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TRANSLATOR’S PREFACE 
 

 

 Paul Painlevé (1863-1933) was not only a French mathematician at the Sorbonne, but also a 

Prime Minister of the Third Republic on two separate occasions (a nine week term in 1917 and 

another brief stint in 1925). He was educated at L’École Normale Supérieure and was conferred a 

doctorate in 1887. He had also studied at Göttingen under Felix Klein and Hermann Schwarz. 

After first teaching that the University of Lille, we returned in 1892 to teach at the Sorbonne, 

L’École Polytechinque, Collège de France, and L’École Normale Supérieure. 

 Most of his research was concerned with the theory of ordinary differential equations. In 

particular, he is often associated with a certain class of transcendental functions that solve a certain 

class of differential equations, and those functions are now called the “Painlevé transcendents.” 

He also took an interest in the emerging theory of general relativity and defined a special set of 

coordinates for the Schwarzschild solution to Einstein’s field equations for gravitation that are 

referred to as “Gullstrand-Painlevé coordinates.” Another emerging topic in science and 

engineering of the era was due to the birth of heavier-than-air flight. Not only did Painlevé do 

research into the mathematical theory of flight, but in 1909, he was Wilbur Wright’s first French 

airplane passenger, and eventually established the first university course in aeronautics. As a result, 

one sees in Painlevé’s treatment of the issues that are concerned with integrating the differential 

equations of analytical mechanics that he clearly had roots in both the mathematical study of 

differential equations and its applications to physics and engineering. 

 

 The reader will note that there are occasional instances of the notation (?) appearing in the 

translation. That is because the original text was written in a printed form of cursive French and 

when combined with the scanning into an online PDF, there were times that characters were 

entirely illegible and not easily derived from the rest of the text. Nonetheless, overall, the 

translation is certainly more readable to English-language scholars who would rather deal with 

more modern fonts. 
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LECTURE 1 

_______ 

 

 

 Before embarking upon the study of systems, we shall commence with a summary of the 

postulates and axioms that one assumes from the outset in the dynamics of a material point. We 

shall refer to the Cours de licence for the developments that relate to that subject. 

 We shall suppose that the definitions that relate to length, time, and mass are known. In 

practice, length is measured in centimeters, time, in seconds, and mass, in grams. 

 

 Absolute axes. – Let Ox, Oy, Oz be three arbitrary material axes, and let M be a given material 

point that is placed at the point (x0, y0, z0) at the instant t0 with a velocity of 0 0 0( , , )x y z    in the 

presence of a certain material medium P. All of the conditions for the phenomena that will happen 

will then be well-defined; in particular, the motion that the point M will exhibit with respect to the 

axes Oxyz. The acceleration () of the point M at the instant t0 (in the present of the medium P) 

will then depend upon only the initial conditions 0 0 0 0 0 0( , , , , , )x y z x y z   . 

 Having said that, we agree to say absolute axes to mean any system of axes Oxyz that satisfies 

the following conditions: 

 

 1. (Kepler’s principle) – A material point (if there exists just one) will describe a straight line 

with respect to those axes with a constant velocity: In other words, its acceleration will be 

constantly zero. 

 

 2. (Newton’s principle) – Let M be a given material point that is placed under given initial 

conditions at the instant t0 . Let P be the external medium at that point and let () be the acceleration 

of M at the instant t0 . Imagine that P has the form of two distinct parts P   and P , and that one 

suppresses the part P  at the instant t0 , while the point M and P   remain unchanged, moreover. 

The acceleration M will then be ( )  . Similarly, let ( )   be the acceleration that M will have at 

the time t0 if only P  existed. The quantities (), ( )  , ( )   will satisfy the equality: 

 

() = ( ) ( )  +  . 

 That principle includes Kepler’s. 

 

 When a system of axes Oxyz is absolute, all systems that are animated with respect to Oxyz 

with a motion of uniform rectilinear translation will also be absolute systems of axes, and one will 

prove quite easily that there exist no others. If one says absolute accelerations to mean the 

accelerations of the material points with respect to the absolute axes then those accelerations will 

be independent of the absolute system of axes to which one refers the motion. 
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 We assume that the existence of absolute axes has been established by experiment. Those axes 

are reasonably fixed with respect to the stars or animated with respect to the stars with a motion 

of uniform rectilinear translation (1). 

 

 Absolute force. – The absolute force or force that is exerted on a point M at a given instant t0 

is, by definition, the geometric magnitude that has its origin at the point M, and its direction and 

sense are the same as the absolute acceleration () of M, while its length is the length  of the 

acceleration times the mass M : 

(F) = m () . 

 

 One says that the point M is subject to the action of several forces F1, F2, …, Fn when the 

medium P that is external to M is composed of n parts P1, P2, …, Pn that (if they alone exist) exert 

the forces F1, F2, …, Fn on that same point M at the instant t when it is placed under the same 

initial conditions. The equality: 

() = (1) + (2) + … + (n) 

 will imply the equality: 

(F) = (F1) + (F2) + … + (Fn) . 

 

 One can then state this proposition: Say that several forces (F1), (F2), …, (Fn) are exerted on 

M, i.e., that the force (F) that is exerted on M is the geometric sum of the magnitudes (F1), (F2), 

…, (Fn). 

 One will then deduce the following consequence from that: 

 Suppose that the medium P that acts upon the point M is a material ensemble. One would like 

to decompose the system P into n parts (where n is as large as one desires) and regard the absolute 

force that is exerted on M by the medium P as the geometric sum of the absolute forces that are 

exerted on that point by each of the n parts, while supposing that one can make them act separately 

without changing anything in either their state or that of the point M. 

 If f is the absolute force that is exerted by any of the n partial media under those conditions, 

and F is the absolute force that is exerted by the ensemble then one will have: 

 

(F) = ( )f , 

from the preceding postulate. 

 Therefore, that postulate will permit one to calculate the force that is exerted by an ensemble 

on a point when one knows the force that is exerted by any of elements of the ensemble on that 

point. 

 

 

 

 

 
 (1) When one assumes the notion of absolute motion, one must regard the axes that one calls “absolute” to be 

absolutely fixed or animated with an absolute motion of uniform rectilinear translation. The accelerations that one 

calls “absolute” are the acceleration of the points in the course of their absolute motion. 
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Postulate of the equality of action and reaction. 

 

 We shall further assume that the following principle is verified by experiment in the cases that 

we shall treat: 

 Suppose that a material medium P acts upon a point M. One can decompose P into elements, 

and let E be one of them. The element E (if it alone exists with M without changing anything in 

either its state of that of M) will exert an absolute force f on the 

point M. One assumes that, conversely, the point M exerts an 

absolute force on E that is equal and directly opposite to the 

preceding f. That demands that the force f must be directed along 

the line that unites the points M and E. 

 

 Relative forces. Their link to absolute forces. – In all of the 

foregoing, one referred the motion to absolute axes. Now suppose 

that one studies the motion of a point M with respect to arbitrary 

axes (Ox, Oy, Oz). 

 At the time t, the point M occupies a position (x, y, z) and is 

animated with a velocity ( , , )x y z   . Under the action of a medium 

P, it can take an acceleration r with respect to the axes (Ox, Oy, Oz). We shall say the relative 

force that is exerted on the point M at the time t to mean the geometric quantity (Fr) = m (r). 

 When one knows the motion of the axes (Ox, Oy, Oz) with respect to absolute axes, it will be 

easy to calculate the absolute force Fa when one knows the relative force. Indeed, one has: 

 

  (Fa) = (Fr) + m (e) + m (c) , 

or 

  (Fa) = (Fr) + () , 

 

in which  is the geometric sum of the two Coriolis terms. The quantity  is independent of the 

active medium. 

 One sees from this that one will obtain the absolute force by augmenting the relative force by 

a geometric quantity that depends upon time, the position and velocity of the point M, and the 

motion of the axes (Ox, Oy, Oz), but it is independent of the active medium. 

 Now regard the absolute force that acts on the point M as something that is produced by the 

action of several media P1, P2, …, Pn whose ensemble comprises the medium P. Let (F1)a , (F2)a , 

…, (Fn)a be the absolute forces that are exerted by those partial media on M. From Newton’s 

principle regarding the action of the media, one will have: 

 

(1)  (Fa) = (F1)a + (F2)a + … + (Fn)a 

 

for the total absolute force. 

 Let (F1)r , (F2)r , …, (Fn)r be the relative forces that are exerted by the same partial media in 

isolation, and let (Fr) be the relative force that is exerted by the ensemble. One has: 

y 

O x 

z 

P 
M 

f 

E 

− f 
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(F1)a = (F1)r + () , 

…………………. 

  (Fn)a = (Fn)r + () , 

  (Fa)  = (Fr) + () . 

 

 As a result, the relation (1) will give, on the one hand: 

 

(Fr) = (F1)r + (F2)r + … + (Fn)r + (n – 1) () , 

 

while on the other hand (and this will be important for us): 

 

(Fr) = (F1)r + (F2)a + … + (Fn)a . 

 

 Therefore, since Newton’s principle regarding the action of the media is allowable for absolute 

forces, one will reach the following conclusion for relative forces: 

 Let M be a material point that is placed under given initial conditions at the instant t, and let P 

be the medium external to M that is composed of several parts P1, P2, …, Pn . The relative force 

(with respect to an arbitrary system of axes) that is exerted on M by the medium P is the geometric 

sum of the relative force that is exerted by any one of the partial media and the absolute forces that 

are exerted by the other partial media (if each of those media exists alone with M, and is identical 

to itself, as well as M, at the instant t). 

 In particular, consider a material point M that is found in equilibrium under the influence of a 

given medium P with respect to arbitrary axes (Ox, Oy, Oz); terrestrial ones, for example. The 

relative force that acts on that point is zero: (Fr) = 0 . Let a medium P   act upon it without 

modifying anything in the preceding medium. (For example, pull on a pendulum at rest with the 

aid of a string.) Under the simultaneous action of two media P and P  , the point M will take on a 

relative acceleration r
 , and the corresponding relative force will be ( )rF   = ( )rm   . From the 

foregoing, one will have: 

( )rF   = ( ) ( )r aF f+  , 

 

in which (fa) is the absolute force that is exerted by the ath medium P  . Now, (Fr) = 0. Therefore: 

 

( )rF   = ( )af . 

 

 Therefore, it is the absolute force (fa) that is measured by the relative acceleration of the point 

M: 

( )af  = ( )rm   . 

 

 One sees from this how the absolute forces are introduced most simply into physical 

experiments and correspond to the common notion of effort. 
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 In all of the applications where one studies the relative motion of a material point M, when one 

says that several forces F1, F2, …, Fn act upon M, one intends that to mean that one of those forces 

is a relative force and the other one is an absolute force. That will then amount to saying that the 

relative force that is exerted upon the point M is the geometric sum of the quantities F1, F2, …, Fn. 

 

 

External and internal forces on a material system. 

 

The principle of the equality of action and reaction naturally leads us to consider some 

important theorems concerning material systems. 

 Consider a system of absolute axes (Ox, Oy, Oz) and a certain 

number of material points M1, M2, …, Mj, Mk, …, Mn with masses 

m1, m2, …, mj, mk, …, mn, respectively. The ensemble is found to 

be placed under well-defined conditions, i.e., each of those points 

Mj has a given position (xj, yj, zj) and a given velocity ( , , )j j jx y z    

at the instant t. In the presence of a given external medium, each 

point Mj will take on an acceleration j , and the absolute force 

that is exerted on it at the instant t will be: (Fj) = m (j). 

 From what we have seen, that force can be considered to be the 

geometric sum of the following two forces: One of them, Fj,e , is 

called external to the system, namely, the force that would be exerted on Mj by the external medium 

if it alone existed, while nothing changed in its state or that of Mj, moreover. The other one, Fj,i , 

is called internal to the system, namely, the force that would be exerted on Mj if the system existed 

alone and unchanged: 

(Fj) = (Fj,e) + (Fj,i) . 

 

 That internal absolute force Fj,i can be considered to be the geometric sum of the (n – 1) partial 

forces that are exerted in isolation by each of the (n – 1) points M1, M2, …, Mk, …, Mn on the point 

Mj. 

 If one assumes the principle of the equality of action and reaction then the force that is exerted 

by one of those points Mk on the point Mj, namely, fk,j , will be directed along the lines Mj Mk, and 

conversely, the point Mj will exert a force  that is equal in magnitude and oppositely-directed to 

, :k jf  

(fj,k) + (fk,j) = 0 . 

 

 We then reach this conclusion: The internal forces that are exerted between all points of a 

material system can be regarded as the geometric sum of the partial internal forces that are pairwise 

equal and oppositely-directed. 

 That is a fundamental property of the internal forces. 

 It is easy to extend the preceding results to the case of a motion that is referred to arbitrary axes 

(Ox, Oy, Oz). Let us repeat the same considerations. The point Mj has a relative acceleration r

j , 

y 

O x 

z 

Mj Mn 

 

M3 
Mk 

M2 

M1 
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and the relative force that acts upon it is ( )r

jF  = ( )r

jm  . If (Fj, e) is the external relative force, i.e., 

the relative force that the external medium exerts upon Mj (if it existed alone with Mj) and the 

internal absolute force is (Fj, i) then an established proposition will permit us to write: 

 

( )r

jF  = 
, ,( ) ( )r r

j e j iF F+  . 

 

 The total relative force is the geometric sum of the external relative force and the internal 

absolute force. 

 As a result, whenever one knows the external relative forces, it will be to one’s advantage to 

appeal to that decomposition, while taking into account the fact that the internal absolute forces 

form a system of forces that is pairwise-equal and oppositely-directed, and since those forces were 

eliminated due to that property in the theorems that were just established, those theorems will be 

true no matter what axes to which one refers the motion, provided that the external forces are 

relative to those axes. 

 

 Review of some definitions and properties concerned with geometric quantities. – In order 

to continue this presentation, it would be convenient to utilize some properties of geometric 

quantities that shall be rapidly recalled (2). 

 One says the moment of a geometric quantity AB with respect 

to a point O to mean a geometric quantity OM that is perpendicular 

to the plane (O, AB) and is directed in such a fashion that an 

observer whose feet are placed at O and whose head is at M will 

see the segment AB as if it pointed in the sense that is indicated by 

the trihedron of axes ( x,  y,  z) once it is chosen (i.e., from 

left to right, here). Its absolute length is measured by the product 

of the two numbers, one of which measures the length of the 

segment and the other of which measures the distance from the 

point O to that segment, or if one prefers, its absolute length is 

twice the area of the triangle OAB. 

 The geometric sum of n geometric quantities AB, CD, … (which might or might not have a 

common origin) is a geometric quantity that is constructed as follows: Draw geometric quantities 

through an arbitrary point O that are equipollent to AB, CD, …, respectively, and determine the 

resultant OR. That geometric sum is defined in space only in magnitude and direction, but its origin 

is arbitrary. 

 If one is given a system of segments AB, CD, … then one says the moment of a system with 

respect to a point O to mean the geometric sum of the moments of the quantities AB, CD, … with 

respect to that point O. 

 Let (AB, O) denote the moment of AB with respect to the point O. 

 When one considers two points O and O , the following geometric relationship will exist 

between the moments of the same segment AB with respect to those two points: 

 
 (2) Consult: J. Tannery, “Deux leçons de Cinématique,” Annales de l’École Normale (3) 3 (1886), 43-80. 
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(AB, O) = ( , ) ( , )AB O O B O  + , 

 

in which O B   is the segment equipollent to AB that is drawn through O . 

 It results from this that if one is given an arbitrary system of segments then one can state this 

theorem: 

 

 The moment of a system of segments with respect to a point O is equal to the moment of the 

same system with respect to a point O , augmented geometrically by the moment with respect to 

the point O of the geometric sum of the system that is constructed with the point O  for its origin. 

 

 Having said that, one says that two systems of segments are equivalent when they have the 

same geometric sum and the same moment with respect to a point in space. 

 From the foregoing, when those conditions are fulfilled, two systems of segments will have 

the same moment with respect to an arbitrary point in space. 

 Furthermore, is easy to show that if one is given a system of segments then one can (and in an 

infinitude of ways) construct an equivalent system that is composed of either two segments or one 

segment and a couple. 

 In the case where one can form a system that is equivalent to a given system that is composed 

of a single segment, one says that the system admits a resultant. 

 When system of segments is composed of segments that are all parallel to each other, that 

system will always admit a resultant, unless one cannot form an equivalent system that is composed 

of only a couple. 

  Finally, when one combines an arbitrary system of segments that are pairwise equal in length 

and oppositely-directed with the system that is composed of the union of the two systems, it will 

be equivalent to the first system, because the geometric sum of the system that was introduced and 

its moment with respect to an arbitrary point in space will be zero. 

 

 Equivalence of the total system of forces that act upon a material ensemble and the system 

of external forces. – Let us return to dynamics. Let (Ox, Oy, Oz) be arbitrary axes, let M1, M2, …, 

Mn be a system of material points, and let m1, m2, …, mn, resp., be the masses of those points. 

 Let j be the acceleration of the point Mj with respect to the axes (Ox, Oy, Oz) under the given 

conditions. The force that is exerted on that point will be (Fj) = m (j). Let (Fj,e) be the external 

relative force that is exerted on Mj at the same instant. 

 Consider the system of segments that is formed from the forces (Fj) and the system that is 

formed from the forces (Fj,e). Those two systems are equivalent. Indeed, the system (Fj) differs 

from the system only by the introduction of internal forces (Fj,i). Now, the internal forces form a 

system of segments that are pairwise equal and oppositely-directed. Therefore, the geometric sum 

of the forces (Fj,e) will be the same as the geometric sum of the forces (Fj), and the moment of the 

system (Fj,e) with respect to an arbitrary point O is equipollent to the moment of the system (Fj) 

with respect to the same point. 

 The theorem can be stated thus:  

 

 The system of segments m (j) is equivalent to the system of segments (Fj,e). 
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 That is the proposition from which we shall ultimately deduce the general theorems that we 

have in mind. 

 

_________ 



LECTURE 2 

_________ 

 

THEOREM ON THE MOTION OF THE CENTER OF GRAVITY 
_________ 

 

 Let M be an arbitrary point of a system, let m be its mass, and let x, y, z be its coordinates with 

respect to any rectangular axes. 

 The acceleration  of that point will have components 

2

2

d x

dt
, 

2

2

d y

dt
, 

2

2

d z

dt
 along those axes. 

 Let Xe, Ye, Ze be the components of the external force Fe (relative to the axes Oxyz) that is 

exerted on that point. 

 Express the idea that the geometric sum of all the segments m () and that of all segments (Fe) 

are equal. We will have: 

 
2

2

d x
m

dt
  = 

eX , 
2

2

d y
m

dt
  = 

eY , 
2

2

d z
m

dt
  = 

eZ . 

 

The summations on the left-hand sides extend over all points of the system, while the summations 

of the right-hand sides extend over all external forces that act upon the system. 

 If one lets  denote the total mass  m of the system and lets (, , ) denote the coordinates 

of the center of gravity then one will have: 

 

  = m x ,    = m y ,    = m z , 

 

from the definition of the center of gravity. 

 As a result, the preceding equations will take the form: 

 
2

2

d

dt


 = 

eX , 
2

2

d

dt


 = 

eY , 
2

2

d

dt


 = 

eZ . 

 

 Hence, the center of gravity of the system moves like a material point where the total mass of 

the system is concentrated, and which is subject to forces that are equipollent to all external forces. 

 That is what the theorem of the motion of the center of gravity consists of. 

 

__________ 
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Theorem on the moments of the quantities of motion. 

___________ 

 

 Let us express the idea that the moment with respect to the origin O of the system of all 

segments ( )m   is equal to the moment with respect to that point of the system of all segments 

(Fe). We shall do that by writing down the idea that the two moments have the same components 

along the three axes. 

 We have: 

 
2 2

2 2

d y d x
m x y

dt dt

 
− 

 
  = ( )e exY y X− , 

2 2

2 2

d z d y
m y z

dt dt

 
− 

 
  = ( )e ey Z zY− , 

2 2

2 2

d x d z
m z x

dt dt

 
− 

 
  = ( )e ez X x Z− . 

 

 One can put those equations into the form: 

 

d dy dx
m x y

dt dt dt

 
− 

 
  = ( )e exY y X− , 

d dz dy
m y z

dt dt dt

 
− 

 
  = ( )e ey Z zY− , 

d dx dz
m z x

dt dt dt

 
− 

 
  = ( )e ez X x Z− . 

 

 If one says the quantity of motion of the point M to mean the geometric quantity that has its 

origin at the point M, while its direction and sense are those of the velocity V of the point M, and 

its absolute magnitude is m (V) then the expressions 
dy dx

m x y
dt dt

 
− 

 
 , … will represent the 

projections onto the axes of the sum of the moments of the quantities of motion of the points of 

the system with respect to the origin O. 

 Therefore, the derivatives with respect to time of the sum of the moments of the quantities of 

motion with respect to a fixed axis will be equal to the sum of the moments of the external forces 

with respect to that axis. 

__________ 
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Geometric representation of the preceding theorem. 

_______________ 

 

 

 Construct the geometric sum OV of the quantities of motion of the points of the system at the 

origin and the moment OP of those quantities with respect to the 

origin. 

 Let (, , ) and (a, b, c) be the coordinates of the points V and 

P. One has: 

 = 
dx

m
dt

  = 
d

M
dt


,  = …,   = …, 

a = 
dz dy

m y z
dt dt

 
− 

 
 , b = …,  c = … 

 

The preceding theorems give: 

 

  
d

dt


 = 

eX , 
d

dt


 = 

eY , 
d

dt


 = 

eZ , 

  
da

dt
 = ( )e ey Z zY− , 

db

dt
 = ( )e ez X x Z− , 

dc

dt
 = ( )e exY y X− . 

 

 Therefore: The velocity of the point V is equipollent to the geometric sum of the external 

forces. The velocity of the point P is equipollent to the moment of the system of external forces 

with respect to the point O. 

 

 Integrals of motion of the given system from the preceding theorems. – The form of the 

equalities obtained shows one the cases in which those theorems will tell one about integrals of 

motion of the system. 

 The theorem of the motion of the center of gravity will give an integral whenever the sum of 

the projections of the external forces onto an axis that is fixed with respect to (Ox, Oy, Oz) is zero. 

 The theorem of the moments of the quantities of motion will give an integral whenever the 

moment of the system of external forces with respect to an axis with a fixed position is zero; for 

example, when all of the external forces meet Oz or are parallel to it. 

 

 Extension of the theorem of the moments of quantities of motion. – One can extend the 

theorem of the moments of quantities of motion to the case of relative motion with respect to axes 

that are animated with respect to (Ox, Oy, Oz) with a certain motion that we shall define. 

 In particular, that theorem is applicable to the relative motion of the system with respect to 

axes with fixed directions that pass through the center of gravity G of the system. 

 Let ( , , )Gx Gy Gz    be three axes with fixed directions; for example, ones that are parallel to 

(Ox, Oy, Oz). Each point M of the system has a certain acceleration r  with respect to those axes 

z 

y 

O x 

V 

P 
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and is subject to a certain force ( )rm  , which is the sum of 

the external relative force r

eF  and the internal absolute force 

Fi . 

 One knows that the system of segments ( )r

em   and the 

system of segments r

eF  are equivalent. 

 However, as one can show, the moment with respect to 

the point G of the system of segments ( )r

eF  is equipollent to 

the moment with respect to that same point of the system of 

segments (Fe), i.e., one can apply the theorem of the 

moments of the quantities of motion to the axes Gx , Gy , 

Gz  without changing the external forces. 

 Indeed, from a theorem of Coriolis, one has the equality: 

 

(Fe) = ( ) ( )r

eF m A+ , 

 

in which (A) represents the acceleration of the center of gravity G with respect to the axes (Ox, Oy, 

Oz). 

 The system of segments ( )r

eF  can be regarded as formed from the union of the system of 

segments (Fe) and the system of segments – m (A). Now, the latter segments are all parallel to each 

other and admit a resultant that passes through the center of gravity G. 

 The moment of the system – m (A) with respect to G is zero, and the moment of the system 

( )r

eF  with respect to G is equipollent to the moment of the system (Fe). 

 One can write: 
2 2

2 2

d y d x
m x y

dt dt

  
 − 

 
  = ( )e ex Y y X −  , 

……………………………………………… 

or rather: 

d dy dx
m x y

dt dt dt

  
 − 

 
  = ( )e ex Y y X −  , 

……………………………………………… 

 

 As a result, whenever there exists an axis with a direction that is fixed with respect to (Ox, Oy, 

Oz) and passes through the center of gravity of the system, such that all of the external forces either 

meet it or are parallel to it, one will get an integral of motion upon applying the theorem of the 

moments of the quantities of motion to that axis. 

 Rigorously speaking, the extension that was made of the theorem of the moments of the 

quantities of motion demands only that the point G must be the center of gravity of the system. 

y 

z 

O x 

G  

 

 

M 
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 Indeed, suppose that one considers the relative motion with respect to the three axes ( , ,Px Py 

)Pz  that are parallel to (Ox, Oy, Oz), where P is an arbitrary point whose acceleration with respect 

to (Ox, Oy, Oz) is (A). One will then have: 

( )r

eF  = (Fe) + ( )m A . 

 

 In order for the system of segments ( )r

eF  and the system 

of segments (Fe) to have equipollent moments with respect 

to the point P, it is necessary and sufficient that the system of 

segments m (A) should have a zero moment with respect to 

P. Now, the system m (A) admits a resultant that passes 

through the center of gravity G and is equal to  (A). In 

order for that system to have a zero moment, it is necessary 

and sufficient that this resultant must pass through the point 

P. Therefore, it is necessary and sufficient that the 

acceleration (A) of a point P should be directed along PG at each instant. 

 That condition is always realized when the point P coincides with G or when the acceleration 

of the point P is zero. However, in the latter case, P is animated with a uniform, rectilinear 

translation, and one knows that such a motion will not change the forces relative to the axes. 

 

 Remark that is useful for calculating the moment of the quantities of motion of a system. 

– The moment of the quantities of motion of a system with respect to a point O is equal to the 

moment of the quantities of motion of the system with respect to the center of gravity G of the 

system in its relative motion with respect to the center of gravity, geometrically augmented by the 

quantity of motion of the center of gravity (at which one supposes that the entire mass of the system 

is concentrated) with respect to the point O. 

 Let O be the origin of the axes, and let M1, M2, …, Mn be a system of points, while G is the 

center of gravity. By definition, one has: 

 

  = m x ,   = m y ,   = m z . 

 

 Recall this property: The moment of a system of segments with respect to a point O is equal to 

the moment of that system with respect to a point G plus the moment with respect to O of the 

geometric sum of the segments that are constructed with G as its origin. 

 One applies that theorem by decomposing the moment of the quantities of motion of the system 

into two parts: 

 

 1. Moment of the sum of the quantities of motion, when constructed with G as the origin. 

 

y 

z 

O x 

P  

 

 

M 
G  
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 The projections of the sum of the quantities of motion onto the axes are 
dx

m
dt

  , 
dy

m
dt

 , 

dz
m

dt
 , or rather 

d

dt


, 

d

dt


, 

d

dt


. The moment considered is then the moment with 

respect to the point O of the quantity of motion of the center of gravity where the total mass of the 

system  will be concentrated. 

 

 2. Moment of the quantities of motion of the system with respect to the point G. 

 

 I say that this moment is equipollent to the moment with respect to the same point G of the 

quantities of motion of the points of the system in their relative motion with respect to the center 

of gravity. 

 Indeed, let Va and Vr be the velocities of an arbitrary point of the system with respect to (Ox, 

Oy, Oz) and ( , , )Gx Gy Gz   , resp., and let W be the velocity of the center of gravity G with respect 

to (Ox, Oy, Oz). One will have: 

(Vr) = (Va) – (W) . 

 

 From that, the set of segments m (Va) can be regarded as being formed from the system of 

segments m (Vr) and the system of segments m (W). In order for the moment of the system m (Va) 

and that of the system m (W) with respect to G to be the same, it is necessary and sufficient that 

the moment of the system m (Vr) with respect to G should be zero. Now, the segments m (W) admit 

a resultant that passes through G, and as a result, the moment of their system with respect to G is 

zero. Therefore, the moment of system m (Va) and that of the system m (Vr) with respect to G will 

coincide. 

 The stated proposition is thus found to have been proved. 

 

 The vis viva theorem. – We shall now establish a third theorem that also provides integrals of 

the motion of the system in certain cases. 

 Consider the equations of motion of a point of the system: 

 
2

2

2

2

2

2

,

,

.

e i

e i

e i

d x
m X X X

dt

d y
m Y Y Y

dt

d z
m Z Z Z

dt


= = +




= = +



= = +


 

 

 Multiply them by dx / dt, dy / dt, dz / dt, resp., and add corresponding sides. Upon denoting the 

velocity of that point by v, that will give: 
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( )21
2

d
mv

dt
 = a a a i i i

dx dz dz dx dz dz
X Y Z X Y Z

dt dt dt dt dt dt

   
+ + + + +   

   
 . 

 

 Take the sum of the analogous equations that relate to all of the points of the system, so: 

 

21
2

d
mv

dt
  = a a a i i i

dx dz dz dx dz dz
X Y Z X Y Z

dt dt dt dt dt dt

   
+ + + + +   

   
   . 

 

 The forces (Xi, Yi, Zi) can be decomposed into partial forces that are pairwise equal and directly 

opposite. If one replaces Xi, Yi, Zi in that sum with the components of those partial forces (namely, 

Xj,k, Yj,k, Zj,k for the points Mj and Mk) then one will know that the sum represents (up to the factor 

1 / dt), the elementary work done by all internal forces under an infinitely-small displacement of 

the system. Now, the work that is done by the force Fjk that is exerted between Mj and Mk under 

such a displacement is in fact fj,k drjk , where rjk is the distance between the two points Mj and Mk, 

and fj,k is the absolute value of the force Fjk , preceded by a + or – sign according to whether the 

force is repulsive or attractive. 

 The preceding relation can then be written: 

 
21

,2 j k jkd mv f dr−   = ( )e e eX dx Y dy Z dz+ +  . 

 

 In the case where the forces fj,k are given forces that are functions of only the distance between 

the points (which is what happens for the material points in our planetary system) then 
,j k jkf dr  

will be an exact total differential. Each function fj,k will depend upon only the variable rjk . 

 When the internal forces are reactions due to the constraints that the system is subject to, one 

will know nothing about the forces fj,k . However, in the case where the system is composed of a 

solid body, all of the drjk will be zero. Therefore, for a solid body, one will have: 

 
21

2
d mv  = ( )e e eX dx Y dy Z dz+ +  . 

 

 In those two distinct cases, in which fjk depends upon just the variable rjk and in which drjk is 

zero, if the expression ( )e e eX dx Y dy Z dz+ +  is an exact total differential of a function of the 

coordinates of the points of the system, namely, dU (xj, yj, zj, …), then the relation that we have 

formed will tell us an integral of motion (3). 

 That integral is called the vis viva integral. 

 

 (3) It even suffices that one has: 
e e eX x Y y Z z  + +   

d

dt
U (x1, y1, z1, …, xn, yn, zn, t), i.e., that Xe is equal to 

dU / dt + 
e

X  , Ye is equal to dU / dt + 
e

Y  , and Ze is equal to dU / dt + 
e

Z  , with the condition that: 

e e eX x Y y Z z     + +   dU/ dt . That will happen if, for example, the force 
e

X  , 
e

Y  , 
e

Z   is normal to the velocity 

x , y , z , and U does not depend upon t. 
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 When there exists such a function U, one says that the external forces admit a force function 

U. 

 

 Useful remark for calculating the vis viva of a system. – One easily proves the following 

proposition: The vis viva of a system with respect to arbitrary 

axes (Ox, Oy, Oz) is equal to the sum of two terms: The vis 

viva of the center of gravity, where all of the mass of the 

system is concentrated, and the vis viva of the relative motion 

of the system with respect to axes with invariable directions 

that pass through the center of gravity. 

 Hence, let v be the velocity of the point M of mass m with 

respect to (Ox, Oy, Oz), let v  be its velocity with respect to 

( , , )Gx Gy Gz   , let  be the total mass of the system, and let 

V be the velocity of the center of gravity. 

 One has: 
2mv  = 2 2V mv+ . 

 

 Moments of inertia. Calculating them. – When one deals with continuous systems (for 

example, homogeneous solid bodies), the application of the theorem of vis viva or the theorem of 

the moments of the quantities of motion will lead one to consider certain sums called moments of 

inertia that are expressed by triple, double, or single integrals according to whether the system is 

three, two, or one-dimensional, resp. 

 If one is given a system of material points at a given instant with masses m1, m2, … that occupy 

positions M1, M2, …, resp., that are at distances r1, r2, …, resp., from a line L then the quantity: 

 
2mr , 

 

when extended over all points of the system, is called the moment of inertia of the system with 

respect to the line L at the instant considered. 

 Here is how one introduces the consideration of such quantities: 

 Suppose that one must calculate the moment of the quantity of motion of a system with respect 

to an axis L under a motion such that all of the points are animated with the same rotation  around 

the line L. For each point, the moment of the quantity of motion is m  r  r or 2m r  . The desired 

moment is then 2mr  . 

 Similarly, if one must calculate the vis viva under such a motion then one will find 2 2m r  

or 2 2mr  . 

 Under the motion of a solid body around a fixed point, and notably under the motion of a solid 

around its center of gravity, the velocities of all points of the body at each instant are the same as 

if all points were animated with a rotation around a certain line that passes through the fixed point 

that is called the instantaneous axis of rotation. The calculation of the vis viva under such a motion 

y 

z 

O 
x 

 

 

 

G 



Lecture 2 – Conservation laws 17 

 

will imply that one must calculate the moment of inertia of the system with respect to that 

instantaneous axis. 

 One can state certain general theorems on moments of inertia that facilitate the calculations. 

 

 The moment of inertia of a system with respect to a line L is equal to the moment of inertia of 

the system with respect to a line that is parallel to L and passes through the center of gravity, plus 

the moment of inertia with respect to L of the center of gravity where the total mass is concentrated. 

 

 That theorem is only a particular case of an analogous proposition that occurs in the context of 

the vis viva of the system. Indeed, suppose that the system is animated with a certain rotational 

motion  around the line L. The vis viva of the system is: 

 
2 2mr  . 

 

 Let r be the distance from the point M to the line L  that is parallel to L 

and drawn through the center of gravity of the system G. Let  be the total 

mass of the system, while d is the distance from L to L . 

 The vis viva of the system in its motion with respect to the center of gravity 

is 2 2m   . 

 The vis viva of the center of gravity where all of the mass is concentrated 

is 2 2d  .  

 From the proposition that was just recalled, one will have: 

 
2 2mr   = 2 2 2 2m d  + , 

i.e.: 
2mr  = 

2 2d m+ , 

 

which is precisely the theorem in question. 

 From it, when one knows how to calculate the moment of inertia of the system with respect to 

an arbitrary line OL that passes through a point O in space (for example, through its center of 

gravity), one will know how to calculate its moment of inertia with respect to an arbitrary line with 

no new quadrature, but on the condition that one must know the total mass of the system. 

Consequently, when one must calculate moments of inertia, one seeks the point O in space that is 

most advantageous for obtaining the moments of inertia with respect to the lines OL. 

 On the subject of moments of inertia with respect to lines that pass through a point O, one can 

prove the following proposition: 

 

 

 

 

 

 
 

M1 
M2 

d G 

L  

 
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 If one measures out a length of: 

OA = 
2

1

m r
 

 

along each line OL, when one starts from O, in which 
2mr  is the moment of inertia of the system 

with respect to OL, then the point A will describe an ellipsoid that has O for its center and is called 

the ellipsoid of inertia relative to the point O. 

 

 Suppose that one has calculated the equation of that ellipsoid of inertia. In order to find the 

moment of inertia of the system with respect to a line that passes through O, it will suffice to find 

the intersection of the line with the ellipsoid. 

 If one knows the three axes of the ellipsoid of inertia and the moments of inertia relative to 

those axes then one can calculate the moment of inertia of the system with respect to an arbitrary 

line that passes through O algebraically (and as a result, with respect to an arbitrary line in space, 

on the condition that one must know the total mass of the system). 

 That will be the case for a solid with three symmetry planes when one knows how to calculate 

the moments of inertia with respect to the three symmetry axes. 

 More generally, when one knows the mass of an arbitrary system and its moments of inertia 

relative to six concurrent lines that are not all situated in the same plane, one will know six points 

of the ellipsoid of inertia and its center. The ellipsoid of inertia will then be defined, and the 

moments of inertia with respect to arbitrary lines will be obtained algebraically. 

 The axes of the ellipsoid of inertia, which are called the principal axes, are characterized by 

the relations: 

m y z = 0 , m z x = 0 , m x y = 0 

 

when one takes those axes to be the coordinate axes. 

 The preceding theorems are often useful in the calculation of the vis viva or moment (with 

respect to an axis or a point) of the quantity of motion of a system. For example, suppose that the 

system includes solid bodies, and let  be one of those solid bodies. One decomposes the vis viva 

K of  into two parts: The vis viva K   of the center of gravity G of  where the mass of  is 

concentrated and the vis viva K   of the relative motion of  around the point G. 
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 Let G be the instantaneous segment of rotation of  

around G at time t, and let p, q, r be the components of G 

along the three principal axes of inertia GX, GY, GZ of , 

which have well-defined positions at the instant t. One 

proves that K   is equal to 
2 2 2A p B q C r+ +  if A, B, C 

denote the moments of inertia relative to GX, GY, GZ. 

 Similarly, the calculation of the moment (O ) with 

respect to the point O of the quantity of motion of  (in its 

motion with respect to Oxyz) reduces to the calculation of 

the moment ( )G   with respect to the point G of the quantity 

of motion of  in its motion with respect to G x y z   . One 

proves that the projections of ( )G   onto GX, GY, GZ are equal to Ap, Bq, Cr, respectively. The 

calculation of the moments with respect to any axis is then deduced immediately from the 

foregoing. 

 

___________ 

 

y 

z 

O 
x 

 

 

 

G 



LECTURE 3 

_________ 

 

 
 Motion of a solid body that has a fixed point. – Let 

(Ox1, Oy1, Oz1) be three arbitrary axes with respect to 

which one would like to study the motion of a solid body 

for which O is a fixed point. 

 One defines the position of the solid with the aid of 

the principal axes of inertia Ox, Oy, Oz, which are 

determined by the three Euler angles. 

 Let OA be the intersection of the plane xOy with the 

plane x1Oy1 . One takes a positive direction for OA 

arbitrarily along that line. The Euler angles are: 

 = 1x OA  measured positively around Oz from left to right 

 = 1z Oz                            OA           

 = AOx  
                          Oz           

 

 One might need to express the coordinates x1, y1, z1 of a point as functions of its coordinates x, 

y, z. In order to do that, one employs the well-known process: One makes (Ox1, Oy1, Oz1) coincide 

with (Ox, Oy, Oz) by three successive rotations, one of which  is around Oz, the second of which 

 is around OA, and the third of which  is around Oz. Each partial rotation is effected by 

applying the transformation formulas for coordinates in plane geometry. That will then give: 

 

1

1

1

(cos cos cos sin sin ) (sin cos cos cos sin ) (sin sin ) ,

(sin cos cos cos sin ) (sin sin cos cos cos ) (sin cos ) ,

(sin sin ) (cos sin ) (cos ) .

x x y z

y x y z

z x y z

           

           

    

= − − + +


= + + − −
 = + +

 

 

 Let: 

1

1

1

Ox Oy Oz

Ox

Oy

Oz

  

  

  

 

 

 

 

 

be the matrix of direction cosines of the angles between the axes Oxyz and the axes Ox1 y1 z1 . 

 The transformation formulas are: 

  x1 = x y z   + + , 

  y1 = x y z   + + , 

y1 

y 

z1 z 

 

x1 

A 

x 

 

 

 

O 



Lecture 3 –Rigid-body motion. 21 

 

  z1 = x y z   + + . 

 

 One will get the expressions for the direction cosines as functions of the Euler angles , ,  

upon comparing those formulas with the ones that were obtained above (†): 

 

   = cos cos cos sin sin    −  , 

    = sin cos cos cos sin    +  , 

    = sin sin  , 

     = − sin cos cos cos sin    − , 

     = − sin sin cos cos cos    + , 

      = − cos sin  , 

    = − sin sin  , 

      = − sin cos  , 

      = − cos  . 

 

 One knows that the velocities of all points of the solid at each instant are the same as if the 

entire system were animated with a rotation  around the axis O. 

 That instantaneous axis of rotation can be defined by either its projections p1, q1, r1 onto Ox1y1z1 

or its projections onto Oxyz. Those quantities are functions of time t. 

