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 In his most-interesting “Mathematischen Problemen,” Hilbert had suggested, inter alia, a very 

promising new method for deriving the criteria for the maxima and minima of simple and multiple 

integrals (**). At the basis for that new method is a theorem that, for the simplest problem in the 

calculus of variations, where one deals with the greatest or least value of a given integral: 
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with fixed values of x, y at the limits, then reads: 

 If one has found the simply-infinite family of solutions: 

 

y = Y (x, a) , 

 

which assumes the prescribed fixed value y0 for x = x0 , for the second-order differential equation 

of the problem, then one needs only to form the first-order differential equation: 

 

y  = p (x, y) , 

 

whose complete solution will be represented by that family, in order to have arrived at the function 

p = p (x, y), and at the same time, a function that makes the expression: 
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 (*) Reproduced from the Leipziger Berichten on 4 May 1903. 

 (**) Göttinger Nachrichten (1900), 291-296. 
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and therefore makes the integral: 
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independent of the choice of the function y of x as a result of the prescribed limit values (as long 

as the function under the integral sign remains continuous). 

 In what follows, we shall address the extension of Hilbert’s independence theorem to the more 

general problem: 

 

 Among all functions y1, …, yn of x that satisfy r < n given condition equations: 

 

1 1( , , , , , , )n nf x y y y y
   = 0   = 1, 2, …, r, 

 

which are mutually-independent relative to the differential quotients 1y , …, ny , possess fixed 

values at the two given limits x0 and x1 > x0 , and remain continuous between those limits, along 

with their first differential quotients, find the ones that provide a greatest or least value to the 

given integral: 
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx   . 

 

 Indeed, it will be shown that the theorem in question will follow naturally when one has 

integrated the differential equations of the problem by means of its Hamilton-Jacobi partial 

differential equation using the method of Clebsch (*), which has a very close relationship to the 

theorem. Originally, I was of the opinion that this kind of integration could be assumed to be 

known, which would then complete the proof of the theorem in a few sentences. However, in the 

foundations of the Clebsch method of integration that were known to me, there was one point that 

was not sufficiently clear to me and which will matter essentially here. For the sake of clarity, I 

have therefore ultimately preferred to preface the proof of the generalized independence theorem 

with the derivation of the canonical method of integrating the differential equations of the calculus 

of variations (**). 

 

  

 
 (*) Crelle’s Journal, 55, pp. 337-340. 

 (**) The theorem is already given correctly for the case of n = 2, in general, but only an entirely-flawed proof of it 

was produced, although one does not at all need to appeal to the partial differential equation of the problem in that 

special case, and one can also show that the integrability conditions are fulfilled without it. 
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§ 1. 

 

Integrating the differential equation of the problem by a complete solution to its Hamilton-

Jacobi partial differential equation. 

 

 If one sets: 

 

(1)      
1 1 1 1
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then the present problem will lead to the n second-order Lagrange differential equations between 

y1 , …, yn , 1 , …, r , and x : 
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i

d
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In order for that to be possible at all and well-defined for fixed limiting values of x, y1 , …, yn , the 

very next thing to address is whether the n + r equations (2) and: 

 

(3)     1 1( , , , , , , )n nf x y y y y   = 0 

 

define a system of differential equations of order 2n, i.e., their complete integration must include 

2n arbitrary constants, and once more that is identical to demanding that the n + r unknowns (*): 

 

1y , …, ny , 1, …, r . 

 Substituting its solutions: 
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to a first-order partial differential equation: 
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 (*) Cf., Leipziger Berichte (1895), pp. 138. 
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between the unknown function V and the independent variables x, y1, …, yn . 

 Therefore, if V = W is any solution of that Hamilton-Jacobi partial differential equation then 

the values: 
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will satisfy the n + r equations: 
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iy
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 = 

i

W

y
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, f = 0 , 

 

which they are solutions of, as well as the equation: 
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identically for all values of the variables x, y1, …, yn , as well as the possible arbitrary constants of 

the solution W. 

 Let a be any constant that does not merely enter into W additively. 

 If one then imagines setting the iy  and r equal to the values (5) and then differentiating the 

relations (7) partially with respect to yi and a then one will get: 
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Therefore, their solutions will satisfy equations (6), as well as the equations: 
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identically for all values of x, y1, …, yn . Now let: 

 

(9)     V = W (x, y1, …, yn , a1, …, an) + const. 
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be any particular complete solution of the partial differential equation (4). The determinant: 
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2 2 2

1 1 2 2 n n
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y a y a y a
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will not be identically zero then. Therefore, the n equations: 
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i

W

a




 = i , 

 

in which 1, …, n shall also mean arbitrary constants, will always determine the n unknowns y1, 

…, yn , and when their solutions: 

 

(12)    yi = i (x, a1, …, an, 1, …, n)  [yi] 

  

are substituted in equations (5), the latter will go to: 
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so the values (12) and (13) will satisfy equations (11), (6), (7), and (8) identically for every x, a1 , 

…, an , 1 , …, n . If one suggests the substitution of the values as in (12) and (13) by [ ] then one 

will have, on the one hand: 
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and partial differentiation with respect to x will then yield: 
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On the other hand, from (8), one has: 
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and when one adds those identities to the foregoing ones, that will yield: 
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Now since the determinant (10) is non-zero, by its nature, and is entirely free of the undetermined 

quantities 1 , …, n , it also cannot vanish identically as a result of equations (11). Therefore, the 

determinant of the n linear homogeneous relations (15) will not be identically zero either, and as a 

result those relations will demand that one must have: 

 

[ ]
[ ]h

h

y
y

x


−


  0 

 

in each case, which will make the relations (14) reduce to: 

 

ix y

   
 

  
  

iy

  
 

 
 , 

 

i.e., since one also has that each [f]  0, one has, however: 

 The differential equations (2) and (3) will be integrated completely by way of the solutions 

(12) and (13) to equations (11) and (6), which are solutions that will, at the same time, fulfill the 

equation (7) identically for all arbitrary values of a1 , …, an , 1 , …, n , and in general one has: 

 

(16)  
[ ]hy

x




  [ ]hy  . 

