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 The history of science gives many examples of valuable insights that were unnoticed to the 

detriment of its development. However, it is extremely rare that great scientific achievements are 

indeed discussed by all, but their intrinsic essence remains completely unknown, which was the 

fate of one part of the lifework of the Irish mathematician W. R. Hamilton. Indeed, one finds 

extensive chapters on Hamilton-Jacobi theory in the textbooks on analytical mechanics, one hears 

of the Hamiltonian formula in the differential geometry of line congruences, and Hamilton’s 

discovery of conical refraction is celebrated as one of the great works of the human spirit in any 

physics book. However, it is less known that all of those things belong to a unified conceptual 

picture that arose from advances in the domain of geometrical optics that first appeared almost one 

hundred years ago when the aforementioned researcher, who was just nineteen years old at the 

time, presented a treatise with the title “On Caustics” to the Irish Academy (1). That treatise was 

not printed, but the seeds that were planted in it were fortunately developed in four great treatises 

on the theory of ray systems (2), which is, unfortunately, even less well-known. Only a rather small 

part of Hamilton’s wealth of new ideas have been recovered in two better-known treatises in the 

Philosophical Transactions (3), in which Hamilton adapted the methods that he had developed in 

optics to mechanics, and in particular to the treatment of perturbation problems in astronomy. The 

textbooks on mechanics do not even present that small amount in true Hamiltonian form, but in a 

recasting of it that it experienced due to Jacobi and his school. For example, in the calculus of 

variations, Hamilton had employed many of the arguments that were recently posed in the 

construction of the theory of extremal fields as essentially its starting point. The geometry of ray 

systems has suffered less from that. Although one can also regret the fact that Hamilton’s 

exceedingly intuitive method of operation has not been perpetuated, nonetheless, the theory has 

developed up to now, and it soon vastly outgrew Hamilton’s results in its systematic formulation 

 
 (1) Remarkably, a reference to it in a lecture by F. Klein to the Naturforscherversammlung in Halle (1890) attracted 

very little attention. Cf., Jahresbericht der Deutschen Mathematiker-Vereinigung 1 (1890/91), pp. 35. 

 (2) W. R. Hamilton, “Essay on the theory of systems of rays,” Trans. R. Irish Acad. 15 (1828), 69-174. Three 

supplements to it in loc. cit., 16 (1830), 3-62, 93-126, as well as 17 (1837), 1-144. The extensive third supplement is 

especially important. 

 (3) W. R. Hamilton, “On a general method in dynamics,” Phil. Trans. (1834), 247-308 and “Second essay on a 

general method in dynamics,” Phil. Trans. (1835), 95-144. 
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as line geometry. However, severe damage has been done to geometrical optics by the widespread 

ignorance of Hamilton’s work, and indeed not only in a theoretical context, but also in precisely 

its practical application to the construction of optical instruments. 

 If one surveys the history of geometrical optics over the last one hundred years then it will 

seem clear that is was just the demands of improving the construction of optical instruments that 

were driving the advances in the general properties of optical instruments, rather than restricting 

oneself to investigating one instrument of a particular design. One repeatedly finds first attempts 

at achieving that great objective in one way or another. None of those researchers suspected that 

they might find answer to their questions in the works of Hamilton, which already had much more 

to offer than one might even dare to ask. Please permit me to attempt to acknowledge the true 

significance of Hamilton’s works. Corresponding to modern thinking, I would then like to direct 

one’s attention to the question of applying theoretical knowledge to the practice of constructing 

instruments, in particular. 

 One cannot establish what induced Hamilton to investigate geometrical optics, since his first 

treatise “On Caustics” was unpublished. From its title, one might infer that he believed that 

geometrical optics was connected with the investigation of planar caustics, the theory of which 

was revitalized in the first decade of the previous century. However, the true source of his ideas is 

not revealed by that. Rather, they arose from the results of the conflict between the wave theory of 

light and the emission theory, by which the light wave of undulatory optics and the light ray of the 

emissive optics were intrinsically related (1). In ordinary optical media, the rays that emanate from 

a luminous point and go through an optical instrument are the normals to the wave surfaces. 

