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 The only essential results of the following investigations are the ones that I already published 

two years ago in my Habilitationsschrift (*). The logic of the presentation was not changed 

essentially either. 

 However, the cited paper was undermined by isolated lapses in precision and many detours 

were made that one could avoid. Those defects made it desirable to me to treat the same subject 

here once more in a somewhat-altered form while leaving out those considerations that are not 

absolutely necessary for addressing the main question. 

 For the sake of completeness and logical continuity, a summary of the transformations by 

which the second variation first takes on a form that is suitable for the investigation of its sign can 

probably not be circumvented. In order to derive those formulas of Clebsch (**), in what follows 

I will appeal to the ingenious method that Lipschitz communicated in the treatise “Beiträge zur 

Theorie der Variation der einfachen Integrale” (***), and which has not been extended to the case 

of relative maxima and minima up to now. 

 

§ 1. 

 

 As is known, the most general problem in the calculus of variations for one independent 

variable (since one can reduce all of the others to it) is the following one: 

 

 Determine the variables y1, y2, …, yn , which are subject to the m first-order differential 

equations: 

 

(1)     1 = 0 , 2 = 0 , …, m = 0 , 

 

as functions of x such that the integral: 

 

V = 
1

0

1 1( , , , , , )

x

n n

x

f x y y y y dx   

 
 (*) “Beiträge zur Theorie der Maxima und Minima der einfachen Integrale,” Leipzig, Teubner, 1866. 

 (**) Bd. 55, pps. 254 and 335 of this journal. 

 (***) Bf. 65, pp. 26 of this journal. 
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will be a maximum or a minimum. 

 

 Obviously, one must have m < n in that. Moreover, in order to make the problem well-

determined, certain boundary conditions must be given. I shall assume that the limits x0 and x1 are 

all given, as well as the limiting values of the variables y. One can reduce all remaining cases to 

that one by dividing the problem into separate parts. 

 Using the Lagrange process, one considers the following problem instead of the present one: 

 Determine the functions y such that the integral: 

 

J = 
1

0

x

x

dx  

will be a maximum or a minimum, in which: 

 

(2)      = f + 1 1 + 1 1 + … + m m , 

 

and the  are undetermined functions of x, about which one has to demand that the given conditions 

(1) will be satisfied. That problem will be equivalent to the first one when one adds that only those 

functions y shall be taken into consideration that fulfill those conditions. 

 If one generally sets: 

yh +  zh , instead of yh , 

 

where  means a sufficiently-small number and the z are arbitrary functions of x that must, 

however, be finite and continuous within the integration limits, along with their differential 

quotients z, and one then develops the integral J in powers of  then when one neglects terms of 

order 3 , it will go to: 

J +  J + 
2

2

2
J


 , 

 

whereas since one always considers only those functions y that satisfy equations (1), the variations 

z imply the m equations of constraint: 

(3)      k = 
1

n
k k

h h

h h hy y

 

=

  
+ 

  
 z z  = 0 . 

 

Since the limiting values of the variables y should remain unvaried, moreover, the function 

functions z must further assume the value zero at the limits x0 and x1 . 

 Now if an actual relative maximum or minimum for the integral V or J is to exist then the first 

variation J would have to vanish for all arbitrary variations z that satisfy the given conditions, 

and the second variation 
2J  would have to possess a constant sign. 

 The first condition leads to the n + m differential equations: 



Mayer – On the criteria for maxima and minima of simple integrals.  

 

(4)     
hy




 = 

h

d

dx y




 , h = 0 . 

 

Integrating them yields the n + m unknowns y and  as functions of x and a certain number of 

arbitrary constants that are determined in such a way that the solutions y will be equal to the given 

limiting values at the limits. 

 In order for the determination of those constants to be possible, the solutions y must contain 

2n mutually-independent arbitrary constants. That assumption is then based upon the following 

grounds: They can be fulfilled, in any event, only when the system of differential equations (4) has 

order 2n, and as one easily sees, for that to be true, it is necessary and sufficient that the 

determinant: 

(5)    R = 

2 2

1

1 1 1 1 1

2 2

1

1

1 1

1

1

0 0

0 0

m

n

m

n n n n n

n

m m

n

y y y y y y

y y y y y y

y y

y y





 

 

   

          

   

          

 

  

 

  

 

is not identically zero. 

 Since the identical vanishing of that determinant will then be excluded on the basis of the 

assumption that was made, one can determine the n + m quantities y and  as functions of the y 

and v from the equations: 

hy




 = 0 , k = 0 , 

 

and as a result, replace the system (4) with the 2n first-order differential equations: 

 

(6)     hdy

dx
 = 

h

H

v




,  hdv

dx
 = − 

h

H

y




, 

 

in which H denotes the function of the y and v that emerges from the expression: 

 

1

n

h h

h

y v f
=

 −  

upon introducing the value of y . 

 From them, one will get: 



Mayer – On the criteria for maxima and minima of simple integrals.  

 

(8)     yh = [yh] , vh = 
hy

 
 

 
 = [vh] 

 

as the complete solutions of the system (6). The 2n integration constants of the solutions [y] and 

[] might be denoted by: 

a1 ,  a2 , …, a2n . 

 

They are determined in such a way that the n functions [yh] take on the given limiting values yh0 

and yh1 for x = x0 and x = x1 , resp., and therefore they will be considered to be well-defined 

quantities that will be given by those limiting values in what follows. For certain special 

assumptions on the values of yh0 and yh1 (e.g., if one would like to set all of them equal to zero), 

certain special exceptional cases can occur, here as well as later. I will always overlook them and 

therefore assume, for example, that the determinant [R], which arises from R by the substitutions 

(7), will also be non-zero after introducing those well-defined values of the integration constants. 

