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 In Darboux’s paper: “Sur le problème de Pfaff” (Bull. des Sc. math. et astr. an. 1882, fasc. de 

Janv. et de Fév.), he has, I believe, indicated the true path that one must follow at this point in time 

in order to arrive at a regular analytical exposition of all the results that have been obtained up to 

now in the theory of first-order partial differential equations. That path is nothing but the old one 

that Pfaff once blazed, and nowadays one can easily pursue that path due to the great progress that 

has been made in the Pfaff problem in recent times (*). 

 The Pfaff method, when suitably applied to the problem of integrating just one first-order 

partial differential equation, will easily lead to Cauchy’s method, as Darboux had observed. This 

article is intended to show that Pfaff’s method can be applied with equal success to a Jacobian 

system of first-order partial differential equations. That application will imply a method of 

integration that is a natural extension of the so-called Jacobi-Hamilton method (**), and if one 

utilizes Mayer’s beautiful theorem on the integration of linear equations in total differentials then 

that method will naturally imply the classical theorem of Lie that “the complete integration of a 

Jacobian system of m first-order partial differential equations in n independent variables can be 

performed by completely integrating just one first-order partial differential equation with only n – 

m +1 independent variables.” 

 In that way, one can develop a natural connection between the aforementioned theorems of Lie 

and Mayer, which would be reasonable to predict insofar as the two theorems are based upon 

essentially the same transformations of variables, but that has not been pointed out explicitly up to 

now. 

 In this article, I shall rapidly recall some theorems on the Pfaff problem, and for greater clarity, 

I shall start by applying the Pfaff method to the case of just one first-order partial differential 

equation in which the unknown function does not occur. That will lead me directly to the Jacobi-

Hamilton method of integration and to the successive improvements that Mayer made to it (***). 

After that, I will apply the same method to Jacobian systems of partial differential equations. 

  

 
 (*) Cf., in addition to the cited paper by Darboux, the one by Frobenius in vol. 82 of Crelle’s Journal. 

 (**) According to Lie, the Jacobi-Hamilton method should also be called Cauchy’s method. 

 (***) Cf., Mayer, “Ueber die Jacobi-Hamilton’sche Integrationsmethode der partiellen Differentialgleichungen 

1.O,” Math. Ann., Bd. III. 
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Some theorems that relate to the Pfaff problem. 

 

 Let: 

u = udx = u1 dx1 + u2 dx2 + … + un dxn 

 

be the differential expression to be reduced to canonical form. 

 One forms its bilinear covariant: 

 

 = udx − dux = 
,

( )ik i k k i

i k

dx x dx x  − , 

in which: 

ik = i k

k i

u u

x x

 
−

 
. 

 

 In order to recognize the canonical form to which the differential expression u is reducible, one 

needs only to study the invariant properties of u and , what are regarded as comprising a system 

of two algebraic forms, one of which is linear with respect to the differentials dx and x, while the 

other is alternating bilinear in them. 

 As is known, those properties are given by the number that one calls the class of the system 

(*), and in our present case, that number is called the class of the proposed differential expression. 

One has the following criteria for finding that class. 

 One forms the two skew determinants: 

 

 = 

11 12 1

21 22 2

1 1

n

n

n n nn

  

  

  

 , u = 

11 1 1

21 2 2

1

1 0

n

n

n nn n

m

u

u

u

u u

 

 

 

− −

 , 

 

the first of which is called the determinant of the bilinear covariant, and the second of which is 

called the bordered determinant. The system of forms u and  is said to have class 2r if 2r is the 

maximum degree of the subdeterminants of  and u that do not all vanish, while it is said to have 

class 2r + 1 if 2r is the maximum degree of those subdeterminants in  and 2r + 2 is the maximum 

degree for the ones in u . 

 Now, if one calculates the class for a given canonical form in u then one will immediately see 

that it is equal to precisely the number of (independent) functions that occur in that canonical form. 