Hamilton’s starting point for that situation is the knowledge that one can also find the wave 

surfaces in the congruence of light rays independently of the wave theory of light. Their existence 

is based upon the fact that the propagation of light along the rays is governed by a variational 

principle, viz., the so-called principle of shortest light path: 

 

 
 

such that the wave theory and the emission theory seem to be formally unified at a higher level 

since that principle has deep significance for both theories. Each point P of the rays that emanate 

from a luminous point (viz., the extremals of the variational problem) is associated with a certain 

value of the light path: 

 
  

such that we will get a covering of space by the function V (the light path length), and the level 

surfaces of that covering are the surfaces that the undulatory theory of light refers to as wave 

surfaces, since the light path means the time that it takes for light to propagate in the wave theory. 

The level surfaces V = const. cut the light rays perpendicularly, because from the boundary formula 

of the calculus of variations, the partial derivatives are: 

 
 (1) On that, cf., F. Klein, loc. cit.  

 extremum,n ds =

0

( , , ) ,

P

V x y z n ds= 



Prange – W. R. Hamilton’s significance to geometrical optics. 3 
 

 
 

when , ,  are the direction cosines of the rays. To some extent, those surfaces then serve to fix 

the system of light rays as a totality, as they characterize the nature of the ray system. 

Correspondingly, Hamilton referred to the function V as the characteristic function of the ray 

system. As one sees immediately, it satisfies the partial differential equation: 

 

 
 

which says that the gradient of the covering is constant. 

 When one translates those steps into the language of the modern calculus of variations, they 

will obviously say that one is dealing with the extremals of a variational problem with its 

transversal surfaces, and the essential properties of such a thing are already known. I expressly 

emphasize the fact that the integral, which one calls the Hilbert integral nowadays, must be 

independent of the integration path. 

 In the textbooks, the Hamilton-Jacobi theory is presented as a method of integration for the 

differential equations of mechanics, or more generally, the Euler-Lagrange equations of a 

variational problem. The fact that such a determination of the extremals was not Hamilton’s 

starting point is closely related to the fact that in ordinary optics, where light traverses 

homogeneous media, the extremals – i.e., the light rays – are simply straight lines, and also the 

fact that light rays can be kinked immediately at the separation surface between two media under 

refractions and reflections. If Hamilton (and I shall return to this) thought of determining the 

characteristic function V from the partial differential equation then his goal was just that of 

establishing the ray system as a whole. 

 Naturally, that should not be understood to mean that Hamilton only had the general case of 

rectilinear light rays in mind and did not recognize the possibility of directly generalizing things 

to all variational problems. On the contrary, he thought that the relationship between light rays and 

wave surfaces must indeed remain meaningful when the index of refraction n is more generally a 

function of position and direction in the medium: 

 

 
 

In fact, the two treatises on mechanics also show that Hamilton really did recognize the generality 

of his method. Above all, it emerged from a note to the British Association Reports (1), which 

remains completely unknown, in which he applied it to an entirely general variational problem that 

one probably cares to associate with the name of A. Mayer nowadays. 

 
 (1) W. R. Hamilton, “Calculus of principal relations,” Reports of the British Association for the Advancement of 

Science 5 (1836, pt. 2), 41-44. 
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 The “field,” with its characteristic function V (x, y, z) is always placed at the center of attention. 

The coordinates of the luminous point then appear in the function V = V (x, y, z ; x0, y0, z0) as 

parameters. However, from the standpoint of the variational problem that was just posed, it is also 

possible to look at things a different way, namely, to consider those coordinates to be equivalent 

to the coordinates of the running point, namely, when one fixes a certain light path between two 

prescribed points. The light path length along the ray: 

 
will then be a pair of limiting points – a point-pair function, one might say. Each of the two points 

of the pair of limiting points is associated with a plane by the relations: 

 

 
 

such that a transformation of the “element” that consists of the point and plane at the one limiting 

point into the “element” at the other limiting point seems to be exhibited in the variational problem. 