 

With that, we have achieved the canonical method of integrating the differential equations of our 

problem, and we can now move on to the derivation of Hilbert’s independence theorem. 
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§ 2. 

 

Connection between the Hamilton-Jacobi partial differential equation  

and the Hilbert independence theorem. 

 

 The problem in question prescribes fixed given values for the functions y1, …, yn at the two 

fixed limits x0 and x1 . If one then lets y10 , …, yn 0 denote the given initial values of the y then in 

order for the problem to be soluble, the n equations (12), along with the n equations: 

 

(17) yi 0 = i (x0, a1 , …, an , 1 , …, n) 

 

must also be soluble for their 2n arbitrary constants a and , or in other words, the last n equations 

must be soluble for n of those constants, and after substituting the solutions, the n equations (12) 

must determine the remaining n constants. 

 However, when one sets: 

 

(18)    W0  W (x0, y10 , …, yn 0 , a1 , …, an , 1 , …, n) , 

 

equations (11) will directly imply the n equations: 

 

(19)      0( )

k

W W

a

 −


 = 0 , 

 

and when the initial values x0, y10, …, yn 0 are considered to be given, those equations will determine 

the unknowns y1, …, yn as functions of merely x and the n arbitrary constants a1, …, an . 

 Let: 

 

(20)      yi = Yi (x, a1 , …, an)  

 

be the solutions of equations (19) for the n unknowns yi that assume the values yi = yi0 for x = x0 . 

 Hence, at the same time, equations (19) will always possess solutions: 

 

(21) ak = Ak (x, y1, …, yn)  {ak} 

 

for the n unknowns ak that fulfill equations (20) identically, so they will also be once more 

solutions of those equations, and when one substitutes the values (20) in equations (5), from (16), 

one will get a system of values for the iy  and r : 

 

(22)     
1

1

( , , , ) ,

( , , , ) ,

i
i i n

n

Y
y Y x a a

x

L x a a 


 = 


 =
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and together with the values (20) for the yi , they satisfy equations (6) and (7) identically for every 

a1, …, an , whereby, at the same time, the values of the yi and  will define a system of particular 

solutions to the differential equations (2) and (3) with only n arbitrary constants a1, …, an . 

 Now, the values (21) for the ak , which might be emphasized by { }, fulfill equations (20) 

identically when they are substituted, and that will convert the values (22) for the iy  and  into 

functions of just x, y1, …, yn . If we denote those functions by pi and  , so we define: 

 

(23)    pi  iY

x

 
 

 
 ,    {L} , 

 

then the substitution { } will take equations (20) and (22) to the identities and equations: 

 

(24)    yi  yi  and iy  = pi ,   =  , 

 

of which the n equations: 

iy  = pi 

 

define a system of first-order differential equations that will be integrated completely by equations 

(20) (*). 

 Finally, f , f , and   might denote the functions that arise from f, f , and , resp., by the 

substitutions (24) when one initially regards the pi and  as arbitrary variables. 

 The values (20) and (22) satisfy equations (6) and (7) identically for all values of a1, …, an . 

Those identities can therefore not be eliminated by substituting the values (21) for the ak . 

However, from (24) and the definitions that were just given, they will then go to: 

 

ip

 


  

i

W

y

 
 

 
 , f   0 , 

1

n

i

i i

p
p=

 
 −


   

W

x

 
 

 
 , 

 

in which the pi and  are naturally understood to mean the well-defined functions of x, y1, …, yn 

that are defined by (23). Those identities show that for all arbitrary functions y1, …, yn of x, one 

will have the relation: 

1

( )
n

i i

i i

f y p
p=


+ −


   

1

n

i

i i

W W
y

x y=

   
+   

    
 . 

 
 (*) Equations (20) reduce to yi = yi0 for x = x0 , and therefore they will no longer determine the unknowns ak at all. 

Thus, their solutions (21), and with them the functions pi and  , will necessarily assume the undefined form 0 / 0 at 

the location x = x0 where the yi are prescribed the given initial values yi0 , i.e., the initial values of the functions {ak}, 

pi , and  are still not determined by the initial values of the functions y alone, but will also still depend upon the 

initial values of the differential quotients of those functions. In particular, the definition of the pi and the way that 

equations (21) arose from equations (20) shows that for any system of functions y1, …, yn that possesses the given 

initial values, the initial values of the pi will be nothing but the initial values of the differential quotients 
iy  . 
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On the other hand, when one also converts the function W – W0 to a function of only x, y1, …, yn 

by the substitution { }, one will have: 

 

0{ }d W W

dx

−
  0

1 1

( ) { }n n
k

i

i ki k

W W d aW W
y

x y a dx= =

    −  
+ +     

       
   , 

 

and the values (21) of the ak will also be solutions of equations (19), so one will have: 

 

0( )

k

W W

a

  −
 

 
  0 

 

for each of them. The following formula ensues directly from the two foregoing identities: 

 

(26)    
1

( )
n

i i

i i

f y p
p=


+ −


   0{ }d W W

dx

−
 , 

 

which is nothing but the canonical form of Hilbert’s independence theorem, and from it, for all 

functions y1, …, yn that possess the fixed initial values y10, …, yn0 at the location x = x0 and keep 

the function {W – W0} continuous between the limits x0 and x, it will follow that: 

 

(27)    

0
1

( )

x n

i i

i ix

f y p dx
p=

  
+ − 

 
   {W – W0} . 

 

 Although that result already suffices to enable one to represent the desired extension of the 

independence theorem to full generality, let me make the following remarks, which are irrelevant 

to that extension itself, because the general relations between the Hamilton-Jacobi partial 

differential equation (4) and the problem of making the expression: 

 

(28)     
1

( )
n

i i

i i

y p
p=


 + −


  

 

become a complete differential quotient, and along with that, also satisfying the r finite equations: 

 

(29) f  = 0 , 

 

on the one hand, while also shedding a brighter light upon the last problem and the integration of 

the differential equations (2) and (3), on the other. 

