Remark on the unwinding of curved lines on surfaces

(By Herrn Dr. Minding in Berlin)

Translated by D. H. Delphenich

The quantity $(\cos i) / R$, which refers to the inverse value of the radius of curvature ρ of a curve that is wound in the plane (in the sense of the notation that was used in Article 22 of the previous volume) can be expressed in general in a way that is similar to the measure that Gauss called the mensura curvaturae and presented in his Disquisitiones generales circa superficies curvas. Namely, if one sets:

$$
d x=a d p+a^{\prime} d q \cdot d y=b d p+b^{\prime} d q \cdot d z=c d p+c^{\prime} d q
$$

as was done in that treatise, in which one regards the coordinates x, y, z as given functions of two variables p and q, and further sets:

$$
a^{2}+b^{2}+c^{2}=E, \quad a a^{\prime}+b b^{\prime}+c c^{\prime}=F, \quad a^{\prime 2}+b^{\prime 2}+c^{\prime 2}=G
$$

then ρ will depend upon the quantities E, F, G, and their differentials, as well as on the differential quotients $\frac{d p}{d q}, \frac{d^{2} p}{d q^{2}}$, which are determined by the equation of the curve.

If the differential equation of the surface is:

$$
X d x+Y d y+Z d z=0
$$

then one will get:

$$
X: Y: Z=c b^{\prime}-b c^{\prime}: a c^{\prime}-c a^{\prime}: b a^{\prime}-a b^{\prime},
$$

so the tangent plane will be:

$$
\left(c b^{\prime}-b c^{\prime}\right) x+\left(a c^{\prime}-c a^{\prime}\right) y+\left(b a^{\prime}-a b^{\prime}\right) z+\alpha=0 .
$$

For the subsequent (anschließende) plane, one has:

$$
A x+B y+C z+\beta=0,
$$

in which:

$$
A=d z d^{2} y-d y d^{2} z, \quad B=d x d^{2} z-d z d^{2} x, \quad C=d y d^{2} x-d x d^{2} y
$$

If one now expresses the coordinates in terms of p and q then one will get:

$$
\begin{aligned}
A & =(c d b-b d c) d p^{2}+\left(c^{\prime} d b^{\prime}-b^{\prime} d c^{\prime}\right) d q^{2} \\
& +\left(c d b^{\prime}+c^{\prime} d b-b d c^{\prime}-b^{\prime} d c\right) d p d q+\left(c b^{\prime}-b c^{\prime}\right)\left(d p d q^{2}-d q d^{2} p\right) \\
B & =(a d c-c d a) d p^{2}+\left(a^{\prime} d c^{\prime}-c^{\prime} d a^{\prime}\right) d q^{2} \\
& +\left(a d c^{\prime}+a^{\prime} d c-c d a^{\prime}-c^{\prime} d a\right) d p d q+\left(a c^{\prime}-c a^{\prime}\right)\left(d p d q^{2}-d q d^{2} p\right) \\
C & =(b d a-a d b) d p^{2}+\left(b^{\prime} d a^{\prime}-a^{\prime} d b^{\prime}\right) d q^{2} \\
& +\left(b d a^{\prime}+b^{\prime} d a-a d b^{\prime}-a^{\prime} d b\right) d p d q+\left(b a^{\prime}-a b^{\prime}\right)\left(d p d q^{2}-d q d^{2} p\right)
\end{aligned}
$$

One obtains the numerator Z of $\cos i$ with the help of those expressions:

$$
\begin{aligned}
Z & =\left(c b^{\prime}-b c^{\prime}\right) A+\left(a c^{\prime}-c a^{\prime}\right) B+\left(b a^{\prime}-a b^{\prime}\right) C \\
& =\left\{\left(E a^{\prime}-F a\right) d a+\left(E b^{\prime}-F b\right) d b+\left(E c^{\prime}-E c\right) d c\right\} d p^{2} \\
& +\left\{\left(F a^{\prime}-G a\right) d a^{\prime}+\left(F b^{\prime}-G b\right) d b^{\prime}+\left(F c^{\prime}-G c\right) d c^{\prime}\right\} d q^{2} \\
& +\left\{\begin{array}{c}
\left(E a^{\prime}-F a\right) d a^{\prime}+\left(F a^{\prime}-G a\right) d a \\
+\left(E b^{\prime}-F b\right) d b^{\prime}+\left(F b^{\prime}-G b\right) d b \\
+ \\
\left.+E c^{\prime}-F c\right) d c^{\prime}+\left(F c^{\prime}-G c\right) d c
\end{array}\right\} d p d q \\
& +(E G-F F)\left(d p d^{2} q-d q d^{2} p\right) .
\end{aligned}
$$

