order 2 of § — 1)-forms such thatay O 27, (cf. lll, 2.2) andjo( &)
z 0. If wis a germ iD;™ (k = 2) then one will havg(«) 0%, if and only if wis non-null
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and ifdwis annulledransversallyto the origin ¢uvis therefore of class — 1 at the origin). It is
obvious that=| ", is a singularity of codimension 1 fj™.

Let w OD; ™ (k = 2) such thatx(«) O Z,.,. One may consider the direction fieli
associated witlwand the hypersurfacgof zeroes otlcu It is clear that therder of contacbf
the field D and the surfac& at the origin is an invariant of ti@” ispmorphism class of the

germa Therefore, if one considersin R? (x, y, zcoordinates), for example the germs that
are defined by the expressions:

@ = (1 +x) dy” dz,
@ = (1 +xy—X) dy~dz,
s = (1 +xz — Xy —x*) dy~ dz

then the associated direction fidldis the field parallel to thg-axis in all three cases. On the
other hand:

da = 2¢ dx~ dy ~ dz,
da = (y — 3%) dx "~ dy " dz,
daa = (z —2xy —4%°) dx” dy A dz,

and the equations of the surfaces defined by the zero&)exe= 0, &) y— 3¢ =0, &) z— Xy
—4x3 = 0, respectively. In the first case, the fiflds transverse t&, i.e., the restriction ofx
to S is non-null. In the second case, the projection thdefined by the integral curves Df
(i.e., the projection parallel tOX) defines &old (in the sense of Whitney [17]) of the surfége

in the planeyOz The restriction oty to S presents the singulariky;, at the origin. In the

latter case, the projection & in yOz parallel toOx defines acusp(in the sense of Whitney
[17]). Here again, the restriction af to S represents the singularE;?:lLO at the origin.

These remarks show that the germsumfas, az at the origin are naE*-isomorphic k = 4).
One defines the singulariy, ., 0 F,"™ to be the set of jets such that

1) dw O30,
2) The restriction ofwy to the hypersurface of zeroes a&ds non-null.

These conditions define an open s&t i\, , and therefore a singularity of codimension 1.

THEOREM. — ([12])For k = 5, any germw 0D such that jw O ZQ}}_LO is C%
isomorphic to one of the germs defined by the expressions

2
W, :(1+X7ljdx2 O..-ddx,,

XZ
w, =(1—71jdx2 O---Odx,.
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Proof. — Let S be the hypersurface of zeroesdad and letD be the direction field associated
with w Sis transverse tD since the restriction abto Sis non-null. We notate this restriction
bya'.

The manifoldSis of clas<C*, ands'is a volume germ of clasd? at the origin ifS. From
Th. 2.1, there exiSE*? local coordinates, , ...,0, in Ssuch that:

«' =M. Nad . (1)

One therprolongsthe functionst,, ...,U. to a neighborhood of 0 R" and keeps them constant
on the integral curves @. One thus obtains functions,, ...,T. that are always of clasd?

and, by construction, they are independent upon restrictisn
Upon applying the lemma of paragraph 2.2da u», ..., u,), one finds a function; of class
C** such thatd, ..., uy) is a system of local coordinates at the originl; an

dw==% updu ... N du,. (2)
We study the expression farin the coordinateay, ..., u,). One obviously has:
w=h(uy, ...,up) dup ... N duy,

in which, by construction, the functions, ..., u, comprise a system of first integrals [Of

However, (1) is equivalent tb(0, uy, ..., Uy) = 1 and (2) is equivalent %%rl:iul. One
U

therefore has:

-y
1
=
I+
N |HC,\,

Q.E.D.

Remarks.

1) Let wbe a germ such thai(w) O ngnl_w. At any point that does not belong to the
surfaceS the linear equatioX | dw = wdefines a non-null vector in the line that is
associated tau The vector field that is thus associated tofthe c («», resp.) of the
preceding theorem is; = (i +ﬁji :

X 2)0%

1 0
(Xz = (—Z+%ja,respj :

This field isdirected towardsS in the case ofy anddirected towards the exterian the case
of aa. This observation illustrates the fact thaatand « may not be isomorphic.
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2) | will ignore the issue of whether the higher-order slagties that correspond to orders
of contact higher than 1 for the associated fi2ldnd the hypersurfac®are rigid.

3.3.Inll, 4.4, we saw that am{ 1)-formwmay generically present isolated zeroes that are
disjoint from the set of zeroes @iw We simply mention that at such a point one may
canonically associateo with the germ of vector fieldX that are defined by linear equatin
| dw= w Like @ X is annulled at the point considered. All of the invatsaof the fieldX are

invariants ofw

3.4. Case of closedh(— 1)-forms. | recall only the following classical resuldny germ of
a closed(n — 1)form w0 D)™ (k = 1), which is non-null at the origin is "gsomorphic to the
germdx” ... Ndx,.

On the other hand, we remark thaQifdenotes an-form without zeroes (volume form), and
if X denotes a vector field then the form= X | Q is closed if and only if the Lie derivative
B(X)Q isnull, sinceB(X)Q =X | dQ +d(X | Q).

The study of a closedh ¢ 1)-form is therefore very close to the study ahanodular vector
field (i.e., one that preserves a volume).

4. Cases of closed 2-forms and Pfaff forms.

4.1. Darboux’s theorem. This theorem establishes the existence of “canofocais” for
the germ of a closed 2-form ofaximum ranKin either even or odd dimension) and the germ of
a Pfaff form ofmaximum class.| shall not give a complete of it here, since itfasind in
numerous places in the literature ([3], [5], [6], [10], [18The central idea of the proof that one
finds in the school of J. Moser ([14]), and seems madtiral to me, takes into account
considerations regarding the stability and infinitesimabisity of differential forms.

First recall thatZ, (Z;, resp.) denotes the open set of element&’oR, = F2 = F? (the
vector space of jets of order O of 2-forms, which masnay be closed) with = 2p even 6= 2p
+ 1 odd, resp.) that have maximum raipk(thecorankis then O or 1, respectively).