If one regards the value of V as an independent variable, as Hamilton did expressly (1), then one 

will have a one-parameter group of transformations of elements, and the characteristic property of 

variational problems means that any union of elements will be taken to another union of elements. 

One sees from that suggestion how clearly he was rooted in the concept of the group of contact 

transformations, which arises from the variational problem. That conception of the last formulas 

is his most deeply-rooted idea. However, by no means did he initially have any intention of 

constructing a systematic theory of integration for those differential equations from them, which 

he naturally also recognized as the first and second integral of the differential equations of the light 

ray. Under no circumstances did he wish to obtain the function V from the two partial differential 

equations: 

 
 

which arise by eliminating 𝑥̇, 𝑦̇, 𝑧̇ (𝑥̇0, 𝑦̇0, 𝑧̇0, resp.), in order to then solve the differential equations 

with their help. 

 In the two treatises on mechanics, where the optical variational problem was replaced with a 

mechanical one, the state of affairs above no longer emerges clearly. The partial differential 

equations and the representation of the integrals of the equations of motion with the help of partial 

derivatives of V took the foreground then, while the wealth of other ideas that the optical 

considerations had given rise to were left in the background. However, the fact that one does not 

also imagine a systematic theory of integration now already emerges from the fact that he said one 

must derive an intellectual pleasure from the representation of the first and second integrals, even 

when no practical facility can be achieved from it. F. Klein had occasionally said of that remark 

 
 (1) Cf., also E. Study, “Über Hamiltons geometrische Optik und deren Beziehung zu den 

Berührungstransformationen,” Jahresbericht der Deutschen Mat.-Verein. 14 (1905), 424-438. 
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that the two partial differential equations in Hamilton’s theory are not a “mere ornament.” 

Naturally, Klein was only rejecting the idea with that, since Hamilton actually wanted to 

determine the characteristic function V from them. However, that should not diminish their 

significance, since it is precisely in mechanics that their application to the perturbation calculations 

of planetary systems that they define the gist of the argument. 

 I will quite briefly gloss over the relationships between Jacobi and Hamilton, and say that 

Jacobi learned of Hamilton’s two treatises on mechanics only at precisely the time that they 

appeared, while he did not know of the foregoing treatises on optics at the time, and indeed it is 

doubtful whether he had studied them in detail at all. 

 His attention was focused most intently on the relationship between the two partial differential 

equations and the system of total differential equations. That is because he had been familiar with 

those relationships from his earliest work onward, in which he was concerned with the integration 

of a single partial differential equation, which was begun by Lagrange and Pfaff. With his own 

preconceived ideas, he had to regard Hamilton’s thoughts in a totally one-sided way and recast 

them. I shall once more emphasize that the thought of a systematic integration that Jacobi nurtured 

was completely foreign to Hamilton, since the latter believed that it did not introduce anything 

new at all, but only that it led back to Hamilton’s starting point in optics when one went from the 

point-pair function and the two partial differential equations to one partial differential equation 

and its “complete integral.” 

 For the further treatment of the optical problem by Hamilton, I once more link it with the 

conversion of one union of elements into another union of elements, in which the luminous point 

must also be regarded as the carrier of a two-dimensional union of elements, in particular. In the 

normal case of rectilinear light rays, the planes will remain parallel to each other under propagation 

along a ray. In that case, it is preferable to introduce another function in place of the characteristic 

function V that arises from V applying the so-called Legendre transformation. Hamilton called it 

T : 

 
 

T (, , v ; 0 , 0 , v0) =  ( x – 0 x0) – V . 

 

One immediately attaches the first derivatives of T to the equations of a light ray with a given 

direction. 

