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 Introduction. – Consider the action integral: 

 

I1 = 
1

0

( , ( ), ( ))
t

t
L t q t q t dt 

   ( = 1, 2, …, m) 

of a dynamical problem. 

 One knows the fundamental role that is played by the 1-fold differential form (viz., the quantity 

of energy-motion form): 

H1  ( )
L L

dq L q dt
q q

 

 

 
− − +

 
 

 

in the study of the integral invariants of the extremals of I1 , as well as in the method that Hilbert 

(1) introduced into the study of the conditions for a minimum of the integral I1 . 

 In a prior work (2), the author considered the case of the n-fold integral: 

 

In = 
1 2

1[ , ( ), ( )]
k

n

i i i n

t t t
D

F x y x y x dx dx 

   

( 1,2, , )

( 1,2, , )
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=

=

=

 

 

for a problem in the calculus of variations with n independent variables 
ix , m unknown functions 

( )iy x
, and their partial derivatives 

1 2
( )

k

i

t t ty x up to order c (n, m, c are arbitrary). In that article, 

the integral In was associated with an n-tuple differential form with exterior multiplication 

[“exterior differential form” in the elliptic terminology of E. Cartan (3), or an “integral form” 

according to that of Th. De Donder (4)] that the author denoted by Hn . 

 The form Hn enjoys the same properties with respect to the integral In that the form H1 does 

with respect to the integral I1 . That is what permits one to put the first variation of In with a variable 

 
 (*) Presented by Th. De Donder. 

 (1) D. HILBERT, Gesammelte Abhandlungen, v. III, Springer, 1935, pp. 38-55.  

 (2) P. V. PÂQUET, “La forme intégrale Hn dans la théorie invariantive du Calcul des variations,” Bull. Acad. roy. 

Belg., Cl. Sc. 12 (1936), 1259-1272. 

 (3) E. CARTAN, Leçons sur les invariants intégraux, Paris, Hermann, 1922, ch. VII, pp. 65. 

 (4) TH. DE DONDER, Théorie des invariants intégraux, Paris, Gauthier-Villars, 1927. 
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boundary into the remarkable form that Cartan (1) gave it in the case of the integral I1 . In that 

form, the expression for the first variation of In will immediately lead to the canonical Volterra-De 

Donder equations (2) and De Donder’s generalized integral invariants (3). As the author has 

likewise shown (4), the form Hn permits one to extend the results the H. Weyl (5) obtained in the 

theory of geodesic fields in the calculus of variations for the case of c = 1(first derivatives) to the 

integral In . 

 Inspired by the fundamental paper by Th.-H. Lepage (6), the author will show in the present 

article that the properties of the form Hn extend to any arbitrary form n on the space of ix , y , 

iy  (the author limits himself to the case of c = 1) that is subject to the congruence conditions: 

 

  n  n mod 
  

  d n    mod 
  

with 

n  1( , , )i n

ix y y dx dx  ,     i

idy y dx − , 

 

in which d n denotes the symbolic differential of n in the sense of the theory of exterior 

differential forms. 

 In the first section, the author will show that the forms n that satisfy the first of those 

congruences are introduced naturally when the multiple integral In is thought of as an integral on 

a manifold in the space of 
ix , y

, 
iy . Those forms depend upon arbitrary coefficients 1

1

p

p

i i
X   

(1.9). 

 In the second section, the author will apply the formula (.d.E) [see (2.6)] to the theorem of 

integral invariants in the calculation of the first variation of In with variable boundary. He will then 

obtain a new expression for that first variation in which the arbitrary coefficients 1

1

i
X  appear. Upon 

choosing them to have the values 1

1
/ iy


  , he will find the expression for the first variation in its 

conventional form. That particular choice of coefficients 1

1

i
X  corresponds to the forms n that 

satisfy the second of the congruences that were in question above. 

 In the third section, the author will determine those of the forms n that have minimum rank. 

In order to do that, we will first establish a necessary and sufficient condition for an arbitrary 

exterior differential form to have minimum rank: It is necessary and sufficient that its coefficients 

must verify the relations (3.2). Those relations are the ones that are called the well-known 

 
 (1) Loc. cit., pp. 17, second-to-last line; formula (88) in the author’s note.  

 (2) TH. DE DONDER, Théorie invariantive du Calcul des variations, Paris, Gauthier-Villars (new ed.), 1935, pp. 

107, form. (622); form. (39) in the author’s note. 