That assumption is permissible, because since the determinant R should be non-zero, in its own 

right, and the second differential quotients of the y, as well as the first differential quotients of the 

, do not enter into it at all, the complete integration of equations (4) can never have the equation 

R = 0 as a general consequence, either. 

 

 

§ 2. 

 

 In order to decide whether the solutions (7) of the given integral represent an actual relative 

maximum or minimum, the sign of the second variation 
2J  must be examined. 

 If one lets 
22   denote the homogeneous function of degree two in z and z that arises from 

 when one generally lets [yh] +  zh enter in place of yh and takes the coefficients of 21
2
  in the 

development in powers of  then one will have: 

 

(9)      
2J  = 

1

0

22

x

x

dx  . 

 

In order to be able to investigate the sign of that expression, it is generally necessary to put the 

function 
22  , and with it, the conditions (3), as well, into a simpler form. 

 It will be shown that this function can be represented as an aggregate of three functions, 

namely, a homogeneous function of degree two in only n arguments 1 , 2 , …, n , which are 

functions of the z and their differential quotients, the differential quotients of a homogeneous 

function of degree two in the z, and finally a function that is linear with respect to the k , while 

the k themselves will be converted into a linear homogeneous function in the  . 

 Instead of the function 
22  , we will next consider another function, namely, the function: 
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(10)  

2

1 1

2 2 2

1 1

2 2

2 ,

m n
k k

k h h

k h h h

n n

h i h i h i

h i h i h i h i

y y

y y y y y y

 


= =

= =

       
 = +     

       


            
  + + +                    

 



z z

z z z z z z

 

 

which is the coefficient of 21
2
  in the development of the function that one will get from  when 

one replaces the variables y and  with the quantities [y] +  z and [] +   . 

 The functions 22   and 2 2 are coupled by the relationship: 

 

(11)     
22   = 2 2 − 

1

2
m

k k

k

 
=

 . 

 

One can also convert the function 2 2 then, instead of the function 22  , and thus preserve the 

freedom to be able to add the quantities  at will. 

 The solutions of a certain system of differential equations that is closely connected with the 

system (4) will be used to carry out that conversion. 

 If one differentiates equations (4), which are identical because of the substitutions (7), with 

respect to ai , and when one generally understands 2 (, ) to mean the value that the function 2 

will assume for the values h , k of xh , k , resp., then those equations can be represented as: 

 

2

[ ] [ ]
,

[ ]
i i

h

i

y

a a

y

a

  
  

  





 = 

2

[ ] [ ]
,

[ ]
i i

h

i

y

a ad

ydx

a

  
  

  





,  

2

[ ] [ ]
,

[ ]
i i

k

i

y

a a

a





  
  

  





 = 0 . 

 

One sees from this that the expressions: 

 

(12)    uh = 
2

1

[ ]n
h

i

i i

y

a


=




 , rk = 

2

1

[ ]n
k

i

i ia




=




 , 

 

with the 2n arbitrary constants , are the general solutions of the linear differential equations: 

 

(13)   2 ( , )

h

u r

u




 = 2 ( , )

h

u rd

dudx

dx





,  2 ( , )

k

u r

r




 = 0 , 

 

to which one will also arrive when one considers the second variation 
2J  itself to be an integral 

whose maximum or minimum is to be sought. 
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 The solutions of those differential equations possess two properties that are extremely 

important for us. 

 First of all, since 22 is a homogeneous function of degree two in the z, z, and  : 

 

 22 = 2 2 2

1 1

n m

h h k

h kh h k


= =

      
+ + 

   
 z z

z z
 

 

  = 2 2 2 2

1 1 1

n n m

h h h k

h h kh h h k

d d

dx dx


= = =

        
− + + 

     
  z z z

z z z
. 

 

It then follows from this that any system of solutions of equations (13) will fulfill the equation: 

 

(14)    22 (u, r) = 2

1

( , )n

h
hh

u rd
u

dudx

dx
=

 


  . 

 

For any two systems of solutions of those differential equations u, r and , , one will further find 

that the identity exists that: 

 

2 2 2

1 1

( , ) ( , ) ( , )n m
h

h k
hh kh k

du r u r u r

duu dx r

dx


 

= =

 
      

+ + 
  

 

   = 2

1

( , )n

h
hh

u rd

dudx

dx


=

 


 , 

 

as well as the one that arises from it when one switches the u, r with the ,  . However, from a 

known property of homogeneous functions of degree two, the first part of the equation above will 

remain unchanged by the exchange. One must also have: 

 

2

1

( , )n

h
hh

u rd

dudx

dx


=

 


  = 2

1

( , )n

h
hh

d
u

ddx

dx

 


=

 


  

 

then, from which it will follow by integration that: 

 

(15)    2 2

1

( , ) ( , )n

h h
hh h

u r
u

du

dx

 



=

 
    

− 
 

 

  = const. 

 

In order to convert the function 2, we employ n systems of complete solutions of equations (13): 
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(16)    
hu  = 

2

1

[ ]n
h

i

i i

y

a


=




 , 

kr
  = 

2

1

[ ]n
k

i

i ia

 


=




 , 

 

and introduce n new variables g in place of the n + m quantities z and , by means of the n + m 

equations: 

(17)    zh = 
1

n

hg u


 =

 ,  k = 
1

n

kg r


 =

 ; 

 

in other words, we set the  equal to certain linear functions of the z. 

