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 I propose to present some results here that I have obtained in the study of certain 
types of nonlinear wave equations that are introduced in wave mechanics. 
 Some of these equations have been encountered before, notably by SCHIFF, 
IVANENKO, FINKELSTEIN, and HEISENBERG.  My starting point is very different 
from those authors, and I think that my method can complete and clarify some of their 
results. 
 I shall begin with some considerations on the hypotheses that can guide one in the 
search for nonlinear wave equations that are capable of generalizing the usual wave 
mechanics. 
 
 

1. The types of solutions of the Klein-Gordon equation. 
 

 I shall begin by examining the solutions of the Klein-Gordon equation: 
 

(1)    Ψ□ (x, y, z, t) + 2
0µ Ψ = 0,  µ0 = 0m c

ℏ
  

 
that represent corpuscles without spin in ordinary wave mechanics. 
 According to the problem being studied, one can consider different types of waves Ψ 
that are solutions of that equation. 
 They are the solutions that one calls: 
 
 − plane waves 
 − invariant waves 
 − spherical waves 
 − proper field waves 
 − guided waves. 
 
 1. The plane wave solutions are obtained by starting with equation (1) and supposing 
that the functions Ψ (x, y, z̧  t) depend upon only one variable τ, which is a linear 
combination of x, y, z, t that takes the form: 
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(2)      τ = 
1

ℏ
[Wt – (p x)], 

so: 
(3)      Ψ (x, y, z, t) = Ψ (t). 
 
The parameters W, p are linked by the relation: 
 

  
2

2

W

c
= p2 + 2 2

0m c . 

 
The function Ψ (τ) is determined by a differential equation: 
 

(4)      
2

2

( )d

d

τ
τ

Ψ
+ Ψ (τ) = 0. 

 
The general solution is then a linear combination of two types of solutions, namely, even 
and odd ones: 
(5)     Ψc = A cos τ, Ψs = A′ sin τ. 
 
The different values of the functions Ψ (τ) can be considered to be deduced from the 
solution in the proper system: 

Ψ = Ψ (τ) 
 
(so τ = 2

02 / m c tπ ℏ = µ0 ct) by a Lorentz transformation. 

 We can already note that the solutions (5) are the solutions of (1) that depend upon 
just one variable that is periodic, uniform, and has finite amplitude. 
 
 2. The solutions that are called invariant are obtained by starting with (1) while 
considering functions Ψ (x, y, z, t) that depend upon x, y, z, t only by the intermediary of 
a single auxiliary variable that is a relativistic invariant. 
 One generally takes: 

  u = ± 2 2 2c t r− , 

 u2 = c2 t2 – (x2 + y2 + z2). 
One easily sees that: 

□= 
2

2

3d d

du u du
+ . 

Equation (1) is then written: 
2

2
02

3
( )

d d
u

du u du
µ 

+ + Ψ 
 

= 0. 

 
This is once more a differential equation whose general solution is expressed by means of 
Bessel functions: 
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 Ψ (u) = 1 0 1 0( ) ( )
A A

J u N u
u u

µ µ′
+  

  = (1) (2)
1 0 1 0( ) ( )

B B
H u H u

u u
µ µ′

+ . 

 
These functions might possibly possess only one critical point: namely, the point u = 0 
that corresponds to the light cone. 
 
 3. For the introduction of spherical waves and guided waves, we shall suppose that 
there exists a privileged frame R0 that is attached to the corpuscle, and in that frame the 
wave functions Ψ (x, y, z, t) are expressed in the form of a product of a function of t – 
namely, Ψ1 (t) – and a function of the spatial variables Ψ2 (x, y, z) or Ψ2 (r, θ, ϕ): 
 

Ψ (x, y, z, t) = Ψ1 (t) Ψ2 (x, y, z) = Ψ1 (t) Ψ2 (r, θ, ϕ) 
 
so one will then have: 

2
21

2 1 2 0 1 22

d

dt
µΨΨ − Ψ ∆Ψ + Ψ Ψ = 0. 

 
 If one introduces two coupling constants λ1, λ2 such that: 
 

 
2

1
2

d

dt

Ψ
+ λ1 Ψ1 (t) = 0, 

 
 ∆Ψ2 (x, y, z) + λ2 Ψ2 (x, y, z) = 0. 
 
 We suppose that λ1 and λ2 are real. [λ1 will > 0, in order to avoid the possibility that 
the solutions Ψ1 (t) are not of vanishing type; those solutions will be considered in a more 
general study that I shall not enter into here.]  Hence: 
 

Ψ1 (t) = 1 1

1 2
i t i tC e C eλ λ−+ = 1 1 2 1cos sinC t C tλ λ′ ′+ . 

 
There are two cases to consider for the functions Ψ2 : 
 Indeed, one has λ2 = λ1 − 2

0µ , so: 
 
 a.     λ1 > 2

0µ , λ2 > 0. 
 

∆Ψ2 + λ2 Ψ2 = 0 
will admit the general solution: 
 

Ψ2 (r, θ, ϕ) = 1 1
2 2

2 2

1
[ ( ) ( )] ( , )n

ll l
A J r B N r Y

r
λ λ θ ϕ+ ++

′
. 
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 b.     λ1 < 2
0µ , λ2 < 0. 