 If one eliminates t from the expressions for p1, q1, r1 then one will get the locus of points  in 

the space Ox1y1z1 . 

 If one eliminates t from the expressions for the ratios p1 / r1, q1 / r1 then one will get the equation 

of the cone that is based in the motion of the solid, i.e., the locus of the instantaneous axis in the 

space Ox1y1z1 during its motion. 

 If one eliminates t from the expressions for p, q, r (or from the ones for p / r, q/ r) then one will 

have the locus of the point in the solid (or the equation for the rolling cone, i.e., the locus of the 

instantaneous axis in the solid during its motion). 

 It is easy to calculate the expressions for p, q, r and p1, q1, r1 as functions of the Euler angles 

and their derivatives with respect to time. 

 Indeed, x, y, z will remain invariable for a point in the solid body, and one will find that: 

 

dx

dt
 = 1 1

d d d d d d
z y

dt dt dt dt dt dt

     
     

      
   + + − + +   

   
 = q1 z1 – r1 y1 . 

 

Therefore: 

 

r1 = 
d d d

dt dt dt

  
  

 
 + + . 

 
 (†) Translator: The signs in these equations are clearly inconsistent with the ones in the previous equations. 
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 Hence, one has p1, q1, r1 as functions of , ,  and d / dt, d / dt, d / dt. 

 One will also have p, q, r as functions of the same quantities, because: 

 

p =  p1 +  q1 +  r1 = 
d d d

dt dt dt

  
  

  
  + + , 

…………………………………………………… 

 

 That calculation is practicable, but long. 

 Instead of doing that, one can decompose O along OA, Oz, Oz1 . The velocity of each point 

that is due to the instantaneous rotation O is the same as the one that will result from the 

composition of the three instantaneous rotations d / dt, d / dt, d / dt around Oz1, OA, Oz, resp. 

 Furthermore, one will get p, q, r and p1, q1, r1 by taking the sum of the projections of those 

three rotations onto Ox, Oy, Oz, Ox1, Oy1, Oz1, respectively. 

 That will give: 

  p = cos
d d

dt dt

 
 + , 

  q = sin
d d

dt dt

 
  + , 

  r = 
d d

dt dt

 
  + , 

i.e.: 

(I)  

sin sin cos ,

sin cos sin ,

cos .

d d
p

dt dt

d d
q

dt dt

d d
r

dt dt

 
  

 
  

 



= +




= −



= +


 

 Similarly: 

  p1 = cos
d d

dt dt

 
 + , 

  q1 = sin
d d

dt dt

 
 + , 

  r1 = 
d d

dt dt

 
 + , 

i.e.: 
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1

1

1

cos sin sin ,

sin sin cos ,

cos .

d d
p

dt dt

d d
q

dt dt

d d
r

dt dt

 
  

 
  

 



= +




= −



= +


 

 

 It should be remarked that the quantities  ,   ,   , ,    have simple expressions: They are 

the ones that enter into the problem, in general. 

 Having said that, one proves that the moment of the quantity of motion of the system with 

respect to the point O is a geometric quantity O whose projections onto (Ox, Oy, Oz) are Ap, Bq, 

Cr (where A, B, C are the moments of inertial relative to the axes Ox, Oy, Oz). 

 Euler’s method for obtaining the equations of motion of the solid consists of expressing the 

idea that the velocity of the point  is a geometric quantity that is equipollent to the moment of the 

external forces with respect to the point O. 

 Since the reaction of the fixed point O has a zero moment, one will have three equations that 

are independent of the reaction of the point O for determining the motion of the system that depend 

upon the three parameters , , , which are equations that one will obtain simply by writing that 

the projections onto the axes Ox, Oy, Oz of the velocity  with respect to Ox, Oy, Oz are equal to 

the moments with respect to Ox, Oy, Oz, respectively, of the external forces that are applied to the 

system. 

 The equations thus-obtained, which are called Euler’s equation, are: 

 

(II)  

( ) ,

( ) ,

( ) ,

dp
A C B q r L

dt

dq
B A C r p M

dt

dr
C B A p q N

dt


+ − =




+ − =



+ − =


 

 

in which L, M, N are the projections onto Ox, Oy, Oz of the moment of the external forces with 

respect to O. 

 Those equations indeed give integrals of motion in some cases. For example, when the body 

is one of revolution around an axis that passes through O, that axis will be a principal axis of 

inertia, namely, the axis Ox. One will have B = C, and if the moment of the external forces with 

respect to that axis is zero (L = 0) then one will deduce that p = const. from the first Euler equation. 

 Generally, whenever the moment of the external forces with respect to a fixed direction (Oz, 

for example) is zero, one will have a first integral of the motion by expressing the idea that the 

moment of the quantity of motion with respect to that axis is a constant. Since the moment of the 

quantity of motion has Ap, Bq, Cr for its components along (Ox, Oy, Oz), one will have: 
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A p Bq C r   + +  = const. = const. = K , 

 

if all of the external forces have a zero moment with respect to Oz1 . 

 If they have a zero moment with respect to Ox1, in addition, then one will have a second integral 

of motion. 

 One sees from this that it is indispensable in certain cases to know how to calculate ,  , ,   

,   ,   , ,   ,    as functions of the Euler angles. 

 The Euler equations and equations (I) form a system of six simultaneous first-order differential 

equations that define p, q, r, , , . 

 If one replaces p, q, r with their values as functions of , ,  in (II) then one will have a system 

of three simultaneous second-order equations that define , , . 

 It is more advantageous to preserve the six equations, and above all, when L, M, N do not 

depend upon , , . One can then integrate the system (II) separately, and when one has p, q, r, 

one can then integrate the system (I). The calculations will be simpler then. 

 The vis viva of the system is: 
2 2 2A p B q C r+ + . 

 

 From the practical viewpoint, observe that the first integrals that one easily obtains are given 

by the vis viva theorem, along with the theorem of the moments of quantities of motion when the 

external forces meet a fixed axis or when the solid is one of revolution around a certain axis that 

passes through O and the external forces constantly have a zero moment with respect to that axis. 

 

 

 Motion of a solid that is entirely free. – Now let us consider the most-general motion of a 

solid body. 

 One appeals to the stated theorems in order to 

study: 

 

 1. The motion of the center of gravity G of the 

body, to which one supposes that all of the external 

forces that are exerted on the solid are applied, with 

respect to three fixed axes Ox, Oy, Oz. 

 

 2. The relative motion of the solid with respect 

to axes Gx1, Gy1, Gz1 with fixed directions that are 

drawn through the center of gravity and parallel to Ox, Oy, Oz, resp. 

  

 In order to study the motion of the solid around its center of gravity, one appeals to the fact 

that the theorem of the moments of the quantities of motion that applies to the motion can be 

applied to the center of gravity without needing to change the external forces. 

 In the case where the solid body is not entirely free, less than six parameters will be required 

in order to determine its motion, but unknown reactions will be introduced. In certain cases, it will 

z 

y 
x 

y1 

G 
x1 

z1 
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then be convenient to address the question differently: For example, if a fixed point P of the solid 

is subject to a certain constraint then it can be advantageous to study the relative motion around 

that point. 

 When all of the external forces pass through the center of gravity of the body, the motion of 

the solid around its center of gravity will be that of a body that has a fixed point and on which no 

external forces act. 

 

 Example. – Let a massive homogeneous sphere be launched in a vacuum. Its center will 

describe an arc of a parabola, and it will be animated about its center with a uniform rotation 

around an axis that is fixed in space and in the sphere. 

 

 Motion of an ensemble of solids. – When one has a system of solid bodies, their mutual 

reactions will be forces that are internal to the system. 

 In certain cases, there is some advantage to considering part of the system to be an isolated 

system, and one must then take care to regard all of the forces that act upon 

the partial system and do not cancel from the principle of action and reaction 

as external ones. 

 Therefore, let two surfaces S and S   slide without friction on each other. If 

one considers their ensemble then their mutual reactions will be internal to the 

system. If one regards one of them S as a separate system then one must 

consider the reaction of S   to be an external force. 

 

__________ 

 

 

Applications. 

__________ 

 

 I. – A massive, homogeneous, hollow sphere slides without friction on a horizontal plane. A 

massive point M slides without friction inside the sphere. Find the motion of the system. 

 

 The motion of the system depends upon seven parameters: two to fix the position of the center 

of the sphere, three to fix the position of the sphere around its center, and two to fix the position 

of the point that moves on the sphere. 

 We first remark that the motion of the sphere around its center C (which is its center of gravity) 

is known immediately. The forces that act upon the sphere, when it is considered to be an isolated 

system, are indeed its weight, the reaction of the plane, and the reaction of the moving point, which 

all pass through the center C. From the theorem of generalized moments of quantities of motion, 

the total moment of the quantities of motion with respect to the point C is therefore zero, and the 

motion of the sphere around its center is a uniform rotation around an axis that passes through C 

and is fixed in the sphere and space. 

 Moreover, it will suffice to have four integrals in order to succeed in determining the motion. 

S 

N 
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 Two integrals are given by the theorem of the motion of the center of gravity. All of the external 

forces that are applied to the system that consists of the sphere and the point are vertical, in such a 

way that if one refers the motion to three axes (Ox, Oy, Oz), one of which Oz is vertical, and if (, 

, ) are the coordinates of the center of gravity G of the system then one will have: 

 
2

2

d

dt


 = 0 , 

2

2

d

dt


 = 0 . 

 

 As a result, the horizontal projection of the center of gravity of the 

system is animated with a uniform rectilinear translation. 

 Therefore, refer the system to three axes that are parallel to Ox, Oy, 

Oz and have their origin at the projection g of the center of gravity G onto 

the horizontal plane that contains the center of the sphere, namely (gx1, 

gy1, gz1). In order to study the motion with respect to those new axes, one 

will not have to change the external forces that are applied to the system, 

because the new trihedron is animated with respect to the old one with a 

uniform rectilinear translational motion. 

 Let m  be the mass of the sphere and let m be that of the point. Upon letting R denote the radius 

of the sphere, one will have: 

CG =  = 
m

R
m m



 +
, MG =  = 

m
R

m m +
. 

 

 The position of the two points M and G is defined by the angle  between CG and gx1 and the 

angle  between CG and gz1 . The motion of the point C is the same as if that point were a material 

point of mass m  to which all of the external forces that are applied to the sphere will be applied 

(viz., weight, normal reaction of the horizontal plane, reaction of the point M on the sphere that 

points along MC). If one applies the theorem of the moments of quantities of motion with respect 

to Oz and the vis via theorem to the system of two points M and C then one will get first integrals 

that define  and  as functions of t : Indeed, the moment with respect to Oz of the external forces 

that are applied to the system is zero, and the work that they do reduces to the work done by 

gravity, when it is applied to the point M. As for the work done by internal forces, it will be zero 

because the distance MC is constant. Let us calculate those two integrals. The coordinates x, y, z 

of C and M are: 

 

(C)   sin  cos ,  sin  cos ,  0 

 

(M) −  sin  cos , −  sin  cos ,  R cos  , 

 

respectively. 

 Upon calculating the derivatives of the coordinates, one will see that the theorem of areas 

gives: 

sin   = const., 

y1 

x1 

z1 M 

G 

g 
C 

 

 
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and the vis viva theorem gives: 

 
2 2 2 2 2 2 2 2 2 2( ) sin [( ) cos sin ]m m m m m R           + + + +  = − 2 m g R cos  + const. 

 

If one eliminates   between the two equations then that will give (upon taking into account the 

values of  and ): 

2 21 cos
m

m m
 

 
− 

+ 
 = 

2

2

2
cos

sin

g K
h

R



− −  , 

in which h and K denote arbitrary constants. The area constant is equal to 
m m

K
m

+


: 

2sin   = 
m m

K
m

+


. 

 

 One will thus obtain t and  as functions of  by two hyperelliptic quadratures: 

 

(1)     dt = 

2

2 2

1 cos

sin
2

cos sin

m

m md
g

h K
R


 

 

−
+

 
− − 

 

 or    

2

2 2

1

2
cos (1 )

m
u

m mdu
g

h u K
R



−
+

 
− − − 

 

 

 

if one sets cos  = u) and: 

 

(2)    

2 2

2
2 2 2 2

1 cos 1
1

2 2sin (1 )
cos sin cos (1 )

m m
u

m d dum m m md
g gK m m u

h K h u K
R R







  

− −
  + +=  = 

+ −   
− − − − −   

   

 . 

 

 Those equalities permit us to discuss the motion: Let R (u) = P (u) / Q (u) be the quantity inside 

the radical. P (u) will always be positive when u varies from – 1 to + 1. Q (u) is a third-degree 

polynomial that is positive for u = u0 and negative (if 2K  is non-zero) for u =  1. Since the three 

roots u1, u2, u3 of Q are real and the term in 
3u  is positive, their orders are as follows: 

 

Q (u) − 0 + 0 − 0 + 

u − 1 u1 u0 u2 + 1 u3 +  
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 If du / dt is positive at the beginning of the motion then u will begin to increase up to the value 

u2 that it attains. If du / dt is zero then u will begin to increase or decrease according to whether 

0( )Q u  is positive or negative, resp. (4): 

0( )Q u  = − ( )2

0 0 0

2 2
2 1

g g
u h u u

R R

 
− − − 

 
, 

and upon deducing 0

2g
h u

R

 
− 

 
 from the equation Q (u0) = 0, one will see that 0( )Q u  will be 

positive if one has: 
2

0

2

0(1 )

k u g

u R
+

−
 < 0 , 

 

or rather (upon replacing 2K  as a function of 0   and u0): 

 

2

0 0

m
z g

m m
 +

+
 < 0 , 

 

z0 denotes the initial value at M. If that condition is fulfilled then u will first increase (i.e.,  will 

decrease). In the opposite case,  will begin by increasing. u0 will coincide with u2 under the first 

hypothesis and with u1 under the second one. 

 From that, if one marks out the point M that defines the angle  on 

the trigonometric circle then one will see that the point will constantly 

oscillate between the points M1 and M2 . d / dt will keep the same 

absolute value whenever M passes through the same point of the arc 

B1B2, but it will alternate between positive and negative.  and d / dt 

will take the same values again after a time T = 
2

1

2 ( )
u

u
du R u . 

 On the other hand, d / dt will always keep the sign of K. For 

example, suppose that K is positive.  will constantly increase with t. Let 

 denote the variation of  during the time T : 

 

 = 
2

1

2 ( )
u

u
du R u  . 

 

 
 (4) We remark that u  u0 is an integral of (1) in this case. The equality u  u0 implies the equality  = a t + b. 

However, those integrals of equations (1) and (2) do not satisfy the equations of motion of the system, since the further 

consequences of that discussion will at least show that u0 is not a double root of Q. Those solutions are parasitic 

solutions that were introduced by the transformations that take the equations of motion to equations (1) and (2): It 

would be easy to account for them directly, but that is a point to which we shall return in the context of the Lagrange 

equations. 

  

B1 

 

O 

 

B2 

A 

M 
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The values of  at times t and t + T have a constant difference, which is . If one turns the axes 

gx1, gy1 through the angle  around gz1 then the motion of the system at time t + T with respect to 

the new axes is the same as its motion at time t is with respect to the first axes g x1 y1 z1 . 

 The foregoing supposes that u1 and u2 are distinct. They can coincide only if u0 is annulled 

along with Q and its derivatives, which is a condition that can be written as: 

 

Q (u0) = 0 or 0  = 0 ,  and 2

0 0

m
z g

m m



 +

+
 = 0 . 

 

 If those conditions are fulfilled then u must constantly coincide with u0, and  must coincide 

with 0 . The area integral will then give: 

  = 0   , 

 so 

 = 0 t  + . 

 

 Conversely, the equalities   0 ,  = 0 t   can be true only if u0 = cos 0 is the double root of 

Q (u). Indeed, the point M will then describe a horizontal circle of radius  sin  and center at P 

(P being the foot of the perpendicular to gz1 that is based at M) and an angular velocity of 0  . The 

force that is exerted upon it then points along MP and is equal to 2

0 0sinm     or 

2

0 0sin
mm

R
m m

 



+

. However, that force is the resultant of the forces that are applied to the point 

M, and as a result, it will coincide with the horizontal component T sin 0 of the reaction (T) of the 

sphere to M. (T) must then point from M to G, and its absolute value must be 2

0

mm
R

m m





+
. One 

will find the same value for T by arguing with G one does with M. On the other hand, it is necessary 

that the vertical component of (T) must be equal and directly opposite to the weight that is applied 

to the point M, so one must have the equality: 

 

2

0

mm
R

m m





+
+ m g = 0 , 

which can be written: 

2

0 0

mm
z

m m





+
+ g = 0 . 

 The equations: 

0   = 0 , 2

0 0

mm
z

m m





+
+ g = 0 

 

are equivalent to the following ones: 

 

Q (u0) = 0 , 0( )Q u  = 0 . 
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Thus, u0 is a double root of Q. Having fulfilled those conditions, we will know that the motion of 

the system is indeed a uniform rotation around gz1 . It is easy to see that directly, moreover. Let N 

be the normal reaction to the horizontal plane on the sphere, when counted positively in the sense 

of gz1 . One must then have: 

 

0M m g T u− −  = 0 , i.e., N = ( )m m g+ . 

 

 If one writes the three equations of motion of M and C then one will find that those equations 

are verified if one sets: 

 

x1 =  sin 0 cos  , y1 =  sin 0 sin  , z1 = 0   for the point C , 

x1 =  sin 0 cos  , y1 =  sin 0 sin  , z1 = 0   for the point M , 

 

respectively (with  = 0 t  + ), and: 

T = 2

0

mm
R

m m





+
, N = ( )m m g+ , 

provided that the condition 2

0 0cos
m

R
m m

 
+

+ g = 0 is fulfilled. 

 By definition, if the point M is released with a horizontal velocity at a point such that its z-

coordinate is equal to − 
2

0

( )g m m

m

+


 then the motion of MC will be a uniform rotational motion 

around gz1 . 

 Ignoring that case, the hyperelliptic integrals (1) and (2) can reduce (for K  0) only if u3 is 

also a root of P, which will demand that u3 must be equal to 1
m

m


+ . t and  are then given in 

terms of u by elliptic quadratures, but the preceding discussion will not be modified. 

 If K = 0, or rather, if sin  is constantly zero, then MC will coincide with gz1, or rather  = 0, 

and MC will oscillate in a vertical plane. 

 

 II. – Motion of a massive homogeneous sphere that slides without friction on an ellipsoid of 

revolution with a vertical axis. 

 

 The external forces that are applied to the sphere are weight and the reaction 

of the ellipsoid (normal to the surface): Those forces pass through the center C 

of the sphere, the motion of the sphere around that point is a uniform rotational 

motion around an axis that is fixed in space and in the sphere. 

 As for the motion of the center of gravity C, it is that of a massive point that 

moves on a surface of revolution that is parallel to the given ellipsoid. The vis 

viva theorem and the theorem of moments, when applied to Oz, will give two 

first integrals that determine the motion. Let us express the coordinates of the ellipsoid as functions 

of the angle ,  : 

y 

O x 

z 

M 

G 
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x = a cos  cos  , y = a cos  sin  , x = b sin  . 

 

If R denotes the radius of the sphere then the coordinates of C that correspond to a point M will 

be: 

  x = 
2 2 2 2

sin cos
cos cos

cos sin

b R
a

a b

 
 

 
+

+
, 

  y = 
2 2 2 2

sin sin
cos sin

cos sin

b R
a

a b

 
 

 
+

+
, 

  z = 
2 2 2 2

cos
sin

cos sin

a R
b

a b




 
+

+
. 

 

 The desired integrals are written: 

 

2 2 2 2

sin
cos

cos sin

b R d
a

dta b

 


 

 
 +
 + 

 = const. 

and 

 

2
2

2 2 2 2

sin
cos

cos sin

b R d
a

dta b

 


 

   
 +     + 

 

+ 

2 2
2

2 2 2 2 2 2 2 2

sin cos
cos sin

cos sin cos sin

d b R d a R d
a b

d d dta b a b

  
 

    

      
+ + +     

    + +     

 

 

 = 
2 2 2 2

cos
sin

cos sin

a R
A b

a b




 

 
+ 

 + 

 + const. 

 

 The elimination of d / dt from those equations will give dt = F () d , and as a result d = 

( )G d  . 

 The problem is reduced to quadratures. 

 

 III. – A massive homogeneous solid body admits a symmetry axis. That axis has a fixed point 

O and is constrained to slide without friction on a fixed horizontal circle whose center is on the 

vertical through O. Find the motion of the system. 
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The symmetry axis Oz is a principal axis of inertia relative 

to the point O. 

 Let Ox and Oy be two other principal axes of inertia relative 

to O, while Oz1 is the vertical at the point O, and Ox1 and Oy1 

are two fixed rectangular horizontals, while OA is the trace of 

the plane yOx onto the plane y1Ox1 . 

 The 
1z O z  is constant as a result of the constraints. The 

position of the solid then depends upon two parameters: 

 

1x O A  =   and AO x  =  . 

 

 The center of gravity G of the solid is along Oz. Its z1 is constant and as a result, the work done 

by gravity will be zero. 

 The vis viva theorem and the theorem of the moment of the quantities of motion, when applied 

to Oz, which the reaction of O meets, and to which gravity is parallel, give two first integrals of 

the motion: 
2 2 2A p B q C r+ +  = h , 

A p sin 0 sin  + B q sin 0 cos  + C r cos 0 = K . 

 

 Moreover, one has: 

 

p = 0sin sin
d

dt


  , q = 0sin cos

d

dt


  , r = 0cos

d d

dt dt

 
 + . 

 

 Our two integrals can then be written: 

 

(1)  

2 2

2 2 2 2

0 0 0( sin cos )sin cos 2 cos
d d d d

A B C C C
dt dt dt dt

   
    

   
 + + + +    

   
 = h , 

 

(2)  2 2 2 2

0 0 0( sin cos )sin cos cos
d d

A B C C
dt dt

 
     + + +   = k . 

 

 The elimination of d / dt from those two equations gives: 

 
2

2 2 2 2

0 0( sin cos )sin cos
d

A B C h C
dt


   

  
 + + −   

   

 = 

2

2 2 2

0cos
d

K C
dt




 
−  

 
. 

 Hence: 

 
 
  

z1 z 

M 
I 

y 

y1 
x 

A 

x1  

 

 
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dt = 
2 2

0

2 2 2

0

cos

sin ( sin cos )

d

K hCh

C C A B





  

−
−

+

. 

 

 Upon setting tan  = u, one will see that t is given as a function of u by an elliptic integral. 

Upon replacing dt with its value in equation (2), one will see that the same thing will be true for 

. When A = B, d / dt and d / dt will be constants. 

 In the general case,  will always vary in the same sense, because if d / dt is annulled then 

equations (1) and (2) will give: 

 
2

d
h C

dt

 
−  

 
 = 0 , 0cos

d
K C

dt


−  = 0 , 

and as a result: 
2 2

0cosC h K −  = 0 , 

 

which is a condition that is not verified by given initial data, in general. If it is verified then /d dt

will be identically zero, so  will be constant. 

 

 IV. – A massive homogeneous solid of revolution is traversed along its axis by a needle that is 

fixed in it and whose extremities slide without friction along two non-parallel straight lines L and 

L . Find the motion of the body. 

 

 The position of the system depends upon two parameters: one to determine the position of the 

needle of constant length AB and one to fix the orientation of the solid around that line. 

 The vis viva gives a first integral of motion. 

 On the other hand, the external forces, namely, the weight and 

the reactions of the lines, have zero moment with respect to the axis 

of revolution AB. If one studies the motion of the solid around its 

center of gravity G, which is a point for which AB is a principal axis 

of inertia, then one of the Euler equations will show that the 

component r along AB of the instantaneous rotation of the solid will 

be a constant of its motion. Thus, one has a further first integral of 

the motion. 

 Hence, the motion will depend upon two parameters, and one will have two first integrals. 

 Now take the z-axis to be the common perpendicular to two lines L and  L , and take the origin 

to be the midpoint of the shortest distance between them. Take the xy-plane to be a plane 

perpendicular to Oz. Take the x and y axes to be the bisectors of the projections of L and L  onto 

that plane. 

 First of all, we can make a few geometric remarks. 

Any point of the line AB, and in particular, the center of gravity G, will remain in a plane 

parallel to xOy. 

 
A 

B 

L  

S 

G 
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 The line AB makes a constant angle  with the direction Oz. 

 The projection ab of AB onto xOy is a segment of 

constant length whose extremities describe the 

projections l and l  of the lines L and L . Therefore, 

any point of ab, and in particular, the projection g of G, 

will describe an ellipse with center O. As a result, the 

center of gravity of the solid describes an ellipse that is 

situated in a plane that is parallel to xOy whose center 

is situated on Oz and whose two conjugate diameters 

are parallel to Ox and Oy. 

 In addition, one can fix the position of the line AB 

by the angle  between its projection ab and Ox, and it 

is easy to obtain the coordinates of the center of gravity 

(, , ) as functions of , moreover. 

 Let: a g  = a, b g  = b, and let  K be the angular coefficients of l and l . 

 The equations of ab, l, and l  are: 

 

y –  = tan  (x – ) ,  y = K x , y = − K x . 

 

 One then deduces that: 

Proj. of ag onto Ox = 
tan

K

K

 



−

−
 = a cos  , 

 

Proj. of bg onto Ox = 
tan

K

K

 



−

+
 = b cos  . 

 Hence: 

   = − 
1

cos sin
2 2

a b a b

K
 

+ −
+  , 

   = − cos sin
2 2

a b a b
K  

− +
− . 

 Furthermore: 

   = const. 

 

 From that, we can deduce the expressions for the vis viva of the center of gravity, where all of 

the mass is concentrated, and the force function. 

 For the first expression, if M is the mass of the solid then one will have: 

 

 
2M V  = 

2 2 2
d d d

M
dt dt dt

         
+ +      

       

  

z 

P 
A 

L 

l 

x 

y 

b 

O 
a 

g  

B 
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= 
2

2 2 2 2 2 2 2

2

cos 1
( ) ( ) sin 2( ) sin cos

M
a b a b K a b K

h K K


   

    
+ + − + + − −    

    
. 

 

 For the second one, if , ,  are the direction cosines of the direction of gravity then one will 

have: 

U = cos sin
2 2 2 2

a r b a b a b a r b
Mg r

K


    

 − −    
− − + −    

    
 + const. 

 

 Having established those preliminaries, we see how to form the two first integrals of motion 

that we indicated by taking the second parameter that defines the position of 

the system to be the angle  that the half-plane AGz makes with the half-plane 

AGK in the solid (GK is perpendicular to AB, G is parallel Oz). 

 The elementary displacement of the solid can be defined by the translation 

G of the center of gravity and the rotation G around the instantaneous axis 

that passes through the center of gravity. 

 Let p, q, r be the components of G along GK, GK (which are 

perpendicular to the plane AGK) and GB. A is the moment of inertia relative 

to GK and GK  (the solid is one of revolution), and C is the moment of inertia relative to GB. 

 The first integrals of motion are: 

 

()     
2 2 2 2

0

( ) 2 ,

.

M V A p q Cr U h

r r

 + + + = +


=
 

 

 Therefore, everything comes down to calculating 
2 2p q+  and r, i.e., the projections of G 

onto the plane K G K   and onto GA, resp., as functions of , ,  ,   . 

 To that effect, we remark that the rotation G and the translation G  can be replaced with two 

rotations, one of which is around AB and the other of which is around a certain axis CD that we 

shall determine. The velocity of the point A points along L. The rotation around AB does not 

displace the point, since that velocity is due to the rotation around CD, so CD will be in the plane 

perpendicular to L at A. As a result, the axis CD is the intersection of the planes that are 

perpendicular to L and L  and A and B, respectively. That axis is parallel to Oz. 

 Let (1) and (2) be the two segments that define the instantaneous rotations around AB and 

CD. The geometric sum (1) + (2) is equal to (G ). One then concludes that: 

 

2 2p q+  = | 2 sin  | 

and 

 = 1 + 2 cos  , 

 

 A 

G 

B 

K 
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if 1, 2 are the lengths (1) and (2), which are regarded as positive when 1 has the sense of AB 

and the sense of Oz for 2 . On the other hand, the rotation (1) will leave  constant and will vary 

 by 1 dt (if one regards  as positive from left to right around the direction AB). 

 Similarly, the rotation (2) will leave  constant and vary  by 1 dt . One will then have: 

 

2 = 
d

dt


 =  , 1 = 

d

dt


 =   . 

 Equations () will then become: 

cos   +  = const., 

2 2 2sinMV A +  = 2U + const. 

 

 The quantities V and U depend upon  . t is given as a function of  by a quadrature that has 

the form (as one sees immediately upon replacing V and U with their values): 

 

t = 
cos2 sin 2

cos sin 2

B C
d

B C

 


 

+ +

  + + , 

which is a hyperelliptic integral. 

 The first equation gives: 

 +  cos  =  t +  , 

in which  and  are constant. 

 The preceding applies to the case in which the lines L and L  meet each other. We shall now 

assume the hypothesis that they are parallel. 

 

 

 Special case in which the two lines are parallel. – In that case, the center of gravity G 

describes a line that is parallel to the given lines and is situated in their plane. The elementary 

displacement of the system results from a translation (with a velocity that is equal to the velocity 

of G) and a rotation around G. The velocities of the points C, A, B are 

the same, so that rotation must leave A and B fixed, and as a result, the 

axis of rotation will be AB. 

 One has the same integrals as before, but their calculation is simpler. 

Let  be the z-coordinates of the point G (with the z-axis being parallel 

to L and L ) and let  be the angle between the plane of L and L  and a 

fixed plane in the solid that passes through AB. Finally, let i be the angle 

between the direction of gravity and Oz. That will give: 

 
2 2 2 2 cos const.,

const.

M M K M g i  



  + = +


 =
 

 Thus: 

L 

A 

B 

G 
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21
2

,

( cos ) .

t

g i t t

  

  

= +


 = + +
 

 

 The center of gravity describes a line like a massive point that falls vertically, while the 

acceleration of gravity is the projection of g onto that line. All of the points of AB have the same 

motion, and the solid is animated with a uniform rotational motion around AB. One can also utilize 

the theorem of the motion of the center of gravity relative to Oz. That is what we shall do by 

treating the preceding problem without supposing that the solid is one of revolution as a last 

application. 

  

 V. – A massive solid body has two points A and B that slide without friction along two fixed 

parallel lines. Find the motion of the system. 

 

 The center of gravity G of the solid will no longer be only the line, in general. Let P be the foot 

of the perpendicular to AB that is based at G. The point P will describe a line that is parallel to L, 

L  and which we will take to be the z-axis. The axis Ox is a perpendicular to L and L  that is 

drawn in the plane of those lines. 

 The two parameters by which we define the position of the system are , which is the z-

coordinate of G, and , which is the angle between the half-plane ABG and the half-plane ABz, 

which is regarded as positive from left to right around the 

direction AB. 

 When the theorem of the motion of the center of gravity 

is applied to Oz, that will give us a first integral of the 

motion: Indeed, since the reaction at A and B are normal to 

Land L , we will have: 
2

2

d
M

dt


 = M   

 

(upon letting , ,  are the components along Ox, Oy, Oz of the weight that is exerted on a unit 

of mass). Therefore: 

 = 
21

2
t t  + + . 

 

 The vis viva theorem will give us another integral into which ,   , , and    will enter. If 

one replaces  and    as functions of t then one will find that t has been eliminated and that  will 

depend upon t by a quadrature. However, one can account for that fact without calculation in the 

following manner: 

 Let G  denote the projection of G onto the plane xOy, and let g denote its projection onto Oz. 

The acceleration of g is the component () of the weight. In what follows, one refers the motion of 

the solid to axes gx1, gy1, gz1 that are parallel to the first ones. The points A and B will again 

describe fixed lines L and L  under that relative motion. The relative external forces that are 

applied to the solid are the reactions at A and B (which are normal to the relative velocities at A 

y 

y1 

L z 

x 

B 

x1 

O 

A 
P 

G 
 

g 
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and B) and the weight, diminished by its component along Oz, which is the guiding force Fe here. 

If 1, 1, 1 are the new coordinates of G and T1 is the relative semi-vis viva of the solid then one 

will have: 

T1 = M ( 1 +  1) + const., 

 

  1 = − l cos  sin  , 

  1 = − l sin  , 

  1 =  , 

 

in which  denotes the angle between AB and gx1 . 

 As for T1, it is a function of only  and   . 

 In order to calculate it, observe that the elementary displacement of the system decomposes 

into a translation whose velocity is the velocity of A and a rotation around A that leaves B fixes 

and is effected around AB with the angular velocity d / dt. The segment of rotation remains the 

same under all analogous decompositions, so one will see that the motion of the solid around G is 

a rotational motion (with an angular velocity d / dt) around the direction GB  that is parallel to 

AB, as well as fixed in space and the solid. Let 2MK  be the moment of inertia of the solid with 

respect to GB . From the foregoing: 

 

2T1 = 
2 2 2 2 2 2 2(cos sin sin )M l M K     + + . 

 

 One then deduces that: 
2 2[ cos ]A  +  = B cos  + C sin  + h , 

in which one sets: 

A = 

2 2 2

2 2

sin

cos

l K

l





+
, B = 

2 2

2

cosl





−
,  C = 

2 2

2

cosl





−
. 

 

 That equation will permit one to discuss the motion with respect to the axes g x1 y1 z1 , which 

is a periodic motion. If one sets tan  / 2 = u then one will see that t depends upon u by way of a 

hyperelliptic integral of degree eight. 

 What is the motion of the line AB with respect to the former axes? The z-coordinate of the 

point P is equal to  + l cos  cos , so one concludes that the velocities of each point of the line 

are equal to 0 cos sin ( / )g t l d dt   + − , i.e., to  t + W, where W denotes a function of t that is 

periodic and oscillates between constants W0 and W1 . 

 When l = 0,    will be constant, so the rotation of the solid around AB will be uniform. 

 When  and  are zero (i.e., when gravity is parallel to the lines L, L ), one will have: 

 

h dt  = 2cosd A +  , 
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in which t depends upon  by an elliptic integral.  varies constantly in the same sense, and the 

period of relative motion with respect to g will be: 

 

T = 
2

2

0

1
cosd A

h



 
−

+  . 

 

 When h = 0,  = 0 , and each point of the solid will move like a massive point. 

 

____________



LECTURE 4 

 

GENERAL EQUATIONS OF MOTION OF SYSTEMS. 

SYSTEMS WITH AND WITHOUT FRICTION. 
____________ 

 

 

 We shall indicate the methods of Lagrange that will permit us to determine the motion of a 

material system with the least-possible number of equations and with the least-possible number of 

givens. 

 Let a system be composed of n points Mi (xi, yi, zi) (i = 1, 2, …, n). Its points are supposed to 

be subject to some constraints that are expressed by some relations between their coordinates and 

time: 

(1)    

1 1 1 1

1 1 1

( , , , , , , , , , , , ) 0,

...................................................................

( , , , , , , , , , , , ) 0.

i i i n n n

p i i i n n n

f x y z x y z x y z t

f x y z x y z x y z t

 =


 =

 

 

 Those p equations (p being necessarily less than the number n of coordinates) are supposed to 

be distinct, i.e., one can express p of the quantities xi, yi, zi as functions of the other 3n – p and 

time, so those other 3n – p will be independent then. For example, we assume that we can infer the 

last p quantities zn, yn, xn , zn−1,  … as functions of the first 3n – p and time from equations (1). That 

amounts to assuming that the functional determinant of f1, f2, …, fp, when considered as functions 

of the p variables zn, yn, xn , zn−1,  …, is not zero. 

 The position of the system depends upon 3n – p = k independent parameters in this case. 

 One says that the constraints depend upon time when equations (1) depend upon t: I intend that 

to mean that t enters into f1, f2, …, fp, and that the systems of relations (1) that correspond to two 

arbitrary values of t are not equivalent. More precisely, the derivatives 1f

t




, 2f

t




, …, 

pf

t




 are not 

zero for any t for an arbitrary system of values xi, yi, zi that satisfies equations (1), in which one 

gives the value t0 to t. In the contrary case where t does not appear in (1), it will suffice to replace 

it with a constant. 

 One says a virtual displacement of a system at the instant t to means any displacement that is 

compatible with the constraints at the instant t. We shall consider only infinitely-small virtual 

displacements. 

 If xi, yi, zi are the variations of the coordinates xi, yi, zi under such a displacement then those 

relations will satisfy the relations: 
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(2)     

1 1 1

1 1 1

0,

.......................................................

0,

f f f
x y z

x y z

f f f
x y z

x y z

  

  

    
+ + =  

   




    + + = 
    





 

 

in which (x, y, z) represent an arbitrary point of the system, and the sums  are extended over the 

n points of the system. 

 Conversely, any set of values xi, yi, zi that satisfies equations (2) will define an elementary 

virtual displacement. One can infer the last p of the  from the first k, because the determinant of 

the linear equations to be solved is nothing but the functional determinant of the f1, f2, …, fp, when 

they are regarded as functions of the p variables zn, yn, xn , zn−1, etc. 

 The real displacement of the system will coincide with one of the virtual displacements for 

only particular positions of the system and particular values of time (5). 

 Let (X, Y, Z) be the force that is exerted on the point (x, y, z). 

 The virtual work done by the forces (X, Y, Z) is the work done by those forces under a virtual 

displacement. It is represented by the expression: 

 

( )X x Y y Z z  + +  , 

 

in which the sum  extends over the n points of the system, and the quantities x, y, z are 

constrained to verify the relations (2). 

 We just saw that we can choose (3n – p) of the variations  arbitrarily, and that the other p will 

then be determined. 

 One must show that knowing the total work done by the forces that are exerted on each point 

of the system under an arbitrary virtual displacement will suffice to determine the motion of the 

system. 

 First of all, it is clear that if one knows the total force that is exerted on each point of the system 

then one will have for 3n equations such as: 

 

 
 (5) Indeed, the real displacement of the system will satisfy the p relations: 

 

1

n

i i i

i i i i

f f f f
t dx dy dz

t x y z


=

    
+ + + 

    
  = 0 (f = f1, f2, …, or fp). 

 

 That displacement will be a virtual displacement only if 1
f

t




, 2

f

t




, …, p

f

t




  are zero: The constraints will be 

independent of time when those conditions are realized at an arbitrary instant for an arbitrary position of the system. 
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()      

2

2

2

2

2

2

,

,

d x
m X

dt

d y
m Y

dt

d z
m Z

dt


=




=



=


 

for determining the motion of the system. 

 There are too many of those equations. They must be compatible with equations (1). In order 

for the motion of the system to be determined, it will suffice to preserve k of them (k = 3n – p) that 

include only known quantities, along with x, y, z. 

 Having said that, consider the sum: 

 

2 2 2

2 2 2

d x d y d z
m X x m Y y m Z z

dt dt dt
  

       
− + − + −      

       
 . 

 

 That sum will be zero for any x, y, z, and in particular, for any virtual displacement. 

 If one uses the relations (2) to express the last p variations  as functions of the first ones, 

which are independent, then one will immediately explain the fact that knowing the right-hand 

side of the preceding equality will imply k distinct relations between the x, y, z, x , y , z , x , 

,y z  , and the given quantities. 

 In order to construct those relations conveniently, we shall first establish a lemma. 

 

 Lemma: 

 

 When a system of forces is such that the total virtual work done by the forces is zero for any 

virtual displacement, if (X, Y, Z) is the force that is exerted on the point (x, y, z) then one will have: 

 

(4)     

1 2
1 2

1 2
1 2

1 2
1 2

,

,

,

p

p

p

p

p

p

ff f
X

x x x

ff f
Y

y y y

ff f
Z

z z z

  

  

  

  
= + + +

  


 
= + + +

  
  

= + + +
  

  

 

in which 1, 2, …, p are coefficients that are the same for all points of the system. 

 

 The hypothesis is that one has: 

 

(5)      ( )X x Y y Z z  + +  = 0 
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for any x, y, z that verify (2). 

 It is initially clear that if X, Y, Z have the form (4) then the relation (5) will be satisfied. It will 

suffice to make that substitution in order for the left-hand side of (5) to become the sum of the left-

hand sides of equations (2), multiplied by 1, 2, …, p, respectively. Consequently, the relations 

(4) will be sufficient conditions for the forces to enjoys the indicated property. 

 They are also necessary conditions. Indeed, if the forces X, Y, Z verify the relation (5) for any 

virtual displacement then the following relation will be verified for the same displacements: 

 

(5)  1 1 1
1 1 1

p p p

p p p

f f ff f f
X x Y y Z z

x x y y z z
        

           
− − − + − − − + − − −      

           
  = 0 , 

 

in which the coefficients 1, 2, …, p are arbitrary. Let us determine the manner by which the 

coefficients of the last p variations  will be annulled. We will get: 

 

1
1

p

n p

n n

ff
Z

z z
 


− − −

 
 = 0 , 

……………………………… 

 

 Those p equations, which are linear in 1, 2, …, p, define those quantities. Their determinant 

will be non-zero, as we have pointed out before. 

