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Introduction

This paper is dedicated to the study of electromagnetcictions in general
relativity. In it, one will find a proof of FERMAT’s pnciple that is based upon the
properties of the characteristics of MAXWELL'’s equasion
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The electric and magnetic inductions are introduced as EINR WEYL, and
LICHNEROWICZ did with the aid of two antisymmetric t&rs of order 2: viz., the
electric field-magnetic induction tenséf,s and the electric induction-magnetic field
tensorGys. Some constraint equations express the linear netabetween inductions
and fields. It is the two tensokk,s Gy collectively that constitute the electromagnetic
field. The energetic context in which they are intraalds that of a “charged,
conducting fluid,” which was studied previousfy &nd in which one recalls the essential
results of the integration of the field equations.

In the presence of inductions, the characteristic mmsifof MAXWELL'’s equations
are not identical to the characteristic manifolds t&TEIN’s equations. One knows
that the latter are tangent to the elementary caieat each of their points. The

characteristic cone€’, for the MAXWELL equations are interior to the elenamt

cones. The characteristic manifolds that are tartgethie elementary cones, are time-
like, and the bicharacteristics are the null-length gsicdef the associated metric)(

ds? = {gaﬂ—[l—ij uauﬂ} dx? d¥,
eu

in which u” denotes the unitary world-velocity vector, and the ssaay denote the
dielectric strength and magnetic permeability of eachtpd the medium considered.

Now, the characteristic manifolds of MAXWELL's equai® play the role of
electromagnetic wave surfaces, and the bicharaatsriglay that of the corresponding
electromagnetic rays. One is naturally led to introdbeeRiemannian manifolés, that
is defined by the differentiable manifold that carries $pace-time and is endowed with
the associated metrids®.

MAXWELL'’s equations can be expressed in that manifold imctv they take on a
simple, symmetric form as they do in LORENTZ's theadyelectrodynamics. The
electromagnetic rays are null-length geodesics ®f. The geometric study of
electromagnetic rays in space yields the stateofdflERMAT's principle.

In order to carry out that study, we begin by generalizinthéocase of a charged,
conducting, perfect fluid the notion of permanent motitras are linked to the existence
of a connected, one-parameter group of global isomettese trajectories are time-like
and leave no point of34 invariant (). If the motion of the fluid considered is
permanent then a group of isometries that are induced lyrolg of the spacetime are
induced in%B,. We will then be in a situation in which “LICHNEROWZG method of

descent” applies (). Upon projecting the null-length geodesics Bf, onto the
quotient manifold of%B, by the equivalence relation that is defined by its group of

()  “Etude électromagnetique et thermodynamique d’'un fluitigiveste chargé,” J. Rat. Mech. Anal.
5 (1956), 473-583.
(") GORDON found this metric by taking an algebraic route.

Hokk

() A.LICHNEROWICZ, Théories relativistes de la gravitation et déléctromagnétismehap. 1V,
I, pp. 83-90. Maison, 1955.

Fokkk

(") ibid., Book II, chap. 1.
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isometries, we will obtain a theorem that generalEERMAT’s principle in relativity.
That theorem will be valid for a medium in an arbitratgte of permanent motion. In
particular, in the case of a MINKOWSKI spacetime with gravitation, it will yield a
proof of the relativistic formula for the compositiohwelocities as a consequence.

Notations employed

0 02 . L
0,= , 0gp= —— artial derivatives,
7 axe B X oxP P
P : covariant derivative,
a, B, ... (all Greek indices) =0, 1, 2, 3,
i,j, ... (allLatinindices) =1, 2, 3.

|. Electromagnetic inductions. Integration of MAXWELL'’s e quations.

1. MAXWELL'’s equations in the spacetime;, .

Let a domairD in the spacetim@, of general relativity, which is endowed with the

world-metric:
(1.1) d€ =ggpdd¥  (a,8=0,1, 2, 3),

be occupied with a material distribution that is scagred in the form of a fluid-
electromagnetic field. Lat denote the unitary velocity vector at each paiot D. One
calls a frame ax a proper framewhen it is an orthonormal frame whose first vedts?
coincides withu and whose other three vectM¥ are space-like and normalized by the
condition that:

JapV ay 0= _1.