 
∆Ψ2 − | λ2 | Ψ2 = 0 

 
will admit a solution that is bounded when r → ∞ : 
 

Ψ2 (r, θ, ϕ) = 1
2

2( ) ( , )n
ll

A
K r Y

r
λ θ ϕ+′

. 

 
(The solution in 1

2l
I +  will diverge when r → ∞.)  If we confine ourselves to the case of l = 

0 then: 
Ψ2 (r, θ, ϕ) = Ψ2 (r), 

so one will have the cases: 

 a.    Ψ2 (r) = 2 2sin cosr r
A B

r r

λ λ
′ ′+  

 

 b.    Ψ2 (r) = 2| |rA
e

r
λ−′′

. 

 
The solutions that are called “spherical” are obtained by starting from these expressions 
and setting: 

λ1 = 
2

2 2

W

cℏ
 = K2, λ2 = 

2

2

p

ℏ
 = | K  |2, 

 
λ1 − λ2 =

2
0µ . Here λ1 > 2

0µ . 

 
 Ψsph = Ψ1 (t) Ψ2 (r) 

 = 1 2

sin | | cos | |
( cos sin )

r r
C Kct C Kct A A

r r
 ′ ′ ′ ′′+ + 
 

K K
 

 = 1 2

sin ( | | ) cos ( | | )Kct r Kct r
C C

r r
′′ ′′+K K∓ ∓

. 

 
These waves are the spherical waves of ordinary wave mechanics (in the case l = 0). 
 In addition, one considers the particular case that one calls the proper field of the 
particle.  Those waves correspond to the case in which: 
 
 λ1 = 0 so Ψ (x, y, z, t) = Ψ2 (r) = Ψ (r), 
 
 λ1 = 0 implies that | λ2 | = 2

0µ , 

 

 Ψ (r) = 00 rC
e

r
µ− . 
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When one fixes the value of the constant C0 , that solution will be considered to be the 
field Ψ that is created by a source C0 that is localized at the point r = 0 in the proper 
system of the source. 
 One passes from these general spherical wave solutions to the guided-wave solutions 
by considering the solutions (a) and (b) to be complete and performing a general Lorentz 
transformation on the frame R0 . 
 Let: 
 ct = cosh γ ct′ − sinh γ z′,  x = x′, 
 
 z = sinh γ ct′ – cosh γ z′,  y = y′, 
 
 r2 → x′2 + y′2 + cosh2 γ [z′ − tanh γ ct′]2, 
 

 1 tλ  → [cosh γ ct′ − sinh γ z′]. 

Setting 1λ = µ1 : 

 K1 = µ1 cosh γ , | K 1 | = sinh γ,  tanh γ = v1 , 
 

  1 tλ  → K1 ct′ − | K 1 | z′, 
 

r2 → x′2 + y′2 + (z′ – v1 t′ )2 = ρ ′2,  
 

Ψ (x, y, z, t) = 2 2
1 1 1 1

sin cos
[ cos sin ]

t t
C t C t A A

r r

λ λ
λ λ

 
′ ′′ ′ ′′+ + 

  
 

→ Ψ (x′, y′, z′, t′)  
 

= 2 2
1 1 1 1 1 1

sin cos
[ cos ( | | ) sin ( | | )]C K ct z C K ct z A B

λ ρ λ ρ
ρ ρ

 ′ ′
′ ′ ′ ′′ ′ ′ ′ ′− + − + ′ ′  

K K . 

 
Similarly, the field solution Ψ: Ψ (r) = 0

0 /rC e rµ−  will give the particular guided 

solution: 

Ψ (x′, y′, z′, t′) = 
( )2 2 2 2

0 0

2 2 2 2

exp cosh ( tanh )

cosh ( tanh )

C x y z ct

x y z ct

µ γ γ

γ γ

′ ′ ′ ′− + + −

′ ′ ′ ′+ + −
, 

 
which corresponds to the Yukawa field with a source in uniform, rectilinear motion. 
 Whereas the solutions of the invariant wave type are solutions of (1) with fixed 
critical points, the guided waves are solutions with moving critical points (i.e., ones that 
depend upon integration constants). 
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2. The plane waves associated with Jacobi’s elliptic functions. 
 

 In order to extend wave mechanics, we must generalize either the set of those type of 
solutions (which will be equivalent to a linear schema when one confines oneself to the 
regular solutions) or just some of them that we are led to consider by physical reasons to 
be attached more directly to the representation of matter. 
 If we consider the solutions of plane-wave type then we have seen that they can be 
considered to be the result of applying transformations from the Lorentz group to the 
particular solutions in the proper system: 
 

Ψ0 = 

2
0 0

2
0

2
sin sin sin 2

2
cos cos .