Therefore, if one admits the possibility that a differential expression can be reduced to canonical 

form then the latter will necessarily contain just as many functions as the number that its class 

represents. 

 
 (*) Cf., the cited paper by Frobenius, or also the last § of my article: “Sulle proprietà invariantive, etc.” Atti della 

R. Acc. delle Sc. di Torino, vol. XVIII, in which those properties are regularly studied from viewpoint of the theory 

of algebraic forms by means of symbolic notations. 
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 As for the number of integrations that are required for the reduction to canonical form of udx, 

one has the following general theorem: 

 

 If the class of a differential expression is p then its reduction to canonical form will require p 

– 1, p – 3, p – 5, … operations (*). 

 

 If the expression udx has class 2r + 1 then its first Pfaff system: 

 

  i1 dx1 + i2 dx2 + … + in dxn = 0  (i = 1, 2, …, n) 

 

will contain only 2r mutually-distinct equations, so that system will be soluble for 2r certain 

differentials, which are taken with respect to: 

 

xn−2r+1,  xn−2r+2, …, xn . 

 

 If one integrates the preceding total differential equations completely (it is known how to do 

that) and one takes the 2r arbitrary integration constants to be the initial values 0

2 1n rx − +
, 0

2 2n rx − +
, …, 

0

nx , which are chosen arbitrarily from the variables xn−2r+1,  xn−2r+2, …, xn, and correspond to certain 

initial values 0

1x , …, 0

2n rx −
 of the remaining variables, then it is clear that the integral equations 

will be soluble for 0

2 1n rx − +
, …, 0

nx , in such a way that one will have (**): 

 
0

2 1n rx − +
= [xn−2r+1], …, 0

nx  = [xn] , 

 

in which [xn−2r+1], …, [xn] are certain functions of the x that reduce to xn−2r+1, …, xn identically 

when one sets x1 = 0

1x , …,  xn−2r = 0

2n rx −
. The given differential expression will then be reducible 

to the form: 

dH + [xn−2r+1] d [xn−2r+1] + … + [un] d [xn] , 

 

in which one intends [uk] to mean what uk will become when one sets x1, …, xn−2r, xn−2r+1, …, xn 

equal to 0

1x , …, 0

2n rx −
, [xn−2r+1], …, [xn], respectively, and H denotes a function that reduces to a 

constant for x1 = 0

1x , …, xn−2r = 0

2n rx −
, (cf., Darboux, op. cit., pp. 34). 

 

 

 

 

 

 
 (*) See my recent article “Sul problema di Pfaff,” Atti della R. Acc. delle Sc. di Torino, vol. XVII. 

 (**) In his article: “Neue Int. Meth. eines 2n-glied. Pfaff’schen problem,” Abh. d. Ges. d. Wiss. zu Christiania 

(1873), Lie considered those functions to be solutions of the system of linear partial differential equations that is 

associated with the differential equations, and he called them principal solution with respect to x1 = 
0

1
x , …, xn−2r = 

0

2n r
x

−
. 
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Applying the Pfaff method to the integration of just one first-order partial differential 

equation that does not contain the unknown function. 

 

 

 One poses the first-order partial differential equation: 

 

p1 = f (q1, …, qn, p2, …, pn) ,     (1) 

 

in which the unknown function z is not included explicitly, and as usual, the p denote the partial 

derivatives of z with respect to the corresponding q. 

 According to the Pfaff method, in order to integrate that equation completely, one must seek 

the canonical form of the differential expression: 

 

u = dz – f dq1 – p2 dq2 − … – pn dqn . 

 

 The bilinear covariant of that expression (up to sign): 

 

   = 1 1

2

( )
n

r r r r

r

f dq df q p dq q dp   
=

− + −  

= 
1 1 1 1

2 2 2

( ) ( ) ( )
n n n

r r r r r r r r

r r rr r

f f
q dq dq p p dq dp p p dq dp q

q p
     

= = =

 
− + − + −

 
    . 