Electromagnetic phenomena are characterized by tvigyamhetric tensor fields of
order 2: viz., the electric field-magnetic induction tendgg and the electric induction-
magnetic field tenso6G,s , whose components relate to a proper frame at thé poin
considered will have the values:

0 E E E 0 D D, D,

_ - 0 B -B _ -, 0 H; -H,
(Haﬂ)_ -E, -B, 0 B , (Gaﬁ)_ -D, -H, 0 Hl,
-E; B, -B 0 -D, H, -H, 0

and verify the relations:

(1.2) Goi = €Hoi, Hjj=uG; (,j=1,2,93),
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in which the scalarss and y represent the dielectric strength and the magnetic
permeability, respectively, of the medium considered.
We introduce the adjoint tensors:

U O
(1.3) H% =17 Hp, G% =17 Gy,

N
N

in which 7777 is the completely-antisymmetric tensor that is citéal to the volume
element form of3, . The relations (1.2) can then be written in the riawve form:

(14) Gaﬂ Ua =& Haﬂ Ua,

O

O
(1.5) UGPuT=HP U,

which is valid in an arbitrary local coordinate system. sEheelations are called the
constraint equations

The tensor fieldH,s and G, must satisfy MAXWELL'’s equations, which are
written:

O
(1.6) 0,H“=0,
1.7) 0,G%=2%

in whichJ # is the electric current vector. The first group of KMYELL equations can
be further written:

%UHIMDH Hpy = 0.

This expresses the idea that there exists a local véeldr ¢, such thatHgs is its
rotation; i.e:

Haﬂ:aa ¢ﬂ_aﬂ¢a
The evolution of the electromagnetic field is weltatenined when one know¥ —

i.e., the distribution of the electricity. For a nosnducting medium, one can assume
thatJ is collinear to the velocity vector:

J9=o0u"

Ois called theproper densityof the electric charge, and the electric currentais
convection current More generally, one is led to make the hypothesis:

J7=0u"+ ou, H”,
in which J is again the proper density of electric charges anté a scalar that

characterizes the electric conductivity of the mediunthen possesses a component that
is collinear tou and a componerit? = g u, H* that is orthogonal ta. The first one
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represents the convection current, and the second oreseefs the conduction current,
which satisfies OHM’s hypothesis.

Equations (1.4), (1.5), (1.6), (1.7) constitute the equatidrelectromagnetism in the
presence of inductions in mattdn vacuq one has the equality:

(1.8) EU=1,
and MAXWELL’s equations become:
O
(1.9) O0,H*=0,
(1.10) 0.G% =0,

while the constraint equations reduce to:

1

In what follows, we will let€ andD denote the vectors that figure in the left-hand
side of MAXWELL'’s equations, namely:

O
(1.12) &=0_H?,
(1.13) Df=0,G%

One proves that their divergences are zero:

(1.14) 0, &%= 0,
(1.15) 0, D= 0.

These two equations are called ttnservation conditionthat relate to MAXWELL’s
equations; they express the conservation of etégtri Therefore, one infers from (1.7)
and (1.15) that:

0,J39=0.

2. Expressing theGgp as functions of theHgz .

The constraint equations (1.4) and (1.5) expriesdihear character of the relations
between the inductions and the fields. They shww the two tensor fieldd sz andGgs
are not independent of each other. One can exfite&s,s as functions of thelgs .

Indeed, by starting with (1.4), we can form theady:

(2.1) Gap Uy + GpyUg) ¥ = £ (Hap Uy + Hp, Ug) -
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On the other hand, (1.5) can be written in the foltmyorm:
1
Gap Uy + GpyUa + Gy Ug = 7 (Hap Uy + HpyUs + Hye Ug),

which is true for any group of given values frg, y. By contracted multiplication of
this relation withu” and then subtraction of (2.1) from the equalitystiobtained, we will
get:

1
Gy = ; (Hap Uy + HpyUgz + Hyg Up u- &(Hap Uy +HgyUg) g
We then deduce that:

1 1-¢
(2.2) Gap= 5 Hap+ —

(Hoa u? Us—Hgp U’ Ug).