A A m c t A t
h

A A m c t
h

πτ ν

πτ

 = =

 =


 

 
 That form of the solution exhibits a fundamental character of the representation of 
corpuscles in wave mechanics: 
 In the proper system of the corpuscle, the wave function associates a “clock” with it; 
i.e., a periodic function of proper time with a period of 2π and frequency of v0 = m0 c

2 / h. 
 If we would like to generalize that concept while attempting to enrich the notion of 
corpuscle by introducing, not just the single intrinsic constant v0 = m0 c

2 / h, but two or 
more constants, then the most immediate generalization would consist of taking the wave 
function that represents the corpuscle in its proper system to be certain Jacobi elliptic 
functions that possess one real period and one imaginary period instead of the circular 
functions cos τ or sin τ, and they are defined by means of a number k that is found 
between 0 and 1 (0 ≤ k ≤ 1) by the integrals: 
 

K (k) = 
2

2 20 1 sin

d

k

π θ
θ−∫ ,  K′ = K (k′), 

 
with k′2 = 1 – k2, 0 ≤ k′ ≤ 1. 
 Those functions will tend to sin τ and cos τ when k → 0. 
 The theory of Jacobi’s elliptic functions defines three fundamental functions: 
 
 sn (u, k) with periods 4K and 4iK′, 
 cn (u, k) with periods 4K and 4iK′, 
 dn (u, k) with periods 2K and 2iK′. 
 
 Starting with them, one constructs a system of 12 fundamental functions by 
appending the inverses and quotients of the three principal functions. 
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− 1 

0 

1 

2K 3K K 4K 

k′ 

 
 In particular, we have the relations: 
 

 sn (u + K, k) = cd (u, k) = 
cn

dn 

u

u
, 

 
 sn (u, 0) = sin u, cd (u, 0) = cos u, 
 
 sn (u, 1) = tanh u, cd (u, 1) = 1, 
 

 cn (u + K, k) = − k′ sd (u, k) = − k′ sn

dn 

u

u
, 

 
 cn (u, 0) = cos u, sd (u, 0) = sin u, 
 

 cn (u, 1) = 
1

coshu
, 

 

 dn (u + K, k) = − k′ nd (u, k) = − 
dn 

k

u

′
, 

 

 dn (u, 0) = 1,  dn (u, 1) = 
1

coshu
. 

 
Here, we are then led to set: u = τ, so: 
 

4K (k) v0 t = 4K(k) 
2

0m c

h
t = 

2
0m c
′ℏ

t = µ0 ct. 

 
Here, 4K is the analogue of the factor 2π in the trigonometric case. 
 



Petiau – On some types of nonlinear wave equations and their solutions. 8 

′ℏ = 
4 ( )

h

K k
 replaces  ℏ = 

2

h

π
. 

 
µ0 will be defined by m0 c

2 / ′ℏ .  (We remark that ′ℏ  < ℏ ). 
 In the proper system, we will be led to consider three possible systems: 
 
 1.    A sn (τ, k) and A′ cd (τ, k), 
 
 2.    A cn (τ, k) and A′ sd (τ, k). 
 
 These two types of functions are either even or odd and reduce to the functions sin τ 
and cos τ for k = 0. 
 
 3.    A dn (τ, k), A′ nd (τ, k). 
 
 The even functions reduce to constants for k = 0 [dn (0) = 1].  One knows that the 
functions sn u, cn u, dn u satisfy the following differential equations: 
 
 1.    y′ 2 + (1 – 2k2) y2 + k2 y4 – k′2 = 0, 
which has the solutions: 
 y = cn u for y (0) = 1, 
 
 y = k′ sd u for y (0) = 1. 
As a result: 

y″ + (1 – 2k2) y + 2k2 y3 = 0 
will have the solutions: 
 
 y = cn u if y (0) = 1, y′ (0) = 0, 
 
 y = k′ sd u if y (0) = 0, y′ (0) = k′. 
 
 2. y′ 2 + (1 + k2) y2 − k2 y4 – 1 = 0 
 
will have the bounded solutions: 
 
  y = sn u with y (0) = 0, 
 
  y = cd u with y (0) = 1. 
As a result: 

y″ + (1 + k2) y − 2k2 y3 = 0 
will have the solutions: 
  y = sn u for y (0) = 0, y′ (0) = 1, 
 
  y = cd u for y (0) = 1, y′ (0) = 0. 
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 3. y′ 2 − (1 + k′2) y2 + y4 + k′2 = 0 
will have the solutions: 
  y = dn u with y (0) = 1, 
 
  y = k′ nd u with y (0) = k′. 
As a result: 

y″ − (1 + k2) y + 2y3 = 0 
will have the solutions: 
 y = dn u for y (0) = 1, y′ (0) = 0, 
 
 y = k′ dn u for y (0) = k′, y′ (0) = 0. 
 
 If we return from the differential equations that are satisfied by the functions Ψ (τ) to 
the partial differential equations that are satisfied by the functions Ψ (x, y, z, t) then we 
will see that: 
 
 1. 

 Ψc = λ sn [
1
′ℏ
(Wt – px)], 

 Ψs = λ k′ sd [
1
′ℏ
(Wt – px)], 

 
are particular plane-wave solutions of: 
 

2 2
2 2 30

0 2

2
(1 2 )

k
k

µµ
λ

Ψ + − Ψ + Ψ□ = 0. 

 2. 

 Ψs = λ sn [
1
′ℏ
(Wt – px)], 

 Ψc = λ cd [
1
′ℏ
(Wt – px)] 

are particular solutions of: 
2 2

2 2 30
0 2

2
(1 2 )

k
k

µµ
λ

Ψ + − Ψ + Ψ□ = 0. 

 3. 

  Ψdn = λ dn [
1
′ℏ
(Wt – px)], 

  Ψnd = λ k′ dn [
1
′ℏ
(Wt – px)] 

are particular solutions of: 
2

2 2 30
0 2

2
(1 )k

µµ
λ

′Ψ − + Ψ + Ψ□ = 0. 
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3. The plane-wave solutions of wave equations with nonlinear terms in Ψ3. 
 

