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On Weiler's method of integrating partial differential equations
of first order.

By A. MAYER in Leipzig

Translated by D. H. Delphenich

In the year 1863, in Schldmilch’s journal, Weiler describeghethod of integrating
partial differential equations of first order that reqd noticeably fewer integrations than
the method of Jacobi. However, whether one could @bttd recognize the healthy
nucleus of Weiler's method, the derivation and resstt$ remained misunderstood.
Attracted to the importance of these results, Cleltseh sought to verify them, and he
arrived, along a completely different path at a rigorous proof of the fact that, in
general, one can, in fact, arrive at those result® lmpnsiderably smaller number of
integrations. However, although Clebsch simply said efl&/s simplification of the
integration process: “This simplification...consistshe following,” after examining and
comparing these two papers one can still scarcely aheicconclusion that Clebsch’s
simplification of the Jacobi method (which was latalled the Jacobi-Weiler method)
cannot possibly be identical to the actual Weiler prgcasd the latter, in fact, must rest
on a completely different foundation. Furthermores ihowhere stated in the article by
Clebsch in these annals (Bd. VII, p. 1) that there isidemtity between these two
methods. | therefore actually do not understand thenetdevhich matters discussed in
it were incorrectly presented. However, if that soahe case then, in any event, one can
only rejoice in the fact that the consideration odil&f’s work has allowed his method to
be recently published in a more thorough treatmént

In this most recent publication, the situation is gengetedlated in more detail than in
the earlier one, although the presentation is neveg$fealso such that it cannot be
understood by my interpretation of things.

This comes down to the fact that one and the same dyfhy) can be given
completely different interpretations, such that thenme very few places in which one can
say with complete certainty which actual sense isigescribed to the equations or
operations in question. The equations that are othemh@®ughly transcribed and
enumerated (cf., 8 5 of Weiler’s treatise) change irmfand meaning with each page,
when one goes further in each direction, without onceimgakny remark, in symbols or
words, about this tacit alteration. However, allttlatually appears are errors.
Therefore, in particular, the theorem) “If m partial differential equations define a

") Borchardt's Journal, Bd. 65, pp. 263.
”) Schlémilch’s Journal, Bd. XX, pp. 83 and pp. 271.
™) Loc. cit, pp. 278.
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complete system then amyof thesem partial differential equations will also define a
complete system, and for that reason, havei common solutions” is obviously false,
which emerges immediately from Clebsch’s fundameihiabitem, by whichm linearly
independent partial differential equations:

A(f) =0, Af) =0, ...., Axn(f) = 0,
define a complete system when and only when each:

AAF)) — AdA()

can be represented as a linear combination oA{he The theorem is, moreover, true
only for the special case of a system in involutionwhich all of the expressions have
the value zero. Furthermore, the fact that this #modoes not merely possess the
character of a casual aside implies that thergmplg no factual basis for the words “this
theorem...will find several uses in what follows” that Weiimmediately followed the
previously cited statement with, although the explanationld lead me too far afield,
here.

In my opinion, absolutely nothing is as self-explamatas it appeared in Weiler's
presentation. However, the method itself is corfeaind entirely worthy of being read
and understood, and indeed not only for the results, botesisecially because of its
particular line of reasoning, which occasionally proceédsd mere enumeration of the
solutions and variables, and almost always disdainsat@ltalong the customary path.
On this basis, | do not consider it to be superfluoudsm @elve into the Weiler method,
as | understand it, in these annals, which indeed alreaclyde the most recent
investigations into partial differential equations oftfiosder, in order to make it as clear
and precise as possible.

The first three sections of the present articledeeoted to this discussion, in which,
for the sake of completeness, many known facts vetl &k recalled. The first section is
concerned with Weiler's method of integration of cortglasystems, which Weiler
himself had communicated notably only for a completetesysof two equations.
Whereas all additional methods for the purpose of intixgrat given complete system
come down to the integration of a system in involutlmare the system will be brought
into another special form, which | shall call (eiler form In the following section, the
systems in involution that appeared in the Jacobi methibéewvieplaced by such Weiler
systems. The application of the method in § 1 then ey yields in 8 3 a method
for the integration of partial differential equatiorfsficst order that does not differ from
that of Jacobi in the number and difficulty of theemrations. As a consequence of a
special property of any Weiler system, however, the caitipo of any two successive
steps ultimately yields the actual Weiler simplifioati which shows that one can, in
general, be spared a large number of integrations wheparethto the corresponding
process of Clebsch, and therefore go about one’s wooke simply. If these
simplifications of Weiler and Clebsch also implicitlgquire still more integrations than
mine or Lie’'s method’) then one must, on the other hand, also once move ane’s

*

) Cf., however, the remark at the conclusion.
”) Math. Annalen, Bd. V, pp. 448 and Bd. VI, pp. 162.
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attention to the fact that in most cases thesgiat®ns will drop out more often then in
the latter methods.

