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 According to the theory that is assumed in the textbooks, the isoperimetric problem of finding 

the relative greatest or smallest value of the given integral: 

 

V = 
1
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f x y y y y dx   

 

when the only functions y1, …, yn that should be taken under consideration are the ones for which 

a series of other given integrals: 

 

  V = 
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f x y y y y dx
     = 1, 2, …, m 

 

maintain prescribed values is completely identical to the problem of making the integral: 
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an absolute maximum or minimum, in which 1, 2, …, m mean undetermined constants that will 

be determined later in such a way that the integrals V will assume given values. Now, that is 

generally quite correct as long as one merely deals with the problem, viz., the determination of the 

unknown functions y. By contrast, if one wishes to also answer the question of whether, and within 

what limits, the functions y that are found will produce a true maximum or minimum in the same 

way in both problems then that would imply, for example, that the center of mass of a 

homogeneous string that hangs from both ends is not at all the lowest-possible position that it 

assumes for each position of its endpoints, which is obviously absurd. It is therefore clear that it is 

 
 (*) From the Ber. der Kgl. Sächs. Ges. d. Wiss. July 1877. 
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impossible for the criteria for the maximum and minimum to be the same in both problems. For 

the case of a single unknown function y, but for which differential quotients of arbitrarily-higher 

orders could appear in the integrals, that was emphasized in the treatise by the Swedish 

mathematician Lundström in 1869 (which was also, unfortunately, the year that he died): 

“Distinction des maxima et des minima dans un problème isopérimétrique,” Nova acta reg. soc. 

Sc. Upsaliensis, series 3, vol. VII, in which the correct criteria for a maximum or minimum for the 

isoperimetric problem were likewise exhibited. 

 If one overlooks the single fact that as a result of his imprecise expression of his conclusions, 

and formulas that were, in part, not entirely correct, his conclusions were just hard to understand, 

and it would probably be impossible to prove that the criteria that were known to be necessary 

would be, at the same time, sufficient in Lundström’s way. Namely, in my opinion, that last, most 

difficult, point can be resolved only by the procedure of Jacobi and Clebsch that puts the second 

variation of the integral in question into its simplest form, and it was just that transformation, 

which depends upon the integration of differential equations, that Lundström intentionally 

avoided as too complicated. 

 Now, in my Habilitationsschrift (*), I used the Clebsch reduction to develop criteria for the 

maximum or minimum for the general problem that includes all problems in the calculus of 

variations for which only a single independent variable appears, as Lagrange (**) and Clebsch 

(***) had shown. Therefore, the special criteria for the isoperimetric problem must be included in 

those general criteria for a maximum or minimum. It was the wish to establish the latter criteria by 

deriving them from the stronger ones, and in that way to simultaneously show the applicability of 

my general criteria to the various special classes of problems in the calculus of variation in the 

most important example, that gave rise to the present note. I shall refer to the paper: “Ueber die 

Kriterien des Maximums und Minimums der einfachen Integrale,” Borchardt’s J., 69, in which the 

investigations of my Habilitationsschrift were reproduced, in a partially-altered representation, and 

summarize that derivation in § 1. 

 Moreover, a very remarkable reciprocity theorem comes to light in the isoperimetric problems, 

according to which, any isoperimetric problem with m isoperimetric conditions is equivalent to m 

other isoperimetric problems in such a way that not only the solution, but also the limits within 

which the solution will produce an actual maximum or minimum are common to all m + 1 

problems. That reciprocity theorem is merely a consequence of Euler’s rule for solving the 

isoperimetric problem and the form that the second variation presents before each reduction in 

those problems. The derivation of the reciprocity theorem from the criteria in § 1 will then be 

considered to be a welcome confirmation of those criteria. 

 Finally, in the last section, the application of the criteria and the reciprocity theorem shall 

explain just that example of the equilibrium figure of a massive homogeneous string, or what 

amounts to the same thing, the problem of the curve of given length and lowest center of mass. 

 In what follows, I shall always consider only the simplest case, in which the limits x0 and x1, 

as well as the values that the unknown functions y assume at those two limits, are fixed, because 

all other cases can be reduced to that case. In regard to that reduction, I shall refer to my article 

 
 (*) “Beiträge zur Theorie der Maxima und Minima der einfachen Integrale,” Leipzig 1866. 

 (**) Leçons sur le calcul des fonctions, 1806 edition, pps. 466 and 469. 

