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Discussion of the general form for light waves')
(By J. Plucker, ord. prof. at Bonn)

Translated by D. H. Delphenich

1. In this first article on the theory of light waydgropose to treat the most general
form that such a wave can take in the interior oftafgsthat are endowed with double
refraction, according to the illustrious Fresnel, andy in its geometric aspects. It is, by
no means, my intention to occupy myself with the detaflthe optical questions here,
but only to borrow the language. Before entering intd thatter, | will develop some
formulas that have a general usage, and which wiltutin, help is to either find the
equation of the wave or to discuss it.

2. If a surface is cut by a given plane then determine the curveep$action in its
proper plane analytically— Under the hypothesis of rectangular coordinates, let:

F(x,y,2=0

be the equation of the proposed surface. d@denote the angle that the intersecting
plane makes with they-plane, and letr be the angle between the intersection of the two
planes and the-axis. The intersecting plane, which passes througbabedinate origin,
moreover, will then be determined completely by the &nwglesg anda. We propose to
find the equation of the curve of intersection in thenglaf that curve itself, while
choosing the coordinate axesdndw) to be two straight lines on that planes that are
mutually perpendicular, and one of which (viz., thhaxis) will coincide with the
intersection in they-plane.

In order to arrive at that, we first turn tk@ndy axes in their plane until one of the
two agrees with thev-axis, while the other one is perpendicular to it. Upon
distinguishing the new coordinates by primes, we will treeveh

4

X =Xx’cosa - y’sina, y=x’sina + y’cosa, z=7.
The intersecting plane will be perpendicular to xtg-plane, because it will pass
through thex-axis. The intersection of the two planes will thentbew-axis, whereas

the v-axis will coincide with thex-axis. The following relations will result from thédr
an arbitrary point of the intersecting plane:

(") Translator's note: The accompanying figures thataditeled to in the text were not provided in
either the journal article nor his collected works.
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X'=V, y’=wCosg, z’=wsin ¢,
and upon combining these equations with the preceding equatgowdl obtain:
1) X=VCOSa—wsinacos¢g, y=vsing+wcosacosg, z=wsing.
Finally, in order to get the desired equation for the ewfvintersection, we need only
to substitute these values in the equation of the proposedesur
If we represent the intersecting plane by the foll@pequation:

Ax+By+Cz=0

then we will have, from known formulas:

. A? B?
sifa= ———, coag=———,
! A%+ B? A%+ B?
C? . A? + B?
co$p=——— _ sifpg=—n—— -
¢ A2+BZ+C2 I ¢ A2+BZ+C2

hence, we can further infer that:

BZ
A%+ B%2+C?’

AZ

Sint a sirt ¢ —A2+BZ+C2’

co$ asirf ¢ =

3. Singularities of surfacesAll of what | find in the treatises on the singuparints
of curved surface seems to me to be very unsatisfactorgrder to not lose sight of my
main objective, | must be brief in what | will say, tehreserving the exposition of a
general theory for another occasion.

First, one must not confuse two types of singulariti€se one type refers to points
where the surface is touched by an infinite number afgslaand the other one, to planes
that touch the surface at an infinite number of poirikse tangent planes atsangular
point, in general, envelop seconddegree cone, which will reduce to just one point if the
tangent planes become imaginary. The singular poihtheh be an isolated point and
will be conjugate to the surface. In the intermediagsecwhere the cone reduces to a
straight line, the singular point will constitutgaint of the surface, in general. On the
other hand, the points at which a surface is touched mgalar plane will form a conic
section, in general. If that conic becomes imagiritagn the tangent plane will be an
isolated plane and conjugate to the surface. Beforeapgdears, the conic will reduce to
a point, which indicates an inflection of the surfat¢hat point.

4. We shall first occupy ourselves witlingular points In order for the surface
whose equation is:
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1) V=FYy,2=0

to have such a point, it is necessary that the cooadiratthat point must satisfy, along
with the proposed equations, the following three equatasssell:

V_y o AV, dv_ g
dx

In this case, the coefficients of the equation ofttmgent plane will present themselves
in the indeterminate form 0 / O.

Let:
(2) Ax+By+Cz+D=0

be the equation of an arbitrary plane that passes thrihigyipoint. This plane will cut
the proposed surface along a curve that has a singuilatr that coincides with the
singular point of the surface. In general, one can frgely this plane a position such
that this point becomes either a double point, properly spgakiith two real tangents,
or conjugate point, with respect to the curve of intéisec In the intermediate case, the
singular point will become a point of regression of theve, and at the same time, the
intersecting plane will become one of the planes #inatangentto the surface at that
point. Upon eliminatingz from equations (1) and (2), one will obtain the follogi
equation for the curve of intersection on Xyelane:

(3) F |:X, y,(—w)j} =U=0,

and since one does not lose the point of regressi@ncofve upon projecting it in an
arbitrary manner, it will suffice that the double padirfitthe curve that is represented by
the latter equation be a point of regression in ordethi®plane (2) to touch the proposed
surface. In mySystem der analytischen Geomefrje| saw that in the case of a point of
regression of the curve (3), one will have the folloywguation:

d2u Y dU du _
@ (dxdyj dx Dddfz =0

where one must refer the partial differential caasints at this point, whose andy
coordinates are the same as the analogous coordinatié®e afingular point of the
proposed surface. Upon remarking that one has:

du _dv_dv A du_dv_dv B
dx dx dz C dy dy dz C

() System der analytischen Geomettig35. Third section, § 6.
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d’U _d%v _dvV_A dV_A
= -2 —+ By
d¢ d¥ dxdy C dz €
2 2 2
U _dv_, dv B VB
d dy* dydz C dz €
2 2 2
U _dV _dV B VoA dV Al
dxdy dxdy dxdz C dydz C 4z %
equation (4) will transform into the following one:
(dv Y &V _dV FvY dv.d
5 - [ C?+ - B B?
©) (dxdyj dX  dy K dxdl dx dz
[/ 42, )2 2 2\ /]
L[ OV ) AV EV) . oQVD(fV_ c"tvDa2 BC
dy dz dy dZ dxdy dxdz dydz °d
[ 42 2 2
_| gV PV dV dV] o, dV dV dy az AB
| dydx dydz dxdz dy dzdx dzdy dxdy? ¢z
=0.

If the coefficientsA, B, C of the plane (2) satisfy that equation then the plaille w
touch the proposed surface. All of these tangent plavi@sh pass through the singular
point, in addition, will envelop a second-degree conedhatcan say is represented by
equation (5), when one regards B, C as the independent variables. It will be the
tangent cone to the surface at the singular point.

5. Now, suppose that the surface is determined by its tapigeres, and let:
Ax+By+Cz+D =0

be one of its planes, which will depend upon only thedlguantitied\, B, C if we setD

= 1. These quantities signify the reciprocal values,takdn with the opposite sign, of
the three line segments that the plane cuts outeothtke coordinate axes. We can then
represent the surface by an equation of the form:

() F(A,B,C)=W=0

that will suffice for its determination just as coniply as its equation i, y, z
Likewise, when one regards B, andC as variables, the equation:
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(2) Ax+By+Cz+1=0

will represent a point. The coordinates of that puwitlitbe the three constantsy, andz
Upon eliminatingC from equations (1) and (2), one will obtain:

3) F{A, B,—(AX%BVHH =s=0.

This equation must be satisfied for all planes thas pasough the point (2) that
touches the proposed surface. It is the equation ofuitve ©f intersection between the
xy-plane and the cone that is circumscribed on that utfsett has the point (2) for its
summit, where that cone will be determined by its tatsgeWhen one takes the point (2)
to be in the singular plane of the surface, it wél dvious that, in general, that curve
must have a double tangent and coincide with the int#seaf the singular plane with
the xy-plane. According to whether one takes the pointet@Xternal or internal to the
curve of contact in the singular plane, the double tangalhttouch either two real
branches or two imaginary branches of the curve €pactively. In the latter case, it
will be an isolated straight line and will be conjugtteéhat curve. If the point is found
on the curve of contact itself then the curve (3) hale an inflection that is described by
the following equation, which is entirely analogous to eiquaf4) in the preceding

number:
4[ dzsj dstd <

- =0.
dAdB dX dB

Upon developing this in the same manner, we wilhob

(aw Y ew_dw L, [ dw) aw 3
©) [dAdBj aR Ddé} {[ dAd(; e dt%

(aw Y ew . dwl, [ dw_ aw o w,
+ - E X = E — yz
dBdC) dE dC dAdB dAdC dBdC @

[ d*w _dPw dFw _d AW. 8w ﬁv&zd
- E - E Xz—-2 E - Xy
| dBdA dBdC dAdC dB dCdA dCdB dAdB

=0.

This is the equation for a cone whose summit iscti@dinate origin. Its intersection
with the singular plane will be the curve along evhthe proposed surface is touched by
that plane.
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6. If, upon takingC = 1, one determines a plane by the three constargsandD
from its equation:
z+AX+By+D=0
then one can replace equation (1) with an equationedbtim:
F(A B,D) =W’'=0;
thus, upon eliminatin®, it will become:
F[A1 Bi(- (Ax+By+2)]=S"=0.
By an argument that is completely analogous to therotiee preceding number, one

will obtain the following condition between the coordes of the points at which the
singular plane touches the surface:

(szj _dsds_

dAdB) d& dB

which will transform into the following one:

(dw Y W _dw| [ dw)  aw aw,
(©) [dAdBj TGR B }K dAdJ - dbﬁ/y

(aw Y Pw_dw] dw_aw dw.
+ - E X =2 E - E y
dBdD dB d»¥ dAdB dAdD dBdD dA

AN 2 U y 291
[eW dw  dw dwW] [ aw, Bw W
dBdA dBdD dAdD dB dDdA dDdB dAdB 4

=0.

This is then the equation of the projection of the cofventact in the singular plane
onto thexy-plane.

In order to see what it so unusual about the developmetite ddst two numbers, |
shall refer to the “Note sur une théorie généraleoetvelle des surfaces courbes” that |
published in the ninth volume of this journal.

7. Determination of the axis of an ellipse While assuming rectangular coordinates,
let:
UV +2uxy+pX=1
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be the equation of the ellipse, so one will obtain fihleowing equation in order to
determine the reciprocal values of the semi-axes:

(1) Vi—(u+ o)V + (up- V) =0.