 (3) Idem, ibid., pp. 142, form. (612); forms. (47) and (48) in the author’s note.  

 (4) Doctoral thesis, Fac. Sc. Univ. of Brussells, June 1937.  

 (5) H. WEYL, “The geodesic fields in the Calculus of variations,” Ann. Math. 36 (1935), 607-629.  

 (6) Th. LEPAGE, “Sur les champs géodésiques du Calcul des variations,” Bull. Acad. roy. Belg., Cl. Sc., 10, pp. 

716-729; pp. 1036-1046. 

 Similarly, see the recent paper by H. BOERNER, “Über die Legendre Bedingung und die Feldtheorien in der 

Variationsrechnung der mehrfachen Integralen,” Math. Zeit. 40, Heft 5 (1940), 720-742. 
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D’Ovidio relations in the theory of linear spaces (1). They belong to the theory of exterior 

differential forms in affine geometry. As one can show, the theory of exterior differential forms is 

not distinct from that of fields of multivectors in a locally-affine space: The coefficients of an 

exterior differential form are the components of a field of covariant n-vectors. The D’Ovidio 

conditions express the idea that an n-vector of that field is a simple n-vector, i.e., the exterior 

product, in the Grassmann sense, of covariant n-vectors in the tangent affine space. The author has 

reserved for a later work the development of the relations between the theory of exterior 

differential forms, the vector calculus, and the generalization that Gassmann gave to it in his 

Ausdehnungslehre (2) and showing the importance of those methods in the calculus of variations 

in its parametric, or “intrinsic,” form. That will then lead naturally to the generalization of the 

geometries of Finsler (3), Cartan (4), Kawaguchi (5). 

 Finally, in the last section, the author will recall the definition of a geodesic field in the calculus 

of variations and determine the independent integral and the Weierstrass formula that correspond 

to it. By assuming the viewpoint that Th. Lepage adopted in the previously-cited paper, the author 

will specify the nature of the condition 1

1

i
X  = 1

1
/ iy


   that was encountered above. To conclude, 

the author will address the geodesic fields of Caratheory and De Donder-Weyl, and thus recover 

the form Hn that he began with. 

 

 

 1. The integrals of the calculus of variations. – Consider the multiple integral: 

 

In  
1 2

1[ , ( ), ( )]
k

n

i i i n

t t t
D

F x y x y x dx dx 

     (1.1) 

 

that relates to a problem in the calculus of variations for n independent variables 
ix , m unknown 

functions ( )iy x
, and the first derivatives ( )iy x  of those functions. The value of the integral In 

depends upon the choice of domain D in the space of variables: 

 
ix   (i = 1, 2, …, n)      (1.2) 

and the choice of functions: 

 

( )iy x
  

1( , , )ny x x
  ( = 1, 2, …, m) ,  (1.3) 

with 

( )iy x   
( )
i

y x

x




 .     (1.4) 

 
 (1) A. ROSENBLATT, “Sur la variéte de Grassmann qui représente les espaces linéaires à k dimensions contenus 

dans un espace linéaire à n dimensions,” Mém. Soc. roy. des Sc. de Liége 16, fasc. I, (1930), pp. 4, form. (2). 

 (2) H. GRASSMANN, Ausdehnungslehre, Berlin, 1862.  

 (3) E. CARTAN, Les espaces de Finsler, Act. Sc. et Ind., no. 79, Paris, Hermann, 1934.  

 (4) E. CARTAN, Les espaces métriques fondés sur la notion d’aire, idem, no. 72, idem, 1933. 

 (5) A. KAWAGUCHI and H. HOMEU, “Die Geometrie des Systems der partiellen Differentialgleichungen,” J. of 

Fac. of Sc., Hokkaido, Imp. Univ. (1) 6, no. 1, and the bibliography that those authors gave. 
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 In the space n+m+nm of the arguments ix , y , 
iy , consider the n-tuple exterior differential 

form: 

n  1( , , )i n

ix y y dx dx  ,     (1.5) 

 

and the portion of the n-fold manifold n that is defined by the equations: 

 

  ix  = ix , 

y  = ( )y x   (x  D),      (1.6) 

  
iy  = ( )iy x  

( )
i

y x

x

 
 

 
 . 