On the other hand} denotes the open setfgf(the space of jets of order 1 of Pfaff forms at
the origin ofR") that is composed of the jets of clas&f. Il, 4.3.1).

4.1.1 THEOREM. -Let wO D} (k= 1) be a germ of a closeziform at the origin oRR",

with n = 2p such thatdw O 5. Thenwis C*-isomorphic to the germ that is defined by the
expression:
dxg Mdyr + ... +d)§)/\dyp

(in which %, ..., Xy, Wi, ..., ¥, denote the natural coordinates RT?).
Proof.— Consider the fornay with constant coefficienthat is equal to the expression for

at the origin, and set:
Ww=w+t- (w—aw) forany tdjo, 1].
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Thereforeaw = g and for anyt [J [0, 1], w is of maximum rank at the origin.

The 2-forma= w- w is C* and closed. There thus exists a Pfaff foffrwith C*
coefficients that one may take to hal at the originand has the property that= dg.

Now, since thembient dimension i&p and the formw has rank g in a neighborhood of the
origin, the linear equation,

xtJ w=p,

determineghe germ of a vector field;, which is null at the origin and of clagk for anyt [ [0,
1].
For anyt one then has the relation:

B(X)a =d(X: | w) +X: | dw = aq,
sincew is closed.
If one then considers the differential equation:

dx _ _
pria X, (X) = X(t,x),

and if one notates the solution that verif@gx) = x by #«(x), then one hag(x) = 0 for anyt,
sinceX(t, 0) = 0. The functiow is therefore defined ar@ on [0, 1]x U, in whichU denotes a
sufficiently small neighborhood of 0 iR". Therefore, for any O [0, 1], ¢ is a germ of a
diffeomorphism that preserves the origin, and, fronAlIL.3, one has, by construction:

¢ (w,) =w, for anyt.

Therefore ¢ defines &C*-isomorphism ofwontow. As a result, from I, 4.1, to arrive at the
stated expression of the theorem, it suffices to nadikear change of variables iap.

4.1.2 THEOREM. -Letw 0 D? (k= 2) be the germ of a closéform at the origin oR"

with n =2p + 1 such thatjwO S.. Therefore,wis C-isomorphic to the germ that is defined by
the expression:
dxg Mdys + ... +d)§)/\dyp

(in which 2, ..., Xp, Y1, ..., Yp, denote coordinates iR***"%).

Proof. — One has a direction field that is defined at each point by the line associated to
(which is of corank 1). This field is of cla€s.

Let S be a hypersurface element that is transvers® tat the origin (for example, a
hyperplane). The restrictian of wto S verifies the hypotheses of theorem 4.1.1. There thus
exist functions,,...,X,,,, ...,Y, that constitute £" system of local coordinates at the origin
in S, such that:

a = dyN dy+ .+ XN dy .
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Now let Xi, ..., X, Yi ..., Yp, be the first integrals oD that are obtained by
prolongingx,,...,X,, ¥, -..,¥,, which we complete into a system of coordinates:

CY (2 Xty ves X VI -oes Vi)-

In this system, one obviously h%as | w=0. From LA, 1.4.1, since the expression for
2

is C** with respect to its coordinates, one will have:
w=dxg Mdyr + ... +dx M dy,
provided thak — 1> 1. Q.E.D.

4.1.3 THEOREM. -Let w0 D; (k> 3) be the germ of a Pfaff form at the originRff with

n =2p + 1such thatjwO & ;i.e., w" dw# 0. wis then ¢-isomorphic to the germ that is
defined by the expression,
dz+dx M dys + ... +dx M dyp.

Proof. — One haslw D7, and, from 4.1.2, there exist functioxs ..., X, Y1, ..., ¥p Such
that:

dw= D" dx " dy.

p
i=1

p

The differential forme = ZXi dy. is thereforeC*?, and such thai(w—- @) = 0. Thereforew
i=1

- & =dz in whichzis aC** function that is null at the origin. One has pregisel

a):dz+zp: X dyi,

i=1

because the functiors %, ..., X, Y1, -.., Yp are independent, singe” df = p! dz” dx, ~ dy; *
LN Mdyp # 0.

4.1.4 THEOREM. -Let w0 (k= 3) be the germ of a Pfaff form at the originRifwith n =
2p such thatjwl { ;i.e., w# 0and dw, # 0. wis thenC*%-isomorphic to the germ defined by
the expression:

(1 +Xq) dyr +Xxodys + ... +XpdYp.

Proof. — By hypothesis, the 2— 1)-form w” daf* is non-null andC*®. Let D be the
direction field associated with this form. Xfis a non-null vector field carried iy then one has
X | (whddd™ =0, namely:
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X | @ -dd™t—wr (X | ddf™ =0,

which impliesX _| w= 0 andX _| dw=f - wsincedwis of rank 2.

Therefore, letS be an element of a hypersurface that is transveredbthe origin. The
restrictiorzc. of wto S verifies the hypotheses of theorem 4.1.3. There thist €Ki local
coordinatesy,,X,,y,,...,X,, Y, atthe origin irSsuch that:

a = dy,+X, d72+...+ip oyp.

Letys, Xz, ..., Yp be first integrals oD that are obtained by prolonging, X, ,...,¥,. From
the remark at the beginning of 1ll.A, 1.4.2, one has:

U

w=h-a',

in which o' = dy; + xod% + ...+ X,dy, andh is aC*? function that is equal to 1 ¢&
On the other hand, one has:

de? = (dh ~’ +hda')P =
=p(p—1)!h"* dh~dy, ~ ... Adx, A dyp # O.

Thereforeh, y1, X, ..., Yyp are independent. The change of variables:

X]_:h—l,
Xi=h-x for 2<i<p,
Xi =Y, for 2<j<p

is C“? and putswinto the required form.

4.2. We shall now examine the simplest singularities ofclaes of a Pfaff form and the rank
of a closed 2-form.

4.2.1 As far as Pfaff forms are concerned, it is natiordirst envision the case of germs
that enjoy the following properties:

) jiwd &, ie., the class alvat 0 isn — 1.
i) wis generic from the point of view of I, 4.3.3, i.e.etimap that is defined by - j1a(X)
is transverse t@i. The class otvtherefore remains equal ta € 1) at the points of a

hypersurfacé& = {1(@) that passes through the origin.

i) The restriction okwto Sis of maximal class(— 1).



