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Summary — Two models of nonlinear wave equations are studied.y @he representations for
scalar or vectorial particles with scalar or veetioself-fields. Hamiltonian representations of cleabi
field theories associated with the nonlinear wave égustare constructed. New quantum field
theories are proposed for the introduced models. Thegemeralizations of the usual quantum field
theory, but the masses are quantized in parallel ivtlainplitudes.

1. — Introduction.

In some work that | have pursued for several yers have developed the study of
models in which | have sought to obtain a representabiowhat one calls “corpuscles
with spin” without dissociating the bare corpuscle frasfield of interactions in its
description.

In order to attempt to achieve this objective, | witlrs with what seems to me to be
the simplest path: The description of a particle in umforectilinear motion by a plane
wave — i.e., one or more functions that take constaloies on a four-dimensional planar
manifold. This description is applied simply in the calseom-interacting particles in the
usual theory of particles with spin. One sees easilyis case that the elements of the
tensorial or spinorial functions are trigonometriadtions of the argumet, X = 1o n,

x“ = (1/7)[W — (px)] that characterizes the plane wave. These fonstdepend upon

one parametegin = myc/# that determines a frequency that is associatetd te

corpuscle in its proper system.

In order to extend this description, and to introel some new parameters into the
constitutive elements of the wave function that ateached to the proper fields of
interaction of the particle that are capable of imgkhem also appear like forms of the
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Physiquel3 (1959), 42914 (1960), 5;15 (1961), 15716 (1962), 491; Compt. Ren@59 (1964), 4525;
260(1965), 1107.
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corpuscle, | assume that the preceding frequency mustcbenpanied by some latent
frequencies that are already presented in the descriptitve proper system.

The simplest way of attaining this result seems tdaori@e the consideration of plane
waves that are no longer trigonometric functions, bwtti-periodic functions that
possess a real period, along with one or more pure maggperiods. The simplest of
these functions are elliptic or hyperelliptic functions

Whereas the solutions of plane-wave type of the vegumtions of particles with spin
in the usual theories is always expressed by means of @latensorial or spinorial
functions that lead to a pair of trigonometric funodhat are associated with differential
equations of the type:

Y1 = VY2, Yo == V1,

the theory of Jacobi elliptic functions couplissee functions by nonlinear differential
equations of the type:

Y. =YoYs, Yo =-ViYa Yi=-Kyiys.

One likewise defines systemsrohyperelliptic functions that are associated with syste
of nonlinear differential equations of the type:

Yo= & Y1Y2--. Yp-1 Ypei «-- Yy p=12,..n

This led me to construct systems of nonlinear, firstorgertial differential
equations with structures that are close to those oWthee equations in the theory of
particles with spin, but admit plane-wave solutionat thre multi-periodic functions,
elliptic or hyperelliptic, and of bounded amplitude.

| have, moreover, developed the study of various systdntigis type that | have
called corpuscle-field models. | would like to show here hlo@se models also permit
an extension to the quantum theory of fields, and not&algt to a quantization of the
dynamic mass in parallel to the quantization of thelémdes that one encounters in the
usual quantum theory of fields.

2. — Study of the two models of the system of nonlinear waequations.

Here, | would like to study two very simplified modelsith interpret as capable of
describing, the first one, a corpuscle of spin zero @ asgalar or pseudo-scalar), and the
second one, a corpuscle of spin zero with an assdgatger field that has spit of the
vectorial type, or alternatively, a corpuscle of spirwith an associated proper field of
spin 0.

2.1. Corpuscle model of spin 0. —Associated field of spin O (scalar or pseudo-scalar).
— In this model, the wave function is the union of aeed(x") and two invariant$(x),
K(x*). These elements are determined by starting with teemyof nonlinear, first-
order partial differential equations:
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0,J" = KKiI,
(1) 9,1 =-k,KJ,,
9,K =—K,KJ,.

K1, K2, ks are three real, positive constants that are coresidas given. One can, with no
loss of generality, seks = k2 = k3 = 1. | will nevertheless preserve these constants
because their introduction facilitates the studyhefdegeneracies of the system (1).

The choice of signs that was introduced before Apr «» 3 facilitates the
calculations; in a more complete theory, they afeihdeterminate. The conditions that |
have introduced, moreovet,viz., the existence of plane waves of bounded anaga —
then leads to the determination of these signsrdswpto the choice (+%1, -1) or (+1,
+1,-1).