 

 The multiple integral In is equal to the integral on the manifold in the space n+m+nm that is 

defined by n and n : 

In = 
n

n
 .      (1.7) 

 

The latter integral is characterized by the particular nature of the form n , whose coefficients are 

zero, except for one, and by the particular nature of the manifold n , which is an integral of the 

Pfaff system (1): 
  i

idy y dx −  = 0 ,  = 1, 2, …, m .   (1.8) 

 

 It results from the latter characteristic that the integral in the manifold (1.7) will not change 

value if one replaces the form n with another form on the space n+m+nm that is congruent to n 

mod 
1 , …, 

m , i.e., one that reduces to the form n by virtue of equations (1.8). 

 The most general form in the space n+m+nm that enjoys that property is the form: 

 

n   d (x) + 1 11

1

1

, , 12
1

1
( 1) ( )

( !)

p p p

p

l
i i i i

p

p

X d i i
p



   
+ + −

=

−  ,  (1.9) 

 

in which l is the smaller of the two numbers n and m, and the 1

1 , ,
p

p

i i
X   are arbitrary analytic 

functions of the arguments 
ix , y

, 
iy  that are completely-antisymmetric in their indices i and . 

On the other hand, one has set: 

 

  d (x)  
1 ndx dx , 

d (i1 , …, ip)  1 1
1 11 1 p pi ii i ndx dx dx dx dx

− +− +
    (1.10) 

 
 (1) In the course of this paper, we shall make constant use of the well-known convention regarding the summation 

over dummy indices (i.e., indices that are repeated twice in a monomial). 
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in (1.9), in which the indices i1, i2, …, ip (p = 1, …, l) and 1, 2, …, p (p = 1, …, l) independently 

take one or the other of the values 1, 2, …, n and 1, 2, …, m, respectively. 

 The multiple integral In is then equal to the integral on the manifold: 

 

n
I

 
n

n


 ,      (1.11) 

 

in which n and n are given by (1.9) and (1.6), respectively. 

 

 

 2. First variation of In . – The calculation of the first variation of In (1.1) introduces the second 

derivatives: 

1( , , )n

ijy x x   
2

i j

y

x x



 
     (2.1) 

 

of the functions ( )y x
. That will lead us to modify the viewpoint of the preceding section. 

 Instead of considering the space n+m+nm of the ix , y , 
iy , consider the space n+m+nm+m of the 

2 1

2

n + − 
 
 

 variables ix , y , 
iy ,

ijy . The form n will be thought as being defined on that space, 

as we once more let n denote the n-fold manifold in that space that is obtained by adding the 

equations: 

ijy  1( , , )n

ijy x x     
2 ( )

i j

y x

x x

 
 

  
   (2.1) 

to equations (1.6). 

 n is an integral of the Pfaff system: 

 
  i

idy y dx −  = 0 , 
i

  j

i ijdy y dx −  = 0 .  (2.2) 

 

 Consider an arbitrary family of one parameter  of portions of the manifolds n () in the 

1

2

n + 
 
 

 -fold space n+m+nm+m ; let: 

 
ix  = 

1( , , , )i nx     , 

 y
= 

1[ , ( , , , )]ny x      , 

iy  = 
i

y

x




  1[ , ( , , , )]n

iy x       
1( , , )n    ,  (2.3) 

  
ijy  = 

i j

y

x x



 
  1[ , ( , , , )]n

ijy x      
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be the parametric equations of one such family, in which  denotes the domain of variation of the 

parameters 1, , n  . 

 On the other hand, let: 

 

( , , )

i

i

x

X x y




 = 

( , , )

y

Y x y








 = 

( , , )

i

i

y

Y x y








 = 

( , , )

ij

ij

y

Y x y








 =    (2.4) 

 

be the “variational derivative” of an arbitrary point ( , , , )i

i ijx y y y   of n () that corresponds to 

the elementary variation ( →   + ) of the parameter . 

 Upon referring to the theory of exterior differential forms, the differential of: 

 

n
I

 
n

n


       (2.5) 

 

that conforms to the system (2.4) is given the relation [formula (.d.E)] (1): 

 

n
I 

  
1n n

n nE d E
− 

 +   .     (2.6) 

 

 In (2.6), d is the symbol for the symbolic differentiation in the theory of exterior differential 

forms, and E is the symbol for the integral substitution in that same theory.  n−1 denotes the closed 

manifold that is the boundary of the portion of the manifold n . 