Chapter 11l — Local study of singularities. 49

Indeed, these three conditions express propertigspofMore precisely, they define apen
setof p (&) (in which o F, — Flis the restriction of the homomorphism of the spagetsfof

order 2 into the jets of order 1), hence a submanifokbdfimension 1 of,; i.e., a singularity
of order 2. This singularity will be denoted Gy .

THEOREM. — ([12])Let wO D, , in which k= 7 (k = 6, resp), be the germ of a-form at the

origin of R", in which n =2p = 1 (0 = 2p, resp), such that jwO o wis therefore &°-
isomorphic(C* >-isomorphic, resp).to one and only one of the germs defined by expressions

+zdz+ (1 +x) dyr +xodyr + ... +X, dyp,

(to one and only one of the germs

2
(11 %jdyl +X,dy, +---+x,dy,,
resp).

Proof.

a) n=2p+ 1. Inthis case, condition i) signifies that* def = 0 anddd # 0 at the origin.
Condition ii) signifies that the-form w” dd} is annullediransversallyat the origin, and thus
presents the singulari®y ,(in the sense of Ill, A, 2.2).The locus of zeroes is a germ of the

hypersurfaces of classC*™. Condition iii) signifies that the restricti@n of wto S verifiesa #
0 and da # 0 at the origin. In particulathe direction fieldD that is associated withais
transverse to S

The formz is C%. From theorem LA, 4.1.4, there exi€* local coordinates,,

s Xy Yps -0y Y, @t the origin ofSsuch that:
& =(L+R) W+ X, Ay, + o+ X

Let x4, ..., %, Y1, ..., Yp be the first integrals dd defined by the prolongations xf ..., X, V,, ...,
Y,- FromLemma lll.A, 2.2, applied @” ddd, there exists €° function such that:

wNddd =tz dzMdx N ... Adyp. (1)
One obviously hadw=dx " dy, + ... +dx " dy, (from 1ll.A, 1.4.1). Therefore, it.'= (1 +

X1) dyr + X dys + ... +X, dyp then one hasy—a' = df, sincef is aC*™® function. df is null onS;
one may thus takito benull on S Therefore:

wNddd =df» dw'P= (p - 1)!g—fdz’\dx1’\ L Ny
z
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in the system of coordinates ki, ..., X, Y1, ..., Yp). By comparison with (1), one immediately:

df=1—%

" (p-D)! dz

The expression fowin theC*™® coordinate system:

(Z, Xl, sy Xp, yli R | yp)
is therefore:
z

(p-1)!

w=* dz+ (1 +x9)dys +xodys + ...+ XdYp,

an expression that one easily transforms intortieated form of the theorem.

b) n =2p. This time, one hada, = 0 andw” ddf™ # 0 at the origin. de presents the
singularityz, ,. Let Sbe the hypersurface of zeroes a# {S is of classC*™"). From iii), the

restrictionce of wto Sis such thatto Odaw ™ #0. The direction field that is associated with
the (n — 1)form w” dcd ™ is therefore transverse to S.

If we apply theorem IIl.A, 4.1.3, @ then one choose€* local coordinateg,, X, ,
...,Ypatthe origin inSsuch thatee = dy,+ X, dy, + ... + X, dy,. Letyy, %, ..., Y be the first
integrals ofD that are defined by the prolongationsyef ..., Y, .

From lemma Ill.A, 2.2, applied i, there exists €“°functionx; such that;

dof =2 x0x Ny~ ... ANdx M dys. (1)
One easily shows thab=f -a', in which:
a'= dz+xdy + ...+ X dyp,

andf is aC*™ function that equals 1 d& One then has:
ddf = ([dfra'+ fda' )P =p(p - 1)! fp‘lg—f Xg0xg A dyt A L. A dx M dyp.
z

2

On account of (1), one deduces tffat 1 + x IC):l e The expression fow in the C*°

coordinate systenx{, v, ..., Yp) is therefore:

2

w:P¢ %
2(p-1)!

1/ p
} (dx + Xodyo + ...+ XpdYp),



Chapter 11l — Local study of singularities. 51

an expression that is easy to reduce to the indicatedssipn of the theorem.
Remarks.
1) Inthe casen = 2p + 1, the expressions:
+zdz+ (1 +x) dys + ...+ X dyp,
are easily distinguished geometrically by the behavidhe vector fieldX that is defined by the
linear equation:

X | (w™ddf) = dd.

This field is defined only outside of the singular surf@¢e = 0). In one case, it points towards
S and in the other, it points away from S

One has analogous remarks rior 2p.

2) The preceding theorem shows that the singulafity is thedisjoint union of two rigid
singularities.

4.2.2 In the case o€losed2-forms, one must consider the germsat the origin ofR",
wheren = 2p, which admits the following properties:

) wis of corank 2 at the origin; i.gow 0 =, or furthermores? = 0 andaf™ # 0 at the
origin.

i) wis generic from the standpoint of I, 2.4; i.exjs transverse t&,. The sety(a) of
points wherewis of corank 2 is then a germ of a hypersurface.

iii) The restriction ofwto 25(a) is of maximum rank @2— 1.

These are properties of the jet of order Luaft the origin, which defines a subep 0 .F>.

This subset is clearly an open sepd{=.,), wherep: F? - F2. ltis therefore a submanifold of
codimension 1.

THEOREM. —Let w0 D! (k= 6) be a germ of a closeziform at the origin oR" with n =
2p such thatjwl 2,0. wis then C‘S-isomorphic to the germ

XpOx Mdyr +dxo M dys + ... +dX M.

Proof. — One easily finds a Pfaff formr such thatda = wandj,w O (o. One applies
theorem Ill.A, 4.2.1, ta. One thus obtains:

w=da=%x dxxMdyr +dxo M dy> + ... +dx M dyp.
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One makes the sign disappear by modifyingoerhaps.