 (***) Borchardt’s Journal, 55, pp. 336. 
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that was cited above, which will also easily shed light upon the question of how one must proceed 

when the unknown functions y are subject to given differential equations, in addition to the 

isoperimetric conditions, or when higher-order differential quotients of the y appear in the 

integrals, which is only a special case of that. 

 

 

§ 1. 

 

Criteria for a maximum or minimum. 

 

 In the cited article, whose page numbers shall be referenced in brackets in what follows, I 

treated the problem: 

 

 I. Determine the functions y1, …, ym, between which m condition equations are prescribed: 

 

  1 1( , , , , , , )n nx y y y y    = 0   = 1, 2, …, m, 

such that the integral: 

V = 
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx  , 

 

with given limits and limiting values, will be a relative minimum or maximum, 

 

and obtained [pp. 260] the following criteria for the maximum or minimum: 

 Problem I. will be solved by the n + m ordinary differential equations in the independent 

variable x and the n + m dependent variables y1, …, yn, 1, …, m : 

 

(1)     
hy




 = 

h

d

dx y




,  = 0 , 

in which: 

 

(2)   = f + 1 1 + 2 2 + … + m m , 

 

and in order for one to be able to satisfy the 2n limit conditions, the functions y1, …, yn that are 

obtained by the complete integration of those equations must include 2n arbitrary constants a1, …, 

a2n . If one has expressed those constants in terms of the given limiting values then (except for the 

special cases that always occur [pps. 241, 260]) in order for the functions thus-obtained to produce 

an actual relative maximum or minimum, it is sufficient and (also, at least in general) necessary 

that the upper limit x1 (which I always assume to be > x0) should remain between x0 and the next 

root of the limit equation: 
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after x0, and that the homogeneous function of degree two: 
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whose n arbitrary arguments U1, …, Un are subject to the m condition equations: 

 

(5)  
1

n

h

h h

U
y



=


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  = 0 , 

 

cannot change sign between x0 and x1. 

 In formulas (3), (4), (5), one understands y1, …, yn, 1, …, m to mean those functions of x, a1, 

…, a2n that are obtained by the complete integration of equations (1). One must ascribe the fixed 

values to the integration constants a1, …, a2n themselves that one would get from the 2n limit 

conditions, and finally y0 denotes the value of the function yh for x = x0 . 

 I based the following upon that result and considered the isoperimetric problem, moreover: 

 

 II. Determine functions y1, …, yn of x that are subject to the m isoperimetric conditions: 

 

  
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx
   =  ,   = 1, 2, …, m 

 

and keep the same values at the two given limits x0 and x1 such that the integral: 

 

V = 
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx   

 

will be a relative maximum or minimum (in which, obviously, m is no longer subject to the 

restriction that m < n, as in Problem I). 

 

 If one follows Lagrange’s procedure and introduces m new variables u1, …, um by the 

substitutions: 

u = f dx  

 

then one can replace the isoperimetric conditions with the m condition equations: 

 

f u 
−  = 0 , 
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coupled with the 2m limit conditions: 

 

0
[ ]x xu =

=  ,  
1

[ ]x xu =
=  + l , 

 

and consider the initial values  in the latter to be given quantities, with which Problem II assumes 

the form: 

 

 III. Determine the n + m functions y1, …, yn, u1, …, um, which are coupled by m given condition 

equations: 

 

(6)    = f u 
−  = 0 , 

 

in such a way that the integral V will be a relative maximum or minimum for given limiting values 

of x, y1, …, yn , u1, …, um . 

 

 However, Problem III is only a special case of Problem I, and one can then apply the rule that 

was given above to it. 

 According to it, the differential equations in Problem III will be: 

 

hy




 = 

h

d

dx y




, 

u




 = 

d

dx u




,  = 0 . 

 

However, when one sets: 

F = f + 1 1 + 2 2 + … + m m , 

 

they will automatically reduce to the equations: 

 

h

F

y




 = 

h

d F

dx y




, 0 = − 

d

dx


, f u 

−  = 0 . 

 

Problem III will be solved as follows by the n differential equations: 

 

(7)  
h

F

y




 = 

h

d F

dx y




, 

 

in which 1, 2, …, m are regarded as undetermined constants, and after integrating those 

equations, that will yield the u in terms of quadratures: 

 

u = c f dx +  . 
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In order for one to obtain the required number of arbitrary constants for one to be able to satisfy 

the 2 (n + m) prescribed limit conditions, it is necessary and sufficient that the n equations (7) are 

soluble for the n second differential quotients 1y , …, ny . 