I will content myself by simply transcribing this equatiovhich can be found in any
work that treats conic sections, and | will cite jost ownEntwicklungen().
Upon denoting the reciprocal values of the two semsdxeV and V., we will

obtain the following relation by solving equation (1):

2) V2 =\ = (u+ p) —A(up-v?) |

8. Reciprocal polar surfaces: One takes two surfaces to be reciprocal poldaces
when the points of one are the poles of the tangkames to the other with respect to an
arbitrary second-order surface that | will call theectrix. Upon taking the directrix to
be a sphere whose radius is equal to unity, tharggne of an arbitrary given point
whose three rectangular coordinatesxdrg’, z’ (the origin being the center of the sphere)
will have the equation:

X'X+y'y+z'z=1.

If we determine the position of this plane by nseahthe three quantities, B, and
C, which are given the same meaning as in numbtied, we will have:

X'==A, y’'=-B, z’=-C.

It will then result that if either of the two recgral polar surfaces is given by the
equation:
F(x,y,2=0

then one will obtain the following equation in orde determine the other one:

F(-A -B,-C) =0,
and conversely.

9. If one takes an arbitrary ellipsoid to be theedirix, which | will represent by the
following equation:
2 2
X_+L+i: 1,
bc ac ab

then the polar plane to an arbitrary poit ¥’ z’) will have the equation:

() Analytische geometrische Entwicklung&828, vol. |, pp 251.
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bc ac ab
Since one of the two reciprocal polar surfaces isrgbsethe equation:
F(x,y,2 =0,
the other one will be determined by the following equation:

F(— bcA —acB, —abC =0,
and conversely.

10. Two concentric ellipsoids will be reciprocal polavih respect to a sphere that
has the same center when the product of the corresgpsédmi-axes is equal to the
square of the radius of the sphere. The two elligsssare represented by the following
two equations:

X—2+L2+i—1 a?xX +b’y+cf7=1
a2 o -
will be polar reciprocal if the radius of the dirextsphere is equal to unity.

11. If the directrix surface is an arbitrary ellipsoikden the product of the two
corresponding semi-axes of two reciprocal polar ellipsaitisbe equal to the square of
the corresponding semi-axis of the directrix surface: example, the two ellipsoids:

(a2+b2)x2+ 2y +(c2+ ) 7

@+ @+ (2B

@+c)X (+)y (a+) Z _,
(@*+b’)c® 28 (d+ )&

will then be two reciprocal polar surfaces withpest to the ellipsoid:
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12. Two straight lines are reciprocal polargith respect to an arbitrary directrix
when one of them passes through the two points wheremt tangent planes that pass
through the other one touch the directrix surface. $waight lines that are reciprocal
polars with respect a sphere will have mutually perpetaticlirections.

13. One calls two points such that one of them is thatpehere a straight line
passes through the center of a second-order surfacehenther one is the point where
it meets the polar plane of the latteonjugate polesvith respect to that surface. Two
points that are situated on a diameter of a spheretkatthe product of their distances is
equal to the square of the radius will be two conjugatetpaevith respect to that sphere.
One obtains the one by dropping a perpendicular fromehteicto the polar plane of the
other one.

14. Circular sections of an ellipsoid: An ellipsoid whose three semi-ax@®, andc
is represented by the following equation:

Y, Z_
(1) ¥+F+§_ 1.
Upon combining this equation with that of a sphere of undétechradius:

X+ +Z2 =17

one can always arrive at an equation that containstbalgquares of any two of the three
variables. Such an equation will represent the systetwam{real or imaginary) planes
that are perpendicular to one of the coordinate plandsttat will cut out two circles
when they pass through the intersection of the spdnedethe ellipsoid. Here, we shall
determine only the two real planes. Upon supposingcthdt andb > a for this, we will
only have to take = b and to then subtract the equation of the sphere firgtrequation,
after having multiplied it bp>. One will then obtain:

¢*-ad)x-a (?-b?) 7 =0,

an equation that will reduce to the following two equations:

(2) cy(b*- &) xt aj(¢é- B) :=0.
In order to determine the circular sections ofaHi@soid whose equation is:
(3) X+’ +t =1,

one needs only to replae& b? ¢ with 1 /a2, 1 /b% 1 /c? in the preceding results, which
will give:
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(4) J% - a%) x£/(¢- 1) z2=0.

for the plane of the sections in question.

One will likewise arrive at equation (2) by seftiynequal to zero in the equations of
the sphere and the ellipsoid before the eliminatiBrom this, one will conclude that the
two planes (2) are perpendicular to #zeplane and that they will intersect along the two
common diameters to the ellipse and the circlentd@rsection, or even in the directions
that are perpendicular to these common diamefayagifirst turns the ellipse in its plane
in such a way that its-axis falls upon the-axis and its-axis falls upon the-axis.

In that position, the equation of the ellipse Wwiicome:

X2
C2

Z2

a2

+ 1,

and the four tangents that are common with thdecincquestion:

X2 + y2 — b2
will have the equations:

J?-a%) x\[(¢- 1) z R/( é-  =0.

They will then be parallel to the planes (4).

One will then see that all four of the circulactsens (2) and (4) of the two ellipsoids
(1) and (3) must pass through thaxis, since they are perpendicular to xk@lane, and
that those of the ellipsoid (1) will cut that plamadong two straight lines that are
perpendicular to the common diamet&disM, and M" M, (see Fig. 1), while those of

the ellipsoid (3) will cut parallel to the two coromtangentsl, T. andT’T”or T. T" or
T.T.

15. Fresnel's elasticity surface: By considering molecular actior&esnelproved
that in the most general case, the elasticity ef éther along the different directions
inside of a crystal is completely determined by eleesticity along three fixed directions
that are mutually perpendicular and will dependrufie nature of the crystal. He called
them theelasticity axesand then he constructed tHasticity surfacdoy taking its radius
vectors to be proportional to the squares of thstilty along the same radii. For the
equation of that surface, he found:

X+ +ECL=(C+y +7)?

which can then be written:
XY+l =1,
if one calls its radius vector
In all of what follows, we will suppose that:
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C2 S b2, b2 > az,

in such a manner that the elasticity will benaximumalong thez-axis, and aminimum
along thex-axis.

In crystals that havjeist oneaxis, two of the three elasticitia$, b?, ¢ will be equal.
Here, there will be two cases to distinguish: In thastals that one callsositive one will
have:

C2 — b2 S a2,

and in the crystals that are calleeative one will have:
a®=b’<c?
If the three elasticities are all equal then thveitebe no double refraction.
16. Relationship between the elasticity surface and two ellipseid&he elasticity

surface has an intimate relationship with the two ellgsadhat are represented by the
following two equations:

Y7
@ Fa A At
(3) X+’ +ct =1

The ellipsoid (2), which | will choose to be thest onethroughout in all of what
follows, has the three axes of the elasticity s@fle its axes; the axes of the other one,
which | will call thesecond ellipsoigwill have the inverse values.

By a very simple calculationMagnus () has already proved that one drops
perpendiculars from the center of the first elligs@nto the tangent planes then the
geometric locus of the feet of these perpendicuaide the elasticity surface.

One has a second theorehe lengths of two radius vectors of the elastisitsface
and the second ellipsoid, whose directions wilhcae along the same arbitrary straight
line, will be inverses of each other, in such a Wat their product will be unity.

In order to prove this, denote the two radius vectors landr’, and write the
equations of the elasticity surface and the second etipstohe following forms:

2,2 2
a’x®> b o

2 + 2yz+ 2 :rz’
r r r

¥%+Ef+€f

r12 r12 r'2

1
r'z’

() Sammlung von Aufgaben und Lehrsatzen aus der analytischen GeometRautess by L. J.
Magnus. First edition, 1837, pp. 402.
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Since the two radii coincide in the same straigld, lithe three terms in the left-hand
side of the first equation will be equal to the threeesponding terms in the second one,
and upon equating the right-hand sides, one will get:

r’ri2=1,
which was to be proved. We can state the same thearéma following manner:

The points of the elasticity surface are the poles that are congtamehé points of
the second ellipsoid, and conversely, with respect to a sphere whoss imdiqual to
unity. [13]

If follows from this theorem that in the two curvetintersection of the elasticity
surface and the second ellipsoid, the directions ofa#es will coincide, but in such a
way that the largest of one will correspond to thellesiaof the other one. If one of the
two curves is a circle then the other one will als@ lo@cle.

From number 10, the two ellipsoids (2) and (3) will beprecal polars with respect
to the same sphere. That theorem lies between théheeoems of the present number,
because upon taking an arbitrary point on the surfackeo$e¢cond ellipsoid at will, the
polar plane to that point will touch the first ellipgoand in order to obtain the same
point of the conjugate pole, which belongs to the elagtstirface, one has only to drop a
perpendicular from that center to the polar plane. aMethen presented with a new
proof of the first theorem in that number.

17. Determination of the light wave by FresnelUpon drawing an arbitrary plane
through the center of the elasticity surface, alhefvibratory motion in that plane can be
decomposed into two rectilinear vibrations that exist gl two axes of the curve of
intersection, which will be, in general, a fourth-degosal. The motion of propagation
will take place perpendicular to the sense of the vdmatvith a velocity that is
proportional to the two semi-axes, while these axdseithemselves proportional to the
squares of the elasticities. (cf., number Fspsnel concluded from this that planes that
are parallel to the intersecting plane and have distances from it thagcaral to the axes
of the curve of intersection will be tangent to the light wave.

Two tangent planes that are parallel and situated osaime side of the center will
correspond to vibrations in the planes that are perpeadituithese tangent planes and
will be, at the same time, mutually perpendicular. Plaes of the vibrations will be
perpendicular to the planesmdlarization

18. Analytical determination of the light wave by tangent plareStom number 16,
the Fresnelconstruction can be translated thusly:
If one passes an arbitrary plane through the centéestcond ellipsoid:

(3) X+’ +t =1,
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and one raises perpendiculars to that plane that equalvérse values of the two semi-
axes of the ellipse of intersection then planesdhatarallel to the intersecting plane and
pass through the extremities of these perpendicularbevibngent to the light wave.

We first determine the ellipse of intersection. we did in the first number, upon
fixing the position of the intersecting plane by the amglesa and ¢, and upon setting:

X =V COoSa—wsina cosgy, y=vsing+wcosacosy, z=wsing
in equation (3), we will get the following equation foetéllipse in its plane:

(4) [a® coga + b® sirfa] V2 + 2(6* —a%) sin a cosa cos¢ Ciw
+[a® sirfa cos@ + b’coga cos ¢ + & sirf ¢] WP = 1.