 Upon applying the operator d to n , one will get: 

 

  d n = 1 1 1 1 1

1 1 1

1

1( ) ( 1) ( ) ( )
i i i

i i

i

d x dX d i X d x
y y

  

  
   −  

+ + − − 
  

 

 

− 
1 1

1 2 1 2 1 2 2 1

1 2 2 1 2 1

1 1

1 22 2

( 1) ( 1)
( ) ( )

(2!) (2!)

i i
i i i i

i iX dy d i X dy d i   

    
− −

− −
− + …  (2.7) 

 

after reduction, in which the unwritten terms each contain at least two of the forms 
  as a factor. 

 If one sets: 
  = i

iy y x  −  , 
i

  = j

i ijy y x  −    (2.8) 

then one will have: 

 

 E d n = ( ) ( )i

i

i

d x X d x
y y

 

 
 

  
+ − 

  
 

 
 (1) Th. De Donder, loc. cit. in footnote (4) on pp. 1 of the present article; pp. 60, form. (138). 
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+ 
1 1

1 1 2 1 2 1 2 2 1

1 1 2 2 1 2 1

2 2
2

1 1 22 2

( 1) ( 1)
( 1) ( ) ( ) ( )

(2!) (2!)

i i
i i i i ii

i idX d i X dy d i X dy d i   

      
− −

− − −
− + −  + …, (2.9) 

 

in which the unwritten terms once more each contain one of the forms   as a factor at least once. 

 Upon denoting the form on the space of 1x , …, nx  that is obtained by referring E d n to the 

manifold n by [ ]
nnE d   then one will have, by virtue of (2.9) and 2.2): 

 

[ ]
nnE d    

= 2 11 2

1 2

1
( ) ( ) ( )

2!

i
i ii ii

i i ii

i

dy dydX
d x X d x X d x

y dx y dx dx

 

  
   

  
    

− + − + −           

, (2.10) 

 

in which / id dx  is the complete partial derivation with respect to 
ix : 

 

i

d

dx
 = 

2( ) ( )
i i i j

j

y x y x

x y x y x x

 

 

    
+ +

     
 .   (2.11) 

 

 We note that the third term on the right-hand side of (2.10) is zero, by virtue of the 

permutability of the second derivatives of the functions ( )y x . 

 On the other hand: 

E n = 1 1( 1) ( ) ( 1) ( )i i i ix d i X d i− −− + −  + … ,  (2.12) 

 

in which the unwritten terms each contain one of the 
  as a factor at least once, so: 

 

[ ]
nnE   = 1( 1) ( ) ( )i i ix X d i−− +     (2.13) 

 

on n . If one substitutes (2.13) and (2.10) into (2.6) then one will get: 

 

1

1( ) ( ) ( 1) ( ) ( ) ,
n n

n

i
i i i i

iiD D
i

I

dX
d x X d x x X d i

y dx y

 
  



  
−

−   
= − + − + − +  

    
 

 (2.14) 

 

in which Dn−1 denotes the boundary of the domain Dn of the 
1x , …, 

nx . Formulas (2.10), (2.13), 

and (2.14) are valid for any values of the functions iX . If one sets: 
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iX   
iy




 ,     (2.15) 

 

in particular, then formulas (2.10) and (2.13) will become: 

 

[ ] ( )
nn i

i

d
E d d x

y dx y



 


  
 = − 

  
   (2.16) 

and 

1[ ] ( 1) ( ) ,
n

i i

n

i

E x d i
y




 −



 
 = − + 

 
   (2.17) 

 

and (2.14) can be written: 

 

1

1( ) ( 1) ( ).
n

n n

i i

iD D
i i

d
I d x x d i

y dx y y

 

  
   

−

−



     
= − + − +   

     
   (2.18) 

 

We thus recover the usual form for the first variation of In . 

 By contrast, upon setting: 
iX   0 ,    (2.19) 

the formula (2.14) will lead to the relation: 

 

In = 
1

1( ) ( 1) ( )
n n

i i

i
D D

i

d x x d i
y y

 

 
  

−

−  
+ + − 

  
  ,   (2.20) 

 

or rather, upon applying the generalized Stokes theorem: 

 

In = 
( )

( )
n

i

i iD
i

d x
d x

y y dx

 

 


 

  
+ + 

  
 .   (2.21) 

 

That form of the first variation of In is useful in the calculus of the second variation of In . 
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 Remarks: 

 

 a) If one refers to (2.7) then one will see that the condition: 

 

iX   
iy




     (2.22) 

is necessary and sufficient for the congruence: 

 

d n  0  mod 1( , , )m      (2.23) 

to be valid. 