In the sequel, for the sake of brevity and clarityavénonly considered the simplest,
and due to its relationship with dynamics and the calcofugariation, most important
case of partial differential equations of first ordemely, the case in which the unknown
function itself does not enter into the given equatidfor this, corresponding to the
conclusion of Weiler’s article, an examination vioé added in § 4 that has no necessary
connection with the foregoing ones, and which shallisib@an old prejudice, which was
also shared by myself, against the Jacobi reduction efgdneral case of partial
differential equations of first order to the given sietase).

§ 1.
Integration of complete systems.

Let:
(1) Al(f) =0, Af) =0, ..., An(f) =0,
where:
Ah)=Y4 :—f

|

and m < n, be m given linear partial differential equations, of which nafethem is
merely an algebraic consequence of the others, whichditerminem of the differential
guotients as functions of the remaining ones and the indepewariables. | assume
that:

of of of

a, a_)(z, ...,E

arem such differential quotients. By solving these equations,then obtains the system
(1) in the form:

(2) B.(f) = 0, Bx(f) =0, ..., Bn(f) =0,
where:
oo
"0 5% 20 %,

This solved form of system (1) immediately leads totbie®mrem that when the equations
(1) possess several common solutidrssfy, fo, ..., fk, of which, none of them is merely a
function of the other ones, these solutions must saciés be independent of each other
relative to then — mvariables¢m1, ..., % .
In fact, were:
fk: ¢( fl, ...,fk_]_, X1, ,Xm)
then one would have:

") Borchardt's Journal, Bd. 60, pp. 1.
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0
Bi(f« =90 :
ox

and will thus follow from equations (2) under the assunmptio

fu=@(f1, ..., ficr).

From this theorem, one immediately infers that equat{@) can no longer possess more
thann — mmutually independent common solutions. If they admitm such solutions
then the system (1) would be calledamplete system

In the sequel, | will assume that the system (1)asraplete system, and will denote
anyn —m independent solutions of it By, ..., fn . The function$y.y, ..., fy are then
independent of each other relativext@s, ..., X,; any solution of the system (1) may be
expressed as merely a functionf@fi, ..., f,, and conversely, any function xf, x, ...,
X, that includes these variables only by wayfef, ..., f, is a common solution of
equations (1).

Since than equations (1) should determine thdirst differential quotients, so must
theh equations:

A(f) =0, AH) =0, .., Ayf)=0

be soluble foh of thesem quantities for everit <m. If one assumes that:

of of  of
ox  ox,  Ox,

areh such differential quotients, and denotes the resuhesubstitution of their values
in Ana(f) by A", (f)then one can replace the system (1) with the foligvaine:

3) A(f) =0, A(f)=0, .., A" (f)=0,
in which A*( f) generally has the form:

k-1 _ N ki
(4) AT (f)= ;bﬁ o,

and A" (x) is non-zero. When using the shorter expressionsfahis of the complete

system (1) will be called th&/eiler form

The system (3) possesses the important property thatféing lastim — i equations in
it will again define a complete system.

In fact, them —i equations:

(5) A.(f) =0, .., A" (f)=0,
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which include only then — i differential quotient®f / d%+1 , ..., 0f / 0%, , and can be
solved for the lasin — iof them, possess the:

n—-m=mnN-i)—Mm-)

common solution$ = f.4, ..., fy that are independent functions of the variakigs, ...,
Xn .

Now, letf = @1, ..., @n be anyn — mindependent solutions of the complete system
(5).

From the equations:

I

Pt = Xpas - 0 = X,

I

the Xm+1, ..., Xa Can then be expressed in termxof..., Xm, X..,, ..., X,. If one denotes
the substitution of these values by [ ] and si&ts { then one has, consequently:

of" ox,
LXJ Zaxhaxﬁ ﬂzma)ia&}

because, from (4)A'(f) is a linear function odf / dx, , which vanishes fof = x1, %,
vy Xk-1 -

[AM0] =2 [A" 0] g+ 2[4 @] 5,
With the introduction of the new variablgsthe complete system:
(6) A7(f) =0, A, () =0, ..., AT (f)=0
goes over to the following one:

n

STA ]S+ 3 [A0)]2 =

h=i H=m+l Y]

However, the lastn — iequations yield:
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KL L
ox, 0x.,

Under the substitution [ ], any solutibof the system (6) then goes over to a solutioh
the equation:

of & [ A7) |of _
" 6_>§+;,§‘+1|: AT(X) :IE B

that is free o1, ..., Xn . Now, the complete system (6) possesseansolutions that
are mutually independent relative to thei, ..., X, . AS a consequence, equation (7)
must admitn — msolutions that are free &f.1, ..., Xn, and are independent functions of

X .1, .-y X . HOwever, when one understand® mean any of the variablgs,, ..., Xm,
each of these solutions satisfies, not only equdf@, but also the equation:
n ' i-1
- g A2 [Ai_l(%)} “o
ll:m+1ax;1 X A ()|()

which one obtains when one differentiates equatiOnwith respect tax, under the
assumption thdt is free ofx.