If one then sets:

a’ coga + b’ sirfa = y, (b* —a® sina cosa cosg =,
a’ sifa cosg + b’cosacos g+ P sif ¢g=p

then we will have, after some simple trigopnometeiductions:
5) (u+p)=(a®+b*)cos g+ @+ c*)coda sifg+ b*+ ¢ )sida sifp
(up-v?®) =a’b’cos’ ¢ + a’c’ cosa sirfg + b’c® sifa sy

and from number 7, in order to determine the inverse valug® dwo semi-axes of the
ellipse of intersection (4), we will have the followiequation:

®) { V4—[(2<’:122+ b?) cos’g + (a’+ cz)_cos"a sirf¢f ()2+_ ¢?)sirfa sifp V-
+a’b’cos’ ¢ + a’c’ cosa sifg + b’c® sida sip= 0.
Upon paying attention to the fact that:
cos¢ + coda sirfg + sirfa sirfg = 1,
one can write the same equation in the following manner:

(7 (VP =b)(V?=c?) sirf asirf ¢ + (V* —c?)(V? —a°) cog asirt ¢
+ (V2 =a)(V* -b%) cog ¢ = 0,

or even in the form:

®) sin® a sin’ ¢ N coda sifg N cosp _ 0.

V2 - g2 V- V- &

When the intersecting plane is given by its equmti

Ax+ By +Cz=0,
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equations (7) and (8) will transform right away into thkofving ones (cf., no. 1):
(9) (\/2 _ bZ)(VZ _ C2) A2 + (V2 _ CZ)(VZ _ aZ) BZ +(v2 _aZ)(VZ _ b2) CZ — 0’

AZ BZ CZ

2_2+ 2 _ +2_ =0.
Vi-a® Vvi-bp Vvi-¢

(10)

19. In these equationd/ signifies the velocity of the light wave; i.e., thaf its
tangent planes. It is equal to the perpendicular ithdtopped from the center of the
wave onto its tangent planes, whose direction wiljiven by the values &4, B, andC.
Should we desire that, conforming to number 4:

Ax+By+Cz+1=0
should be the equation of the tangent planes then walwkauk, from known formulas:

1
VZ:—_
A*+B’+C?

Equation (6) is first changed by introducigB, andC into the following:

(A +B*+CH V- [(0® + ) A* + (P +a°) B?+ (@ +b*) CT V2
+[PPcC A2+ a? B?+a?b? CY =0,

and then upon seeking one will obtain:
(11) b® ¢ A% +? & B? +a’ b? C7| [A? +B? + C7]
— (PP +P) A2+ (P+ad)B?+ @ +b) CP+1=0.

20. In general, one can pass only one plane throughraitrary radius vector of an
ellipsoid in such a way that this radius vectorlwiincide with one of the two semi-axes
of the ellipse of intersection.

In order to prove this, we make tkaxis coincide with the given radius vector, and
take they-axis andz-axis at will, but perpendicular to each other and toxthgis. The
given ellipsoid will then be represented by an equatfaheform:

MxZ + My? + OZ + 2P zy+ 2Q zx+ 2R xy= 1.

Make an intersecting plane pass throughxtaeis that makes an arbitrary anglavith
thexy-plane. By setting:

a=0, x=v, y=wcosg, z=wsing
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in formulas (1) of the first number, one will get floedlowing equation:
MV? + 2@Q sin ¢ + R cosg) vw+ (N co$g + O sirf @ + 2P sin g cosg) W’ = 1

in order to determine the curve of intersection ipitgper plane.

Since that equation is referred to rectangular cocieliees, if one desires that the
axis, which coincides witlk-axis or the given radius vector, should contain ohthe
two axes of the ellipse of intersection then it isessary that the left-hand side of the
preceding equation must vanish, which will give the follogvequation:

R
t =— —
ang

for the determination of the arbitrary angle

One then sees that there is always a plane thsfiesthe required condition and that
there is only one intersecting plane, provided RandQ disappear simultaneously in
the equation for the ellipsoid. In that particular ¢ake given radius will coincide with
one of the three axes of the ellipsoid and one wdhtkee that any plane that passes
through that radius will have the required property.

21. Construction of the plane in questienWe first observe that in order for tkg
plane to be the desired plane it will suffice to @é® the coordinate axes in such a
manner thaR disappears in the equation of the surface. We thertrachshe tangent
plane to the extremity of the given radius vectorpséhlength we denote by, and its
equation will then be:

M (x —x") +Qz+Ry=0.

Should one desire th& should disappear, then one would have to takezmane
to be perpendicular to that tangent plane, from whafme would then obtain the
following construction by paying attention to the fact tiine xy-plane is perpendicular to
thexzplane and that it passes through the radius vectog alih the former plane:

Construct the tangent plane to the extremity ofgiven radius vector, and drop a
perpendicular to that plane from the center of th@sid. The plane that one must
construct will then be the one that passes throughaithieis vector, is perpendicular to
the plane, and which contains both that radius and thernmicpéar at the same time.

22. The light wave(see Fig. 4)is the reciprocal polar surface with respect to a
sphere whose radius is equal to unity to what oh&ins by replacing the second
ellipsoid with the first one in its construction.

Let M be an arbitrary point of the second ellipsoid, andPldie the foot of the
perpendicular that is dropped from the center onto thgeta plane at that point. The
polar plane taM, which is likewise perpendicular to the plane of igerke, will touch the
first ellipsoid at a pointn that, being the pole of the tangent planéatwill be found
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along the prolongation @P, just as the prolongation &M will be perpendicular to the
tangent plane ah. Finally,Op=1/0OM andOP =1/0Om From the preceding number,
the plane that passes through the radius véakrand is perpendicular to the plane of
the figure will cut the second ellipsoid in such a mannat iththe ellipse of intersection,
one of the semi-axes will coincide with the radiester OM. Likewise, the plane that
passes through the radius ved@m and is perpendicular to the plane of the figure will
cut the first ellipsoid in such a manner that in thepsdiof intersection one of the semi-
axes will coincide with the radius vectom

If one makes the two tangent planes and the two péipdars that are dropped from
their centers turn around that point in an arbitragnner then nothing will change in
their reciprocal relationship with respect to the digctphereM will always be the pole
of the planemp, while m will continue to be that of the plaméP. That will also be the
case if, in particular, one actually turns the systémwo planes a quarter of a revolution
around an axis that is perpendicular to the plane ofigioee, in such a manner that
pointsm, p, M, andP will go to the position®, V, r, andv, respectively. In the new
position, the plan&kV will be tangent to the surface of the light wave. fésthe rv-
plane, it will touch a second light wave that oneaotst by replacing the two ellipsoids
with each other, or — what amounts to the same thing refligcing the three principal
elasticitiesa®, b?, c? with their inverse values 1af, 1 /b? 1 /¢ If one gives all possible
positions in the second ellipsoid to the pduhtthen one will obtain all of the tangent
planes to the surface of the first wave. These plavi## all be related to the tangent
planes to the surface of the second wave in such a médnateyne will contain the poles
of the other, and conversely. Thus, one sees thatwth&aves are both reciprocal polar
surfaces with respect to the concentric sphere whadieis is equal to unity. That is
what we proposed to prove.

23. Equation of the wave surface in rectangular coordinatedkecall the final
equation of number 19, which gave the determination of theevby means of its tangent
planes:

(11) b? c® A% + % a® B® + a® b” C?| [A? + B? + C¥]
—[(B*+P) A2+ (P+ad)B?+ @ +b) CP+1=0.

The quantitiedA, B, C have the same significance as in number (14), so we dnaly to
put X, y, z in their place in order to obtain the equationshef teciprocal polar surface;
one then gets:
(12) B+’ +a b* 2 [+ VP + 7

—[(P+P) R+ P+ Y+ @ +b) A +1=0.

This is therefore the second-order equation that wesrded in the preceding

number, and in order to obtain that of the first one,civHikewise relates to equation
(11), it will suffice to write 1 A%, 1 /b?% 1 /c%in plane of?, b% ¢, which will give:

(13) @ X +b°y +c"2) (C +y +7)
- @ P+ +P? (@ +a) Y+ (@ +D) ]+ b P =0,
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24. From the theorem in number 22, one will obtain thengsoof one of the two
waves by looking for the poles of the tangent planekdmther one. Thus, for example,
the pointR, which is the pole to the tangent planeo the second wave, will be the one
where the first one is touched by the pl&¥ The construction that is due Eovesnel
for finding the points of the surface of the light walmectly will follow from this right
away:

After having cut the first ellipsoid with a diametral plane, draw timed that start
from the center and are perpendicular to that plane, and are equal to tyestaand the
smallest semi-diameter of the ellipse of intersection, respéct the locus of the
extremities of these perpendiculars will be the surface ofghewave.

The necessary calculation for inferring the equatibthe wave from this theorem
was already completed almost entirely in number 18. nUgibingr denote the length of
the perpendicular that is raised from the center & d#ction, we will have only to
substituter for 1 /V in the equations of that number, and at the same &me? c?, in
place of 1 &% 1/b% 1 /¢ If we make that substitution in equation (10):

AZ BZ CZ

+ + =0
Vi-a® Vi-b Vvi-C

then we will find:
a’N  bB  cC
+ + =

0.
a2—r2 p2-r2 ci-r2

Then, upon taking, y, zto be the coordinates of the extremities of the petipelzat

r, one will get:
L: 2 i:yz L:
A%+ B?+ C? " A+ B?%+ C? " A+ B?%+ C?

which are equations that make the latter equation transfdo the following one:

ax by ¢z

(14) az_rz b2_r2 C2_r2

=0.

That is the desired equation for the light wave. Ugearing the denominators and
dividing byr? or (¢ +y? + 7, we will get back to equation (13) of the preceding number

25. Construction of the plane of vibratior. Recall figure 4, for the moment. The
vibrations that take place alo@M will produce a plane wave (viz., the envelope of the
surface of the light wave in question) that is perperdicto the plane of the paper and
will propagate alongOV. The pointR where it will touch that surface will give the
corresponding light ray. The following theorem wikudt from that:
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The plane of vibration for an arbitrary light ray is the one that passes thrthagh
ray and is perpendicular to the plane that touches the surface at the poirg iwhezets
the light ray.

Upon referring to the figure, the other ray, which cgpoends to vibrations along the
axis perpendicular t®M, and which produces a plane wave that is parallel tatiee
that we just considered, will be found in a plane teaiarpendicular to the plane of the
figure and will cut it alongV. This same plane will contain the point of contact.