 

 b) We point out that instead of considering the X in the form n to be arbitrary functions of 

the arguments ix , y
, 

iy , we can consider them to be arbitrary parameters. In particular, we can 

consider them to be independent variables on a par with the ix , y
, 

iy . From the latter standpoint, 

n is an n-tuple form on the space of 
ix , y , 

iy , 1

1 , ,
p

p

i i
X   , which is a space in which the manifolds 

n will be defined by adding the trivial relations: 

 
1

1 , ,
p

p

i i
X   = 1

1 , ,
p

p

i i
X       (2.24) 

to equations (1.6). 

 

 

 3. The forms n of minimum rank. – In the present section, we propose to determine those 

of the forms Cn of minimum rank from among the forms n . 

 

 Theorem: 

 

 In order for a n-tuple differential form (that is not identically zero) (1): 

 

An  1

1

11
( , , )

!
n

n

NA z z dz dz
n



    (1, …, n = 1, 2, …, N)  (3.1) 

 

in the space of z1, …, zN to have minimum rank n, it is necessary and sufficient that those 

coefficients verify the D’Ovidio relations: 

 

 
 (1) Recall that, by definition, the 

1 n
A 

 are completely antisymmetric in their indices 1, …, n in such a way that 

one will likewise have: 

An  1

1

1 2

n

n

n

A dz dz


 
    

  

as the expression for An .  
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1 1n n
A A   

= 
2 1 1 1 1

1
i n i i n

n

i

A A       − +

=

  (1, …, n , 1, …, n = 1, 2, …, N) .  (3.2) 

 

 Proof. – By definition, the form An has minimum rank (i.e., rank n) when there exist n 1-tuple 

forms (i.e., Pfaff forms): 

 
i   iA dz

 ,   = 1, 2, …, N, i = 1, 2, …, n    (3.3) 

 

whose exterior product reduces to An : 

An = 1 2

1

n
n

i

  
=

 .     (3.4) 

 

 a) The condition (3.2) is necessary. – By hypothesis, one has the relation (3.4), from which, 

one must deduce the relations (3.2). 

 Consider the associated system to An , namely, the system of Pfaff forms: 

 

2 n    1

1 2

1 1
n

N

A dz


  
 =

 . 

 

By virtue of (3.4), each term in 2 n   contains one of the forms 1  as a factor. It will then follow 

that the exterior product of An with 2 n   will be identically zero. One will then have: 

 

1 1

1 2 1

1 1

1

!
n

n n

N

A dz A dz dz
n

 

    
 =

  
  

  
  = 1 1

1 2 1

1 1

1

!
n

n n

N

A A dz dz dz
n

 

    
 =

  

= 1 2

1 2 1 2 1 1 1 1

1

1
( )

( 1)!
n

n n i n i n n

N

i

A A A A dz dz dz
n

 

            − +

=

−
+

 ,  (3.5) 

 

which gives the relations (3.2). 

 

 Remark. – We point out that one has: 

 

1

( )
n

i

i

A dz



=

  = 1 1

1

1 1

1

!

n n

n

n n

A A
dz dz

n A A

  

 

,   (3.6) 

 

and therefore, by virtue of (3.4) 

1 n
A    1

1

1 1

n

n

n n

A A

A A

 

 

 .    (3.6) 
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The D’Ovidio relations are the relations that necessarily exist between the determinants (3.6). 

 

 b). The condition is sufficient. – By hypothesis, the coefficients of An verify the D’Ovidio 

relations (3.2). One must show that one can construct n Pfaff forms whose exterior product reduces 

to An . 

 Since, by hypothesis, An is not identically zero, at least one of its coefficients must be non-

zero, namely: 

A12…n  0 .      (3.7) 

 

 Choose 2n  functions i

jA  (i, j = 1, 2, …, n) arbitrarily, but such that: 

 

j

iA   

1 1

1

1

n

n n

n

A A

A A
 = A12…n .    (3.8) 

 

Then consider the system of n (N – n) equations in the n (N – n) unknowns j

nA +
: 

 

1 1 1

1 1 1 1 1

1 1

n n n n n

i n i n

i n n n

A A A A A

A A A A A



 

− + +

− + +

  
1

j
n

i j

nj
j i

A
A

A
+

=




  = A1…(i−1)(n+)(i+1)…n 

(3.9) 

 = 1, 2, …, N – n, i = 1, 2, …, n . 