 Since one further has: 
2

k hu y

 

  
 = 

2

k iu u

 

  
 = 0 , 

 

from (2) and (3), the function 2W for the Problem III will then reduce to: 

 

2W = 
2

1 1

n n

h i

h i h i

F
U U

y y= =



  
 , 

 

and the m condition equations (5) will become: 

 

1

n

h

h h

f
U

y



=




  = V . 

 

However, those m equations determine only the quantities V1, …, Vm, which do not enter into the 

function 2W at all, as functions of the arguments U1, …, Un . They therefore do not restrict the 

arbitrariness of those arguments in any way and can thus be omitted completely. 

 Finally, when one understands the a1, …, a2n to now mean 2n arbitrary constants that come 

with the complete integration of equations (7), the limit equation in Problem III will become: 
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k
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c


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u

c
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 = 1 , 

that equation will reduce to: 
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in which: 

(8)      vk = uk – uk0 = 
1

0

x
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x

f dx , 
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and one will then obtain the following criteria for a maximum or minimum for the isoperimetric 

problem II from the rule that was cited for Problem I: 

 

 IV. Problem II is solved by the n differential equations: 

 

h

F

y




 = 

h

d F

dx y




, 

in which: 

F = f + 1 f1 + 2 f2 + … + m fm , 

 

and the  mean undetermined constants. The complete integration of those equations, assuming 

that the second differential quotients 1y , …, ny  cannot be eliminated from them, will yield y1, …, 

yn as functions of x, the m isoperimetric constants 1, …, m , and 2n integration constants a1, …, 

a2n . If one has determined those 2n + m constants from the m isoperimetric ones and the 2n limit 

conditions then (except for exceptions that can occur only in special cases and by their nature do 

not obey the general rules) the functions y1, …, yn thus-obtained will yield a true relative maximum 

or minimum of the integral V when the homogeneous function of degree two in the n independent 

variables y1, …, yn : 

2W = 
2

1 1

n n

h i

h i h i

F
U U

y y= =



  
 , 

 

always has the same sign within the limits of integration, and as long as the upper limit x1 remains 

between x0 and the next root of the limit equation: 

 

 (x0 , x1) = 10 01 1

1 1 2 1

n n m

n n n m

y y y vy v

a a a a  +

    


     
  = 0 , 

 

in which the functions vk are calculated by the quadratures: 

 

vk = 
1

0

x

k

x

f dx  . 

 

By contrast, if the first condition is not fulfilled then there will be neither a maximum nor a 

minimum, and in general the same thing will also be true when x1 attains or exceeds the given 

limit. 

 

§ 2. 

 

The reciprocity theorem for the isoperimetric problem. 

 

 Problem II, to which Theorem IV refers, can be reproduced briefly in symbols thus: 
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()    
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We now compare that with another isoperimetric problem, which is included in the formulas: 
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x
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I assume that the same fixed values for the limits and limiting values have been prescribed in both 

problems. 

 If we introduce homogeneous isoperimetric constants for the sake of ease of comparison, i.e., 

we set: 

  k = k


, 

 F =  f + 1 f1 + … + m fm =  , 

 

and imagine that the determinant  (x, x0) will change by only a constant factor when we introduce 

any 2n + m independent functions of the constants a1, …, a2n, 1, …, m in place of those constants 

as new constants then we can also express Theorem IV as: 

 Problem () will be solved by the n differential equations: 

 

(9)      
hy




 = 

h

d

dx y




 , 

 

whose complete integration will determine the 2n integration constants a1, …, a2n and the ratios of 

the m + 1 isoperimetric constants 1, 2, …, m from the 2n limit conditions and the m isoperimetric 

conditions: 

(10)   
1

0

1

x

x

f dx  = l1 , 
1

0

2

x

x

f dx  = l2 , …, 
1

0

x

m

x

f dx  = lm , 

 

and the functions y1, …, yn thus-obtained will produce a true maximum or minimum for the 

problem () as long as the upper limit x1 remains between x0 and the next root of the equation: 
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 (x0 , x1) = 10 01 1 2
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assuming, moreover, that the homogeneous function of degree two: 

 

2 W = 
2

1 1

1 n n

h i

h i h i

U U
y y = =

 

  
  

 

always keeps the same sign between x0 and x1 . 

 If we now move on to problem () then equations (9) and the limit conditions will remain 

completely unchanged for it, and the isoperimetric conditions (10) will change only to the extent 

that now, in place of the condition: 
1

0

1

x

x

f dx  = l1 , 

we will find: 
1

0

x

x

f dx  = l . 