 

 In order to find the class of u, it is enough to examine that of f dq1 + p2 dq2 + … + pn dqn , 

whose bilinear covariant is precisely . The bordered determinant in that case is: 

 

2 2 2 2

2

2

2

2

2

2

2 2

0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0

n n

n

n

n

n

f f f f f f
f

q q q q q q

f
p

q

f
p

q

f
p

q

f

q

f

q

f

q

f p p p

     

     


−




−




−




− −




− −



−


− −



− − − −

 = u , 
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and the determinant of  is obtained from that by suppressing the last row and the last column. 

 One sees immediately that the maximum degree of the subdeterminants of the determinant  

that do not all vanish is 2 (n – 1) and that u is generally non-zero, so the class of the expression 

will be 2n – 1. 

 However, if one has: 

f = 2 2

2 2

n

n

f f f
p p p

p p p

  
+ + +

  
, 

 

i.e., if f is a homogeneous function of degree 1 with respect to p2, p2, …, pn, then u will vanish, 

and the expression f dq1 + p2 dq2 + … + pn dqn will then have class 2 (n – 1). 

 That is the only case in which that can happen. 

 That exceptional case is very important insofar as it always presents itself when equation (1) 

has been deduced from another one in which the unknown function occurs by the usual 

transformation. 

 That observation explains the following fact: 

 If one has a partial differential equation in which the dependent variable occurs, along with n 

– 1 independent variables, then it is known that the complete integration of that equation will 

require 2n – 3, 2n – 5, …, 1 operations. However, if one applies the Jacobi transformation to the 

equation then one will obtain another one with n independent variables whose complete integration 

will require the higher number of operations 2n – 2, 2n – 4, …, 2, 0, according to the general rule. 

Indeed, it is sufficient to note that in this case, as one saw above, the class of the differential 

expression f dq1 + p2 dq2 + … + pn dqn is 2 (n – 1), so its reduction to canonical form, and therefore 

that of u (although its class is 2n – 1), will demand only 2n – 3, 2n – 5, …, 3, 1 operations: 

Therefore, the integration by the Pfaff method will again require the minimum number of 

operations that were indicated above. 

 If one equates the partial derivatives of the bilinear covariant  with respect to p, q then one 

will have the differential equations: 

 

r r

r r r

f f
dq dp

q p

  
+ 

  
  = 0 ,      1

r

f
dq

q




 = dp1 ,      1

r

f
dq

p




 = − dqr       (r = 2, 3, …, n), 

 

in which the first one is a consequence of the remaining one, so one has to consider the Hamiltonian 

system: 

1

rdp

dq
 = 

r

f

q




, 

1

rdq

dq
 = −

r

f

p




. 

 

 Suppose that system is integrated completely and assume that the integration constants are the 

initial values of the pr, qr that correspond to the value 0

1q  of q1, and let [pr], [qr] be the functions 

of the p and q that will give the complete system of integrals for the preceding equations when 

they are equated to those constants. From the cited theorem, one will then have: 

 

dz − f dq1 − p2 dq2 − … − pn dqn = d (z – ) − [p2] d [q2] − … − [pn] d [qn] ,  (2) 
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in which  is a function of only the p and q that is annulled for q1 = 0

1q . 

 Now set [pr] = 0

rp , [qr] = 0

rq  in the preceding identity. One will obviously have: 

 

0  = 
0

1

i

i

q

r

r rq

f
f p dq

p

 
− 

 
  

 

then, in which the integration is performed after having expressed everything under the  sign as 

functions of q1 by means of the preceding equations. 

 After performing the quadrature, one now replaces the constants 0

1p , 0

1q  with their expressions 

[pr], [qr] and obtains precisely the function  that makes equations (2) an identity, which is easy to 

verify by a known calculation process that I shall omit, and all the more so because in what follows, 

I shall have occasion to develop another one that will include it as a special case. 