  Having thus chosen the , only the 3n – p independent variations  will still remain in the 

relation (5). 

 As a result, that relation will imply the conditions: 

 

1
1 1

1 1

p

p

ff
X

x x
 


− − −

 
 = 0 , 

1
1 1

1 1

p

p

ff
Y

y y
 


− − −

 
 = 0 , 

………………………………, 

which are 3n – p in number. 

 If one combines that system of equations with the previous one then one will see that if X, Y, 

Z verify the relation (5) for any virtual displacement then there will exist a system of values 1, 2, 

…, p such that X, Y, Z will be identical to the expressions (4). 

 The lemma is then true. 

 

 From that, if one considers two systems of forces (X, Y, Z), ( , , )X Y Z   , where (X, Y, Z) and

( , , )X Y Z   are both applied to the point (x, y, z), and if those two systems of forces do the same 

virtual work for any virtual displacement then one can conclude that: 
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  X = 
1

1

p

p

ff
X

x x
 


 + + +

 
, 

  Y = 1
1

p

p

ff
Y

y y
 


 + + +

 
, 

  Z = 
1

1

p

p

ff
Z

z z
 


 + + +

 
. 

 

 Indeed, it will suffice to observe that the system of forces X X − , Y Y − , Z Z −  does zero 

virtual work and then apply the preceding lemma. 

 Having said that, suppose that one knows a form for the virtual work done that is by the forces 

on the system for an arbitrary virtual displacement, namely: 

 

( )A x B y C z  + +  . 

 

 If one regards A, B, C as the projections of a segment whose origin is x, y, z, or rather as the 

components of a force that is exerted on the point x, y, z, then the virtual work done by that force 

will be: 

A x + B y + C z . 

 

 By hypothesis, the sum of the analogous works will coincide with the virtual work that is done 

by the total force X, Y, Z that is applied to each point of the system, so one will have: 

 

( )A x B y C z  + +  = ( )X x Y y Z z  + +  

 

for any virtual displacement of the system. 

 It will result from the last remark that: 

 

(6)    

2

1 2
1 2 2

2

1 2
1 2 2

2

1 2
1 2 2

,

,

.

p

p

p

p

p

p

ff f d x
X A m

x x x dt

ff f d y
Y B m

y y y dt

ff f d z
Z C m

z z z dt

  

  

  

  
= + + + + =

  


 
= + + + + =

  
  

= + + + + =
  

 

 

 It is clear, moreover, that knowing the quantities A, B, C as functions of the points of the 

system, their velocities, and time will suffice to determine the motion of the system. 

 Indeed, when the 3n equations (6) are combined with the p equations (1), that will permit us to 

calculate the (3n + p) unknowns xi, yi, zi, 1, …, p as functions of t. More precisely, if we 

differentiate equations (1) twice with respect to t then we will define the p relations: 
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(1)  
1 1

2

n n

i i i i i i

i ii i i i i i

f f f f f f f
x y z x y z

x y z t x y z= =

          
     + + + + + +    

          
   = 0  (f = f1, f2, …, or fp) . 

 

 The index 2 defines a symbolic square. The (3n + p) equations (1) and (6) are linear with 

respect to the (3n + p) unknowns ix , iy , iz  , 1, …, p, and the determinant  of those unknowns 

is not zero. Otherwise, the (3n + p) homogeneous equations in xi, yi, zi, and 1, …, p : 

 

(2)     
1

n

i i i

i i i i

f f f
x y z

x y z
  

=

   
+ + 

   
  = 0   (f = f1, f2, …, or fp) 

and 

(6)  xi = 1
1

p

p

i i

ff

x x
 


+ +

 
, yi = 1

1

p

p

i i

ff

y y
 


+ +

 
, zi = 1

1

p

p

i i

ff

z z
 


+ +

 
 

 

would admit solutions for which all of the unknowns are non-zero. Now, multiply equations (6) 

by xi, yi, zi, respectively, and take the sum. From (2), that will give: 

 
2 2 2( ) ( ) ( )i i ix y z  + +  = 0 , 

 

i.e., that all of the  must be zero, and as a result, all of the . From (6), the determinant  cannot 

be identically zero then, and equations (6) and (1) will define the x , y , z  , and the  as 

functions of the x, y, z, x , y , z , and t. In order to get the , it will suffice to substitute the values 

of x , y , z   that are inferred from (6) in (1). Having thus calculated the , the first k of equations 

(6), in which one replaces the p quantities zn, yn, … as functions of the other k and t, will define 

the x, y, z as functions of t and 2k initial constants. 

 

 All of the foregoing results from the definition of virtual work. We shall now introduce some 

dynamical definitions that will show the importance of the results that were obtained. 

 We decompose the absolute force (F) that is exerted on the point M of the system at the instant 

t into two other ones, namely, the active force and the reactive force or the reaction. 

 Let V be a small, closed volume that surrounds the point M. Consider all of the material 

elements E interior to V that do not permit one to displace the point M arbitrarily in V at the instant 

t. We can regard the absolute force (F) that is exerted on M at the time t as the geometric sum of 

the force () that is exerted on M by the elements E and the force ( )  that is exerted by the 

elements external to M other than E. If V tends to zero then we assume that () and ( )  tend to 

limits (R) and ( )F , respectively. (R) is the absolute reaction or reactive force, and ( )F  is the 

absolute active force. 

(F) = ( )F  + (R) . 
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( )F  is (in more concise language) the absolute force that is exerted on the point M if one can 

make the point M free at the instant t, while changing nothing in the other conditions. 

 Now suppose that one studies the motion of the point with respect to arbitrary axes Oxyz. Let 

rF   be the relative active force, let Ra be the absolute reactive force, and let Fr be the relative total 

forces that are exerted on M at the instant t. From a property that was established before, one will 

have: 

m (r) = (Fr) = ( )rF   + (Ra) . 

 

 The relative force that the point M is subject to at time t is the geometric sum of the relative 

active force and the absolute reaction. 

 Those definitions have led us to subdivide systems into systems with friction and systems 

without friction. 

 We know that (Fr) will be determined at the instant t for a given system when the external 

conditions are given when one knows the positions of the points of the system and their velocities 

at the instant t. 

 As a result, Ra will also be determined as a function of the x, y, z, x , y , z  at the instant t. 

 When one considers a system in reality, one can study its motion with respect to the axes Oxyz 

under the influence of a given medium. One then measures the force (Fr) that is exerted on each 

point. One can make each point free and measure rF   under the same conditions. The absolute 

reaction will be (Fr) − ( )rF  . 

 Two cases present themselves. 

 On the one hand, when one calculates the virtual work done by all of the reactions, that virtual 

work will be zero for an arbitrary virtual displacement, no matter what the instant t considered, the 

position of the system, its velocities, and the force rF  . In that case, one says that the system is 

frictionless. 

 On the other hand, that virtual work will always be zero under those conditions. One then says 

that the system has friction in it. 

 In reality, the work done by the reactions is never rigorously zero. However, it is frequently 

negligible, and one consider the case of frictionless systems to be the limit of a large number of 

cases that one encounters experimentally. 

 We now consider the case in which the system is frictionless. 

 Let Rx, Ry, Rz be the projections of the reaction R that is exerted on the point x, y, z. From a 

previously-established lemma, one has: 

 

1
1

1
1

1
1

,

,

,

p

x p

p

y p

p

z p

ff
R

x x

ff
R

y y

ff
R

z z

 

 

 

 
= + +

 



= + +

 
 

= + +
 
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the coefficients 1, …, p have the same values for the various points x, y, z. 

 When the system is frictionless, knowing the active forces will suffice to determine the motion 

of the system. That also results from a theorem that was just proved. Indeed, the virtual work done 

by active forces is the same as the work done by total forces that are exerted at each point of the 

system. 

 If X  , Y  , Z   is the active force that is exerted on the point (x, y, z) then one will have: 

 

(7)  

2

1
1 2

2

1
1 2

2

1
1 2

,

,

.

p

p

p

p

p

p

ff d x
X X m

x x dt

ff d y
Y Y m

y y dt

ff d z
Z Z m

z z dt

 

 

 

 
= + + + =

 



= + + + =

 
 

= + + + =
 

 

 

 By definition, when there is no friction, the virtual work: 

 

( )X x Y y Z z  + +  

will be equal to: 

( )X x Y y Z z    + +  

 

for any virtual displacement, which is the virtual work done by the active forces that are exerted 

on the various points of the system. 

 One often refers to the active forces as the given forces. They are the ones that are provided 

directly by experiment and knowing them will suffice to determine the motion of the system when 

there is no friction. 

 When one knows the active forces, one will know not only the motion of the system, but also 

the reactions that are exerted on each point of the system, because one can calculate the coefficients 

1, …, p . 

 On the subject of those coefficients, we repeat that equations (7) allow us to express them as 

functions of the positions of the points of the system, their velocities, and time, i.e., as functions 

of the xi, yi, zi, ix , iy , iz , and t (and also iX  , iY  , iZ  ). 

 

 

 Example. – Let us study the motion of a point that is constrained to move on a fixed or moving 

surface: 

f (x, y, z, t) = 0 . 

 

 Let X, Y, Z be the force relative to the axes Oxyz that is exerted on M : 
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2

2

d x
m

dt
 = X , 

……………. 

 

 It is not necessary to know X, Y, Z, but only the value of the quantity: 

 

X x + Y y + Z z . 

 

 If X  , Y  , Z   are such that one has: 

 

X x Y y Z z    + +  = X x + Y y + Z z 

 

for any virtual displacement then it will result from the theorems that were proved that: 

 

X = 
f

X
x




 +


, 

………………. 

 

 If Rx, Ry, Rz denote the projections of the reactions onto the axes, i.e., of the absolute force that 

is exerted on the point by the surface element that contacts it, then in order for there to be no 

friction, it is necessary and sufficient that the virtual work done by R should be zero or that: 

 

Rx = 
f

x





, 

Ry = 
f

y





, 

Rz = 
f

z





. 

 

 R must be normal to the surface, which is geometrically obvious, since a virtual displacement 

is an arbitrary displacement that is tangent to the surface. There will be friction if R is oblique to 

the surface. 

 When there is no friction, knowing the active force relative to Oxyz, namely, X  , Y  , Z  , will 

suffice to determine the motion of the system. One will have: 

 
2

2

d x
m

dt
 = 

f
X

x



 +


, 

2

2

d y
m

dt
 = 

f
Y

y



 +


, 

2

2

d z
m

dt
 = 

f
Z

z



 +


, 
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f (x, y, z, t) = 0 . 

 

 Those four equations will give x, y, z, and  as functions of t. 

  In order to have  as a function of x, y, z, x , y , z , t, it will suffice to differentiate the equation 

of the surface twice with respect to time t : 

 

f f f f
x y z

x y z t

   
  + + +

   
 = 0 , 

 
2 2 2 2

2 2

f f f f f
x x x y z

x x x y x z t

     
    + + + + + 

       
 = 0 , 

 

and to replace x , y , z   in the last equation with their values that one infers from the equations 

of motion. 

 

_____________



LECTURE 5 

 

SYSTEMS WITH FRICTION 
___________ 

 

 

 Let M or (x, y, z) be a point in the system, let (X, Y, Z) be the force that is exerted on it at the 

instant t, let ( , , )X Y Z    be the active force, and let (Rx, Ry, Rz) be the reaction. 

 The equations of motion of that will then be: 

 

(1)  

2

2

2

2

2

2

,

,

.

x

y

z

d x
m X X R

dt

d y
m Y Y R

dt

d y
m Z Z R

dt


= = +




= = +



= = +


 

 

 By definition, the system is frictionless if: 

 

x y zR x R y R z  + +  = 0 

 

no matter what virtual displacement is given to the system, or the instant t considered, or the 

positions of the points of the system and their velocities. 

 In that case, one sees that knowing the active forces will suffice to determine the motion of the 

system. The 3n equations: 

(2)  

2

1
12

,

....................................................,

p

p

ffd x
m X

dt x x
 

 
= + + +

 



 

 

combined with the p constraint equations: 

 

(3)  f1 = 0 , f2 = 0 , …, fp = 0 , 

 

will define the motion of the system and permit one to express 1, 2, …, p as functions of the 

quantities x, y, z, x , y , z , and time. 

 Instead of appealing to equations (2) and (3), one can express p of the quantities xi, yi, zi as 

functions of the other (3n – p) = k, and upon expressing the latter as functions of k independent 

parameters q1, q2, …, qk, one will put the xi, yi, zi into the form: 
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(4)  

1 2

1 2

1 2

( , , , , ) ,

( , , , , ) ,

( , , , , ).

i i k

i i k

i i k

x q q q t

y q q q t

z q q q t







=


=
 =

 

 

 Conversely, observe that when xi, yi, zi can be expressed in that way, the system will be subject 

to (3n – k) = p distinct constraints, because if one infers q1, q2, …, qk as functions of the k quantities 

xi, yi, zi  k of the equations (4) then upon substituting those values in the other p equations (4), one 

will get p distinct relations between the xi, yi, zi . That nonetheless supposes that k of the equations 

can be solved with respect to q1, q2, …, qk . In other words, one assumes that if one suppresses any 

p rows in the matrix: 

1 1 1

1 2

1 1 1

1 2

1 2

k

k

p p p

k

x x x

q q q

y y y

q q q

z z z

q q q

  

  

  

  

  

  

 

 

then at least one of the determinants D thus-obtained will not be zero identically. In the contrary 

case, there will exist (p + 1) distinct relations between the xi, yi, zi that can be expressed as functions 

of a lower number of parameters. 

 When the , ,  do not include t, the constraints will depend upon time unless the relations 

that is obtained by eliminating q1, q2, …, qk from any (k + 1) of equations (4) are not independent 

of t: That exceptional case presents itself when all of the determinants obtained by suppressing any 

(p – 1) rows in the matrix: 

1 1 1

1

1

k

p p p

k

x x x

q q t

z z z

q q t

  

  

  

  

 

 

are zero. It will then suffice to set t = t0 in the , , . 

 For example, if the system reduces to a material point whose coordinates are expressed as: 

 

  x =  (q1, q2, t) , 

  y =  (q1, q2, t) , 

  z =  (q1, q2, t) 
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then the point will be subject to a constraint, i.e., it moves on a surface , unless the three 

determinants: 

 

1 2 2 1

x y x y

q q q q

    
− 

    
 ,  

2 1 1 2

y z y z

q q q q

    
− 

    
 ,  

1 2 2 1

z x z x

q q q q

    
− 

    
 

 

are not identically zero: In that case, the point M will move on a curve. The surface  varies with 

time if the determinant: 

1 2

1 2

1 2

x x x

q q t

y y y

q q t

z z z

q q t

  

  

  

  

  

  

 

is non-zero. 

 When one puts the xi, yi, zi into that form, an arbitrary virtual displacement xi, yi, zi can be 

represented in the form: 

  xi = 1 2

1 2

i i i
k

k

q q q
q q q

  
  

  
+ + +

  
 , 

  yi = 1 2

1 2

i i i
k

k

q q q
q q q

  
  

  
+ + +

  
 , 

  zi = 1 2

1 2

i i i
k

k

q q q
q q q

  
  

  
+ + +

  
 , 

 

in which the q are arbitrary. Observe that the xi, yi, zi cannot all be zero at once unless all of 

the q are zero. In other words, all of the determinants D will be zero. 

 There is no friction if the k sums: 

 

x y z

j j j

x y z
R R R

q q q

   
+ +     

  , 

 

which extend over all points of the system, are zero for (j = 1, 2, …, or k). 

 When one expresses the xi, yi, zi in equations (2) and their derivatives as functions of the qj and 

their derivatives, one will define 3n equations that determine the 

2

2

jd q

dt
 and the  as functions of 

the qj, 
jdq

dt
, and t. 

 In order to eliminate the , it suffices to form the sum: 
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j j j

x y z
X Y Z

q q q

   
+ +     

  = 
j j j

x y z
X Y Z

q q q

   
  + +     

  . 

One will then get: 

 

2 2 2

2 2 2

j j j

d x x d y y d z z
m

dt q dt q dt q

   
+ +     

  = 
j j j

x y z
X Y Z

q q q

   
  + +     

  , 

 

i.e. (upon setting j = 1, 2, …, k), k relations between t, the k functions q, and their first and second 

derivatives that determine the motion of the system. 

 In the next lecture, we will see the form that one can give to those equations. Before we do 

that, we shall indicate the modifications that the existence of friction will imply in the preceding 

considerations. 

 

 

 Definition of the force of friction. – Suppose that the point M of the system has a well-defined 

position and velocity at the instant t, and let R or (Rx, Ry, Rz) be the reaction that is exerted on M at 

the time t. 

 For an arbitrary virtual displacement, the total work done by the reactions  is equal to: 

 

( )x y zR x R y R z  + +  . 

 

 There exists an infinitude of systems of forces R or ( , , )x y zR R R    that are applied to each point 

M and are such that the work done: 

 

  = ( )x y zR x R y R z    + +  

 

is equal to  for any virtual displacement of the system. From what was proved, in order for that 

to be true, it is necessary that one should have: 

 

xR  = 1
1

p

x p

ff
R

x x
 


+ + +

 
, 

yR  = 1
1

p

y p

ff
R

y y
 


+ + +

 
, 

zR  = 1
1

p

z p

ff
R

z z
 


+ + +

 
, 

 

or what amounts to the same thing (for j = 1, 2, …, or k): 
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( ) ( ) ( )x x y y z z

j j j

x y z
R R R R R R

q q q

  
  − + − + −

  
  = 0 , 

 

in which the sum extends over all points of the system. 

 

 Among the systems ( )R , there exists one and only one of them [namely, the system of forces 

(f)] such that the segments (f) t will define a virtual displacement: In other words, such that the 

displacement x = x t, y = y t, z = z t is a virtual displacement. 

 

 In order to prove that, observe that if   is zero for any virtual displacement then there will 

exist no other system (f) than the one for which all of the segments () are zero. Indeed, the work 

done   by the forces () under the virtual displacement () t is equal to 2t  , which is a 

quantity that cannot be zero unless all of the  are zero. 

 Having said that, the 3n quantities x, y, z must satisfy the k equations () and the p equations 

(): 

()  
x y z

j j j

x y z

q q q
  

  
+ +

  
  = 

x y z

j j j

x y z
R R R

q q q

  
+ +

  
 , 

 

()  x y z

f f f

x y z
  

  
+ +

  
  = 0 

 

(in which one sets f equal to f1, f2, …, fp, in succession). Those 3n equations are linear with respect 

to the 3n unknowns x, y, z , and the determinant of the unknowns is non-zero: In other words, 

there will exist systems of forces () that are not all zero and whose virtual work is zero, which is 

impossible. There will then exist one and only one system of quantities x, y, z . 

 

 Theorem: 

 

 Among all of the systems ( )R , the system () is the one for which the sum 2R  is minimal: 

 Indeed, one has: 

  xR  = 1 2
1 2

p

x p

ff f

x x x
   

 
+ + + +

  
 = x x +  , 

  
yR  = 1 2

1 2

p

y p

ff f

y y y
   

 
+ + + +

  
 = 

y y +  , 

  zR  = 1 2
1 2

p

z p

ff f

z z z
   

 
+ + + +

  
 = z z +  . 
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 If one calculates 2R  = 2 2 2( )x y zR R R  + + , while taking into account the fact that the sums 

j j j

x y z

f f f

x y z
  

   
+ + 

   
  are zero, then that will give (upon setting 2  = 2 2 2

x y z    + + ): 

2R  = 2 2 +  . 

 

 That sum is minimal when 2  is zero, i.e., when the   are zero, which proves the 

proposition. 

 

 By definition, let an arbitrary system of forces (R) be applied to various points of the system. 

One can decompose each force (R) into two forces () and ( )  that satisfy the following 

conditions: 

 

 1. The virtual work done by the forces ( )  is zero for any virtual displacement. 

 

 2. The segments () t define a virtual displacement. 

 

 That decomposition is possible in only one way. Among all of the systems of forces ( )R  

whose virtual work is equal to that of the forces (R), the system of forces () is the one for which 

the sum 2R  is minimal. 

 If the force R is applied to each point and M is the reaction that is exerted on that point then 

one gives the name of force of constraint to the force ( )  and the name of force of friction to the 

force (). 

 The components of the force of friction () have the form: 

 

x = 1 2

1 2

k

k

x x x

q q q
  

  
+ + +

  
, 

 

y = 1 2

1 2

k

k

y y y

q q q
  

  
+ + +

  
, 

 

z = 1 2

1 2

k

k

z z z

q q q
  

  
+ + +

  
, 

 

which amounts to saying that they satisfy the p equalities: 

 

 x y z

f f f

x y z
  

  
+ +

  
  = 0  (in which f = f1, f2, …, or fp). 
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 The components of the force of constraint ( )  have the form: 

 

x  = 1 2
1 2

p

p

ff f

x x x
  

 
+ + +

  
, 

y  = 1 2
1 2

p

p

ff f

y y y
  

 
+ + +

  
, 

z  = 1 2
1 2

p

p

ff f

z z z
  

 
+ + +

  
, 

 

which amounts to saying that they satisfy the k equalities: 

 

 
x y z

j j j

x y z

q q q
  

   
  + +     

  = 0 . 

 

 Finally, it is appropriate to remark that one has: 

 
2R  = 2 2 +  . 

 

 When the virtual work done by the forces R is zero, all of the forces  will be zero. The reaction 

will coincide with the force of constraint. 

 Suppose, for example, that the system is composed of only one point that is subjected to a 

constraint: 

f (x, y, z, t) = 0 . 

 

 One can decompose the reaction (R) into a force ( )  that does zero virtual work, i.e., one that 

is normal to the surface f = 0, and a force () such that () t is a virtual displacement, i.e., one 

that is tangent to the surface f = 0. In this particular case, the force of friction and the force of 

constraint are then the component of the reaction that is tangent to the surface and the one that is 

normal to it, respectively. 

 It is important to make the following remark: Suppose that at the instant t, each point M of the 

system has a given position and velocity and is subject to a given active force ( , , )X Y Z   . The 

force of constraint ( )  that is exerted on M will be the same whether the system does or does not 

include friction. 

 Indeed, write the equations: 

 

 
2

2

d x
m

dt
 = x xX   + +  = 1 2

1 1 2

1

p

k p

k

ff fx x
X

q q x x x
    

  
 + + + + + + +

    
, 

() 
2

2

d y
m

dt
 = 

y yY   + +  = 1 2
1 1 2

1

p

k p

k

ff fy y
Y

q q x y y
    

  
 + + + + + + +

    
, 
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2

2

d z
m

dt
 = z zZ   + +  = 1 2

1 1 2

1

p

k p

k

ff fz z
Z

q q z z z
    

  
 + + + + + + +

    
. 

 

 In order to eliminate the m from those equations, it is sufficient to multiply the first one by 

/f x  , the second one by /f y  , the third one by /f z  , and add them, and then take the sum 

over all points of the system. Upon setting f equal to f1, f2, …, fp, one will get p linear equations 

( )   that determine the , because they are the p distinct combinations of equations () that are 

compatible and determinate, since they define one and only one system of quantities ,  . 

 On the other hand, one has: 

 
2

2

d x

dt
 = 1 2

1 2

k

k

x x x
q q q A

q q q

  
  + + + +

  
, 

2

2

d y

dt
 = 1 2

1 2

k

k

y y y
q q q B

q q q

  
  + + + +

  
, 

2

2

d z

dt
 = 1 2

1 2

k

k

z z z
q q q C

q q q

  
  + + + +

  
. 

 

 A, B, C depend upon only q1, q2, …, qk, 1q , 2q , …, kq , and t. 

 It follows from this that equations ( )   determine the  as functions of the quantities X  , ,Y   

Z  , q1, q2, …, qk, 1q , 2q , …, kq , and t (6). The force of constraint ( )  that is exerted on each 

point M will then be determinate at the instant t when one knows the position and the velocities of 

the points of the system and the active forces that are exerted on them (and that will be true when 

one makes no hypothesis about friction in the system). 

 One can further say then that the force of constraint is the reaction ( )  that is exerted on the 

point M at the instant t if the system is frictionless (when every point of the system has the same 

position and velocity and is subject to the same active force at time t). 

 The force of friction is the geometric difference () = (R) − ( ) . The force thus-defined enjoys 

the following properties: The segments () t represent a virtual displacement of the system. 

Among all systems of forces ( )R  that do the same virtual work as the forces (R), the system of 

forces () is the one for which the sum 2R  is minimal. 

 From that, the force of friction is the geometric quantity m [() – (1)], where () represents 

the acceleration of the point M at the time t, and (1) is the acceleration that the point would have 

if the system were placed with the same conditions at the instant t, but with no friction. 

 Indeed, one has: 

   m () = ( ) ( )F R + , 

 
 (6) One can also say that the equations ( )   are no different from the equations that are obtained by differentiating 

the equations of constraint twice with respect to t and replacing x , y , z  with their values that one infers from (): 

In the last lecture, we saw that those equations in  are determinate. 
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  m (1) = ( ) ( )F  + . 

 Hence: 

m [() – (1)] = ( ) ( )R −  = () . 

 

 Furthermore, the preceding theorems are deduced from the following kinematical proposition: 

 

 Let two systems  and  of n points (x, y, z) and (, , ) be subject to the same constraints 

and placed under the same initial conditions at the instant t0 . If () represents the geometric 

difference between the accelerations () and () of the points (x, y, z) and (, , ) at time t0 then 

the segments () t will define the virtual displacements of the systems  and . 

 

 In order to see that, express x, y, z and , ,  as functions of the same parameters q1, q2, …, 

qk. Under the motion of the system , q1, q2, …, qk will be certain functions q1 (t), q2 (t), …, qk (t). 

Under the motion of the system , they will be other ones 1( )q t , 2 ( )q t , …, ( )kq t . At time t0, one 

has: q1 = 1q , …, qk = kq  and 1q  = 1q , …, kq  = kq . If one calculates 
2 2

2 2

d x d

dt dt


−  then one will find 

(while taking those conditions into account) that at time t0, one will have: 

 

x = 
2 2

2 2

d x d

dt dt


−  = 1 1 2 2

1 2

( ) ( ) ( )k k

k

x x x
q q q q q q

q q q

  
     − + − + + −

  
 , 

y = 
2 2

2 2

d y d

dt dt


−  = 1 1 2 2

1 2

( ) ( ) ( )k k

k

y y y
q q q q q q

q q q

  
     − + − + + −

  
 , 

z = 
2 2

2 2

d z d

dt dt


−  = 1 1 2 2

1 2

( ) ( ) ( )k k

k

z z z
q q q q q q

q q q

  
     − + − + + −

  
 , 

 

which shows us that the displacement x = x t, y = y t, z = z t is a virtual displacement. 

 

 Having established that theorem, we shall call the geometric quantity m [() – (1)] that was 

introduced above the force of friction that is exerted on M and we will call the reaction ( )  that 

is exerted on M if the system were frictionless the force of constraint. We will have: 

 

(R) = 1( ) ( ) + . 

 

The virtual work done by the forces ( )  is zero, and the segments (1) t represent a virtual 

displacement. Such a decomposition of the (R) is possible in only one way, since the (1) are no 

different from the (). That new definition of friction will coincide with the first one then. 

 If one supposes, for example, that the system is composed of just one point that moves on a 

surface then the preceding remarks can be stated as follows: The component of the reaction that is 

normal to the surface will be the same when the point is placed under the same given initial 
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conditions and is subjected to a given active force (say, gravity) whether or not the surface is 

frictionless. If two points that move on the same surface have the same position and velocity at the 

instant t0 then the geometric difference between their acceleration at time t0 will be tangent to the 

surface. 

 It is now easy for us to prove the theorem that Gauss stated regarding the deviation of a system 

that he felt was at the root of the dynamics of systems. 

 Suppose that each point M (of mass m) of the system has a given position (x0, y0, z0) and 

velocity 0 0 0( , , )x y z    at the instant t, and let it be subjected to a given active force ( , , )X Y Z   . If 

the point M is free then after a time dt, it will occupy a certain position (x1, y1, z1): 

 

  x1 = 2

0 0
2

X
x x dt dt

m


+ + + , 

  y1 = 2

0 0
2

Y
y y dt dt

m


+ + + , 

  z1 = 2

0 0
2

Z
z z dt dt

m


+ + +  

 

 In reality, after a time dt, it will occupy the position (x, y, z): 

 

  x = 2

0 0
2

X
x x dt dt

m
+ + + , 

  y = 2

0 0
2

Y
y y dt dt

m
+ + + , 

  z = 2

0 0
2

Z
z z dt dt

m
+ + +  

 

 Let d denote the distance between the two points (x, y, z) and (x1, y1, z1), and consider the sum 

E = 2 2m d , which is extended over all points of the system. Upon neglecting the higher-order 

infinitesimals, one will have: 

 

E = 2 2m d  = 
4

2 2 2( ) ( ) ( )
4

dt
X X Y Y Z Z  − + − + −  = 

4
2

4

dt
R . 

 

 That is the quantity E that Gauss called the deviation of a system at time t0 over the interval of 

time dt. Gauss proved that this deviation is a minimum at each instant when the system is 

frictionless. 

 In order to see that, it will suffice to write the equality: 

 

E = 
4

2

4

dt
R  = ( )

4
2 2

4

dt
 +  . 
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 The quantities ( )  are the reactions that would be exerted on the points M if there were no 

friction. The sum 2 2 +   will be a minimum if all the quantities () are zero, i.e., if there 

is no friction. In order for the deviation E to constantly be a minimum, it is therefore necessary 

and sufficient that the system should be frictionless. 

 

 

 Study of the motion of a system with friction. – When there is no friction, knowing the active 

forces will suffice for one to be able to determine the motion of the system. However, when there 

is friction, that will no longer be true. In addition to the active forces, one must know the forces of 

friction, or at least the virtual work that they do. 

 Experience shows us that for a given system whose points have given positions and velocities 

at the instant t, the forces of friction will be determined when we know the forces of constraint. In 

other words, for a given system, the x, y, z are functions of the x , 
y , z  whose coefficients 

depend upon q1, q2, …, qk, 1q , 2q , …, kq , t. 

 In particular, if the constraints are independent of time and the elements of the system remain 

identical to themselves then one can empirically determine the pressures (which are independent 

of t) of the x, y, z as functions of the x , 
y , z  by placing the system under variable initial 

conditions and subjecting it to some simple active forces (such as gravity). 

 In other words, one sets: 

 

x = 1

1

k

k

x x

q q
 

 
+ +

 
,  x  = 1

1

p

p

ff

x x
 


+ +

 
, 

y = 1

1

k

k

y y

q q
 

 
+ +

 
, and 

y  = 1
1

p

p

ff

y y
 


+ +

 
, 

z = 1

1

k

k

z z

q q
 

 
+ +

 
,  z  = 1

1

p

p

ff

z z
 


+ +

 
, 

 

in which the 1, 2, …, k are functions of 1, 2, …, p and q1, q2, …, qk, 1q , 2q , …, kq  that one 

calculates empirically for the given system. The 1, 2, …, p are expressed with the aid of the 

active forces X  , Y  , Z  , which amounts to saying that the forces of friction at the instant t will 

be determined when the system is placed under given initial conditions and subjected to given 

active forces (no matter what the medium might be that exerts those active forces). 

 More generally, when one studies the motion of a system with friction, one supposes that the 

expressions for the 1, 2, …, k as functions of the , the q (and t if the constraints depend upon 

time) are known (in addition to the active forces X  , Y  , Z  ). One can then write the equations of 

motion of a point of the system: 
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()   

2

1
1 12

1

2

1
1 12

1

2

1
1 12

1

,

,

.

p

k p

k

p

k p

k

p

k p

k

ffd x x x
m X X

dt q q x x

ffd y y y
m Y Y

dt q q y y

ffd z z z
m Z Z

dt q q z z

   

   

   

  
= = + + + + + +

   
  

= = + + + + + +
   

  
 = = + + + + + +

   

 

 

 We can replace that system of 3n equations with the following ones: 

 

 1. The p equations ( )   that are obtained by multiplying the three equations () by if

x




, if

y




, 

if

z




, resp., adding them, and taking the sum over all points of the system. (As we saw, those p 

equations determine the 1, 2, …, p as functions of the q , of t, and of X  , Y  , Z  .) 

 

 2. The k equations ( )   that are obtained by multiplying the three equations () by 
j

x

q




, ,

j

y

q





j

z

q




 , respectively, adding them, and taking the sum over all points of the system. 

 

 Those equations have the form: 

 

( )   
2 2 2

2 2 2

j j j

d x x d y y d z z
m

dt q dt q dt q

   
+ +     

   

= 
x y z

j j j j j j

x y z x y z
X Y Z

q q q q q q
  

        
  + + + + +              

   . 

 

 The sum 
x y z

j j j

x y z

q q q
  

   
+ +     

  has the form: 

 

1

1 1 1

k

j j j k j k j k j

x x y y z z x x y y z z

q q q q q q q q q q q q
 

              
+ + + + + +                    

   . 

 

 The 1, 2, …, k are given functions of , the q, the q , and t. One replaces the  (in the ) 

with their values that are inferred from equations ( )  . The k equations ( )  , whose right-hand 

sides are then known functions of the q, the q , and t, will then determine the motion of the system. 
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 Let us apply those generalities to the study of the motion of a point M on a fixed surface. Let: 

 

z = F (x, y) 

 

be the equation of the surface. (Here q1 = x, q2 = y). We have: 

 

  
2

2

d x
m

dt
 = 1

F
X

x
 


 + −


, 

  
2

2

d y
m

dt
 = 2

F
Y

y
 


 + −


, 

  
2

2

d z
m

dt
 = 1 2

F F
Z

x y
  

 
 + + +

 
. 

 

 Experience shows that when the point M is placed at a well-defined point on the surface, the 

force of friction () will point in the opposite sense to the velocity of M and will be reasonably 

independent of that velocity and proportional to the normal component of the reaction, which is 

the force of constraint ( )  in this particular case. We will then have: 

 

 = f  . 

 

The coefficient of friction depends upon only the position of M on the surface (which is x, y, here). 

It will be constant if the surface is equally rough everywhere. 

 When the velocity of M is zero, () will be directly opposite to the component TF   of the active 

force that is tangential to the surface. However, there are two cases to distinguish in regard to its 

absolute value according to whether one has TF   > f   or TF   < f  . 

 In the first case,  will be equal to f  . In the second case,  will be equal to TF  , and the 

acceleration of M will be zero. 

 From that, since   is equal to: 

22

2 1
F F

x y


    
+ + +   

     

, 

 

1 and 2, which are equal to x and y, resp., can be expressed as follows: 

 

1 = 

22

2

2 2

| | 1
F F

f x
x y

F F
x y x y

x y


   

 + +   
    

  
   + + + 

  

, 
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2 = 

22

2

2 2

| | 1
F F

f y
x y

F F
x y x y

x y


   

 + +   
    

  
   + + + 

  

. 

 is given by the equality: 

 

2 2 2
2 2

2 2
2

F F F
m x x y y

x x y y

   
   + + 

    
 = − 

22

1
F F F F

X Y Z
x y x y


      

  − + + + +   
       

 , 

 

and if one replaces  with that value in the expressions for 1 and 2 then the motion of the point 

M will be determined by the equations: 

 

  
F

m x z
x

 
 +  

 = 

2

1 21
F F F F

X Z
x x y x

 
     

 + + + +  
      

, 

  
F

m y z
y

 
 + 

 
 = 

2

1 2 1
F F F F

Y Z
y x y y

 
     

 + + + +  
      

, 

 

which will have second order in x and y if one replaces z with F (x, y) in them. 

 In the particular case of a point that moves on a fixed surface, the general theorems that we 

proved can be easily obtained by a geometric argument. For example, in order to establish that the 

normal reaction to the surface will be the same whether there is or is not friction, it will suffice to 

prove that if two points move on that same surface and have the same position and velocity at the 

instant t then the geometric difference of their accelerations will be tangent to the surface. 

 Now let MA be the trajectory of the first moving point, while MA1 

is that of second. Their respective accelerations  and 1 are situated 

in the osculating planes to MA and MA1 at M. Those accelerations 

have projections onto the tangent and principal normal to the 

trajectory that are 
2dv v

dt R
 , in the one case, and 

2

1 1

dv v

dt R

 
 

 
, in the 

other. The initial velocity is the same for the two points. The 

trajectories are then tangent at M, and it will be proved that the 

geometric difference () − (1) is not the normal component to the surface if one proves that the 

quantities 
2 /v R  and 2

1/v R , which are carried by the principal normals MC and MC1 , 

respectively, towards the centers of curvature, have the same projection MN onto the normal to the 

surface at M. From Meusnier’s theorem, if one draws planes perpendicular to MC and MC1 through 

the centers of curvatures C and C1, respectively, then they will intersect the normal to the surface 

at the same point N, i.e., C and C1 lie on a circle of diameter MN. If one transforms the figure by 

S 

M 

T 

N 

 

 A1 
A 

C 
C1 
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reciprocal vectors, the pole being M and the modulus being 2v , then the inverse of the circle will 

be a line perpendicular to MN at P. Therefore, the magnitudes 2 /v R , 2

1/v R , which are carried by 

MC and MC1, have the same projection MP onto the normal to the surface, which proves the 

proposition. 

 

 One can further appeal to the intrinsic equations of motion of a point on a surface. Those 

equations are written: 

2

2

,

sin ,

cos .

t t t

p p p

R R R

dv
m F F R

dt

v
m F F R

R

v
m F F R

R






= = +




= = +



= = +


 

 
Ft is the component of the total force in the direction Mt of the tangent to the trajectory in the sense of motion 

Fp   in the direction Mp of the tangent to the surface perpendicular to Mt 

FR   along the normal MR to the surface 

  the angle between the binormal to the trajectory and the normal to the surface 

 

 If r denotes the radius of curvature MC  of the section of the surface by the normal plane at M 

to the surface at M that passes through Mt then one will have: 

 

Rn = 
2

R

mv
F

r
−  

  

(on choosing the direction of Mm to be MC). That shows that the force of constraint   = (Rn) is 

determined when one knows the position of the point, its velocity, and the force F  . 

 Furthermore, those intrinsic equations are suitable for the study of motion of M in any case. 

Whether there is or is not friction, Rp will be zero, because the component () of the reaction that 

is tangential to the surface points in the opposite direction to Mt, i.e., it is normal to Mp. 

 On the other hand,  is equal to f  , i.e., to: 

 
2

n

mv
f F

r
−  . 

 

The motion is then determined by the equations: 

 

dv
m

dt
 = 

2

t R

mv
F f F

r
 − −  , 
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2

sin
v

m
R

  = RF  . 

 

R is the radius of the trajectory, and r is the radius of curvature of the section that is normal to the 

surface and tangent to the trajectory. 

 For example, if F   is zero then one will have: 

 

sin  = 0 , 

 

i.e., the trajectory will again be a geodesic of the surface. However, the point will traverse that 

trajectory with a velocity that is constantly diminished by the force of friction. 

 That is a general fact that is shown by experience: When the constraints do not depend upon 

time, the forces of friction will always reduce the vis viva of the system. In other words, the work 

done by the forces of friction is essentially negative. 

 

___________ 

 



LECTURE 6 

 

LAGRANGE’S EQUATIONS 
__________ 

 

D’ALEMBERT’S EQUATION 

___ 

 

 Everything that was said before can be reduced to this: When the sum: 

 

2 2 2

2 2 2

d x d y d z
m X x m Y y m Z z

dt dt dt
  

      
− + − + −      

      
  

 

extends over all points in the system, it will be identically zero. [x, y, z denote an arbitrary 

virtual displacement, and (X, Y, Z) is the force that is exerted upon the point (x, y, z).] 

 The equality that expresses that fact will persist when there is no friction if one replaces (X, Y, 

Z) by the active force ( , , )X Y Z    and when there is friction when one replaces (X, Y, Z) with the 

geometric sum of the active force and the force of friction that is exerted upon the point (x, y, z). 

 When one lets ( , , )X Y Z   denote the active force or the geometric sum of the active force and 

the force of friction, according to the situation, that equality will lead to equations of the form: 

 
2

2

d x
m

dt
= 1

1

p

p

ff
X

x x
 


 + + +

 
, 

 

and those equations, when combined with the constraint equations: 

 

f1 = 0 , …, fp = 0 ,         (1) 

 

will suffice to determine the motion of the system, and as a result, the constraint forces. 