 Any system of functions p1, …, pn , 1, …, r of x, y1, …, yn for which the expression (28) 

becomes a complete differential quotient and which simultaneously satisfy equations (29) 
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identically, one can in fact, by means of merely a quadrature, add a function V of the same variable 

that will make the functions considered also satisfy the equation: 

 

(30) 
1

( )
n

i i

i i

y p
p=


 + −


  = 

dV

dx
 

 

identically. However, those functions will then fulfill the equations: 

 

1

n

i

i i

p
p=

 
 −


  = 

V

x




 

and 

 

(31)     
ip

 


 = 

i

V

y




, f  = 0 

 

identically, and therefore the function V will be a solution of the first-order partial differential 

equation that arises when one eliminates the n + r quantities pi and  from the foregoing equation 

by means of the last n + r equations, i.e., it will even be a solution of the Hamilton-Jacobi partial 

differential equation (4). (Hence, our function {W – W0} will also be such a thing then, which 

should also be obvious, moreover). Conversely, one will obtain a system of functions p1, …, pn , 

1, …, r from any solution V of that equation that will fulfill equations (29) and (30) identically 

when one solves the n + r equations (31) for those n + r unknowns. 

 However, in order for the p and  to be functions of x, y1, …, yn that make the expression: 

 

1

( )
n

i i

i i

y p
p=


 + −


   B + 

1

n

h h

h

B y
=

  

 

into a complete differential quotient, they must satisfy the n + n (n – 1) / 2 integrability conditions: 

 

i

i

B B

x y

 
−

 
 = 0 , i h

h i

B B

y y

 
−

 
 = 0 

 

identically. As a result of the last one, one can replace the first n of them with: 

 

1

n
i i h

i

hi h i

B B BB
p

x y y y=

   
− + − 

    
  = 0 . 

 

Moreover, since the partial differential quotients of the ph drop out, one will have: 
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i

B

y




  

1

n

h

hi h

p
y p=

   
 − 

  
   

1 1

r n

h

hi i i h

f p
y y y p








= =

   
+ −

   
   . 

Since: 

Bh  
hp

 


, 

the integrability conditions can then be written: 

 

(32) 
1

n

h

hi i h i

p
x p y p y=

    
+ −

    
  = 

1

r

i

f
y








=




 , 

 

(33) 
h i i hy p y p

   
−

   
 = 0 , 

 

in which one first considers the dependency of the p and  on x, y1, …, yn in the second partial 

differentiations. 

 From just those remarks, every solution V to the Hamilton-Jacobi partial differential equation 

(4) will produce a system of solutions p1, …, pn, 1, …, r of those n + n (n – 1) / 2 first-order 

partial differential equations (29) that simultaneously satisfy the r finite equations (29), and the 

most general system of solutions of that type will be defined by equations (31) when one 

understands the V in them to mean the general solution of equation (4). 

 Finally, if the pi and  are functions of x, y1, …, yn that fulfill equations (29) and (32) 

identically, and one constructs the n first-order differential equations and r finite equations: 

 

(34)   iy  = pi (x, y1, …, yn) ,   =  (x, y1, …, yn) 

 

from those functions then one will see immediately from the form of equations (32) that the 

complete solutions of equations (34) are, at the same, solutions of the differential equations (2) 

and (3) as well. Hence, from the foregoing, along with our previous equations (24), there are also 

infinitely-many other systems of equations (34) that possess the double property that their 

complete integration will also produce solutions of the differential equations (2) and (3) and along 

their right-hand sides, the expression (28) will also be a complete differential quotient, which 

immediately includes the known theorem that any solution of their Hamilton-Jacobi partial 

differential equation will be associated with solutions of the differential equations (2) and (3) with 

n new arbitrary constants. 

 By contrast, the integrability conditions (33) are not merely consequences of the conditions 

(32) and equations (29). Therefore, it will no longer be true that the right-hand sides of any system 

of equations (34) whose complete solutions likewise satisfy the differential equations (2) will be 

functions that make the expression (28) into a complete differential quotient, as one would have 

in the case of n = 1. 
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§ 3. 

 

General statement for Hilbert’s independence theorem. 

 

 With the result that was obtained in (26) that the expression: 

 

1

( )
n

i i

i i

f y p
p=


+ −


  

 

will be a complete differential quotient for the functions pi and  that are defined by (23), the 

extension of Hilbert’s independence theorem to the present problem has been achieved and 

proved, although, of course, only under the assumption that one has introduced canonical constants 

a1, …, an, 1, …, n into the complete solutions: 

 

  yi  = i (, a1, …, an, 1, …, n) , 

   =  (, a1, …, an, 1, …, n) 

 

to the differential equations of the problem. However, since our functions: 

 

Yi ,  
iY

x




, and L 

must emerge from the functions: 

i ,  
i

x




, and   

 

respectively, when one substitutes the solutions 1, …, n of the n equations (17) in them, one can 

briefly say that: One obtains the functions pi and  that were defined in (23) when one uses the 

2n equations: 

  i (x0, a1, …, an, 1, …, n) = yi 0 , 

  i (x , a1, …, an, 1, …, n) = yi 

 

to eliminate the 2n canonical constants a1, …, an, 1, …, n from the equations: 

 

pi = i

x




,  =  . 

Now, if the equations: 

 

(35)   yi = i (x, c1, …, c2n) ,   = X (x, c1, …, c2n)  

 

represent any system of complete differential solutions of the differential equations (2) and (3) 

then there must necessarily be 2n substitutions that are free of x and take the form: 
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(36)    ch = Ch (a1, …, an, 1, …, n) 

 

that make: 

i  i ,  X   , 

and therefore also: 

i

x




  i

x




, 

 

and one can then obtain our functions pi and  in such a way that one can use the 4n equations 

(36) and: 

 

(37)   i (x0 , c1, …, c2n) = yi 0 , i (x , c1, …, c2n) = yi 

 

to eliminate the 4n constants: 

c1, …, c2n , a1, …, an, 1, …, n 

from the formulas: 

(38)     pi = i

x




,  = X . 