Equation (8) must then, in the even that it is @aot identity, possesa — m
independent solutions relative tq,,, ..., X,. However, this is impossible, since it only
contains then — mdifferential quotientsof'/ox.,,, ..., of'/0x,. They must then be
identities, in and of themselves; i.e., either each

{A’l(fﬂ )} 0

A™(
or all of the expressions:
A
AT (%)

must represent merely functionsxaf ..., X, @¢m1, ..., #n . However, as such, they are
again solutions of the system (5) into whigh ..., X; enter only as constants. One then
has the theorem:

. Let:
Aq(f) =0, Aj(f):o, A;‘j‘l(f) =0

be a complete system, where, in genefif,( f) possesses the form:
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A =20

and A™(x)is not zero. If f =g is then a common solution of the last m — i equations of
this system then:

A(¢)

A (%)

is always one, as well.

This immediately implies a method for arriving at a cmon solution of the lash — i
+ 1 of equations (3) from a given common solution to the dast i of equations (3) or

(5).

Namely, iff = ¢, is the given solution then, from I:

_A@)
AT(%)

ANB) 4 AT

T R T

o P

are also common solutions of equations (5). Howevesetlequations possess only
m mutually independent common solutions. Thereforgy.if is the first of the functions
@1, @, ... that can be expressed in terms of the foregoing ams, X,, ..., X; alone then
one must have:
k<sn-m
If one now sets:
f :f'(Xl, X2, ..., Xi, ¢1, ¢2, caey ¢k)

then, when one divides it b (%), from (9), the equation:

A*(f)=0

goes to

of' & of '
(10) —+) $u7—=0.
0X ; Ala¢a

Only x1, X2, ..., X, @1, @2, ..., g« enter into this equation, and thus, only those quantities
that are solutions of the system (5). Any solution of #qud10) is therefore a common
solution to the lastn — i+ 1 equations (3). One thus finds a solutions of thesdiegaa

by the intermediary of an integral of the systerk ofdinary differential equations:

dx :dg1:....d@-1: dgx =1 :¢1: ... ¢ D1,

or by an operation of ord&r<s n —m
From this, the following procedure serves to find a salutb the given complete
system (1):
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One first brings the system into the Weiler forB) by successively solving its
equations and substituting the solutions, which is alwaysilpespossibly after a
suitable permutation of variables.

One then determines a solution of the last equatiod) iby an operation of order—
m. By an operation of order at mast- m one then obtains a common solution to the
last two equations in (3). An operation that is gengHlbrder at mosh — mthen yields
a common solution to the last three equations in ¢8), such that in order to find a
common solution to the entire complete systemmefjuations im independent variables
one requires an operation of oraer mandm —1 operations, each of which is of order
at mostn —m

My method) achieves the same obijective by a single operationdzin — m

§ 2.

The Weiler system that the general problem of integrating
partial differential equations of first order comes down to.

Lie has shown ) that the complete integration of a given partiffiedéntial equation
of first order:

¢1(X1, eovy Xny P1, ,pn) =C,

in which, ps, ..., pn mean the partial differential quotients of the unkndwmction with
respect to the independent varialges..., pn, which can then come down to finding-
1 functionsg, ..., @n of the 21 independent variables, ..., X, p1, -.., pn, Which pair-
wise satisfy the conditions:

_ N[ 9% 0Py _ 09y 084 | _
(<1>k¢h)—iZ:l‘,[a)g on  op 6>.<j 0,

be independent of each other, as welas
If one has already found the functiogs ..., ¢, then so ispi.1 to be determined as a
common solution to theequations:

(1) (@) =0, @) =0, @f) =0,

that is independent afi, ¢, ..., ¢n. These equations, of which, as one immediately
realizes from the independence of the functigis..., ¢ , none of them is merely an
algebraic consequence of the remaining ones, is wellHkitowlefine a complete system,
due to the assumptiong(¢x) = 0.

One can immediately convince oneself of this, when emgloys the celebrated
formula of Jacobi, by which, for any three arbitrarydiionsf, ¢, ¢ of the 2 variablesx,
p one has identically:

(. (@ @) + (@ () + W F9) =0,

) Math. Annalen, Bd. V, pp. 465.
”) Math. Annalen, Bd. VIII, pp. 245. Cf., also pp. 318 of shene volume.
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with the well-known theorem that aisystem in involutioni.e., any system of mutually
independent linear partial differential equations:

A(f) =0, AxH) =0, ..., Alf) =0,
whose left-hand sides satisfy the conditions:

An(AF)) = An(Af)) = 0,

is likewise a complete system, a theorem for whioh (pgp. 249 of this volume) has
communicated a simple direct proof.
Namely, since d, (f ¢)) = — (¢, (¢ f)) the Jacobi identity, under the assumption that
(¢ @) =0, yields:
(@, (@) - (¢ (¢1)) = 0.