 For rectilinear light rays, the function T has the advantage over the function V that it is not 

coupled with a partial differential equation. That is because when one transforms the partial 

differential equations for V, they will each degenerate into a finite equation: 

 

   2 +  2 + v2 = n2 , 

   
that are also still free of T itself. 
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 If one restricts oneself to considering a single congruence of rays with a fixed center, as one 

does in optics when investigating the mapping properties of optical instruments, then one would 

have to subject only one sequence of variables x, y, z in V to the Legendre transformation and thus 

arrive at a function W that exists between V and T. W is not restricted by a partial differential 

equation either, when it is regarded as a function of the direction of the ray. I shall note in passing 

that one can conversely fix that function W as a function of the direction cosines arbitrarily and 

then go to the function V that satisfies the partial differential equation by performing the Legendre 

transformation backwards, such that one will find a solution of the partial differential equation for 

V. That argument, which Hamilton has thought through more carefully (1), is obviously an 

example of what Lie (2) systematically carried out for the corresponding integration of partial 

differential equations. 

 If I now further go a little way into the applications of those arguments in optical practice then 

I will first encounter their connection with the differential geometry of ray systems. For the 

questions of optical maps, Hamilton indeed had to concern himself with a section of neighboring 

rays in a congruence, so with the simplest case when wave surfaces and light rays were 

perpendicular to each other, namely, the section of neighboring surface normals. Indeed, the 

connection to the theory of surface curvature that it then implied broke down when the wave and 

the light ray were no longer normal to each other. However, it provides the possibility of a 

generalization insofar as it regards the contacting spheres of the elementary theory of surface 

curvature as wave surfaces of light propagation that result from their centers. When one replaces 

the contacting spheres in the general case with the “ray surfaces of optics,” i.e., the waves of a 

homocentric light propagation in one and the same medium, one will then suitably adapt the 

considerations in the curvature theory of surfaces to the concerns of optics. 

 For optics, the investigations into the formation of the focal surface and the arrangement and 

distribution of the rays in the vicinity of the focal surface are also still meaningful to this day. 

However, it is a problem in practical optics to give that focal surface a singularity that is as high 

as possible in order to achieve an at least approximately homocentric reunion of the rays of the 

congruence. Whereas one might expect from this remark that investigations of that kind would be 

followed up on zealously, it is somewhat shameful for mathematics that it has not confronted that 

problem spontaneously, and that it was the Swedish eye doctor Gullstrand, the discoverer of the 

well-known point lenses (Punktalbrillengläser), who had addressed a systematic investigation of 

the form of the focal surface (3). 

 For the construction of optical instruments, the axially-symmetric instruments have a 

preeminent significance in practice. It is in precisely that case that the fecundity of Hamilton’s 

method is illuminated most brilliantly, and that made it possible for him to promote the theory of 

those instruments so far that one cannot even grasp the significance of his results, especially since 

he himself published only a brief note (4) with a concise summary of the final results. 

 
 (1) Cf., the second supplement to the essay.  

 (2) Cf., e.g., S. Lie, Geometrie der Berührungstransformationen, Leipzig, 1896), pp. 531.  

 (3) A. Gullstrand, “Zur Kenntnis der Kreispunkte,” Acta math. 29 (1905), 59-100. “Über Astigmatismus, Koma 

und Aberration,” Ann. Phys. (Leipzig) (4) 18 (1905), 941-973. “Die reelle optische Abbildung,” Svenska 

Vetenskapsakad. Handlinger 41 (1905), no. 3, 119 pages. 