 

However, the constants a and  can be eliminated due to the fact that one can skip the 

transformation formulas (36) completely, and one will then need to eliminate only the 2n 

integration constants c from (38) by means of the 2n equations (37). If we do not perform that 

elimination all at once, but in two steps, then we can express our result in general in the form: 

 

 If one uses the function: 

 

  f (x, y1, …, yn , 1 1 1

1

, , ) ( , , , , , , )
r

n n ny y f x y y y y 



=

   +  

 

 to construct the n + r differential equations: 

 

i

d

dx y

 


 = 

iy

 


, f = 0 , 

 

and one has found any system of complete solutions: 

 

yi = i (x , c1, …, c2n) ,   = X (x , c1, …, c2n) 

 

to it then one can determine n of the 2n integration constants c1, …, c2n in terms of the n remaining 

ones from the n equations: 

i (x, c1, …, c2n) = yi 0 . 



Mayer – On Hilbert’s independence theorem. 14 
 

If the complete solutions go to the particular solutions (for fixed given x0, y10, …, yn0) with only n 

constants c1, …, cn that are still arbitrary when one substitutes the solutions: 

 

yi = Yi (x, c1, …, c2n) ,    = L (x, c1, …, c2n) 

 

then one needs only to appeal to the first n of the latter equations to eliminate those constants from 

the n + r equations: 

iy  = iY

x




,  = L 

 

in order to obtain functions of x, y1, …, yn in the right-hand sides of the equations that arise in that 

way: 

 

()      iy  = pi ,  =  

that make the expression: 

1

( )
n

h h

h h

f y p
p=

 
+ −


  

 

into a complete differential quotient and satisfy the r equations: 

 

f  = 0 

identically, moreover. 

 

 In those expressions,  , f , f   mean the functions of x, y1, …, yn , p1, …, pn , 1, …, r that 

arise from , f, f , resp., and the first n of those substitutions define a system of first-order 

differential equations that will be integrated completely by the n equations yi = Yi . 

 

 If one would like to prove that theorem independently of the Hamilton-Jacobi partial 

differential equation then one would have to show that the functions p1, …, pn , 1, …, r that are 

obtained in the given way satisfy the n + n (n – 1) / 2 first-order partial differential equations (32) 

and (33). Indeed, that is immediately obvious for equations (32) and can also be verified in the 

case n = 2 without any laborious calculation for the one equation to which the system (33) will 

then reduce. However, producing such a direct proof for equations (33) would seem to present 

significant difficulties in the general case. 

 

 

__________ 



“Über den Hilbertschen Unabhängigkeitssatz in der Theorie des Maximums und Minimums der einfachen Integrale. 

II” Math. Ann. 62 (1906), 335-350. 

 

 

On Hilbert’s independence theorem in the theory of the maximum 

and minimum of a simple integral (*) 
 

Part II. 

 

By 

 

A. Mayer in Leipzig. 

 

Translated by D. H. Delphenich 

_________ 

 

 

 In my communication on Hilbert’s independence theorem (**), I had only one goal in mind, 

that of arriving at the particular form of that theorem that would relate the Weierstrass E-function 

to the special extremal field for the problem in the calculus of variations that was posed that would 

lead directly to Jacobi’s criterion for conjugate points (***). It was only recently that I noticed that 

this special, but generally quite important, form of the theorem essentially emerges from the fact 

that one completely integrates Hamilton’s partial differential equation for the problem by the 

Jacobi-Hamilton method. However, with that in mind, it was immediately clear to me from the 

outset that one must be able to arrive at the general solution of the Hilbert problem upon whose 

solution the independence theorem is based (†) when one employs just the general Cauchy method 

(††) instead of that special method in order to integrate the partial differential equation of the 

problem, and following through on that line of reasoning showed that the solution thus-obtained 

does, in fact, encompass all possible solutions of that problem, but is even more general than the 

independence theorem itself. That result shall be developed in what follows independently of the 

previous one and without assuming that the Cauchy method is known. 

  

 
 (*) Reproduced from the Leipziger Berichten on 1 May 1905 in a somewhat-altered form. 

 (**) These Annals, Bd. 58, pp. 235-248. 

 (***) Cf., Bolza, Lectures on the calculus of variations, Chicago, 1904, pps. 91, 60, 82. The heading of § 3 in my 

first was not chosen correctly and might perhaps read: “Liberating Hilbert’s independence theorem from Hamilton’s 

partial differential equation.” 

 (†) Previously, I had considered that problem to be virtually identical to the independence theorem itself because 

the latter follows immediately from the former. However, it is much clearer, and also more correct, to treat both 

separately. 

 (††) Cf., these Annals, Bd. 3, pp. 447-8. 
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§ 1. 

 

The connection between the problem in the calculus of variations and the Hilbert problem. 

 

 As before, we shall once more address the problem in the calculus of variations: 

 

 I. – Among all functions y1, …, yn of x that satisfy r < n given first-order differential equations: 

 

(1)    
1 1( , , , , , , )n nf x y y y y

   = 0  ( = 1, 2, …, r) 

 

that are soluble for r of the differential quotients y , …, ny , possess fixed values at two given 

limits x0 and x1 > x0 , and remain continuous between those two limits, find the ones for which the 

given integral: 
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx   

attains a greatest or least value. 

 

 That problem will be solved by the n + r differential equations: 

 

(2)     
i

d

dx y

 


 = 

iy

 


, f = 0 , 

in which one has: 

(3)        f + 
1

r

f 



=

 , 

 

and it can be possible and well-determined only when the n + r equations: 

 

(4)      
iy

 


 = vi , f = 0 

are soluble for the n + r unknowns: 

1y , …, ny , 1, …., r . 

Let: 

(5)     
1 1

1 1

( , , , , , , ) ,

( , , , , , , )

i i n n

n n

y p x y y v v

x y y v v  

 =


=
 

 

be those solutions, and upon substituting them, one will have: 

 

(6)     
1

n

i

i i

y
y=

 



  −  = H (x, y1 , …, yn , v1 , …, vn) . 
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With that equation, the values (5) also satisfy the equations: 

 

iy  = 
i

H

v




, − 

iy

 


 = 

i

H

y




 

 

identically. The introduction of the variables v in place of the differential quotients y  and the 

multipliers  then converts the differential equations (2) into the 2n canonical differential 

equations: 

(7)     idy

dx
 = 

i

H

v




,  idv

dx
 = − 

i

H

y




. 