 The equation: 

2 2 2

2 2 2

d x d y d z
m X x m Y y m Z z

dt dt dt
  

      
− + − + −      

      
  = 0 ,  (2) 

 

which one can regard as the most general equation of mechanics, is often called the d’Alembert 

equation. 

 

 

 Principle of virtual velocities. – In particular, in order for a system whose constraints do not 

depend upon time, and in which there is no friction, to be in equilibrium, it is necessary and 

sufficient that the virtual work done by the active forces should be zero. 
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 1. The condition is necessary: Indeed, since there is no friction, the work done by the 

constraint force will be zero, and the total force (X, Y, Z) that is exerted on (x, y, z) will be: 

 

X = 1
1

p

p

ff
X

x x
 


 + + +

 
, 

………………………………, 

 

in which ( , , )X Y Z    is the active force at that point. If there is equilibrium then X = Y = Z = 0. 

Therefore, for any virtual displacement: 

 

( )X x Y y Z z  + +  = 0 . 

 

As a result, for any virtual displacement, one will also have: 

 

( )X x Y y Z z    + +  = 0 . 

Q.E.D. 

 

 2. The condition is sufficient: Indeed, if it is fulfilled, and if the points of the system occupy 

positions x0, y0, z0 at the instant t with zero velocities then the equations of motion of the system 

will be verified when one sets x  x0, y  y0, z  z0 . Furthermore, there exists only one system of 

integrals of the equations of motion that satisfy the initial conditions x (t0) = x0, y (t0) = y0, z (t0) = 

z0 , 0( )x t  = 0, 0( )y t  = 0, 0( )z t  = 0, unless, however, the values t0, x0, y0, z0 = 0, 0x  = 0, 0y  = 0, 

0z  = 0 define a system of singular values of the equations of motion. Ignoring that exceptional 

case, the system will then necessarily remain in equilibrium. 

 One can prove that proposition by appealing to the following necessary and sufficient condition 

for a material point to remain in equilibrium if one releases it with no initial velocity at the point 

x0, y0, z0, which is that one must have: 

 

X (x0, y0, z0, 0, 0, 0) = 0 , Y (x0, y0, z0, 0, 0, 0) = 0 , Z (x0, y0, z0, 0, 0, 0) = 0 . 

 

 That condition is rigorously sufficient only if X, Y, Z are regular functions in the neighborhood 

of the values of x0, y0, z0, 0x  = 0, 0y  = 0, 0z  = 0. 

 Once that lemma has been assumed, suppose that the virtual work done by the active forces 

X  , Y  , Z   that are exerted upon the different points of a frictionless system is zero. The force X, 

Y, Z that is exerted at each point of the system is necessarily zero. Indeed, let (F) be the force that 

is exerted on the point M. That point must put into motion with the same sense of (F) and the work 

that is done by (F) under the real displacement ds of the point M is equal to F ds. The sum  F ds 

is essentially positive. The virtual work that is done by the forces (F), and as a result, the virtual 

work that is done by active forces, is therefore non-zero for the virtual displacement s = ds, at 

least when all of the forces (F) are not zero. Q.E.D. 
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 The equilibrium positions of a frictionless system that is subjected to given active forces are 

then determined by the equality: 

( )X x Y y Z z    + +  = 0 , 

 

which is equivalent to the 3n equations: 

 

1 2
1 2

p

p

ff f
X

x x x
  

 
 + + + +

  
 = 0 , 

1 2
1 2

p

p

ff f
Y

y y y
  

 
 + + + +

  
 = 0 , 

1 2
1 2

p

p

ff f
Z

z z z
  

 
 + + + +

  
 = 0 . 

 

In the most general case, those 3n equations, when combined with the p equations of constraint, 

will determine isolated values for x, y, z, and . In certain cases, those equations will be 

incompatible or indeterminate. 

 If one expresses the x, y, z as functions of k parameters q1, q2, …, qk then that will give: 

 

( )X x Y y Z z    + +   

 

= 1

1 1 1

k

k k k

x y z x y z
q X Y Z q X Y Z

q q q q q q
 

       
     + + + + + +  
        

   

 

  = Q1 q1 + Q2 q2 + … + Qk qk . 

 

 The necessary and sufficient conditions are: 

 

Q1 (q1, q2, …, qk, 0, …, 0) = 0, Q2 (q1, q2, …, qk, 0, …, 0) = 0, …, Qk (q1, q2, …, qk, 0, …, 0) = 0, 

 

which are then k equations between the q1, q2, …, qk. 

 When Q1, Q2, …, Qk are the partial derivatives of the same function U (q1, q2, …, qk), those 

equalities will be the necessary conditions for the function to U to have a minimum. In the next 

lecture, we shall see that if U is truly a minimum then the equilibrium will be stable, and we will 

study the small oscillations of the system about its equilibrium position. 

 In particular, in order for a massive system to be in equilibrium, it is necessary and sufficient 

that the vertical ordinate  of its center of gravity must satisfy the conditions: 

 

1q




 = 0 , …, 

kq




 = 0 . 
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In other words, its center of gravity is the highest or lowest one possible. 

 When there is friction, but the external material elements that exert reactions on the system are 

fixed, the conditions of equilibrium that were found before will again be sufficient, but they will 

no longer be necessary. 

 Indeed, under the hypothesis that we just assumed, experience will show us that the work done 

by the forces of friction will always be negative. If the stated equilibrium conditions are fulfilled, 

while the system is supposed to be frictionless, then the vis viva will be zero at an arbitrary instant. 

Friction can only reduce that vis viva, so it will again be zero a fortiori if the system is frictionless, 

i.e., the system will remain in equilibrium. 

 However, those conditions are no longer necessary. For example, let M be a point that moves 

without friction on a fixed material surface. Any point P where the active force ( )F  that is exerted 

upon M is normal to the surface will be an equilibrium position. However, consider the points P   

of the surface such that one has: tF   < nf F  , in which f is the coefficient of friction,  while tF   and

nF   are the components of ( )F  that are tangent and normal to the surface, resp. Those points P   

form a continuous zone around P whose points are all equilibrium positions. 

 Nonetheless, we shall not belabor the principle of virtual velocities here but move on to a study 

of the motions of systems. 

_____________ 

 

 

LAGRANGE’S EQUATIONS 

 

 We saw in the fifth lecture that one can define the motion of a system with the aid of k 

independent equations of the constraint forces that can be written: 

 

(1)   
2 2 2

2 2 2

j j j

d x x d y y d z z
m

dt q dt q dt q

   
+ +     

  = 
j j j

x y z
X Y Z

q q q

   
  + +     

  = Qj . 

 

The sums must be extended over all points of the system; as for j, it is equal to 1, 2, …, k. 

 If one replaces the x, y, z and their derivatives as functions of the q, the q , and the q , then 

the preceding equations will be linear with respect to the q , and will be soluble for those variables. 

Indeed, those k equations form a system of k distinct combinations of the 3n equations () of the 

fifth lecture (see page 56), which are distinct. However, that is a point that we shall soon prove 

directly. 

 The quantities X  , Y  , Z   are the projections of the active force that is exerted upon M when 

there is no friction or the geometric sum of the active force and the force of friction when there is 

friction. 

 Lagrange gave a form to the left-hand sides of equations (1) that permits one to easily calculate 

them. He was led to that result by the following induction: The right-hand side Qj of an equation 

(1) is the coefficient of the qj in the expression for the virtual work that relates to the displacement 

qj. If one makes the arbitrary change of rectangular axes (x, y, z), while keeping the same 
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parameters q, then the Qj will not change, and the left-hand side of equation (1) must also remain 

invariant then. Now, the vis viva of a system is a function of t, the q, and the q  that remains 

invariant under a change of rectangular axes. Based upon that idea, Lagrange expressed the left-

hand side of equations (1) in terms of only the vis viva and its derivatives. 

 Set: 

T = 21
2

mv  = 2 2 21
2

( )m x y z  + + , 

 

and on the other hand, write the left-hand side of equation (1) as: 

 

j j j j j j

d x y z d x d y d z
m x y z m x y z

dt q q q dt q dt q dt q

        
     + + − + +              

   

or 

1 2

d
P P

dt
 −  . 

 Recall that one has: 

x  = 
dx

dt
 = 1 2

1 2

k

k

x x x x
q q q

q q q t

   
  + + + +

   
 , 

y  = 
dy

dt
 = 1 2

1 2

k

k

y y y y
q q q

q q q t

   
  + + + +

   
 , 

z  = 
dz

dt
 = 1 2

1 2

k

k

z z z z
q q q

q q q t

   
  + + + +

   
 , 

and as a result: 

j

x

q




 = 

j

x

q




, 

j

y

q




 = 

j

y

q




, 

j

z

q




 = 

j

z

q




, 

and therefore: 

P1  
j j j

x y z
m x y z

q q q

     
  + +     

   
j

T

q




. 

 

In order to calculate P2, we remark that 
j

d x

dt q




 does not differ from 

j

dx

q dt




. Indeed: 

 

j

d x

dt q




 = 

2 2 2 2

1 2

1 2

k

j j j k j

x x x x
q q q

q q q q q q q t

   
  + + + +

       
, 

and 

j

x
q





 = 

2 2 2 2

1 2

1 2

k

j j k j j

x x x x
q q q

q q q q q q t q

   
  + + + +

       
. 

Similarly: 
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j

d y

dt q




  

j

y

q




, 

j

d z

dt q




  

j

z

q




. 

One can then write: 

P2  
j j j

x y z
m x y z

q q q

     
  + +     

   
j

T

q




. 

 

 The Lagrange equations will then become: 

 

1 1

d T T

dt q q

  
− 

  
 = Q1 , 

…………………….. 

j j

d T T

dt q q

  
−    

 = Qj , 

……………………… 

k k

d T T

dt q q

  
− 

  
 = Qk . 

 

 Before employing those equations in the study of the motion of a system, we shall extend the 

preceding considerations to continuous systems. 

 

 

CONTINUOUS SYSTEMS WHOSE POSITION DEPENDS UPON  

ONLY A FINITE NUMBER OF PARAMETERS 

_________ 

 

 Up to now, we have addressed only those systems that are composed of a finite number of 

material points. Now suppose that the system in question includes continuous bodies, but whose 

positions depend upon only a finite number of parameters (for example, homogeneous solids that 

are subject to certain constraints). 

 The coordinates x, y, z of a well-defined material element of the system are expressed as 

functions of the k parameters q1, q2, …, qk, and t : 

 

(1)  

1 2

1 2

1 2

( , , , , ) ,

( , , , , ) ,

( , , , , ).

k

k

k

x q q q t

y q q q t

z q q q t







=


=
 =

 

 

Each continuous body in the system corresponds to a system of functions , ,  that depends 

upon the constants a1, b1, …, which will be 3, 2, or 1 in number according to whether the body is 

a volume, an area, or a length, resp. The coordinates x, y, z of the points of a free (three-
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dimensional) solid can then be expressed as functions of six parameters (and three constants, for 

example, the coordinates a, b, c of the point considered when referred to the principal axes of 

inertia Ga, Gb, Gc, where G denotes the center of gravity of the solid body). 

 If the system includes isolated material points, in addition, then each material point will 

correspond to a well-defined system of functions , , . 

 We suppose that the k parameters q are independent, i.e., that for any instant t, one can give 

arbitrary values to q1, q2, …, qk and 1dq

dt
, 2dq

dt
, …, kdq

dt
. That again signifies that one can give the 

positions x, y, z and the velocities x , y , z  of all elements of the system arbitrarily, provided 

that those initial conditions are compatible with equations (1). 

 There exists a relationship between (k + 1) coordinates x, y, z of the well-defined points of the 

system in which t might appear that one obtains by eliminating q1, q2, …, qk, from the 

corresponding (k + 1) equations (1). We assume that such a relation does not exist between k 

arbitrary coordinates x, y, z: In other words, we can choose the parameters q (for arbitrary t) in 

such a fashion as to give arbitrary values to the k coordinates x, y, z of certain points of the system. 

If we write the k corresponding equations (1) then those k can be solved for the q1, q2, …, qk . 

(Under the opposite hypothesis, one can leave one or more of the parameters q constant, and the 

coordinates of the points of the system will be expressed as functions of a lower number of 

parameters.) We shall then say that the position of the system depends upon k distinct parameters. 

Analytically, that amounts to assuming that when the equations in q1, q2, …, qk : 

 

  1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 = 0 , 

  1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 = 0 , 

  1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 = 0 

 

are written for all points of the system, they will admit no other solutions than q1 = 0, q2 = 0, …, 

qk = 0 (for arbitrary q1, q2, …, qk, and t). If things were otherwise then the functional determinant 

of any k of equations (1) (in terms of q1, q2, …, qk) would be identically zero. 

 The constraints will be independent of time when the , ,  do not include t. If t enters into 

, ,  then the constraints will depend upon time, at least when all of the relations that are 

obtained by eliminating the parameters q from the (k + 1) equations (1) are not independent of t. 

 In order for those exceptional conditions to be fulfilled, it is necessary and sufficient that the 

equations in q1, q2, …, qk , t : 
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(a)    

1 2

1 2

1 2

1 2

1 2

1 2

0,

0,

0,

k

k

k

k

k

k

q q q t
q q q t

q q q t
q q q t

q q q t
q q q t

   
   

   
   

   
   

    
+ + + + =

   
    

+ + + + =
   

    
+ + + + =

   

 

 

when written for all points of the system, must admit other solutions besides q1 = 0, q2 = 0, …, 

qk = 0, t = 0 (for arbitrary q1, q2, …, qk, and t). In that particular case, it is legitimate to let t have 

a constant value in , , . 

 A virtual displacement of the system is an elementary displacement that is compatible with the 

constraints at time t. When the k parameters q are distinct and independent, the most general virtual 

displacement will depend upon k arbitrary variations q1, q2, …, qk . For each material element 

x, y, z of the system, one will have: 

 

x = 1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 , 

y = 1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 , 

z = 1 2

1 2

k

k

q q q
q q q

  
  

  
+ + +

  
 . 

 

 The x, y, z cannot all be zero simultaneously (for arbitrary q1, q2, …, qk, and t) unless all of 

the q are. 

 The real displacement of the system satisfies the equations: 

 

dx = 1 2

1 2

k

k

dq dq dq dt
q q q t

      
+ + + +

   
 , 

dy = 1 2

1 2

k

k

dq dq dq dt
q q q t

      
+ + + +

   
 , 

dz = 1 2

1 2

k

k

dq dq dq dt
q q q t

      
+ + + +

   
 . 

 

 When the constraints are independent of time, the real displacement will be one of the virtual 

displacements. That will no longer be true when the constraints depend upon time. Indeed, one 

must have: 
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( )   

1 1 2 2

1 2

1 1 2 2

1 2

1 1 2 2

1 2

( ) ( ) ( ) 0,

( ) ( ) ( ) 0,

( ) ( ) ( ) 0

k k

k

k k

k

k k

k

dq q dq q dq q dt
q q q t

dq q dq q dq q dt
q q q t

dq q dq q dq q dt
q q q t

   
  

   
  

   
  

    
− + − + + − + =

   
    

− + − + + − + =
   

    
− + − + + − + =

   

 

 

for convenient values of q1, q2, …, qk . However, when the constraints depend upon time, 

equations ( )  will admit no other solutions than (dq1 – q1) = 0, …, (dqk – qk) = 0, dt = 0 (except 

for some exceptional values of q1, q2, …, qk, and t). 

 Having established those preliminaries, decompose the system into a finite number n of very-

small-dimensional elements. If we regard those n elements as material points then we can apply 

Lagrange’s equations to the system, and the approximate equations thus-obtained will tend to 

rigorous equalities when we make the number of elements increase indefinitely while the 

dimensions of each element tend to zero. In order to account for what those equalities will become, 

we consider a continuous body  of the system at the instant t, and an element dv of  that 

surrounds the point M or (x, y, z) and an element of volume, area, or arc according to whether  is 

a volume, surface, or line, resp. To fix ideas, suppose that  is three-dimensional. Let m be the 

mass of the element dv. If we make the dimensions of dv tend to zero then m / dv will tend to a 

limit , that we can call the density of the body at the point M, which will be a well-defined function 

of x, y, z at the instant t for a given position of the system  = f (t, q1, q2, …, qk, x, y, z). There can 

still be exceptions for isolated points M   of finite mass, or for points M   that form surfaces  or 

lines . At those points M  , m will have the same order as the element of  or  that is intercepted 

by the material mass dv. By definition, we assume that the system in question is composed of 

isolated points and continuous lines, surfaces, or volumes that have a linear, superficial, or 

volumetric density, respectively, at each point. 

 We now regard each of the n elements dv as a material point: The force (F), relative Oxyz, that 

is exerted on the material point M or dv at an instant will be equal to m (), in which  is the 

acceleration of the point M with respect to Oxyz. One then has: 

 

F = ( + )  dv , 

 

in which  tends to zero with the dimensions of dv. As a result: 

 

(F) = [(f) + ()] dv, 

 

in which (f) is a well-defined geometric quantity, whose length can be zero, and  tends to 0 with 

dv. If one decomposes (F) into an active force ( )F  and an absolute reaction (R) then, in general 

( )F  and (R) will have the same order as dv: 
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( )F  = [( ) ( )]f dv + , (R) = [( ) ( )]r dv+ . 

 

The quantities (f) dv, ( )f dv , (r) dv are the total, active, and reactive forces, resp., that are exerted 

upon the element dv at the instant t. Nevertheless, there can be exceptions at certain isolated points 

M   (where F   and R are finite) and points M   that define volumes, surfaces , or lines  

according to the body . At those points M  , ( )F , and (R) will have the same order as the element 

of  or  that is intercepted by the material mass considered dv in question. In any case, the sum 

( )F  + (R) has the form [(f) + ()] dv . 

 For example, suppose that  is a massive homogeneous sphere of density  = 1 that is 

submerged in a liquid, and on which a traction is exerted by an elastic string L that is fixed to a 

point P of the sphere. Suppose, moreover, that the sphere is in equilibrium 

under those conditions. The active force ( )F  that is exerted on each 

element dv is equal and directly opposite to the reaction (R). For any 

element dv that is interior to the sphere, ( )F  will be equal to (g) dv. For 

an element dv that is situated on the surface  of the sphere, ( )F  will be 

equal to (g) dv + (p) d, where (p) d denotes the pressure of the liquid 

on the element d. For an element dv in contact with the string PL, ( )F  

will be equal to (g) dv + () d + (l) d, where (l) d denotes the tension in the string, which has 

the same order as the arc element d of the string. Finally, at the point P, ( )F  will tend to T (viz., 

the tension in the string) when the dv tend to zero. 

 Similarly, when the continuous body is a surface , the active force and the reaction will, in 

general, have the same order as the two-dimensional material element d. 

 Those remarks apply to the decomposition of the reaction into a force of constraint and a force 

of friction. 

 Having said that, one writes the Lagrange equations that define the motion of the system that 

is composed of the n material points dv. One will have: 

 

(1)      
j j

d T T

dt q q

  
−    

 = Qi , 

with 

T = 2 2 21
2

( )m x y z  + +  . 

 

If one expresses x , y , z  as functions of t, the q, and the q , then that will give: 

 

2T = 1 2 2 2 2 2

1 1 2 2 1 1 2 1 1 1 1 12 2k k

k k k k k k kA q A q A q A q q A q q B q B q C− −
        + + + + + + + + + + , 

with: 

1

1A  = 

2 2 2

1 1 1

x y z
m

q q q

        
 + +     

         
  , 2

2A  = etc., 

P 

O L 

T 
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  2

1A  = 
1 2 1 2 1 2

x x y y z z
m

q q q q q q

      
+ + 

      
  , 3

1A  = etc., 

  B1 = 
1 1 1

x x y y z z
m

q t q t q t

      
+ + 

      
  , B2 = etc., 

  C = 

2 2 2
x y z

m
t t t

        
+ +      

         
  . 

 

 In each of the coefficients A, B, C, say 1

1A , consider the part 1

1a  that relates to one of the 

continuous bodies  of the system and suppose, to fix ideas, that  is a volume. For each element 

dv (affixed to x, y, z) of , one will have: 

 

m [ (t, q1, …, qk, x, y, z) + ] dv , 

 

and furthermore, one can write: 

 
2 2 2

1 1 1

x y z

q q q

       
+ +     

       
 = 1

1 1 2( , , , , , , , )kt q q q x y z  

 

since the derivatives 
1

x

q




, 

1

y

q




, 

1

z

q




 are well-defined at each point x, y, z for given values of t, q1, 

q2, …, qk. As a result, when the sum 1

1a  = 1

1( ) dv  +  is extended over the elements dv of  

and one makes the dimensions of those elements tend to zero, that sum will tend to the integral: 

 
1

1 1 2( , , , , , , , )kt q q q x y z dx dy dz  

 

which extends over the entire volume . 

 The function T that figures in the defining equations will then be a polynomial of degree two 

with respect to q  whose coefficients, which are functions of t and the q, are calculated with the 

aid of triple, double, or single integrals that extend over the continuous bodies of the system that 

define volumes, surfaces, or lines, resp. 

 One similarly sees that the right-hand sides of the defining equations are calculated with the 

aid of triple, double, or single integrals that extend over volumes v, surfaces , and lines , resp., 

such that the active force that is exerted on each material element will have the same order as the 

volume dv of v, the area d of , or the arc-length d of , resp., that is intercepted by the element. 

 Before developing those generalities, we shall indicate a certain number of systems that are 

frictionless. 

_____________ 
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ENUMERATING SOME SYSTEMS WITHOUT FRICTION 

_____________ 

 

 We shall first point out the free solid body: The reactions that are exerted on the points of that 

system are internal forces that are pair-wise equal and directly opposite, from the principle of 

action and reaction. The work done t by those forces under a virtual displacement of the system 

will be equal to: 

jk jkf x , 

 

in which fjk denotes the force that is exerted on the points Mj, Mk, and rjk is the distance between 

those points. Under a virtual displacement, all of the rjk will remain constant; t will then be zero. 

 In order for that proposition to persist, it is likewise sufficient to assume that the reactions of 

the solid for a system of segments that are geometrically to a single segment of length zero. Indeed, 

under an arbitrary virtual displacement of the solid, the variations x, y, z of x, y, z of an arbitrary 

point will have the form: 

x = (a + q z – r y) t , 

y = (b + r x – p z) t , 

z = (c + p y – q x) t , 

 

and the virtual work  done by the reactions (Rx, Ry, Rz) will be equal to: 

 

( ) ( ) ( )x y z z y x z xa R b R c R p y R z R q z R x R r x Ry y R+ + + − + − + −      . 

 

In order for  to be zero for any virtual displacement, it is necessary and sufficient that the 

coefficients of a, b, c, p, q, r should be zero: That is precisely the stated condition. 

 What we just said will remain true if the dimensions of the solid vary with time, in other words, 

if the distances between the different points of the system are constrained to remain invariable at 

each instant t, but are given functions of t. 

 Before enumerating some other constraints, we shall make the following remark: Let M be a 

point of the system and let (R) be the reaction that is exerted upon it. If one decomposes the material 

elements E that exert that reaction into two parts E   and E   then (R) will be the geometric sum 

of the reactions that are exerted by ( )E  and ( )E . For example, let a solid sphere be constrained 

to remain in contact with a plane. The reaction that is exerted at the instant t on the element M of 

the sphere in contact with the plane is the geometric sum of two reactions that are exerted on M, 

on the one hand, by the elements of the sphere, and on the other hand, by the elements of the plane 

that are close to M. 

 With that, consider a system whose elements are subject to several distinct constraints. If the 

partial reactions that are due to each constraint do zero work for any displacement that is 

compatible with the constraint then that work itself will be zero a fortiori for any virtual 

displacement of the system, and the system will be frictionless. 
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 Having said that, let a solid body S be subject to slide on a given surface  (i.e., to remain in 

contact with ). The reactions that are exerted on S are the internal reactions ( )R  of the solid and 

the reaction ( )R  that is exerted by  on S. In order for the work done ( )R  under an arbitrary 

displacement for which the solid remains tangent to  to be zero, it is necessary and sufficient (as 

one will soon see) that ( )R  should be normal to S and . That is the usual definition of the absence 

of friction in this particular case. One sees that it coincides with the general definition. If that 

condition is verified, we will say that the surface  is perfectly polished. Moreover, there can be 

contact between S and  at several points, and even along a line. 

 More generally, a solid body S that is not free will define a frictionless system  if it is 

constrained by one of the following conditions: 

 

 1. It slides on a perfectly-polished surface . 

 2. It slides on a perfectly-polished curve . 

 3. It has a fixed point P. 

 4. It rolls on an arbitrary surface  or a curve  (7). 

 

 That will again be true when the surface  or the curve  or the point P varies with t according 

to a given law (as well as the distance to the points of the body S). One can likewise suppose that 

S reduces to a planar area or a line or a point. 

 Now let a system be composed of two solids S and . That system will be frictionless if S and 

 roll on each other or if their perfectly-polished surfaces are constrained to slide on each other or 

if the bodies are articulated around a common point, etc. The two solids can reduce to a planar 

area, a curve, or a point, respectively. 

 Finally, if two elements of the system are coupled by a flexible, inextensible string that is also 

massless that passes through either a given point or a curve  or a perfectly-polished surface  with 

a given position then the reactions that result from that constraint will do zero virtual work. The 

same thing will be true if the surface , the curve , or the point P are a surface, a curve, or a point 

of the system, resp. The same thing will again be true if one of the extremities or both extremities 

of the string are attached to points with a given position and not to elements of the system. 

 If one now considers a system that is composed of a finite number of material points and solid 

bodies whose constraints result from a combination of the preceding constraints then it will be 

clear that this system is frictionless. 

 In the case where there is friction, one must borrow from experience to get the data necessary 

to calculate the forces of friction. For example, let a solid body S slide on a fixed surface  : There 

will be friction if the reaction ( )R  is not normal to the common tangent plane to S and . One 

easily verifies that the force of friction, as we have defined it in general, will coincide with the 

component tR  of ( )R  that is tangent to S and  in this particular case. Experiments show that  

tR  points in the opposite direction to the material point of S in contact with  and which is 

 
 (7) One intends that to mean that S remains in contact with  or () and that the arcs traversed by the point of 

contact between the surface of S and  (or ) are equal. 
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proportional to the normal component of R : tR  = nf R  (for a given position of the system). 

Knowing the coefficient of friction f will suffice for one to be able to determine the motion of S 

when S is subjected to given active forces. 

 In all of what follows, we will suppose that the systems under study are systems without 

friction. 

 

_____________ 

 



LECTURE 7 

 

LAGRANGE EQUATIONS (CONT.) 
 

________ 

 

 

 The motion of a system without friction whose position depends upon k parameters q1, q2, …, 

qk is determined by the k Lagrange equations: 

 

(1) 
j j

d T T

dt q q

 
−

 
 = Qj , 

 

in which T represents the semi-vis viva of the system, and Qj represents the coefficient of qj in 

the expression for the virtual work done by the active forces. The motion of the system is thus 

found to be determined with the aid of the least-possible number of equations and givens. 

 Equations (1) include the second derivatives of the parameters q linearly. We shall prove 

directly that those equations can be solved for the q . In order to do that, we recall the form of T: 

 

T = 2 2 21
2

( )m x y z  + + , 

 

which is a polynomial of second degree in the q . One can set: 

 

T = T2 + T1 + T0 , 

 

in which T2 and T1 are two homogeneous polynomials of degree two and one, respectively. T0 does 

not depend upon the q . 

 When the coordinates x, y, z of each point of the system are expressed as functions of q1, q2, 

…, qk without t entering explicitly, T will be homogeneous and reduce to T2 . When the constraints 

are independent of time, one can always choose the parameters q in such a fashion that the 

condition is realized. 

 In any case, one will have: 

T2 = 

2 2 2
x y z

m
t t t

  

  

      
+ +      

       
  , 

when one agrees to set: 

x

t




 = 1 2

1 2

k

k

x x x
q q q

q q q

  
  + + +

  
 , 

y

t




 = 1 2

1 2

k

k

y y y
q q q

q q q

  
  + + +

  
 , 



Lecture 7 – Lagrange’s equations (cont.). 81 

 

z

t




 = 1 2

1 2

k

k

z z z
q q q

q q q

  
  + + +

  
 . 

 

 Recall that from a remark that was made in the previous lecture, the 
x

t




, 

y

t




, 

z

t




 can all be 

zero at once only if 1q , 2q , …, kq  are all zero (except perhaps for particular values of q1, q2, …, 

qk, t). It follows from this that T2 cannot be zero (for arbitrary values of q1, q2, …, qk, t) unless all 

of the q  are zero. 

 Having said that, consider the quantity: 

 

j

T

q




 = 2 1

j j

T T

q q

 
+

  
. 

 

 The term 
2 / jT q   depends upon only the q , and the determinant of the q  in equations (1) 

coincides with the determinant of the k equations that are linear and homogeneous with respect to 

the q : 

(2)     2

1

T

q




 = 0 , 2

2

T

q




 = 0 , …, 2

k

T

q




 = 0 . 

 

 I say that this determinant is not identically zero. In other words, there exist values of 1q , 2q , 

…, kq  (q1, q2, …, qk, t being chosen arbitrarily) that are not all zero and satisfy equations (2). 

However, from Euler’s theorem, one will have: 

 

2T2 = 2 2 2
1 2

1 2

k

k

T T T
q q q

q q q

  
  + + +

    
 . 

 

T2 would then be annulled for values of q  that are not all zero, which is impossible. 

 Equations (1) can then be solved for the q , and will form a system of k distinct second-order 

differential equations. Those equations will admit one and only one system of integrals q1 (t), q2(t), 

…, qk (t) that satisfy the initial conditions: q1 (t0) = 0

1q , 1 0( )q t  = 0

1q ,…, qk (t0) = 0

kq , 0( )kq t  = 0.kq  

Nonetheless, there can be exceptions for certain singular systems of values t0, 
0

1q , 0

1q , …, 0

kq , 

0.kq  

 

 

 Calculating T. – In order to write out the Lagrange equations, one must calculate, on the one 

hand, the vis viva of the system, and on the other hand, the virtual work done by the active forces. 

When the system includes continuous bodies, that calculation will be performed with the help of 

integrals that extend over the continuous body. The only continuous bodies that appear in the 
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applications are solids. In order to calculate their vis viva, the simplest way will be, in general, to 

decompose that vis viva into two parts: The vis viva of the center of gravity, where one supposes 

that all of the mass is concentrated, and the vis viva of the solid in its relative motion around the 

center of gravity. In any case, the calculation will reduce to the calculation of the total mass of the 

solid and its three principal axes of inertia relative to an arbitrarily-chosen point. 

 The parameters q must be chosen in such a fashion as to give the simplest form to T. In 

particular, one seeks to make the products 
j kq q   disappear from T. For example, if one is studying 

the motion of a point on a fixed surface then T will have the form: 

 

T = 1 2 2 2 21
1 1 1 2 2 22

( 2 )m A q A q q A q   + +  , 

in which 

1

1A  = 

2 2 2

1 1 1

x y z

q q q

       
+ +     

       
, 2

2A  = 

2 2 2

2 2 2

x y z

q q q

       
+ +     

       
, 

 

2

1A  = 
1 2 1 2 1 2

x x y y z z

q q q q q q

     
+ +

     
 

in the simplest case. 

 If the curvilinear coordinates q1 = const., q2 = const. are orthogonal then 2

1A  will be zero, and 

conversely. 

 One can even choose q1 and q2 in such a fashion that the 
2ds  of the surface has the form: 

 
2ds  = 2 2

1 2 1 2( , )( )A q q dq dq+ , 

and T will then have the form: 

T = 2 21
1 22

( )m A q q +  . 

 

 Similarly, if one studies the motion of a free point in curvilinear coordinates then the necessary 

and sufficient conditions for T to not include products are: 

 

  
1 2 1 2 1 2

x x y y z z

q q q q q q

     
+ +

     
 = 0 , 

  
2 3 2 3 2 3

x x y y z z

q q q q q q

     
+ +

     
 = 0 , 

  
3 1 3 1 3 1

x x y y z z

q q q q q q

     
+ +

     
  = 0 , 

 

which are equalities that express the idea that the curvilinear coordinates q1 = const., q2 = const., 

q3 = const. must be orthogonal. 
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 Calculating the Qj . – The coefficients Qj are given by the equalities: 

 

Qj = 
j j j

x y z
X Y Z

q q q

   
  + +     

  . 

 

 One can sometimes simplify their calculation with the aid of the following remarks: 

Give q1 the variation q1, while q2, …, qk remain constant. 

The virtual work done by that displacement will be Q1 q1 . 

Consider a point M of the system. Let (x, y, z) be its position, 

let ( , , )x y z    be its velocity, and let ( )F  be the active force 

that is exerted on it at the instant t. Under the displacement 

q1, the various points of the system will describe elementary 

arcs. Let s be the arc that is described by M, and let f   be 

the projection of ( )F  onto the direction of s.  f s will 

represents the work done by ( )F  under the displacement q1 . It will then result that: 

 

Q1 q1 = 1

1

s
f q

q





  

or 

Q1 = 
1

s
f

q




 , 

 

in which the summation extends over all points of the system. 

 That form of Q1 is useful in certain cases where one can easily perceive the displacement at 

each point for the each variation q1, …, qk . 

 

 Example. – Let us study the motion of a point M in polar coordinates in space. 

The vis viva is calculated immediately. It is: 

 

T = 2 2 2 2 2 21
2

( sin )m        + + . 

Let: 

q1 =  ,  q2 =  ,  q3 =  . 

 

One must calculate Q1, Q2, Q3 . 

 

 One then gives, in succession: 

 

 

 

 

T 

 

 

(t) 

z 

y 

x 

 

 

 

m 

M 

O 
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an increase +  to   M will then go to M   along the prolongation of OM. 

 

 + to    M   The displacement MM   is in the plane 

zOM, which is perpendicular to OM. It 

makes an angle of  +  /2 with Oz. 

 

 +  to    ,M   and the direction MM   is 

perpendicular to the plane zOM in the 

sense of increasing . MM makes an 

angle of  +  / 2 with Ox. 

 

 Having done that, let F be the force that is exerted on the point M, which is supposed to be 

free. Let R, ,  be its components along the directions MM  , MM  , MM  , resp. From what 

was just said: 

  Q1 = 
s

R





 = R , 

  Q2 = 
s




  =   , 

  Q3 = 
s




  =   sin  . 

 

 Moreover, the Lagrange equations for the motion of a point in polar coordinates in space are: 

 

  
2 2 2( sin )m m      − +  = R , 

  2 2( ) sin cos
d

m m
dt

     −  =   , 

  2 2( sin )
d

m
dt

    =   sin  . 

 

 In the case where  is zero, one will have: 

 
2 2sin    = 0 . 

 

In order for that to be the case, it is necessary and sufficient that the force should be in the plane 

MOz. Furthermore, the equality is given by the theorem of moments of quantities of motion, when 

it is applied to the axis Oz. 

 When the system includes solid bodies, in order to calculate the virtual work done by the active 

forces that are applied to the solids, one can replace those forces with any other system of 

geometrically-equivalent segments, in particular, with two conveniently-chosen forces [or by just 

one in the case where the forces ( )F  admit a resultant]. If one would like, the calculation of the 

virtual work will come down to the calculation of the quantities X  , Y  , Z , and 
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( )y Z zY − , ( )z X x Z − , ( )xY y X − . Once those sums are calculated, the virtual work 

 done by the applied forces on the solid under an arbitrary virtual displacement of the solid will 

be given by the formula: 

 

 = ( ) ( ) ( )a X b Y c Z u y Z zY v z X x Z w xY y X             + + + − + − + −      . 

 

 a, b, c represent the virtual displacement of the solid that coincides with the origin O at the 

instant t, and u, v, w represent the components of the quantity () dt, where () is the 

instantaneous virtual rotation. 

 In particular, if the virtual displacement is a translation (parallel to Ox, for example) then the 

virtual work done by the forces ( )F  applied to the solid will be equal to x X  . If the 

displacement is a rotation of the solid around Oz then the virtual work done by the forces ( )F  

will be equal to ( )xY y X  − .  denotes the angle that the plane MOz that contains the 

material point M makes with the plane xOz. 

 More generally, if one supposes that Oz coincides with the axis of the virtual helicoidal 

displacement then the virtual work done by the forces F   under that displacement will be equal 

to: 

( )c Z xY y X   + −   . 

 

 

 Application to the motion of a free solid. – The position of a solid body (whether that body 

is continuous or composed of a finite number of points) depends upon six parameters: For example, 

the coordinates , ,  of the center of gravity G of the solid and the three Euler angles , ,  that 

define the direction cosines of the three principal axes of inertia of the solid relative to the point 

G. The active forces ( )F  coincide with the external forces for that system. 

 First express the vis viva as a function of those six parameters. We know that we have: 

 

(3)  2T = 
2 2 2 2 2 2( )M A p B q C r    + + + + + . 

 

M is the total mass of the solid, A, B, C are the moments, and G are the principal axes of inertia 

of the solid relative to the point G. p, q, r are given by the formulas: 

 

p = sin sin cos     + , q = sin cos sin     − , r = cos   + . 

 

 If we set  = q1 then the first Lagrange equation can be written: 

 

d
M

dt
  = Q1 . 
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Furthermore, one has Q1 q1 = X  . One will then have: 

 

M   = X  , 

M   = Y  , 

M    = Z . 

 

 Now construct the equation that relates to the parameter . One finds from (3) that: 

 

 
T






 = C r , 

 

T






 = 

p q
A B q

 

 
+

 
  = ( sin cos sin ) ( sin sin cos )A p B q            − + − −  

 = (A – B) p q . 

 

 Furthermore, the virtual displacement  is a rotation around the axis of inertia G. If one lets 

N denote the moment of the forces ( )F  with respect to G then the Lagrange equation can be 

written: 

(4)  
dr

C
dt

 + (B – A) p q = N . 

 

 That equation coincides with the third Euler equation. The Lagrange equations that relate to  

and  will be combinations of the Euler equations. However, can deduce the first two Euler 

equations from equation (4) by permutation. One thus, in fact, recovers the equations for the 

motion of a solid that were studied before. 

 

 

 First integrals of the Lagrange equations. – When the system is a free solid, one will know 

one integral of the equations of motion. 

 

 1. When the projection of the geometric sum of the forces ( )F  onto a fixed axis is zero or 

constant. 

 

 2. When the system of forces ( )F  has a zero or constant moment relative to a fixed axis, say 

Oz, or to a fixed direction that passes through the center of gravity, say GZ . 

 

 One will further obtain a first integral quite easily if the work done by the forces ( )F  is zero 

for a well-defined helicoidal displacement of the solid no matter what the position of the solid and 

the instant considered. I intend the term well-defined helicoidal displacement to mean a 

displacement for which each point x, y, z, when regarded as a point of the solid, is subjected to a 
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well-defined displacement. The axis of the helicoidal displacement is a fixed line L. The 

displacement (v) t of a point on that axis and the instantaneous of virtual rotation () are two 

constant segments that have L for their line of action. In order for the stated condition to be 

fulfilled, it is necessary and sufficient there should exist constant values of a, b, c, u, v, w, 

such that one will have: 

 

( ) ( ) ( )a X b Y c Z u y Z zY v z X x Z w xY y X             + + + − + − + −        0 , 

 

no matter what the instant considered, or the positions and velocities of the points of the solid. 

Having fulfilled that condition, one can take the line L to be the z-axis, and write down the equality: 

  
2 2 2

2 2 2

d z d y d x
c m w m x y

dt dt dt
 

 
+ − 

 
   = ( )c Z w y X xY   + −   = 0 , 

 

or rather, upon setting w / c = h : 

 
2

2

d z d dy dx
M h m x y

dt dt dt dt

 
+ − 

 
  = 0 , 

 

and thus one will have the integral: 

 

dz dy dx
M h m x y

dt dt dt

 
+ − 

 
  = const. 

 

 Those equalities can apply to the motion of an arbitrary system in certain cases. More 

generally, if one applies the theorem on the projection of the quantities of motion to an arbitrary 

system then one will obtain an equality such as: 

 

(4)     
2

2

d x
m

dt
  = 

2

2

d
M

dt


 = 

xX R +  , 

 

in which one lets Rx denote the component of one of the external reactions (i.e., the force exerted 

by the elements external to the system) along Ox. 

 The sum 
xR  will be zero only in some particular cases. 

 Similarly, the theorem of the moment of the quantities of motion, when applied to the axis Oz 

or to the axis OZ , for example, will lead to an equation that is independent of the external 

reactions only if those reactions have a zero moment with respect to that axis. 

 That is what happens in the following special cases: 
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 1. The system admits a translation parallel to a fixed axis (say, Oz) for a virtual displacement 

(for an arbitrary position and instant). From d’Alembert’s principle, one has: 

 
2

2

d x
m

dt
  = X  . 