 Conversely, we can utilize those results to characterize the plane-wave solutions to 
the following four types of equations: 
 (α) 2 2 3

1 2µ µΨ + Ψ + Ψ□ = 0, 

 
 (β) 2 2 3

1 2µ µΨ + Ψ − Ψ□  = 0, 

 
 (γ) 2 2 3

1 2µ µΨ − Ψ + Ψ□  = 0, 

 
 (δ) 2 2 3

1 2µ µΨ − Ψ − Ψ□  = 0. 

 
 More precisely, we shall seek to determine when they exist under some conditions 
that specify the solutions to those equations that are plane waves of bounded amplitude. 
 
 α) When equation (α) is written: 
 

2 2 3
1 2µ µΨ + Ψ + Ψ□ = 0, 

 
it will have plane-wave solutions: 
 

Ψ = λ cn [
1
′ℏ
 (Wt – px) + ξ0 , k] 

 
when one determines µ0 and k by: 
 

 (1 – 2k2) 2
0µ  = 2

1µ , 
2 2

0
2

2k µ
λ

 = 2
2µ , 

 

 (µ0 = 
2

0m c
′ℏ

). 

One then deduces: 

2
0µ  = 2 2 2

1 2µ µ λ+ , k2 = 
2 2
2

2 2 2
1 22( )

µ λ
µ µ λ+

. 

 
One verifies that one will always have 0 ≤ k2 ≤ 1/2 here.  Therefore, the plane wave Ψ is 
never aperiodic.  The dynamic mass µ0 is always greater than µ1 . 
 Conversely, if one fixes µ0 > µ1 then λ and k will be fixed.  One will then have: 
 

λ2 = 
2 2
0 1

2
2

µ µ
µ
−

,  k2 = 
2 2
0 1

2
02

µ µ
µ
−

. 
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Only λ will depend upon µ2 , while k will depend upon only 2
0µ  and µ1 .  The solutions 

above are the only plane-wave solutions to equation (α) with no restrictions on the initial 
conditions. 
 
 β) Equation (β): 

2 2 3
1 2µ µΨ + Ψ − Ψ□  = 0 

will admit the functions: 

Ψ = λ sn [
1
′ℏ
 (Wt – px) + ξ0 , k)] 

 
for bounded periodic functions.  Here, one has: 
 

2
0µ = 

2 2
2 2
1 2

µ λµ − , k2 = 
2 2
2

2 2 2
1 22

µ λ
µ µ λ−

. 

µ0 is less than µ1 . 
 0 ≤ k2 ≤ 1 implies the condition that λ2 < 2 2

1 2/µ µ .  That corresponds to some 

restrictions on the initial conditions Ψ (0), Ψ′ (0) that are necessary for the solutions to 
(β) to have bounded amplitude. 
 Indeed, the general study of the solutions to: 
 

2x
y′′ + α y − | γ | y3 = 0 

 
shows that according to the values of the initial conditions y0 and 0y′ , those equations will 

admit the following solutions: 
 
 1.    Y = λ sn [ω (x – x0) + ξ0] 
 

if 0 ≤ 2
0y  ≤ 2

0

1
( 2 | | )

| |
yα γ

γ
′−  and 2

0y′ ≤ 
2

2 | |

α
γ

. 

 
 2.    Y = λ scd [ω (x – x0) + ξ0] 
 
 

if 
2

02 | |

0

Yα γ ′ −



≤ 2
0| |Yγ  ≤ α + 2

02 | |Yγ ′ . 

 

 3.    Y = 
k

λ
ns [ω (x – x0) + ξ0] 

 

if  2
0

1
( 2 | | )

| |
yα γ

γ
′+ ≤ 2

0Y ≤ 2
0

1
2 | |

| |
yα γ

γ
′+ . 
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 4.    Y = λ nc [ω (x – x0) + ξ0] 
 

if 2 2
0

1
[ 2 | | ]

| |
yα α γ

γ
′+ + ≤ 2

0Y . 

 
Only the solution Y = sn [ω (x – x0) + ξ0] will have bounded amplitude.  Equation (β) will 
then have periodic solutions of an acceptable type only if the initial functions satisfy the 
conditions: 

 [Ψ′(0)]2 ≤ 
2
1

2
22

µ
µ

, 

 

 [Ψ(0)]2 ≤ 2 2 2
1 2 02

2

1
( 2 ( ) ]µ µ

µ
′− Ψ . 

 
Conversely, being given that µ0 < µ1 will determine λ2 and k2 : 
 

λ2 = 
2 2
0 1

2
2

2( )µ µ
µ
−

, k2 = 
2 2
0 1

2
0

µ µ
µ
−

. 

 
Here again, only λ will depend upon µ2 , while k will depend upon only µ0 and µ1 .  The 
solution Ψ = λ Sn […] will become aperiodic for λ2 = 2 2

1 2/µ µ  or 2
0µ  = 2

1 / 2µ , sn (u, 1) = 

tanh u, so: 

Ψ = 1

2

µ
µ

 tanh [
1

ℏ
(Wt – px)]. 