 

 When one substitutes any system of solutions: 

 

yi = yi (x) ,  =  (x) 

 

to the differential equations (2) in the equations: 

 

vi = 
iy

 


 , 

 

one will get a corresponding system of solutions: 

 

yi = yi (x) , vi = vi (x) 

 

to the differential equations (7), and conversely when one substitutes any system of solutions to 

the latter differential equations in the last r of equations (5), it will once more produce a system of 

solutions to the differential equations (2) that likewise satisfy equations (5) identically for the 

solutions to the differential equations (7) under consideration. 

 Assuming that, I will show that instead of: 

 

1y , …, ny , 1 , …., r , 

one should write: 

p1 , …, pn , 1 , …., r , 

 

and indicate that by inclusion within | | , and thus define: 

 

(3)      |  |  | f | + 
1

| |
r

f 



=

  , 

and in general: 

 

| f |  f (x, y1 , …, yn , v1 , …, vn) , 
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and I will now investigate the connection that exists between Problem I and the following Hilbert 

problem: 

 

 II. Determine the variables p1 , …, pn , 1 , …., r as functions of x, y1 , …, yn such that the 

expression: 

(8)      |  | + 
1

| |
( )

n

i i

i i

y p
p=

 
 −


 , 

 

in which y1 , …, yn are considered to be undetermined functions of x, will be a complete differential 

quotient, and at the same time satisfy the r conditions: 

 

(1)       | f | = 0 

 

identically. 

 

 If (8) is a complete differential quotient then there will exist a function of x, y1 , …, yn , for 

which one has: 

(9)     |  | + 
1

| |
( )

n

i i

i i

y p
p=

 
 −


   

dV

dx
, 

 

and which one will find with that Ansatz by a mere quadrature. 

 However, the requirement (9) decomposes into the 1 + n identically-fulfilled conditions: 

 

(10)    |  | − 
1

| |n

i

i i

p
p=

 


   

V

x




, 

 

(11)     
| |

ip

 


 = 

i

V

y




 . 

 

When combined with the r condition equations (1), the n equations (11) now determine: 

 

p1 , …, pn , 1 , …., r 

as functions of: 

x, y1 , …, yn , 
1

V

y




, …, 

n

V

y




, 

 

and indeed, they imply the meaning of equations (5) as a result: 
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(5)     

1

1

1

1

, , , , , , ,

, , , , , , .

i i n

n

n

n

V V
p p x y y

y y

V V
x y y

y y
  

   
=  

   


  
=     

 

 

 From definition (6) of the function H, moreover, the substitution of those values will take 

equation (10) to the first-order partial differential equation between V and the n + 1 independent 

variables x, y1, …, yn : 

(12)    1

1

, , , , , ,n

n

V V V
H x y y

x y y

   
+  

   
 = 0 . 

 

 That immediately implies the theorem: 

 

 III. From every system of functions p1 , …, pn , 1 , …., r that solve Problem II, one will obtain 

a solution V by a simple quadrature such that the partial differential equation (12) will be coupled 

with those functions by the relations (5). Conversely, when any solution V to that partial 

differential equation is substituted in equations (5), that will yield a system of solutions to Problem 

II. 

 

 Furthermore, the expression (8) has the form: 

 

|  | + 
1

| |
( )

n

i i

i i

y p
p=

 
 −


   B + 

1

n

h h

h

B y
=

  . 

 

 Any system of functions p and  that satisfies the requirement (9) must then fulfill the n + n (n 

– 1) / 2 conditions: 

i

i

B B

x y

 
−

 
 = 0 , i h

h i

B B

y y

 
−

 
 = 0 

identically. 

 One can use the last of them to replace the first n of them with the following n : 

 

1

n
i i h

h

hi h i

B B BB
p

x y y y=

   
− + − 

    
  = 0 . 

 However, one has: 

Bh  
| |

hp

 


, 

 

and since the partial differential quotients of the functions ph drop out by themselves: 
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i

B

y




  

1

| |
| |

n

h

hi h

p
y p=

   
 − 

  
   

1 1

| | | |
| |

r n

h

hi h i h

f p
y p y p








= =

    
+ −

   
  . 

 

 As a result of the condition equations (1) that one further prescribes, the integrability 

conditions of the expression (8) can then be written: 

 

(13)    
1

| | | |n

h

hi h i

p
x p y p=

     
+

   
  = 

| |

iy

 


 , 

 

(14)     
| |

h iy p

  

 
 = 

| |

i hy p

  

 
 , 

 

and upon performing the second partial differentiations, the first n of them will become: 

 

(13) 

2 2 2

1 1 1 1 1

| || | | | | |

| |
.

n n n r n
k k

h h h

h k h hi i i i k i h i h

i

fp p
p p p

p x p y p p x x p x y

y

  



 

= = = = =

            
+ + + + +    

              


  =
 

    
 

 

 On the other hand, if one couples the functions y1 , …, yn , 1 , …, r with any system of 

solutions to Problem II by means of the n + r equations: 

 

(15)      ky  = pk    

and 

(16)       =  

 

then differentiating those equations will imply that: 

 

ky  = 
1

n
k k

h

h h

p p
p

x y=

 
+

 
  , 

 

  = 
1

n

h

h h

p
x y

  

=

 
+

 
  . 

 

Furthermore, |  | and | f | once more go back to the original functions  and f , and the conditions 

(13) will then become: 

 
2 2 2

1 1 1

n n r

h i

h ki i i i k i

f
y y

y x y y y y y







= = =

     
  + + +

         
    = 

iy




, 



Mayer – On Hilbert’s independence theorem. II 7 
 

i.e., those conditions and the conditions (1) will be converted into the equations: 

 

(2)      
i

d

dx y




 = 

iy




, f = 0 . 

 

 Hence, as long as p1 , …, pn , 1 , …., r are functions of x, y1, …, yn in equations (15) and (16) 

that fulfill the conditions (1) and (13) identically, the functions y1 , …, yn , 1 , …, r of x that one 

obtains by completely integrating the n differential equations (15) and substituting the solutions in 

equations (16) will be solutions with n arbitrary constants of the differential equations of Problem 

I. 