 Those substitutions will imply that: 

 

(18)     
1

1

,

,

.

h
h h

n
h

h

n

h h

d

dx

du
g

dx

dg
u

dx










 





=

=


= +




=



=






z

 

 

One now arrives at mainly the problem of defining the function 0

2  that arises when one gives the 

z and  the values (17) in 2 , but one does not set dz / dx equal to  + , but only to . 

 To that end, one remarks that when the new variables g are constants, the expressions (17) will 

become solutions of the differential equations (13), and therefore from (14), one will have: 

 

0

22  = 2

1 1 1

( , )n n n

h

h h

u rd
g u g

dudx

dx

 


  
 = = =

 
   
 
 
  

    . 

 

However, since the function 0

22  does not contain the differential quotients of the g at all, and as 

a result, they must have the same form, regardless of whether the quantities g are constants or 

functions of x, the foregoing equation will be true for all arbitrary values of those quantities, as 

long as one only performs the suggested differentiations on the right-hand side with respect to x, 

as if the g were independent of x. However, one can also arrive at that result in such a way that one 

considers the g to be functions of x and subtracts the terms on the right-hand side that originate in 

the differentiation of g with respect to x. One will then find the following equation to be true for 

all arbitrary values of the g : 
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(19)    

0 2
2

1 1 1

2

1 1 1

2

1 1 1

( , )
2

( , )

( , )
.

n n n

h

h h

n n n

h

h h

n n n

h

h h

u rd
g u g

dudx

dx

dg u r
u g

dudx

dx

dg u r
g u

dudx

dx

 


  
 

 


 
 

 


 
 

= = =

= = =

= = =

  
    

 =  
  
   


 
    

−  
  

   


 
   

−  
  
  

  

  

  

 

 

Now the value that the function 2 2 will assume under the substitutions (17) will arise from 0

22  

in such a way that one generally replaces: 

 

h + h  with h 

 

in it. Since only the first and second powers of h enter into 0

22 , one will get: 

 

(20)    2 2 = 
0 2 0

0 2 2
2

1 1 1

2 2
n n n

h h i

h h ih h i

  
  = = =

  
 + +

  
  . 

 

However, the original definition of the function 0

2  implies immediately that: 

 
0

2

h




 = 2

1

( , )n

h

u r
g

du

dx

 

 
 =

 



 . 

From (17), (18), and (19), one will then have: 

 
0

0 2
2

1

2 2
n

h

h h


=


 +


  = 2

1 1

( , )n n

h

h h

u rd
g

dudx

dx

 

 
= =

 



 z  

  + 2

1 1 1

( , )n n n

h

h h

dg u r
u g

dudx

dx

 


 
 = = =

 
   
 
 
  

    

 



Mayer – On the criteria for maxima and minima of simple integrals.  

 

  − 2

1 1 1

( , )n n n

h

h h

dg u r
g u

dudx

dx

 


 
 = = =

 
   
 
 
  

   . 

 

The last two terms can then be combined and written as: 

 

2 2

1 1 1

( , ) ( , )n n n

h h

h h h

dg u r u r
g u u

du dudx

dx dx

   
 

  
 = = =

 
     

− 
  
  

   . 

 

If one then subjects the n systems of solutions to the differential equations (13) that were 

introduced to the n (n – 1) / 2 equations of constraint: 

 

(21)    2 2

1

( , ) ( , )n

h h

h h h

u r u r
u u

du du

dx dx

   
 

 
=

 
     

− 
  
  

 = 0 , 

 

which are independent of x, from (15), and as a result, they will produce only equations of 

constraint between the 
22n  constants 0

h , then those last two terms will drop out, and since one 

obviously has: 
2 0

2

h i 

 

 
 = 

2 0

2

h i

 

  z z
 = 

2

h iy y

  
 

   
 , 

one will get: 

2 2 = 
2

2

1 1 1 1

( , )n n n n

h h i

h h ih h i

u rd
g

dudx y y

dx

 

 


 
= = = =

    
+  

   

  z  . 

 

We thus arrive at the following transformation of the function 
22  : 

 

22   = 
2

2

1 1 1 1 1

( , )
2

n n n n m

h i h k k

h i h khh i

u rd
g

duy y dx

dx

 

 


   
= = = = =

    
+ − 

    

   z , 

 

in which the quantities g, , and  are defined by the equations: 
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zh = 
1

n

hu g


 =

 ,  k = 
1

n

hr g


 =

 ,  k = 
1

n
h hd du

g
dx dx




 =

−
z

. 

 

However, at the same time, the expressions k will also be transformed. namely, if one introduces 

the foregoing values for z and dz / dx in them, then they will go to: 

 

k = 
1 1 1

n n n
k k h k

h h

hh h h

du
g u

y y dx y





 

  


= = =

         
+ +      

          
   . 

 

However, the coefficient of g in that is equal to: 

 

2 ( , )

k

u r

r

 



 


, 

and therefore, from (13), it will be equal to zero, such that the formula will reduce to: 

 

k = 
1

n
k

h

h hy




=

 
 

 
 . 

 

All that remains now is to express everything in terms of the z and dz / dx . From (17), one first 

has: 

zi = 1 2

1 2

n

i i i nu g u g u g+ + + . 