 (4) W. R. Hamilton, “On some results of the view of a characteristic function in optics,” Reports of the British 

Association for the Advancement of Science 3 (1833), 360-370. 
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 Due to axial symmetry, the characteristic functions depend upon only certain combinations of 

coordinates. For a theory of maps that always take a ray to another ray, the function T (, ,  ; 0, 

0, 0), which depends upon the directions of the rays, seems to be most suitable. Due to axial 

symmetry, the variables appear in it only in the combinations: 

 

 
 

Now, if one develops the function T in a series in a neighborhood of the symmetry axis: 

 

T = T0 + T2 + T4 + …, 

 

and one truncates the series at the second-order term then one will get, as a first approximation, 

precisely the relation between object space and image space, which depends upon three constants, 

that Gauss (1) had worked out fully (somewhat later) in his dioptric investigations. If one takes 

one more term then one will get the so-called third-order aberration in the map. 

 Since one would always like to map only a single plane in the object space, one would do better 

to employ the function W (, ,  ; 0, 0, 0), instead of the function T (, ,  ; 0, 0, 0). Now, 

it is possible (and Hamilton still did not generally work though this in detail) to implement this 

inclusion of further terms in the theory of series developments in a way that is completely 

analogous to the method in celestial mechanics by which one places the Gaussian dioptrics in a 

sense “parallel” to the intermediary Kepler ellipse and the considers the deviations that result from 

the introduction of perturbation terms. In that way, as Schwarzschild showed (2) (but generally in 

a different way), one will succeed in giving the practical calculations for optical instruments a very 

transparent form, and that will clear the path to a theory of fifth-order aberrations. Hamilton could 

address the problem of achromatism, viz., the elimination of chromatic aberration, which is even 

more essential than the union of the rays for the quality of the image, in his theory by establishing 

the dependency of the color on one parameter in the index of refraction, and further in the 

characteristic function. 

 Hamilton himself gave a brief summary of the results of his theory of third-order aberration 

in the 1833 note. Starting from Seidel’s arguments (3), Finsterwalder (4) examined the same 

problem in the year 1892. It is quite surprising to see how the Finsterwalder’s results agree 

precisely with what Hamilton had summarized sixty years before as a resumé of his investigations. 

 Naturally, optics would prefer to eliminate those “aberrations” completely and impose the 

demand upon the ideal instrument that every congruence of rays from a luminous point will again 

be united into precisely a centric congruence. Hamilton had treated the preliminary question of 

defining such an instrument and showed that all light paths would have to possess the same length 

 
 (1) Cf., Fr. Gauss, “Dioptrische Untersuchungen,” Abhandl. der Kgl. Gesellschaft der Wissenschaften zu 

Göttingen 1 (1840), 1-34. Cf., also Ges. Werke, Bd. 5, pp. 243-276. 

 (2) K. Schwarzschild, “Untersuchungen zur geometrischen Optik I,” Abhandl. der Kgl. Gesellschaft der 

Wissenschaften zu Göttingen (2) 4 (1905), 1-31. 

 (3) L. Seidel, “Zur Dioptrik,” Astron. Nachrichten 43 (1856), 289-332. 

 (4) S. Finsterwalder, “Die von optischen Systemen größer Öffnung und größer Gesichtsfeldes erzeugten Bilder,” 

Abhandl. der Kgl. Bayerischen Akademie der Wissenschaften, Math.-phys. Klasse 17 (1892), 519-587. 
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then, which would immediately come to mind if one considered the wave surfaces. Naturally, the 

same thing would also be true when the congruence was not really united, strictly speaking, but 

any two neighboring light rays intersected. We note in passing that this led him to the connection 

between the sections of neighboring extremals and the vanishing of the second variation, as it 

appeared in the so-called “Jacobi criterion” in the calculus of variations. 

 Meanwhile, the question of the so-called anastigmatic map of a finite region in space or a 

surface patch is nowhere to be found in Hamilton. The first property can, in fact, only pertain to 

entirely trivial cases, as it is currently assessed, while the question of anastigmatic surface patches 

still awaits further study, and up to now only Abbé (1) has posed his sine condition for the 

approximate anastigmatism of two surface elements. 