4.3. We further mention an interesting to theorem Ill, A2.4, that relates to thefaff
equations in odd dimension=2p + 1.

Suppose we have a Pfaff equatignihat is generic from the standpoint of theorem Il, 5.4.
andCy(0), viz., the set of points wheis of co-class 2, is a hypersurface. Consider a pdint
C(0) such that the restriction afto Cx(g) is of maximal classi2— 1 at this point. One easily
shows that in a neighborhood of such a poimay be defined by a Pfaff form that presents the
singularity {1 o at this point. From this, it results that in a carigat local coordinate system
is defined by the form:

z dz+ (1 +x) dyr + Xodys + ... + Xy dYp.

5.

I will now show several examples of singularities fdifferential forms, such that the
classification of the germs that present these singatinvolves parameters. They therefore
amount tonon-rigid singularitiesthat admit an infinitude of models.

5. Examples of non-rigid singularities

5.1. Forn = 3, consider the singularity of order 1 of the clos€drihs 330 0 that is
defined by the property: A germ] D? presents the singulariBs o, (i.e.,jiw0 Z30) if and only
if wis annulled transverse to the origin.

Consider one such germ. L@tbe a germ of a volume form, and letbe the vector field
that is defined byv=X | Q. LetA be the Jacobian matrix &fat the origin X is annulled at
this point). A has null trace,becausew is closed, soX is therefore unimodular. By the
transversality conditior’\ has rank3. The proper value equation faris therefore of the form
A +pA+q=0, whereg# 0. The number r = p g ??is then an invariant ofy and therefore of
Jiwl Z30. Indeed, if one makes another choice of volumeéfohenA is multiplied by a scalar
andr = p - g ??is unchanged.

We therefore set, for example:

ap = (X + pxa) dxo ™ dxs + Xz dxs N dxg — X dxq X,

wherexi, x,, X3 denote the natural coordinatesRhandp is a scalar. For eagh ap presents the
singularity2s o at the origin and(ap) = p. @ anda' might not be isomorphic f# p'.

5.2. We now place ourselves in dimension 5. A gewrfy D? will be said to present the
singularityZs o 0 £ if:
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a) wis transverse taso 0 F. (the set of forms of corank 3, hence, of rank 2)«) is then

(cf. ll, 2.4.1, example 4) a germ okarface(of codimension 3).
b) The restriction ofwto >3(«) is non-null.

Let Q be a volume germ at the origin ®¥, and define a vector field by the equation =

X | Q. Xis annulled at the points 8§(¢). For anyx 0 Z3(a), the Jacobiar of X atx is of
rank 3 and hasiull trace Its proper value equation is of the fodgA® + p(x)A + q(x)) = 0. One
immediately verifies that thizinction (X) = p(x)q(x)"??is an invariant of the gerrw(r is a germ

of a function at the origin iR3( ).

A very large class of functions may be obtained is thanner: for example, consider the 2-
forms:
ap = (X + pxs) dxe N dxg + X3 dxs N dxa — X dxg ~ dxe
+ :—pxmdm N dx +§—pX2X3dX5 N dxg + dxq " d,

4 X5
in whichxy, ..., Xs denote the coordinatesRY, and:
P(X4, Xs5) = S(Xq) + t(Xs)

with s andt being arbitrar{C” functions.

B. STABILITY AND INFINITESIMAL STABILITY
In this part, all of the objects considered will beuassd to b&€” .

1. Stability of the germ of a differential form.

1.1. Let M be a manifoldw O DP(M) (DP(M), resp.), g-form (closedp-form, resp.) orM,
andx, a point ofM. wwill be called stable at x if the following conditi is realized (compare
with [9], pp. 44).

For any neighborhoodJ of x there exists &~ —neighborhoodv of win DP(M) (D°(M),
resp) such that for any.’ [0V there existg U (?) such that the germs @dat x anda'at x' are
isomorphic.

One easily recognizes that this property indeed depentte @erm ofwatx. One arrives at
the definition of astable germ.

1.2 THEOREM. -All of the models indicated in the first part ofstithapter define stable
germs.

Proof.— All of these cases realize the following situati@ddne has a singulari®y of orderk
that is rigid, and a fornrwin R" such that:

a) jkaf0) 0%,
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b) jkwis transverse t&at O.

A classical argument (which is analogous to the isotepyma) then shows that, for any
neighborhoodJ of 0, there exists &“*-neighorhooadV of « such that for any.' 0 V, there
exist X' 0 U, with j, &/ (Xx") O X. Stability results immediately singeis rigid.

2. Infinitesimal stability.

2.1. In what follows, one denotes the space of germ€dfector fields at the origin dR"
by x.

Let wO DP (DP, resp.). One then le®; ¥ — D (T, x¥ — DP, resp.) denote thR-linear
map defined byT(X) = 8(X)w for any X [0 x (not without having remarked that the Lie

derivative of closed form with respect to a field idased form).
It is natural to make the:

DEFINITION. — Letw DP (D", resp.). The gernwis said to benfinitesimallystable if the
mapT, ¥ — D (Ts X — DP, resp.) is surjective.

Remark— One must take care to observe that the notionsfioftesimal stable closed and
non-closed forms are distinct.

THEOREM. —Let w O DP be an infinitesimally stable germ. The germ @ D" is
therefore infinitesimally stable.

Proof.— From the formula, it is obvious that:
d(6(X) ) = 6(X)dw

2.2. One may weaken the preceding definition by passing tofetsinite order of forms
and vector fields. One thus obtains the algebraic nofibarmal stability

One of the fundamental problems of the theory thaketched out in this work is to establish
the equivalenceof the notions of stability, infinitesimal stabilitgnd formal stability. | have not
begun this problem.

By careful calculations that | will not impose on theader, one may establish the
infinitesimal stability of the germs defined by the madeiilat were obtained in the first part of
this chapter.

| prefer to conclude with the following proposition, whishinteresting in itself, and which
seems to me to give a good idea of the problems that aeel po this type of questions, as long
as the situation envisioned in very simple.