 

In general, the solution to the problem () will be different from problem (). If we assume that 

the solution of problem () for a maximum or minimum of the integral V gives: 

 

V =  

then under the assumption that: 

 

(11) l =  , 

 

the functions y1, …, yn that were obtained from problem () will also be, at the same time, solutions 

to problem () and will yield the value l1 for the integral V1 here. That is because, by assumption, 

those functions and the values of the constant ratios  : 1 : … : m that are obtained when those 

functions are found will simultaneously fulfill equations (9) and the 2n limit conditions that are 

common to both problems, and they will satisfy the m + 1 equations: 

 
1

0

x

x

f dx  =  , 
1

0

1

x

x

f dx  = l1 , …, 
1

0

1

x

x

f dx  = l1 , 

 

moreover, which include the isoperimetric conditions for the first, as well as the second problem, 

from the assumption (11). 

 That immediately implies that one can always solve problem () with just algebraic operations 

as often as one has solved problem () for the undetermined values of the constants l1, …, lm . 
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 Furthermore, under the assumption (11), with the common solution to both problems, the limit 

equation in problem () will be: 

 

 (x , x0) = 10 01 1 2

1 1 2 1 2

n n m

n n n m

y y y vy v v

a a a a   +

     


      
  = 0 , 

 

in which the yh and vk, as well as the ai and k , have the same values that they had in the determinant 

 (x , x0), but the function: 

(12) v = 
1

0

x

x

f dx  

enters in place of v1 . However, since: 

 

 =  f + 1 f1 + … + m fm , 

 

it will follow from (12) and (8) that: 

 v + 1 v1 + … + m vm = 
1

0

x

x

dx , 

 

and differentiating that with respect to ai and k will give: 

 

1
1

m
m

i i i

vvv

a a a
  


+ + +
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 = 

1

0
1

x n
h h

h h i h ix

y y
dx

y a y a=

   
+ 

    
 , 

 

1
1

m
m

vvv
v

  

  
  


+ + + +
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 = 

1

0
1

x n
h h

h h hx

y y
dx f

y y


  =

     
+ +  

      
 . 

 

When one understands c to mean any of the constants a1, …, a2n, , 1 , …, m , one will then have: 

 

1
1

m
m

vvv

c c c
  


+ + +

  
 = 

1

0
1

x n
h h

h h hx

y y
dx

y c y c=

   
+ 

    
  . 

Now, one has: 

h h

h h

y y

y c y c

  
+

   
 = h h

h h h

y yd d

y dx y c dx y c

      
− +   

        
 , 

or from (9): 

= h

h

yd

dx y c

 
 

  
 , 

so one will get: 
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v

c




 = − 01 1

2 1 0

1 m n
k h h

k

k h h h

v y yv

c c y c y c




  = =

        
− − −              

   , 

 

in which the index 0 suggests the substitution x = x0, as before. 

 However, those formulas express only the element v / c in the determinant  (x , x0) in terms 

of the quantity − 1 1v

c








, plus the corresponding elements of the other rows in that determinant, 

multiplied by the same factor. One then has: 

 

 (x , x0) = − 1


  (x , x0) 

 

identically. Their limit equations for the common solution to the two problems are also the same 

under the assumption (11). 

 Finally, the function: 

2W = 
2

1 11

1 n n

h i

h i h i

U U
y y = =

 

  
  

 

enters into problem () in place of the homogeneous function 2W of problem (). For the common 

solution in question, one then has: 

2W = 
1




2W = 

1

1


2W . 

 

If we combine those results together then we can state the following theorem: 

 

 V. If one has solved the isoperimetric problem: 

 

()    

1

0

1 1 1

0 0 0

1 1 2 2

 max., min.,

, ,

x

x

x x x

m m

x x x

V f dx

f dx l f dx l f dx l


= =





= = =




  

    

 

by completely integrating the n differential equations: 

 

(7)      
h

F

y




 = 

h

d F

dx y




, 

in which one has: 

F = f + 1 f1 + 2 f2 + … + m fm , 
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and the  are undetermined constants whose values are then determined from the m isoperimetric 

conditions of the problem, and one has then found the maximum or minimum value of the integral 

V to be: 

V = l 

 

then the solution of that problem will be, at the same time, also the solution to the reciprocal 

problem: 

()    

1

0

1 1 1

0 0 0

1 1

2 2

 max., min.,

, , ,

x

x

x x x

m m

x x x

V f dx

f dx l f dx l f dx l


= =





= = =




  

 

 

assuming that one has prescribed the same fixed values for their limits and limiting values in both 

problems. 