For k3 = 0, the system (1) givés§= Ky = const. What then remains is:

any:(KlKo)L ay|:—(K2Ko)Jﬂ,
hence:
[O + kike (Ko)?] 1(¢*) = 0.

The functionl (x) then verifies the Klein-Gordon equation, with:

2 2
Hy = Kik2 KO .

For k2 = 0, one had = const.lp, and in this casd(x”) verifies the Klein-Gordon
equation:

[O + kiks (10)7] K(¥) = 0.

I will use the terms “plane waves” or “plane-wduactions” to refer to the solutions
of (1) that are functions of just one variablghat is defined by starting with a given
timelike quadri-vector that characterizes a diattof propagation, and will be defined
by:

u=n,x, n, =1, In*|=+ 1.
For propagation along theZ axis:
n* = (+ coshy; 0, 0, sinhy).

For plane-wave solution§x“), K(x*), andJ reduce to functions af and (1) is written:

Ny %J"(u) = Kk Kl,
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d

d
Ny EJ"(U) =-K3lJy.

This leads us to sét' = n* Jy(u), with J, J* = (Jo(U))>.

The functions ofi, Jo(u), I(u), K(u) are then solutions of the differential system:

Jo(u) = KkKiI,
(2) 1'(u) = —k,KJ,,
K'(u) = -«,1J,.

Introducing the functiong; (u), y»(u), ys(u) such that:

JQ(U) =

1 1
ya(u), 1(U) = —— y2(u),
JKK JKK,
(2) is further written:

(3) Vi =Y2 Y3, Yo =—Y1Ys, Y

From this, we deduce the relations:

YiYi == YoYo = YsYs =ViYa Vs,
and the first integrals:

(4) {Yf Y =A== A,

Vi+Ys =M= MK,
As a result, we have the first integrals for theeys(2):

5) KK Je+KkK1P=A2=A%%,
KoKodg + KK K2 = 117 = 1K
or furthermore:

(6)

2

K2 +K|2=A%
KZ + K K? = 1.

K(u) =

ﬁl y3(U)
K1K2 ,

=—-Vyiy2.

The integration of the differential system (3), wi@) — or of (2), with (5)— is
immediate:yi(u), y2(u) can be expressed by means of three Jacobi elliptididnse
namely, sn{, k), cn(u, k), dn(u, k). This results immediately from the relations betwe

Jacobi functions:
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srf u=cnudnu, crfu=-snudnu, drfu=-k snucnu,
sfu+cfu=1, Ksfu+dfu=1, sfu-kKsfu=1-K (0O<k<1).

As a result, if we have:
AL <A

in (4) or (5) then the general solution of (4) is:

Yi(u) =Asn@u+¢ A, u,),
(7 Y,(u) = Ben@u+ @A, 11,),
y;(u) = udn(uu+9@ A, 1u,).

With A1 = Ak, , th = /K, , the general solution of (2) is written:

3o(U) =—2snuu+¢ A, /),

Li‘

(8) I(U):_Cn(:U1U+¢1/]1 /:ul),

“ %

K(U) :Tdn(:u1U+¢'/]1 /:ul)-

Kl
The constants is associated with the variahlen order to give the propagation term:
Lau =g u, X =K, x* = /7)) (W — px).

As a consequencegs plays the role of reduced proper mags £ mc / 7). In the
limiting case whergs = 0 , this gives u&(u) = K; = const.,k14(Ko)? = . One then
has:

k2:/]_12: /]ZK3 =
WK,

and the Jacobi functions reduce to trigonometmctions:
sn(u, 0) = sinu, cn(u, 0) = cosy, dn(, 0) = 1.

The nonlinear model considered here no longer introduces the dynamic mass as given a
priori, but asthefirst integral of a differential system, and in parallel to the amplitude A.

We have shown this already, and later on, we sailv that a quantization, which
will be a restriction on the possible classicaluesl of certain first integrals, will lead to
the simultaneous quantization of the amplitudesmn@er masses.
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The wave function (8) is defined of the associatiothode Jacobi functions that are
doubly-periodic functions. The functiorls(u) and I(u) oscillate betweentA/\Jx, ,

+A//k, , with all of the character of trigonometric furmis. The same is not true for
K(u), whose amplitude oscillates between two positalees:

2 _ 32
M and Lxll—kz = A /]1.

\/;l \/;1 KlKZ

If k= A1/ 14 is small therK(u) is presented as a “modulation” of tthgnamical mass.
These properties have led me to consider two fonst{x”) andJ,(x") as constituting a
more specificallycorpuscular part of the global wave function here, aKqu) as
describing, more particularly, a “proper field” tha associated with the corpuscle. The
structure of the system (1) closely couples thaseetfunctions, and, in particular, their
attribute of having the same propagation.