 It will then further follow directly from Theorem III: 

 

 IV. Any solution V to the partial differential equation (12) will belong to a system of solutions 

y1 , …, yn , 1 , …, r  to the differential equations (2) with n arbitrary constants, relative to which 

the solutions y1 , …, yn are mutually independent, and one will get that system of solutions when 

one completely integrates the first n of them, which define a system of first-order differential 

equations between y1 , …, yn and x, and substitutes their solutions in the last r equations in (5). 

 

 

§ 2. 

 

Derivation of a certain system of solutions to the differential equations (2) with n arbitrary 

constants from the complete solutions to those equations. 

 

 However, let us return to the differential equations (2) and their canonical form! 

 Let: 

 

(17)   yi = i (x, c1 , …, c2n) ,  vi = i (x, c1 , …, c2n) 

 

be the complete solutions to the differential equations (7) that are obtained with the help of the 

equations: 

vi = 
iy




 

from any known system of complete solutions: 

 

(18)   yi = i (x, c1 , …, c2n) ,   =  (x, c1 , …, c2n) 

 

to the differential equations (2). 

 If a is a new arbitrary constant or also just any value of x that is determined in such a way that 

the 2n equations (17) will also remain soluble for their 2n integration constants c1 , …, c2n when x 

= a then one can introduce the initial values: 
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ai = i (a, c1 , …, c2n) , bi = i (a, c1 , …, c2n) 

 

for the variables yi and vi for x = a as new arbitrary constants instead of the latter and in that way 

obtain a new complete system of solutions for the differential equations (7) that have the form: 

 

(19)    
1 1

1 1

( , , , , , , ) ,

( , , , , , , ) ,

i i n n

i i n n

y y x a a b b

v v x a a b b

=


=
 

in which one has: 

yi (a, a1 , …, an , b1 , …, bn)  ai , 

vi (a, a1 , …, an , b1 , …, bn)  bi . 

 

When one then makes an arbitrary choice of the function: 

 

A  A (a, a1 , …, an) 

in order to set each: 

bh = 
h

A

a




, 

 

that new complete system of solutions will itself once more produce a new system of solutions to 

the differential equations (7): 

 

(20)  

1 1 1

1

1 1 1

1

, , , , , , ( , , , , , , ) ,

, , , , , , ( , , , , , , )

i i n i n n

n

i i n i n n

n

A A
y y x a a y x a a b b

a a

A A
v v x a a v x a a b b

a a

   
=   

   


  
=     

 

that will yield: 

yi = ai ,  vi = 
i

A

a




, 

 

and that system corresponds to the system of solutions to the differential equations (2): 

 

(21)   yi = 1( , , , )i ny x a a ,   =  (x, a1, …, an) 

 

whose last r equations emerge from the last r equations in (5) by substituting the values (20). Its n 

arbitrary constants a1, …, an are the initial values of the solutions y1, …, yn for x = a, and from pp. 

3, the equations: 

(5)    
1 1

1 1

( , , , , , , ) ,

( , , , , , , )

i i n n

n n

y p x y y v v

x y y v v  

 =


=
 

will be satisfied identically. 
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 As a result of the way that equations (19) arise from equations (17), and they, in turn, from 

equations (18), one will obtain those generally particular solutions of the system (2) from its 

complete solutions (18) directly in such a way that one introduces the latter into the equations: 

 

(22)   i (a, c1 , …, c2n) = ai , 
i x a

y
=

 
 

 
= 

i

A

a




 

 

and then eliminates the 2n integration constants c1 , …, c2n from them by means of those 2n 

equations. 

 

 

§ 3. 

 

The system of solutions to the differential equations (2) that was obtained corresponds to a 

well-defined solution V to the partial differential equation (12), in the sense of Theorem IV. 

 

 If one indicates the substitution of the solutions (20) to the differential equations (7) that were 

just obtained by an overbar and defines V as a function of x, a1, …, an by the formula (*): 

 

(23)    V  A (a, a1, …, an) + 
1

x n

h

h ha

H
v H dx

v=

 
− 

 
  

 

then upon partial-differentiating with respect to ak , one will get: 

 

k

V

a




  

1

x n
h

h

hk k h h ka

yA H H
v dx

a a v y a=

    
+ − 

     
 . 

 

However, from (7), one has: 

h

H

v




 hy

x




, 

h

H

y




 − hv

x




, 

 

so the sum under the integral sign possesses the value: 

 

 
 (*) The integral in that formula is identical to the one that arises from: 

 
x

a

dx       or      
x

a

f dx  

 

upon substituting the solutions (21), while on the other hand, the following argument will itself likewise yield the 

Cauchy method of integrating the partial differential equation (12). 
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2

1

n
h h h

h

h k k

y v y
v

x a x a=

   
+ 

    
   

1

n
h

h

h k

y
v

x a=



 
 . 

Moreover, one will have: 

hy   ah , hv   
h

A

a




 

for x = a, and therefore: 

 

1

x
n

h
h

h k a

y
v

a=

 
 

 
   

1

n
h h

h

h k h k

y aA
v

a a a=

  
− 

   
   

1

n
h

h

h k k

y A
v

a a=

 
−

 
  , 

 

so all that will remain is: 

(24)     
k

V

a




  

1

n
h

h

h k

y
v

a=




  . 

Having established that, let: 

 

(25)     ai = ai (x, y1, …, yn)  (ai) 

 

be the solutions to the first n equations in (20), so the n equations: 

 

(26)     yi = iy  (x, a1, …, an) , 

 

in terms of their n arbitrary constants a1, …, an . The substitution of those solutions, which will be 

indicated by ( ), takes the function (23) to the function: 

 

(27)     (V)  W (x, y1, …, yn) . 

 

Now equations (26) reduce to yi = ai for x = a, so their solutions (25) must also yield ai = yi for x 

= a. However, from (23), one will have: 

 

V = A (a, a1, …, an) 

 

for x = a. The new function W will next possess the property that it assumes the value: 

 

W = A (a, y1, …, yn) 

 

for x = a then. It follows further from the way that it came about that: 

 

i

W

y




  

1

( )n
k

k k i

aV

a y=

  
 

  
 , 

so from (24): 
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i

W

y




  

1 1

( )
( )

n n
h k

h

h k k i

y a
v

a y= =

  
 

  
  . 