 Moreover, if: 

V = l 

 

is a true maximum or minimum of the integral V in problem () then: 

 

V1 = l1 

 

will be, at the same time, a true maximum or minimum of the integral V1 in problem () when one 

has: 

1 > 0 , 

 

while it will be a minimum or maximum of V1 when: 

 

1 < 0 . 

 

Finally, when the value l that is found for V in problem () is neither a maximum nor a minimum, 

the same thing will be true for the value l1 of V1 in problem (). 

 

 One sees from this reciprocity theorem for the isoperimetric problem that (for fixed, but 

undetermined values of the constants l) one has found the solution to only any given isoperimetric 

problem and needs to decide whether, and within what limits, that solution will imply a true 

maximum or minimum in order to also be able to answer the same questions for any reciprocal 

problem with no further analysis. Furthermore, it is self-explanatory that in order to be able to 

apply the reciprocity theorem, it is not necessary to have solved the given problem () in precisely 

the way that was given. Rather, if one has ascertained the solution in any other way (e.g., by 

geometric considerations) then one needs only to inversely determine the signs of the isoperimetric 

constants 1, …, m. For the isoperimetric problems of the form: 
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1

0

( , )

x

x

f x y dx  = max., min.,  e.g., 
1

0

21

x

x

dx y+  = l1 , 

one has: 

2W = 

( )
21

13
21

U

y



+

. 

 

A solution that produces a maximum will then belong to a negative value of 1 here, and a solution 

that produces a minimum will belong to a positive one (*). 

 

§ 3. 

 

Example. 

 

 Find the curve of given length and given endpoints whose center of mass lies deepest. 

 

 I take the z-axis to be vertical and have the opposite sense to gravity, and for the sake of 

convenience, lay the xy-plane through the given starting point of the curve. The problem can then 

be expressed analytically by the formulas: 

 

(1)     

1

0

1

0

2 2

2 2

1

1 min.,

1 .

x

x

x

x

z y z dx

y z dx l


 + + =





 + + =






 

One will then have: 

 

(2)     F = 
2 2

1( ) 1z y z  + + +  

 

here, and obtain the catenary as the solution to the problem: 

 

 
 (*) The considerations above prove the reciprocity theorem only for the case of fixed given limits and limiting 

values. However, one can show that Theorem V is also true with no changes for arbitrary limit conditions, but naturally 

only if one assumes that those limiting conditions are the same in both problems. That is connected with the reciprocity 

relationship that the maxima and minima of inverse functions exhibit. Moreover, the reciprocity theorem is not the 

only property that the isoperimetric problems have beyond the other problems in the calculus of variations. Rather, 

there is another extremely important theorem that is true for them that one might call the law of the invariability of the 

isoperimetric constants. Namely, if one forces them to split up into branches by imposing conditions on the limits of 

the curves y then the integration constants a will vary from one branch to another, but the isoperimetric constants  

will keep the same values everywhere. In the special case where one seeks the closed curve of greatest area for a given 

circumference, or smallest circumference for a given area, and further demands that the curve should lie inside of a 

given polygon, the latter law will coincide with the known theorem of Steiner that all free parts of such curves must 

be arcs of equal circles. 
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(3)    

1
3

2

2 2 4 41
1 1 22

2 2

,

exp exp ,

a
y x a

a

x a x a
z a a

a a



= +




    − −  + = + + −          

 

 

from which, the integral: 

v1 = 

0

2 21

x

x

y z dx + +  

will take the value: 

(4)   v1 = 2 2 0 4 0 44 41
1 22

2 2 2 2

exp exp exp exp
x a x ax a x a

a a
a a a a

        − −− − 
+ − − − − −        

         
 . 

 

 The five constants a1, a2, a3, a4, 1 are determined from the given positions of the two endpoints 

and the given arc-length l1, and in fact one will get two different systems of values for them that 

belong to two equal and opposite values of the constant a2 . 

 Since, according to (4): 

 

1dv

dx
 = 

2 2

1 2 4 41
2

2 2 2

exp exp
a a x a x a

a a a

 +    − − 
+ −    

     

 

 

will always have the same sign as 2 2

1 2 2/a a a+ , one must give 2 2

1 2a a+  the same sign as a2 in 

formulas (3) and (4) in order for the arc-length to be positive. 