 The sine condition is very closely connected with certain reciprocity relations between object 

and image that were noticed very early on (although I would not like to go further into that at the 

moment). Newton’s contemporary, Roger Cotes (2) had already pursued the relationship between 

the mapped object and the cone of light rays for an axially-symmetric system of lenses that links 

the center of the pupil of an eye to the individual object points. In that way, one does not deal with 

the optical map of the object point to the image point then, but with the so-called optical projection. 

One selects a principal ray through the center of the pupil from each mapped congruence of rays. 

However, the so-called “congruence of principal rays” that arises in that way naturally possesses 

all of the properties of a congruence of rays that emanates from a luminous point. 

 Cotes intersected the rays of the cone that entered into the eye with an axis-perpendicular plane 

such that a figure that was congruent to the object arose in that plane and referred to the distance 

from that plane to the eye as the apparent distance. The formula that he derived for the apparent 

distance in an axially-symmetric instrument of thin lenses showed that the particular symmetry 

remained unchanged when one switched the places of the object and image along the axis. That 

law is not (as it might perhaps seem at the moment) an interesting curiosity by itself, but it still 

possesses great optical significance, because an important consequence concerning the ratio of the 

surface luminosities of the object and image can be derived from it. Moreover, that consequence 

defined the starting point for Helmholtz (3), who discovered the sine law at the same time as Abbé. 

 The reciprocity of the apparent distance is self-explanatory when considered from Hamilton’s 

standpoint. Namely, if one defines the characteristic function V for the light path that is bounded 

by the object point and the pupil of the eye then that apparent distance will be nothing at all but 

one of its second derivatives of the form 
𝜕2𝑉

𝜕𝑦1𝜕𝑦2
 , which is differentiated with respect to the 

coordinates of the eye 1 and the object 2. Exchanging the object and the eye will not change that 

second derivative. 

 Extending from the special case considered, Hamilton had made a general study of the 

relationship between the object and the cone of projected rays through the center of the pupil of 

the eye for an entirely arbitrary optical device. The result that could be achieved from the symmetry 

 
 (1) E. Abbé, “Beiträge zur Theorie des Mikroskops usw.,” Schultzes Archiv für mikroskop. Anat. 9 (1873), 413-

468. See also Ges. Abhandlungen, Bd. I, pp. 45-100. 

 (2) Cf., the presentation in R. Smith, A compleat system of optics, Cambridge, 1738.  

 (3) H. von Helmholtz, “Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope,” Ann. Phys. (Leipzig) 

Jubelband (1874), 557-584. See also Wissenschaftliche Abhandlungen, Bd. II, pp. 185-212. 
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of the second derivatives is sometimes summarized briefly as: Two eyes with congruent circular 

pupils that regard each other through an instrument will see the pupils as congruent ellipses (1). 

 Naturally, those reciprocity relations depend upon only the existence of the characteristic 

function, so they can be found once more everywhere that one is dealing with variational problems. 

It is well-known that Helmholtz (2), in particular, had later deduced far-reaching physical 

consequences from such laws. 

 In the latter comments, I have already touched upon the developments in the last hundred years 

several times. In particular, how one looks for general properties of optical maps came into view 

in the example of the sine law. We should not wonder how the idea of introducing a characteristic 

function popped up repeatedly in those studies. However, not once had anyone recognized the 

relationship between such a function and analytical mechanics, and not once was the full richness 

of Hamilton’s ideas realized, even approximately, in the domain of optics. I mentioned only 

Helmholtz (3), who probably knew of the characteristic function from England and had employed 

it occasionally. He encouraged the physicist Thiesen (4) to seek to develop a theory of optical 

instruments with the light path length, but the latter remained stuck in the early stages of that 

project. On the other hand, the great work of Bruns (5) on the eikonal is well-known, in which he 

started from the idea of contact transformation and represented the ray-wise relationship between 

object space and image space by introducing a single concept that he knew of as the eikonal, but 

likewise without rediscovering rich content of Hamilton’s ideas. It was F. Klein (6) who 

recognized the close kinship between Bruns’s eikonal and Hamilton’s characteristic function. In 