Now, due to the meanings of the quantities $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$:

$$
\frac{d a}{d q}=\frac{d a^{\prime}}{d p}, \quad \frac{d b}{d q}=\frac{d b^{\prime}}{d p}, \quad \frac{d c}{d q}=\frac{d c^{\prime}}{d p}
$$

which will then imply that:

$$
\begin{aligned}
& a d a^{\prime}+b d b^{\prime}+c d c^{\prime}=\frac{1}{2} \frac{d E}{d q} d p+\left(\frac{d F}{d q}-\frac{1}{2} \frac{d G}{d p}\right) d q \\
& a^{\prime} d a+b^{\prime} d b+c^{\prime} d c=\frac{1}{2} \frac{d G}{d p} d p+\left(\frac{d F}{d p}-\frac{1}{2} \frac{d E}{d q}\right) d p
\end{aligned}
$$

Finally, one will therefore get the following value for Z :

$$
\begin{aligned}
& \left\{E\left(\frac{1}{2} \frac{d G}{d p} d q+\frac{d F}{d p} d p-\frac{1}{2} \frac{d E}{d q} d p\right)-\frac{1}{2} F d E\right\} d p^{2} \\
+ & \left\{\frac{1}{2} F d G-G\left(\frac{1}{2} \frac{d E}{d q} d p+\frac{d F}{d q} d q-\frac{1}{2} \frac{d G}{d p} d q\right)\right\} d q^{2} \\
+ & \left\{\frac{1}{2} E d G-\frac{1}{2} G d E+F\left(\frac{d F}{d p} d p-\frac{d F}{d q} d q+\frac{d G}{d p} d q-\frac{d E}{d q} d q\right)\right\} d p d q \\
+ & (E G-F F)\left(d p d^{2} q-d q d^{2} p\right) .
\end{aligned}
$$

One now has:

$$
\cos i=\frac{Z}{\sqrt{(E G-F F)} \cdot \sqrt{\left(A^{2}+B^{2}+C^{2}\right)}} .
$$

Furthermore, one has:

$$
R=\frac{d P^{2}}{\sqrt{\left(A^{2}+B^{2}+C^{2}\right)}}
$$

for the radius of curvature, in which:

$$
d P^{2}=E d p^{2}+2 F d p d q+G d q^{2}=d x^{2}+d y^{2}+d z^{2}
$$

Hence:

$$
\frac{\cos i}{R}=\frac{1}{\rho}=\frac{Z}{\sqrt{(E G-F F)} d P^{2}} .
$$

If one lets p and q mean polar coordinates on the surface, i.e., one sets $p=s, q=\psi$, with the previous notations, then one will get:

$$
E=1, \quad F=0, \quad G=\varphi^{2}, \quad d P^{2}=d s^{2}+\varphi^{2} d \psi^{2}
$$

That will imply that:

$$
\frac{d P^{3}}{\rho}+\varphi d \psi d^{2} s-2 \frac{d \varphi}{d s} d \psi d s^{2}-\frac{d \varphi}{d \psi} d \psi^{2} d s-\varphi^{2} \frac{d \varphi}{d \psi} d \psi^{3}=0
$$

when one sets $d^{2} \psi=0$. One further has:

$$
\frac{d \frac{d y}{d P}+q d \frac{d z}{d P}}{d x \sqrt{\left(1+p^{2}+q^{2}\right)}}=\frac{1}{\rho}
$$

It emerges from a comparison between those two forms for $1 / \rho$ that one will also have the following relation for a curve whose equations in included in the expression $s=$ const.:

$$
\begin{equation*}
d \frac{d y}{d P}+q d \frac{d z}{d P}=\frac{d \varphi}{d s} \cdot \frac{1}{\varphi} . \tag{A}
\end{equation*}
$$

In general, in addition to the variable quantity ψ, the expression on the right-hand side also includes the coordinates of the midpoint of the curve, which must be eliminated by means of the equations $s=$ const. and $d s=0$ if (A) is to be the general differential equation for a curve of constant radius on the surface. However, the quantities α, β, γ will drop out automatically for those surfaces on which the measure of curvature is constant.

If one denotes it by k then $\S 19$ of the aforementioned treatise by Gauss will show that in general:

$$
\frac{d^{2} \varphi}{d s^{2}}+k \varphi=0 .
$$

The function φ (which was denoted by m there) must then be arranged so that $\varphi=0$ and $d \varphi / d s=$ 1 for $s=0$. It will then follow from this that when k is constant, $\varphi=\frac{1}{\sqrt{k}} \sin s \sqrt{k}$. In that case, equation (A) will then go to:

$$
\frac{d \frac{d y}{d P}+q d \frac{d z}{d P}}{d x \sqrt{\left(1+p^{2}+q^{2}\right)}}=\sqrt{k} \cot s \sqrt{k}
$$

Therefore, the theorem will be true on those surfaces that I was tempted to exhibit in general by requiring it, and one will find the basis for that briefly suggested on page 303 of the previous volume.

Berlin, in May 1830.