 

However, since equations (25) are the solutions to equations (26), one will have: 

 

yh  ( )hy  , 

and therefore, at the same time: 

h

i

y

y




  

1

( )n
h k

k k i

y a

a y=

  
 

  
 ; 

one will then get simply: 

(28) 
i

W

y




  ( )iv  . 

 

 Finally, it follows from the definition (24) that: 

 

(29)     
dV

dx
  

1

n

h

h h

H
v H

y=


−


 . 

 

Furthermore, equations (26) are, conversely, once more the solutions of their solutions (25). The 

substitution of the latter will then once more be inverted by the substitution of the values (26). 

From (27), one will then have: 

 

(27)      V  W , 

 

and from (28): 

(28) 
i

W

y




  iv  . 

 On the other hand, one will also have: 

 

dV

dx
  

1

n
h

h h

yW W

x y x=

 
+

  
  

 

then, or from (28), and since the overbar indicates the substitution of the solutions (20) to the 

system (7): 

dV

dx
  

1

n

h

h h

W H
v

x v=

 
+

 
 , 

 

and from (29) and (28), it will follow from this that: 
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W
H

x


+


  1

1

, , , , , ,n

n

W W W
H x y y

x y y

   
+  

   
  0 . 

 

However, one can once more invert the substitutions (26) in that identity with the substitutions of 

their solutions (25), and in that way, one will see that V = W is a solution of the partial differential 

equation: 

(12)    1

1

, , , , , ,n

n

V H H
H x y y

x y y

   
+  

   
 = 0 . 

 

 Finally, if one observes that equations (5), which our solutions (21) to the differential 

equations (2) satisfy identically, go to the identities: 

 

iy  = 1

1

, , , , , ,i n

n

W W
p x y y

y y

  
 

  
 , 

 

 = 1

1

, , , , , ,n

n

W W
x y y

y y


  
 

  
 

 

by way of the identities (28) then one can now state the theorem: 

 

 V. If one has integrated the differential equations (3) completely and eliminated the 2n 

integration constants c1, …, c2n from the complete solutions that were obtained: 

 

yi = i (x, c1, …, c2n) ,   =  (x, c1, …, c2n) 

 

with the help of the 2n equations: 

i (x, c1, …, c2n) = ai ,  
i x a

y
=

 
 

 
= 

i

A

a




, 

 

in which a is a new arbitrary constant or also a suitably-chosen well-defined value of x, then one 

will get a new system of solutions to those differential equations: 

 

yi = iy  (x, a1, …, an) ,   =  (x, a1, …, an) , 

 

whose n arbitrary constants a1, …, an are the initial values of the variables y1, …, yn for x = a, and 

those new solutions to the differential equations (2) will belong to a certain solution V = W to the 

partial differential equation (12), and indeed a solution that assumes the value: 

 

W = A (x, y1, …, yn) 
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for x = a in such a way that it will satisfy the n + r equations (5) identically for V = W. 

 

 

§ 4. 

 

Significance of Theorem V. 

 

 If we let the initial value a of x be entirely arbitrary in the foregoing then we can also partially 

differentiate (*) formula (23) with respect to a and then get: 

 

V

a




 

1 1 1

n n n
h h

h h h

h h hh x ax a

y yA H
v H v v

a v a a= = = ==

      
− − + −        

    

 

in the same way that led to formula (24), i.e., since: 

 

hy  = ah , hv  = 
A

a




, 

h

H

v




 = h

x a

y

x =

 
  

 

for x = a, we will have: 

 

V

a




  1

1 11

, , , , , ,
n n

h h h
n h

h h x an h

y y yA A A A
H a a a v

a a a a a x a= = =

         
+ + − +           

  . 

 

However, hy  now has the form: 

hy   hy  (x, a, a1, …, an) . 

 

It will then follow from ah  [ ]h x ay =  upon partially-differentiating with respect to a that: 

 

0  ha

a




  h h

x a

y y

x a =

  
+   

, 

and therefore, all that will remain is: 

 

V

a




  1

11

, , , , , ,
n

h
n h

hn

yA A A
H a a a v

a a a a=

    
+ + 

    
 . 

 

On the other hand, one will indirectly obtain from the formula: 

 

(27)      V  W  

 
 (*) The following calculation is essentially the same as the one that led to the second Hamilton partial differential 

equation in Problem I. 
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upon partially-differentiating with respect to a that: 

 

V

a




 

1

n
h

h h

yW W

a y a=

 
+

  
 , 

or from (28): 

V

a




 

1

n
h

h

h

yW
v

a a=


+

 
 , 

 

and a comparison of those two values for V / a will immediately yield the formula: 

 

(30)    
W

a




  1

1

, , , , , ,n

n

A A A
H a a a

a a a

   
+  

   
 . 

 

Therefore, in particular, if the function: 

 

V = A (x, y1, …, yn) , 

 

which is free of a, is itself a solution to the partial differential equation (12) then that will imply 

that: 

W

a




  0 , 

 

and thus, at the same time, when one again inverts the solutions (26) by substituting their solutions 

(25): 

W

a




  0 , 

 

i.e., the new solution V = W that is derived from (23) will then be free of a, as well. However, it 

will take on the value: 

W = A (x, y1, …, yn) 

 

for x = a, and since every function F (x, y1, …, yn) that is free of the arbitrary constant a is already 

given immediately by its value F (a, y1, …, yn) for x = a, it will coincide entirely with the solution: 

 

V = A (x, y1, …, yn) . 

 

Hence, in order to obtain a system of solutions to the differential equations (2) that satisfies 

equations (5) for an arbitrary given solution: 

 

V = F (x, y1, …, yn) 
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to the partial differential equation (12), one needs only to let the constant a in Theorem V be 

completely arbitrary and take: 

A (a, a1, …, an)  F (a, a1, …, an) . 