 One will then have: 

dz − f dq1 − p2 dq2 − … − pn dqn = 
1

0
1

1 [ ] [ ]

q

r r r

r rrq

f
d z f p dq p d q

p

  
− − −  

   
  , 

 

and that identity easily leads to the so-called Jacobi-Hamilton integration method. 

 However, one will notice immediately that, as Mayer pointed out (Math. Ann. Bd. III), such a 

method presents an exception, and it can then happen that the equations [qr] = 0

rq  cannot be solved 

for the pr, which is why the method in question will no longer produce the complete integral of the 

proposed equation. That difficulty will necessarily present itself when f is a homogeneous function 

of degree one in the pr (so  will be identically zero then). 

 That difficulty can be quickly removed by observing that the preceding identity gives rise to 

the other one: 

dz – f dq1 − r r

r

p dq  = 
1

0
1

1[ ][ ] [ ] [ ]

q

r r r r r

r r rrq

f
d z p q f p dq p d q

p

  
− − − −  

   
   . 

 

One can obviously deduce the Jacobi-Hamilton integration method, as improved upon by Mayer, 

from that, which is valid in any case as long as the equations [pr] = 0

rp  are always soluble for the 

pr, since they are clearly valid for q1 = 0

1q  . 

 

(to be continued)  

 

___________ 
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Applying the Pfaff method to the integration of a Jacobian system. 

 

 Suppose that one has a Jacobian system of m first-order partial differential equations with n 

independent variables: 

p1 = f1,      p2 = f2, …, pm = fm,         (1) 

 

in which the f denote functions of q1, …, qn, pm+1, …, pn, and the p denote partial derivatives of the 

unknown function z with respect to the corresponding q, as usual. 

 In addition, the functions f must verify the following m (m – 1) / 2 equations: 

 

(pi – fi, pk – fk) = 
1

n
i k i k i k

r mk i r r r r

f f f f f f

q q p q q p= +

      
− + − 

      
  = 0 .   (2) 

 

 According to the Pfaff method, the problem of integrating the system (1) completely is 

equivalent to that of reducing the expression: 

 

u = dz − f1 dq1 − f2 dq2 − … − fm dqm − pm+1 dqm+1 − … − pn dqn 

 

to canonical form. Above all, one must find that class of that expression, and for that, it suffices to 

find the class of the expression: 

 

f1 dq1 + f2 dq2 + … + fm dqm + pm+1 dqm+1 + … + pn dqn . 

 

 Now compute the bilinear covariant of the last expression. One has: 

 

  = 
1 1

( ) ( )
m n

s s s s r r r r

s r m

f dq df q p dq dp q   
= = +

− + −   

= 
,

( ) ( )s s s
s s s s r s r s

s s r ss s r

f f f
q dq dq q q dq dp q

q q q
   

 

 

   
− − + − 

   
   
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+ ( ) ( )s
r s r s r r r r

r s rr

f
p dq dp q p dq dp q

q
   


− + −


  , 

 

in which the indices s, s  must take the values 1, 2, 3, …, m, and the index r must take all values 

m + 1, m + 2, …, n. 

 Consider the following two systems of elements (i.e., matrices): 

 

1 1 1 1 1 1
1

1 2 1 2

1 2 1 2

1

2

0

0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0

m m n m m n

m m m m m m
m

m m n m m n

m

m

n

f f f f f f
f

p p p q q q

f f f f f f
f

p p p q q q

p

p

p

+ + + +

+ + + +

+

+

     

     

     

     

−

−

−

0 0 0 0 1 0

 

 

1 1 1 1 1 1
1

1 2 1 2

1 2 1 2

1

2

0

0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0

m m n m m n

m m m m m m
m

m m n m m n

m

m

n

f f f f f f
f

q q q p p p

f f f f f f
f

q q q p p p

p

p

p

+ + + +

+ + + +

+

+

     
− −

     

     
− −

     