The solution (7) or (8) corresponds to the hypsithd” < AZ. In the casel” > AZ,
the respective roles of the functidifg) andK(u) are found to be switched.

The general solution of the system (3), (4) isithe

yi(u) = psn@Au+¢ u, IA,),
) y.(u) =Adn(Au+¢.u, /4,),
Ys(U) = pen(Au+ @, 1A,),
SO

Jy(u) =—E-sn@u+g 4, 1,),

A

(10) K () =—E=cn(u+ 4, 14,),

N

| (u) :idn()llu +@ 14, 1A).

N

This exchange of functions is well-known in thedhy of elliptic functions; it is the
transformation of the “reciprocal modulus”:

sn (ku,%j =k sng, k),

cn (ku,%j = dn(, K),
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1
dn ku,E = cn(y, k).

2.2 Corpuscle-field model of scalar and vectorial type | will now briefly
examine a second model that describes a scalausmepthat is associated with a
vectorial field, or conversely, a vectorial corplesihat is associated with a scalar field.

Here, the global wave function is the union ofexter J,(x°), an anti-symmetric
tensor of second ord€t,, (x°), and an invariari(x°).

These tensors are coupled by the system of fid#rononlinear partial differential
equations:

aﬂJV —avJﬂ = KlKFW,

(11) 0,F* = k,KJ#,
— A
0,K =K;F,J37%,

K1, K2, K3 again being three positive constants.
A first linear degeneracy, witks = 0, givesK = Ky = const., and reduces (11) to the
vector meson equations.

A second linear degeneracy, with= 0, gives, upon settirfg,, J' = C, with 9, F* =
0, the “scalar” system:
6,1 K = K3 C,
9,C'= K13 (Fuv F) K,
SO
OK =k K3%(F/1V F’uv) K=0.

We recover the Klein-Gordon equation under thedit@m that:
F. F*<0.

We further describe the plane-wave states by @sysf functions of the variable=
n, ¥ (n, ¥ =1, |n* |2 + 1), namelyJ,(u), F..{u), K(u).
These functions will then be constructed frafhand a second spacelike vectvt
that is orthogonal ta":
n,n#=-1, n,n'*=0.

The structure of the system (11) leads us to intcedthe functiongy(u), Fo(u), K(u),
with:
Ju = ' Jo(u),
One then has:
Fuld=-n,FoJ.

(11) now leads to the differential system:
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Jo = K FK,
(12) F! =—k,KJ,
K'=-k,F,J,
If we further set:
JolU) = —2— ya(u), Fo(l) = ——— yo(u), K(U) =——=— ys(u)

then we come down to the system (2), with the fitgtgrals (4), which gives us here:

KKI+KKFE=12=2%,
(13) KoK o+ KK Fg = 3 = K ,
Je=-3,3", FS=-iF,F™.

According to the relative values df and 7, we have two further solutions:
1) If AZ<ps:

3o(U) =—2snuu+¢ A, /),

Lﬁ

(14) F(u) :?C"‘(ﬂlu‘*@/ll ),

K(u):%dnwluw,ﬂll )

Ky

The “corpuscular” functions a®& andF*" (or Jo(u), Fo(u)), so the field function i&(u).
The linear limitkz = O preserves the existence of the plane wavesidseribe a “vector

meson”:
F=n# Lsin(ylu + @),
N
— ! I A
F/IV = (n/l ny,—ny n/I) Fcoswlu +¢),
2
with

= gy = KKK

2) If @ <A? then the system (12), (13) has the general solutio
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Jo(U) =—E-sn@hu+¢ A, Ius,),

N

(15) Fo(u) = cn(hu+ ¢, 11,),

JK

K (u) :Ldn()llu +@ A, 111,).

N

The “corpuscular” functions are the functialisandK. The proper field function is the
functionF, .
Here, the linear degeneragy= 0 is:

K(u) = —£= cosghu + ¢),

N

Cut) =Fun 3 =22 singu + ),

VKK,

and describes a scalar corpuscle.

2. — Hamiltonian formulation.

The theory that was developed up to here is a simpéngrn of the description of
particles with spin by the wave equations of the first tzation.

| would now like to show how one can make the pregediondels correspond to a
theory of classical fields, and then to a quantum thebfiglds.

I will consider the systems (1) and (11) in parallel,ewlctonsidered to be field
equations.