Therefore, as long a® () = 0 there exists between the operations:
Alf) = (¢f), B(f) = (¢),
A(B(f)) —B(A(f)) = 0.

the relation:

As a consequence of the assumptiafisg) = *0, however, it is just this case that applies
to the system (1), so it is a system in involutipn

") I will take this opportunity to publish the beautiful pfahat Clebsch gave of the Jacobi identity in
his lectures:
One immediately sees that as long\&3¥ andB(f) mean any two expressions of the form:

AD=3a2, B =3 b

o
h=1 9 h=1 9

ay, '
under the operation:
A(B(f)) - B(A()),

the second partial differential quotients of the funcfioancel out. From this, it follows immediately that
the expression:

M=( (9 @) + (@ (¥ + & F9)

includes no second differential quotients of the three fomst, ¢, ¢. In fact, second differential quotients
of f, for example, can only originate from the sum:

(¢, (D) + (& (f 9)).
However, this is, as we showed above, an expression fafrthe
A(B(f)) - B(A(f)),
and, in turn, is free of the second differential quotiefté On the other hand, as a consequence, its

inclusion in the expressiol includes no terms in which a second differential quotadrf, ¢, or ¢
appears. Therefor®) can only have the value zero.
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From the foregoing, one likewise also obtains the Boigacobi theorem, which |
will express in the special form here that we wik Uester:
If h <i andf = ais a solution of the system in involution:

(#f)=0, @N)=0,..6f)=0
f=(¢a)

then

is always one, as well.

The complete system (1) now possesdasown systems$ = @1, @», ..., ¢. When
one introduces thesesolutions as new variables, one can then convert eqadti into
a complete system efequations in onlyr2—i independent variables, and directly apply
the method of the previous section to this reduced systigen,cae has brought it into
the Weiler form by successive solutions of its equatantssubstitution of the solutions.

However, if one would like to present those equatamsvhich the functiom., is to
be calculated according to any method, along this mosbob®wpwath, then one would
scarcely detect the important property of these equatipns which the actual Weiler
simplification of the integration process is based.

We would therefore like to perform the reduction of toenplete system (1) to the
Weiler form in another indirect way.

By assumption, the already known functiahs @., ..., ¢, which have the mutual
relationship ¢, @) = 0, are independent of each other. Thus, for déashi, the h
equations:

(2 $1=C1, P2=Cy ..., Pnh = Ch,

determineh of the 2 variablesxy, ..., X, p1, ..., pn @s functions of the remaining ones
and thec. These 8 variables are, in turn, pair-wise associated with edbér. | would
like to denote them, when taken in any sequemge, ., Uy, V1, ..., Vn, in Such a way that
Ui, ..., Up, shall mean anw differentx, p, andvg is associated with the variablag in
such a way that, for examphg,= x«, when one sets = px .

For the sake of clarity, the substitution of theueal ofuy, ..., u, that equations (2)
provide might be indicated by the sign"[ dr also briefly by the addendum of an upper
indexh”. By this convention, for arly< i:

(="' =f"

and d¢"/du, are non-zero. Finallywmeans an arbitrary one of the variablgg.
From the identityf]* = f* that emerges by substituting the valuessdh the equation

@1 = ¢y, it follows that:
m iﬁil[%}l
dw| Odw oc|ow]



Mayer. On Weiler's method of integrating partial diffietial equations of first order. 11

1
If one substitutes these values for {hg)f—} in the expressiong, f)!, which is a linear
w

homogeneous function of these quantities, then, $ihceé;) = 0, this yields, foh =1, 2,
O

3) @' =@,

a formula that, like many of the following ones, césoae inferred directly in the well-
known way, in which one abbreviates a characteristih thie help of given solutions by
just as many terms.

If one sets = ¢, whereh > 1, and then applies this to the expressigyt)’ then it
follows that:

N1 1gl a¢rl1 1
() =(grt?)+ RS
One thus has the identities:
(@, 1) = (&, Y)Y
4 1
®) (¢hf)1:(¢ﬁfl)+‘;¢h (B, )"
G

As a consequence of the assumptiahsg)) = (¢n ¢,) = 0, one also has:
(#183) =0.