 

If one sets i = 1, 2, …, n in that and couples those n equations with the equation arises from (18): 

 

− h + hd

dx

z
 = 

1 2

1 2

n

i i i
n

du du du
g g g

dx dx dx
+ + +  

 

then upon eliminating the g, one will get: 

 

(22)    U  h = 

1

1

1 1 1

1

n

h h h

n

n

n n n

d du du

dx dx dx

u u

u u

z

z

z

 = Uh , 

in which: 

 

(23)     U = 1 2

1 2

n

nu u u . 
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(24)   

2

1 1

1 1

2 2

1
1 1

1

1 1 1

1

( , )

( , ) ( , )
0

2 ,

n n

h

h h

n nn n

h h n
h hh h

n

n

n n n

u r
U g

du

dx

u r u r

du du

dx dx
B

u u

u u

 

 
 = =

= =

  

 



   



 

 = − = −





 

 

z

z z

z

z

 

 

and if one would like to learn the values of the , in addition, then one will finally find from the 

second equation in (17), in the same way, that: 

 

(25)    U  k = − 

1

1

1 1 1

1

0 n

k k

n

n

n n n

r r

u u

u u

z

z

 = − Rk , 

 

such that one will ultimately obtain Clebsch’s formula: 

 

(26)   22   = 
2

2
1 1 1

2
2

n n m
h i k

k

h i kh i

U U Rd B

y y U dx U U


= = =

  
+ + 

   
   . 

 

Since one has, at the same time: 

(27)     k = 
1

m
k h

h h

U

y U



=

 
 

 
 , 

 

one will see that the conversion that was obtained will achieve everything that was promised at the 

beginning of this section. 

 The definitions of the quantities that appear in it are contained in formulas (22), (23), (24), 

(25), and (16). 

 

 

§ 3. 

 

 Formulas (26), (27), are valid identically for all values of the 
22 n  constants 

i

  that satisfy the 

n (n – 1) / 2 equations of constraint: 
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(21)   2 2

1

( , ) ( , )n

h h

h h h

u r u r
u u

du du

dx dx

   
 

 
=

 
     

− 
  
  

 = 0 , 

 

which are independent of x, and the determinant  

 

U = 1 2

1 2

n

nu u u  

is not identically zero for them. 

 We are now dealing with the problem of actually determining those constants so that they will 

be consistent with the stated requirements. Under the assumption that the integration constants a 

are the solutions [y] and [] are the so-called canonical constants, Clebsch gave the most general 

values for the 
i

  that would satisfy those conditions. However, for our purpose, it is not at all 

necessary to know those most general values. Rather, we will employ only a well-defined special 

system of values of the 
i

 . 

 In order to discover it, we recall the fact that: 

(8)     yh = [yh] , vh = [vh] = 
hy

  
 

 
 

 

are the complete solutions of the system of differential equations: 

 

(6)     hdy

dx
 = 

h

H

v




, hdv

dx
 = − 

h

H

y




. 

 

The 2n equations (8) must necessarily be soluble for the 2n integration constants: 

 

a1 ,  a2 , …, a2n 

then. Let: 

(a1) , (a2) , …, (a2n) 

 

be the values that are obtained that way. If one back-substitutes them in equations (8) then they 

will become identical, and one then differentiates them with respect to y and v. If one does that 

and substitutes the values (8) for the y and v after differentiating then one will get the following 

system of identities: 
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(28)     

2

1

2

1

2

1

2

1

[ ] ( )
,

[ ] ( )
0 ,

[ ] ( )
0 ,

[ ] ( )
,

n
h h i

i i

n
h i

i i

n
h i

i i

n
h h i

i i

y y a

y a y

y a

a v

v a

a y

v v a

v a v

 





 

=

=

=

=

    
=  

   
    =  
    


  
=     

    
=  

    









 

 

in which hy

y




= hv

v




 = 0 or 1 according to whether the indices h and  are different or equal, resp. 

 Now, one has: 

hu  = 
2

1

[ ]n
h

i

i i

y

a


=

 
 

 
  , 

and as one can easily explain: 

 

2 ( , )

h

u r

du

dx

 



 



 = 
2

1

n

i

i i ha y


=

   
 

  
  = 

2

1

[ ]n
h

i

i i

v

a


=




 . 

If one then sets: 

(29)     
i

  = 
( )ia

v 

 
 

 
 , 

 

in general (i.e., equal to the value that the function 
( )ia

v

 
 

 
 assumes for any well-defined value 

x of x), then one will have: 

hu  = 0 , 2 ( , )

h

u r

du

dx

 



 



 = 0  or 1 

for x = x according to whether    or  = , resp. 

 The n (n – 1) / 2 equations of constraint (21) will then be fulfilled identically for x = x with 

the values (29) of the constants 
i

 , and as a result, they will be fulfilled for any x at all, since they 

are independent of x. 

 However, the system of values (29) for the 
i

  possesses yet a second important property, 

namely, that it allows one to express the determinant U in terms of another determinant that plays 

a very prominent role in the criteria for a maximum or minimum, as one will see. 
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 Namely, if one multiplies the determinant: 

 

(30)     (x, x) = 

1 1 1

1 2 2

1 2 2

1 2 2

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

n

n n n

n

n n n

n

y y y

a a a

y y y

a a a

y y y

a a a

  

  

  

  

  

  

  

 , 

 

in which 
[ ]i

h

y

a




 stands for 

[ ]i

h x x

y

a
=

 
 

 
, by A , where A means the value of the determinant: 

 

A = 1 21

1 1

( ) ( ) ( )( ) n n n

n n

a a aa

v v y v

+
        

       
         

  

 

for x = x , and applies the law of multiplication of determinants to the product then, due to the 

identities (28), one will get the formula: 

 

U (x, x) = A  (x, x) , 

 

in which U (x, x) denotes the determinant that emerges from U by the substitutions (29). 