A plane-wave state of the field is characterizedywhich is associated with the
variableu. In the case of the first model, | can considerdtate variable of the field to
be one of the three functioh@), K(u), andJo(u).

I would first like to consider the choide(u) = X; = X;(u), whereX; is the coordinate
of the field. | will associate it with a conjugate memum:

P]_ = Pl(U) = |1K1 K|,
l1 being an arbitrary constant.
The system (2), (6) then gives:
dX,

du

| =

Pl )

[y

dP
d_ul: -l [(/]12 +,L112)X1—2K2K3Xf] )
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and leads us to introduce the Hamilton function:

1 I
(16) Hi(%, Pu ) = =R+ SIS+ ) X -k X ]
1
Taking (6) into account, one has:

a7) 1 |
H1 :2_Plz +_§[A2/'12_(AZ_szlz)(luz_Ky(ﬁ]-

Il

The functiondH; describes the evolution by taking into accountgsicular valuesi?,

& of the two first integrals.

We can free ourselves from this condition by idtroing a second momentua that
is associated with eyclic variable Xz, and writing:

1 I
18) Hy= B+ S[XPPE - A X
1

The equations of motion (2) are then recoveredyeapon starting with (18) by
means of the two first integrals:
Hi=m, P2 =,

if one associates them with the two constarmsd/ such that:
AZIUZ =, A2K3 +/,12K2 = 0'22.
The Hamiltonian functioid; corresponds to the Lagrange function:

— I]_ 12 x'22 4
(19) I-(l)__ Xl +—+K2K3X1 :

2 12X 2

Here, | have chosen the field variable to Jpl). It is more natural to take the
coordinate to be the functid(u) or the functiork(u).
Let:
[(u) = Yi(u).

We associat®,(u) with the conjugate momentum:
H]_(U) =- |2 K Kl ,

I, again being an arbitrary constant.
Then:
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dr,

= 1I(222 = 1), - 24 XY5).

These equations are the equations of motion tteatdaduced from the Hamilton
function:

1 |
(20) Ha(Y1, My, U) = ?ﬂf +—§[(uf —2A)Y7 + kK Y.

2

Here again, one sees that with the first integggts

LA =A)

We can replace the constaaf — 247 in H; by the conjugate momentum of a cyclic
variableY;, namely,,. We then write:

a) If £ -2A% > 0then:

1 |
(21) HZZEnf+—§[H%Z+K1’(3Y14]i
2
b) If 1 -2A% <0 then:
—_ 1 2 |2 2Y2
(22) H2_?n1 +E[_n2 1 +K1K3Y14]-
2

The corresponding Lagrangians are then deducdlgt #asn these expressions.

A third choice of field variable is the functiok(u). The symmetry in the
introduction ofl(u) andK(u) then shows us that if we considgu) to be a field variable
— namely,Z(u) — then the corresponding Hamiltonian functidg(Z;, Z,, u) will be

deduced front, with the exchange of constamt$ - 7 andx, & .

In the case of the modB| the passage from the Hamiltonian formalism is@#d in
the same fashion. The choice of the field varial{a) = X;(u) leads to the Hamilton
function H;(X1, Xz, U). The choice ofo(u) = Y; leads toHx(Y1, Y2, u), and the choice
K(u) = Z; leads to the functioRs(Z;, Z,, u).
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4. — The quantum theory of fields that is associated with hnonlinear models.

I would now like to start from the preceding Hamiltonfarmalism and associate it
with a quantum theory of fields for the models thhave introduced.
For this, | will assume that a quantum theory of fieédsonstructed:

a) By formally associating the Hamiltonian function ®itheory of classical fields
with a “Hamiltonian operator” that is obtained by a falmorrespondence function
operator, for which | have adopted the usual choice:

.. 0
P- Pp=—I1h—, X =Xo.
°® X Xop = %0

As a consequence, a Hamilton function corresponds tecand-order differential
operator.

b) By constructing a “Schrodinger equation” froht){p .
By definition, here this will be the second-order paditerential equation:

(23) ih%d)(xl, X,U) = (H)ogP(Xe, Xa, U).

c) By considering the general solution of that equation iaathting a “quantized
manifold” among them that constitutes a completeesysif orthogonal functions. These
functions are determined by the possibility of assowatihe Schrédinger equation, after
separating the variables, witbne or more (regular or singular) Sturm-Liouville
problems.

This possibility restricts the values of the firsemtals of the Schrédinger equation to
guantized values or proper values that are classified byntgoanumbers.” They
correspond to field function®(Xi, X, u) that are orthogonal with respect to convenient
measures.