 γ) Equation (γ), namely: 
2 2 3
1 2µ µΨ − Ψ + Ψ□ = 0, 

 
will admit solutions of type λ cn τ or λ dn τ according to the initial conditions. 
 

 a.    Ψ = λ dn [
1

ℏ
(Wt – px) + ξ0 , k] 

 
will be a solution of (γ) if one has: 
 

2
0µ  = 

2 2
2

2

µ λ
, k2 = 

2 2 2
2 1

2 2
2

2( )µ λ µ
µ λ

−
 

 
under the condition that 2 2

1 2/µ µ  < λ2 < 2 2
1 22 /µ µ . 

 Ψ reduces to a constant for | λ | = µ1 / µ2 , k = 0. 

 Ψ will become aperiodic for k2 = 1 or | λ | = 1 22 /µ µ . 
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[dn (u, 1) = 1 / cosh u]: 

Ψ = 1

2
0

2 1
1

cosh[ ( ) ]Wt px

µ
µ ξ− +

ℏ

. 

Conversely, if µ0 is fixed then: 
 

λ2 = 
2
0

2
2

2µ
µ

, k2 = 
2 2
0 1

2
0

2µ µ
µ

−
, 

 
in which µ0 is less than µ1 and is such that 2

1 / 2µ  < 2
0µ  < 2

1µ .  Here again, only λ will 

involve the constant µ2 ;  k depends upon only µ0 and µ1 . 
 

 b.   Ψ = λ cn [
1

ℏ
(Wt – px) + ξ0 , k], with 1

2  ≤ k2 ≤ 1, 

 
satisfies equation (γ) if: 

2
0µ  = 2 2 2

2 1µ λ µ− , k2 = 
2 2
2

2 2 2
0 12( )

µ λ
µ λ µ−

, 

 
under the condition that λ2 ≥ 2 2

1 22 /µ µ . 

 Conversely, if 2
0µ is given with the condition that20µ ≥ 2

1µ then: 

 

λ2 = 
2 2
0 1

2
2

µ µ
µ
+

,  k2 = 
2 2
0 1

2
02

µ µ
µ
+

. 

 
Here again, k is determined by µ0 and µ1 ; µ2 will enter into only the determination of λ. 
 A solution of that form will become aperiodic for k = 1, λ2 = 2 2

1 22 /µ µ , so cn (u, 1) = 

1 / cosh u (or rather µ0 = µ1): 
 

Ψ = 1

2
0

2 1
1

cosh[ ( ) ]Wt px

µ
µ ξ− +

ℏ

. 

 δ) The equation: 
2 2 3
1 2µ µΨ − Ψ − Ψ□ = 0 

 
never admits periodic plane-wave solutions of bounded amplitude.  One will have 
solutions of one of the forms: 
 

λ tn τ,  λ scd τ, λ nc τ 
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according to the initial conditions.  We have obtained real, bounded, periodic, plane-
wave solutions in the three cases (α),(β),(γ).  Those solutions will then have the character 
of stationary waves. 
 However, in a number of problems, wave mechanics considers “progressive” plane 
waves of the form: 

 Ψ = 
( )

i
Wt px

Ae
± −
ℏ , 

which correspond to solutions: 
 Ψ = iAe τ±  
of the differential equation: 

2y
τ
′′ + y (τ) = 0. 

 
 One can demand to know: Do there exist progressive solutions for the nonlinear 
equations that were considered here? 
 If one considers 2

2 2
0t

y c yµ′′ + = 0 then they will be given by integration: 

 

2
2 2 2
0t

y c yµ′ + = κ0 (= arbitrary constant > 0). 

 
 If κ0 ≠ 0 then one will be led to stationary-wave solutions: 
 

y = 0

0

κ
µ

 sin µ0 ct, 

or 

y = 0

0

κ
µ

 cos µ0 ct, 

 
whereas the progressive solutions y = 0i ctAe µ±  will correspond to κ0 = 0, so y′ = ± i µ0 cy. 
 If one considers the equation: 

2
2 2 3
1 2y y y

τ
µ µ′′ + +  = 0 

then direct integration will give: 
2

2 2 2 42
1 2

y y yτ
µµ′ + + = κ0 . 

 
κ0 ≠ 0 will lead to the real stationary solutions in λ cn τ that were considered before. 
  κ0 = 0 will lead to a new type of solution that is necessarily complex. 
 In order to obtain those solutions easily, it will suffice to remark that if one sets y = 
1/z and starts with: 

2
2 2 2 42

1 2
y y yτ

µµ′ + +  = 0 

then one will immediately have: 
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2
2 2 2 2

1 2
z z

µµ′ + + = 0. 

 
One easily sees that one will then have: 
 

y = 
1 1

1 2

1
i iC e C eµ τ µ τ−−

, 

 
in which C1, C2 are two constants that are coupled by C1 C2 = 2 2

2 1/8µ µ . 

 If one sets 1 / C1 = λ1, 1 / C2 = λ2 then one can further write that solution as: 
 

y = 
1 1

1
2

22
12

18
i ie eµ τ µ τ

λ
µ λ
µ

−−
= 

1 1

2
2

22
22

18
i ie eµ τ µ τ

λ
µ λ
µ

− −
, 

or alternatively: 

 y = 
1

1
2 2

2 22 2
1 1 12 2

1 1

1 cos
8 4

ie µ τ

λ
µ µλ λ µ τ
µ µ

− 
+ − 

 

, 

 

 y = 
1

2
2 2

2 22 2
2 2 12 2

1 1

1 cos
8 4

ie µ τ

λ
µ µλ λ µ τ
µ µ

− 
+ − 

 

. 