 

That equation must be a consequence of the Lagrange equations, which are equivalent to 

d’Alembert’s principle. It indeed coincides with the equality (4), because the sum 
xR  is zero 

since the virtual work 
xx R   is zero, by hypothesis. 

 In order for the system to enjoy that kinematical property, it is necessary and sufficient that the 

equations of constraint should include the coordinates xj of the points Mj of the system only by 

their differences xj – xk . That is the case for a point that moves on a cylinder whose generators are 

parallel to Ox. 

 If the sum X   is zero, in addition, then one will get an integral of the Lagrange equations: 

 

m x  = M  = a t + b . 

 

 It even suffices that X   should be a constant or a simple function of t. 

 

 2. The system that admits a collective rotation around a fixed axis (say Oz) or a fixed direction 

that passes through the center of gravity (say GZ ) for a virtual displacement (for an arbitrary 

position and instant). One can then write the equality: 

 

  
d dy dx

m x y
dt dt dt

 
− 

 
  = ( )xY y X −  (for the axis Oz) 

or the equality: 

  
d dy dx

m x y
dt dt dt

  
 − 

 
  = ( )x Y y X   −  (for the axis GZ ), 

 

in which x  = x – , y  = y –  . 

 In order for the system to enjoy that kinematic property, it is necessary and sufficient that the 

equations of constraint, in which x, y (or rather x , y ) are expressed with the aid of polar 

coordinates r and , should include the angles j only by their differences (j – k). That is the case 

for a point that moves on a surface of revolution around Oz. 

 If the moment of the forces ( )F  with respect to Oz (or to GZ ) is zero or constant or a function 

of only t then one will obtain an integral of the Lagrange equations. 
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 3. The system admits a well-defined helicoidal displacement as a virtual displacement (for an 

arbitrary position and instant). If one takes the axis to be the z-axis of the displacement then one 

can write down the equality: 

 
2

2

d d dy dx
M h m x y

dt dt dt dt

  
+ − 

 
  = ( )Z h xY y X  + −  , 

 

in which h denotes a certain constant. 

 In order for that system to enjoy that kinematical property, it is necessary and sufficient that 

the equations of constraint should include the last two of the coordinates , z only by their 

differences j – k, zj – zk, zj – h k . That is the case for a point that moves on a helicoid that is 

skew to the director plane of the axis Oz. 

 If, in addition, the quantity ( )Z h xY y X  + −   is zero then one will obtain a first integral: 

 

d dy dx
M h m x y

dt dt dt

  
+ − 

 
  = const. 

 

 It will even suffice that ( )Z h xY y X  + −   is a constant or a simple function of t. 

 

 

 Case in which T does not include one of the parameters q explicitly. – If the parameter qj 

does not appear explicitly in the function T then the Lagrange equation that relates to qj will be 

written: 

j

d T

dt q

 
   

 = Qj . 

 

 That will imply a first integral of the motion whenever Qj is zero, constant, or simply a function 

of t. 

 The first integrals that then come to light will often coincide with the ones that we pointed out 

above. 

 For example, let a point M move on the cylindrical surface z = f (y). Set x = q1, y = q2 . The 

expression for T is: 

T = 2 2 21
2

[ (1 )]ym x y f  + +  . 

 

 The Lagrange equation that relates to x is: 

 

  m x  = X  , 

so if X   is zero then: 

  x  = a t + b . 
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 That equality coincides with the one that one obtains by applying the theorem on the projection 

of the quantity of motion onto the axis Ox. 

 Similarly, let M be a point that moves on a surface of revolution z =  (r). Set r = q1,  = q2 . 

The expression for T is: 

T = 2 2 2 21
2

[ (1 ) ]rm r r   + +  . 

 Hence, one has the equality: 

2d
mr

dt
  = xY y X − , 

and if xY y X −  is zero then: 

2m r    = const. 

 

 That equality coincides with the one that one obtains by applying the theorem on the moment 

of the quantity of motion to Oz. 

 Finally, let M be a point that moves on a helicoid with a director plane x = r cos , y = r sin , 

z = k  . Let r = q1,  = q2 . The expression for T will become: 

 

T = 2 2 2 21
2

[ ( ) ]m r r k  +  . 

Hence, one has the equality: 

2 2( )
d

m r k
dt

+  = xY y X k Z  − + , 

 

and if xY y X k Z  − +  is zero then: 
2 2( )m r k +  = const. 

 

 That equality coincides with the one that one obtains by applying the remark on the helicoidal 

displacement to a system. 

 However, the integral that presents itself most frequently in the applications is the vis viva. 

 

 

 Vis viva integral. – When the constraints are independent of time, we said that the real 

displacement of the system will coincide with a virtual displacement (no matter what the position 

of the system and the instant considered): That is not exactly true when the constraints depend 

upon time. For a particular virtual displacement dx, dy, dz (when the system is supposed to be 

frictionless), d’Alembert’s principle gives: 

 
2 2 2

2 2 2

d x d y d z
m dx dy dz

dt dt dt

 
+ + 

 
  = ( )X dx Y dy Z dz  + +  , 

or rather: 
21

2
d mv  = ( )X dx Y dy Z dz  + +  . 
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 When the constraints are independent of time, one can always choose the parameters q1, …, qk 

in such a fashion that the x, y, z are expressed as functions of those parameters without t entering 

into them explicitly. Under those conditions, one will have: 

 

dx = 1

1

k

k

x x
dq dq

q q

 
+ +

 
 , etc., 

and 

( )X dx Y dy Z dz  + +  = Q1 dq1 + Q2 dq2 + … + Qk dqk . 

 

 The equality of vis viva is then written: 

 

21
2

d
mv

dt
  = 1 1 2 2 k kQ q Q q Q q  + + +  . 

 

 That equality, which is a consequence of d’Alembert’s principle, must be a consequence of the 

Lagrange equations. One easily verifies that in the following manner: In the case that concerns us, 

T is a homogeneous second-degree polynomial in the q . One calculates the quantity 1 1 2 2Q q Q q +  

+ … k kQ q+  from the Lagrange equations. One finds that: 

 

1 1 2 2 k kQ q Q q Q q  + + +   = 1 1

1 1

k k

k k

d T d T T T
q q q q

dt q dt q q q

   
   + + − − −

    
 

 = 1 1 1

1 1 1

k k k

k k k

d T T T T T T
q q q q q q

dt q q q q q q

        
     + + − − − − − − 

           
 . 

 

 From Euler’s theorem: 1 2

1 2

k

k

T T T
q q q

q q q

  
  + + +

    
 = 2T. On the other hand, T does not contain 

t explicitly, so: 

dT

dt
 = 1 1

1 1

k k

k k

T T T T
q q q q

q q q q

   
   + + + + +

    
. 

From that: 

1 1 2 2 k kQ q Q q Q q  + + +  = 2
dT dT

dt dt
−  = 

dT

dt
. 

 

 That supposes essentially that the constraints are independent of time: Otherwise, the work 

done by the reactions would enter into the variation of the vis viva. 

 That equation for the vis viva provides an integral for the equations of motion whenever the 

quantity Q1 dq1 + … + Qk dqk is the exact total differential of the same function U of q1, q2, …, qk. 

One can then write: 

T = U + h . 
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 In order for Q1, Q2, …, Qk to be the partial derivatives of the same function U (q1, q2, …, qk), 

as one knows, it is necessary and sufficient that those quantities should depend upon only q1, q2, 

…, qk and satisfy the k (k – 1) / 2 conditions: 

 

j

k

Q

q




 = k

j

Q

q




 . 

 

 Those conditions are always fulfilled whenever the quantity ( )X dx Y dy Z dz  + +  is the 

exact total differential of a function u (x1, y1, z1, …, xn, yn, zn). However, the latter condition is not 

necessary. 

 In the case where there exists a force function U (q1, q2, …, qk), the Lagrange equations will 

be written: 

( )

j j

d T T U

dt q q

  +
−

 
 = 0 . 

 

 One can give them the same form whenever the Qj (which are functions of the q, the q , and 

t) are the derivatives of the same function 1 1( , , , , , , )k kU q q q q t   with respect to the qj : 

 

1 1( , , , , , , )j k kQ q q q q t   = 
1 1( , , , , , , )k k

j

U q q q q t
q


 


 , 

 

but one can no longer write the vis viva integral then. 

 That is especially the case when the constraints depend upon time, so the sum (X dx Y dy +
)Z dz  is the total differential of a function u (x1, y1, z1, …, xn, yn, zn) . The Qj are then the derivatives 

of a function U that depends upon qj and t with respect to the qj . 

 However, it happens that the theorem of vis viva provides another vis viva integral in a great 

number of cases in which the forces depend upon time. 

 In order for one to be able to write out the vis viva integral, it is indeed necessary and sufficient 

that one should have (when the constraints do not depend upon time): 

 

1 1 2 2 k kQ q Q q Q q  + + +   
dU

dt
, 

 

in which U is a function of q1, q2, …, qk, t that can depend upon the q . In other words, dU / dt can 

depend upon the q . 

 That condition can be further written: 

 

1 1 2 2 k kQ q Q q Q q  + + +   1 2

1 2

k

k

U U U U
q q q

q q q t

   
  + + + +

   
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or 

Q1  1

1

U
Q

q


+


,  Q2  2

2

U
Q

q


+


, …, Qk  k

k

U
Q

q


+


, 

with the condition: 

1 1 2 2 k kQ q Q q Q q  + + +   
U

t




. 

 

 If the Qj do not depend upon the iq  then those equalities will demand that 1Q  = 2Q  = … = kQ  

= U / t  0. The same thing is true then the Qj depend upon the q . In particular, in a great 

number of cases, it can happen that those conditions are verified when U / t is zero, i.e., that one 

has: 

Q1  1

1

U
Q

q


+


,  …, Qk  k

k

U
Q

q


+


, 

with the condition that: 

1 1 2 2 k kQ q Q q Q q  + + +   0 . 

U denotes a function of q1, q2, …, qk . 

 Suppose, for example, that the force ( )F  is the geometric sum of two forces 1( )F   and 2( )F  : 

The forces 1( )F   admit a force function u (x1, y1, …, zn), and each force 2F   is normal to the velocity 

of the material point to which it is applied: 

 

2 2 2x X y Y z Z     + +  = 0 . 

 Now, in that case: 

( )X x Y y Z z     + +  = 
du

dt
 = 1 2( , , , )k

dU
q q q

dt
, 

and 

T = U + h . 

 

 That remark finds an application in the study of the relative motion of the system. Let M be a 

point of the system , and let ( )F  be the force that is exerted on it relative to the axes Oxyz. One 

can study the motion of  with respect to the axes O1 x1 y1 z1, which are animated with respect to 

Oxyz by a given motion. The active force ( )rF   relative to the axes O1 x1 y1 z1 is equal to ( )F  − 

( ) ( )a cm m −  . The force (Fc) = m (c) is normal to the relative velocity of the point M. If the 

coordinates x1, y1, z1 are expressed as functions of the q without t entering explicitly, and if the 

forces ( )F  − m (c) admit a force function U (q1, …, qk), while T1 denotes the relative semi-vis 

viva then the integral of the applied vis viva will be T1 = U + h. 

 Thus, let M be a massive point that moves without friction on a surface that turns with a 

uniform motion around a vertical axis Oz. If one keeps the axes Oxyz then the constraint will 

depend upon time, and one cannot employ the vis viva theorem. 
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 However, take axes O1 x1 y1 z1 that are coupled to the surface, and as a result, they will turn 

around Oz with the constant angular velocity . 

 Suppose that T1 = 2 2 21
1 1 12

( )m x y z  + +  and U = 2 2 21
1 12

[ ( )]g z x y  − + + . One has T1 = U + h. 

 That process will be useful when one can make the constraints independent of time by a change 

of axes. However, we shall return to the theory of relative motion in the next lecture. 

 

 

 Case in which the constraints depend upon time. – One can form an integral that is 

analogous to the vis viva integral in certain cases where the constraints depend upon time. First of 

all, if T has the form T = T2 + T0, where T0 depends upon only t and T2 does not, then one will 

have: 

2dT

dt
 = 1 1 k kQ q Q q + +  , 

 

which will give the integral T2 = U + h if the right-hand side 1 1 k kQ q Q q + +  is equal to dU / dt. 

 More generally, let T = T2 + T1 + T0 . One can write: 

 

1 1 k kQ q Q q + +  = 1 1 1

1 1 1

k k k

k k k

d T T T T T T
q q q q q q

dt q q q q q q

      
   + + − − − − − − 

         
. 

 

 From Euler’s theorem: 

1

1

k

k

T T
q q

q q

 
 + +

  
 = 2T2 + T1 . 

As a result, that will give: 

1 1 k kQ q Q q + +  = 02 1 2 12
dTdT dT dT dT T

dt dt dt dt dt t


+ − − − +


, 

or rather: 

2 0( )
d

T T
dt

−  = 1 1 k k

T
Q q Q q

t


 + + −


 . 

 

 If the quantity 1 1 k k

T
Q q Q q

t


 + + −


 is equal to 

d

dt
U (q1, …, qk, t) then one will have: 

 

T2 – T0 = U + h . 

 

 That is what happens, for example, when T / t depends upon only t and Q1 dq1 + … + k kQ dq

is an exact total differential dU (q1, …, qk). 

 In that case, the integral is written: 

 

T2 – T0 = U + F (t) + h , 
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so T / t is equal to F (t). 

 As an application, we treat the following problem: 

 

 A massive point M moves without friction on a cylinder of revolution with a vertical axis that 

dilates in proportion to time while remaining homothetic to itself. 

 

 We can write: 

x = cos
s

Rt
t

, y = sin
s

R t
t

, z = z , 

in which R is a constant. As a result: 

T = 21
2
mv  = 

2

2 2 21
2

s
m R s R z

t

  
 − + +  

   

 . 

 Apply the equality: 

2 0( )
d

T T
dt

−  = 1 1 2 2

T
Q q Q q

t


 + −


. 

 

Here q1 = s, q2 = r. That will give: 

 
2

2 2 2 21
2 2

d s
m R s z R

dt t

 
 + − 

 
 = − 

2
2

2 3

s s s
m g z m R

t t

 
 − − 

 
 = − 

2
21

2 2

d s
m g z m R

dt t
 − . 

 

Therefore: 
2

2 2 2 2

2

s
R s z R

t
 + −  = − 

2
2

2
2

s
g z R h

t
− +  

or 
2 2 2R s z +  = − 2g z + h . 

 

 Furthermore, the Lagrange equation that relates to z will give: 

 

z   = − g ,  so z = − 21
2

g t  + at + b, 

 

and as a result, 
2 2R s  = k, s = ct + d . (a, b, c, d are constants.) 

 If g is zero then one will see that z =  s + . 

 One will arrive at the same results by expressing x, y, z as functions of   = q1, z = q2 and using 

the formulas: 

x = R t cos  , y = R t sin  , z = z , 

 

and upon writing out the Lagrange equations that relate to  and z, in which: 
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T = 2 2 2 21
2

[ ( 1) ]m R t z + +  

here, so one has the equations: 

  2 2d
m R t

dt
  = 0 , 

  
d

m z
dt

  = − m g , 

which give: 

z = − 21
2

g t  + at + b, and 2 d
t

dt


 = const., or  = 

d
c

t
+ , 

 

which indeed coincide with the equations that were obtained above. 

 

 

 Case in which the parameters q are not independent. – In the foregoing, we supposed that 

the coordinates x, y, z were expressed as functions of the least possible number of parameters. In 

certain cases, it is convenient to express x, y, z as functions of a larger number of parameters that 

are coupled by certain relations. For example, one can study the motion of a point on a surface by 

appealing to polar coordinates in space r, , , which are then restricted by one relation f (r, , ) 

= 0. 

 Hence, let q1, q2, …, qk be k distinct parameters in terms of which the x, y, z are expressed as 

functions: 

 

x =  (q1, q2, …, qk, t) , y =  (q1, q2, …, qk, t) , z =  (q1, q2, …, qk, t) , 

 

and let: 

()  

1 1 2

2 1 2

1 2

( , , , , ) 0,

( , , , , ) 0

...................................

( , , , , ) 0

k

k

k k

f q q q t

f q q q t

f q q q t

=


=


 =

 

 

be p distinct relations to which those parameters are subjected. One can infer p of the quantities qj 

as functions of the other k – p from those p relations. In other words, at least one of the determinants 

 that are obtained by suppressing k – p columns in the matrix: 

 

1 1 1

1 2

1 2

k

p p p

k

f f f

q q q

f f f

q q q

  

  

  

  

 

is not identically zero. 
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 Under those conditions, the position of the system will depend upon (k – p) distinct parameters. 

A virtual displacement of the system is a displacement for which the variations q1, …, qk of the 

q1, …, qk satisfy the p relations: 

 

  1 2

1 2

k

k

f f f
q q q

q q q
  

  
+ + +

  
 = 0  (f = f1, f2, …, or fp) . 

 

 The virtual work done by a system of forces X, Y, Z that is applied to the points (x, y, z) of the 

system has the form: 

 

( )X x Y y Z z  + +  = Q1 q1 + Q2 q2 + … + Qk qk . 

 

However, in order for the work done to be zero under an arbitrary virtual displacement, it is no 

longer necessary that the k coefficients Qj should be zero. It is necessary and sufficient that one 

should have: 

Q1 = 1
1

1 1

p

p

ff

q q
 


+ +

 
 , 

…………………………. 

Qk = 1
1

p

p

k k

ff

q q
 


+ +

 
 . 

 

 That proposition is proved in absolutely the same way as the analogous proposition in Lecture 

4. 

 With that, let (X, Y, Z) be the total forces, and let ( , , )X Y Z    be the active force that is exerted 

on each point (x, y, z) of a frictionless system. Set: 

 

( )X x Y y Z z  + +  = Q1 q1 + Q2 q2 + … + Qk qk , 

( )X x Y y Z z    + +  = 1 1 2 2 k kQ q Q q Q q    + + + . 

 One has: 

Qj = 1 2
1 2

p

j p

k k k

ff f
Q

q q q
  

 
 + + + +

  
 (j = 1, 2, …, or k). 

 

 On the other hand, one deduces from d’Alembert’s principle: 

 
2 2 2

2 2 2

d x d y d z
m x y z

dt dt dt
  

 
+ + 

 
  = ( )X x Y y Z z  + + , 

that: 
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j j

d T T

dt q q

  
−    

 = Qj  (j = 1, 2, …, or k). 

 Thus: 

()  
j j

d T T

dt q q

  
−    

 = 1 2
1 2

p

j p

k k k

ff f
Q

q q q
  

 
 + + + +

  
. 

 

 Those k equations (), when combined with the p constraint equations (), will determine the 

k parameters q and the p indeterminates  as functions of the time and the initial constraints. In 

order to see that rigorously, differentiate each equation of constraint twice with respect to t. That 

will give: 

()    1 1 2

2

k k

k k k k k

f f f f f
q q q q q

q q q q q

     
    + + + + + + 

     
 = 0 . 

 

 The system of (k + p) equations () and (), which is linear with respect to the q  and the , 

can be solved for those variables. Indeed, the determinant of the ( , )q   is the same as the 

determinant  of the ( , )q   in the homogeneous equations: 

 

( )  2 1 2
1 2

p

p

j k k k

fT f f

q q q q
  

  
− − − −

   
= 0 (j = 1, 2, …, or k)  

and 

( )   1 2 k

k k k

f f f
q q q

q q q

  
  + + +

  
 = 0  (f = f1, f2, …, or fp). 

 

Now,  is not identically zero, since otherwise there would exist values of the q  and the  that 

would not all be zero and verify the equations ( ) , ( )  , and as a result, the equation: 

 

2 2 2
1 2

1 2

k

k

T T T
q q q

q q q

  
  + + +

    
 = 0 

or 

T2 = 0 . 

 

That can happen (for arbitrary q1, q2, …, qk) only if the q  are all zero, and as a result, all of the . 

 One will then infer the 
jq  and the  as functions of t, the qj, and 

jq  the from equations () and 

(). 

 The differential equations (), when combined with the constraint equations, will then 

determine the motion of the system when one knows the positions and the velocities of its points 

at the instant t0 . 
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 One can apply the vis viva theorem whenever x, y, z are expressed as functions of the qj without 

the time entering explicitly into those expressions or the constraint equations (). That theorem 

will give an integral when the quantity  1 1 k kQ dq Q dq + +  is the total differential of a function 

1 2( , , , )kU q q q , moreover. Nonetheless, one should observe that those conditions are not 

necessary. 

 

___________ 

 



LECTURE 8 

_________ 

 

APPLICATIONS OF THE LAGRANGE EQUATIONS 
__________ 

 

 

 We shall now apply the Lagrange equations to the study of the motion of some particular 

systems. We make the following remark in regard to that subject: Whenever one perceives a simple 

combination of Lagrange equations, and in particular, an integrable combination, it will be 

appropriate to replace one of the Lagrange equations with that combination. In particular, 

whenever the vis viva theorem gives an integral, one might substitute that integral for one of the 

equations. 

 For example, let us study the motion of a point M that moves without friction on a surface of 

revolution and is subject to an active force that admits a force function U. Let: 

 

x = r cos  , y = r sin  , z =  (r) 

 

be the coordinates of the point M (r = q1 ,  = q2). One has: 

 

T = 
2 2 2 21

2
(1 )m r r    + +   , 

 

in which  denotes d / dr and the equations of motion are: 

 

(1)     

2 2

2

( ) ,

,

U
m r m r r

r

d U
m r

dt r

  




    − + = 


  =

 

 

 

 One can replace the first equation with the vis viva integral: 

 

(2)     
2 2 2 21

2
(1 )m r r    + +   = U + b . 

 

 Suppose, moreover, that U /  is zero: In order for that to be true, it is necessary and sufficient 

that the work done by ( )F  must be zero under the virtual displacement , and as a result, that 

F   must be in the plane zOM. The second equation is then integrated, and it will become: 

 

(3)     
2m r    = const. or 

2r    = K , 

 

which is an integral that one can also obtain by applying the moment theorem to the axis Oz. 
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 Upon replacing   as a function of t in equation (2) using (3), one will see that t and  are 

given as functions of r by a quadrature (8):  

 

(4)    dt = 
2

2 2

(1 )

2( )

r m
dr

U b r m K

+

+ −
,  d = 

2

2 2

(1 )

2( )

K m
m dr

r U b r m K

+

+ −
. 

 

 Nonetheless, observe that such transformations can introduce parasitic solutions that do not 

satisfy the original equations of motion. The new equations that one substitutes for the Lagrange 

equations are consequences of those equations, but the converse is not necessarily true. 

 Therefore, in the preceding case, equations (2) and (3) are equivalent to the Lagrange equations 

only if r  is non-zero. 

 More generally, there exists one and only one system of functions qj (t) that satisfy the 

Lagrange equations and the initial conditions qj (t0) = 0

jq , 
0( )jq t  = 0

jq . The only exception is when 

the functions 
jq  of q1, q2, …, 1q , 2q , …, kq , and t that are defined by the Lagrange equations are 

not regular in the neighborhood of the values 0

1q , …, 0

kq , 0

1q , …, 0

kq , t0 of the variables. In that 

case, we say that initial conditions are singular. With that, suppose that the system is released 

under initial conditions that are not singular. If the system of equations (1) that one substitutes for 

the Lagrange equations (1) admits only one system of integrals that satisfies the initial conditions 

then it will be clear that those integrals satisfy equations (1) and define the motion of the system. 

However, if equations (1) admit several systems of integrals for given initial conditions then only 

one of those systems will satisfy equations (1). The other ones were introduced by the 

transformations in the calculation. Finally, when the initial conditions are singular, it is necessary 

to verify whether the integrals of equations (1) are integrals of the Lagrange equations. 

 In order fix ideas, we return to the preceding example: Equations (4) are equivalent to equations 

(1) if r  is non-zero. Suppose that one has r = r0, r  = 0,  = 0,   = 0   at the instant t0, where r0 

is non-zero and does not correspond to a singular value of U (r). r0 is a root of  (r) or 
2 22( )U b r m K+ − . Equations (4) are verified by the two systems: 

 

r (t)  r0 ,  = 0 0 0( )t t  + −  

or 

t – t0 = 

0

2

2 2

(1 )

2( )

r

r

r m
dr

U b r m K

+

+ −
 ,  – 0 = 

0

2

2 2

(1 )

2( )

r

r

K m
dr

r U b r m K

+

+ −
 . 

 

 
 (8) This is a special case of a general proposition that we prove as follows: Let S be a system without friction whose 

constraints are independent of time and whose position depends upon two parameters. If the active forces that are 

exerted on the system depend upon neither time nor velocity then knowing two first integrals (which do not contain t 

explicitly) will always permit one to reduce the equations of motion of the system to quadratures.  
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In those equalities, K is equal to 2

0 0r  , and the sign that one takes for the coefficient of dr is 

positive if the derivative of 2( )U b r+  is positive for r = r0 and negative in the contrary case. One 

of those systems of integrals will not verify the original equations of motion: It is necessarily the 

first one for which r  is zero. Nonetheless, if r0 is a multiple root of  (r) then the equations will 

admit no other integrals that necessarily satisfy equations (1) than: 

 

r (t)  r0 ,  = 0 0 0( )t t  + − . 

 

That can be verified, moreover, by differentiating the first equation in (4) with respect to t : 

 
2

dr

dt

 
 
 

 = 
2 2

( )

(1 )

r

m r 



+
 = V (r) . 

 

Upon dividing both sides by r , that will give: 

 

(4)  2 r  = ( )V r , 

 

and that equation, combined with equation (3), is equivalent to equations (1). In order for r  r0 to 

satisfy equation (4), it is necessary that 0( )V r  should be zero: r  r0 will then be a parasitic 

solution unless one has both V (r0) = and 0( )V r  = 0 , or what amounts to the same thing  (r0) = 

0, 0( )r  = 0. 

 We shall further make this simple remark: Let S and S   be two frictionless systems that depend 

upon the same number of parameters, and whose motion under the action of given forces we will 

study. If we can choose the parameters in such a fashion that the expressions for T, Q1, …, Qk are 

identical for the two systems then it will be clear that the two problems will be equivalent. The 

motion of one of the two systems is deduced from the motion of the other. For example, let  and 

 be two surfaces that are applicable to each other. One knows that one can choose the parameters 

q1, q2 in such a fashion that the 
2ds  has the same expression for the two surfaces: 

 
2ds  = 1 2 2 2 2

1 1 1 1 2 2 22A dq A dq dq A dq+ +  . 

 

 If the two points M and M   (which have the same mass) move without friction on the surfaces 

 and , respectively, and they are subject to an active force that admits a force function U (q1, 

q2) that is the same for the two points then the motion of each of those points will be defined by 

the same equations: 

1 1

d T T

dt q q

  
− 

  
 = 

1

U

q




, 
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2 2

d T T

dt q q

  
− 

  
 = 

2

U

q




, 

in which: 

T = 1 2 2 2 21
1 1 1 1 2 2 22

( 2 )m A q A q q A q   + + . 

 

 For example, let us study the motion of a point that slides without friction on a skew helicoid 

with a director plane: 

x = r cos  , y = r sin  , z = K  . 

We have: 
2ds  = 2 2 2 2( )r K r + + . 

 

 On the other hand, the 
2ds  of a surface of revolution: 

 

 =  cos  ,  =  sin  ,  =  () 

will have the form: 
2ds  = 

2 2 2 2(1 ) d d   + + . 

 

 One can reduce the two 
2ds  to the same form by setting: 

 

 =  ,  r = F () , with 2 2F K+  = 2 , 21 +  = 2F  . 

 

One immediately deduces from those equations that: 

 

d

d




 = 

2 2

K

K −
 , 

so: 

i K


 = 

i K


 = arccos 

K


 + const., 

 

and upon annulling the constant (which amounts to changing the origin of ): 

 

 = / /1
2

( )K KK e e −+ , 

 

i.e., the helicoid is applicable to the surface of revolution that is generated by a catenary that rotates 

around its base (or an alysseide). 

 On the other hand, we know that the equations of motion of a point on a surface of revolution 

are integrated by quadrature when the component of the active force that is tangent to the surface 

admits a force function U (r) that does not depend upon . That property will then apply to the 

motion of a point on a skew helicoid with a director plane whenever there exists a force function 
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U whose only variable is r. In order for that to be true, it will suffice that the component of the 

active force that is tangent to the surface must point along the rectilinear generator that passes 

through the point M and be a function of only the distance from that point to the axis of the helicoid. 

For example, that is what happens when the point M is attracted (or repelled) by all of the elements 

pp  of the axis Oz in proportion to the their length PP  and in inverse proportion to nR , where R 

denotes the distance MP, and n is a number that is greater than 1. 

 Furthermore, it is easy to reduce the equations of motion to quadratures immediately in the 

case that we are dealing with. Those equations are: 

 

2m r mr −  = 
U

r




, 

2 2[ ( ) ]
d

m r K
dt

+  = 0 . 

 

 Replace the first one with the vis viva integral: 

 
2 2 2 2[( ) ]m r K r  + +  = 2U + h , 

 

and integrating the second one will give: 

 
2 2( )r K  +  = C . 

 

 In order to get t, it will suffice to infer   from the last equality and substitute it into the 

preceding one, and as a result, one will get  as a function of r by a quadrature. In particular, if U 

is zero then the geodesics of the helicoid will be given by an elliptic quadrature: They correspond 

to the geodesics of the alysseide. 

 The integral 
2 2( ) /r K d dt+  = const. can also be obtained by applying the remark to the 

helicoidal virtual displacement. In analogy with the theorem of moments for surfaces of revolution, 

that remark will provide an integral of motion of a point on a helicoid of the most general type 

when the active force is normal to the helix on the surface that passes through the point M. 

Moreover, one knows that an arbitrary helicoid is applicable to a surface of revolution. 

 Similarly, let M be a point that moves on a cone. The cone is applicable to a plane. If one lets 

 denote the arc-length of the spherical curve that is cut out by the cone on the sphere of radius 1, 

and one lets r denote the distance from M to the summit then one will have: 

 
2ds  = 

2 2 2r d dr + . 

 

 Upon setting  = , one will see that the problem is the same as that of the motion a point in a 

plane that is referred to polar coordinates r and . Whenever there exists a force function U, which 

is a function of only r, the problem will be solved by quadratures. 
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 The motion of a point on a cylinder likewise reduces to a planar motion. In order to put 2ds  

into the form: 
2ds  = 2 2d dx +  , 

 

it will suffice to let  denote the arc-length of the orthogonal trajectory to the rectilinear generator 

of the cylinder, while x is the distance from the point M to a well-defined cross-section. 

 If one sets  = y then one will get the same equations that one gets for the motion in Cartesian 

coordinates x, y. Whenever there exists a force function U, and the component of ( )F  that is 

tangent to the cylinder makes a constant angle with the rectilinear generators, the problem can be 

solved by quadratures. 

  Notably, if ( )F  is normal to the generators then one of the first integrals can be obtained with 

the aid of the theorem of the projection of the quantities of motion when it is applied to the direction 

of those generators. 

 We shall not belabor these very simple and well-known applications any further, but we shall 

now study some examples of the motion of systems that are more complicated. 

 

___________ 

 

 

APPLICATIONS 

___________ 

 

 I. – Two points M and M1 are constrained to slide without friction on two helices: 

 

x = R cos  ,    y = R sin  ,    z = K       and      x1 = R1 cos 1 ,    y1 = R1 sin 1 ,    z1 = K 1 . 

 

 The two points repel each other in proportion to the distance between them. Find the motion 

of the system. Examine the special case in which the two helices reduce to two circles (K = 0). 

 

 The position of the system depends upon two parameters  and 1 . The vis viva theorem gives 

one first integral. In order to obtain another one, observe that the virtual displacement  = 1, 

which corresponds to the variations: 

 

x = − y  , y = x  , z = K  , and x1 = − y1  , y1 = x1  , z1 = K  , 

 

is a constant helicoidal displacement. The work done by the active forces (which are internal forces 

here) under that displacement is zero. One will then have: 

 

2 2 1 1
1 1

d dzd d dz
m R K m R K

dt dt dt dt dt

   
+ + +    

    
 = 0 , 

or rather: 
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2 2 2 2 1
1 1( ) ( )

dd
m R K m R K

dt dt


+ + +  = 0 . 

 

 That integral can also be obtained with the aid of the Lagrange equations. Here, one has: 

 

2T = 2 2 2 2 2 2

1 1 1( ) ( )m R K m R K  + + + . 

 

 On the other hand, the force function U is equal to − 21
2

r h + , in which r denotes the distance 

MM1, and  is a certain constant (which is positive since the force F   is repulsive). Let us calculate 
2r : 

2r  = 2 2 2 2

1 1 1 12 cos( ) ( )R R R R K   + − − + − . 

 As a result: 

U = − 2 21
1 12

cos( ) ( ) const.K     − + − +   ( =  R R1) . 

 

 Set 1 –  =  and replace the parameter 1 with the parameter . That will give: 

 

2T = 2 2 2 2 2 2 2

1 1 1 1 1[ ( )] ( )[2 ]mR m R K m m m R R      + + + + + +  , 

and 

U = − 2 21
2

cos const.K   + +  

 

  The Lagrange equation that relates to  is written: 

 

2 2 2 2 2

1 1 1 1 1{[ ( ) ] ( ) }
d

mR m R m m K m R R
dt

  + + + + +  = 0 , 

or rather: 

 

()    2 2 2 2 2

1 1 1 1 1[ ( ) ] ( )mR m R m m K m R R  + + + + +  = C , 

 

which is equivalent to the integral that was found above: 

 
2 2 2 2

1 1 1( ) ( )m R K m R R  + + +  = const. 

 

 Now substitute the vis viva integral: 

 

()  2 2 2 2 2 2 2

1 1 1 1 1[ ( ) ] [ ][2 ]mR m R m m K m K K      + + + + + +  = 
2 2 2 cosK   −  

 

for the second Lagrange equation. 

 If we replace   with its value that is inferred from () then that will give: 
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()      2  = 2 2 cosA B b − + , 

 

in which b denotes a constant, and A, B are the coefficients: 

 

A = 2

2 2 2 2

1 1

1 1

( ) ( )
R

m R K m R K


 
+ 

+ + 
 , B = 

2 2 2 2

1 1

1 1

( ) ( )m R K m R K


 
+ 

+ + 
 . 

 

 Equation () will give us t as a function of  by the quadrature: 

 

t – t0 = 

0

2 2 cos

d

A B b







 − +
  , 

and from equation (a), one will have: 

 

   = 
2 2

1 1 1

2 2 2

1 1 1

( )

( )

m R K
ct c

m R m R m m K


+
− +

+ + +
 = c ct a + − , 

 

   = 
2 2

2 2 2

1 1 1

( )

( )

m R K
ct c

m R m R m m K


+
+ +

+ + +
 = (1 )c ct a  + + − , 

 

moreover, in which c, c  are constants, with c = 2 2

0 1 1 1,0mR m R  + . 

 In particular, suppose that K is zero. The two helices reduce to two circles with their centers at 

O. Equation () will then become: − 2 2

1 1 1mR m R  + = c, which is an integral that one could have 

likewise obtained by applying the theorem of moments to the axis Oz. t is given as a function of  

by the quadrature: 

t – t0 = 

1
2 cos

d

B b







− +
 , 

in which B = 
2 2

1 1

1 1

m R m R

 
+ 

 
 . That is the equation that determines the motion of a pendulum of 

length l = B / g if  denotes the angle between the pendulum and the vertical that is drawn from 

bottom to top. (If the force F   is attractive then B will be negative, and  will the angle between 

the pendulum and the direction of gravity). cos  is a doubly-periodic function of t. One agrees to 

distinguish two cases according to whether the absolute value of b / 2B is or is not greater than 1, 

resp. In the former case,  will always vary in the same sense, and it will vary by 2 during the 

time T: 

T = 
2

0 2 cos

d

b B




−
  . 
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 The system will return to its initial conditions after a time T, except that the entire system will 

have turned about O through an angle of  = c T  2a according to whether   is negative or 

positive, resp. On the contrary, if | b / 2B | < 1 then mark out the two extremities N1, N2 on the 

trigonometric circle of the angles 1, 2 whose cosines are equal to b / 2B, and the extremity N of 

the angle . N will traverse the arc 2 2N A N  twice in opposite senses during a time T = 

1

1

2

2 cos

d

b B

 







−

−
 . The system will return to the same initial condition after a time T, except 

that it will have turned around O through angle of cT. In particular, if the system is released with 

no initial velocity then it will return to the same position with a zero velocity after a time T = 

0

0

2

2 cos

d

b B

 







−

−
 . Finally, when | b / 2B | = 1,  will tend to 0 or  (according to whether 

/ 2b B  is equal to + 1 or – 1, resp.) when t increases indefinitely, and  – c t will tend to 0 or – a. 

However, in the case where 0 = b / aB =  1,  will remain constantly equal to 0 or to , and  

and 1 will vary in proportion to time. 

 If the force ( )F  were attractive then nothing in the preceding 

discussion would change, except that under the hypothesis that | b / 2B | 

< 1, N will traverse the arc N1AN2 . 

 Let us now study some other systems that include continuous 

bodies. First of all, it is easy to apply the Lagrange equations to the 

problems that we have treated in Lecture Three. For example, in Problem 

III (see page 31), one will have (while preserving the same notation): 

 

2T = 2 2 2 2 2 2

0 0 0[( sin cos )sin cos ] 2 cosA B C C C           + + + +  

 

and U = 0. The vis viva integral and the Lagrange equation that relates to  will provide us with 

two integrals that will allow us to study the motion. 

 Similarly, in Problem IV (see page 33), one has: 

 

2T = 
2 2 2 2[ cos 2 sin 2 ] sin [ cos ]L M A C          + + + + , 

and 

  U = l cos  + m sin  , 

 

in which L, M, A, C, l, m are well-defined coefficients (see page 34). The vis viva integral and the 

Lagrange equation that relate to  coincide with the equations that we shall appeal to. However, 

here are some new applications: 

 

 II. – Two massive homogeneous bars AB, CD of equal length and the same density have their 

extremities A, C and B, D linked with two massless, flexible, inextensible strings. The midpoint O 

of AB is fixed. Find the motion of the system when it is released with zero initial velocity in the 

vertical plane xOy. 

N 

 

N1 

A 

N2 

1 
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 The motion of the system takes place in the xy-plane. The position of the system in that plane 

depends upon two parameters, namely, , which is the angle that OO  makes with the direction 

Oy of gravity ( O  is the midpoint of CD), and , which is the angle xOB between the horizontal 

Ox and AB. 

 The vis viva of AB is equal to: 

 

2 2

0

2

l

d     = 3 22
3

l   = 2 21
3
M l  , 

in which 2l denotes the length of each bar,  is its density, and 

M is its mass. 

 On the other hand, the velocity of rotation is CD around its 

center of gravity O  is equal to  , so the vis viva of CD is equal 

to: 

  2 2 2 21
3

M R M l  +   if one sets R = OO . 

 Therefore: 

T = 2 2 2 21 1
3 2
M l M R  + . 

As for U, one has: 

U = Mg R cos  . 

 

 The Lagrange equation that relates to  is: 

 

2 22
3

d
M l

dt
  = 0 

or 

    = C , 

   = C t + C . 

 

 That integral results from the theorem of moments when it is applied to the axis Oz. The 

Lagrange equation that relates to  is: 

 

2d
MR

dt
  = − Mg R sin   

or 

  = − sin
g

R
  . 

 

 One can replace that equation with the vis viva integral. However, that would be pointless since 

preceding equation is that of a pendular motion. The point O  moves like a pendulum whose rod 

is fixed at the point O and the bars AB, A B   turn around the points O and O , respectively, with 

a uniform rotational velocity. 

 

O 

A 

C 

y 

 

B 

D x 

 

 
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 III. – Find the motion of a homogeneous sphere that is constrained to slide without friction on 

a skew helicoid with a horizontal director plane when no active force is exerted on the sphere. 

 

 First of all, the motion of the sphere around its center of gravity G is a uniform rotation around 

an axis with a fixed direction. Let us then study the motion of the center of gravity. 

 In order to study that motion, we can ignore the vis viva of the sphere around G (which is 

constant) and consider only the expression: 

 

T   = 2 2 21
2

( )M     + + . 

 Here, we have: 

   = 
2 2

sin
cos

K R
u

K u


 +

+
, 

   = 
2 2

cos
cos

K R
u

K u


 −

+
, 

   = 
2 2

K u
K

K u
 +

+
 

 

(R is the radius of the sphere, K is the pitch of the helicoid). As a result: 

 

T = 
2 2 2 2

2 2 2 21
2 2 2 2 2 2 2

1 4
K u K u K R

M u K u u
K u K u K u

 
    

   + + + + +    
+ + +    

. 