26. Equation of the plane of vibrations.If we differentiate the wave equation:
(@5 + b2 + 22) (¢ + VP + 2) — (@%(b° + &) ¥ + bA(c® + @) VP + i@ + b?) 7] + a’b*c?
then, upon setting: “VE0

a®x + by + 7 =E, X+ + =12

to abbreviate, we will have the following equations:

av 2[E + & (r* =b* =] x,
dx
av 2E +b*(rP=a?=c?)]y,
dy
N o E+@(--1) 2
dz
from which, one will infer:
d_V D( +d_V [y-}-ﬂ/[]z
dx dy dz

= AErP - 2% (b + A ¥ +b? (@ + ) y* + # (&% + b)) A,
= 2[Er* —a’b*c?
=2[a% (B* +cA) x* + b? (@2 + D) Y + & (&% + b?) Z - 2a%b?*c.

Now, letx, Yy, Z be the coordinates of an arbitrary point of the surtddde light

wave, and leE' andr’ be the corresponding valuestbandr; the equation of the tangent
plane to that point will be:

[E +& (M —b’ =) Xx+[E +b? (r?-a> -] yy+[E +F (r*—a’-b))] Zz
=P’ + ) X 2+ @+ y P +c? (@2 + b)) 22— 28 b’ &,

an equation that we can write as follows:
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AXx+Byy+CZz=D,
to abbreviate. The equation of the plane of vibrati@ gasses through the origin will
be of the form:
Ax+By+Cz=0.
In order to determine it completely, one has the temmlt¢ion equations:
AX +B'Yy +C Z =0, AAX+BBY +CCZ=0,
one of which expresses the idea that the plane irtiqgngsmsses through the point, {/,

Z) and the other one, that it is perpendicular to dngeént plane. If one subtracts the last
equation from the first one, after having previously muégbit by A, then that will give:

(A-BBY+A-QCZ=0.
Thus:

_(A-Q)Z _ A-C B-A

B -
cC (A-BYy ¥y 7

and upon substituting’, A, andx' in place ofB', B, andy':

A _B-C B-A

C' X Z

The equation for the plane of vibration will theecbme the following one:

B-C, C- A, A B, _,
X y 7

upon introducing the values Af B, C, one will get:

(15) (b? —cz))gr’z— a’) St (c?- cz)>(/|’ - b 0+ (a*- bz)i f 2~ cj =0

27. From the considerations of number 20, one coerdltiat a given direction of
vibration will correspond to only one unique ligldy. Meanwhile, there will be an
exception when the vibrations take place parallebte of the coordinate axes. It is
obvious from the cited number that the correspangbioints of the surface of the light
wave will constitute three circles that are desliln the three coordinate planes by radii
that are equal to the three semi-axes of theditigtsoid, respectively, and perpendicular
to those planes.

Upon settingy, X, and z equal to zero in the equation of the wave surface,
successively, one will find the following three atjans:
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(@2 +CZ-a D) (C+y — b
(b* X+ Z-b* ) (¢ +y —a
(X +b?Z2-a% ) (C+y =

each of which will represent a system that consises @rcle and an ellipse. The light
rays that start from the points of each of the tlmisdes will provoke vibrations that are
mutually-parallel and perpendicular to the plane of figare. One obtains the three
ellipses that are situated in the same planes when iwee gach of the ellipses of
intersection of the first ellipsoid (which are drawone faintly in the figures) a quarter
revolution in its plane around the center. For alheflight rays that start from the points
of each of these three ellipses, the plane of vibmatidl be the plane of the curve, in
such a manner that all of the vibrations will take placthat plane, and perpendicular to
the various rays.

28. Singular points of the wave. It suffices to observe that the equation of thetligh
wave (13) and equation (11), which serves to determine igemarplanes, are of the
same degree, which is greater than two, in order to afisarehe surface will have a
greater number osingular points and at the same timejngular planes,with the
restriction that these singular points and singulargdacan be imaginary or situated at
infinity. We shall first occupy ourselves with thegular points.

If there exists a singular point then its coordinatestrsatisfy both the equation of
the surface and three equations that are deduced fronsutchgssively differentiating it
with respect to the three variables. That will give following four equations:

V=Er’— @ (b° + ) X + b’ (& +c) y* +¢* (@ +b%) ) +a’ b’ * = 0,

%d_V :(E+a2(r2—b2—cz))x=0,
dx

1V Erp (@ —d)y=o,
dy

%‘i_v =E+E(PP-a2—b))z=0.
Z

In order to satisfy these equations, it will suffioeset:
(16) y=0, E+a (P -b*-c%) =0, E+c*(r’-a-b) =0

because upon subtracting the last two of these thre¢i@igifrom each other, one will
get:
r’ =%

and upon subtracting them, after having multiplied thens®mnda?, respectively, one
will obtain:
E=a’c
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These two new equations are those of the circle anellipse along which the surface
is cut by thexzplane. Therefore, four points of intersectionghase two curves will
determine four singular points that will all be real, unole assumption that the value of
b? is intermediate betweex andc®.

In this manner, we will obtain four singular points oé thurface in each of the
coordinate planes, but among these twelve singular po@igtht of them will be
imaginary.

In order to discuss the nature of the four real singudantsM’, M,, M”, and M., ,

whose coordinates are:
b2 _ a.2 C2 _ b2
X=+C , z= ia1/ : y=0,
CZ _ a.2 C2 _ a.2

we shall differentiate once more, while simultanepyshying attention to the three
equations (16). That will give:

4a’c?(b* - &)
2
%Zy\! —E+b? (rP—a®-c?) = - (b*—a)(c? -bP),
dav ) 4a’c*(c* - b)
1 =4 =2— )
2 dZ ¢ cc-a
2
14V,
dxdy
2 Y
idv:2(a2+02)xz:2ac(a2+02)IZ!\/(b a)e bz),
2 dxdz ¢ - a?
2
19V g,
dydz

and if one substitutes these values in equatiof(Blumber 4, and after having divided
both sides by:

4a’c*(b* - &) (- )

c’-a’

one will find the following equation:

a.2

(17) (b2 _az) 2 + (C2 _az) B2 + (02 —b2) A2 + +CC2 \/(bz _ az)(CZ— b2) [AC =0,

a
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which one can then write as:
(18) EX?C+a B+ 2PN — @ +c) X 2 AC=0,

upon distinguishing the coordinates of the singular point loyplgoprimes.

It follows from this that if one passes an arbitrargngl through that point then that
plane will touch the wave surface at the same pomitorg as the three constants in its
equation:

AXx-X)+By+C((z-2)=0

satisfy the preceding equation. All of these planes avillelop a second-degree conic
surface that is tangent to the wave surface at the lamgoint. One will find its
equations in rectangular coordinates with no effort.

29. Outgoing light cone= If one raises perpendiculars to the planes thahtthe
cone in the preceding number at the singular point theset perpendiculars will
constitute a new cone of the same order. It willcbenposed of light rays that all
correspond to just one ray that has a perpendiculateince and traverses the interior of
the crystal along one of the two straight linddV, and M"M,, , which, from number 14,

will be perpendicular to the two circular sectionsh# first ellipsoid.
Upon denoting the coordinates of an arbitrary point of sugérpendicular by, y, z,
one will have:
x-x):y:(z-2)=AB:C

Thus, since equation (18) is homogeneous with respe, tB, and C, we will
immediately obtain, upon replacing these quantities With- x"), y, and ¢ — 2),
respectively:

(19) ax?(z-2) +ad@ Py +E 2% xX-X)P-@+AX" 2 (x-x")(z-2)=0.
This is the equation of the light cone in questioninipdifies as follows:

(20) axX?Z+a Y+ 2% - @ +A) X" 2 xy+ (2 -a) X'Z'(X"'z — #x) = 0.

30. Planes of vibration for outgoing rays.In order to determine the direction of the
vibrations that correspond to the various rays of thgag light cone, from number 21,
we have only to drop some perpendiculars from the cemterthe planes that touch the
surface at the singular points. The straight linegb@se tangent planes that join the bases
of the perpendiculars to the singular points will intecahe directions of the
corresponding vibrations. The plane of vibration witl,tlke same time, contain that
straight line, the singular ray (which starts fromsimgular point), and the outgoing ray.

We therefore look for the curve that is the geomdtaus of the bases of the
perpendiculars in question, whose coordinates we denateyby. We obtain, in turn,
two surfaces that contain that curve. First, therde cone that is defined by these same
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perpendiculars, and which is nothing but the light coresnatransported parallel to itself
in such a manner that its center will coincide witht thathe wave. Consequently, its
equation will then be the one that one finds when onexpytz into (19), in place ofx
-X'),y, (z=2'). One will then immediately obtain the following etjaa:

EX?Z+@ Y+ 72X - @+ X" 2 xz=0,
which can also be written as follows:
(21) B2 FC+Y+D) - x+Z )@ X x+c?2' 2 =0.

In the second place, the same curve must belong tceeesiiiat has one diameter that
is the radius vector that ends at the singular pdistequation will then be:

2 2 2
X' 4 b
X—— |ty +l z-4—— | =| = |,
( ZJ yz( 2) (ZJ
or, upon reducing:

(22) X +Y+Z2=X"x+7'2
From equations (21) and (22), one infers that:
(X'x+27Z' 2@ x' x+c? 7' z—a’c?) = 0.
Upon neglecting the factox(x + Z' z), which is foreign to the question, the equation:
a?xX' x+c? 7 z=a’c?

will be that of the tangent plane that is perpendictdathe xzplane and will cut that
plane along the tangent at the singular point to thgselof intersection with the wave
surface whose equation is:

a?xX+ctZ=ach

The desired locus is therefore the circle along whiehsphere is cut by that plane.
In order to obtain it, one needs only to drop a perpelai€@P from the cente© onto
the tangent to the ellipse at the singular pMrifsee Figs. 1, 5) and to then construct a
circle that is perpendicular to the plane of the sdlipnd haM P for its diameter.

We further remark that the factor that we neglecteicates that in order to get the
other direction, in which the cone (21), as well ascthree (20), is cut along a circle, it is
necessary to take the intersecting planes to be pecpé&rdto the singular rapM’,
which one can see immediately, sildé is perpendicular t®Q.

Now, consider an arbitrary ray of the light conet threeets two circular sections,
which are perpendicular tel'Q”andM’ T, andN andN’. The corresponding plane of
vibration will pass through that ray and the singular®®y’ T. Its inclination above the
plane of the figure will have a measure that equalshatfethe arc lengtl®Q’ N’ of the
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second circular section. It will be zero for thg " Q’and equal to 900 for the r&§’
T, which is the prolongation of the singular @iy1".