 

 However, from Theorem III, any system of solutions p1 , …, pn , 1 , …, r to Problem II is 

coupled with a solution V to the partial differential equation (12) by equations (5), and from 

Theorem IV, any such solution V will correspond to a system of solutions y1 , …, yn , 1 , …, r to 

the differential equations (2) that satisfies equations (5). One then sees that: 

 

 VI. After completely integrating the differential equations (2), Theorem V will allow one to 

obtain any system of solutions at all to those differential equations that are related to any system 

of solutions to Problem II by: 

 

()      iy  = pi ,  =  . 

 

Indeed, the simultaneous discovery of such associated solutions to the differential equations (2) 

and Problem II from Theorem V and the identities (28) will then immediately produce the rule: 

 Once one has derived the new system of solutions: 

 

(21)   xi = iy  (x, a1, …, an) ,   =  (x, a1, …, an) 

 

from the complete solutions of the differential equations (2) according to the prescription in 

Theorem V, one substitutes those new solutions in the partial differential quotients of the function 

 with respect to the iy  and eliminates the n constants a1, …, an from the values thus-obtained: 

 

iy




 = iv  (x, a1, …, an)  

 

by means of the first n of equations (21). If one obtains: 

 

()      
iy




 = ( )iv   wi (x, y1, …, yn) 

 

in that way then one solves those n equations, together with the r given condition equations in 

Problem I: 

 

(1)       f = 0 , 

 

for the n + r unknowns 1y , …, ny , 1 , …, r . The solutions () to those n + r equations then 

define a system of equations that the solutions (21) will satisfy identically and whose right-hand 

sides are, at the same time, solutions to Problem II. 
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 However, calculating the values of the partial differential quotients of  would be an 

unnecessary detour. 

 The solutions (21) do, in fact, satisfy equations (1) and (), on the one hand, but on the other 

hand, they also obviously satisfy the equations: 

 

()      iy  = iy

x




,  =  . 

  

Along with the latter equations, they also therefore satisfy the ones that arise from those equations 

when one eliminates a1, …, an with the help of the first n equations (21), so the values of iy  and 

 that are obtained in that way, when expressed in the variables x, y1, …, yn , must necessarily 

coincide with the solutions () to equations (1) and (). 

 One then obtains the solutions to Problem II that are coupled with the solutions (21) to the 

differential equations (2) by formula () simply by substituting the solutions to the first n equations 

in (21) for a1, …, an in the equations () that follow from (21). 

 

 

§ 5. 

 

The limits of applicability of the independence theorem itself. 

 

 The special associated solutions to the differential equations (2) and Problem II that were 

obtained in my first communication, just like the Jacobi-Hamilton solution to the partial 

differential equation (12), exist only as long a solution to Problem I is actually possible and well-

defined, so as long as the complete solutions: 

 

yi = i (x, c1, …, c2n) 

 

to its differential equations contain exactly 2n integration constants, in such a way that one can 

prescribe two fixed values for those solutions for two given values of x. By contrast, Theorem V 

assumes only that the n + r equations (4) are soluble for the n + r unknowns 1y , …, ny , 1 , …, r 

or that the system of differential equations (2) actually has order 2n, and it will also still be true 

under that assumption when the complete solutions y1, …, yn to those differential equations include 

less than 2n arbitrary constants. In particular, that will always be the case when the function f in 

Problem I is a complete differential quotient. However, it does not, unfortunately, follow from this 

that a Hilbert independence theorem also exists for the following problem of the calculus of 

variations: 

 

 VII. Among all continuous functions y1, …, yn of x that satisfy r < n given first-order differential 

equations: 

f (x, y1 , …, yn , 1y , …, ny ) = 0 , 
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which are soluble for 1y , …, ny  and the last n – 1 of which possess given values for two given 

values of x0 and x1 > x0 of x, while only the value of y1 is prescribed for x = x0 , find the ones that 

are associated with a greatest or least value of the first function for x = x1 . 

 

 Namely, if one understands p1 , …, pn , 1 , …, r to mean any well-defined system of solutions 

to Problem II then for all functions y1 , …, yn of x that are allowed by the conditions of Problem I 

that keep the expression (8) continuous over the integration interval, or what amounts to the same 

thing because of the conditions (1), the expression: 

 

| f | + 
1

| |
( )

n

h h

h h

y p
p=

 
 −


 , 

then the integral: 

(31)    I    
1

0
1

| |
| | ( )

x n

h h

h hx

f y p dx
p=

  
+ − 

 
  

 

will unchangingly preserve the same value, since it depends upon only the limits x0, x1, and the 

values of the functions y1 , …, yn at those two limits, and all of those limiting values are assumed 

to be fixed, and that result is the actual Hilbert independence theorem. 

 However, for a system of solutions: 

 

yi = iy ,   =   

 

to Problem I that satisfy the equations: 

 

iy  = pi ,  =  , 

that integral will take on the value: 

I   = 
1

0

x

x

f dx . 

If one then sets: 

(32)    E  f − | f | − 
1

| |
( )

n

h h

h h

y p
p=

 
 −


  

 

then one can (while always assuming that the continuity requirement has been fulfilled) express 

the change: 

I = 
1 1

0 0

x x

x x

f dx f dx−   

that the given integral: 
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I  
1

0

x

x

f dx  

 

experiences when it is first defined with a well-defined system of such solutions and then defined 

with any other functions y1 , …, yn that satisfy the conditions of Problem I as follows: 

 

(33) I = 
1

0

x

x

E dx  . 

 

By contrast, although the superficial form of Problem VII seems to coincide with that of Problem 

I for f  1y  , they still differ quite essentially due to the fact that one can no longer prescribe the 

value of y1 for x = x1 in the former problem, but rather it must necessarily be left arbitrary. Hence, 

if one refers the integral (31) to Problem VII when one replaces f with 1y  then its value will no 

longer remain unvarying for all functions y1 , …, yn of x that are compatible with the conditions of 

the problem, but will depend upon the value that the first of those functions assumes for x = x1, 

and the fundamental formula (33) will not be applicable to Problem VII at all then. 

 

 

___________ 

 

 

 

 

 

 

 

 

 

 