In turn, the expressiongt () arises from the two functiong® and ¢* in precisely the
same way as the expressigh¢)) does from thep and ¢. Therefore, for each <i the
equations:

(5) (4:1%)=0, (i) =0, ..(¢rf") =0

define a system in involution.
From the identity:

(g1 = g,

which arises when one substitutes the valuesifor.., u,—; in the functiong; that are
obtained from the equations:

¢; =G ..., ¢ﬁ—1 =Ch-1,
one further obtains the formula:

{%}: o9 +§a¢a‘1{a¢$}“’l,

ow ow 453 0c, | dw

and by an application of it:
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hla¢

A=2 A

(6) (B f)" = (g )"+ (B2fH" "

Likewise, it follows from the identityff]' = f' that comes from the equatiog$ =c;, ...,

#' = ci that:
o] _of! hiaf' a¢
ow dw = 0C,
and from this- since, from (4), one also h&g,¢,)" = 0— one has:

7) @1 = (@ 1),
a formula that has the same character as formula (3)

Finally, if one makes the substitution i the identity (6), under the assumption that
h<i, and then applies the penultimate formulégﬂ}’lf 1)I , this gives:

1e1) hagi) Lo O (Y h_la:_li 1¢ 1\
(1) = (o1 + o) )28 (gir ).

Since (¢;¢7) = 0, however, from (6), one also hég '¢:)"" = 0, it follows that all that
remains is:

® (@) = (oo ) o 87 (e

The coupling of formulas (7) and (8) with formulas (4)whmnly, when one sets= 2,
3, ...,i in sequence, that by the substitution [ehch solutiori of the system (1) that is
independent of:, ¢, ..., ¢, will go to an a solutiofi' of the system with only then2-i
independent variables:

©) @f) =0, (#f) =0,.. (@) =0,

while conversely, by the substitutien= @1, c; = @s, ..., ¢ = ¢, each solutiori ' of the
latter system again goes to a solution of the giveresygl) that is independent ¢t,
@2, ..., @, such that one can replace this with the system (9).

From this, one obtains, with no further assumptiohnat the system (9) is also, in
turn, a complete system.

However, the system (9) has the Weiler form. Tisimge ¢ is free ofuy, Uy, ...,

un-1 , and the differential quotient§ ' / dvi appear in the expreSS|o(1¢h T ) only in
the form:
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JoorT ot
ou, | dv,

then each successive equation in the system (9) isr fbweone of the differential
guotients:

a oo
ov, ’ avz’ avi_l’
and one has that:
oy L [ogrt]
") = |
(07v,) { 0 }

is then non-zero.

Therefore, as long as the functiops ..., ¢ are already known, we can immediately
define the Weiler system from them and the given funafigron which, the next of the
desired functions depends.

However, it still remains for us to find the importanoperty of equations (9) that we
spoke of.

For this, we again resort to formulas (7) and (8).

Namely, they also teach us that by the substitdtipnthe system in involution (5)
will be converted into the following system:

(20) (¢;fi)i:0, (¢§fi)i =0, ,( :—1fi)i:0’

which is then a co_mplc_ete system in any case.
Conversely, if' = u' is a solution of the system (10), and, by the substitati = ¢;,

..., G =¢", the functiond goes toa* thenf' = @" is a solution of the system in involution

(5). Under the assumption thak i, however, from the Poisson-Jacobi theorem With
a*, one likewise also has that:

' = (¢la')

is a solution of this system, and that each soIthib_rmf it goes to a solutioh' of the
complete system (10) under the substitutioh [Withf' = o', then:

fi = (¢ila,1)i
is also a solution (10). From (8), however, one has:

(#a) =(a7a).

One then has the theorem:
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Il. If f' = a'is a solution of the complete systétd) and h< i in this then one also
always has that:
fi — (¢ii—lai )I

is a solution of this system

and this is the desired property of equations (9).
Finally, if one has found one solutién = ¢',, of the system (9) and suggests the
substitution of values afi, Uy, ..., Ui+1 that follows from the equations:

¢l:Cll ¢; :C21 ey ¢ii+]_ :Ci+1l

by the upper indek+ 1 then one has:

i+1

(¢:_lf i)i*l - (¢:_lf i+1)

This formula, which, in turn, has the same charadeioamula (3), flows into the
theorem:

. If f' = d is any solution of the system:
(#:f')=0, (#f)=0,...(¢"f) =0
that is independent of and ¢',, thenf "1 = g*1is a solution of the system:

(¢;fi+1)i+l = 0’ (¢§fi+1)i+l = 0’ o (¢ii—lfi+1)i+l = 0

§ 3.
Integration of partial differential equations of first ord er.

On the basis of the theorem of Lie, along with theveosion of the system in
involution (1) to the Weiler system (9), this likewiseinge directly to a path, along
which one can employ the method of § 1 for the integmabf the given partial
differential equatiorg; =c; .

The system (9), whose presentation assumes that r@@elyalknows — 1 functions
@, ..., ¢ that are independent of each other, as wefhaand satisfy the conditiongy
@) = 0, includes equations andr?—i independent variables.

From § 1, one then finds a solutibh= ¢!,, of it by an operation of the orden 2 2

andi — 1 operations, of which, at most one of them hasdhee order.
Thus, as long as the functiogs, ..., ¢ are already known — and from the partial
differential equations of dynamics one can indeed maditgin a sequence of functions
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from general principles) — requires the next step in the integration of theemi
differential equation by the Weiler method, as weltles Jacobi method; one may also
not decidea priori, whether the order of these integrations by the ortéodewill turn
out to be less than it is by the other one. This $irsp then shows us nothing in regard to
the advantage of the Weiler method over the Jacobi one.