If one projects the image onto a scrédhthat is perpendicular to the singular ray
then one will obtain a light circl®’N”N’T that passes through the ray. It follows from
the preceding that the plane of vibration will descimearc of the circle around the
singular rayOM’that is one-half of the one that the light ray diéss in the light circle,
or, to appeal to the terminology of physics, when oegards the light circle that
traverses a slab of tourmaline that is cut parallehéoaxis, just one ray will disappear,
whereas, upon turning the slab through an arbitrary aingiés plane, the ray that
disappears will describe twice the angle around theecaritthe light circle, in such a
manner that it will traverse the entire peripherthé tourmaline turns through just £80

().

31. Analytic determination of the singular planesWe look for these planes among

the ones that are perpendicular to the coordinate plades.has the two equations:
V=0, v
dx

for determining the points of the wave surface at whichsittouched by planes
perpendicular to th&zplane, while preserving the notation of number 26. Thedhst
these equations decomposes into the two following ones:

(23) y=0, @+b) X+ 2y + (P +b) - @+ )b’ =0,

the first of which— which is obvious, moreover expresses the idea that the tangent
planes to the points of the wave surface that amgatsitl in thexzplane will be
perpendicular to that plane. The other one represergipsoid, from which, it follows
that upon conveniently combining the equation of the warace:

(24) V=@ +b*y+ D) +y +2)
— @ (P*+ ) X +b* (& + )y +¢* (@ +b) Z +a*b*c? = 0,

and the following equation:

[(@%+ D)) X%+ 2b% VP + (P +b%) Z — @ +c?) b7 ?=0,

() Mr. Lloyd was the first to arrive at this result éperiment. He expressed it thusly:
“...1 discovered the remarkable law...that the angle betweerplanes of polarization of any two
rays of the cone is half the angle between the pleoeining the rays themselves in the axis.”
(On conical refraction, pp. 7)
The planes of polarization are perpendicular to thosébodtion (17), and the axis in question will be the
optical axis, which is perpendicular to one of the comnmmgents to the circle and the ellipse of
intersection in thezplane. One sees that this theorem is true only appabeiy it is proved, as such, by
analysis in the cases of Aragonite, where one hsatisfy the necessary conditibh= ac, roughly.



J. Plucker — Discussion of the general form for lightegav 25

one must obtain that of a cylinder that is perpendidoldhexzplane and enveloped by
the tangent planes to the wave surface at the poiresewith(like the wave) is cut by the
ellipsoid in question. Since the equation of this cylindezsdonot contairy, one will
achieve this objective by subtracting the latter equdtiom the wave equation, after
having previously multiplied it bylf. We can give the following form to the resulting
equation:

[(BP=&) 3+ (- = - ) b ?-4p* - D (- Z =0,

and then decompose it into the two equations:

=&)X+ (P - 2= (E - D) b+ 2 (o> -a%)(2- bP) x 2= 0.

After writing these equations thusly:

[Jbz—az xt C— 1P zT—(cz—az) b2=0,

one will decompose them once more and one willinlttee following four equations:

Jo2—a? xx -1 2+ é- & I=0.

The cylinder in question will then degenerate iatsystem of four planes that are
perpendicular to thezplane. Since each point of the curve of inteisacof any of
these planes with the ellipsoid (23) will be a paumere the wave surface is touched by
that plane, the four planes will be singular plateshe wave. It will follow from the
developments in number 14 that these singular plalécut thexzplane along the four
common tangents to the circle and the ellipse @ahatcurves of intersection of the wave
in that plane. From the same number, the fourusamgplanes will be parallel to the
circular sections of theeconcellipsoid:

X+ Y+ 7 =1

Since their directions will depend uniquely updwe differences between the three
coefficients ofx?, y?, andZ, when taken two at a time, and changing nothinthéf
constant member changes, it is obvious that théybeiithe same as those of the circular
sections of the ellipsoid (23). Therefore, thetaohcurves in the four singular planes
will be circles In order to find them, one needs only to cordtthe common tangents
to the circle and the ellipse of intersection, &mthen describe, for each of them, a circle
FGH (Fig. 1 and 6) that is perpendicular to the plahthe figure and has a diameter that
is equal to the line segment of the tangent théusd between the two contact points

—(c*-b*)(a’ - )
b? '

An arbitrary rayOG that goes from the interior of the crystal and<atl an arbitrary

point of the contact curve in one of the singulanps will leave it perpendicular to that

(viz., H andl). The square of that diameter will be found tGEdﬂE
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plane alongGG’. All of the rays that leave will thus constitutesiecular light cylinder
that is perpendicular to the singular plane, or — wdrabunts to the same thing — a
cylinder whose axis is parallel to one of the opticasarf the crystal. On the other
hand, an external light ray that falls upon the ciysfth perpendicular incidence will
produce a light cone in the interior.

For an arbitrary light rapGG’, the plane of vibration will be the one that corgain
both that ray and the optical ax@HH’, that axis being perpendicular to the singular
plane (26). The angle that this plane makes withx#@ane will have a measure that
equals one-half of the anglé&, in such a manner that this angle will vanish for the ray
Oll” (which refracts extraordinarily in thezplane), and which will be equal to Ofor
the (ordinary) rayOHH". It is then proved thahe angle that is defined by the planes of
vibration for two arbitrary rays will be one-half the one that is defibg the two planes
that contain both the two rays and the axis of the cylinder.

The results of this number were predicted theoreyidtglHamilton and then verified
experimentally by loyd.

| do not need to add that the four singular planes tlegpenpendicular to each of the
Xy andzy-planes will become imaginary.

32. Second way of determining the singular plan&ge are far too accustomed to
regarding the equation of a curve or surface as only thett@teexpresses a relation
between the coordinates of their points. | can find noavtieat one regards the equation:

A B? C?

2 2+ 2 + 2 :0
vVi-a® Vvi-p Vvi-¢

(10)

as representing the surface of a light wave. Nevegbeone can deduce all of the
properties of the surface from this equation in a marhadri$ just as complete and easy
as when one deduces them from the following equatianyire:

(13) @ X +b°y +2) (X +y +7)
- @ P+ +P? (@ +a) Y+ (@ +D) ]+ b =0,

One must stress, in addition, that the illustriGussneldid not succeed in transforming
the one of these equations into the other one, andAthaerewas the first do that in
1828, and by an enormous amount of calculation. Thealetmsiderations compel me
to repeat the discussion of the singularities of theevgairface in what follows.

Start with equation (10), in the following form, which gave it in number 19:

(11) W= [b? @ A? + ¢ & B? + a2 b? C? [A? + B? + C7]
— (PP +P) A2+ (FP+ad) B2+ @ +b) CP+1=0,

whereA, B, andC will have the same significance as they did in nungbelf there exists
a singular plane then it will be necessary that ltheet constants, B, C in its equation:

Ax+By+Cz=1
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will satisfy, in addition to the proposed equation, ftiiowing three equations:

%O(IJI_VX = [2b° P A+ (@ + D) B2+ (&2 +¢?) CP— P+ A A= 0,
%i_vg =[P @+ N +2a P B+’ (0P + ) C— @+ )] B=0,
%:I_Vg =[p?@+cA) A2 +a’ (b +cA)B*+2a° * CP— (@@ +b?)] C=0.

Upon settingB = 0, the second of these three equations will befgatti In order for
the first and third ones to be likewise satisfied, itesessary that one have:

b? [2 ?A% + (&% + ¢?) C — (b® + 2 = 0,

b? [(a® + c?) A? + 2a°C?] — (&> + b%) = 0.
If one subtracts these equations from each otherahenvill obtain, upon neglecting the
common factor ofd —&?):
(25) b? (A% + C?) = 1,

and if one subtracts them, after having previously mutipthe first equation bg? and
the second one hy, then after dividing bp? (a®- c?), one will get:

(26) C°A? + a2 C* = 1.

The last two equations are thus equivalent to the ones Jvbich they were derived.
They give:

b2_a2 C2_b2
— 2 n2 — 2 —
B=0. PEEG PCOEE

for the determination of the singular planes.
One will easily prove that these same values wilsgathe equation of the surface.
Upon setting® = 0 in it, one will obtain the following equation:

[b? (A% +CH) — 1][c> A +a® C*— 1] = 0,

which will decompose into the two equations (25) and (26)e @gain concludes from
this that the singular planes will cut thkeplane along the common tangents to the circle
and ellipse of intersection that are represented by emsa{25) and (26).

In order to determine the contact curve in the sinquilames whose positions we just
determined, one must differentiate again. If one seéserything to the singular plane
then one will get:
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1 ‘jjjlﬁ’ =R AN =4 ui"zé'j’z_‘af‘ ),
%%ZE\Q’ =c? (&% + b?) A? + & (b* + &) C* - (& + bP)
=b? (PA?+a’C?) -a? P (A2 +C?) - (@ + P =- (c*~ bzl))(zbz ~ &) ,
%22’2’ = 4P =4 Diazéfz__a? ),
, AW 0
dAdB
%d(i\c/ivc =% (@ +c®) AC=2 @ +¢) J© _CEZ_)(:; ~a) ,
1 d°w =
?dBdc

and if one substitutes these values into equabdof number 5 then, after dividing by
4(b° - a*)(c* - 1)

bz( > 2) , it will then result that:
c—-a

(27) AWM -a) 2+ -a) Y +ai (P —b?) 3¢ F(a +CP)(CP— ) (1P - &) xz=0.

This is the equation of the cone that has its cattthe origin, and which gives the curve
of contact in the singular plane by its intersattwith that plane. The cone in question
will be the interior light cone in Figure 6.

33. By following a completely analogous path, one @amediately obtain the
equation for the contact curve if one replaces egugl1) with the following equation:

(28) W= (0 & A* +a @ B? +a” 1) (A + B? + 1)
— [(b*+ &%) A% + (¢® +a°) B* + (& + b’)] D’ +D* = 0,

which amounts to determining a tangent plane toméree surface by means of the three
constant®\, B, andD in its equation, when it is presented in the form:

z+Ax+By+D = 0.
One will then have:
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1O R A () B - O+ ) DT A= O,
]_dW’_ 2 2+b2 A2+2 ZCZBZ 2+2D2 B=0
EE_[C (@ +b) a -@+c)DbIB=0,
]_dW,_ZDZ_ b2+ 2A2+ 2+ ZBZ_I_ 2+b2 D=0
24D [(b™ +C) ¢ +a) @ +b)] D=0,

which will then give:

2 _ /2 2 _ 42
B=0, Mzgng DZ:&D%—%

for the singular plane. Then, after differentiating ora@e time and keeping these values
in mind, one gets:

AN 2 .2
%—ddx\zl :4b202A2:4b202D722_§2,
leW’
2 gm?