PROPOSITION. -The germs of close2Horms at the origin oR* that are defined by the
expressions
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3
w=dx"dy+z dyrdz+ d(xz+ty—%j At

23
a'=dxNdy+zdyrdz+ d(xz—ty—?j A dt

are formally stable. (They amount to examples of the elliptic and hyperbolic points that were
indicated inll, 3.2.3).

Proof. — I will indicate this in the case ab The modifications that are necessary for the
case ot.' are obvious.

a) The infinitesimal stability of wis equivalent to the possibility of finding a germ of a
vector fieldX O y such that:
BX)w=dX | @ =7=dmr

for any germ of a closed 2-form= dr7(770 DY).

Let M, denote the modul@ver the ringD° of germs ofC* functions at the origin oR?) of
germs Pfaff forms of the fordd | w The infinitesimal stability ofw is then equivalent to

existence of a functiohr] D° such thatr—df O M, for any 770 DY; i.e., the equalitp’ = M, +
dD".

b) LEMMA 1. — A germsz0 D* belongs to M if and only if £m) belongs to the support
Sm) of wat m for any point m.

The necessity is obvious since the interior proddct$ w constitute the suppoB.(m) at
each poinm.

To show that the condition is sufficient, one maynark — without using the particular
expression forww— that the rank of the linear equatn | w= 7z behavegenerically(i.e., that
wis transverse tf,), and use a recent theorem of J. Mather.

However, the direct proof is very simple:

One first verifies that one hag= (dx—z dz — t dt” (dy + z d at the points oE; (i.e., such
thatx = 0). From this, one deduces thaiorm 770 D!, 7= a dx + Bdy + ydz+ Jdt, belongs to
the support ofwat each point if and only if the functioms + yand o — zf + dare annulled
identically for x= 0, i.e., arelivisible (in the ringD® by the functiorx.

On the other hand, the equatdn | w= 77 in which:

X :ai+bi+ci+di,
ox ody o0z ot
is equivalent to:
a—-zd=-a, )
a—zc—td# (2)
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zb4x-Ad=y (3
zattb+ (x-?)c=9 (4)

(1) and (3) givexd = —(za + ). From this, one deduces tlthtza + yare divisible by, and
(1) givesh:
(1), (2) and (4) givac =ta —zfB+ J. One deducesfrom this and (2) givea.
Q.E.D.

c) LetD°be the ring of germs of differentiable functions at ¢migin of the hyperplane
¥,(w) (defined byx = 0) and letD* be the module of germs of Pfaff forms at the origi( c).
One letsM , denote th® ° - viz., the module afestrictionsof the elements d¥l,, to (&)

LEMMA 2. — The infinitesimal stability ofvis equivalent to the condition
M+ dD°=D".
This necessity of this condition is obvious.

Sufficiency: We first remark that for any0 D' such thatr = 0 (7 = restriction ofr to
>2(a)) there exists functioh (which is null on¥3(«)) with 7—dh =0. Indeed, iff= a dx+ Sdy
+ ydz+ odtthent = 0 is equivalent tg8=y=0=0 forx = 0. Ifh = x- a then all of the
coefficients ofr —dh are null orZ,(«). Now let7z0 D*. By hypothesis, there exists a function
such thatr—df OM , hencerr—df =&, whereo O My, namely, 7-df —g = 0. From the
preceding remark, there exists a functiosuch thatz— df — o—dh 0O M, which givesrr—d(f +
h)y OM,,.

Q.E.D.

Remark.— One has not used the particular definitioMaf here, but only the fact that it is
defined by conditions at only the pointsX{ ).

d) Let X be the vector field in the hyperplahg ¢) that is associated with the restriction
of @ one has:
X :—Zzi—ti+zg
dy 0z ot

(cf. 1. 3.2.3 a)).
LEMMA 3. —A form 70 D* belongs tM , if and only if X_| 77= 0.

The necessity is obvious.

Conversely, letr= Bdy+ ydz+ ddtbe such thaX | 7=0, i.e.,- ZB—ty+20=0 orz(-z83
+ 9 =ty tis therefore divisible by in D° and there exists a functiary, z, } such thaty= -
za; but then z6 + 0= —-ta. From a), it then results that the foomdx + S dy + ydz+ o dt
belongs taM,, .



Chapter 11l — Local study of singularities. 57

Remark— This is where one uses the fact fhatis transverse to the singularEy .

e) From lemmas 2 and 3, the infinitesimal stability @fis equivalent to the following
condition:

For any7r0 D*, there exists a functiohd D° such that

X |df=X _|
l.e.: the partial differential equation:

—zzﬂ—tﬂ+zﬂ:—zzﬁ—ty+25, (E)
ody 0z ot
has aC®solutionf(y, z, } for any functionsg, y; o. The left-hand sides forrihe idealJ of

functions that are null o, »(«), precisely(z =t = 0).
By definition, one comes down to the study of the caoratit

The partial differential equation:
LI AL (=)
dy 0z ot

has a solution for any i J.

f) To my knowledge, there is no actual general methodh®istudy of partial differential
equationswith singularities. In this particular case, | will simply show thatstpossible to solve
the preceding equatiok) in aformal series

Let [h] = z ap.qsY’ Z't" be the Taylor development of the unknown funcfion

p,q,rzO

By identifying the series developments of both sidegE), one obtains the system of

equations:

(Epan, Py, r=0: —(p+ Lopir,g2r— @+ LPp gr2r1 + (T + 1) By g-1,0+1 = 3, q,r-

| shall call thesum of the indicesf a coefficient itheight

| shall only give a summary of the proof, which istéelineater here.

It is clear that the system of equations that isdpebnsidered decomposes into taisjoint
systems:Epq,), q + rodd,and €pq,s), g + r even

In the first case, one easily shows that for gipgmndko the systemByoq,), 4 + I = Ko
forms a system of equations that is independent dfeightpy + ko in the unknowns. One then
solves the first system by recurrencepgandko.

In the second case, one envisions the subsystems:

Sk = (Ep,q,r; 2p+q+r=2K).

They are disjoint systems. One shows tBatis an independent system of equations by
recurrence onq + .



Chapter 11l — Local study of singularities. 58

Remarks.