For the preceding models, | would like to first consitle® HamiltonianH; that
corresponds to the field variabig)). Here,Y: =Yi(u) =I(u) for the plane-wave states.

The Schrédinger equation that is associated Wik, (s written:

.. 0
Ih%q)(xl, XZ,U) = (Hz)opcD(Yl, Y2, U) =

-1 —h26_2+|—2 Y2 —-h? 0* +K KXY | D(Y1, Y, U)
2, ay? 2| * ayz) vt e

We can separate the variables by setting:
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(24) (Y, Y, U) = exp{—%gu} DY, Y) = exp{%[[)’Yz —£u]} DYs).
The functiond(Y;) is then determined by the differential equation:

h? d?
(25) {——+£ BNZ+k kY, } d(Y,) = 0.

From the preceding field theory, we are led tooidtices and 5 by their expressions
as functions ofl andx, namely:

®(Y1) is then a solution of a differential equationttive write as either:

B d2 |2 _AZ
(26) dy?2 +h_22 7(:%2 _/]12) _(/'112_2/]12)Y12_K{(3Y14H d(Y) =0
L YT LA
or
daz 12| 1= A2 _
(27) av? +h_22_(/]2 —Klle)[ 1Kl 1 +K3Y12jﬂ d(Y,) = 0.

The equation of the harmonic oscillator, which is the basis for the quantum theory of
fields, is now replaced with the equation for an anharmonic oscillator.

The limiting casexz = 0- so A” = 0 - brings us down to the harmonic oscillator and

the usual quantum theory of fields.
Up to now, the theory that we developed is nontmad. For the quantization, we
must consider the general solutions of equation ¢2§27), and among them, one must

restricte and 37 (or A and ) to particular values.
Consider eq. (26), which we further write:

(28) {dd—;wl ~BY? —ﬁav“} B(Yy) = 0

(with Y, instead ofy;, now).
The regular general solution for boundédf (26), (27), or (28) is written:

O(Y, & £) = (Y, A2, 1) =&Y, By, ).

We first suppose that > 0,4 > 0.
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Eq. (28) is of the type:
y'+é(x)y=0.

One knows that ifg(x) > O then the general solution is of sinusoidal typen¢ave
towardsOX) and that ifg(x) < O then the general solution is of exponential type.
As a consequence, ji>> A’ (which was the first case considered, whgxé) is a

“corpuscular” function) the(Y, 3., ) will be of sinusoidal type fo¥? < A%/ x, and of
exponential type fol¥> > A / k1. Moreover, from the Polya-Szegd theorem, since the
function ¢(x) is decreasing fo¥? < A* / k1 k3, the sequence of relative maximada(y,
[, ) will be increasing.

The situation will thus be the same as in the casheoSchrodinger equation for the
harmonic oscillator.

The quantization will be obtained by associating eq. (28) two smultaneous
Surm-Liouville problems.

a) We may fix3 (or ¢ — 2A?) and consider the singular Sturm-Liouville problem
that is obtained by subjectitgY, £, 3) to being annulled a¢ - .

Since eq. (28) is written:
y'—a)y+Ar(x)y=0,

here we havey(x) =4Y* + &Y. The Titchmarsh theorems then show that there is a
discrete spectrum of admissible values fr. We write themgBi(n: , ), where the
integern; classifies the corresponding solutiohgY) by their number of nodes. These
associated functions, namef)(Y, £(m), ) are then orthogonal onco, + 0o, with the
weighting functiono(Y) = 1:

[ oY, B(n), B, BN, B,)dY = CI,
b) We can fixg (or AZ(1 —A?), and again consider a singular Sturm-Liouville

problem on- o <Y < +c0.

If we setd(Y) = (1) W(Y) then eq. (28) takes the form:

d(1 2 B . _

The Titchmarsh theorem then shows that sifgds different from zero, there is a
discrete spectrum of values @ — namely,5(n , £) — for which, on the one hand,
d(Y) is annulled a¥%® — «, and, on the other hand, the solutishg, B., B(n)) are
orthogonal on+ o, + ), with the weighting functiog(Y) = Y*
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[ O, B, BN O BB, (M)YPAY =C3y .

The simultaneous consideration of these two Sturm-Liouville problems letas
system of functions:

O(Y, (M), B(n2))

that are orthogonal or- (o, + ), with the weighting functiom(Y) = 1, for fixed/,, and
oY) = Y? for fixed B

(The situation here is the same as in the caseeoshociated Legendre functions
P#(cos@), for which there are two orthogonality relationsher for fixedu with o(6) =

— sin @ or for fixed v with p(6) = 1/sinfthat lead to the “quantized” values=n; , u =
ny).