 
One sees that the plane waves that correspond to those solutions are never purely 
progressive, but involve a stationary term that depends upon the nonlinearity factor µ2, 
along with a progressive term. 
 Similarly, one will find the following progressive solutions for equations (β) and (γ): 
 

(β)    Ψ (τ) = 
1

1
2 2 2

22 2 1
1 12 2

1 1

1 cos
8 4

ieµ τ

λ
µ µ λλ µ τ
µ µ

 
− + 

 

 

= 
1

2
2 2 2

22 1 2
2 12 2

1 1

1 cos
8 4

ie µ τ

λ
µ λ µλ µ τ
µ µ

−  
− + 

 

, 

 

(γ)  Ψ (τ) = 
1

1
2 2 2 2
2 1 2 1

12 2
1 1

1 cosh
8 4

eµ τ

λ
µ λ µ λ µ τ

µ µ
 

− + 
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= 
1

2
2 2 2 2
2 2 1 2

12 2
1 1

1 cosh
8 4

e µ τ

λ
µ λ λ µ µ τ

µ µ
−  

− + 
 

. 

 
 The equations considered up to now are not linear, and the sum of the two solutions is 
not a solution. 
 Nevertheless (and this is a point upon which I must now insist), there exists an 
addition theorem for the plane-waves that were considered up to now, or if one prefers, a 
theorem on the composition of wave functions. 
 With a convenient composition, one can start from two solutions and construct a third 
one. 
 That addition theorem must result from the addition theorem for elliptic functions 
here, 
 I shall first recall the relations: 
 
 cn (u + K) = − k sd u, 
 

 sd (u + K) =  
1

k′
cn u, 

 
 sn (u + K) = cd u. 
 
 One can show that the classical addition theorems of elliptic functions can be likewise 
written in the following form, which is more adapted to our problem: 
 

  cn (u ± v) = 
2

2

cn cn sd sd

1 cn sd cn sd

u v k u v

k u u v v

′∓
∓

, 

 

  sd (u ± v) = 
2

sd cn sd cn

1 sd sd cn cn

u v v u

k u u v v

±
∓

. 

 
 If we consider two states that correspond to the values τ1 and τ2 that are characterized 
by the wave functions: 
 
  (1)

cΨ = λ cn τ1 , 
(1)
sΨ = λ k′ sd τ1 , 

  (2)
cΨ = λ cn τ2 , 

(2)
sΨ = λ k′ sd τ2 , 

 
then the state function (1) + (2) – or Ψ (τ1 + τ2) – will be characterized by the functions: 
 
  (1) (2)

c
+Ψ  = λ cn (τ1 + τ2 , k), 

 
  (1) (2)

s
+Ψ  = λ k′ sd (τ1 + τ2 , k) . 
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The addition theorem will then give us: 
 

  (1) (2)
c

+Ψ  = 
3 (1) (2) (1) (2)

c c s s
2

4 (1) (2) (1) (2)
s s c c2

( )

k

k

λ

λ

Ψ Ψ − Ψ Ψ

+ Ψ Ψ Ψ Ψ
′

, 

 

  (1) (2)
s

+Ψ  = 
3 (1) (2) (1) (2)

s c s c
2

4 (1) (2) (1) (2)
s s c c2

( )

k

k

λ

λ

Ψ Ψ + Ψ Ψ

− Ψ Ψ Ψ Ψ
′

. 

 
 The possibility of starting with state functions for one corpuscle and constructing 
state functions for two or more corpuscles makes a second quantization of the theory 
possible. 
 

4. More general nonlinear wave equations. 
 

 The generalization of wave functions that was considered up to now started with 
solutions of plane-wave type. 
 I would now like to examine the possibility of generalizing the waves of invariant 
type.  Indeed, it seems reasonable that the nonlinear wave equations to be considered 
must present the relativistic invariance of linear wave mechanics. 

 We have seen that after introducing the variable u = 2 2 2 2 2( )c t x y z− + +  into the 

equation 2
0µΨ + Ψ□ = 0, we could determine invariant solutions Ψ (u) by means of the 

differential equation 
2

2
02

3d d

du u du
µ 

+ + 
 

Ψ (u) = 0, and I have indicated its solutions. 

 One of the characteristics of that equation is that it presents a critical point for its 
solutions only at the point u = 0; i.e., on the light cone. 
 It seems that one can demand that the wave functions (which are solutions of more 
general equations) should preserve that property, or at least, that they should possess only 
solutions with fixed critical points (i.e., ones that are independent of the integration 
constants). 
 If we seek a relativistically-invariant second-order partial differential equation then 
the most general form for one will be written: 
 

(E)    
2 2

0

1
, , ,F ct x u

c t x t x

 ∂Ψ ∂Ψ ∂Ψ ∂Ψ   Ψ + − − Ψ    ∂ ∂ ∂ ∂     
∑□ = 0. 