1) In the case of the examples of “parabolic” pointé (t, 3.2.4), one shows the
equivalence of infinitesimal stability and stability hetsame fashion, with the condition that the
partial differential equation:

—Z(Z+2t)ﬁ$ yﬁ+z£:h
oy 0z ot

has a solutiofi for anyh 0 J, in whichJ is the ideal of functions that are null bsu(¢) (i.e.,his
null fory — z =0).

| have acquired the conviction (without nevertislevriting down an explicit proof) that
there is also formal stability in this case.

2) To me, these considerations seem to reasonablywat®tiheconjecture The generic
singularities of a close@-form in dimensiord (cf., ll, 3)are all rigid.



APPENDIX

TRANSVERSALITY THEOREMS FOR SECTIONS OF FIBER BUNDL ES

1. Topologies on the space of sections.

1.1. All of the manifolds envisioned here will be finite-dim@ral overR, C®(unless
stated to the contrary), and have a denumerable bastsgifborhoods.

Let M be a manifold and letz E -~ M be a fiber bundle ovavl. One denotes the vector
bundle of jets of ordek of sections oE (0< k< ) by 75 J* - M.

Let Dy be the vector space of section€Eadf classC. If wl Dy then one letgwdenote the
section of)E that is defined at each poiatl M by the jet of ordek of watx.

One will denote the vector space®f sections oE by D.

1.2. PROPOSITION — DEFINITION. Fhe sets:
Vy = {C«)D Dy jka(M) i U},

in whichU O JE is an open set, constitute the basis for a topology pth&t is called the
WhitneyC*-topology

(If M is compact then this is the topology of “uniform caigesce” onM of the sections of
E and their partial derivatives up to order

The WhitneyC”—topology orD is defined as the projective limit of tk¥-topologies on the
spacedy.

One recalls thaDy , when endowed with th@k-topology (0 k £ =), is alocally convex
topological vector space that is, moreover, a Baire space.

A subset oDy will be calledresidualif it contains a denumerable intersection of dense open
sets. A property that defines a residual set will biedgkenericonDy.

1.3. PROPOSITION. For any k' 2k, D,, is C-dense in R
This is a consequence of lemma 6 of [19].

1.4. Let 7 B — M be an arbitrar€* locally trivial fiber bundle. Let ', be the set o€*
sections of this fiber bundle. One may define @eopology on" in the same way as in 1.2 by
using open sets of the fiber bundfe.

One may also define a “manifold” structurelan(0 < k< «) that is modeled on the space of
sections of the vector bundle in the following manner:

a) LetV - B be the vector bundle dhcomprised of vectors that ai@gent to the fibers of
B. One gives, once and for all,G” “second order” differential equation @such that for any
y OO B and anyv [J V with origin y the solution of this equation that is defined by the ihitia
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conditions ¥, v) is traced out in the fiber*(7€y)). One denotes the value of this solution at time
t = 1 by expy, V) (for v sufficiently “small”).

b) Let o0l (0 < k< o). One then considers the vector bundle—~ M, which is the
inverse image o¥ by o. It is clear that the exponential map defined in b) indaenjection of
a convenient open@eighborhood of the null section Bf into I'y.

One thus defines a chart bathat is modeled oDy (Es). One easily verifies that these charts
form an atlas oif, whose subordinate topology is tB&topology precisely.

This viewpoint will be useful in what follows (cf. 4.3d6.2).

2. Distributions. Stratifications.

2.1. Let N be a manifold. One calls any functidnthat associates a subsp@geof TN —
viz., the tangent space bbatx — to each poink [J N adistributiononN. A distributionA will
be called coherent if for every point x and everyAx there exists an open neighborhoo@tx
and aC” vector field Xon Usuch tha¥X(x) =v andX(x)JA, forany x' 0 U.

PROPOSITION. Let Vbe a(C”) regular submanifolabf N, and let Fbe a closed set of N
that is included in V The distributionA that is defined byA = T,V for x in Fand Ax = TxN
elsewhere is coherent

2.2. One defines atratificationof a manifoldN to be anypartition S= (S)i of N such that:

a) EachS (or stratum) is a€”) submanifold olN.
b) For any integep, the union of the strata of dimension less thangoiaktop is a closed
subset of\.

Thecodimension of a stratificatioof N is the minimum of the codimensions of the non-open
strata.

If Sis a stratification oN, then forx [J N one will let TS notate the subspace BiN that is
tangent ak to the strata o that contains.

The distribution that is associated to a stratiksas is defined by, = TxS

A stratification will be calleddenumerabléaf the set of strata is denumerable, and if each
stratum is aegular submanifold oN.

A stratification is callea¢oherentf the associated distribution is, as well.

Examples.
1) A foliation of N defines a coherent stratification.

2) The orbits of a Lie group that acts Nirconstitute a coherent stratification; the images of
the left-invariant vector fields on the grogjobally realize the required prolongations.
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Remark— One defines a stratification of cla@§on a manifold in an analogous fashion: the
strata will be submanifolds of of classC¥, and with the condition of coherence the vector §eld
will be of classC*™* (k= 1).

2.3. PROPOSITION. -Let Sbe a coherent stratification of a manifold I$is then locally
trivial.

This signifies that for any point [ N there exists a chag: U — R" of N atx (n = dim N)
such that:

a) @(U) =By x By, in whichB,, B, denote open cubes Bf * andRP, andp = dimension
of the stratum that passes through
b) Eachplaqueg({u} x Bp), ul Bhp is contained in a stratum &f

The proof is by recurrence gn(n arbitrary> p). The proposition is trivial fop = 0.
Suppose that it has been established for dimenpier].