 

 Write down the Lagrange equation that relates to  : 

 

2 2
2 2

2 2 2 2

2d K u M K R
M u K u

dt K u K u


  
 + + +  

+ +  

= 0 , 

 

so one will have a first integral that one can also form by applying the remark to the helicoidal 

virtual displacement. 

 Combine that equation with the vis viva integral: 

 

()   
2 2 2 2

2 2 2 2

2 2 2 2 2 2
1 4

K u K R K R
u K u u

K u K u K u
 

   
   + + + + +   

+ + +   
 = b . 

 

 It will suffice for one to eliminate    from that equality and the equality: 
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()    
2 2

2 2

2 2 2 2
2

K u K R
u K u

K u K u


 
 + + + 

+ + 
 = C 

 

in order to obtain t as a function of u by an elliptic quadrature: 

 

( )   dt = 
2 2 2 2 2

2 2 2 2 2 2 2 2 2

[( ) ]

( ) ( ) ( )

du u K K R

u K h u K C u K h K R

+ −

+ + − + +
 = 

2 2 2 2 2

2 2

[( ) ]

( ) ( )

du u K K R

u K F u

+ −

+
. 

 

As for , it is given as a function of u by an elliptic quadrature and a logarithmic quadrature: 

 

( )   d = 
2 2 2 2 2 2 2 2 2 2

2 2

2 2

[( ) ] ( )
2

( ) ( )

du u K K R C u K K R
K R u K

u K F u

 + − + −
 − + 

+   

 . 

 

 The point G moves on a surface  that is parallel to the helicoid like a free point and describes 

a geodesic of that surface with a constant velocity. One can, moreover, discuss the motion when 

one supposes that R < K. 

 

 Discussion. – The derivative du / dt can change sign then only if u attains a value that annuls 

F (u). Set 2 2u K+  = V. The equation: 

 

F1 (V) = 
2 2 2 2bV C V h K R− +  = 0 

 

has roots V1 and V2 that are real or imaginary according to whether the positive number 
2 /C b  is 

or is not greater than 2 K R . If 
2 /C b  is found between 2 2R K+  and 2 K R then those roots will 

be smaller than 2K . If 
2 /C b  is greater than 2 2R K+  then 2K  will be separate V1 from V2 . From 

that: 

 

 1. Suppose that 
2 /C b  < 2 2R K+ . F (u) will not be annulled for any value of u. u will always 

vary in the same sense then, and its absolute value  will increase indefinitely with t. du / dt will 

tend to h  (according to the sign of 0u ). d / dt will keep a constant sign after a certain time 

interval and then decrease in absolute value indefinitely: 

 

d

dt


 = 

2
(1 )

C

u
+ , 

 

in which  tends to zero when | u | grows without bound. It follows from this that  will tend to a 

limit 1 . The point G goes to infinity along a branch of the curve that is asymptotic to the line: 

 

 = u cos 1 ,  = u sin 1 ,  = K 1 + R . 
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 It is appropriate to point out the particular case of 2 /C b  = 2 K R, in which the two roots r1 

and r2 of F1 () are equal. The double root is then equal to + K R, and the equation ( )  will give: 

 

b t  = u + R arctan 
u

K
 + const. 

 The motion will take place as before, moreover. 

 

 2. Suppose that 2 /C b  < 2 2R K+ . v0 = 2 2

0u K+  is then greater than the largest root v1 of 

F1(V). One can always suppose that u0 > 0. If 0u  is positive then u will increase constantly and 

indefinitely as in the first case. If 0u  is negative then then u will decrease down to the value u1 = 

+ 2

1v K− and then grow indefinitely. The derivative d / du is infinite for u = u1 . The trajectory 

will be tangent to the curve u = u1 . 

 

 3. Suppose that 
2 /C b  = 2 2R K+ . One will then have v1 = 2K , u1 = 0 . F (u) will contain 

2u  

as a factor. If u0 is positive then 0u  will also be positive, and u will increase indefinitely. If 0u  is 

negative then u will decrease and tend to zero as t grows without bound.    will tend to 
2 2 2/ ( )C R K+ . The projection of the trajectory onto the xy-plane will admit the circle of radius R 

whose center is at O as a circular asymptote. If 0u  = 0 then one will necessarily find oneself in the 

second or third case. In the second case, u  will necessarily increase. In the third case, one will 

have: u  u (0), while  will vary in proportion to time. 

 

 When R is greater than K, it will be impossible to pursue the discussion if u attains one of the 

values  u1 = ( )K R K −  that annul the denominator of du / dt. Suppose that one has u = u1 for 

t = t1 . du / dt is infinite for t = t1 , and one has: 

 

 (t – t1) = (u – u1)
2 [ + (u – u1) A] , 

 

in which  is a positive number. One must take the + sign before (t – t1), and if one sets  =  (t – 

t1)
1/2 then one will have: 

 

u – u1 =  [ +   + …] =  (t – t1)
1/2  (t) + (t – t1)  (t) . 

 

Now the initial conditions do not permit one to determine the sign that one must take for (t – t1)
1/2. 

There are two possible trajectories through the point G. 

 The helix u = u1 of the surface  is a locus of singular points of that surface: That singularity 

in the motion will present itself, moreover, only when 
2 /C b  is smaller than 2 K R, i.e., if the roots 

of F1 (v) are imaginary, because in the opposite case, F1 (KR) would always be negative. 

 Here is another exercise in which the application of the vis viva theorem will encounter some 

difficulties. 
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 IV. – One extremity of a bar AB slides without friction on a vertical line OZ, while the other 

slides on a horizontal plane xOy. That bar is massive and homogeneous, and each of its elements 

is attracted to the point of intersection O of OZ and that plane in proportion to its mass and in 

inverse proportion to the square of the distance to that point. Find the motion of the bar. 

 

 The position of AB depends upon two parameters, namely, BOx = , BAO = . 

 The via viva theorem and that of the quantities of motion, when applied to Oz, will give two 

first integrals. However, we shall obtain them by the Lagrange 

method. 

 

 Calculate the vis viva of the bar. – Let l be the length of 

the bar. M is an arbitrary point that is defined by AM = . 

 The coordinates are: 

 

x =  sin  sin  ,  so   x  = [cos cos sin sin ]     −  

y =  sin  sin  ,  so   y  = [cos sin sin cos ]     +  

z = (l – ) cos  ,   so   z  = − ( )sinl   −   

 

 The semi-vis viva of the element d that is attained at the point M is: 

 
2 2 2 2 2 2 2 21

2
{ (cos sin ) ( ) sin }l d           +  + −  , 

 

in which one sets the density equal to unity. 

 The semi-vis viva of the system is then: 

 

2 2 2 2 2 2 2 21 1
2 2

0 0

(cos sin ) sin ( )

l l

d l d            +  +  −  . 

Hence: 

T = 3 2 2 21
6

( sin )l    + . 

 

 Calculating the virtual work done by the system. – Let Q1  + Q2  be the virtual work done 

under a displacement (, ). 

 First recall a known theorem: The action of the bar AB 

on the point O under the stated conditions will be the 

same as the one that is exerted by an arc of a circle of the 

same density with its center at O that is tangent to AB and 

bounded by OA and OB when its elements are subject to 

the same law of attraction to O. 

 It results from this that by reason of symmetry, the 

actions of the point O on the elements of the bar AB have 

a resultant that applies to the point I where the bar AB 

z 

y 

O 

B 

x 

 

A 

M 

 

 

O b B 

z 
F 

A B 
I 

J  
G 

  
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meets the bisector of the angle AOB and points along IO. The point of application in the bar varies 

at each instant. As for the intensity, an easy calculation will give the value: 

 

2f

OP
, 

 

in which f is the coefficient of attraction, or upon setting 2f  =  : 

 

OP


. 

 Furthermore: 

OP = OA sin  = l sin  cos  . 

 

 Having assumed that, under a virtual displacement , the point I will displace normally to the 

attractive force IO while remaining fixed in the bar, and the center of gravity G, which is the point 

of application of the weight, will displace horizontally. The virtual work done under the 

displacement will then be zero, and one will have: 

 

Q2 = 0 . 

 

 In order to evaluate Q1, consider a displacement , and evaluate the virtual work done by 

weight and the attraction separately. 

 

 Weight. – The dimension of the center of gravity is 1
2

cosl  . The virtual work done by weight 

will then be: 

− 1
2

sinM g l   , 

i.e.: 

− 21
2

sing l   . 

 

 Attraction. – Calculate the displacement of the point I, which is considered to be fixed in the 

body. Let AI = , while  and  are the coordinates of I with respect to OZ and OB. 

 One has: 

  =  sin  ,  = (l – ) cos  ,  =  (?). 

 Thus: 

 =  cos    ,  = − (l – ) sin     

 

 The component  of the displacement along IO is: 

 

 = − ( + ) cos 
4


= 

1
[( )sin cos ]

2
l     − − , 
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i.e., upon taking into account the fact that one has: 

 

cos




 = 

sin

l 



−
 = 

sin cos

l

 +
 , 

one will have: 

 = 
2 2sin cos

sin cos2

l  


 

−

+
,   = (sin cos )

2

l
  − . 

 

 The virtual work done by the attraction is: 

 

d
OP


 , 

i.e.: 

1 1

cos sin2




 

 
− 

 
. 

 Therefore, one finally has: 

Q1 = 21
2

1 1
sin

cos sin2
g l




 

 
+ − 

 
 . 

 

 One remarks that Q1 and Q2 are the partial derivatives of the function U : 

 

U = − 21
2

tan
4 2

cos log const.
2 tan

2

g l

 






  
−  

  + +
 
  

 

 

 Equations of the problem. – One first has the vis viva integral: 

 

T = U + h , 

i.e.: 

3 2 2 21
6

( sin )l    +  = − 21
2

tan
4 2

cos log
2 tan

2

g l h

 






  
−  

  + +
 
  

 . 

 The Lagrange equation that relates to  is: 

 

( )3 21
6

sin
d

l
dt

   = 0 , 

so: 
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2sin   = const. = k . 

 That is also the area integral. 

 If one infers  from that equation in order to substitute in the vis viva equation then that will 

give: 

3 21
6
l   = − 21

2

tan
4 2

cos log
2 tan

2

g l h

 






  
−  

  + +
 
  

, 

or rather: 

2 21
6
l   = 31

6

1

( )
l


 . 

 As a result: 

  t = ( ) d  , 

   = 
2

( )

sin

k
d




 . 

 One is then reduced to quadratures. 

 

 We shall now study the motion of a system that depends upon more than two parameters. 

 

 V. – A massive homogeneous solid body of revolution is traversed along its axis by a needle 

that is fixed in it and one of whose extremities slides without friction along a vertical Oz, while the 

other slides on a horizontal plane xOy. Study its motion. 

 

 The motion depends upon three parameters: 

two to fix the position of the axis of revolution 

and one to fix the position of the body about 

that axis. 

 We could get three first integrals by 

applying: 

 

 1. The vis viva theorem. 

 

 2. The theorem of moments of quantities 

of motion with respect to Oz. 

 

 3. The theorem of moments of quantities 

of motion with respect to the axis of 

revolution AB for the motion around the 

center of gravity (viz., third Euler equation). 

 

 However, we shall appeal to the Lagrange equations. 

y 

y1 

B 

 − /2 
O  

x 

x1 

G 

 

 

X 

A 

Z z 

 

z1 

Y 
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 Calculating the vis viva of the system. – Consider the axes (Ox, Oy, Oz) and the axes that are 

parallel to them (Gx1, Gy1, Gz1), which are drawn through the center of gravity. 

 Let G be the trace on x1Gy1 of the plane that is draw through G perpendicular to AB. Let GX 

and Gy be two rectangular lines in that plane that are fixed in the solid. 

 Let: 

 = 
1AGz ,  = 

1x G ,  = GX . 

 One then concludes that: 

OAB  =  , xOB  = 
2


 −  . 

 

 Hence, the angles , ,  will permit one to determine the position of the body. 

 

 Vis viva of the center of gravity. – Let AG = d. The coordinates of the point G with respect to 

(Ox, Oy, Oz) are: 

 

 x = d sin  sin  , so: x  = [sin cos cos sin ]d        +   , 

 y = d sin  cos  , y  = [sin sin cos cos ]d        −   , 

 z = (l – d) cos  , z  = − ( )sinl d  −  . 

 

 The vis viva of the center of gravity, where all of the mass is concentrated, will be: 

 
2 2 2 2 2 2 2 2[ (sin cos ) [( ) sin ]M d l d        +  + −   . 

 

 Vis viva of the motion around the center of gravity. – Since the body is one of revolution, and 

, ,  are the Euler angles, that vis viva will be: 

 
2 2 2( )A p q C r+ + , 

with 

  p = sin sin cos      +  , 

  q = cos sin sin      −  , 

  r = cos    + . 

 It will then be: 
2 2 2 2(sin ) (cos )A C         + +  + . 

 

 As a result, the total vis viva of the system will be: 

 

2T = 
2 2 2 2 2 2 2 2 2( )sin { [ cos ( ) sin ]} (cos )A M d A M d l d C          +  + + + − +  + . 

 

 Furthermore, there is a force function: 
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U = M g (l – d) cos  . 

 

 Lagrange equations. – U and T contain neither  nor . 

 One will then have: 

d T

dt 

 
  

 = 0 ,  
d T

dt 

 
  

 = 0 , 

i.e., 

 

(1)      cos   +  = const. = a , 

 
2 2( )sin cos ( cos )A M d C       +  + +  = const. 

 If one sets: 

 = 
2

aC

A Md+
 

then the last equation can be written: 

 

(2)      2sin cos    +  = b . 

 

 Finally, upon taking (1) into account and setting: 

 

2

( 2 )M l l d

A Md

−

+
 =  , 

2

2 ( )M g l d

A Md

−

+
 =  , 

 

the vis viva equation will give: 

 

(3)  
2 2 2 2sin (1 sin )     + +  =  cos  + b . 

 

 If one eliminates    from (2) and (3) then that will give: 

 

(1)   t = 
2

2 2

1 sin
sin

( cos )sin ( cos )
d

b b

 
 

    

+

+ − − , or t = ( )F d  . 

 

 As a result, (2) will then give: 

 

(2)       = 
2

cos
( )

sin

b
F d

 
 



−
 . 

 Finally, (1) gives: 

(3)      = 
2

cos ( cos )
( )

sin

b
a F d

  
 



− 
− 

 
 . 
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 The problem is then reduced to quadratures. 

 In order to discuss the motion, one sets cos  = u . That will give: 

 

 t = 
2

2 2

1

( )(1 ) ( )

u
du

u b u b u

 

 

+ −

+ − − − . 

 

 The numerator of the quantity that is placed under the radical is not annulled when u varies 

from – 1 to + 1. The denominator admits two roots u1 and u2 that are found between – 1 and + 1. 

 will then vary between two limits 1 and 2 . After a certain period T, the motion will 

recommence, except that  and  will be increased by a certain constant. Observe that sin  = 0 

presents itself as a singular value in equations (2) and (3).  can become equal to 0 only if b = , 

and equal to p only if b = −  . All of the difficulty in introducing the trigonometric lines at an 

angle of  / 2 will disappear for those particular initial conditions. For example, if b =  then one 

will have: 

 t = 
2

2 2

1 sin
cos

( cos )cos sin
2 2

d

b b

 
 

 
 

+

+ −
  = ( )F d  , 

and 

  = 
2

( )

2cos
2

b
F d 

 , 

   = 
2tan ( )

2 2 2

b b
a F d


 

 
− + 

 
 . 

 

Those equations are regular in the neighborhood of  = 0. 

 

___________ 

 



LECTURE 9 

______ 

 

APPLICATIONS OF THE LAGRANGE EQUATIONS (CONT.). 

LIOUVILLE’S THEOREM. RELATIVE MOTION. 
_________ 

 

 

 Liouville indicated a very extensive case in which the Lagrange equations can be integrated by 

quadratures. 

 Consider a frictionless system whose constraints are independent of time and whose vis viva 

is expressed as a function of the parameters q1, q2, …, qk in the form: 

 

(1)  2T = 2 2 2

1 1 1 2 2 2[ ( ) ( ) ( ) ]k k kA q q A q q A q q   + + +  , 

 

in which  is a sum of k functions 1, 2, …, k of q1, q2, …, qk, respectively: 

 

 = 1 (q1) + 2 (q2) + …, k (qk) . 

 

 The motion of such a system can always be calculated by quadratures when each active force 

that is exerted on it, or more generally, when the active forces that are exerted on it, admit a force 

function U (q1, q2, …, qk) of the form: 

 

U = 



 = 1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( )

k k

k k

q q q

q q q

  

  

+ + +

+ + +
 . 

 That is Liouville’s theorem. 

 First of all, it will suffice to replace the parameters q1, q2, …, qk with the parameters u1, u2, …, 

uk, which are coupled with latter by the relations: 

 

( )i i iA q dq  = dui , 

in order to reduce T to the form: 

 

(2)     2T = 2 2 2

1 2 1 2( )( )k kq q q     + + + + + +  . 

 

 Having made that substitution, one writes down the Lagrange equations: 

 

(3)     
2 2 2

1 2

1
( ) ( )

2
i k

i

d
q q q q

dt q





   − + + +


 = 

i

U

q




. 

 The equality of the vis viva : 
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(4)  T = 2 2

1( )
2

kq q


 + +  = U + h  

 

is a consequence of those equations. Now multiply the two sides of equation (3) by 2 iq  . That 

will give: 

2 2 2 2

1( ) ( )i i k

i

d
q q q q

dt q


 


   − + +


 = 2 i

i

U
q

q






, 

 

or rather, upon taking (4) into account: 

 

2 2( ) 2 ( )i i

i

d
q q U h

dt q





 − +


 = 2 i

i

U
q

q






, 

or finally: 

2 2( )i

d
q

dt
   = 2 ( )i

i

q U h
q




 +


 , 

but: 

 (U + h) = 1 (q1) + … + k (qk) + b [1 (q1) + …, k (qk)] . 

Therefore: 

2 2( )i

d
q

dt
   = 2 ( )i i i

i

d
q b

dq
  +  = 2 ( )i i

d
b

dt
 + , 

or finally: 
2 21

2 iq   = i + b i + i . 

 

 The i and b are arbitrary constants that are subject to the single condition that equation (4) 

must be verified: 

T = U + b . 

Now the equalities: 

21
2 iq   = i i ib  



+ +
 

imply that: 

T = 2 2 2

1 2( )
2

kq q q


  + + +  = 1 2 kb


  


+ + + + +  

  = U + b + i

i

 . 

 

 It is then necessary and sufficient that one should have: 

 

i

i

  = 0 . 
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 By definition, the Lagrange equations in this case are equivalent to the equalities: 

 
2 2

iq   = 2 (i + b i + i) = 2 Fi (qi)  (i = 1, 2, …, k) , 

 

in which h and  denote (k + 1) arbitrary constants that are subject to the single condition that: 

 

1 2 k  + + +  = 0 . 

 One deduces from this that: 

 

2 dt


 = 1

1 1( )

dq

F q
 = 2

2 2( )

dq

F q
 = … = 

( )

k

k k

dq

F q
. 

 

 The last (k – 1) equalities give the relations between q1, q2, …, qk and k – 1 arbitrary constants 

by quadratures. t is given by one last quadrature when one has expressed, for example, q2, q3, …, 

qk as functions of q1 . One further points out that one has: 

 

2 dt


 = 1 1 2 2

1 2 1 2

1 k k

k k

dqdq dq

F F F

 

  

 
+ + + 

+ + +   

 , 

and as a result: 

2 dt  = 1 1 2 2

1 2

k k

k

dqdq dq

F F F

 
+ + +  , 

or 

2  + const. = 1 1 2 2

1 2

k k

k

dqdq dq

F F F

 
+ + +    . 

 

 We have supposed that the vis viva T reduces to the form: 

 

T = 2 2 2

1 2[ ]
2

kq q q


  + + +  . 

 

 If we now revert to the more general form: 

 

2T = 2 2 2

1 1 2 2 1 1 1 2 2 2[ ( ) ( ) ( )] [ ( ) ( ) ( ) ]k k k k kq q q A q q A q q A q q     + + + + + +  

 

then it will result immediately from the foregoing that in the case where U has the form: 

 

U = 



 = 1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( )

k k

k k

q q q

q q q

  

  

+ + +

+ + +
 , 
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the motion will be determined by the equalities: 

 

1 2

2

k

dt

  + + +
 = 1 1

1

dq A

F
 = 2 2

2

dq A

F
 = … = k k

k

dq A

F
 , 

 

in which Fi = i (qi) + b i (qi) + i . b and the i are constants that are subject to the conditions: 

 

i  = 0 . 

 

 Those equalities are equivalent to the following ones: 

 

1
1 1

1

A
dq

F
+  = 2

2 2

2

A
dq

F
+  = … = k

k k

k

A
dq

F
+ , 

and 

2 const.t +  = 1 2
1 1 2 2

1 2

k
k k

k

AA A
dq dq dq

F F F
  + + +   . 

 

That is Liouville’s theorem in its most general form. 

 

 We shall now indicate some applications of that theorem. 

 

 First of all, when no active force is exerted on the system, it will suffice that the vis viva should 

have the form: 

T = 2 2 21
1 2 1 1 2 22

( )( )k k kA q A q A q     + + + + + +  

 

if one is to integrate the motion by the preceding method. The functions Fi that were introduced 

above then reduce to b i + i, respectively. 

 For example, if the 
2ds  of a surface can be put into the form: 

 
2ds  = 2 2

1 2 1 1 2 2( )( )A q A q   + +  

 

then the geodesics of that surface will be given by the equation: 

 

1 1

1 1

dq A

b +
  = 

2 2

2 1

dq A

b −
  = const. 

 

 (One can set b = 1 in that equation.) 

 That is what happens with the second-degree surfaces when one introduces elliptic coordinates. 

However, that is a point to which we shall return in what follows. 
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 In particular, when the surface is a plane (or applicable to a plane), one can put the 2ds  into 

the form in question in an infinitude of ways. Thus, let x and y be the Cartesian coordinates of a 

point in the plane. One has: 
2ds  = 2 2dx dy+ . 

 

 Liouville’s theorem applies if U has the form: 

 

U = 1 (x) + 2 (y) . 

 

 Similarly, employ polar coordinates: 

2ds  = 2 2 2dr r d+  = 
2

2 2

2

dr
r d

r


 
+ 

 
 . 

 

Here,  = 2r , A1 = 21/ r , A2 = 1. Liouville’s theorem will apply if one has: 

 

U =  1 22

1
( ) ( )r

r
  + . 

 

In order to do that, it is necessary and sufficient that the active force that is exerted on the point M 

should admit a force function, and that its component FN that is normal to the radius vector OM 

should vary along each radius vector in inverse proportion to the square of OM : FN = 2( ) /K r . 

The relation between r and t is the same as if FN were zero. 

 When the surface is one of revolution, one can give 
2ds  the expression: 

 

2ds  = 
2 2 2 2[1 ( )]dr r r d + +  = 

2 2
2 2

2

[1 ( )]dr r
r d

r




 +
+ 

 
. 

 Liouville’s theorem applies if U has the form: 

 

U =  1 22

1
( ) ( )r

r
  + . 

 

 One can deduce from that, for example, that the motion of a point on a skew helicoid with a 

director plane is determined by quadrature when the active force that is exerted on the point admits 

a force function and that along each rectilinear generator, the component of that force along the 

tangent to the helix that passes through that point will vary in inverse proportion to the square of 

the distance from the point to the axis of the surface. 

 As a more complicated example, let us treat the following classical problem: 
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 I. – A free material point is attracted to two fixed points F and F  in inverse proportion to the 

square of the distance between them and to the point O that is the midpoint of FF   in proportion 

to the distance to that point. Find the motion of the point. 

 

 First suppose that the point is released with no initial velocity or with an initial velocity that is 

found in the plane F M F . The point M constantly moves in that plane. Take the x-axis to be the 

line OF and the y-axis to be the perpendicular Oy. Among the conics that have F and F   for their 

foci and whose equations can be written: 

 

(1)    
2 2

2

x y

u u c
+

−
 = 1 , 

 

there exist two of them that pass through the point M at a given instant. For given x and y, equation 

(1), which is in terms of u, will indeed admit two real roots and positions, one of which  is greater 

than 
2c  and corresponds to an ellipse, while the other one  is smaller than 

2c  and corresponds to 

a hyperbola. One can determine the position of the point M in the plane with the aid of the two 

parameters  and . One has: 
2 2

2

x y

c 
+

−
 = 1 , 

(0 <  < 2c  < ) 
2 2

2

x y

c 
+

−
 = 1 . 

 One deduces from this that: 

 
2 2c x  =   ,  2 2c y  = 

2 2( )( )c c − − , 

and as a result: 

  2
dx

x
 = 

d d 

 
+ , 

2
dy

y
 = 

2 2

d d

c c

 

 
+

− −
, 

so 

24 ds  = 
2 24( )dx dy+  = 

2 2

2 2
( )

( ) ( )

d d

c c

 
 

   

 
− + 

− − 
 . 

 

 The 
2ds  is then expressed as a function of  and  in the Liouville form. We can write: 

 

2T = 

2
ds

m
dt

 
 
 

 = 
2 2

2 2
( )

4 ( ) 4 ( )

m m

c c

 
 

   

  
− + 

− − 
 . 

Here: 
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1 =  , 2 = −  , A1 = 
24 ( )

m

c  −
, A2 = 

24 ( )

m

c −
. 

 

 In order for Liouville’s theorem to apply, it is necessary and sufficient that one should have: 

 

U = 1 2( ) ( )   

 

+

−
 . 

 

 Now set: r = FM, r  = F M ,  = OM. The latter equation will become: 

 

U = 2K K

r r
 


+ +


, 

 

in which K, K  ,  are given coefficients. However, since   is the major axis of the ellipse u = 

, one will have: 

r r+  = 2  , 

 

and similarly, upon considering the hyperbola u =  : 

 

r r−  = 2  . 

 Hence: 

r =  + , r  =  − , 

 

K

r
 = 

K

 +
 = 

( )K  

 

−

−
, 

 

K

r




 = 

K

 



−
 = 

( )K  

 

 +

−
. 

 Finally: 
2  = 

2 2x y+  =  +  + const., 

2   = 
2 2( )  

 

−

−
+ const. 

 As a result: 

U = 
2 2( ) ( )K K K K     

 

 + + + − −

−
 = 1 2( ) ( )   

 

+

−
. 
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 That result further persists when one supposes that the point M is attracted (or repelled) by the 

x-axis and the y-axis in inverse proportion to the cubes of its distances to those axes. In order to 

take those forces into account, it is necessary to add a term U1 to U that has the form: 

 

U1 = 
2 2x y

 
+  , 

in which  and  are given coefficients. 

 However, one knows that: 

 

  
2

1

x
 = 

2c

 
 = 

2 1 1c

   

 
− 

−  
 , 

2

1

y
 = 

2

2 2( ) ( )

c

c c − −
 = 

2

2 2

c

c c

 

   

 
+ 

− − − 
 . 

 Therefore: 

U1 = 
2 2

2 2

1 c c

c c

     

     

 −
+ + + 

− − − 
 . 

 

 Thus, the sum U + U1 still has the form: 

 

1 2( ) ( )   

 

+

−
 . 

 

 The motion of the point is determined by the equalities: 

 

(2)  
8 dt

m  −
 = 

2

1 1( )( )

d

c



     − + +
 = 

2

2 1( )( )

d

c



     − − −
, 

with 

  1 () = 
2

2
( )

c
K K

c

  


 
+ − +

−
 , 

  2 () = 
2

2

2
( )

c
K K

c

  
  

 
− − + +

−
 . 

 

 Those equalities imply the following: 

 

8
t

m
 + const. = 

2 2

1 1 2 1( )( ) ( )( )

d d

c c

   

         
−

− + + − − −
   . 

 

 However, we know that in this case the motion of the point is uniform and rectilinear: 
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x = a t + b , y = a t b + , y = a x + p . 

 

 If one replaces x and y as functions of ,  then one will see that the equations (1) can be 

integrated algebraically. 

 The integral of the equation: 

 

(4)  
2

1( )( )

d

c



   − +
 = 

2

1( )( )

d

c



   − +
 

 

is then algebraic and will have the form: 

 

2 2( ) ( )A A c c A    + − − +  = 0 . 

 

A, A , A  are constants whose values one can easily find by expressing x0, y0, 0y  as functions of 

the initial values 0 = − 1 , 0 = 
1

0

du
C

d

 
 
 

 =  : 

 

A = 2

1( )C c + , A  = 2

1 ( )C c− − , A  = 2 2

1 1( )c c − + . 

 

C is an arbitrary constant in those equalities. 

 If one likewise supposes that the only force that is exerted on the point M is an attraction to the 

point O then equations (2) will become: 

 

8 dt

m  −
 = 

2 2

1( )( )

d

c



      − + +
 = 

2 2

1( )( )

d

c



      − + +
 . 

 

 One knows that x and y can then be expressed as functions of t with the aid of exponentials and 

that the relation between x and y is algebraic and of degree two. Equations (5) are then integrated 

with the aid of exponentials, and the integral of the equation: 

 

2 2

1( )( )

d

c



      − + +
 = 

2 2

1( )( )

d

c



      − + +
 

 

is algebraic. One knows that those equations are introduced into the theory of elliptic functions. 

 In the foregoing, we assumed that the point was launched in the plane F M F . Let us now 

suppose that the initial conditions are arbitrary. 

 The forces that are exerted on the point M (viz., attractions to the points F, F  , and O) all meet 

the axis Ox. Apply the theorem of moments to that axis. Upon letting R denote the distance from 
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the point M to the axis and letting  denote the angle between the plane MOx and the fixed plane 

xOy, that will give: 

2 d
R

dt


 = const. =  . 

 

 Having said that, let us study the relative motion of the point M in the plane MOx. In other 

words, let us study the motion of M with respect to the tri-rectangular trihedron Oxy1z1, where Oy1 

is the perpendicular that is drawn to Ox in the plane MOx at each instant. The point M constantly 

remains in the plane xOy1 with respect to that trihedron. Let us evaluate the projection of the force 

that is exerted on M relative to the axes Oxy1z1 onto that plane. The composite centrifugal force is 

normal to the plane MOx. The guiding force of (Fc) is situated in that plane and points along the 

perpendicular PM to Ox. That force will have the expression: 

 
2

1

d
m y

dt

 
 
 

 

 

when measured along Oy1. On the other hand: 

 
2

d

dt

 
 
 

 = 
2

4R


 = 

2

4

1y


; 

thus: 

Fc = 
2

3

1

m

y


. 

 

 It follows from this that the point M moves in the plane xOy1 as if the point were attracted to 

the point F and F   in inverse proportion to the square of the distance, to the point O in direct 

proportion to the distance, and is repelled by the axis Ox in inverse proportion to the cube of the 

distance with a coefficient of repulsion that is equal to 
2m  . The motion of the point will then be 

determined by the equalities that were written above. Observe that this result will persist when the 

axis Ox attracts (or repels) the point M in inverse proportion to the cube of its distance to the point. 

 Moreover, one will arrive at the same conclusions by studying the absolute motion of M with 

the aid of the Lagrange equations. Indeed, determine the position of the point M with the aid of 

elliptic coordinates ,  in the plane MOx, and the angle  that the latter plane makes with the xOy-

plane. One immediately finds that: 

 

T = 
2 2

2 2

12 2

( )

4 ( ) ( )

m
y

a c c

   


   

   − 
+ +  

− −   
 = 2 21

1 12
T m y + . 

 

 The Lagrange equations can be written: 

 



Lecture 9 – Liouville’s theorem. Relative motion. 130 

 

  2

1

d
m y

dt
  = 0 or 2

1y   =  , 

(i) 

  21 1 11
12

T T yd
m y

dt


  

  
− −

  
 = 

U






. 

 

Now, upon taking (i) into account: 

 

(j)  1 1T Td

dt  

  
−   

 = 
2

1

3

1

yU m

y



 


+

 
 = 1U






, 

if one sets: 

U1 = 
2

2

12

m
U

y


+  = 

2

2

12

K K m

r r y


 


+ + −


. 

Similarly: 

(k)  1 1T Td

dt  

  
−   

 = 1U






. 

 

 Those results coincide quite well with the ones that we just obtained. 

 

 Here is another application to the motion of a point on a surface: 

 

 II. – A point M moves without friction on a second-degree cone. It is attracted to the summit O 

of the cone in inverse proportion to the square of the distance OM and to the internal axis of the 

cone in inverse proportion to the cube of its distance MP to that axis. Find the motion of the point. 

 

 Define the axes Oxyz to be the three principal axes of the cone, where Oz is the internal axis. 

The equation of the cone is: 
2z  = 

2 2 2 2x y + . 

 

 Define the position of a point on the surface with the aid of the two parameters  and u : 

 

2  = 
2 2 2x y z+ + , u = 

y

x
. 

 

 The curvilinear coordinates u = u0 and  = 0 are defined by the rectilinear generators and their 

orthogonal trajectories. 

 One immediately finds that: 

2x  = 
2

2 2 21 (1 )u



 + + +
, 
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2y  = 
2 2

2 2 21 (1 )

u

u



 + + +
, 

   2z  = 
2 2 2 2

2 2 2

( )

1 (1 )

u

u

  

 

+

+ + +
.  

 

 If one sets D = 2 2 21 (1 )u + + +  then one will deduce these following three equalities: 

 

  
dx

x
 = 

2(1 )d u du

D

 



+
− , 

  
dy

y
 = 

2(1 )d du

u D

 



+
+ , 

  
dz

z
 = 

2 2

2 2 2

( )

( )

d u du

u D

  

  

−
+

+
, 

 

so upon replacing 2x , 2y , 2z  as functions of r and u, the sum 2 2 2x y z+ +  will have the value: 

 

2ds  = 
2 2 2 2 2 2

2 2

2 2 2 2

[ (1 ) (1 )]

( )

u
d du

u D

    


 

+ + +
+

+
. 

As a result, if one sets: 

A (u) = 
2 2 2 2 2

2 2 2 2 2 2 2

(1 ) (1 )

( )[1 (1 )]

u

u u

   

   

+ + +

+ + +
 

then one will have: 

T = 
2

2 21
2 2

( )m A u u





 
+ 

 
 . 

 

 Upon substituting the parameter  for the parameter u, one will have: 

 

 = ( )A u du  =
2 2 2 2 2

2 2 2 2 2 2

(1 ) (1 )

1 (1 )

u du

u u

   

   

+ + +

+ + + +  , 

 

and 
2ds  will reduce to the form: 

2ds  = 
2 2 2d d  + , 

 

which is an expression for 
2ds  in the plane in terms of polar coordinates. That result is easy to 

predict geometrically, moreover. 

 Let us now evaluate U. Let r = MP: 
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U = 
2

K K

r


+ . 

 Moreover: 

2r  = 2 2x y+  = 2 2z −  = 
2 2(1 )u

D

 +
, 

so: 

U = 
2 2

1

1

K D
K

u




 
+ 

+ 
 = 1 22

1
[ ( ) ( )]u  


+  . 

 

 Liouville’s theorem thus applies here. If one further desires that the problem comes down to 

the problem of motion of a point in a plane when it is subject to a force that admits a force function 

and whose component normal to the radius vector OM varies along OM in inverse proportion to 
2OM . 

 The equations that define the motion are: 

 

2

2 dt

m 
 = 

1

dt

F
 = 

2

( )A u
du

F
, 

with: 

  F1 = 
2K b C + + , 

  F2 = 
2

2 2 2

(1 )

(1 ) (1 )

K u
C

u 

 +
−

+ + +
. 

 Thus: 

2
dt

m
 = 

2

d

K b C

 

 + +
 

and 

2

d

K b C



  + +
 = 

2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

(1 ) (1 )

( )[1 (1 )]{ (1 ) [1 (1 )]}

u
du

u u K u C u

   

     

+ + +

+ + + + + − + + +
 . 

 

 The relation between  and t is independent of the coefficient of attraction to the axis Oz. 

 In conclusion, we add that one must often apply Liouville’s theorem in the simple case where 

 is a constant, i.e., the case in which T has: 

 

T = 2 2 2

1 1 1 2 2 2( ) ( ) ( )k k kA q q A q q A q q  + + +  . 

 

 It is necessary and sufficient that one must have: 

 

U = 1 (q1) + 2 (q2) + … + k (qk) . 

 

 Let us recall, for example, the problem that was treated before (see page 37). 
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 III. – Two points A and B of a massive solid body slide without friction along two fixed parallel 

lines. Find the motion of the system. 

 

 While preserving the notation on pages 37 and 38, one will find that: 

 

2T1 = 2 2 2( cos )a b M   + + , 

U =  cos  +  sin  + r  , 

 

in which a, b, M, , , r are given coefficients. The motion is then determined by the equations: 

 

2 dt  = 
2cos

cos sin

a b
d




    

+

+ +
 = 

M
d

  +
 , 

 

in which  and  are constants. 

 We will recover Liouville’s theorem along a different path and return to its applications. 

 

____________ 



LECTURE 10 

__________ 

 

 

APPLICATION OF THE LAGRANGE EQUATIONS TO THE  

STUDY OF THE RELATIVE MOTION OF SYSTEMS 

__________ 

 

 Let two systems of coordinate axes (Ox, Oy, Oz) and (, , ) be animated with respect 

to each other by an arbitrary given motion. 

  

Let a, b, c denote the coordinates of  with respect to Oxyz 

 , ,   the direction cosines of    

 , ,                       

 , ,                       

 

 Those twelve quantities are given functions of time t. 

 Consider a free material point and suppose that one knows 

the form of the force (F) relative to the axes Oxyz that is exerted 

on that point. One proposes to study the motion of a point M 

with respect to the axes . 

 It is clear that when one knows the motion of M with respect 

to the first set of axes, from the formulas for changing axes, one 

will know its motion with respect to the second one, but that 

calculation is generally inconvenient. 

 A better process consists of using Coriolis’s theorem. One 

calculates the force relative to the axes  that is exerted on 

M by the formula: 

 

(Fr) = (Fa) – m (r) – m (c) 

 

and studies the motion of a point that is subject to the force Fr . 

 In place of that, one can calculate the vis viva 2T of the point M in its motion with respect to 

Oxyz as a function of the parameters , , , and write the three Lagrange equations: 

 

d T T

dt  

  
−   

 =  , 
d T T

dt  

  
−   

 =  , 
d T T

dt  

  
−   

 =  . 

 

y 

O x 

z  
 

 

 
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 If the force (F) admits a force function U then the three right-hand sides are equal to 
U






, 

,
U







U






, respectively. 

 More generally, let M be a material point that is or is not free. Let (F) be the active force that 

is exerted on it relative to the axes Oxyz. Express its coordinates , ,  as functions of the most 

convenient parameters qi (and also t, necessarily). In order to study the motion of the point M with 

respect to the axes , one can pursue the following methods: 

 

 Method 1. – One calculates the active force () relative to  using the Coriolis formula: 

 

() = (F) – m (e) – m (c) 

 

and the vis viva 2T relative to  : 

 

T1 = 2 2 21
2

( )m     + +  . 

 

One then writes the Lagrange equations: 

 

d T T

dt q q

  
− 

  
 = Q , 

 

where Q q denotes the virtual work done by  during the displacement q. The equations thus-

obtained will define the parameter q, and as a result,   , as a functions of t. 

 

 Method 2. – One calculates the vis viva 2T1 with respect to Ox, Oy, Oz, instead. One can 

calculate the vis viva 2T2 with respect to Ox, Oy, Oz. One only has to write down the equations: 

 

d T T

dt q q

  
− 

  
 = Q 

then, in which: 

Q q  = ( )X x Y y Z z  + +  , 

 

if X, Y, Z are the components of (F) along (Ox, Oy, Oz). 

 The ultimate equations to which one arrives are the same as before, but the calculation is more 

convenient. 

 In order to calculate T2, it is not necessary to form the expressions for x, y, z as functions of q 

and t. It is easy to calculate the velocity V of M with respect to Ox, Oy, Oz as functions of , ,  

and 
d

dt


, 

d

dt


, 

d

dt


. Indeed, the velocity of the point M at each instant is the same as if the point 



Lecture 10 – Application of the Lagrange equations to the relative motion of systems.  136 

 

had been animated with a translatory motion whose velocity is the same as that of the origin  and 

a rotational motion  around a certain axis I. 

Let u, v, w denote the components of  the velocity of  along , ,  

 p, q, r                 the rotation I   

 The velocity of the point M with respect to Ox, Oy, Oz has the components along , ,  : 

 

V = 
d

u q r
dt


 + + − , 

V = 
d

v r p
dt


 + + − , 

V = 
d

w p q
dt


 + + − . 

 Thus: 

 

T2 = 21
2
mv  = 

2 2 2

1
2

d d d
m u q r v r p w p q

dt dt dt

  
     

      
+ + − + + + − + + + −      

       

. 