 
 The invariant solutions will be functions of only u that satisfy the differential 
equation: 

22

2

3
, , , ( )

d d d d
F u u u

du u du du du

 Ψ Ψ Ψ Ψ + + Ψ  
   

= 0. 
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If equation (E) must likewise admit plane-wave solutions then upon setting: 
 

m0 ct = [Wt – (px)] 
it will be necessary that: 

2

2

W

c
− p2 = 2 2

0m c  

 
and equation (E) will lead to a differential equation that depends upon only τ. 
 Now: 
 

Ψ□ → 
2

2

d

dτ
Ψ

,      
2 2

1

c t x

∂Ψ ∂Ψ   −   ∂ ∂   
∑ → 

2
d

dτ
Ψ 

 
 

,      ct x
t x

∂Ψ ∂Ψ−
∂ ∂

→ m0 cτ 
d

dτ
Ψ

, 

 
and as a result, (E) will give a differential equation in τ if u does not enter into the 
equation. 
 If that equation is realized then: 
 

(E1)  
2 2

0

1
, ,F t x

c t x t x

 ∂Ψ ∂Ψ ∂Ψ ∂Ψ   Ψ + − − Ψ    ∂ ∂ ∂ ∂     
∑□  = 0 

 
will give rise to two differential equations: 
 

(E1)   
22

2

3
, , ( )

d d d d
F u u

du u du du du

 Ψ Ψ Ψ Ψ + + Ψ  
   

 = 0, 

 

(E2)   
22

2
, , ( )

d d d
F

d d d
τ τ

τ τ τ
 Ψ Ψ Ψ + Ψ  
   

 = 0. 

 
 Generalizing the properties of the invariant plane wave functions of ordinary wave 
mechanics will lead us to postulate: 
 
 α) The solutions of E2 must have fixed critical points. 
 
 β) The solutions of E2 must be continuous, uniform functions that are bounded (or 
ones of finite amplitude). 
 
 One can obtain all of the second-order differential equations of the form: 
 

y″ = R (y, y′ )  or y″ = R (x, y, y′ ), 
 

in which R is rational in y′ and algebraic in x and y and its integrals are either uniform or 
have fixed critical points, by means of some results of a paper by P. PAINLEVÉ [2] that 
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was completed by B. GAMBIER [1].  Those papers gave all of the forms that are 
allowable within the scope of the hypotheses above.  The equation: 
 

y″ + α y + β y3 = 0 
 

is equation (4) of table (9) in Painlevé. 
 Among the remarkable nonlinear wave equations that one can deduce from Painlevé’s 
tables, I would like to point out only the equation: 
 

(C)  
2 2

21 1 1
1 nn c t x

µ
 ∂Ψ ∂Ψ     Ψ − − − + Ψ      ∂ ∂ Ψ       

∑□  = 0, 

 
in which n is an integer. 
 One can easily find all of the solutions of that equation. 
 Indeed, let ϕ (x, y, z̧  t) be such that: 
 
(C1)     2

1ϕ µ ϕ+□ = 0, 

 
and let Ψ1 = [ϕ (x, y, z, t)]n, so equation (C1) will imply that: 
 

( )
2

2 2
1 1 1

1

1 1 1
1 t x n

n c
µ

    ′ ′Ψ − − Ψ − Ψ + Ψ    Ψ     
∑□ = 0. 

One then sets: 
2
nµ  = 2

1nµ , µn = µ1 n . 

 
 As a result, equation (C) will admit all of the solutions of (C1) (plane waves, invariant 
waves, guided waves, etc.), with: 
 

Ψ (x, y, z, t; µn) = [ϕ (x, y, z, t; n

n

µ
)]n 

 

for a corpuscle of mass µ1 = µn / n  with Ψ = ϕ n. 
 As a result, consider the equation: 
 

2 2
21 1

c t x
λ µ
 ∂Ψ ∂Ψ   Ψ − − + Ψ    ∂ ∂ Ψ     

∑□ = 0. 

 
 In order to require that λ = 1 – 1/n, with n an integer, it will suffice to impose upon 
that equation the demand that it must admit plane-wave solutions that are uniform 

functions of τ, and the states of mass µn = m / n  will result from that.  Here, one sees 
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how a uniformity condition that is imposed upon wave functions can lead to a 
quantization of mass. 
 I would now like to point out another viewpoint that perhaps richer in possible 
extensions. 
 Up to now, second quantization has been considered to be a linear attribute. 
 I think that this is not necessary, and it seems to me that second quantization is 
essentially attached to the possibility of constructing states with two particles, …, n 
particles upon starting with states with one particle. 
 In order for that to be true, it would suffice that there should exist a theorem of 
addition or composition of states in the theory considered; i.e., that when one starts with 
wave functions that represent a state with n particles and a state with one particle, one can 
construct the wave function that represents a state with n + 1 or n – 1 particles. 
 The acceptable wave functions will be the ones that admit a theorem of addition or 
composition.  That condition seems very broad.  Nevertheless, that problem will possess 
a partial solution. 
 Indeed, WEIERSTRASS has proved a remarkable theorem that relates to our 
problem. 
 WEIERSTRASS gave the name of algebraic addition theorem to an algebraic 
relation that couples the functions Φ (u), Φ (v), Φ (u + v), and here is his theorem: 
 
 Any function for which there exists an algebraic addition theorem is an elliptic 
function or one of its degenerate cases. 
 