 When one introduces the reciprocal determinant of A : 

 

 = 1 1

1 1 2

[ ] [ ][ ] [ ]n m

n n n

v yv y

a a a a+

  


   
  , 

that relation can also be written: 

 U (x, x) =  (x, x) , 

 

which will show that the determinants U and  (x, x) will be equal, up to a factor that is 

independent of x, as soon as one gives the 
i

  the values (29). 

 It likewise follows from this that those values also satisfy the second condition, so the 

determinant U cannot be identically zero. 

 Therefore, the determinant  (x, x) cannot be identically zero as long as one leaves the 2n 

integration constants a undetermined, since otherwise the basic condition that the functions y 

should assume given values at both limits could not be satisfied. Thus, from what was established 

at the conclusion of § 1, they cannot vanish identically when one replaces those constants with the 

values that follow from the stated condition either. 
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 The determinant U (x, x) can then reduce to zero only when A = 0 or  =  . However, that 

is impossible, because the determinants A and  are independent of x. 

 One can deduce that indirectly from the Poisson-Jacobi or Lagrange laws for the theory of 

perturbations. However, it is easier to show it directly. 

 Namely, if one differentiates the determinant  with respect to x then that will produce: 

 

d

dx


 = 

2

1 1

| | | |

( ) ( )

n n
h h

h hh i i i

i i

v yd d

v ydx a dx a

a a
= =

 
    

+ 
    
   

  . 

 

However, when one differentiates the identities (6) that are obtained by substituting the solutions 

(8) with respect to ai , one will get: 

 

  
[ ]h

i

yd

dx a




 =  

2 2

1

| | | |n
k k

k h k i h k i

y vH H

v y a v v a=

       
+    

          
  , 

 

  
[ ]h

i

vd

dx a




 = − 

2 2

1

| | | |n
k k

k h k i h k i

y vH H

y y a y v a=

       
+    

          
  . 

 

If one substitutes those values in the foregoing equation and combines the terms that are multiplied 

by the same second partial differential quotient of the function H then one will find that: 

 

d

dx


 = 

2 2

1

n

h h h h h

H H

y y y v=

      
 −    

        
  = 0 

 

when one applies the first law of determinants. The determinant  will then be, in fact, independent 

of x, and it cannot be zero or infinite because the 2n integration constants a must be expressible in 

terms of v and y by the 2n equations: 

 

vh = [vh] , yh = [yh] 

 

if one is to define a complete system of integrals of the differential equations (6). 

 We can then combine our results into the following theorem, whose great importance will first 

appear clearly in what follows: 

 

 When one gives the values: 
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(31)     
i

  = 
( )i

x x

a

v


 =

 
 

 
 

 

to the 22n  constants 
i

 , in which x denotes an arbitrarily-chosen value of x, then the constraint 

equations (21) will be fulfilled identically, and one will have: 

 

U = C   (x, x) 

 

identically, moreover, where C is a non-zero constant that is independent of x . 

 

 

§ 4. 

 

 We are now fully equipped to be able to go on to the actual goal of this treatise, namely, 

presenting the criteria for a maximum or minimum. 

 If one applies the identity conversion (26) that was obtained to the second variation: 

 

(9)      
2J  = 

1

0

22

x

x

dx   

 

then when one recalls the conditions that the variations z are subject to, one will get the formula: 

 

(32)    
2J  = 

1

0

2

2
1 1

x n n
h i

h i h ix

U U
dx

y y U= =

  
 

  
  , 

 

whereas, from (27), the equations of constraint k = 0 will go to: 

 

(33)     
1

n
k

h

h h

U
y



=

 
 

 
  = 0 . 

 

However, in the derivation of formula (32) from the transformation (26) for the definite integral: 

 
1

0

2
x

x

d B
dx

dx U , 

 

since the difference between the limiting values is set equal to the undetermined value 2B / U, 

which will vanish because the variations z must vanish at the limits, that formula can be applied 
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only as long as the function 2B / U that is defined by (24) remains finite between the limits x0 and 

x1 . 

 If we now assume that the limits are so close that none of the coefficients in the original 

function 2J  nor any of the quantities 
[ ]y

a




 and 

[ ]

a




 become infinite between them then that 

function will suffer a break in finitude only when its denominator U becomes zero. 

 However, the vanishing of U depends upon the values of the 22n  arbitrary constants 
i

 , and 

when we consider only the values of those constants that satisfy the equations of constraint (21) 

(which is self-explanatory under the assumption that was made), we can then state the following 

theorem: 

 

 I. – As long as one can determine the arbitrary constants 
i

  in such a way that the determinant 

U is nowhere-vanishing between the limits x0 and x1 , the formula (32), in which those constants 

are assigned just those values that satisfy the aforementioned requirement, will be true identically 

for all variations z that come under consideration. 

 

 However, as soon as one extends the upper limit further than the condition that U must not 

vanish allows (and we will see that in general that condition will imply an extreme limit that cannot 

be exceeded, nor even attained) formula (32) will then become false, and one must once more 

revert to the original formula (9), in which the limits were subject to no sort of restriction. 

 

 

 

§ 5. 

 

 If the second variation is to yield a definite criterion for a maximum or a minimum then it 

cannot change sign or even vanish unless all of the variations z are identically zero. That is because 

when the second variation vanishes, the change in the integral will be of order three and can 

therefore be made positive or negative, in general. 