 

 The system (3.9) is composed of m  N – n subsystems that each have the adjoint determinant 

to (3.8) for their characteristic determinant. By virtue of (3.7), we are then in the presence of a 

Cramer system, and we can determine the j

nA +
 as functions of the A1…(i−1)(n+)(i+1)…n and the j

iA . 

We are then in possession of n N quantities 
1,2, ,

1,2, ,

i
i n

A
N




= 
 

= 
 that verify the conditions (3.8) 

and (3.9). 

 Now, by hypothesis, the 
1 n

A   verify the D’Ovidio relations. Thanks to them, one can 

effortlessly see all of the 
1 n

A    expressed in a well-defined manner as functions of the A12…n and 

A1…(i−1)(n+)(i+1)…n , and therefore as functions of the iA  [(3.8), (3.9)]. 

 Upon performing the calculations, one will finally have: 

 

 
1 n

A  = 1

1

1 1

n

n

n n

A A

A A

 

 

,     (3.10) 

i.e., by virtue of (3.6): 

An = 
1

n
i

i

A dz 

=

  .   Q.E.D.   (3.11) 
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 Remark. – The reasoning that we just presented shows that the D’Ovidio relations are 

sufficient for (3.10), when considered to be a system of equations in the unknowns iA , to admit a 

solution. We showed in (3.6) that it is likewise necessary. 

 

 Theorem: 

 

 In order for one of the forms n (1.9) to have minimum rank, it is necessary and sufficient that 

one has: 

1

1

p

p

i i
X   

1 1

1

1

1

1 p

p p

p

i i

p i i

X X

X X

 

 

−
 .    (3.12) 

 

 Proof. – In order for n to have minimum rank, it is necessary and sufficient that its 

coefficients verify the D’Ovidio relations. Upon setting: 

 

  n  A12…n d (x) + 1

1 1 1( )12 ( 1)( 1) 1( )n i i nA d i


 + − +
 

+ 1 2

1 2 1 1 2 2( )( )12 ( 1)( 1) ( 1)( 1) 1 2( , )n n i i i i nA d i i
 

   + + − + − +
 + …,   (3.13) 

 

one will then have: 

 

  
1 1 1 1 2 1 1 2 212 ( 1)( 1) ( )( )12 ( 1)( 1) ( 1)( 1)i i i n n n i i i i nA A  − + + + − + − +

 

(3.14) 

= 
1 1 1 1 1 2 1 1 2 2( )12 ( 1)( 1) ( )12 ( 1)( 1) ( 1)( 1)i n i i n i n i i i i nA A + − + + − + − +

 

+ 
1 2 1 1 1 1 1 1 2 2( )12 ( 1)( 1) ( )12 ( 1)( 1) ( 1)( 1)i n i i n i n i i i i nA A + − + + − + − +

, 

 

so, upon specifying the coefficients of n : 

 

( )1 1 2

1 2

1
(( 1) )

i i i
X 

−
−  = ( )( )1 1 2 1 2

1 2

1 1
( 1) ( 1)

i i i i i
X X 

− + −
− −     (3.15) 

and finally: 

1 2

1 2

i i
X  = 

1 1

1 2

2 2

1 2

1
i i

i i

X X

X X

 

 

 .    (3.16) 

 

 Similarly, one infers from the D’Ovidio relations: 

 

  
1 1 1 1 2 3 1 1 2 2 3 312 ( 1)( 1) ( )( )( )12 ( 1)( 1) ( 1)( 1) ( 1)( 1)i i i n n n n i i i i i i nA A   − + + + + − + − + − +

 

(3.17) 

=
1 1 1 1 2 3 1 1 2 2 3 3( )12 ( 1)( 1) ( )( )12 ( 1)( 1) ( 1)( 1) ( 1)( 1)n i i n i n n i i i i i i nA A  + − + + + − + − + − +

 

+ 
2 1 1 1 1 3 1 1 2 2 3 3( )12 ( 1)( 1) ( ) ( )12 ( 1)( 1) ( 1)( 1) ( 1)( 1)n i i n n i n i i i i i i nA A  + − + + + − + − + − +
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+
3 1 1 1 2 1 1 1 2 2 3 3( )12 ( 1)( 1) ( )( ) 12 ( 1)( 1) ( 1)( 1) ( 1)( 1)n i i n n n i i i i i i i nA A  + − + + + − + − + − +

, 

 

upon taking (3.16) into account, that: 

1 2 3

1 2 3

i i i
X   = 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

2

1

i i i

i i i

i i i

X X X

X X X

X X X

  

  

  

 ,     (3.18) 

and so on.           Q.E.D. 