,dw :4|32:4b2|3°2__‘5‘2

? dD? c’-b*’

— [C2 (aZ + b2) A2 + 2a2 CZBZ _ a2 + C2D2)] - _ (b2 _ aZ)(CZ _ aZ)’

| d2w

2dAdB

AW

s 20*+ ) b(BP- @) (E- )
2dAdD - ’

— 2 2 —
=-2(*+c) AD= pgares

L d?W

1 = 0.
* dR

Upon substituting this in equation (6) of number 6, and divithing? (c* — &)(b* —
a?), one will get:

c’(b* - &) fy2 e - aZD(zJ_r B+ CZD\/(bZ—az)(cz— &)

s - b g 2

an equation that one can put into the following form:
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-0 , &-& B+ & bZ—aEZ_ (C2 - b?)(? - &)
- Y +cz—b{Xi 2b \ é@- a@} - 4p? '

This is the equation of the projection of the cohtzurve onto they-plane. Since\? is
the square of the tangent of the angle that thgutan plane makes with thg-plane, the

2 _ b2
square of the cosine of that angle willgg—, so one will see that the contact curve is
c'—a

acircle whose radius is equal to:

J(@ - P)(b - &)
2b '

34. Singular points.The equation:
(29) @ +P)A+22°F B +a? (P +cA) CP— @ +c) =0

will determine an ellipsoid by its tangent plandswill be easy to obtain the equation of
that ellipsoid in rectangular coordinates. It lvious thatB andC will disappear for the
tangent planes that are parallel to yiglane, while 1 € will become equal to the semi-
axis of the ellipsoid that coincides with tkexis. One will obtain the other two semi-
axes in the same manner. The preceding equaties:gi

1_ c’(a’+b?)

B= = -
0, C=0, —H=-o
1 _ 2a°c?
A= =0, —_—=
0’ C 0 BZ a2+C2
2 (12 2
A=0, B =0, i:M

o a’+c
so the desired equation will be the following one:

@+) ¢, (E+O) ¥ (&4 7_
(@ +b’) 2a¢c (F+ ) &

After that digression, | now return to my objeetivIf we algebraically combine the
equation:
(13) € X+ + ) (¢ +y +7)
- @ P+ +P? (@ +a) Y+ (@ +D) ]+ b P =0,

which gives the light wave by its tangent planeish wthe following equation:
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[ @ +b7) AP+ 22 P B*+a’ (b* +c) CP— @@ +¢))°=0

then the resulting equation will determine a new surfacgeneral. That surface will
have the property that it touches the wave surface alaogve, in such a manner that the
common tangent planes to the two surfaces will enveiepellipsoid (29). Subtract
equation (13) from the latter equation, after having miiddpit by 4a° ¢ ; the resulting
equation can be put into the form:

[P -) A+ (C-) C - -] - F (&) -a) A C =0,

and will decompose into the following two:

PP —d) A2 +a2 (P —IF) C2— (- &) + 2ac |/(b? - a%)(?- &) AC=0,

These two equations can thus be written:

o2 -a At al é- B 2—(02—a2):0,
[ J

which decomposes once more in the following manner:

cb*-a At a/é- B G é- & =0.

All of the planes whose constaftsandC satisfy one of the four equations will pass
through one of four points whose coordinates vatl b

b? - & c? - b?
y=0, x==c : z=+ :
c’-a’ c’-a?

These four points will thus replace the surfaceuestion. It will follow from this that
they will be singular points of the wave surfaced ahat the four cones that are
circumscribed on the ellipse (29) and have themters at these points will be the ones
that touch the wave along each of their edges.

35. Geometric considerationsOne can arrive at the complete determinatiorwof t
sorts of singularities on the surface of the ligltve by a purely geometric, and very
simple, argument.

To an arbitrary point of the first ellipsoid thesdl always correspond just one point
p of the elasticity surface (Fig. 4), in such a witlagt the latter poinp will be the base of
the perpendicular that is dropped from the ce@tento the tangent plane to the ellipsoid
at the first pointm. From number 25, the diametral plane that padsesigh the two
pointsm andp will be the plane of vibration. When one draw® tstraight lineOM and
OV in that plane that are perpendicular and equ&rtoandOp, respectively, the light
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ray that corresponds to the vibrations that take plémegap will be OM, while the
wave front will be perpendicular ©V atV.

It will likewise correspond to a diametral section loé telasticity surface, andce
versa Here, we shall confine ourselves to considering, npmasicularly, the two
circular sections of one and the other of the twoased. It is easy to see that these four
sections belong to the same sphere that has the sesairaxis of the ellipsoid for its
radius; that was proved in number 14 in regard to two cir@@etions of it. The radius
of the circular sections of the second ellipsoid willg be equal to 1k, and that of the
corresponding — likewise circular — sections of the sartdcelasticity will be equal tb,
whose inverse value is b/ This was to be proved.

We first occupy ourselves with two circular sectimighe elasticity surface. The
right cylinder that has either of these two sectidp® H° for its base will envelop the
first ellipsoid. The contact curv, B I°, which is necessarily planar, will be its
corresponding section, such that every edge of the cylimtdlecut the two sections of
the elasticity surface and the ellipsoid at two correspgngoints; in the figure, these
will be the pointsh andg. The section of the ellipsoid will be an ellipse whosieor
axis, which equal®, will coincide with a diameter of the circular sect on they-axis.
The plane of vibration will always pass through the aeflieand two corresponding
points— such a$ andg — in such a way that it is perpendicular to the cinca&ctionHg
B H. Turn the trianglehOg in its plane around the cent& until OH becomes
perpendicular t®h. HG will then be perpendicular tog and parallel t@®Oh. Therefore,
no matter what the two corresponding poimtandg might be in the new position, the
point H will the same fixed point, whereas the pagill always be found in the same
plane that is parallel to the circular section andagisfrom it by an amour®H = OB =
b. In order to determine the geometric locus of theousrpositions of the poii@ in this
plane, we observe that one has:

hg =Hog lo cosHy OH,
or even, upon substituting:
HG = HI cosGHI.

One concludes from this that the anglél is a right angle. Therefore, the desired
locus will be a circle that is perpendicular to tkeplane and ha#ll for one of its
diameters. The light rays that correspond to th®warpoints of the sectioig B 1° will
then define a second-order light cone. The wave fndlhbe the same for all rays. All
of their planes of vibration will pass through the pdint

36. In the second place, consider two circular sectafrthe first ellipsoid. Along
either of these two sectiond, B M° (see Fig. 8), the ellipsoid will be touched by a
second-degree circumscribed cylinder. If one drops perpendicoiarthe center to the
tangent planes to that cylinder then the base ottpespendiculars will constitute the
corresponding curve of the elasticity surface. In otdatetermine it, draw a diametral
plane through the center that is perpendicular to dige< of the circumscribed cylinder.
That plane will cut the cylinder along an ellipse whosgomaxis — which equab — will
coincide with they-axis. It will contain the desired curve that onestaucts by dropping
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perpendiculars from the center to the tangents to tipseslof intersection. Let be a
point of the circular section of the ellipsoid, so #dge of the cylinder that passes
throughm will cut the ellipse an, where it is touched by the linev. Ov, which is
perpendicular tawv, will be likewise perpendicular to the plamey which touches the
ellipsoid atm. Rotate the triangl#Om through a quarter of a revolution around the
center O in its own plane, which is that of vibration. No beatwhat the two
corresponding pointsr andv might be in the new positiot” will be the same fixed
point. SinceOvmis a right angleM "V will become parallel t®v, in such a way that the
point V must remain constantly in a plane that passes thrivligdnd is parallel to the
oval section of the elasticity surface. Since thdea@®@yM’ is likewise a right angley
must be found on the surface of a sphere that is dedaritb®M’ as its diameter. One
will conclude from this that the geometric locus of gentsV will be a circle that is
perpendicular to thezplane and will hav®P for one of its diameters.

Therefore, all of the various points of the circutgction of the ellipsoid will
correspond to just one unique light ray, whereas the Wawug which depends upon the
points of the corresponding section of the elastisitsface, will vary from one point to
another. At its various positions, it will envelop a®@ed-degree cone whose tangent
planes will touch the circld’ VP, and will be perpendicular to the radius vectors that
end on the points of the circle, respectively. Tlanes$ of vibration will all pass through
the light rayOM".

37. Velocity of plane waves in the interior of a crystAMe have previously le¥
and V, denote the perpendiculars that were dropped from therc®nbnto the plane

wave fronts that envelop the wave surface, which stams an arbitrary poinO of the
interior of the crystal, which is taken to be theteenand propagates in all directions.
Two corresponding values &f and V., will refer to two plane waves that will always

accompany each other along the same direction. tfevelop equation (2) of number 7:

V2 -\ = (u+ p) - Aup -v?)

by using the two equations (5) of number 18, whiehwrite in the following manner, in
regard to the last equation of number 2:

@+ CP+(a+ b)) B+(bP+ &) K
(/1+10) - A2+BQ+C2 ’
a’b’C*+ P B+ P ¢ K

(up- V) = T ,

then it will result, after some simple reductiotist:
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, _(PP-2) C*+(C- &) B+(d- b A4 bB- d( & § AC

2 _y\/2
(\/' \/') (A2+BZ+C2)2

Let ¢, 17, J denote the three angles that the perpendiculdretéronts that are parallel
to the two plane waves makes with the thtge andz axes, respectively. We will have:

A2

B’ Cc’
— 5 cog 9=
A*+B’+C?

cos' {= AZ+B%2+C?’ A%+ B%2+C?’

co$ n=

Upon introducing these values into the precedingaggn, one will get:

1 M2-vd)?
= [(b* = &°%) cogd + (2 —a?) cosn + (c® —b?) cogd] — 4(* —a%) (¢ —a®) cos{ cosI,

and if one decomposes its right-hand side intofagtors:

M2-\2)?= [{«/(bz— 3 cosd ++/(C - b?) cos? P+ (c2— az)cosﬂ
X [{\/( b® —a’) cosd—+/(c°— ) cos? ¥+ (¢°— az)cosﬂ.

Let & anda. (see Fig. 1) denote the angles that the two tasdgem” and T T, that

are common to the circle and the ellipse of inteisa in thexzplane make with the-
axis, and lety and y. denote the angles that the same tangents deftheheiz-axis, in

such a way that one has:

B B CZ_bZ B B b2_a2
Cosa, =Cox =+ ,|—5—, —COS}y =COSY =+, ,[5—.
c—a c—a

The preceding equation can then be written thusly:

(\/:2 _\/.2)2 -

(c? —a%)? [(cosy cosd + cosa cosd)? + codn[(cosy. cosd+ cosa. cosd)? + codn).