 Assuming that fact, the following conclusion can be inferred from formula (32): 

 

 II. – If one can determine the arbitrary constants 
i

  in such a way that the determinant U 

does not vanish between the limits x0 and x1 , and if, in addition, the homogeneous function of 

degree two: 

2W = 
2

1 1

n n

h i

h i h i

U U
y y= =

  
 

   
 , 

 

between whose n arbitrary arguments Uh the m linear equations of constraint (33) exist, does not 

change sign between those limits then the second variation 
2J  can neither change sign nor 
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vanish, and as a result one will certainly find that a maximum or minimum for the functions [y] 

exists then. 

 

 Since the assumptions that were made make the expression under the integral sign remain finite 

and incapable of experiencing a change of sign, they immediately imply that the integral (32) must 

possess an unvarying sign and can vanish only when the function 2W is identically zero. 

 In order to prove the last part of the theorem, one must investigate when that function vanishes 

identically. 

 It is known from algebra that any homogeneous function of degree two in n arguments between 

which m linear homogeneous equations of constraint exist can be transformed into a sum of n – m 

squares. 

 If one sets: 

 

(34)     Uh = 1 2

1 2

n m

h h h n mp V p V p V−

−+ + +  

 

then one can determine the n (n – m) coefficients i

hp  in such a way that the values of the Uh satisfy 

the m equations of constraint (33) and make the following two equations become identities: 

 

  2W = 2 2 2

1 1 2 2 n m n mV V V   − −+ + +  , 

  
2

1

n

h

h

U
=

  =  2 2 2

1 2 n mV V V −+ + +  , 

 

moreover. The quantities  are then the roots of the equation: 

 
2 2

1

1 1 1 1 1

2 2

1

1

1 1

1

1

0 0

0 0

m

n

m

n n n n n

n

m m

n

y y y y y y

y y y y y y

y y

y y







 

 

         
−       

                

          
−       

                 

   
  

     

   
  

     

 = 0 . 

 

 The term that is free of  in that equation is the determinant [R] exactly, which is not identically 

zero, by assumption. 
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 It follows from this that no root  of the equation above can be identically zero. The function 

2W cannot be transformed into a sum of less than n – m squares for undetermined x then. Should 

it not change its sign between the limits x0 and x1, as the theorem demands, then the n – m 

coefficients  must always be positive or always be negative between those limits. Therefore, the 

function 2W can vanish for every value of x between the limits x0 and x1 only in such a way that 

all of the n – m quantities Vi will be identically zero, and as a result of the substitutions (34), that 

would imply the vanishing of the n quantities Uh . 

 When the conditions for our theorem are fulfilled, the integral (320 can vanish only for those 

functions z that are solutions of the n first-order linear differential equations: 

 

(35)    U1 = 0 , U2 = 0 , …, Un = 0 . 

 

However, since one can permit only those functions z that vanish at the two limits, one must further 

add that those solutions must vanish at the two limits or (since one also gives the variations z the 

values that follow from (35) only in a subset of the interval from x0 to x1, and one can assume that 

they assume the constant value zero in the remaining subset of it, assuming that a continuous 

transition between those two types of values takes place) for any two values of x between the limits 

at all. 

 However, if one recalls the values (22) of Uh then one will see that the general solutions for 

the system of differential equations (35) are the following ones: 

 

zh = 1 2

1 2

n

h h n hc u c u c u+ + +  , 

 

in which the quantities c denote arbitrary constants. Therefore, if those n solutions should vanish 

simultaneously for any value of x without vanishing identically then the determinant: 

 

U = 1 2

1 2

n

nu u u  

 

would have to likewise vanish for that value of x. However, the arbitrary constants 
hu  in the 

formula were supposed to be determined in such a way that this determinant would be nowhere-

vanishing between the limits x0 and x1 . Hence, the n expressions Uh can never vanish 

simultaneously between those limits for any one value of x, let alone two of them. From I, the last 

part of our theorem is proved with that. One sees that the second variation can neither change sign 

nor vanish as along as the assumptions of Theorem II are fulfilled. 

 By contrast, if the function 2W can change sign between the limits that Theorem I demands 

then there must be at least one coefficient  that possess a different sign in any interval between 

x0 and x1 than it has in the remaining one, which easily explains the fact that the integral 
2J  can 

then be made positive or negative at will then. 

 The condition that the function 2W must have an unvarying sign within a limited interval for 

which formula (32) is valid is therefore not only sufficient, but also unconditionally necessary for 
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the existence of an actual relative maximum or minimum of the integral J or V when it is extended 

over that interval. 

 On those grounds, and in order to be able to express myself more concisely, in what follows, I 

will always assume that this function is not capable of changing sign between x0 and x1 without 

abandoning the equations of constraint (33). 

 Under that assumption, one can remark that the second variation can no longer vanish when 

the conditions of Theorem II are fulfilled (which is a remark that originally goes back to Richelot 

and which deserves to be regarded as a special theorem, due to its importance), which can be 

expressed more briefly in the form: 

 

 III. – As long as one can determine the arbitrary constants 
i

  in such a way that the 

determinant U is nowhere-zero between the limits x0 and x1 , the second variation itself cannot 

vanish either.   

 

 

§ 6. 

 

 It follows easily from that theorem that in general there is always an extreme limit x  that the 

upper limit x1 cannot exceed or even attain if it is to be possible to determine the constants 
i

  in 

accordance with the stated requirement. 