−

−

−

−

−

− 0 0 0 0

0 0 0 0 0 0 0 1−
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 If one combines those two systems of elements using the rule for multiplying the determinants 

(by rows), while taking the relations (2) into account, then one will get the bordered determinant 

that relates to the expression f1 dq1 + f2 dq2 + … + fm dqm + pm+1 dqm+1 + … + pn dqn , and therefore, 

when one observes that those two systems of elements have 2 (n – m) + 2 columns, one can 

conclude from a well-known theorem regarding determinants that the maximum degree of the 

subdeterminants of that determinant that do not all vanish will generally be 2 (n – m) + 2. 

 Similarly, if one omits the last line and the last two columns in the preceding two systems of 

elements and then multiplies them row-wise then one will get the determinant of the bilinear 

covariant , so the maximum degree of the subdeterminants in that determinant that do not all 

vanish will be 2 (n – m). 

 Thus, the class of: 

 

f1 dq1 + f2 dq2 + … + fm dqm + pm+1 dqm+1 + … + pn dqn 

 

will be 2 (n – m) + 1, and therefore that of u, as well. 

 With the cited theorem, one then deduces from the latter fact that the complete integration of 

a Jacobian system of m equations will require 2 (n – m), 2 (n – m – 1), …, 2, 0 operations, in 

general. 

 One observes that in the two systems of elements in question, if the f are all homogeneous 

functions of degree one in the p then all of the determinants will have degree 2 (n – m) + 2, since 

in that case, the expression f1 dq1 + f2 dq2 + … + fm dqm + pm+1 dqm+1 + … + pn dqn will have class 

2 (n – m), and therefore the complete integration of the Jacobian system (1) will require only 2 (n 

– m) – 1, 2 (n – m) – 3, …, 1 operations. 

 The first Pfaff system relative to the expression u consists (*) of 2 (n – m) distinct differential 

equations, and those equations are obtained by equating the coefficients of pr, qr in the bilinear 

covariant to zero. One will then have a completely-integrable system of 2 (n – m) total differential 

equations: 

,s
s r

s r

s
s r

s r

f
dq dp

q

f
dq dq

p

 
=  


 = −

 




 

1,2, ,

1, ,

s m

r m n

= 
 

= + 
.           (3) 

 

 Imagine that one has integrated that system completely and that, as usual, one has chosen the 

arbitrary constants to be the arbitrary initial values 0

rp , 0

rq  of the variables pr, qr that correspond 

to the initial values 0

sq  of the independent variables qs, in such a way that: 

 

 0

rp  = [pr], 
0

rq  = [qr]     (4) 

 

are those of its integrals that reduce to pr, qr, identically for q1 = 0

1q , …, qm = 0

mq . One will then 

have, with no further analysis: 

 

 
 (*) The following also applies to the exceptional case that was mentioned above, since the expression u will always 

have class 2 (n – m) + 1, at any rate. 
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 s s r r

s r

dz f dq p dq− −  = ( ) [ ] [ ]r r

r

d z p d q− −  

= ( ) [ ][ ]) [ ] [ ]r r r r

r r

d z p q p d q− − +   .  (5) 

 

Meanwhile, here is how one calculates the function () that makes that equation an identity: One 

expresses the pr, qr as functions of q1, …, qm by means of the integral equations (4) and calculates 

the function: 

 = 
0

s

s

q

s
s r s

s r rq

f
f p dq

p

 
− 

 
   

 

by a quadrature (which is certainly practicable), and after having performed the integration, one 

substitutes the expressions (4) for the 0

rp , 0

rq . The function () thus-obtained will make equation 

(5) an identity, as will now be proved. 

 Take the variation  of the function , while supposing that only the 0

rp , 0

rq  are variable. One 

will then have: 

  = 
0

s

s

q

s s
r r s

s r r rq

f f
q p dq

q p
 

  
− 

  
  . 