 That will then lead us to the nonlinear equations that we have considered. 
 Nonetheless, the mathematical hypotheses that are introduced are not justified from 
the physical viewpoint.  Nothing leads us to assume that nature obeys rules that translate 
into algebraic laws. 
 I would like to conclude, moreover, by considering a simple example in which I shall 
recover all of the character that is admissible for a nonlinear wave equation without the 
hypothesis of algebra coupling or algebraic addition. 
 In order to do that, consider the nonlinear equation: 
 
(D)     2

0( , , , ) sinx y z t µ λΨ + Ψ□  = 0. 

 
 In the first approximation (?), λΨ will be small, and that equation will be written: 
 

2
0µ λΨ + Ψ□ = 0 

or 
2
1µ λΨ + Ψ□ = 0, 2

1µ = 2
0µ λ . 

In second approximation: 
2 3

2 30
0 6

µ λµ λΨ + Ψ − Ψ□ = 0, 

and with 2
2µ = 2 3

0 / 6µ λ : 
2 2 3
1 2µ λ µΨ + Ψ − Ψ□ = 0. 
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This is an equation of a nonlinear type that was considered before. 
 If we set λ Ψ = ϕ then we will be reduced to: 
 
(D1) 

2
1 sinϕ µ ϕ+□  = 0, 

 
which depends upon just one parameter µ1 . 
 If one seeks the plane-wave solutions to that equation then one will be reduced to the 
equation: 

 
2

2
12

( )
sin ( )

d

d

ϕ τ µ ϕ τ
τ

+ = 0. 

 
 That equation is well-known in physics: viz., it is the pendulum equation. 
 Whereas the Klein-Gordon equation associates a corpuscle in its proper system with 
the simplest oscillator, here we associate it with a pendulum motion. 
 The solutions of (D) or (D1) are defined only up to a multiple of 2π : ϕ1 (τ) = ϕ0 (τ) + 
2π n.  Similarly, if one sets ϕ′ = ϕ ± nπ / 2 then the functions ϕ′ will satisfy: 
 
 2

1 cosϕ µ ϕ′ ′±□ = 0. 

 
 The solutions to (D1) simultaneously give solutions to: 
 
 2

1 sinϕ µ ϕ±□ = 0, 
 
 2

1 cosϕ µ ϕ±□ = 0. 

 
We shall now determine the plane-wave solutions to (D1).  The equation 2

1 sinϕ µ ϕ′′ + = 0 

gives: 
2 2

12 cosϕ µ ϕ′ −  = C0 ,  C0 = Const. 
 

C0 = 2 2
0 12ϕ µ− cos ϕ0 , 

and thus, the condition: 
2 2
1 02µ ϕ ′− +  ≤ C0 ≤ 2 2

1 02µ ϕ′+ , 
 

ϕ′2 = 
2

2 21
0 1 2

0 1

4
(C 2 ) 1 sin

C 2 2

µ ϕµ
µ

 
+ − + 

. 

 Then let: 

A)  
2
1

2
0 1

4

C 2

µ
µ+

= k2 < 1, 

which demands that C0 > 2
12µ , so: 

 
2
12µ ≤ C0 ≤ 2 2

1 02µ ϕ′+ . 
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 That gives: 

ϕ′2 = 
2

2 21
2

4
(1 sin )

2
k

k

µ ϕ− ; 

 

2 21 sin / 2

d

k

ϕ
ϕ−

 = 12
d

k

µ τ± . 

Let χ = ϕ / 2: 

2 20 1 sin

d

k

χ κ
χ−∫ = 1

k

µ τ± + ξ0 . 

 
On the left-hand side, one recognizes the Legendre integral: 
 

F (χ k) = F (ϕ / 2, k). 
 

Now, if F (ϕ, k) = u, and conversely, ϕ = am u, then: 
 

sin ϕ = sn u, cos ϕ = cn u. 
 One will then have that: 

2

ϕ
 = am ( 1

k

µ τ + ξ0). 

 

 B) Let 
2
1

2
0 1

4

C 2

µ
µ+

= 2
1k  > 1, so | k1 sin ϕ / 2 | < 1. 

 
 Let k1 = 1 / k and utilize the relation F (ϕ, k1) = k F (ϕ1, k) with k1 = 1 / k, so one will 
get: 

ϕ1 = arc sin (k1 sin ϕ), 
 

 or the formula that is called the reciprocal modulus formula: 
 

sn (ku, k1) = k sn (u, k), 
which will give: 

sin 
2

ϕ
= k sn (µ1τ + ξ1, k). 

 
The determination of the plane-wave solutions will then be complete. 
 We shall show that the corresponding plane-wave functions possess an addition 
theorem. 
 Let ϕ (u1 + u2) = 2 am (u1 + u2), so: 
 

am (u1 ± u2) = arc tan (tan u1 dn u2) ± arc tan (tan u2 dn u1) 
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= arctan 2 2 2 21 2 2 1

1 2

sin / 2 sin / 2
( 1 sin ) arctan( 1 sin )
cos / 2 2 cos / 2 2

k k
ϕ ϕ ϕ ϕ
ϕ ϕ

− ± −  

 
 It is not necessary to emphasize the non-algebraic character of that addition theorem! 
Nonetheless, we see that it is possible to construct nonlinear wave equations that possess 
solutions whose character generalizes that of the wave functions of ordinary wave 
mechanics by starting with relatively simple physical models. 
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