 In fact, formulas (13) and (14) show that for every system of solutions to the differential 

equations: 

2

h

 

z
 = 2

h

d

dx

 

z
, 2

k

 


 = 0 , 

one will have: 

22   = 2 2 = 2

1

n

h

h h

d

dx =

 


 z

z
 

 

identically. However, it follows from this that the second variation: 

 

2J  = 
1

0

22

x

x

dx   

 

can always be made to vanish for values of the z that satisfy the equations: 

 

k = 2

k

 


 = 0 

 

and are zero at both limits when x1  x  , where x  denotes the nearest root to x0 of the equation: 
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(36)    (x, x0) = 

1 1 1

1 2 2

1 2 2

1 0 1 0 1 0

1 2 2

0 0 0

1 2 2

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

n

n n n

n

n

n n n

n

y y y

a a a

y y y

a a a

y y y

a a a

y y y

a a a

  

  

  

  

  

  

  

  

 = 0 . 

 

Obviously, one always assumes that x0 < x1 . In fact, from (12), the general solutions of the 

differential equations above are: 

 

(37)    zh = 1 2 2

1 2 2

[ ] [ ] [ ]h h h
n

n

y y y

a a a
  

  
+ + +

  
 , 

 

(38)    h = 1 2 2

1 2 2

[ ] [ ] [ ]h h h
n

na a a

  
  

  
+ + +

  
 , 

 

and since the determinant  (x, x0) is supposed to vanish for x = x , one can determine the 2n 

arbitrary constants  such that the n functions (37) all vanish for x = x0 and x = x . 

 When one then assigns the values (37) and (38) to the z and  for the interval from x0 to x  , 

and assumes that the z are constantly equal to zero outside of it, one will have: 

 

2J  = 

0

2

1

x
n

h

h h x



=

  
 

 
 z

z
 = 0 , 

 

under the assumption that x1  x  . That would no longer be correct if the function: 

 

2

1

n

h

h h=

 


 z

z
 

 

became infinite between the limits x0 and x  for the stated values of z and  . However, that case 

was excluded from the outset by the assumptions that were introduced in § 4. 

 Now since the second variation can never vanish for those limits x and x  , between which 

the assumption of Theorem III is fulfilled, the extreme limit x1 for which that assumption is still 
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valid must necessarily lie between x and x  . However, as soon as it is  x  , one can certainly no 

longer satisfy that condition. 

 From the fact that the second variation can always vanish as long as one extends the upper 

limit x1 beyond x  , or also only extended it up to x  , one likewise sees that a maximum or 

minimum can generally exist only as long as the upper limit remains between x0 and x  . 

 

 

§ 7. 

 

 However, one must now ask, conversely, if the upper limit lies between x0 and x  then can the 

arbitrary constants 
i

  can always be actually determined in such a way that the determinant U 

will be nowhere-zero between the limits x0 and x1 ? 

 The reasoning that was employed in the previous section shows that the second variation can 

always be made to vanish as soon as the determinant 0 1( , )x x   vanishes for any two values 0x  and 

1x  that lie in the interval from x0 to x1 . 

 Therefore, when the condition of Theorem III is fulfilled, the determinant 0 1( , )x x   can never 

be zero as long as 0x  and 1x  remain between the limits x0 and x1 and do not coincide. In particular, 

we then have the theorem: 

 

 IV. – As long as it is possible to determine the constants 
i

  in such a way that the determinant 

U is nowhere equal to zero between the limits x0 and x1 , the determinant: 

 

 (x, x1) 

 

cannot vanish for any value of x that is less than x and greater than or equal to x0 either. 

 

 However, one must now recall the theorem (31), according to which the 22n  constants 
i

  can 

be determined in such a way that the equations of constraint (21) are satisfied, and at the same time 

one will have: 

U = C   (x, x) . 

 Let: 

x0 < 0x  < x1 < x . 

 

The determinant  (x, x0) can never vanish between the limits x  and x1 then because 0x  and x1 

must lie between two successive roots of the equation  (x, x0) = 0 . From the theorem that was 

just cited, the constants 
i

  can be determined such that one has: 

 

U = C   (x, x) 
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identically, so the determinant U will be nowhere-vanishing between the limits 0x  and x1 . It will 

then follow from IV that the determinant  (x, x) can also be nowhere-vanishing as long as 0x   

x < x1 . However, that determinant will also be non-zero for x = x0 , because one has: 

 

 (x, x) = (− 1)n  (x, x) . 

 

 Furthermore, nothing prevents us from letting 0x  get as close as we would like to x0 . 

Therefore,  (x, x) cannot vanish between x0 and 0x  either. 

 If we let x1 +  enter in place of x1 then we can express the result that we found as: 

 

 The determinant  (x, x1 + ) can never be zero between the limits x0 and x1 as long as one has 

x0 < x1 < x1 +  < x  . 

 

 Now since we can assume that x1 +  is arbitrarily close to x , and  is arbitrarily small, since 

we further know that for the values: 

i

  = 

1

( )i

x x

a

v = +

 
 

 
 

 

of the 22n  constants 
i

  that satisfy the conditions (21), we will have: 

 

U = C   (x, x + ) 

 

identically, we will see that not only can those constants always be determined in such a way that 

the determinant U is nowhere-vanishing between the limits x0 and x1 as long as x1 remains between 

x0 and x  , but we will even find a solution to that problem. 