 

However, from equations (3), one has identically: 

 

s
s

s r

f
dq

p





  = − d qr , 

 

and if one takes the first of (3) into account then one will have: 

 

 = 
0

( )
s

s

q

r r r r

s q

dp q p d q +   = 
0

( )
s

s

q

r r

r q

d p q   = 
0

0 0( )
s

s

q

r r r r

r q

p q p q −  . 

 

Take the total differential of , while substituting the expressions (4) for the 0

rp , 0

rq   and noting 

that 0

rq  = d [qr] (while qr = s
r s

r r

f
dq dq

p


+


 ). One will certainly have: 

 

 d  = ( ) ( [ ] [ ])s s r r r r r r r r

s r r r

f dq p dq p q p q p d q + − + −     

 = [ ] [ ]s s r r r r

s r r

f dq p dq p d q+ −   . 

 

 Therefore, when the  are calculated in the manner that was described above, that will 

effectively make equation (5) an identity. 

 One immediately deduces the generalization of the Jacobi-Hamilton method that was alluded 

to in the introduction from equation (5), and it can be formulated as follows: 
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 One poses the problem of integrating the Jacobian system: 

 

p1 = f1,  p2 = f2,  …, pm = fm, 

 

in which the f verify the equations: 

 ( , )s s s sp f p f − −  = 0  (s, s  = 1, 2, …, m). 

 

One establishes the system of total differential equations: 

 

dpr = s
s

s r

f
dq

q




 , dqr = − s

s

s r

f
dq

p




 , 

 

which is always an integrable system. 

 One integrates that system completely and expresses the 2 (n – m) integration constants by 

way of the values 0

rp , 0

rq  of the variables pr and qr that correspond to the initial values 0

1q , …, 0

mq

that are chosen from the other variables, which will put the integral equations into the form: 

 
0

rp  = [pr] , 
0

rq  =  [qr] . 

If one expresses the functions: 

 s
s r

r r

f
f p

p


−


  

 

in terms of only q1, …, qm by means of those equations then the expression s
s r s

s r r

f
f p dq

p

 
− 

 
   

will become an exact differential. 

 Calculate the function: 

 = 
0

0 0
s

s

q

s
r r s r s

r s r rq

f
p q f p dq

p

 
+ − 

 
    

 

by quadrature. One gets the expressions for the pr in terms of q and 0

rp  from the equations 0

rp  = 

[pr] and substitutes them in the equations 0

rq  =  [qr], in such a way that the 0

rq  will prove to be 

expressible in terms of only the q and 0

rp . One lets () denote the function that arises from  when 

one replaces the 0

rq  with their expressions in terms of the q and 0

rp . The formula: 

 

z = () + constant 

 

will then give a complete solution (with the arbitrary constants 0

1mp +
, …, 0

np , along with the 

additive ones) to the Jacobian system that was posed. 

 

 One can express all of the integral equations of the system (3) with the function (), as is the 

case for just one first-order partial differential equation. 
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 Indeed, it will result from (5) that: 

 

 () = 0[ ]r r r r s s

r r s

p q q q f q  + +   , 

 

but on the other hand, one will have: 

 

 () = 0

0

( ) ( ) ( )
r r s

r r sr r s

q q q
q p q

  
  

  
+ +

  
   . 

 

If one then observes that the variations q and 0

rp  are essentially independent of each other then 

one then can conclude that: 

( )

rq




 = pr , 

( )

rp




 = [qr], 

( )

sq




 = fs . 

 

 The integrals of equations (3) are then: 

 

( )

rq




 = pr , 0

( )

rp




 = 0

rq . 

 

 Finally, observe that the integration of the system (3) is equivalent to the integration of the 

Jacobian system: 

(, ps – fs) = 0 . 

 

 

Lie’s theorem. 

 

 If one applies Mayer’s method (Math. Ann. Bd. V) to the integration of the system (3) then 

Lie’s theorem will follow easily from the preceding theorem. 