Now letv OO T4S v# 0. SinceSis coherent there exists a local vector fi¥lthat is tangent
to the strata such thX(x) =v. LetH be an element of the hypersurfacélithat is transverse to
X atx. LetS'be the stratification that is induced $yn H (indeed H is transverse to the strata in
a neighborhood aof). S'is coherent.If v'J TxSn TxH, then one considers a local fieldin N)
that is tangent t& and prolongs’, and at each pointl] H one project(y) into TyH parallel to
X(y). One thus constructs a fieldkhthat is tangent t8' and prolongs’'. InH, the stratum that
passes througkis of dimensiorp — 1. From the recurrence hypothesis,détU’ — R" be a

chart ofH atx that realizes conditions a) and b) 8r It is clear that one mgyolongto a chart
#U - R™ x R (perhaps by reducing’) such thatg(X) :%, wheret denotes then™

coordinate. One therefore easily verifies tigahas properties a) and b) f& because the
integral curves of the fiel{ are traced in the strata &f

Remarks.

1) We have proved, in a precise way, thatoherent stratification at a point x is locally
trivial at x.

2) The preceding proof also works for a coherent stratifinadf classC¥, k = 2 without
modification; one will then obtain trivializations @fassC;. It is clear that a locally
trivial stratification is coherent. The preceding prsiion therefore shows that
coherence is equivalent to local triviality.

3. Transversality.

3.1. Let M andN be manifolds, wher8l is endowed with a distributioft. A differentiable
mapf: M - N is calledtransverseo A atx [1 M if:

f' (T\M) + Aq = TiN,
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wheref'denotes the linear map that is tangentf.to One may thus also speak of getl-

transverse td\. The mag is transverse td\ on a subseK [ M if it is transverse t& at any
point ofK. If K =M then one says théts transverse ta.

Remark— A submersions transverse to any distribution.

3.2. Suppose tha is endowed with a stratificatic® A mapf: M - N, which is assumed
to be at leas€?, is calledtransverse to the stratificatio8 if it is transverse to the distribution
that is associated wit®

PROPOSITION. -Letf: M - N be a map of classQk = 1) that is transverse to a
stratification S= (S)io of N Let f(S) == = () i be the partition of Mhat is defined by; =
f%(S) forany i I. Zis a stratification of clas€ of M, and:

codimy § = codimy §

if & iIs non-vacuous. Moreoveg, is denumerablgcoherent, resp.if S is denumberable
(coherent, resp.

All of these assertions are obvious, except for thetlmeteconcerns the coherence2of For
this, upon using proposition 2.3, one is immediately reducétetoase wherkis asubmersion,
and the conclusion is immediate in this situation stielocally trivial, from the rank theorem.

Remark.— If f is transverse to the stratificatid® and if coding § > dim M, then§ is
necessarily vacuous. In particular, if cogi8> dimM thenZ reduces to the trivial stratification
(viz., just one stratum that equady.

3.3. PROPOSITION. +etA be a coherent distribution on the manifold TWhe set of 1-jets
of Minto Nthat are transverse tA is an open set of the manifolt{M, N).

COROLLARY. —Let E —~ M be a vector bundle, and IAtbe a coherent distribution on the
manifold JE. For r >k, the set of sectionsof E such thatu is transverse ta is a C*-open set
onD:.

These propositions are very easy to prove.

4. Isotopy theorem.

4.1. ISOTOPY LEMMA. —Let M be a compact manifold, and letlh¢ a manifold that is
endowed with a coherent stratification Set:

H: M x[0,1] - N
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be a ¢ homotopy of Mnto N such that for any £ [0, 1] the mapH;; M — N that is defined by
Hi(X) = H(x, t) is transversal to SOne setsS= H,*(S). Therefore, if k= 2, there exists a (o0

isotopy , of Msuch that g>,) =Z; for any t[J [0, 1].

One recalls that & isotopy ofM is aC-homotopyg: M x [0, 1] — M such that for any
[0, 1], g is a €*) automorphism o, andg = identity ofM.

On the other handy(Zo) = Z; signifies that for anx O M, g: goes from the stratum &b
that passes througtto the stratum aX; that passes throug(x).

Proof. — Let = = H}(S be the €Y stratification of M'= M x [0, 1] that is defined by the
inverse image o% by H.

a) There exists a vector field Y of clag§’®nM ' such that

1) Forany yOOM', Y(y) is tangent to the strata ofaé y,
2) The "vertical” componen{viz., the one tangent to the fac{Or 1]) of Yis% at each
point.
Indeed, there exists a tangent vector that has propéitend 2) at each pointMf because
the strata ot are transverse to the “horizontal!’ x {t}. This remark, combined with the

coherence ok (cf., proposition 3.2), permits us to locally construéield that has properties 1)
and 2). A partition of unity on then permits us to cardtthe stated field.

b) The integration of the fielf (which at leasC* by hypothesis) obviously furnishes the
desired isotopy (this is where the hypothesis of compsstinéervenes).

4.2. ISOTOPY THEOREM. Let E —~ M be a vector bundle whose bddas compact, and
let Sbe a coherent stratification ofE. Let r>k + 2. For w0 T(S) O D, viz., the set of sections
wsuch thatjwis transverse to,2ne lets &J notate thestratification of Mthat is the inverse
image of Sy kaw Then, for anyw T(S), there exists an open neighborhodaf win D, such
that

a) VOT(S.

b) Forany 'OV, there exists an isotopg of M such thatp.(S,) =S, .

Indeed, from 3.3T(9S) is open inD;. Therefore, leV be aconvexopen neighborhood ab
that is included iT(9). Ifa' OV then the homotopk: M x [0, 1] — J'E that is defined by:

H(x, § = (1 -t)jkafx) + tjka'(X)

verifies the hypotheses of lemma 4.1, and the #maas established.
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4.3. Extension to the case of an arbitrary fiber bundle.Let 7 B — M be an arbitrary
locally trivial fiber bundle. LeS be a coherent stratification of the fiber bundi®. Theorem
4.2 remains valid inf(§ O I, (r =2 k + 2), viz., the set of sections of B such thatjxo is
transverse t& Indeed, one is immediately reduced to the precedingeteby using a chart of
I (cf., 1.4).

5. Sard’s theorem and the fundamental lemma of the theory.

5.1. SARD'S THEOREM. -Let M and Nbe manifolds — not necessarily €of dimensions
m and n, respectivelyLetf: M — N be a differentiable map. If the differentiability class of f is
greater than or equal tMax(1, m — n +1) then the set of regular values of f is residual iitBl
complement has measure zero jn N

(Recall thaty O N is called aregular valueof f if for anyx O f (y) the rank of atx is equal
ton.)
For a proof of this theorem, see R. Abraham, J. Raibjimpp. 37.