 Moreover, from (1), the function: 

 

2W = 
2 2 2

2 2

1 1 2 22
F F F

U U U U
y y y z z z

  
+ +

          
 

will become: 

2W = 

( )
 2 2 21

1 2 1 23
2 2

( )

1

z
U U z U y U

y z

+
 + + −

 + +

, 

and from (3), it will continually have the same sign as 2 2

1 2a a+  then. Therefore, in order to get a 

minimum, we must take that root, and a2 with it, to be positive, i.e., of the two catenaries of given 

length through the two given endpoints that can be drawn in the vertical plane from one point to 

the other, we must take the one whose convex side points downward. As a result of the assumption 

z0 = 0, from (3), we will then have 1 > 0. 

 Finally, the limit equation: 
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(5)  0 0 1

1 2 3 4 1

y z vy z

a a a a 

   


    
  = 0  

 

due to the formulas that follow from (3) and (4): 

 

3

y

a




 = 1 , 

4

y

a




 = 0 , 

1

y






 = 0 , 

3

z

a




 = 0 , 

1

z






 = − 1, 1

3

v

a




 = 0 , 1

1

v






 = 0 , 

 

will next reduce to the equation: 

 

(6)     

0 0

1 2

0 0 0

1 2 4

1 1 1

1 2 4

( ) ( )
0

( ) ( ) ( )

y y y y

a a

z z z z z z

a a a

v v v

a a a

 −  −

 

 −  −  −

  

  

  

 = 0 . 

 

If one further sets, for the moment: 

 

(7)    4

2

x a

a

−
 =  , 1

2
( )e e −+  = p , 1

2
( )e e −−  = q , 

 

then from (3) and (4), that will give: 

 

  y – y0 = a1 ( – 0) , 

z – z0 = 2 2

1 2 0( )a a p p+ − , 

  v1 = 2 2

1 2 0( )a a q q+ −  . 

 

If one differentiates the latter formulas partially with respect to a1, a2, a4 and substitutes the values 

of the differential quotients in equation (6) then, after some simple reductions and dropping the 

constant factor 2 2 2

1 2 2( ) /a a a+ , one will get the equation: 

 

( – 0) [(p q0 – p0 q) ( – 0) – (p – p0)
2 + (q – q0)

2] = 0 , 

 

such that when one further sets: 
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 – 0 = 0

2

x x

a

−
 =  , 

 

 the limit equation of the problem will ultimately become: 

 

  () = 0 , 

in which: 

 () = ( ) 2
2

e e e e −  −
+ − − − . 

 

However, a consideration of the functions   and   will immediately show that this equation 

admits only the one real root  = 0, i.e., x = x0 . The equation then implies no sort of restriction 

for the upper limit x1 . Rather, it shows that an unrestricted minimum will exist for the catenary 

that is convex-downward, and we have arrived at the theorem: 

 

 Among all curves of given length and given endpoints, the catenary always has the lowest 

center of mass. 

 

 Since 1 > 0, the following theorem will emerge directly from that theorem when one applies 

the reciprocity theorem: 

 

 Among all curves of given endpoints whose centers of mass lie on one and the same horizontal 

plane, the catenary always has the shortest length. 

 

 By contrast, in the absolute problem: 

 

(8)     
1

0

2 2

1( ) 1

x

x

z y z dx  + + +  = min. , 

 

which can be solved by the same catenary, assuming that one is gives the same value to the constant 

1 that it had in the isoperimetric problem that was just treated, the equation: 

 

0 0

1 2 3 4

y zy z

a a a a

  


   
  = 0 

 

will enter in place of equation (5), which will reduce to: 

 

(q  – p) q0 – q (q0 0 – p0) = 0 

 

after dropping the factor 
2 2

1 2
02

2

( )
a a

a
 

+
− . Now, from (3) and (7), one will have: 
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p = 1

2 2

1 2

2( )z

a a

+

+
, q = 2

2 2

1 2

2 a z

a a



+
,  – 0 = 0

2

x x

a

−
 . 

 

In this absolute problem, we will then get the limit equation: 

 

x − 1z

z

+


 = x0 − 0 1

0

z

z

+


, 

 

i.e., when we advance from the given starting point along the catenary that solves the problem, in 

order for a true minimum to exist, we cannot extend the integral up to the point whose tangent 

once more intersects the line z = – 1 in the vertical plane that connects the two given endpoints at 

the same point as the tangent to the starting point. Thus, where we obtain an unbounded minimum 

in the isoperimetric problem (1), we will get only a bounded minimum in the unconstrained 

problem (8), which clearly illustrates the difference between the two problems that possess the 

same solution. 

 

____________ 

 

 

 