However, this situation changes when one goes furthereas, by the Jacobi
method, one must also repeat essentially the samegzoa ascertaig., that already
gave ¢i.1 , in general, by evaluating the results that, in a esem®&re byproducts of
obtaininggi.1, the Weiler method can now admit a very remarkalhgfication, which
is just the defining characteristic of this method.

In order to correctly understand this simplificatiore must next present the actual

operations by which the functiogf,, was found in the foregoing.

For the determination of this function, one musttficok for a solution of the
equation:

(¢) =0,
and then, a common solution to the two equations:
(o) =0 (a71) =0,
etc. Finally, once one has found a common solutidheif— 1 equations:
(11) (') =0, (¢2f') =0,...(¢7F) =0,

a common solution of alllequations (9) in the following way:
Letf' = a, be the solution to the system (11) that was alreadyd. From theorem
I, one computes the new solutions:

o = @) g = 0a)
(¢1V1) I (¢1V1) I

up to the first functionn,,,, that can be expressed in terms of just the previous am

vy, and which must necessarily enter inkat 2n — 2.
When one then sets:

fi = Fi(xpail’aiz!"' 1aik)’

one converts the equationg; ')’ = 0 into the following one:

") Cf., Lie, Math. Annalen, Bd. VIII, pp. 282.
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oF'
12 N
(12) N th, Eyy
Any solution of this equation whose independent variablesare , ..., a, delivers a

common solutiori' = ¢/, of the entire system (9).

Once one has thus foung,;, one must, in turn, find a solutidd™ = ¢/ to the
Weiler system: o o o
(13) @t =0, @ f™H™=0, .., @, " =0,

in which the upper indek+ 1 refers to the values of the variablgsu,, ..., U1 that
follow from the substitutions defined by the equations:

$r=ci, #; =Cy, ..., @, = Cis1.

Now, in general, by the statement of equation (12) vahdind yet another solution
= . of the system (11), in addition t,,, which does not go to a mere functiorvof
under the substitution of values far; that were obtained from the equatigh, = ci.1 .
In fact, this is always the case, as longkas 1 in (12). From Illl, this solution is
converted by the stated substitution into a solutish= 2" of the system:

(14) (g6 )™ =0, (821 =0, .., (¢7) " = 0.

However, from theorem I, when one exchangefor i + 1, along with3™, o

simultaneously has:

(15) Iﬂ :( |+1:81+1) , Iﬂ :(¢ii+1 é+l)i+l’

ne

as solutions of system (14). L&" be the first of the functiong**, £, ... that can

be expressed in terms of the previous onesvaabne. One must then have:
A<2n-2 -1,

because the complete system (14) includesl equations, but onlyn2—i — 2 actual
variables, which allow only:
n-i-2-(-1)=a-2-1
independent solutions.
If one now takes:

|+1 |+1( ,Biﬂ,"',,g;l)

then the equation:

(¢, 14)" =0
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goes to the following one:

A : "™ aFi+l B
;(ﬂ&ﬁ\ )aﬁul - 0’

which, from (15), can be written aS'
|+l aFI+l
(16)

h+l aﬁHl -

and consequently include only such quantities that are @adudif the system (14).
Any solution of this equation — and the discovery of onmatels an operation of
order at mosti2— 2 — 2 — provides a solution of the system:

i+1

(17) (269" =0,(g2t™) =0, ..., (g, 1)" =0.

Thus, in the event that not jug™ = 0, but thenB™ itself, is already a solution of this

system, one must havie> 1 if equation (16) is to produ&™ = (a function of justs) as
the obvious and unneeded solution.
One then assumes in this way that in order to findranaon solution of equations

(17), the operations (15) have produced, in additig#j o at least a second solutigh)™
of the system (14) that is independent of it apdr perhaps that one already has found
two solutions of the system (11) that are independeeadi other, as well ag,, andv;

by the definition of equation (12).
If neither of these two assumptions apply then onstralso once more apply the

same process for the determinationgf; as one did for the discovery @f,,. Then,
however, by this previous problem, one has already eniatedthe very fortunate
situation in which the last step for ascertainiglg - viz., the discovery of a solution of
equation (12)- requires an operation of only at most second order.

If one has found a solutidr** = )/ to the system (17) in one way or the other then
one constructs from it the nine:

i (¢lyjl+l)i+1 " _(¢1 +1)|+1
VZ (¢1V1)i+l , yé (¢1V1)I+l o

up to the first functiony;,+l that can be expressed in terms of the previous orges;an
alone, and then obtains, by the discovery of a soli#idto the equation:

aFi+l 6F|+1
17 " =0,
(17) o, th,Vh
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and thus, by an operation of the ordeg 2n — 2 — 2, a common solutioh™* = ¢ of

the entire system (13).