However, according to the known formula that gitless angle between two lines by
means of the three angles that each of them makethe three coordinate axes, one will
have:

COS) COS?+ cos COS{ = COSE  COS). COSF+ cosx, COS{ = COSE,

if we let £ and &’ denote the angles that the perpendicular to theevirant makes with
the directions of the tangentsT"and T T, , resp. Finally, lety and ¢’ denote the angles
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that the same perpendicular makes with the two op&gak. Since these axes are
perpendicular to the two tangents, and at the same tiintieey-axis, one will have:

cos 17+ cos £+ cos =1, coé n+cos & +cod =1,
so
cos 17+ cos £= sirf y, co$ n+ cog ¢ = asif ¢'.

After having made the substitutions thus indicated akithdathe square roots, one
will finally get the equation:

2) Vi2=V\? = (2 -&) sinysiny.

One sees that the two velocities are never equadpexc the case where one of the
anglesy and ¢’ disappears. The front of two waves that move in éimeesdirection will
then be perpendicular to one of the two optical &kdsand H.,. H" .

If the front of two waves is perpendicular to tkeplanes then one of the two
velocities will be constant and equal bo Should one wish that this Bé , and one

increases the anglesand ¢’ up torthen one will get:
(3) V2 =%+ (2 —a%) sinysin g,

where one can take the + sign when the perpendicularstdabpped from the center to
the wave front falls betweedH and OH, or their prolongations, whereas one must take

the — sign when it falls betwe€&H andOH”, or their prolongations. In the former case,
the extraordinary wave will lead the ordinary wave, wiml¢he latter case, the opposite
will be true.

If the front of two waves is perpendicular to onetled two planes that bisect the
angles of two optical axes — i.e., if it is perpentiictio thexy andyzplanes — then one of
the two velocities will be constant. Consider thevevéhat is perpendicular to thxg-
plane and consequently set:

cosd=0, codp+cosn=1

in equation (1), so one will get:

V2 =V? =+ [* — (@ co i1 + b* cog Q)]
where one must take the — sign when one desires/thahould be constant. It would

then result that:
V2 = ¢ V2 =a?cos n+b?cog

in such a way that one independently obtains the wglotthe ordinary wave and that of
the extraordinary wave from one or the other, respelgti The ordinary wave will
always lead the extraordinary wave. The constructidheovelocity of the extraordinary
wave is linked by the latter equation to the following propeftthe ellipse (viz., that of
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intersection with thexy-plane) that if one projects the two semi-axes omtyp @f its
tangents then the sum of the squares of the projeatidinse equal to the square of the
perpendicular that is dropped from the center to that sangent.

While the ordinary wave constantly leads the extieary one perpendicular to the
xy-plane, when the waves are perpendicular toy@ane, it will be the extraordinary
wave that leads the ordinary one.

38. According to equation (1) of number 7, one has:

(@°+b)C*+(a’+ &) B+ (br+ &) K
A*+ B>+ C?

VZ+V2 =u+p =

= @ +b?) cogd + (@2 + ) cogn + (b* + c?) cosl .
Upon noting that:
cosd + codn + cosd =1,

that equation can be written thusly:

VZ2+V?2 = @ +b% + (° - &%) cogl - (¢ - b%) cosd
b? - b

2
-a
cos -
CZ 2 a2

2
=@ +c)+(-a) { 22 co$ 19} .
If one letsa’ and a” denote the two angles that the two optical a@ek and OH”
make with thex-axis, and letg” and y” denote the two angles that they makes witlethe

axis then one will have:

- c? - b?
cosa”’=cosa’=+ ,|5—, —CoSy” =cosy =+,|[5—.
c’-a c’-a

It will follow from this that:

V2 +V?2 = (@ + %) + (¢ - @) [cosa’ cos{ + cosy cosd|[ cos a”cos{ + cosy” cosd,

and finally:
(4) V2 +V? = (@ + %) + (¢? - @) cosy cosy.

If one successively adds equation (2) of the mhegenumber to that equation and
then subtracts it then one will get:

ViZ, W2 = 1[(a® + %) + (c* — &) (cosy cosy’' + sinysin )],
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and by simple trigonometric transformations:

(5) Vi?, W2 =1[(@*+ %) + (P -a’) cos @ F )]
=’ - - siti(¢Fy¢).

This equation will give the velocities of each of the tmaves separately; its discussion
would offer no difficulty.

39. Velocity of light rays inside of a crystat. Upon replacing?, b? ¢ with their
inverse values 14, 1 /b? 1 /c? in the developments of the two preceding numbers, one
must replace the direction of the perpendicular thadropped from the center to the
wave front with that of the light ray, unity divided bye velocity of the wave with the
velocity of the ray, and finally, the two optical axeith the two straight lineM,M" and

M. M", which are the common diameters to the circle alysel of intersection in the
xzplane. If one letfR and R denote the velocities of two rays that coincide ansame

direction and letg and ¢’ denote the two angles that this direction makes waightevo
straight linesM,M" and M,,M" then one will get:

(6) R e i(iz——lzj sing sing’.
¢ a

This theorem is due tBiot. | found it stated without proof iHerschel’s Traité de la
lumiére no. 1018, as well as hiry’s Philosophical tracts2" ed., pp. 352.

In each of the coordinate planes, the velocitgrad of the rays is constant and equal
to the velocity of the corresponding wave; thatl vk the one that constitutes the
ordinary wave. The velocity of the other wave eéseilmined by the radius vectors of the
ellipse of intersection in the same plane. Ona thas, for example, for the light rays,
when referred to the plane of the optical axes:

R? =1, é :b_lzi(c_lz_glzj sin ¢ sin ¢’,
or even:
1 _cosn  cos{
R a ¥ b>

Finally, we remark that it can happen that theoe®y of the extraordinary ray
exceeds that of the ordinary ray that follows thens route, while the corresponding
extraordinary wave proceeds more slowly than tlignary wave. That is what happens
for the rays that are situated betw€drandOM”. On the other hand, it can happen that
when two waves follow the same route, the ordirmarg surpasses the extraordinary one
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in velocity, while the corresponding ordinary ray lagéibd the extraordinary ray. That
is what happens when the perpendicular that is dropped the center to the two
parallel waves is situated betwe@ andOH”,

40. The formulas that were obtained in number 38 aresfvamed by the same
substitutions into the following ones:

i+ 1 :(iz+_12j—(—12——1j COS¢ cosg’,
a c

P2 R a2 ¢

1 1 _1 (1 1)z,
PR CZJ{a2 czj St (¢ ¢).

The latter result is due to the illustrioBsesnel (Biot, Précis élémentaire de physique
Third ed., vol. I, pp. 259).

41. Given the wave front, determine the planes of Witnaby means of two optical
axes.— Let the oval of Fig. 9 be an arbitrary diamet@attion of the elasticity surface,
VV, its maximumdiameter, an/’ V', its minimumdiameter. The two planes of vibration
will then be the ones that intersect aldAgandV’V’, since they are perpendicular to the
plane of the figure. The two circular sectionstwd surface will cut the oval along two
diameterKK andK’K’, being both equal tob2 will necessarily make equal angles with
each of the two straight linegv andV’V’. The optical axes will be perpendicular to
these circular sections, whose inclination fromglane of the oval will depend upon the
position of that plane. If one constructs two plrthat are perpendicular to the
diametersKK and K’ K’, respectively, then each of these planes will ghssugh the
normal to the plane of the figure and one of the bptical axes, in addition. It will cut
the oval, to which it is perpendicular, along tha tstraight linedJU andU’ U’ which
make equal angles with each of the two diametstandV’ V.

When a wave front is given, the two correspondiiaggs of vibration will divide the
angles into two equal parts between the two pldhaswill each contain one of the two
optical axes, in addition to the normal to the fron

This elegant theorem is due to the sagacitgiof. One finds a proof of it at the cited
location inAiry’s book.

42. Given a light ray, determine the planes of vibratlyy means of the two normals
to the circular sections of the first ellipsoid.In the preceding number, we say that the
plane of vibration simultaneously passes throughtlray and the perpendicular that is
dropped from center to the wave front, and thatthm second place, it cuts the two
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corresponding sections of the elasticity surface aadithkt ellipsoid along one of their
maximum-minimundiameters in either case, while being perpendiculdiotb of them.
Upon replacing the diametral section of the elastwitsface with a diametral section of
the first ellipsoid in the considerations of the preegdnumber, one gets this other
theorem:

Given a light ray, the two corresponding planes of vibrations will diunde two
equal parts the angles that are defined by two planes that will each contaiof dime
two normals to the circular sections of the first ellipsoid, in addito the ray.

Conforming to the preceding number, the planes of vibratibthe two rays, in
which an external ray is divided, will intersect witual angles upon entering the crystal
with perpendicular incidence. From the present numiber,same thing will happen
when two rays into which an internal ray has divideddeg#e crystal.

43. Double refraction, according to Huyghens'’s principteWhen a light wave that
propagates in air strikes the surface of a crystal,ilitbe excited at all of the points
where its front meets the partial waves, either datsif the crystal in air or inside of it.
The one — which is a spherical form — will be enveloped plaae in the same arbitrary
instant; that will be the corresponding front of thected wave. The other one will
take a form that depends upon the position of the threéiaitia axes in the crystal and
the magnitude of the elasticity along these axes. nAdrhitrary instant, the surfaces of
these waves will be enveloped by two different planekichv will constitute the
corresponding fronts of the two refracted waves. ilt fellow from this principle
—which is originally due tdHuyghens- that at the same arbitrary instant, the incident
wave front and those of the reflected and refractedesamust cut the surface of the
crystal (which we assume to be planar) along the saraight line.

Let AA (cf., Fig. 10) be the surface of the crysk, the incident wave front, both of
which are perpendicular to the plane of the paper, in awgay that this plane will be the
plane of incidence for the light rdO, which is perpendicular to the wave front@t
Let » — rdenote the time interval that it takes for the wawatfito pass fronkO to the
new positionF” O’. After that interval- at the epoclr, — the partial waves that are
excited in air around each point of the straight lire ib perpendicular to the plane of
the paper aO will be spheres whose radii are equallG — i.e., equal tay — 7— if we
take the unit of length to be the velocity with which giepagation takes place in air.
During this same interval, a light wave will form insidéthe crystal around each point
of the perpendicular & that has the velocitie&(r» — 7), b(71 — 1), c(71» — 7) along the
three elasticity axes. The dimensions of the tweesef partial waves — viz., external
and internal — that exist at the epaglwill then diminish in proportion taz — 7 (i.e., as
the original wave front approaches from the posi#drO’) in such a manner that the
waves that are excited at the various points of thipepelicular atO” will reduce to
simple points. It will then result that since theveraquation is homogeneous, at the
epoch 13, all of these waves will be enveloped by planes thas garough the
perpendiculaiO’. In order to obtain them, one needs only to consthe planes that
touch the surface of one arbitrary partial wave, whalesping through that perpendicular.
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Upon limiting ourselves to internal waves, we take the that is described around the
point O. At the epochn, the two tangent plane®” E D, O’ E’ D, which are
perpendicular to the plane of incidence, will be tlents of the two refracted waves,
while the two radius vectoiQE, OE’that pass through the two contact polatg’ will

be the two rays into which the incident R will divide under refraction.