5.2. FUNDAMENTAL LEMMA. — Let M, V, N be manifolds, and letHM x V - N be a
C*morphism. If I Vthen one lets HM — N notate the morphism defined by(¥ = H(x, \).
Let Sbe a denumerable stratification of NF:

a) k=Max(1,m —-codimS+ 1)where m =dim M,
b) His transverse to 8n UxV, where Uis an open set of M
then the set of M V such that His transverse t& on U is dense in.V

Indeed, letp: M x V — V be the canonical projection, and Bt= H™(S) n (UxV). One
easily sees that for am{1V, H, is transverse t& onU if and only ifv is a regular value of the
restriction ofp to the manifoldS . Hypothesis a) permits us to apply Sard’'s theoremdohie
and the fundamental lemma is proved. (This is wherereserts to the hypothesis of the
denumberability oS InV, a denumerable intersection of residual sets, in¢hsesof 5.1, is
dense.)

6. The transversality theorem.

6.1. THEOREM. —Let E -~ M be a vector bundle, and letb® a denumerable stratification
of JE. For r 2 k + 1, the setT(§ of wO D, such thatixea M — JE is transverse to & a
residual set of b.

Proof (summary). — Sinc® has a denumerable basis, it suffices to show thatrpx [1 M
there exists a neighborhotdof x such that the sdi,(9 of wl D, that verify jxwis transverse
to SonU” is residual (since a denumerable intersection of rekghia is residual).
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a) Density of Ty(S). LetV be theJE at x. By a standard procedure — viz., using a
trivialization of the bundl& — one constructs@ntinuousnapP: V - D, such that:
1) kP(v) =vfor anyv OV, i.e., thatP is a prolongation.
2) P(0) =0.
3) P(v) isC” for anyv.
4) The mapH : MxV — JE, which defined by:

H (v, ¥ =jPv)(),

is asubmersioronUxV, sinceU is a sufficiently small neighborhood »fn M.
Therefore, ifwOD,., in which:

r'>k+ Max(1,m —codimS+ 1) (m=dimM),
then the mapi: M xV — JE that is defined by:

H(y, V) =jkady) +iP(V)(Y) = i+ PV))(Y)

is, moreover, a submersion oixV. From the fundamental lemma 5.2, the set sich thajw(w
+ P(v)) is transverse t& onU is dense irV. SinceP is continuous, one has proved the density
of Tu(§9 n D, inD, . However,D.. is dense iD, (Proposition 1.3), sdy(S is dense iD; .

b) One subsequently proves thai(S) is a denumerable intersection of open sets (which,
from a), are dense), and is therefore a residualstteifollowing fashion: The strata §have a
denumerable basis of neighborhoods (as regular submanifolf€€p One thus covers each
stratum with a denumerable family of closed set¥®f For each of these closed sets, the set of
wsuch thajxwis transverse oW to the corresponding distribution that is defined in prajoos
2.1 s, from 2.1 and 3.3, an open set. It is clear Thé®) is equal to the intersection of these
open sets.

Remark— In certain cases, one may add an interesting szatiah of this.

1) If codimS> m=dimM thenTy(S) is a dense open set in @rr>k + 1.
It suffices to justify “open.” However, in this casbetphrasejkwis transversal t&’ signifies
simply that for anyx O M, jka(X) does not belong to any non-open stratumJ& From
property b) of the definition of a stratification, thisfines an open set 8.

One immediately deduces from this th&®) is an open dense sethn for r > k.

2) If Sis a coherent stratification ofH thenT(S) is a dense open set in fr r >k + 1.

From the corollary 3.3., this is immediate.
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6.2. Extension to the case of an arbitrary fiber bundlelf z B - M is an arbitrary fiber
bundle andS is a denumerable stratification 8 then one has a theorem that is identical to the
preceding i, r >k + 1:

If oOT, then one proves the theorem on a neighborhoadyf reducing to the case of the
preceding theorem with the aid of the chart defined in ([TAis amounts to a linearization
technique.)

Remark.— This theorem is essentially the most general oat dhe may obtain (in finite
dimensions). For the example, the classical trasality theorem, which relates to the maps of
a manifoldM into a manifoldN that is endowed with a denumerable stratificatas a trivial
consequence of it; one applies the preceding theoreme ettions of the trivial bundiéxN -

M, when endowed with the stratificati8h= MxS

7. Case of differential forms.

We always letM be a&C” manifold with a denumerable basis. The notations #late to the
cotangent bundle d¥l are those of Il. 1. In this case, in addition tootleen 6.1, one must first
state a transversality theorem that relateddseddifferential forms.

The set of closeg-forms of clas<C¥, which we notate b»°’(M) (k= 1), is endowed with
the C*-topology that is induced from?(M). Itis also a locally convex topological vector spa
and a Baire space.

THEOREM. —Let She a denumerable stratification of°T M (the bundle of k-jets of

closed p-forms The sefl(S of wl Ssuch thatjwis transverse to & a residual set, provided
thatr=k + 1.

The proof is analogous to that of theorem 6.1. It sfito show that one may define a
“family of perturbationsP for each poink [J M that permits us to deform any closed form into
a transverse closed form in a neighborhoodxof For this, letV be the fiber atx of

NPT M (the bundle of jets of ordér+ 1 of not necessarily closgdl-forms), and leP:V -
DPY(M) be a “prolongation” that has the properties 4b§. Then the map: V — D°(M) that is

defined byP(v) = dl5(v) (in whichd denotes the exterior derivative) has the requmegberties
to achieve the proof as in 6.1.

Remarks.

1) Asin 6.1, one may confirm, moreover, thé$) is open if the codimension &fis greater
than the dimension &, or if Sis coherent.
2) The perturbations performed in the proof oftti@orem involve onlgxactp-forms. One

therefore says thai(S) is residual in each cohomology clasf(M).
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