After one has already found the functigm for a givengi, @,, ..., ¢ by the Weiler
method, one then generally needs only two more opegatio order to ascertaigi., ,
each of which is of order at mosh 2 2 — 2, which is obviously a very substantial
simplification compared to the Jacobi method.

Clebsch also achieved the same savings in integratiotssbyodification of the
Jacobi method. Meanwhile, one must then concede ltbaClebsch process is more
circumstantial than the Weiler one, and can be appheoreover, only when one has
found two more solutions, in addition to the desired fomct.,, to the system that
Clebsch used in place of the Weiler system (11).

Furthermore, as was suggested already in the introdudtiocomparison to my
method one may make a point that, in a certain seasebe& regarded as an advantage
over the Weiler method. Namely, in order to deternging after one has already found
@2, @3, ..., ¢is1, My method requires just one more operation of order 2 — 2, while,
from the foregoing, the two operations through which thection ¢.., is generally
determined after the Weiler simplification can be perfed only in the most pathological
cases of this order. On the other hand, one may, bpaason, not overlook the fact
that my method has the advantage of being completely indepeaf whether the case is
favorable or not, and that its first step — viz., theedaination ofgi., for a giveng,, ¢s,

..., ¢ — always requires only a single operation of order-24, where the Weiler
method requires that, in addition to an operation déoth — 4, one must perform— 1
further operations that are of at most the same order.

Weiler himself, in the selfsame way as in the discussif my method, emphasized
not the aforementioned, but an entirely different pastan advantage of my method.
Namely, he raised the objection to my method that tieafi partial differential equation
that appeared for me in place of the two Weiler equatj@6¥ and (18) included, in
addition to its B — 2 — 1 independent variables,other variables as undetermined
constants, which is not the case for equations (16)18)d (Now, except for the question
of when one may attach definite values to the undaétedrconstants that appear in one
and the same partial differential equation, there igigdly a substantial lightening of the
task of integrating the equation can be attained by themseHowever, the fact that, for
that reason, it only becomes more difficult to find duson to one linear partial
differential equation than it is for another, becatilseformer one includes a number of
undetermined constants that do not enter into the latter is then obviously (if one
completely ignores the fact that in the present ¢taseequations do not confront each
other, but one equation confronts two others), whenvtbestjuations are also defined by
anything completely different, only one claim!



Mayer. On Weiler's method of integrating partial diffietial equations of first order. 19

§ 4.

On the Jacobi treatment of those partial differential eqations of first
order in which the unknown function itself appears.

At the conclusion of his article, Weiler also spokehs way by which Jacobi also
converted partial differential equations in which the unkmdunction itself occurred
into ones in which the dependent variable was no longaliceély included, and thus
repeated the old objection that had been made againdatiubi reduction.

Namely, when:

(1) z:F[xl,---,xq,az azj

is the given partial differential equation, Jacobi cotectit, when he introduced the new
independent variableby means of the substitution:

(2 V=tz

and introduced a new unknown variall@nto the following equation:

3 — cex T2 LoD
() ot . X“taxl t ox,

oV _ F[ 19V 1avj

However, this transformation immediately teacheshas ¢ach solutiom of equation (1)
can give us a solutioN of equation (3), and one knows of no means for conlerse
deriving a solutiore of equation (1) from an arbitrary solutidh of equation (3) that
would follow from it directly. Therefore, one reje¢tss Jacobi reduction and replaces it
with another transformation that is known from theory of linear partial differential
equations, which seeks, in placezpé finite equation of the form:

4) W(Z X1, ..., %) = const.,

whose solution provides a functiarihat satisfies the equation (1). One then obtains the
following partial differential equation for the new umkmn functionW:

w ow

0 0
(5) z=F xl,...,)%’—a\)/(\l/ ,...’_aal

oz 0z

By a closer examination of the problem, whose basiom®i have Lie to thank for
his written communicatior | have convinced myse# however, that there is no basis
whatsoever for abandoning Jacobi’'s reduction. Namely,haisethe following simple
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theorem, through which the problem of which reduction dmeulsl use is generally
solved:

If V =¢(t, X1, ..., %) is a solution of equatio(8) then:

_09

(6) 3t

is always a solution of equatiofl), assuming that, as long as it is possible, one
substitutes for t, the value that it takes on from the equation:

09 _

—¢+t——const =.

Of the possible exceptions for equation (3) that relatenly a completely special
form, a solutiorV is this equation that is free pbwill naturally be omitted.

In order to prove this theorem, I first remark tha¢ afways has that=0V /ot is, in
principle, a solution of equation (1), as long as théatet enters into the given solution
V of equation (3) only in a linear way. In fact, whejuation (3) is satisfied for:

V=ty+c,

where the functiong/ and y are free ot, then one has identically for each value:of

oy awj

=F g, X ——
= O e B

thenz = ¢, in turn, satisfies equation (1). We thus need onlyxtonine the case where
the given solutio’v= ¢ to equation (3) is not a linear functiontof
In this case, the expression:

-¢g+t— 6¢
is not free ot. The assumption:

¢+ta¢ =

whereP is free oft, then yields, by integration:

p=tQ-P,

whereQ is also merely a function af and thus contradicts our assumption.