 If we recall the assumptions by which we arrived at that result and couple them with Theorem 

II then we will ultimately obtain the following general criterion for the maximum and minimum: 

 

 V. – As long as the upper limit x1 remains between x0 and the root x  of the limit equation: 

 

 (x, x0) = 0 

 

that lies closest to x0 , the given integral will always be a maximum or minimum for those functions 

y that make the first variation vanish, when one assumes that the homogeneous function: 

 

2W = 
2

1 1

n n

h i

h i h i

U U
y y= =

  
 

   
 , 

 

whose n arbitrary arguments Uh are subject to the m equations of constraint: 
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1

n
k

h

h h

U
y



=

 
 

 
  = 0 , 

 

cannot vary in sign between those limits. By contrast, neither a maximum nor a minimum will 

generally exist as soon as x1  x  . 

 

 However, one should not overlook the fact that the coefficients of the original function 2J  

cannot become infinite between the limits x0 and x1, moreover, and that the finiteness of the 

functions 
[ ]y

a




 and 

[ ]

a




 is assumed in that interval. 

 The first condition is necessary because otherwise the entire development of the function  in 

a Taylor series would no longer be allowable. By contrast, the second assumption does not seem 

to be necessary. even though it cannot generally be abandoned in the reasoning that is employed 

here. At least, Jacobi (*) has shown, in the simplest case of the calculus of variations, by 

completely different considerations that are independent of the finitude or infinitude of those 

functions, that the limit equation will produce the widest limit interval inside of which the 

denominator U in the reduction can be prevented from vanishing by a suitable determination of its 

arbitrary constants, and the same thing can also be proved by a similar argument for Jacobi’s 

example of the integral of least action for the elliptic motion of a planet in space, where one of 

those functions will become infinite within the interval in question. 

  

 

§ 8. 

 

 In the general case where the solutions [y] are not linear with respect to their 2n integration 

constants a, the limit equation  (x, x0) = 0 will admit a very simple interpretation, and it is 

important to derive it in order to show the agreement between the criteria that were obtained with 

the ones that Jacobi gave without proof in Bd. 17 of this journal on pp. 73. 

 The 2n constants a are assigned those values that they get from the 2n equations: 

 

yh0 = [yh]0 ,  yh1 = [yh]1 , 

 

whose left-hand sides are the given limiting values and whose right-hand sides are the values of 

the solutions for x = x0 (x = x1, respectively). 

 Now when those equations are not linear with respect to the unknowns a, one will generally 

obtain several different systems of values for those constants from them that correspond to the 

same limiting values of the variable y, and it might be possible that those two systems will coincide 

for a certain value of x1 , or as one can also say, come infinitely close to each other. 

 Let a1, a2, …, a2n be a system of values for the constants a that satisfies the equations above. 

Should those equations be also fulfilled by values that differ from them by infinitely little: 

 
 (*) Cf., Hesse, Bd. 54, pp. 256-260 of this journal. 
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a1 + a1 , a2 + a2 , …, a2n + a2n , 

then the 2n equations: 

0 = 0 0 0
1 2 2

1 2 2

[ ] [ ] [ ]h h h
n

n

y y y
a a a

a a a
  

  
+ + +

  
 , 

 

  0 = 1 1 1
1 2 2

1 2 2

[ ] [ ] [ ]h h h
n

n

y y y
a a a

a a a
  

  
+ + +

  
 

 

would have to be true. However, that cannot be true unless: 

 

 (x, x0) = 0 . 

 

 As a result, the equation  (x, x0) = 0 is the condition for the two different systems of roots for 

the 2n equations: 

yh0 = [yh]0 ,  yh1 = [yh]1 , 

 

from which the integration constants of the solutions are determined from the limiting values of 

the variables, to be equal to each other. 

 However, if one uses that interpretation of the limit equation as a basis then Theorem V will 

give one the case that Jacobi treated when he sought the maximum or minimum of the integral: 

 
1

0

( )( , , , , )

x

n

x

f x y y y dx , 

 

in which the homogeneous function 2W reduces to: 

 
2

2

( ) ( ) nn n

f
U

y y

 
 
  

 

here (*), in which one sets: 

 

y1 = y ,  y2 = y , …, yn = y(n−1), 

z1 = z ,  z2 = z,  …, zn = z(n−1), 

 

which is the same criterion that one finds to be expressed in the given location. 

 

 

 

 

 

 
 (*) Cf., Clebsch, Bd. 55, pp. 267 of this journal. 
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§ 9. 

 

 In the foregoing, one always considered only the case in which the limits x0 and x1 were both 

given, as well as the limiting values of the y. However, as is known, one can reduce all other cases 

to that one when one divides the problem into two separate parts, the first of which belongs to the 

actual calculus of variations, while the second belongs to differential calculus. One first assumes 

that the limiting values of the variables are all given and looks for the maximum or minimum of 

the integral in question under that assumption. The criteria for it to be an actual maximum or 

minimum under that assumption are known from the foregoing, and from theorem V, they depend 

upon the limits and the values of the integration constants of the problem, which in turn depend 

upon the limiting values of the variables. Now if one has found the maximum or minimum value 

of the integral then if the limiting values are not all given, one secondly comes to the problem of 

determining them when one considers the given limit conditions such that the value of the integral, 

which is now a given function of the limiting values, will be a maximum or minimum. The 

substitution of the limiting values, thus determined, in the criteria above will yield the criteria for 

a maximum or minimum in the present case. 

 That way of deriving the criteria for a maximum or minimum for the limiting values that are 

not given always seems to require that one must perform a quadrature. However, since that does 

not amount to finding the greatest or least value of the integral, but only variation that it 

experiences when one varies the limits and the integration constants, one will easily see that one 

can always avoid that quadrature (or more precisely, it can be replaced with another one that can 

be performed immediately) as long as the limiting values do not enter under the integral sign. 

 

 Leipzig, in March 1868. 

 

__________ 

 