particular, Bruns was led to his investigations by the ambition to continue the work of Abbé (7), 

who had placed the general properties of Gaussian dioptrics that are independent of the special 

arrangement of the individual instruments at the forefront. Abbé, who united scientific research 

and its engineering exploitation in a singular way, referred to the fact that it is precisely the optical 

industry that requires a general theory like the one that had existed in Hamilton’s work for a long 

time. It would certainly be advantageous for its development if a reference to his results were to 

be introduced into it. The fact that this has generally not happened, even in England itself, should 

surprise no one that knows the arrogance with which English engineering looks down upon the so-

called scientific humbug. By contrast, in Germany there is an ambition to organically incorporate 

the results of scientific research activities continually into the business of engineering production 

(we see this especially in the chemical industry, along with the optical industry). In order for that 

to happen, it is necessary that scientific research and engineering practice should not be foreign to 

each other. They must continually take care that they understand each other. I believe that I see in 

 
 (1) Cf., W. Thomson and P. Tait, Treatise on natural philosophy, v. I, Cambridge, 1879, pp. 358.  

 (2) H. von Helmholtz, “Über die physikalische Bedeutung des Prinzips der kleinsten Wirkung,” Crelles Journal 

für die Mathematik 100 (1887), 137-166 and 213-222. Cf., also Wissenschaftliche Abhandlungen, Bd. III, pp. 202-

248. 

 (3)  H. von Helmholtz, Handbuch der physiologischen Optik, Leipzig, 1867 (2nd ed., 1896), esp. § 19. Cf., also 

Wissenschaftliche Abhandlungen, Bd. II, pp. 147, et seq. 

 (4) M. Thiesen, “Beiträge zur Dioptrik,” Sitzungsberichte der Kgl. Preussischen Akademie der Wissenschaften zu 
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 (5) H. Bruns, “Das Eikonal,” Abhandlungen der Kgl. Sächsischen Gesellschaft der Wissenschaften, math.-

physische Klasse 21 (1895), 325-435. 
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that fact one of the most important problems that is entrusted to applied mathematics. The problem 

of the “mathematical executive” shall not just be the graphical and numerical treatment of 

mathematical formulas up to their numerical evaluation, but beyond that lies the working through 

of the Ansätze and conceptual structures of engineering methodically from their mathematical 

content and to clarify and then work through them in order to ensure the production of 

mathematical tools and possibly create new ones. Our problem in optics is a model for those ideas. 

If one is to avoid the danger that lies in the fact that one seeks to work with inadequate Ansätze 

with overly-detailed mathematical tools and thus to once more revive the ominous clash between 

(bad) theory and practice, then one has every right to place optics next to mathematical physics as 

a younger sister. If the concept enters into the general consciousness (and I mean that the future 

teacher should also help with that agenda) then the skepticism with which the majority of non-

specialists regard new results in mathematical research will wane. 

 H. Poincaré (1) had once countered such voices by saying that the engineer in the Twenty-

Second Century would know how to assess the current research in the domain of mathematics. I 

believe that prominent men of contemporary engineering might reply: “Do not just think about the 

race of engineers in such distant times, but also think of us a little. We know what powerful tools 

can be created, but we also know how to forge them into a shape that is useful in our hands.” 

 As I said, I would like to see one of the problems of applied mathematics in that general 

conception of the confrontation of the natural philosophy of science and the mastery of nature by 

engineering. The fact that it is often the case that one simply uses what is available is shown, not 

least of all, by the example that we have just treated. However, my latter comments probably make 

it clear that I do not mean it in the narrow historical sense if I would like to choose the following 

words to be the motto of this paper: 

 

“What you inherited from your fathers, 

acquire it in order to possess it!” 

 

___________ 

 

 

 
 (1) H. Poincaré, "L’avenir des mathematiques,” Rendiconti del circolo matematico di Palermo 26 (1908), 152-

168. 