Therefore, as long ag is not linear int, equation (7) can always be used for the
determination of. If one now denotes the substitution of valued thiat follow from it
by [ ], and sets:
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Sl

then one has:

and thus, under the substitution of these valuesdodz, the identity:

ot TRk T ox,
goes to the following one:

9 _ F[xl, 10g _@j

9z 0z
ox, = ox )

Z= F[XZI.’“.’X’H

With this, the given theorem is proved and the justificafor Jacobi’'s reduction, along
with it.

| then add that the same manner of reduction that isdadlin formulas (4) and (5)
not only lends support to the other one, but also, alonly this, it possesses a not
entirely insubstantial advantage that generally fakes$ on significance when one has to
consider not just one, but several, associated paitiatehtial equations between the
same variables.

Namely, whereas both processes imply the same tbingdmplete or particular
solutions of it, they differ essentially from eachetin their behavior relating to singular
solutions. By the second type of reduction, one excludektter from now on, and thus
the same solutions can be lost completely and enethly, which is impossible for the
Jacobi type of reduction.

In fact, any solutioz of the given system of partial differential equations:

0z 0z
8 Flzx, -, X—,—|=0
(8) [Z X % ox, axqj

that one can obtain by solving the equatbh= const. from a solutioW of the
transformed system:

ow oW
0 0

(9) F Z’)S’.“’)g"_a_\)/(\l/’.“’_a_x\/r\]/ =0,
oz 9z

includes a arbitrary constant.

Thus, when the given system (8) possesses such aospluthich either itself
contains an arbitrary constant or also a solution astiitrary constants, can be obtained
in such a way that one attaches definite values to gw@sstants, so it is impossible to
derive this solution from a solutioWw of the system (9) in the manner described.
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Moreover, if, in particular, the system (8) is nothingeelsut one that admits such
singular solutions then equations (9) can possess no coraadation at al- at least,
none that includez— and the solution of the system (8) is then lost corajylerhen one
substitutes equations (9) for equations (8). A system ofnidisre is defined by, for
example, the two equations:

F=0, F+z—¢=0,

under the assumption that the first one representgea gartial differential equation, for
which, z= ¢ is any of its solutions.

By contrast, any system that arises from the given (&) by the substitutiox = zt
always has a solutions that includgeas long as equations (8) admit no common solution
z at all, regardless of whether this solution includedramy constants or not. Thus, such
loss of solutions can never enter into the Jacobidypeduction.

Remark. In my quest to make the Weiler method clearer, froendutset, | have
always had in mind only the case that is familiar to ofeg partial differential equation
in which the desired function does not appear explicitig @as a consequence of this, a
point in the Weiler treatise escaped me completelgctthat first appeared in the proofs,
SO it now seems, in retrospect, necessary to regfifievious assertion.

Weiler treated the general case in which the unknowatifon itself appeared in the
given partial differential equation, and, in turn, phseich a great weight upon his last
section that he took into consideration the presendbeofiependent variables. When
taken in this generality, however, his results are ptegenot merely unclearly, but also
downright falsely, and indeed, false for that reasonalmse the title on Weiler’'s § 4 is
likewise incorrect, like the argument by which he proved it

Namely, if one understands the symbdldx, to mean the operation:

d_0.,,0
dx,  ox, 0z
and sets:
(dAoB dAOB
ng- 382 029
m\ d% 0p, dp ox
then, when the given partial differential equat#én= c; includes the unknown functian
itself, in place of the previous equationg @) = 0, one finds, from then on, the
equations:

[4 &d = 0.

Weiler now sought to prove in the stated section ti@fPisson-Jacobi theorem also
has validity for these general equations; i.e., thhenf = ¢and f = y satisfy the
equation:

[¢f]=0,

one always has that [¢ x] is a solution of this equation, as well.
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However, that is false. Namely, from the Jacobntiy, by the application of the
Jacobi reduction, one obtains with no difficulty that dow three functiong, ¢, x of the
2n + 1 variableg, xi, ..., Xn, P1, --., Pn the identity formulas must exist:

[0, LX)+ [ [wx] + [ [l = ‘Z—f[wxl +‘Z—4ﬁ[m +‘Z—XZ[ e

and from this, it follows, when one assumes tiat][= [¢ ¢] = O, that:

(6, (Al = g—¢[w)(],
zZ

i.e., wherf = ¢y andf = y are any two solutions of the equation:
[¢f]=0

and [¢ x] is not zero theh = [¢ x] is, in turn, a solution of this equation when and only
when the functiorp is free ofz