 

 It is easy to develop the expression for that vis viva. 

 We remark that there is a term that one can neglect in the calculation. It is 2 2 21
2

( )m u v w+ + . 

Indeed, it contains only t and will contribute nothing to the derivatives with respect to qi and iq . 

 

 Method 3. – One sometimes presents the preceding calculation in a somewhat-different form 

(9): 

 One considers a system of intermediate axes ( , , )x y z      that are parallel to (Ox, Oy, Oz). 

One calculates the vis viva and the active force with respect to those axes and applies the Lagrange 

equations. 

 The active force with respect to those axes is: 

 

( )F  = (F) – m () , 

 

in which F is the active force with respect to (Ox, Oy, Oz) and  

is the acceleration of the point  with respect to (Ox, Oy, Oz). 

  is calculated with no difficulty, and as a result, F will be 

obtained quite easily. 

 As for the vis viva T3 relative to ( , , )x y z     , if one 

keeps the preceding notations then it will be obvious that: 

 

 
 (9) Gilbert – Annales de la Société Scientifique de Bruxelles 6 (1882), pp. 270, et seq.  

y 

O x 

z 

  

 

 
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T3 = 

2 2 2

1
2

d d d
m q r r p p q

dt dt dt

  
     

      
+ − + + − + + −      

       

. 

 

 One finally writes out the Lagrange equations: 

 

3 3T Td

dt q q

  
− 

  
 = Q , 

 

in which Q q  is the virtual work done by the force F  . 

 We remark that: 

T3 =  + G + , 

upon setting: 

   = 

2 2 2

1
2

d d d
m

dt dt dt

        
+ +      

       

 , 

  G = ( ) ( ) ( )
2 2 21

2
m q r r p p q      − + − + −

 
 , 

   = ( ) ( ) ( )
d d d

m q r r p p q
dt dt dt

  
     

 
− + − + − 

 
 . 

 

 Those three terms can be interpreted as follows: 

 

  is the vis viva of the motion of the point with respect to , ,  . G is the vis viva of the 

point that is due to the instantaneous rotation about the axis I. If r is the distance from M to I 

then we will have: 

G = 2 21
2

( )mr  . 

 

 Finally, the expression for  is written in the form: 

 

 = 
d d

p m
dt dt

 
 

 
 − + + 

 
 

 

 If we let P denote the moment with respect to  of the quantity of motion of the point M during 

its motion with respect to (, , ) and let P, P, P be its projections onto those axes then 

we will have: 

 = p P + q P + r P  

or 

 =   P cos (, P) . 
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 Therefore,  is the geometric product of the instantaneous rotation I with the moment with 

respect to  of the quantity of motion of the point due to its motion with respect to the reference 

axes , ,  . 

 Those geometric interpretations facilitate the calculation of the vis viva in certain cases. 

 

 Remark. – It is important to observe that the three indicated methods will lead to the identical 

differential equations for defining the parameters q that determine the position of point. 

 

 Example. – Motion of a massive point that moves without friction in a vertical plane that is 

animated with a rotational motion around a vertical axis. 

 

 Let Oz be the rotational axis, while Ox, Oy are two fixed horizontal axes. 

 Take the reference axes to be (O, O, O), in which O is perpendicular to the given plane, 

while O coincides with Oz. 

 Suppose that the mass of the moving point is equal to unity. Define the position of that point 

by its coordinates: , , while  is zero. Finally, let  be the velocity of rotation. 

 

 First method. – One has: 

 

2T4 = 2 2  + . 

 

 Calculating the virtual work. – In this 

particular case, one should not be preoccupied 

with the composite centrifugal force, which is 

normal to the plane that describes the moving 

point, and consequently, to any virtual 

displacement. 

 The guiding force is 
2 M  , in which M 

is the distance from M to Oz; it points from M to Oz. The given force is gravity. One immediately 

finds that: 

  Q = − g , 

   Q = 
2  . 

 

 The corresponding Lagrange equations are: 

 

2

,

,

g

  

 = −


 =
 

whose first integrals are: 

   = − g t + A , 
2  = 

2 2 B  + , 

and the complete integral is: 

 

 

y 

 

z 
 

M 

 

x 
m 

 
s 

 
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 = − 21
2

g t At A+ + ,   = t tC e D e −+ . 

 

 Those integrals can be obtained by applying the vis viva theorem to the projections into Oz. 

 

 Second method. – One has: 

x = l cos  t +  sin  t , 

y = l sin  t −  cos  t , 

  z =  , 

 

in which l denotes the distance from O to the given plane. 

 One then concludes that: 

2T2 = 2 2 2 2 2 22l l       + + + + . 

 There is a force function: 

U = − g  . 

 The Lagrange equations are: 

 

2 2

,

( ) 0 or 0.

g

d
l

dt



      

 = −



 + − = − =


 

 

 Third method. – The intermediate axes coincide with Ox, Oy, Oz. As a result, T3 will be 

identical to T2 . One confirms that with the aid of Gilbert’s formulas. One has: 

 

  2  = 
2 2  + , 

   2  = 2 2 2( )l  + , 

  2  = 2 l    ( , )P  = 0 . 

 As a result: 

T3 = T2 . 

 

 The origin of the instantaneous axis is fixed. One will then have only gravity as the given force, 

and one will recover the preceding equations. 

 One easily treats the same problem by supposing that, in addition, the point is attracted by each 

element of the Oz axis according to a function of distance, and similarly by supposing that the 

point moves on a vertical cylinder that turns uniformly around a vertical axis. 

 

 

Extending the preceding consideration to the relative motion of systems. 

 

 When one has to study the relative motion of a system of points with respect to axes , , 

 that are animated with a known motion relative to the fixed axes Ox, Oy, Oz and when one 
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knows the active force that is exerted on each point of the system with respect to Ox, Oy, Oz, one 

can again employ the three methods that were indicated in the case of a single point. 

 One refers the position of the points of the system to the parameters q that are most convenient 

for defining those positions relative to the moving axes , ,  , and one then calculates the 

vis viva of the system as a function of the q, the q , and t : 

 − with respect to the moving axes , ,  , 

 − with respect to the fixed axes Ox, Oy, Oz , 

 − with respect to the intermediate axes x , y , z . 

 In order to apply the Lagrange equations, it remains to determine the quantities Q. 

 In the first case, one calculates the total virtual work done by the given forces with respect to 

Ox, Oy, Oz, and the Coriolis forces with the sign changed. 

 In the second case, one calculates the total virtual work done by the given forces with respect 

to Ox, Oy, Oz. 

 In third case, one calculates the total virtual work done by the given forces and the guiding 

forces m (e), where e is the acceleration of the point . 

 Gilbert gave an interesting form to the equations that one obtains by the third method, and 

which will result immediately from the foregoing. 

 Let us place ourselves in the case where the given forces admit a force function U. 

 Let , ,  be the components along , ,  of the acceleration e at the point . Set: 

 

N = − ( )m       + + . 

 We will then has: 

Q = 
( )U N

q

 +


. 

 

 Furthermore, the semi-vis viva T3 is the sum of three terms: 

 One of them  is the semi-vis viva of the relative motion of the system with respect to , , 

. 

 The second one  is one-half the product of the moment of inertia of the system at the instant 

in question with respect to the instantaneous axis  of the system  in its motion around  

with the square of the instantaneous rotation . 

 The third one  is the product of the instantaneous rotation  with the moment of the quantity 

of motion of the system with respect to  (in its relative motion with respect to , , ) and 

the cosine of the angle between those two quantities. 

 Thus: 

T3 =  +  +  . 

 

 The equations of motion will then take the form: 
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3Td

dt q

 
 

 
 = 

( )U N

q

 +


. 

 

 Applications: 

 

 I. – A massive homogeneous torus T moves around a horizontal equatorial diameter O  . 

That diameter is animated with a uniform rotation  around the vertical to the center O. An 

additional weight m is placed at a point M on the equatorial diameter that is perpendicular to 

O  . Find the motion of the torus around the diameter O (10). 

(Agrégation, 1874) 

 

 Let OM = d, while A and C are the moments of inertia 

of the torus with respect to an equatorial diameter and 

the axis of revolution, resp. 

 The motion will be defined by the angle  between 

the radius OM and the descending vertical. 

 One has: 

 

 2 = 2 2( )A m d  + , 

 2 = 
2 2 2 2 2 2[ cos sin ] sinA C m d    + + , 

 2 = 0 ,  because ( , )P  =  / 2 . 

  

Therefore: 

  2 T3 = 
2 2 2 2 2 2( ) ( )sinA m d C A m d A   + + − + + . 

 

 The origin of the axes is fixed. Therefore N = 0 . 

 The active force reduces to the additional weight because O is the center of gravity of the torus. 

 The force function is then: 

U = − m g d cos  . 

 

 The Lagrange equation that solves the problem is: 

 
2 2 2 2( ) ( ) sin cosA m d C A m d   + − − +  = − m g d sin  . 

 

 All that remains is to integrate that second-order differential equation. 

 

 
 (10) Gilbert – Treatise on the application of the Lagrange method to problems of relative motion, loc. cit., pp. 276. 

 M 
  

O 

 

A 

 
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 II. – A solid body of revolution is fixed to its center of gravity. The axis of revolution Gx is 

subject to remain in a fixed plane, moreover. Find the motion of the solid with respect to terrestrial 

objects while taking into account the motion of the Earth (Foucault gyroscope). 

 

 Let us first treat the problem using the first method by applying the Coriolis theorem. 

 Let Gxyz be the principal axes of inertia of the solid, while G x1 y1 z1 are axes that are fixed 

with respect to the Earth. We choose the x1 y1-plane to be the plane in which Gz moves and the Gx-

axis to be the projection into that plane of the segment of the terrestrial rotation () or (GS): GS is 

the North-South direction of the Earth’s axis. We take Gz1 to point on the same side as GS with 

respect to the plane x1G y1 . 

 The position of the solid depends upon two parameters: for example, the two Euler angles  

and , while  =  / 2. 

 With respect to axes that are fixed stellar directions that pass through the center of the Earth, 

the active force that is exerted on each point M of the solid is a quantity m () that is proportional 

to the mass of M and the fixed direction relative to G x1 y1 z1 . The active force relative to the 

terrestrial axes that is exerted on that point is equal to: 

 

m () – m (e) – m (c) . 

 

 The quantity (e) is reasonably invariable (relative to the axes G x1 y1 z1) for the various points 

of the solid and no matter what their positions might be. We can then set: 

 

m () – m (c) = m (g) . 

 

The quantity (g) does not vary with respect to the terrestrial axes. 

 Let us take the latter approximation into account. In order to do that, we consider axes of fixed 

stellar directions that pass through G. The active force relative to those axes that is exerted on M 

is: 

m () – m (Fc) , 

 

in which (Fc) denotes the acceleration of G due to the motion of the Earth around its center. One 

can set m () – m (Fc) = m (g), in which the quantity (g) is invariable with respect to G x1 y1 z1. 

 Furthermore, the active force relative to the latter axes that is exerted on M is equal to: 

 

m (g) – ( )em    – m (c) . 

 

The quantity (c) is the same as above. As for the quantity ( )e  , it can be defined as follows: Let 

Q be the foot of the perpendicular to GS that is based at M. ( )e   then points along MQ and is equal 

to 
2M Q . We therefore neglect a term of order 

2 . 

 Let us now evaluate – (Fc) = − m (e) . If we construct a quantity GM that is equipollent to the 

velocity (Vr) of the point M (relative to the axes G x1 y1 z1) then we know that the quantity ( / 2)e  
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is equal to the velocity that the point M will have while turning around GS with the angular velocity 

. Therefore, let Xc, Yc, Zc denote the components of – (Fc) along the axes Gxyz, let a, b, c and vx, 

vy, vz denote the components of () and (Vr), resp., along the same axes, and finally let p, q, r 

denote the components of the instantaneous rotation of the solid. That will give: 

 

Xc = − 2 m (b vz – c vy) , 

Yc = − 2 m (c vx – a vz) , 

Zc = − 2 m (a vy – b vx) , 

with 

vx = q z – r y ,      vy = r x – p z ,      vz = p y – q x . 

 Therefore: 

  Xc = − 2 m [b (p y – q x) – c (r x – p z)] , 

  Yc = − 2 m [c (q z – r y) – a (p y – q x)] , 

  Zc = − 2 m [a (r x – p z) – b (q z – r y)] . 

 

 Having done that, we know that the work done by the composite centrifugal force is zero. The 

same thing is true for the work done by the forces (g), which admits a resultant that passes through 

G. The vis viva is then constant during the motion. 

 

(1)    
2 2 2( )A p q C r+ +  = h . 

 

 On the other hand, the reactions of the plane x1 G y1 meet all of the axis Gz. We then write the 

third Euler equation: 

dr
C

dt
= N . 

Here: 

N = ( )c cxY y X−  , 

 

and if one takes into account the fact that the axes Gxyz are principal axes of inertia then one will 

find that: 

N = − 2 22 2aq m x b p m y+   = G (b p – a q) . 

 Thus: 

(2)  
dr

dt
 = b p – a q . 

 

 Now introduce the variables  and . If  denotes the angle xGS then one will have: 

 

  a =  sin  sin  +  cos  cos  cos  , 

  b =  sin  cos  −  cos  cos  sin  , 

  c =  sin  . 
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Furthermore, since  is equal to  / 2, d / dt and cos  will be equal to zero, while sin  = 1. It 

then results that: 

p = sin  , q = cos  , r =  . 

 

 Equation (2) will then become: 

dr

dt
 = − cos cos

d

dt


   , 

or rather: 

r = 
d

dt


 = − cos sin K   + , 

 

in which K denotes a constant. As for equation (1), it will give: 

 
3 3A C  +  = h . 

 

The problem is then solved by quadratures. One will have: 

 
3 2( cos sin )A C K    + −  = h , 

or rather: 

dt = 
2( cos sin )

Ad

h C K



  − −
, 

and similarly: 

d = 
2

( cos sin )

( cos sin )

K d

h C K

   

  

+

− −
. 

 

 If one sets sin  = u then t and  will be 

expressed as functions of u by elliptic 

quadratures. sin  is a doubly-periodic function 

of t. 

 The discussion is completed with no 

difficulty. If one supposes that at the beginning of 

the motion, d / dt is positive and very large, 

while K is positive and very large, and one 

neglects the term in 
2 then: 

 
2

d

dt

 
 
 

 = 
2 sin const.L  + , 

with: 

2L  = 
2 cosK C

A

 
 . 

z1 

y 

A 
y1 

 

x 

G 

S 

 

 

 

z 

x1 
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On the other hand, if  denotes the angle x1Gz then one will have  =  –  / 2. Thus: 

 
2

d

dt

 
 
 

 = 2 cos const.L  + , 

 

i.e., the axis Gz is animated with pendular motion around Gx1 . In reality, as a result of air resistance 

and friction, the axis Gz will stop at Gx1 after a certain amount of time, i.e., along the projection 

of the Earth’s axis onto the fixed plane x1Gy1 . 

 Now employ Gilbert’s method. Calculate the semi-vis viva T3 of the motion of the system with 

respect to axes  of fixed stellar directions that pass through G. We have: 

 

T3 = T +  +  . 

 

 Here, T is the semi-vis viva of the solid with respect to the axes G x1 y1 z1 : 

  

2T = 
2 2 2( )A p q C r+ +  = 2 2A C  + . 

 

  is one-half the product of 2  with the moment of inertia of the solid with respect to GS. The 

equation of the ellipsoid of inertia is: 

 
2 2 2( )A x y C z+ +  = 1 . 

 

If u denotes the angle between GS and GZ and 
2  is the inverse of the desired moment of inertia 

then one will have: 

2 2sin cosA u B u+  = 
2

1


. 

 On the other hand, one immediately finds that: 

 

cos u = sin  cos  . 

 Therefore: 

2

1


 = 

2 2 2 2(1 cos sin ) cos sinA C   − + , 

and as a result: 

2 = 
2 2 2 2( )cos sinC A A   − +  . 

 

 Finally, let us calculate . If (M) denotes the moment of the relative quantities of motion of 

the solid with respect to G, and  denotes the angle between (M) and GS then we will have: 

 

 =  M cos  . 
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 However, the components (M) along Gx, Gy, Gz are Ap, Aq, Cr. Let us calculate the direction 

cosines , ,  of GS with respect to Gx, Gy, Gz, resp. We will find (upon taking into account the 

fact that  =  / 2) that: 

   =  cos  cos  cos  + sin  sin  , 

   = −  cos  cos  sin  + sin  cos  , 

   =  cos  sin  . 

 Moreover: 

 = A (p  + q ) + C r  , 

 

so upon replacing p with sin  , q with cos  , and r with  , we will have: 

 

 = sin cos sinA C     + . 

 By definition: 

 

2T3 = 
2 2 2 2 2 22 ( sin cos sin ) ( )cos sinA C A C C A u A             + + + + − +  

 = 2 (T2 + T1 + T0) . 

 

 Moreover, the active force (relative to the axes ) that is exerted on each point M of solid is 

( )m g . U +  is therefore zero here. 

 The equations of motion are: 

3Td

dt 

  
  

 = 3T






 , 

3Td

dt 

  
  

 = 3T






 . 

 The first one gives: 

( cos sin )
d

C C
dt

    +  = 0 , 

or rather: 

  = −  cos  sin  + K . 

 

 Furthermore, we can substitute the generalized equation of vis viva (see page 94) for the second 

equation: 

2 0( )
d

T T
dt

−  = 1 1 2 2 k k

T
Q q Q q Q q

t


  + + + −


, 

which will give: 

T3 – T0 = 
2 2 2 2 2 2( )cos sinA C C A A      + + − +  = h 

here. 

 If one neglects the term 
2 2 2( ) cos sinC A  −  [which amounts to neglecting the forces 

( )em    that were considered above] then one will indeed find the equation: 
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2 2A C  +  = const. 

 

 When one keeps the aforementioned term, t and  will be given as functions of  by two 

elliptic quadratures. 

 

___________ 



LECTURE 11 

_____________ 

 

 

APPLYING THE LAGRANGE EQUATIONS TO THE STUDY  

OF SMALL MOTIONS. 
_____________ 

 

 When the constraints on a frictionless system are independent of time and the active forces that 

are exerted on it admit a force function U, one knows that the necessary and sufficient conditions 

for equilibrium are: 

1

U

q




 = 0 , 

2

U

q




 = 0 , …, 

k

U

q




 = 0 . 

 

(q1, q2, …, qk are the K independent parameters that the position of the system depends upon.) 

 Those equalities are necessary conditions for U to present a maximum or a minimum. We shall 

show that if the force function is a maximum then the equilibrium is stable. That theorem is due to 

Lejeune-Dirichlet. 

 We can always suppose that the values of the parameters that correspond to the equilibrium 

position are q1 = 0, q2 = 0, …, qk = 0, and that U is zero for those values. By definition, the 

equilibrium will be stable if the system deviates from its equilibrium position as little as one desires 

for initial conditions that are sufficiently close to equilibrium conditions. More precisely, let 0

iq , 

0

iq  be the initial conditions under which one releases the system, and let  be a number that is 

given in advance and is as small as one pleases. One can find a number  that is small enough that 

the 0

iq , 0

iq  are less than  in absolute value such that the | qi | will remain less than  under the 

entire duration of motion. 

 Having recalled that definition, assume that U is zero and a maximum for the values q1 = 0, q2 

= 0, …, qk = 0. I say that the equilibrium is stable. 

 Indeed, since U is a maximum, one can find a number  that is small enough that U is negative 

when the | qi | do not exceed  and are not all zero. Furthermore, all of the numbers less than  

enjoy the same property: 

  U < 0 ,  if | qi |   , 

  U = 0 ,  if q1 = q2 = … = qk = 0 . 

 

 In particular, give the values of +  and –  to qi, give all of the other parameters qj values 

whose modulus is less than or equal to , and let Ai be the greatest value of U for those values of 

q. Ai is an essentially-negative number. Moreover, let A the greatest of the numbers Ai. A is negative 

and non-zero. From that, one will necessarily have: 

 

U  A 
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when one of the parameters qi attains one of the values  , while the other parameters have moduli 

that are not greater than . 

 On the other hand, write the vis viva equation: 

 

T = 21
0 02

U mv U+ −  = U + h . 

 

One can always find a number  that is small enough that the 0| |iq  and the 0| |iq  do not exceed , 

so the constant h = ( )21
0 02

mv U−  will be less than – A, i.e., such that one has h + A < 0. Under 

those conditions, the | qi | will remain less than  under the entire duration of the motion. Otherwise, 

one would have at least one parameter qi that attains one of the values   at the instant t, while the 

moduli of the other parameters would not exceed , and one would have: 

 

U + h  A + h < 0 , 

so 

T < 0 , 

which would be impossible. 

 The equilibrium is therefore stable. Q.E.D. 

 

 I should add that the vis viva of the system itself remains less than h, which can be chosen to 

be as small as one pleases. 

 

 Study of small oscillations of a system. – The Lagrange equations are then convenient to the 

study of small motions of the system around its stable equilibrium. The method that we shall 

indicate applies to the case in which the equilibrium is unstable, as well, but only for a very short 

length of time, unless one knows in advance that the system deviates only slightly from its 

equilibrium position for the given initial conditions. 

 Therefore, place the system under initial conditions that are very close to stable equilibrium 

conditions. The parameters qi vary only slightly under the motion, so one can regard the 

coefficients aij in the vis viva: 

  T = 1
2

,

ij i j

i j

a q q     (aij = aji) 

 

as constants ij : ij denotes the value of the function aij for q1 = q2 = … = qk = 0. Similarly, develop 

the force function in powers of qi : 

U = U0 + U1 + U2 + …, 

 

U0 = 0, U1, U2, … are homogeneous functions of degree one, two, …, resp., then U1 will be 

identically zero, by hypothesis (since U / qi = 0 for q1 = q2 = … = qk = 0). We will then reduce 

U to the term: 

  U2 = 1
2

,

ij i j

i j

q q      (ij = ji) 
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 Those approximations amount to considering the qi and iq  to be infinitely-small of first order 

and neglecting the quantities of the form qi qj, i jq q , 
i jq q  , and higher-order quantities, in 

comparison to the latter quantities. Indeed: 

 

  
i

T

q




 = 

1

k

ij j

j

a q
=

 , 

  
i

d T

dt q




 = 

1

k

ij j

j

q 
=

 + , 
i

T

q




 =  , 

  
i

T

q




 = 

1

k

i j

j

q 
=

+ , 

 

in which ,  , and , are negligible compared to the qj, from the preceding convention. We can 

then replace the Lagrange equation: 

 

(1)  
i i

d T T

dt q q

 
−

 
 = 

i

U

q




 

with the approximate equality: 

(2)  
1

k

ij j

j

q
=

  = 
1

k

i j

j

q
=

 . 

 

 In other words, one can consider the aij in the Lagrange equations (viz., the coefficients in T) 

to be constants ij, and reduce U to U2 . The method will break down when the determinant  of 

the ij is zero. That will then amount to changing the parameters qj . 

 Having said that, equation (2) can be written: 

 
2

2
1

k

ij j

j

d
q

dt


=

  = 
1

k

i j

j

q
=

 . 

 Introduce the function: 

s = 1
2

,

ij i j

i j

q q . 

We will have: 

1

k

ij j

j

q
=

  = 
i

s

q




. 

 

 Therefore, equation (2) is equivalent to the following one: 

 

(3)  
2

2

i

d s

dt q




 = 2

i

U

q




, 
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in which s and U2 are two homogeneous functions of degree two with respect to the qi . 

 Equations (3) form a system of n linear equations with constant coefficients. One will then 

have: 

qi = 1 2

1 2

t ti iA e A e
 

+ + , 

 

in which the exponents are real or imaginary. 

 It is appropriate to point out that even if the characteristic equation of the system (3) has 

multiple roots, the integrals will contain time only in the exponentials. 

 Indeed, if one is given two quadratic forms s and U2, at least one of which includes nothing 

but squares, then one can always make the product terms in the two forms disappear by the same 

linear substitution. Now, s includes nothing but squares, since otherwise upon annulling all of the 

q   except one, one would annul s, and the vis viva T would be zero (for q1 = q2 = … = qk = 0), 

even though not all of the velocities are zero. 

 One can then reduce s and U to the forms: 

 

   s  = 21
2 i i

i

a q , 

  U2 = 21
2 i i

i

b q  

 

by the same linear substitution, and equations (3) will become: 

 
2

2

id q

dt
 = i qi . 

 

 If one supposes that the equilibrium is stable then the qi can enter into only trigonometric 

symbols. Indeed, U2 is negative for small values of qi . Hence, the i are negatives i = − 2

i , and 

one will have: 

qi = Ai sin i t + Bi cos i t . 

 

 Characteristic equation of the system (3). – Let us look for the characteristic equation of the 

system: 

(3)  
2

2

i

d s

dt q




 = 2

i

U

q




, 

directly. 

 In order to do that, I multiply each side of equation (3) by a constant i and add them. That will 

give: 
2

2 i

i

d s

dt q





  = 2

i

i

U

q





 . 

Now, one has: 
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i

i

s

q





  = i

i

s
q

q




 . 

Similarly: 

2
i

i

U

q





  = 2

i

i

U
q






 , 

in which 
i

s






, 2

i

U






 are the derivatives of s and U2, resp., after one has replaced the qi with the i. 

One can then write: 
2

2 i

i i

d s
q

dt 




  = 2

i

i i

U
q






 . 

 If one sets: 

i

i i

s
q






  = 21

i

i i

U
q

 




  = Q 

 

then the equation to be integrated will then become: 

 
2

2

Q

t




 =  Q . 

 

 If I can find k distinct values of  (which correspond to k systems of values i) then I will know 

2k distinct integrals of the system (3), which is then found to have been integrated. 

 Now, the indeterminates i,  must satisfy the condition: 

 

2
i

i i

Us
q

 

 
− 

  
  = 0 , 

i.e., the k equations: 

  2

i i

Us


 


−

 
 = 0   (i = 1, 2, …, k). 

However: 

  s = 1
2

,

ij i j

i j

a   , 

U2 = 1
2

,

ij i j

i j

b   . 

One will then have: 

ij j ij j

j j

a b  −   = 0 , 

or rather: 

  ( ai1 – bi1) 1 + ( ai2 – bi2) 2 + … + ( aik – bik) k = 0  (i = 1, 2, …, k). 
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 In order for those k equations, which are linear and homogeneous with respect to the i , to 

admit solutions for which all of the i are non-zero, it is necessary and sufficient that the 

determinant  of those equations should be zero. One thus forms an equation in  of degree k, 

which is the desired characteristic equation. If its k roots are distinct then one will get k distinct 

functions Q : 

Q = i

i

s

q





 , 

 

and the system (3) is integrated. If the characteristic equation admits a double root 1 then the 

system of equations that defines the ratios of the  will become indeterminate, and one can make 

that double root correspond to two distinct functions Q, say, Q1 and 1Q , and one will have: 

 
2

1

2

d Q

dt
 =  Q1 , 

2

1

2

d Q

dt


 = 1Q  . 

 

 More generally, if 1 is a multiple root of order i then all of the minors of order i – 1 of the 

determinant  are zero for  = 1 , and one can make i distinct functions Q correspond to that root 

1. The system (3) is then found to be integrated in all cases. 

 In practice, one can begin by making just the products in s disappear. s will then reduce to the 

form: 

s = 21
2 i ia q , 

so one will have the equations: 
2

2 i i

i

d
q

dt
  = 2

i

i i

U
q






 , 

and if one sets: 

i i

i

q  = 21

i i

U

 




 = Q 

then one will have the conditions: 

 

2

1 1

1 U

 




 = 2

2 2

1 U

 




 = … = 21

k k

U

 




 =  . 

 

 For example, if k is equal to 3 then the preceding equations will define the axes of the quadric: 

 

U (1, 2, 3) = 1 . 
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 If the equation in  admits a double root then the surface will be one of revolution. There will 

be an infinitude of axes, so an infinitude of values 2 / 1 , 3 / 1 that correspond to that value of 

. If the equation in  is a triple root then one can take 1, 2, 3 arbitrarily. 

 

 

Applications. 

 

 I. Study of the motion of a spherical pendulum in the neighborhood of its equilibrium position. 

– We can define the position of the point M on the sphere by its longitude  and its latitude . 

Indeed,  is a function of the point x, y, z of the sphere that becomes indeterminate at the highest 

and lowest points on the sphere. If one forms the vis viva: 

 

T = 2 2 2 21
2

( sin )mR    +  

 

then the determinant  of the aij (see page 150) will be: 

 

1 0

0 0
 

 

here (for  = 0 and  arbitrary), and the method cannot be applied. 

 We take the origin of the axes to be the center O of the sphere, while the z-axis points in the 

direction of gravity, and the parameters are the x and y coordinates. We have: 

 

x = x , y = y , z = 
2 2 2R x y− − , 

so we find immediately that: 

T = 
2

2 21
2 2 2 2

( )x x y y
m x y

R x y

  +
 + + 

− − 
 ; 

hence: 

s = ( )2 21
2
m x y + . 

 On the other hand: 

U = m g (z – R) = U2 +  . 

 

 A very simple calculation will show that for x = 0, y = 0 (z = + R), one has: 

 
2

2

z

x




 = 

2

2

z

y




 = 

1

R

−
, and 

2 z

x y



 
 = 0 . 

 Therefore: 

U2 = − 2 2( )
2

mg
x y

R
+ . 
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 Hence, the two equations: 

x  = − 
g

x
R

, y  = − 
g

y
R

 

will determine x and y: 

 

x = cos sin
g g

A t B t
R R

+  and y = cos sin
g g

A t B t
R R

 + . 

 

 II. Let two massive homogeneous bars OA, AB have densities  and   and lengths l and l , 

resp. The first one is fixed at its extremity O and articulates with AB at A. Find the motion of the 

system when released with no initial velocity in a vertical plane in the neighborhood of its stable 

equilibrium position. – The system moves in the initial plane xOy, where Oy is the direction of 

gravity. Let  denote the angle between OA and Oy and let  denote 

the angle between AB and Oy. The force function U is: 

 

U = 
21 1

2 2
cos ( cos cos )g l l l l       + +  + const. 

here. 

 The stable equilibrium position corresponds to the values  = 0,  

= 0 of the two parameters. 

 Let us calculate the vis viva. We will have for OA: 

 

2mv = 
2 2

0

l

r dr   = 3 21
3

l  , 

and for AB: 

2mv = 
2 2 3 21

3

0

2 cos( )

l

r r l l dr      


      + − +    

  = 2 2 2 3 21
3

cos( )l l l l l                 + − + . 

 As a result: 

2T = 2 2 2 3 21 1
3 3

( ) cos( )l l l l l l                  + + − + . 

 

 The expressions for s and U2 here are then: 

 

2s = 2 2 2 3 21 1
3 3

( )l l l l l l            + + + , 

and 

  U2 = − 2 2 21 1
2 2

[ ( ) ]
2

g
l l l l       + + . 

 

 The approximate motion will be determined from the equations: 

 

x O 

y 

A 

B 
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()    

2

1 ,
3 6 ( 2 )

2
,

3

l l l

g l l g l l

l l

g g

 
  

   

  

   
 − + = −     + +  


  + = −



 

 

which is a system of the form: 

A B  +  = −  , 

B C  +  = −  . 

 

 Let us look for its characteristic equation. Multiply the first one by , the second one by  , 

and determine  and   in such a fashion that one has: 

 

A B 



 +
 = 

B C 



+


 =  . 

 

The value of  is given by the equality: 

 

(A – )(C – ) − B B  = 0 , 

 

in which B and B   have the same sign. The two values 1 and 2 of  are real and outside of the 

two positive numbers A and C, and positive, moreover. Indeed, AC BB−  is positive, since 

otherwise the vis viva T would be annulled without all of the velocities being zero. A direct 

calculation will further show that one has: 

 

AC BB−  = ( )4
323 ( 2 )

l l
l l

g l l
 

 


 +

 +
 . 

 

 We can take the corresponding multipliers  and   to be the numbers: 

 

 =  – C = 
2

3

l

g



− ,   = B = 

2

( 2 )

l

g l l



 

 

 +
, 

and if we take: 

Q1 = (1 – C)  + B  , 

Q2 = (2 – C)  + B  , 

 

or rather (upon introducing the variable  = B  – C ): 

 

Q1 = 1  +  , Q2 = 2  +  , 

 

then we will know that Q1 and Q2 have the form: 
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Q1 = a1 cos  t + b1 sin  t , 

Q2 = a2 cos  t + b2 sin  t . 

 

a1, b1, a2, b2 are arbitrary constants in those equalities, while 1 = 
1 , 2 = 

2 . 

 The resulting expressions for  and  [after dividing all of the constants by (1 – 2)] will then 

be: 

   = a1 cos 1 t + b1 sin 1 t − a2 cos 2 t – b2 sin 2 t , 

   = 2

1 (a2 cos 2 t – b2 sin 2 t) −
2

2 (a1 cos 1 t + b1 sin 1 t) . 

 

 If the system is released with no initial velocity at time t = 0 then the constants b1 and b2 must 

satisfy the two conditions: 

  1 b1  −  2 b2  = 0 , 
2

1 2 b2 −
2

2 1 b1 = 0 , 

 

and since 2

1  is not equal to 2

2 , b1 and b2 will be zero, one will then have: 

 

   =  a1 cos 1 t  –  a2 cos 2 t , 

   = 2

1  a2 cos 2 t – 2

2  a1 cos 1 t , 

 

or rather, upon letting 0 and 0 denote the initial values of  and  : 

 

()   

2 2

0 1 0 1 0 2 0 22 2

1 2

2 2

0 1 0 1 0 2 0 22 2

1 2

1
( )cos ( )cos ,

1
( )cos ( )cos .

t t

t t

        
 

        
 


 = + − +  −


  = + − +  −

 

 

Since 0 and 0 are very small,  and  will remain very small. If the ratio 1 / 2 is 

commensurable then the motion will be periodic. 

 If one supposes that  =   = 1 and l = l  then equations () will become: 

 

8
3
  +  = − 

3g

l
 , 

2

3





 +  = − 

g

l
 , 

 

and the numbers 1, 2 will be the roots of the equation: 

 

2

2

14 7

9 27

l l

g g
 − +  = 0 , 
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so 

1 = (7 2 7 )
9

l

g
+  ,  2 = (7 2 7 )

9

l

g
−  . 

 

In order to get  and , it will suffice to replace 1 and 2 with 1  and 2 , resp., in the 

equalities (). In this particular case,  = ( / 3 )( 2 )l g   − . 

 

__________ 
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LECTURE 12 

________ 

 

CANONICAL EQUATIONS.  

THEORY OF THE LAST MULTIPLER. 
__________________ 

 

 

 The motion of a system that depends upon k parameters is determined by the k Lagrange 

equations: 

i i

d T T

dt q q

  
− 

  
 = Qi  (i = 1, 2, …, k). 

 

 Those equations, which are linear in 1q , 2q , …, kq  can be solved for those variables. We 

proved that by establishing that the principal determinant of the expressions 2 / iT q  , which are 

linear and homogeneous in 1q , 2q , …, kq , is not zero (T2 is the second-degree homogeneous part 

of T = T2 + T1 + T0). 

 The Lagrange equations define a system of k second-order equations for the k functions q1, q2, 

…, qk of t. However, that system is equivalent to the system of 2k equations: 

 

(1)     idq

dt
 = iq  , 

i i

d T T

dt q q

  
− 

  
 = Qi  (i = 1, 2, …, k), 

 

which are first-order equations in which the 2k functions qi, iq  of t figure. When those equations 

(2) are solved for the /idq dt , they can be written: 

 

idq

dt
 = iq  , idq

dt


 = 1 2 1 2( , , , , , , , , )i k kf t q q q q q q    (i = 1, 2, …, k) . 

 

However, one must solve them in each case. 

 Poisson indicated a change of variables under which one replaces equation (1) with a system 

of 2k first-order equations that are found to solved for the derivatives that appear in them. 

 The method consists of replacing the variables 1q , 2q , …, kq  with new variables p1, p2, …, pk 

that are coupled with the preceding ones by the k relations: 

 

(2)     pi = 
i

T

q




  (i = 1, 2, …, k) . 
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Equations (2), which are linear in 1q , 2q , …, kq , can be solved for those variables, since the 

determinant of the expressions 2 / iT q   is non-zero. One then infers the iq  as functions of the pi 

from equations (2) in the form: 

 

(2)     iq  = 
1 2 1 2

1

( , , , , ) ( , , , , )
k

i i

k j j k

j

B t q q q p A t q q q
=

+  . 

 

Upon substituting those values for iq  in equations (1), one will obtain 2k first-order equations in 

t, pi, qi . 

 Those 2k equations are found to be soluble for the dqi / dt, dpi / dt . Indeed, they can be written: 

 

(3)     idq

dt
 = iq , idp

dt
 = i

i

T
Q

q


+


 (i = 1, 2, …, k) . 

 

 In those equations, one must replace 1q , 2q , …, kq  with their values that one derived from (2) 

everywhere. However, the remarkable fact is that after that substitution has been made, the right-

hand sides of equations (3) can be expressed with the aid of the Qi and the partial derivatives of 

the same function K (t, q1, q2, …, qk, p1, p2, …, pk). 

 Indeed, set: 

K = 1 1 2 2 k kp q p q p q T  + + + − . 

 

 The quantity K can be regarded as a function of the variables t, q1, q2, …, qk, 1q , 2q , …, kq , 

p1, p2, …, pk  that are coupled by equations (2). 

 Let t be constant in K (t = t0) and give variations qi, iq  , pi to qi, iq , pi that are compatible 

with equations (2) (for that value of t). One will have: 

 

K = ( )i i i i i i

i i i i

T T
p q q p q q

q q
   

  
  + − + 

  
   , 

 

i.e., upon taking (2) into account: 

dK = i i i

i i i

T
q p q

q
 


 −


  . 

 

 On the other hand, let (K) denote what the function K will become when one replaces the q  

in it with functions of p, q, and t. Leave t constant (t = t0) and give variations p, q to p, q. That 

will give: 

 (K) = 
( ) ( )

i i

i ii i

K K
p q

p q
 

 
+

 
   . 
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 Now,  (K) is identical to K for arbitrary values of p, q. That demands that one must have: 

 

  iq  = 
( )

i

K

p




, 

  − 
i

T

q




 = 

( )

i

K

q




. 

 

The latter equations are then consequences of equations (3). 

 That implies the following conclusion: Equations (3) can be written: 

 

(4)      

,

i
i

i

i

i

dp K
Q

dt q

dq K

dt p


= − + 


 =

 

 

upon setting: 

K = 
i ip q T −  

 

and assuming that one replaces the q  in K with functions of the p, q, and t using the relations: 

 

pi = 
i

T

q




. 

 

 Equations (4) are called the canonical equations. 

 

 

 Case in which the constraints are independent of time. – In this case, we have: 

 

i ip q  = i

i

T
q

q





  = 2T , 

 

because T is homogeneous of degree two in 1q , 2q , …, kq  . Therefore: 

 

K = 2T – T = T . 

 

Let (T) denote the function T when one has replaced the q  as functions of the p, q. The canonical 

equations are written: 

  idp

dt
 = − 

( )
i

i

T
Q

q


+


 , 



Lecture 11. – Applying the Lagrange equations to the study of small motions.  162 

 

  idq

dt
 = 

( )

i

T

p




 . 

 

The pi are linear homogeneous functions of the iq , and conversely. (T) = K is a homogeneous 

function of degree two in the pi . One has both: 

 

pi = 
i

T

q




, iq  = 

( )

i

T

p




  and 

i

T

q




 = − 

( )

i

T

q




. 

 

 Conversely, if (K) is a homogeneous function of degree two in p1, p2, …, pk then the constraints 

are independent of time. Indeed, the equalities: 

 

iq  = 
( )

i

K

p




 

 

show us that the pi are linear homogeneous functions of the iq . As a result, the function: 

 

T = 
i ip q K −  

 

(in which the p are expressed as functions of the q , q, and t) is a homogeneous function of the 

.iq  That will demand that T1 and T0 are zero, or that T0 is equal to: 

 
2 2 2

x y z
m

t t t

        
+ +      

         
  , 

 

and that sum can be zero only if the x / t, y / t, z / t are zero identically, i.e., if the constraints 

are independent of time. 

 

 

 Case in which the constraints depend upon time. – Decompose T into the sum of three 

terms: 

T = T2 + T1 + T0 , 

as we did before. 

 We can write: 

K = 2 1
2 1 0i

i i

T T
q T T T

q q

  
+ − − − 

   
  . 

Now: 

2
i

i i

T
q

q





  = 2T2 , 

1
i

i i

T
q

q





  = T1 , 
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 Therefore: 

K = T2 – T0 . 