 

 Theorem:  

 

 The forms n of minimum rank are given by the relation: 

 

Cn = 
1

1

1
( )

n
i i

n
i

dx X 

 
−

=

+  .    (3.19) 

 Proof: 

 

 Upon referring to (3.8), set (1): 
j

iA   1/j n

i ,      (3.20) 

in such a way that one will have: 
j

iA =  . 

The analogue of the system (3.9) is: 

 

j j

n i

i

A A+  = iX
,  with  j

iA   

j

i

j

i

A

A




 

here, so: 

j

nA +
 = i j

iX A , with j

iA   

j

i

j

i

A

A




 . 

Upon specifying the values of iA , one will get: 

 
i

nA +
 = (1 )j i n

jX  −  = (1 )i nX

− , 

so, by virtue of (3.20): 

 

Cn = 
1/ (1 )

1

( )
n

i n j i n

j

i

dx X 

 −

=

+  = 
1

1

1
( )

n
j i

n
i

dx X 

 
−

=

+ .  (Q.E.D.) 

 

 (1) i

j  = 
0

1

i j

i j




=

 . 
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 Remark. – Note that since: 
   j

jdy y dx − , 

(3.19) can be put into the form: 

 

Cn = 
1

1

1
( )

n
j i j i

i jn
i

X y dx X dy 

 
−

=

 − +  ,  (3.21) 

i.e.: 

Cn = ( )
1

n
i j i

j

i

H dx p dy



=

+ ,    (3.22) 

upon setting: 

i

jH  
1

j i

i j

n

X y


−

−
  and  ip

  iX
 .   (3.23) 

 

 

 4. Geodesic fields in the calculus of variations. – Once again, consider the integral In (1.1) 

and the forms n (1.9) that we associated with it in § 1. Consider the 1

1 , ,
p

p

i i
X   in those forms to be 

arbitrary parameters (see § 2, Remark b). 

 A geodesic field relative to the integral In will be, by definition, any set of functions: 

 

( , )i

iy x y  , 1

1 , , ( , )p

p

i i iX x y

   ((x, y)  R)    (4.1) 

 

that gives rise to the relation: 

n
n


  = 0 ,      (4.2) 

 

in which 
n  denotes the differential form on the space n+m of ix , y  that is obtained by replacing 

the arguments 
iy , 1

1 , ,
p

p

i i
X   in n with the functions ( , )iy x y , 1

1 , , ( , )p

p

i i
A x y  , and in which n 

denotes an arbitrary closed oriented n-fold manifold in a region R in the space n+m . 

 Suppose that the portion of the manifold 
n  that is defined by the equations: 

 

  
( )

i i

i

x x

y y x 

=

=
  (x  D)   (4.3) 

is given on R. 

 By definition, a geodesic field ( , )iy x y , 1

1 , , ( , )p

p

i i
A x y   incorporates the portion of the 

manifold 
n  if one has: 

( , )iy x y  = 
( )
i

y x

x




  (x  D),   (4.4) 
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in which the domain D is supposed to be interior to the projection of R onto the space of 1x , …, 
nx . 

 With those definitions, suppose that a portion of the manifold (4.3) is given (but not necessarily 

an extremal of In (!)] and a geodesic field (4.1) that incorporates 
n  and is defined in a region R 

of n+m (that does not necessarily contain 
n ). Let 

n  denote a portion of the arbitrary n-fold 

manifold that is interior to R and is defined by the equations: 

 

  
( )

i i

i

x x

y y x 

=

=
  (x  D),   (4.5) 

 

but nonetheless restricted to admitting the same boundary as 
n , i.e., it is such that: 

 

y  = ( )iy x  (x  Dn−1)     (4.6) 

 

when one lets Dn−1 denote the boundary of the domain D in the space of 1x , …, nx . The manifold 

in the space n+m that is composed of the set of manifolds 
n  and ˆ

n  (suitably oriented) is a closed 

oriented manifold in the region R. Now, by virtue of (4.2), and with convenient orientations on 
n  

and ˆ
n  

 
n

n


  = 
ˆ

n
n


      () 

 

 On the other hand, by virtue of the incorporation relation (4.4) and the property of n that is 

congruent to n mod 
 , one can conclude that: 

 

1( )
, ( ),i n

iD

y x
x y x dx dx

x


 

 
 

  = 
0
n

n


 .    (4.8) 

 

 The properties (4.7) and (4.8) are the ones that define the independent integral that Hilbert (see 

[footnote (1) on pp. 1] introduced in the case of a simple integral. They suffice for one to construct 

an excess function and obtain a Weierstrass formula. 