In the general case, none of the two refracted valsbe found in the plane of
incidence. The two planes of vibrati@DE, OD"E’ will be the ones that pass between
the two raysOE, OE’ and the two perpendicula@D, OD’ that are dropped from the
centerO (in the plane of incidence) onto the fronts of twe tefracted waves.

The two refracted rays will both be found in the plahencidence when the plane of
incidence either contains the two optical axes or mekesl angles with these axes (i.e.,
when that plane coincides with one of the coordinaémgd). The velocity of one of
them will be constant, in such a manner that one wdline the incident ray to the
surface of the crystal; the corresponding plane of tidomawill be perpendicular to that
of incidence. The velocity of the other ray will aclye with the inclination; the
corresponding plane of vibration will coincide with ghkane of incidence. The planes of
vibration will then be mutually perpendicular for the tvedracted rays.

As for perpendicular incidence, the preceding constnuatidl reduce to that of the
two tangent planes to the partial wave surface thatsisritbed around the poi@, which
will be parallel to each other and to the incident wiwet. In this case, the two planes
of vibration for the two refracted rays will be mutugligrpendicular, no matter what the
surface of the crystal might be.

44, Surface of wave slownessAbove, we found the equation:

(0* A+ & B2 +a’ b” C)(A*+B* + C?)
— (P +P) A+ @ +A B+ @ +b)CP+1=0

for determining the wave surface by its tangent planete most general case, whére
B, C denote the inverse values of the line segments thatasptdne will cut out along
the three coordinate axes. According to number 8, ugdaciag these variables witt)
Y, z, the resulting equation in rectangular coordinates:

P EXR+a YV +ai P ADEC+Y +D)
—[(P*+ AR+ @ +A Y +@+b) A +1=0

will represent the reciprocal polar surface to thathef wave with respect to sphere
whose radius is equal to unity. One will arrive at$hene equation if one replaces the
three constanta®, b?, ¢® with 1 /a% 1 /b? 1 /c? in the wave equation:

(@2 X+ Y+ D)+ Y+ D)
- [a® (b® + ) +p* (@ + ) Yy + 2 (@ + b)) 7] +a* b’ & = 0.

From this, one infers the following theorem:
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The surfaces of two waves that are such that the three axasigativelocities) of
one of them are inverses of the axes of the other one will be palaracal with respect
to a sphere whose radius is equal to unity.

Whereas the radius vectors of one of the two sesfadill represent the velocity of
the various light rays, those of the other one bellequal to unity divided by the velocity
of the corresponding plane waves. Whereas the pemasadi that are dropped from the
center onto the tangent planes of one of them wpgkesent the velocity of the plane
waves, those that are dropped onto the fronts of ther @the will be equal to unity
divided by the velocity of the corresponding rays. Thedationships are entirely
reciprocal ().

45. Hamilton’s construction— From number 43, the determination of the two
refracted rays demands that one must construct theplavees that pass through the
straight line that is perpendicular to the plane afdance aO’(cf., Fig. 10) and touch
the wave surface. In general, it will be simplercamstruct the poles of these tangent
planes. One obtains these poles by looking for thetgevhere the straight line that is
the reciprocal polar to the perpendicular that is doethin the tangent planes cuts the
reciprocal polar surface to the wave. Take the unietthe rayOG = OL of the spherical
wave that is described around the point of incidedceWith respect to that sphere, the
straight lineGL that is contained in the plane of incidence and gadseugh the two
pointsG andL where the incident ragO and theOL cut the sphere will be the reciprocal
polar of the one that is perpendicular to the planm@flence (number 12) & The
following construction will result from that:

Construct the spherical surface of the wave that gatpa in air around the point of
incidence and the reciprocal polar surface, with respeittat sphere, of the wave that is
described around the same point inside the crystal. {faiglg line that passes through
the two pointsG andL where the incident raROG and the reflected ra@L meet the
sphere will, in general, cut the polar surface at two p&irdaadK’. The fronts of the two
refracted waves will be perpendicular to the radidars OK, OK”; their velocitieOD,

() 1 must conclude from the suggestions that were made byIMyd, in his excellent Report on the
progress and present state of physical opt{t®ndon, 1835) that the reciprocal polar surface of htlig
wave with respect to a sphere whose radius is equal towilitge precisely the one that Meamilton
called the Surface of wave slowne$dVhile having no knowledge dflamilton’s paper, | will confine
myself to borrowing the following construction from tReport where | found it simply stated:

“...they lead to a very elegant construction for the obfle or refracted ray, which is, in most cases,
more convenient than that Blygens That when a ray proceeds from air into any crystalhave
only to construct thesurfaces of wave slownefglonging to the two media and having their
common centre at the point of incidence. Let thedierci ray be then produced to meet the sphere,
which represents the normal slowness of the wawarinand from the point of intersection, let a
perpendicular be drawn to the reflecting or refractingaserf This will cut the surface of slowness
of the reflected or refracted waves, in general, ingaiots. The lines connecting these points with
the centre will represent the direction and normal s&ss of thevaves while the perpendiculars
from the centre on the tangent planes at the same palhtepresent the direction and slowness of
theraysthemselves.”

One will confirm that this construction amounts hatt of the following number if one intends

slownesgo mean unity divided by the velocity.
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OD’ will be equal to unity divided by these radius vectoffie perpendiculars that are
dropped from the center onto the tangent planes to the guiface to the wave will give
the directions of the two refracted rays whose vaesDE, OE’ will be equal to unity
divided by these perpendiculars.

46. The wave surface is its own reciprocal poldf.we eliminateA, B, C from the
equation that was referred to in number 44:

(0* A+ & B2 +a’ b’ C)(A*+B* + C?)
— (P +P) A+ @ +A B+ @ +b)CP+1=0

by means of the following three equations:
(2) 0 & A=, £ B =y, o 1P G =2

then, from number 9, the resulting equations, in andz will represent the polar surface
to that of the wave with respect to the ellipsoid:

2 2
@ XYoL oy,
bc ac ab

whose three semi-axes are equaleb_c, Jac, +ab, respectively. However, the
equation that is obtained from the indicated elimimatiamely:

(@2 X%+ + D)+ Y+ D)
—[a® (0® + ) +P* (@ + )y + 2 (@ + b)) 7] +a* b’ & = 0,

is nothing but that of the surface of the wave itsdlhis presents us with the following
elegant theorem:

The wave surface is its own reciprocal with resgecin ellipsoid whose three axes
are proportional to the means of the products eftthree axes of the first ellipsoid, when
taken pair-wise.

As far as the optics of crystals is concerned, theotem constitutes a type of
redundancy (orduality, if 1 may appeal toGergonne’sword, without, however,
attributing any metaphysical significance to it): The nmaena present themselves in
pairs, in such a way that one of each pair is deducedtfierother one by means of the
director ellipsoid (2). It will respond to each pointtbé wave surface with a unique
plane that touches it, and consequently, each intkghalray that ends at that point there
will be a unique internal wave front, or furthermoreumique external ray that is
perpendicular to that front at the contact point.e Bmgular points of the wave will
produce its singular planes. One sees directly fronthhisthe points in question will be
determined by the equations:
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c/b* - 22 0A+ a/ é- BOGH é- & =0,

which transforms into the following ones:

VP -a? Ik @- POy B/ é- & =0,

by means of equations (1), which are those of the singldaes. The perpendiculars to
the singular planes will thus play the same role wadpect to the exiting light rays that
the diameters that pass through the singular pointswithyrespect to the entering rays.
The one and the other, which are frequently confused, denfipethe name of “optical
axes.” The tangent cones at the four singular poirtgmduce the curves of contact in
the four singular planes, just as the unique ellipsoidishahveloped by the four cones
will produce the ellipsoid that contains the four curvesamtact (number 11). The two
beautiful experiments dflamilton and Lloyd determine the one in terms of the other by
means of the director ellipsoid (2).

47. Third construction of the two refracted rayd. will conclude this article by
deducing a new construction of the refracted rays froenttieorem in the preceding
number that seem to me to be the simplest possibleammang the ones that relate to
Huygens'’s principle.

Construct the polar straight line with respect to the directapsdlid to the one that
is perpendicular to the plane of incidence at At will cut the wave surface that is
described around the point O at two points. The two straight lines thabgothre point
O to these points will be the two refracted rays, while the twoesl that contain the
perpendicular to Qand pass through these same two points will be the fronts of the two
corresponding plane waves. Finally, it was proved in the foregoing thawthelanes
of vibration will be the ones that one obtains by drawing planes through therdight
that are perpendicular to the fronts of the corresponding waves.

The article that you just read will give rise to otlees, having itself been born in
the beautiful article that was entitle®r the phenomena presented by light in its passage
along the axes of biaxial crystdlspy the rev. Humphrey Lloyd etc., from the
seventeenth volume of the Transactions of the rayst IAcademy, Dublin, 1833, for
which | must acknowledge the extreme goodwill of the author

No physical experiment has made a bigger impression enhan that of conical
refraction. A unique light ray that enters a crystadl leaves it with the character of a
light cone: that is something unheard-of that has ntogpa Hamilton announced it by
starting from the form of the wave that must be deducenh fan abstract theory by
means of long calculations. | confess that | would hdespaired to see a result that
extraordinary confirmed by experiment when it was preditig just a theory that the
genius of Fresnel has recently created. However, Mroyd has proved that the
experiments are in perfect agreement withmilton’s predictions, so any prejudice
against a theory that is so marvelously supported is bouniiséppear. At the same
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time, the general form for light waves that was iathd byFresnelis bound to take on

especial importance. It is only in recent times thaiuld be occupied with it. From the
Reportthat was cited above, other thélamilton, only one other Irish geometer is
likewise occupied with it; 1 have not been able to precine work of either of these
geometers. | have cited everything that | am aware of.

Bonn, April and May 1838.