 Indeed, set: 

qs = 0 0

1 1( )s sq q q x+ − ,          (6) 

so it results that: 

dqs = 0 0

1 1( )s s sx dq q q dx+ − , 

 

and with that, equations (3) will transform into the following ones: 

 

01 2 2
2 1 1 1 2

01 2 2
2 1 1 1 2

( ) ,

( ) .

m m
r m m

r r r r r

m m
r m m

r r r r r

f ff f f
dp x x dq q q dx dx

q q q q q

f ff f f
dq x x dq q q dx dx

p p p p p

      
= + + + + − + +    

        


       
− = + + + + − + +            

  (3) 
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 In order to integrate that system completely, according to Mayer’s theorem, it suffices to 

integrate the following system of ordinary differential equations: 

 

1

1

,

,

r

r

r

r

F
dp dq

q

F
dq dq

p

 
=  


 = −

 

          (7) 

 

in which F = f1 + x2 f2 + … + xm fm , and the x enter only as constants. One then, in turn, introduces 

the initial values of the dependent variables pr, qr that correspond to the initial value 0

1q  of the 

independent variable q1 as arbitrary constants. 

 

 Now, integrating (7) is equivalent to finding an arbitrary complete integral of the partial 

differential equation: 

p1 = F , 

 

which contain only the n – m + 1 independent variables: 

 

q1, qm+1, qm+2, …, qn , 

 

and that constitutes Lie’s theorem precisely. 

 Let us see how we can complete that result. Those integrals of (7): 

 
0

rp  = [pr] , 
0

rq  =  [qr] 

 

that reduce to pr and qr identically for q1 = 0

1q  will give integrals of the system (3), and it will 

therefore be possible to find a function  such that one has: 

 

u = dz – F dq1 − 0

1 1( )q q−  (f1 dx1 + … + fm dxm) = 1( ) [ ] [ ]r

r

d z p d q− −  

identically. 

 Now, from what we saw before, we will get the function  by calculating the integral: 

 

 =
0

0

1 1 1

2

( )
s

s

q m

r r

r rr rq

fF
F p dq q q f p dx

p p


 

=

    
− + − −    

     
   , 

 

in which the initial values of the variables x are indeterminate, and from a theorem in integral 

calculus (*) that one can deduce immediately from Mayer’s theorem, it suffices to perform the 

quadrature over q1 between the limits q1 and 0

1q , i.e., to take: 

 
 (*) I shall take this opportunity to state that theorem, which seems quite interesting to me: 

 

 One proposes to integrate the total differential: 
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 = 
0

1

s

s

q

r

r rq

F
F p dq

p

 
− 

 
  . 

 

When that function is transformed into the old variables using (6), it will make equation (5) an 

identity, and it will enjoy the desired property that it will reduce to zero when q1 = 0

1q , q2 = 0

2q , 

…, qm = 0

mq . 

 

 The desired solution to the Jacobian system (1) will therefore be given by the complete integral 

of the equation p1 = F that is obtained by applying the Jacobi-Hamilton method, as it was perfected 

by Mayer. 

 

That is the elegant form that Mayer gave to Lie’s theorem. (See the supplement to Mayer’s paper: 

“Die Lie’sche Int. Meth.,” Math. Ann., Bd. VI.) 

 

 

___________ 

 
 

dV = Q1 dq1 + Q2 dq2 + … + Qm dqm i k

k i

Q Q

q q

  
−    

 

between the limits 
0 0 0

1 2
( , , , )

m
q q q , (q1, q2, …, qm). One sets: 

 

q2 = 
0

2
q  + (q1 − 

0

2
q ) x2 , …, qm = 

0

m
q  + (q1 − 

0

2
q ) xm 

 

in Q, and calculates the function: 
1

0
1

1 2 2 1( )

q

m m

q

V Q x Q x Q dq= + + +  

 

by quadrature, while regarding the x as constants. When the function V, thus-found, is transformed into the original 

variables, it will give the desired integral. 