 Upon setting: 

 

I  1 1( ) ( )
, ( ), , ( ),i n i n

i iD D

y x y x
x y x dx dx x y x dx dx

x x

 
     

−   
    

  , (4.9) 

 

the relations (4.7) and (4.8) will indeed lead to the relation: 
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I = 
ˆ

n
n n


−  ,     (4.10) 

 

in which ˆ
n  is defined in the space of the ix , y , 

iy  by adding the equation: 

 

iy  = 
( )
i

y x

x




      (4.11) 

 

to equations (4.5). Upon referring to the space of the 1x , …, nx , (4.10) can be written: 

 

I = 1

1

1

, ,

( )
, ( ), , ( , ( )), ( , ( ))p

p

i ii n

iiD

y x
x y x y x y x A x y x dx dx

x


   

 

 
 

 
 ,  (4.12) 

 

in which the function  is defined by the relation: 

 

 ( )1

1 , ,, , , p

p

i ii

ix y y X 

    ( ) ( ), , , ,i i

i ix y y x y y   −  

− 

2 2

2 2 2 211 1 1

1 1 1 1
2 2

, ,

2

( ) ( )
( )

( ) ( )

p p

p

p p p

p p p p

l
i i i ii ii

i i

p i i i i

y y y y
X y y X

y y y y

  

 

     
=

− −
− −

− −
  ,  (4.13) 

 

in which l denotes the smaller of the two number n and m, as always. 

 

 Remark. – Upon considering the 1

1 , ,
p

p

i i
X    to be functions of the 

ix , y , 
iy , the functions 

1

1 , ,
p

p

i i
X   , which define a geodesic field, are obtained by starting with convenient functions 

( , )iy x y   and setting: 

1

1 , , ( , )p

p

i i
X x y

   1

1 , , ( , , ( , ))p

p

i i

iX x y y x y  

   .    (4.14) 

 

That is the point of view that Th. Lepage assumed in his paper that was cited above (1). Upon 

adopting that viewpoint, any choice of functions 1

1 , , ( , , )p

p

i i

iX x y y 

   will correspond to a particular 

type of geodesic field and a particular excess function: 

 

 ( ), , ,i

i ix y y y  
  ( ) ( ), , , ,i i

i ix y y x y y   −  

− 

2 2

2 2 2 211 1 1

2 2 2 1
2 2

, ,

2

( ) ( )
( , , )( ) ( , , )

( ) ( )

p p

p

p p p

p p p p

l
i i i ii ii

i i i i

p i i i i

y y y y
X x y y y y X x y y

y y y y

  

    

     
=

− −
− −

− −
  . (4.15) 

 
 (1) Loc. cit., in footnote (6) on pp. 2 of the present article; pp. 720, form. (2.6). 
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One infers from the relation (4.15) that: 

 

1

1 11
1 1i i

i
y y

y
 



=

 
 
  

 = 1

11

1

i

i

X
y




−


 ,    (4.16) 

 

and one sees that the condition [see (2.17) and (2.24)]: 

 

iX  = 
iy




     (4.17) 

 

expresses the idea that  is stationary in 
iy  for 

iy  = 
iy , which explains the importance of that 

condition for questions regarding extrema. 

 To conclude, we remark that if we impose the condition (4.17) on the forms Cn of minimum 

rank then we will obtain the form with respect to which Caratheodory’s geodesic fields are defined 

(1). The De Donder-Weyl fields (2) are defined with respect to the form Hn that is obtained by 

setting: 

1

1

i
X  = 

1

ii
y




, 1

1 , ,
p

p

i i
X     0  (p = 2, …, l) ,   (4.48) 

in n and which can be written: 

 

Hn =
1 1 1 1i i i n np dx dx dy dx dx H dx dx



− + −    (4.19) 

upon setting: 

ip  = 
iy




 and H = −  + i

i

y
y








.   (4.20) 

 

 The form in (4.19) should be compared to the form in (3.22). 

 

_____________ 

 

 
 (1) Idem., § 10. 

 (2) Cf., footnote (5) on pp. 2. 