We thus have a simultaneous quantizatioghadnd £, with a discrete spectrum, and,
in turn, of the amplitudd, and the reduced proper masdy the expressions:

/]12 = %[(:322 +4K1K3ﬁ1)1/2_:32] )
1= (B + 4Kk B

For k3 = 0, one recovers the quantization conditions foh#renonic oscillator.

c) For the same eq. (28), but written in the form (27,may pose another Sturm-
Liouville problem. In order to do this, we write that equaias:

d2 |2 |2
{de +h_22 ”05(Y) —h—ZZ[YZ(ﬂf—)‘f) +K1K3Y4} d(Y) =0,
with
2 92
QS(Y) — :ul Al + Y2.
1K3

The preliminary condition? > A7 gives usos(Y) > 0 for— o <Y < + .

We may then consides’ —A” = v/ to be fixed. The conditiof(Y) - 0 for |Y| -
co will then lead to quantized values fdf. The Titchmarsh theorem again shows us that
the spectrum ofi] is discrete with fixed)] .

These values) (n,, V) correspond to functions:

Y, A7 (ns), vy)

that are orthogonal or (o, + ), with the weighting functioms(Y):
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TCD(Y,/lf(n'g),l/f)q’(YJlf(n'é),Vf)pg(Y)dY =Co,

ng,ng "

Up to now, the quantization of our model has been dedfroed the Hamilton
functionH, that is associated with the field variabi€u) = 1(u).

We may likewise construct a quantum theory of field$ #ma associated with our
model in which the HamiltoniaH; corresponds to the field variaklgu) = X;(u).

Here, the Schrddinger equation is:

2 32 2
ih% P (X1, X2, U) :|: "o +I_l{x12(_h2 0 j_KzKaxfﬂ (X1, X2, U).

T2, 0xZ 2 X2
Separating the variables by writing:

(X1, Xz, U) = Xp [IE (@,X, —£u)} D(X),
with
a? = A2+’ and £:%A2,uz,

®(Xy) is determined by starting with the differentiguation:

d> 17
{dxz +#[)I2,u2 —(A2+ )X P+ Kk X ‘ﬂ D(X1) =0,

which we also write as:

d> 17
{dxz +#(/‘2 — K, XY (4 — KX Z)} d(X) = 0.

Here again, the equation of the harmonic oscillafothe usual quantum theory of
fields is completed by an anharmonic ternxfn

The general solution of this equation has sinwdolhavior either for 0 %* <
A2 1Ky Kz or for X2 > 121k ks .

The first case is the extension of the case oh#renonic oscillator that we recover
for k3= 0.

The simultaneous quantization of the parameters:

=N =Nl ks and a= A2+ 1

will again be obtained frotwo simultaneous Surm-Liouville problems upon imposing
the condition on the functior(X) that they go to zero a¥X|| - o« .
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In the first case, one fixe® = A” + 1 and one will determine the quantized values

of a1 — namely,a(n) — for which the functionsP(X, a1(n1), a2) are orthogonal on~
00,+ 00), with o1(X) = 1.

[ (X, 0, (M), @,) P (X,a,(M).a,)dX =C3, -

The Titchmarsh theorem shows us that the spectriim) is discrete.
The second Sturm-Liouville problem considers to be fixed and determines a
spectrum (which is again discret@yn,) = A’ + 1. The corresponding functions:

CD(X, m, O'z(nz))

are orthogonal on-(e,+ ), with the weighting functiox®.

n,,ny *

j O(X,a,,a,(M,))P(X,a,a,nh)X2dX = CJ

The consideration of these two simultaneous Sturrmliie problems thus again
leads us to discrete spectrum for theamplitudes A; and proper masses 4 .

The quantum theory of fields that we have associatgdour model thus extends the
guantum theory of classical fields by simultaneously gmiagt the amplitudes of the
wave functions the proper masses.

The results that were reported here relate to y sienple model of corpuscle-field
that is described by a system of nonlinear wave functibt®wvever, these results extend
without difficulty to the more complex models of corplesfield that we introduced,
moreover. One then sees a much larger extensioneothdory of classical fields in
which an entire sequence of anharmonicity constants isigedrdt the same time as the
amplitudes of the multi-periodic functions that assaciated with the various tensorial
components of the global wave function.