 

T2 is a quadratic form in the q , and T0 depends upon only the q and t. One replaces the q  as 

functions of the p in T2, and since the q  are linear, but no longer homogeneous, with respect to 

the p, T2 will become a function (T2) of degree two in p1, p2, …, pk, but it will no longer be 

homogeneous. 

 Here, one has: 

pi = 2 1

i i

T T

q q

 
+

  
 , iq  = 2( )

i

T

p




, − 2( )

i

T

q




 = 2 1

i i

T T

q q

 
+

 
 . 

 

 One sees, by definition, that (K) = (T2) – T0 is a polynomial of degree two with respect to the 

p whose coefficients depend upon t and the q in an arbitrary fashion. 

 Observe that the canonical equations can be written: 

 

  idq

dt
 =   2( )

i

T

p




, 

  idp

dt
 = − 02( )

i

i i

TT
Q

p q


− +

 
, 

 

 In the particular case where T0 is simply a function of t, it is legitimate to replace (K) with (T2). 

 

 

 Case in which there exists a force function. – Suppose that Q1, Q2, …, Qk are derivatives 

with respect to q1, q2, …, qk of the same function U, which can depend upon time, but not the 

velocities, moreover: 

Pi = 1 2( , , , , )k

i

U
q q q t

q




. 

 

 After introducing the variables pi, the function of U, which is independent of the iq , will be 

independent of the pi, and if one sets: 

H = K – U 

 

then the canonical equations can be written: 

 

(5)      

,

,

i

i

i

i

dp H

dx q

dq H

dx p


= − 


 =

 
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because 
i

H

p




 = 

i i

K U

p p

 
−

 
 = 

i

K

p




. The right-hand sides are then expressed with the aid of only the 

function H. When the constraints depend upon time, U will generally depend upon time, as well 

as H. When the constraints are independent of time, K = T, and as a result: 

 

H = (T) – U . 

 

 (T) is then a quadratic form with respect to the pi that does not depend upon t. If, on the other 

hand, t does not appear in U then H will be a simple function of pi, qi : 

 

H = 1 2 1 2

,

( , , , ) ( , , , )i j ij k k

i j

p p A q q q U q q q−  . 

 

 In the latter case, the vis viva theorem will provide an integral of motion, namely, the integral: 

 

T – U = h , 

or rather: 

H = h . 

 

 That equality must be a consequence of the canonical equations that define the motion. In other 

words, if one replaces the pi, qi in H with an arbitrary system of integrals pi (t), qi (t) of equations 

(5) then the function H1 (t) thus-obtained must reduce to a constant. Now calculate dH1 / dt : 

 

1dH

dt
 = i i

i i

dq dpH H

q dt p dt

  
+ 

  
  , 

 

or rather, since the pi (t), qi (t) satisfy equations (5): 

 

1dH

dt
 = 

i i i i

H H H H

q p p q

    
− 

    
   0 , 

 

which is what we wished to verify. 

 

 

 Remark. – The Poisson transformation is particularly simple in the case where T has the form: 

 

2T = 2

1 2( , , , )i k i

i

A q q q q . 

 One then has: 

pi = i iA q  

and 
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2 (T) = 2 (K) = 
2

i

i i

p

A
 . 

 Conversely, if (K) has the form: 

(K) = 21
2 i i

i

B p  

then one will have: 

iq  = Bi pi  

and 

2T = 
2

i

i i

q

B


 , 

 

moreover. The constraints will then be independent of time, and as a result, the Bi will not include 

t. 

 That is what happens, for example, when one studies the motion of a free point with respect to 

orthogonal curvilinear coordinates. If those coordinates are Cartesian coordinates then: 

 

2T = 2 2 2( )m x y z  + + , 

so 

p1 = m x , p2 = m y , p3 = m z , 

and 

2T = 2 2 2

1 2 3

1
[ ]p p p

m
+ +  . 

 

 If those coordinates are polar coordinates in space r, ,  then one knows that: 

 

2T = 
2 2 2 2 2 2( sin )m r r r    + +  . 

Thus: 

p1 = mr , p2 = 
2m r   , p3 = 

2 2sinm r   , 

and 

2 (T) = 
22

2 32
1 2 2 2

1

sin

pp
p

m r r 

 
+ + 

 
 . 

 

 That is what happens when one studies the motion of a point on a surface when it is referred 

to the orthogonal coordinates on the surface. Hence, let a point M be referred to polar coordinates 

r = OM,  = xOM in a plane xOy, and let it be attracted to the point O according to a function of 

distance. One will have: 

 

2T = 
2 2 2( )m r r  + ,  p1 = mr , p2 = 

2

m

r

 
, 
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2 (T) = 
2

2 2
1 2

1 p
p

m r

 
+ 

 
, 

 

H = (T) – U (r) . 

 The canonical equations are: 

 

()     

1

1 2

3

,

,

pdr

dt m

dp p U

dt m r r


=

   
 = +



 

2

2

2

,

0.

pd

dt mr

dp

dt


=


 =



 

 

 The latter equality then gives 2p  = const. (viz., the area integral). On the other hand, H = h is 

an integral of the system (). It would be easy to achieve the integration of that system directly. 

However, that integration will be presented in what follows as a consequence of some very general 

theorems that we shall now prove. 

 Meanwhile, I shall make one last remark in regard to the relative motion of systems. 

 

 

 Canonical equations of relative motion. – Let a system S be subject to given forces with 

respect to a system Oxyz. 

 One wishes to study its motion relative to the axes O1 x1 y1 z1 , which are animated with respect 

to the first ones by a given motion. 

 As we said, we refer the system to parameters q1, q2, …, qk that are most convenient for 

determining the position relative to the axes O1 x1 y1 z1 . In order to form the canonical system that 

determines the motion, we can apply the three methods that we indicated in the context of the 

Lagrange equations (see Lecture 10). 

 

 1. Form the vis viva 2T1 with respect to O1 x1 y1 z1 and take the canonical variables to be the 

variables pi = 1 / iT q  . (One should take care to add the two Coriolis forces to the given forces 

that are exerted on each point of the system.) 

 

 2. Form the vis viva 2T2 with respect to the axis Oxyz and take the conjugate variables to be 

the variables pi = 2 / iT q  . 

 

 3. Form the vis viva 2T3 with respect to intermediate axes O1 that are parallel to the axes 

Oxyz and take the conjugate variables to be the variables pi = 2 / iT q  . [One must take care to add 

the force m (e) to the given forces that are exerted on the point M of mass m, where (e) is the 

acceleration of O1 with respect to Oxyz.] 

 

 The three methods lead to distinct canonical systems, because the conjugate variables are 

different. On the contrary, the three methods lead to the same Lagrange equations. Furthermore, if 
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one refers to what was said in Lecture 10 about the calculation of T1, T2, T3 then one will see that 

forming those canonical systems will present no difficulties. 

 There is no reason to stress that one can make the same variables q1, q2, …, qk correspond to 

different conjugate variables, and as a result, to different canonical systems. Indeed, the Lagrange 

equations can be written: 

i i

d T T

dt q q

 
−

 
 = Qi , 

 

and the variables pi = / iT q   form a first system of conjugate variables. But then set: 

 

T = T  +  , 

 

in which  denotes a linear function of the iq  whose coefficients depend upon the qi and t: 

 

 = 0 1 2 1 1 1 2 1 2( , , , , ) ( , , , , ) ( , , , , )k k k k kA q q q t q A q q q t q A q q q t + + +  . 

 

 That will make: 

i i

d T T

dt q q

 
−

 
 = i

i i

d
Q

dt q q

 
− +

 
 = iQ . 

 

iQ  depends upon t, the qi, and the iq . If we introduce the variables ip  = / iT q    then the system 

of equations between the qi, ip , and t will be canonical. It sometimes happens that for a convenient 

choice of the function , T   will once more represent the semi-vis viva of the system with respect 

to certain axes: That is what happens for the functions T1, T2, T3 considered above. 

 We shall not dwell upon that question any further but move on to a study of the most important 

properties of canonical systems. The canonical form is, in fact, the form of the equations of motion 

that applies to most of the applications in the theory of systems of first-order differential equations. 

Before developing the applications, we shall establish the general theorems to which we shall have 

recourse. 

 

 

 Generalities on differential equations. – Let: 

 

(1)      dt = 1

1

dx

X
 = 2

2

dx

X
 = … = n

n

dx

X
 

 

be a system of first-order differential equations between the functions x1, x2, …, xn of t, where X1, 

X2, …, Xn denote given functions of x1, x2, …, xn , and t. 
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 The general integral of such a system depends upon n arbitrary constants: One can give 

arbitrary values 0

1x , 0

2x , …, 0

nx  to x1, x2, …, xn for t = t0 . That integral can then be put into the 

form: 

x1 = 0 0 0

1 0 1 2( ,( ), , , , )nt t x x x  , 

……………………………. 

xn = 0 0 0

0 1 2( ,( ), , , , )n nt t x x x  . 

 

(t0) represents an arbitrary number (0 or 1, for example), and 0

1x , 0

2x , …, 0

nx  are arbitrary constants. 

 One can suppose that those relations have been solved for the 0

1x , 0

2x , …, 0

nx , and one will 

obviously have: 
0

1x  = 1 (t0, (t), x1, x2, …, xn) , 

…………………………….., 
0

nx  = 1 (t0, (t), x1, x2, …, xn) . 

 

 One gives the name of first integral of the system (1) to any relation of the form: 

 

f (t, x1, x2, …, xn) = const. 

 

that is verified for an arbitrary system x1 (t), x2 (t), …, xn (t) of integrals of equations (1). In other 

words, if one replaces the variables x1, x2, …, xn in f with functions of t that satisfy equations (1) 

then f will reduce to a constant. 

 If f =  is a first integral then F (f) =  will also be a first integral. More generally, let: 

 

f1 = 1 , f2 = 2 , …, fm = m 

 

be m first integrals. F (f1, f2, …, fm) =  will again be a first integral. One says that the m integrals 

f1 = 1 ,…,  fm = m are distinct if none of the functions fi can be expressed as a function of the (m 

– 1) other ones in the form: 

fi = F (f1, f2, …, fi−1, fi+1, fm) . 

 

 In order for the system (1) to be integrable, it will suffice that one knows n distinct first 

integrals: 

 

(2)  f1 = 1 , f2 = 2 , …, fm = m . 

 

 Indeed, those n equations can be solved for x1, x2, …, xn. Otherwise, there would exist a relation 

of the form: 

F (f1, f2, …, fm, t) = 0 . 
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 One could infer t from that relation, since no relation that is independent of t could exist 

between the fi. t = const. would then be a first integral of the system (1), which is absurd. 

 On the other hand, one can arrange the  in such a fashion as to give arbitrary values to x1, x2, 

…, xn for t = t0, as the equalities: 
0

1  = 0 0 0

1 0 1 2( , , , , )nf t x x x , etc., 

show immediately. 

 The system of n functions x1, x2, …, xn of t that is defined by equations (2) then represents the 

general integral of equations (1). 

 

 

 Arbitrary integrals. – One says, in a general manner, that the relation: 

 

F (t, x1, x2, …, xn, 1, 2, …, n) = 0 

 

is an integral of the system (1) if it is verified identically when one replaces the x1, x2, …, xn in it 

with an arbitrary solution (1) for convenient values of the constants . 

 When F = 0 depends upon only one constant 1, one can solve for that constant and write: 

 

1 = f (t, x1, x2, …, xn) . 

 

 A first integral is then an integral that depends upon only one constant. 

 

 Theorem:  

 

 When an integral F = 0 depends upon m distinct constants, one can deduce m first integrals 

from that integral. 

 

 We shall clarify what we mean when we say that F = 0 depends upon m distinct constants. 

 In order to do that, suppose that one has replaced the variables x1, x2, …, xn in F with the most 

general functions of t that satisfy equations (1), namely: 

 
0 0 0

1 0 1 2( ,( ), , , , )nx t t x x x , 

………………..…….. 
0 0 0

0 1 2( ,( ), , , , )n nt t x x x . 

F will become: 
0 0 0

0 1 2 1 2( ,( ), , , , , , , , )n mt t x x x     . 

 

 If one expresses the idea that the function  (t) is zero for any t then one will get some relations 

between the constants 
0x  and . In order for F = 0 to be an integral of (1), it is necessary and 

sufficient that the relations between the  should be compatible for arbitrary 
0x . 
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 One says that the integral F = 0 depends upon m distinct constant when those relations that 

couple the m constants  to 0

1x , 0

2x , …, 0

nx , (t0) satisfy the following conditions: 

 

 1. The set of all of them forms a system of m distinct relations. 

 

 (We remark that there can no longer exist m distinct relations. Otherwise, one could infer 1, 

2, …, n from m of them, and upon substituting those values in the (m +1)th one, one would obtain 

a condition: 
0 0 0

1 2 0( , , , ,( ))nx x x t  = 0 , 

 

which would not be verified identically. 0

1x , 0

2x , …, 0

nx  would not be arbitrary for t = t0 then.) 

 

 2. Those m relations, which one can suppose have been solved for the  : 

 

(3)      i = 0 0 0

1 2 0( , , , ,( ))i nX x x x t  , 

 

permit one to dispose of the 
0x  in such a manner as to give arbitrary values to the . In other 

words, for arbitrarily-given values of the , the relations (3) between the 
0x  will be compatible, 

or rather, there will exist no relation between the  that is independent of the 
0x . 

 

 When those conditions are not fulfilled, one can write the integral F = 0 in a form that includes 

less than m constants. 

 First of all, if the number of distinct relations between the  (and the 
0x ) is equal to m – k then 

one can annul k of the constants  while leaving the other ones arbitrary. 

 Now if the number of distinct relations is equal to m then there will exist relations between the 

, say m = h (1, 2, …, m−1). Upon replacing m with that expression, one will reduce the 

integral to one that depends upon less than m constants. 

 Conversely, when the stated conditions are verified, it will be impossible to reduce the number 

of constants in the integral F = 0 by a change of constants: 

 

1 = 1 (1, 2, …, m−1) , …, m = m (1, 2, …, m−1) (p < m) . 

 

 Indeed, if that is true then the relation F = 0 will be verified for conveniently-chosen values of 

the constants 1, 2, …, m−1 when one replaces x1, x2, …, xn with an arbitrary system of integrals 

of (1) in it. Now for arbitrary values of the , the  will not be arbitrary but will satisfy certain 

relations. The relation  (t)  0 will then be verified (the 
0x  being arbitrary) for non-arbitrary 

values of the , which is contrary to hypothesis. 

 Having said that, it is easy to see that if F = 0 depends upon m distinct constants then one can 

deduce m distinct first integrals. 

 That is certainly possible, since one has: 
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i = 0 0 0

1 2 0( , , , ,( ))i nX x x x t   (i = 1, 2, …, m) . 

 

 If one gives an arbitrary value t to t0 and lets x1, x2, …, xn denote the values of the integral 

functions xi (t) for that value of t then one will once more have: 

 

i = Xi (x1, x2, …, xn, t) . 

 

In other words, Xi = i is a first integral. The m first integrals thus-obtained will be distinct, 

moreover, since the Xi are not coupled by any relation. 

 In order to form those m first integrals explicitly, one proceeds as follows: Solve F = 0 for m; 

that will give: 

m = y (t, x1, x2, …, xn, 1, 2, …, m−1) . 

 

 Differentiate that with respect to t : 

 

(3)  0 = 1 2

1 2

n

n

dxdx dx

t x dt x dt x dt

      
+ + + +

   
. 

 

x1, x2, …, xn are functions of t that satisfy equations (1), i.e., one has: 

 

1dx

dt
 = X1 , 

2dx

dt
 = X2 , …, ndx

dt
 = Xn . 

Therefore: 

0 = 1 2

1 2

n

n

X X X
t x x x

      
+ + + +

   
 = F   

 

is an integral of the system (1). F = 0 depends effectively upon (m – 1) constants 1, 2, …, m−1. 

Otherwise, m−1, for example, would not appear and the relation F   = 0 would be verified as a 

result of the relation (3) for convenient values of the 1, 2, …, m−2, since the constant m−1 would 

be arbitrary. Upon integrating the relation (3), one will see that the relation m =  will be verified, 

since m−1 is arbitrary (for example, equal to zero), and the m constants  will not be distinct. 

 Furthermore, the (m – 1) constants that enter into the integral F   = 0 are distinct, since 1, 2, 

…, m−1 can be expressed as functions of the 
0x , i = Xi , and there exists no relation between the 

Xi . 

 If one reasons with the integral F   = 0 as one did with the first one, and so on, then one will 

arrive at an equality of the form: 

1 = X1 (x1, x2, …, xn, t) , 

which will be a first integral. 

 Upon substituting that value of 1 in the preceding integral and solving it for 2, one will have 

a second integral, and so on.  
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 We remark that when the method of calculation that we just presented is applied to an arbitrary 

relation F (t, x1, x2, …, xn, 1, 2, …, m) = 0, that will permit us to recognize: 

 

 1. Whether that relation is an integral of (1). 

 

 2. How many distinct constants that integral depends upon. 

 

More precisely: The question is found to come down to that of recognizing whether a relation  = 

X (x1, x2, …, xn, t) is a first integral. That is a question that shall address in a moment. 

 Before we do that, in order for the system (1) to be integrable, it will suffice to find an integral 

F = 0 that depends upon n distinct constants. 

 The simplest problem that one can propose (and which, as a result, has the best chance of being 

solved) is therefore the search for first integrals. 

 

____________ 

 

 

LECTURE 12 (cont.) 

____________ 

 

 Properties of first integrals. – We said that if we know n first integrals of the system (1) then 

the system will be found to be completely integrable. One can infer x1, x2, …, xn as functions of t 

and n constants using those n integrals. 

 More generally, if one knows m = (n – k) distinct first integrals of (1) then one can use those 

integrals to infer m of the variables, conveniently chosen, as functions of the other k and of t. 

Indeed, a first integral includes at least one of the variables xi, say x1 (otherwise t = const. would 

be a first integral.) Solve it for x1 and replace x1 with the value thus-obtained in the other (m – 1) 

integrals. Since the m integrals are distinct, the right-hand sides of the new integrals: 

 

1 = 2 1 2( , , , , )nf t x x , etc. 

 

will not reduce to functions of 1, and 2f   will include at least one of the variables x2, …, xn , say 

x2. Infer x2 from the second integral and substitute the value thus-obtained in the following ones. 

After (m – 1) analogous operations, one then forms the expression for xn−k, for example, as a 

function of x(n−k+1), …, xn, t, and some constants. If one proceeds in the opposite direction then one 

will see that x(n−k+1), …, x1 are found to be expressed as functions of the same quantities. 

 If we replace x1, x2, …, xn−k with those values in the last k equations (1): 

 

dt = 
( 1)

( 1)

n k

n k

dx

X

− +

− +

 = … = n

n

dx

X
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then we will have more to integrate than a system of k first-order equations between (k + 1) 

variables. It will suffice to find k distinct first integrals of that system, for example, the k integrals: 

 
0

( 1)n kx − +
 = 

( 1) ( 1)( , , , )n k n k nt x x − + − +
 (i = 1, 2, …, k) . 

 

 The  depend upon the 1, …, n−k : If we replace the constants with f1, f2, …, fn−k then we will 

get k first integrals of (1): 
0

( )n k ix − +
 = 

( ) 1 2( , , , , )n k i nf t x x x− +
. 

 

 Those integrals, when combined with the preceding (n – k), will define a system of n distinct 

first integrals, because one can infer x1, x2, …, xn as functions of t and n constants. 

 

 

 Analytic condition for (n – k) first integrals to be distinct. – From the foregoing, in order 

for n first integrals to be distinct, it is necessary and sufficient that the determinant: 

 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

df df df

dx dx dx

df df df

dx dx dx

df df df

dx dx dx

 

should not be identically zero. 

 More generally, in order for (n – k) first integrals to be distinct, it is necessary and sufficient 

that at least one of the determinants that are obtained by suppressing k columns from the 

rectangular matrix: 

1 1 1

1 2

2 2 2

1 2

( ) ( ) ( )

1 2

n

n

n k n k n k

n

df df df

dx dx dx

df df df

dx dx dx

df df df

dx dx dx

− − −

 

must not be identically zero. 

 Observe that there cannot exist more than n distinct first integrals, because if there existed (n 

+ 1) then one could infer x1, x2, …, xn from n of them and substitute them in the (n + 1)th one, 

which would give the relation: 

n+1 =  (t, 1, 2, …, n) . 
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Since the (n + 1) integrals are distinct, t would have to figure effectively in . t = const. would 

then be a first integral, which is impossible. 

 From that, when one knows n distinct first integrals of the system (1), say i = fi, any other 

first integral  =  (t, x1, …, xn) will be expressed as a function of those n integrals: 

 

 = F (1, 2, …, n),   = F (f1, f2, …, fn) . 

 

 That shows that an arbitrary integral will not depend upon more than n distinct constants. 

 

 

 The search for first integrals. – As we said, the search for a first integral presents the simplest 

problem that one can propose. We shall show, moreover, that such an integral can be characterized 

by a very simple condition that is deduced directly from equations (1). On the contrary, in order to 

recognize whether a relation F = 0 that depends upon several constants is an integral, one must 

eliminate the constants in each particular case. 

 Let: 

 = f (t, x1, …, xn) 

 

be a first integral. Any system of integrals x1 (t), x2 (t), …, xn (t) of (1) must verify the relation: 

 

0 = 1 2

1 2

k

k

dxdx dxf f f f

t x dt x dt x dt

   
+ + + +

   
, 

 

i.e., that relation must be a consequence of equations (1). 

 There will then exist functions 1, 2, …, n of t, x1, …, xn such that one has: 

 

1 2

1 2

n

n

dxdx dxf f f f

t x dt x dt x dt

   
+ + + +

   
 = 1

1 1
n

n n

dxdx
X X

dt dt
 

  
− + + −   

   
 , 

or rather: 

(A)   1 2

1 2

n

n

f f f f
x x x

t x x x

   
  + + + +

   
 = ( ) ( )1 1 1 n m nx X x X  − + + −  . 

 

 That identity implies the relations: 

 

− 
f

t




 = 1 X1 + 2 X2 + … + n Xn , 

1 = 
1

f

x




, 2 = 

2

f

x




, …, n = 

n

f

x




. 

 

 The multipliers  must then satisfy the conditions: 
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(B)    

1 1 2 2

,

( )( ) ( )
.

ji

j i

n n i

i i i

x x

XX X

x x x t



  

 
=

 


   + + + = −
    

 

 

 Conversely, if a system of functions  (t, x1, …, xn) verifies equations (B) then the function: 

 

f = 1 1 2 2 1 1 2 2( )n n n ndx dx dx X X X dt     + + + + + + +  

 

will be equal to a constant that defines a first integral. 

 n distinct first integrals correspond to n linearly-distinct systems of multipliers , and 

conversely. 

 The direct search for those multipliers  is very complicated, in general. However, one can 

find one or more systems of such multipliers immediately in certain cases. For example, that is 

what happens for the vis viva integral and most of the usual integrals of dynamics. Therefore, 

suppose that one has the following equations: 

 

1dx
m

dt
 = X , 

dx

dt
 = x1 , 

1dy
m

dt
 = Y , 

dy

dt
 = y1 , 

1dz
m

dt
 = Z , 

dz

dt
 = z1 , 

in which one has: 

dx dy dz
X Y Z

dt dt dt
+ +  = 

dU

dt
. 

Form the expression: 

 

1 1 1
1 1 1 1 1 1

dx dy dz dx dy dz
x m X y m Y z m Z X x Y y Z z

dt dt dt dt dt dt

           
− + − + − − − − − − −          

          
 . 

 

It reduces to: 

2 2 2

1 1 1( )
2

d m
x y z U

dt

 
+ + − 

 
 = 

df

dt
. 

 

The multipliers  are x1, y1, z1, X, Y, Z here. 

 That is the first form that one can give to the condition that characterizes a first integral. 

However, the following form is more convenient in applications. The relation: 
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1 2

1 2

n

n

dxdx dxf f f f

t x dt x dt x dt

   
+ + + +

   
 = 0 

 

is verified by any system of integrals x1 (t), …, xn (t). The same thing is true for the relation: 

 

(3)  1

1

n

n

f f f
X X

t x x

  
+ + +

  
 = 0 , 

 

which is no different from the first one when one takes equations (1) into account. On the other 

hand, since one disposes of the integration constants in such a fashion that x1, x2, …, xn will take 

arbitrary values 0

1x , 0

2x , …, 0

nx  for t = t0 , equation (3) must be verified when one gives arbitrary 

values to t, x1, x2, …, xn . It is therefore an identity. Hence, one has the following theorem: If f =  

is a first integral of (1) then f will verify equation (3) identically. 

 Conversely, any solution to equation (3) will define a first integral of the system (1). Indeed, 

replace the variables x1, x2, …, xn in f with an arbitrary system of integrals of (1) and calculate 

/df dt ; that will give: 

 

df

dt
 = 1 2

1 2

n

n

dxdx dxf f f f

t x dt x dt x dt

   
+ + + +

   
 = 1

1

n

n

f f f
X X

t x x

  
+ + +

  
 = 0 . 

 

Therefore, f = const. is a first integral of (1). 

 Therefore, in order for f =  to be a first integral of (1), it is necessary and sufficient that f 

should be a solution to the linear partial differential equation: 

 

(3)  1 2

1 2

n

n

f f f f
X X X

t x x x

   
+ + + +

   
 = 0 . 

 

 Observe that, from the foregoing, if f1, f2, …, fn are n distinct integrals of equation (3) then the 

general integral of that equations will be F (f1, f2, …, fn). That is a well-known proposition that is 

easy to prove directly. Let the equation be: 

 

1

1

n

n

f f f
X X X

x x x

  
+ + +

  
 = 0 , 

 

for more symmetry, and let f1, f2, …, fn+1 be (n + 1) integrals of that equation. The (n + 1) relations: 

 

1

1

i i i
n

n

f f f
X X X

x x x

  
+ + +

  
 = 0 , 
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will be compatible for values of the Xj that are not all zero only if the determinant of the /i jf x   

is identically zero. There will then exist at least one relation between the fi . 

 Let us apply those results to a system of canonical equations: 

 

idq

dt
 = 

i

K

p




, idp

dt
 = − i

i

K
Q

q


+


 . 

 Equation (3) takes the form: 

 

i

i i i i i

f f K f K f
Q

t q p p q p

      
+ − + 

      
   = 0 . 

 

 In the case where the Qi are partial derivatives of a function U (q1, …, qk, t), one has: 

 

idq

dt
 = 

i

H

p




, idp

dt
 = − 

i

H

q




 , 

and equation (3) will become: 

i i i i

f f H f H

t q p p q

     
+ − 

     
  = 0 . 

 

 In a general manner, if f and H are two arbitrary functions of the pi, qi then Poisson used the 

symbol (f, H) to denote the expression 
i i i i

f H f H

q p p q

    
− 

    
 . With that notation, equation (3) is 

written: 

f

t




 + (f, H) = 0 . 

 

 When H does not depend upon t, one can then write the canonical equations as: 

 

1

1

dq

H

p





 = … = k

k

dq

H

p





 = 1

1

dp

H

q


−



 = … = k

k

dp

H

q


−



 = dt 

 

and ignore t by neglecting the last equation. If one seeks a first integral that is independent of t: 

 

f (q1, q2, .., qk, p1, p2, …, pk) =  

 

then the function f must satisfy the equation: 

 

(f, H) = 0 . 
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 We shall now begin the theory of the last multiplier (which is due to Jacobi), which allows us 

to achieve the integration of a system (1) by quadratures in a large number of cases when we know 

a certain number of first integrals ( < n). 

 First observe that when t does not appear explicitly in the equations of motion of a system, it 

will suffice to know (2k – 1) first integrals that are independent of t. Indeed, one can infer (2k – 1) 

of the quantities pi, qi as functions of another one (say, q1) from those (2k – 1) integrals, and upon 

substituting those values in the first canonical equation, one will see that t is given as a function of 

q1 by a quadrature: 

dt = A (q1) dq1 . 

 

 The same remark obviously applies if one of the variables qi does not appear explicitly in the 

canonical equations. 

 The theory of the last multiplier leads to the following proposition: 

 When a material system without friction whose constraints are independent of time is subject 

to given forces that depend upon neither velocity nor time, it will suffice to know (2k – 2) distinct 

first integrals of motion (in which t do not appear) in order for the determination of the motion to 

be achieved by quadratures. (k is the number of parameters upon which the position of the system 

depends.) 

 When the constraints or the given forces depend upon time, it suffices to know (2k – 1) distinct 

first integrals (into which t does not enter). 

 

 

 Theory of the last multiplier. – The integration of a first-order equation: 

 

(1)  
dx

X
 = 

dy

Y
 

 

amounts to the determination of a first integral of this equation: 

 

f (x, y) =  , 

 

i.e., a function f that satisfies the equation: 

 

f f
X Y

x y

 
+

 
 = 0 . 

 

 The search for f is equivalent to the search for a multiplier M such that the expression: 

 

M (Y dx – X dy) 

 

is an exact total differential. If one knows such a multiplier then the function: 
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f = ( )M Y dx X dy−  

 

will define a first integral. In order for M to be an integrating factor of equation (1), it is necessary 

and sufficient that one should have: 

( ) ( )MY MX

y x

 
+

 
 = 0 , 

or rather: 

M M X Y
X Y M

x y x y

    
+ + + 

    
 = 0 , 

or finally: 

(2)     
log logM M X Y

X Y
x y x y

   
+ + +

   
 = 0 . 

 

 That is the equation that M or log M must satisfy. 

 In certain cases, one can find a multiplier immediately. (For example, if 
X Y

x y

 
+

 
  0 then M 

= 1 will be a multiplier.) In order to do that, it is convenient to write equation (2) in a slightly-

different form. Suppose that one has replaced y with an arbitrary integral y (x) of equation (1) in 

that equation, so one can write: 

 

log log 1M M X Y
y

x y X x y

    
+ + + 

    
 = 0 

or rather: 

(2)  
(log ) 1d M X Y

dx X x y

  
+ + 

  
 = 0 , 

 

 Conversely, if a function M (x, y) satisfies equation (2) when one replaces y with an arbitrary 

integral of (1) then M will be an integrating factor. Indeed, M will verify equation (2) when one 

replaces y with an arbitrary integral of (1) in it, i.e., for arbitrary values of x, y. 

 From that, if one knows a function U (x, y) such that one has: 

 

U

x




 = 

1 X Y

X x y

  
+ 

  
 

 

when y is an integral of (1) then M = 
Ue−

 will be a multiplier. 

 Suppose, for example, that: 

1 X Y

X x y

  
+ 

  
 =  (x) . 
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A multiplier M will be given by the equality: 

 

log M = − ( )x dx  

 Similarly, if: 

1 X Y

Y x y

  
+ 

  
 =  (x) 

 

then a multiplier will be given by the equality: 

 

log M = − ( )x dx . 

 

 That is what happens for the first-order linear equation: 

 

y  = A y + B , 

or 

1

dx
 = 

dy

A y B+
. 

 

 Here, the equation of the last multiplier is: 

 

log ( )
d

M A x
dx

+  = 0 , 

so 

M = 
( )A x dx

e
− . 

 

 We shall study the theory of the integrating factor in the case of a systems of two first-order 

differential equations and then the case of an arbitrary system. 

 

 

 Case of two differential equations. – Let the system be: 

 

(1)  
dx

X
 = 

dy

Y
 = 

dz

Z
 , 

 

in which X, Y, Z are given functions of x, y, z. 

 In order to integrate those equations, it will suffice to know two first integrals: 

 

f (x, y, z) =  , 

 (x, y, z) =  . 
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 Suppose that one knows one of them, say,  (x, y, z) =  . One can infer z (for example) as a 

function of x, y, and  from that integral and substitute that in X and Y. Let X  , Y   denote what X, 

Y become after that substitution. x and y will then be coupled by the equation: 

 

(2)      Y dx X dy −  = 0 . 

 

 If one knows an integrating factor  (x, y, ) of equation (2) then that equation can be integrated 

by a quadrature. We shall show that if M (x, y, z) satisfies the relations: 

 

log log logM M M X Y Z
X Y Z

x y z x y z

     
+ + + + +

     
  0 

 

then the expression / zM   (in which z is replaced with a function of x, y, and b) will be an 

integrating factor of equation (2). 

 For the moment, add a second integral f =  of the system (1) to the integral  = . We will 

have: 

  
f f f

X Y Z
x y z

  
+ +

  
   0 , 

  X Y Z
x y z

    
+ +

  
   0 , 

i.e.: 

A

X
 = 

B

Y
 = 

C

Z
 , 

when we set: 

A = 
f f

y z y z

    
−

   
, 

 

B = 
f f

z x z x

    
−

   
, 

 

C = 
f f

x y x y

    
−

   
. 

 

 Let M be the common value of the ratios A / X, B / Y, C / Z. I shall first say that 1 / xM  , in 

which z is expressed in terms of x, y, and , is an integrating factor for equation (2), resp. 

 Indeed, let A , B  , 1M  , and ( / z) denote what A, B, M1, and ( / z), become when one 

replaces z as a function of x, y, and . One will obviously have A  = 1M X  , B   = 1M Y  . It will 

suffice for me to show that 1/
z

 
 

 
 is an integrating factor of the equation: 
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B dx A dy −  = 0 . 

 

 Now, replace the variable z in f (x, y, z) with the variable  that is defined by the relation  = 

, and let ( , , )f x y   f (x, y, z). Calculate A and B as functions of the derivatives of f  ; that will 

give: 

  
f

x




 = 

f f

x x





   
+

  
 , 

  
f

y




 = 

f f

y y





   
+

  
 , 

  
f

z




 =  

f

z





 

 
 . 

 One deduces from this that: 

A = 
f

y z

 

 
 , 

B = 
f

x z

 

 
 , 

 

in which z is expressed in terms of x, y, and  everywhere, or rather: 

 

A  = 
f

y z

  
 

  
 , 

B   = 
f

x z

  
 

  
 , 

and as a result: 

B dx A dy

z



 −

 
 

 

  − 
f f

dx dy
x y

   
+ 

  
 . 

 If one gives a constant value to  then one will see that 1/
z

 
 

 
 is an integrating factor for the 

equation B dx A dy −  = 0. The corresponding integral of that equation will be ( , , )f x y    

const. 

 Having established that lemma, observe that the functions A, B, C verify the equality: 

 

A B C

x y z

  
+ +

  
 = 0 

identically. 

 One will then have: 
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1 1 1( ) ( ) ( )M X M Y M Z

x y z

  
+ +

  
 = 0 . 

 

 In other words, M1 is an integral of the partial differential equation: 

 

(3)  
l

 
log log ogM M M X Y Z

X Y Z
x y z x y z

     
+ + + + +

     
 = 0 . 

 

 Now compare M1 to an arbitrary integral M of equation (3). Upon subtracting corresponding 

sides of the two identities (3) that relate to M and M1, one will get the relation: 

 

1 1 1log ( / ) log ( / ) log ( / )M M M M M M
X Y Z

x y z

  
+ +

  
 = 0 . 

 

 Consequently, M / M1 = N will verify the equation: 

 

N N N
X Y Z

x y z

  
+ +

  
 = 0 , 

 

i.e., N will be a function of f and . Therefore: 

 

M = M1  (f, ) . 

 

 The proposition that we have in mind is proved with that. Indeed, replace M1 with a function 

of M in the equality: 

1 ( )
M

Y dx X dy

z


 −

 
 

 

 = ( , , )d f x y   

 

(in which  is constant). If M   denotes what M will become when one expresses z in terms of x, 

y, and  then one will obviously have: 

M   = 1 ( , )M f    , 

and as a result: 

( )
M

Y dx X dy

z




 −

 
 

 

 = ( , )f df    = dF (x, y, ) . 
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 Therefore, if M is a solution of equation (3) then /M
z

 
  

 
 will be an integrating factor of 

equation (2). Q. E. D. 

 

 The following theorem results from this: 

 

 When one knows an integral M of the equation: 

 

(3)  
l

 
log log ogM M M X Y Z

X Y Z
x y z x y z

     
+ + + + +

     
 = 0 

 

in order to achieve the integral of that system by quadratures, it will suffice to know a first integral 

of the system (1). One gives the name of last multiplier to M. 

 

 A very simple case in which one finds a multiplier M immediately is the one in which: 

 

X Y Z

x y z

  
+ +

  
 = 0 . 

 

M = 1 is then the solution of (3), and 1/
z

 
 

 
 is an integrating factor of equation (2). 

 More generally, one can give a slightly-different form to equation (3) by regarding y and z as 

functions of x that satisfy the system (1). Equation (3) will then be written: 

 

1
(log )

d X Y Z
M

dx X x y z

   
+ + + 

   
 = 0 . 

 

 Find a function U (x, y, z) such that one will have: 

 

dU

dx
 = 

1 X Y Z

X x y z

   
+ + 

   
 

 

when y and z are arbitrary integrals y (x), z(x) of the system (1), so M = exp ( , , )U x y z dx  will be 

a multiplier. (One sees that by arguing as one did in the case of only one equation.) 

 That is what happens especially when the quantity 
1 X Y Z

X x y z

   
+ + 

   
 is a function of only 

x, and similarly, if the quantities 
1 X Y Z

Y x y z

   
+ + 

   
 or 

1 X Y Z

Z x y z

   
+ + 

   
 reduce to functions of 

y or z. 
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 Applications. – As an application, consider the general second-order equation: 

 
2

2

d y

dx
 = , ,

dy
F x y

dx

 
 
 

 . 

 It is equivalent to the system: 

1

dx
 = 

dy

y
 = 

( , , )

dy

F x y y




 . 

 Here: 

X = 1 ,  Y = 1 ,  Z = ( , , )F x y y  . 

 As a result: 

X Y Z

x y z

  
+ +

  
 = 

F

y




 . 

 

 In order for that quantity to be zero, it is necessary and sufficient that F should not depend 

upon y . 

 Thus, if one is given the equation: 
2

2

d y

dx
 = ( ),F x y  

 

then in order for the integration to be achieved by a quadrature, it will suffice to know a first 

integral ( , , )x y y   = . One infers y  as a function of x, y, and  from that integral, namely, y  

=  (x, y, b), and the equation: 

 dx – dy = 0 

will admit 1/
y

 
 

 
 for an integrating factor. 

 In the case where: 

( ), ,F x y y  = ( ) ( , )x y x y  +  , 

 

one determines a multiplier M by a simple quadrature: 

 

log ( )
d

M x
dx

+  = 0 . 

 

 From that, if one studies the motion of a point that moves without friction on a fixed curve 

subject to a given force F that does not depend upon the velocity of the point then in order to 

achieve the solution to the problem by quadratures, it will suffice to know a first integral of motion.  

 The same thing will be true if the given force depends upon the velocity V in such a fashion 

that the tangential component FT has the form: 
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FT =  (s) V +  (s, t) , 

 

in which s denotes the arc of the fixed curve. 

 One knows that the motion of the point is, in fact, determined by the equation: 

 
2

2

d s
m

dt
 = FT , 

in that case. 

 More generally, the Lagrange equation that determines the motion of a system with complete 

constraints is written: 

d T T

dt q q

  
− 

  
 = Q . 

 

 If Q does not depend upon q  then it will suffice to know a first integral of motion if one is to 

determine the motion by quadratures. 

 Indeed, the Lagrange equation is equivalent to the equations: 

 

1

dt
 = 

dq

q
 = 

2

2

dq

u

T

q



 
 
 

 
  

 , 

in which one has set: 

u = 
2 2T T T

Q q
q q t q q

  
+ − −

     
. 

 

 The equation (3) that corresponds to the system (1) is: 

 

2 2

2 2

M M M u u
q M

T Tt q q q

q q

 
 

   
 + + +

       
    

 = 0 . 

 

 I say that the function M = 
2

2

T

q




 is a multiplier: In order to see that, it will suffice to replace M 

with 
2

2

T

q




 in the preceding equation. It will become: 
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0 
3 3 3 2 3 2 3 3 2

2 2 22 2 3 2 3 2 22

2 2
2

1T T T u T T u T T T T
q q

T Tq t q q q q q q q q t q q q qT
q qq

 
 

           + + + − + − − −                             
      

 . 

 

 The theorem is thus proved. One can arrive at it more easily by appealing to the canonical 

equations: 

(1)      
1

dt
 = 

dq

K

p





 = 
dp

K
Q

p


− +



 . 

 

 The expression 
X Y Z

x y z

  
+ +

  
 is equal to 

2 2K K Q

p q p q p

   
− + 

     
 here, i.e., to zero, since Q 

does not depend upon p. M = 1 will then be a multiplier for the canonical system (1). 

 

__________ 

 