This is the desired relation. In contravariant poments, one will have:

(2.3) G%= = HP + I (o7 Uy 1 — H Uy 1),
U U

3. The integration of the MAXWELL-EINSTEIN equations
The electromagnetic field$igs G and the metrids’ = g,z dX d¥’ are linked by
the MAXWELL-EINSTEIN equations. If the medium is imotion, and the domain

consideredD, is schematized in the form of a charged, condgcperfect fluid then the
EINSTEIN equations will be');

(3.1) Sip=Rap— 3R Gp= X Tap,
Tap=(0+P) Ua Us—P Gup— (Ua G+ Up Qa) + Tap— (1 —EL) Tap U Ug,
Tap=% Qap (Gpo H™) — Gpa H s,

(3.2) q7 == k0,2 (g’ — U’ up),

in which p is the pressure and is the temperature at each point of the fluid.
MAXWELL'’s equations are:

() Cf., “Etude électromagnetique et thermodynamique d'uiddl relativiste chargé,” J. Rat. Mech.
Anal. 5 (1956), 473-583.
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(3.3) E=1n"°04Hg, =0,
(3.4) Ds=9% UaGyp=dUs+ oU" Hyp.

One can add the following conservation equations to #esations:

(3.5) 0. T%=0,

a a 1 a
(36) Daq :C,OU aaﬂ_; u aa79,
(3.7) Oa (OU"+ ou, H®) = 0.

The scalarsk, c, |, & u, o are assumed to be giveithey characterize the fluid
envisioned, which admits the following equatiorstite, moreover:

(3.8) p=9¢ ([ 9.

Thefield variablesare composed of the set:
) (gaﬂa Haﬂa J, ua’ P, 0),

where the vectou® is normalized:
(3.9) JopU” U = + 1.

The problem that one then poses is that of intewyahe field equations. One can
study it by analyzing the Cauchy problem. In orderdo that, one is given a
hypersurfaces that is space-like and represented locally by:

and the values of the quantities:
C (9ap 00Yap; Hap, 9, 00 D)

on that surface, and one then proposes to detetinearious field${ (9uz Haps J, U7,
p, J) outside of& in their domains of existence. It suffices todstiuhe possibility of

calculating the values of the various quantitiest there introduced and their successive
derivatives or6.

If the spacetiméB, is a differentiable manifold of clas€{ piece-wiseC*) then one

can suppose thak,s has class@’, piece-wiseC?), Hyp has class@, piece-wiseC?), and
9 has class@, piece-wiseC?).
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For g # 0, the EINSTEIN equations are equivalent to the falgwset of two
systems:

(3.10) Ri=-20%0000j +Fij = x (Ti — 1T g)),
(3.11) S =xl(p+p) Wua—pgy — U da+Ua ) + 7%~ (L —g) 7% ud,

in which theF; and S? have known values ofi. Equations (3.11), when combined with

the unitary character of and the equation of state, yield the quantjpias”. (3.10) will
then determindqo g; wheng™ # 0.
MAXWELL'’s equations are equivalent to the following ®&s:

(3.12) D, = % [6°°— (1 —&2) (W) o Ho: + % Q¥ - (1 —) & ul] Qo Hy + By |
(3.13) E'=1" Moo Hk +W' =0,

and the two identities:

(3.14) D°= oW + ou, H®,

(3.15) £°=1pM0%9 Hx =0,

in which the®; and¥' do not depend upon tldeH . , but they do depend upon the“,
while the quantityD® does not depend upon eitilH 5 or do u”. (3.15) expresses the

idea that there exists a local vector potentiaHpon S. Equation (3.14) will determine

oif W’ # 0. In order to gedo Hap, One must first seek to determine the derivatofas’,
namely,do u”. That determination can be accomplished simudtasky with that ofgp,

dod, by means of the conservation equations thaterédathe EINSTEIN equations (3.5),
to which one adds the unitary characteugfthe equations of thermal conduction (3.6),
and the equation of state. The derivatiyéis then calculated by means of the equation
of conservation of electrical current, which canbéten:

u? 900=Q,

in whichQ depends upody u®, but not upon thégH 45.
Once thedou” have been calculated, one substitutes them intt?Y3and (3.13),
which will finally yield thedoH 5 if:

o — (1 —&) (w)’ # 0.
If the hypersurfaces that carries the Cauchy dafais not exceptional then it will
result from equations (3.10), (3.12), (3.13), (3(®)6), (3.7) that the quantiti&go gj;,
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doHgp, 0008, 0o UY, dop, 000 are well-determined and necessarily continuous upon
traversing the hypersurfag®. The same conclusions can be extended to higher-order

derivatives of these quantities if one supposes thagittens are differentiable to a
higher order than was assumed by hypothesis.

The determination of the preceding quantities does nathevequations (3.11),
(3.14), (3.15). Now, they do not contain any mixed deneatif the Cauchy givens, so
they are constrained to verify the three equations (3(2114), (3.15) on the manifolé
or their equivalents:

Q=8-xT =0,
(1) P =D°— (U’ + ouy, H®) =0,
£ =0,

in which one has set:
Qaﬂ:Saﬂ—XTaﬁ, Pa:Da_(auCy'l'UupHpa).

Now consider a set (das Has &, U% p, 9 that is a solution to equations (3.10),
(3.12), (3.13), (3.5), (3.6), (3.7) that corresponds to CadekgC that satisfy equations

() on &. By virtue of the conservative character of the-tefnd sides of the

MAXWELL-EINSTEIN equations and the conservation equati¢®.5), (3.7), one will
have:

0,Q; =0, O.P"=0, Oz&=0.
By virtue of (3.11), (3.12), (3.13), these identities wiuwee to the equations:

g"0,Q} = Af0,Q) + B G,
dP°=-CaP°-@C+ rgcHpr°
0,E7=-T13, £°,

in which the A”, B?, C” are continuous functions. These equations are linear and

homogeneous with respect to the unknow@js P°, £°. SinceQ’=P°=£°=0on6,

they will admit no other solution besides the identjcaétro solution. It then results that
if equations (I) are verified by the Cauchy datasthen they will likewise be verified in

all of the domain of spacetime considered by the soldtidga.s Hags 2, U7, p, J) of the

field equations.

The problem of integrating the field equations finally d¢stssof the choice of
Cauchy data that will render equations (3.11), (3.14), (3.15) cdstggatvhich will
permit one to calculate’, p, J, and then the integration of the system of equati®nigy,
(3.12), (3.13), (3.5), (3.6), (3.7), which will permit onestady the evolution of the fields

H (Qap Hap, 3, U% p, 9. If the givens of the problem are real-analytiotheith the aid
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of the CAUCHY-KOWALEWSKI existence theorem for paltidifferential equations,
one can establish that the problem will admit one amlg one real-analytic solution
whose development in powers xdfwe know, up to a coordinate change that preserves
the hypersurfac& point-by-point, along with the Cauchy data &n The method of

FOURES will permit one to establish the existence anduemess of the solution under
the hypothesis of simple differentiability.

4. The characteristic manifolds®B)'

In regard to equations (3.12), one sees that if the hyfeceu® that carries the
Cauchy data is such that one has:

9% —(1-&) W)Y =0

on & then the derivative8y Hp of the electromagnetic field can be discontinuous upon
traversing &. An infinitude of distinct solutions to MAXWELL’s equahs that
correspond to the same CAUCHY data can exist. The oldr® is acharacteristic
manifoldfor MAXWELL'’s equations; such a manifold will be denoted‘BY .

In an arbitrary local coordinate system, the charittic manifoldsB) that are
defined byf(x”) = 0 will be the manifolds that satisfy the equation:

(4.1) % — (1 —gu) u“UF) 8,f 85f = 0.

Discontinuities of the electromagnetic field cangreduced when one traverses these
manifolds that constitute the relativistic extensiorth& classical electromagnetic wave
fronts. We suppose that the wave fronts are time-like more rigorously, they are

tangent to the elementary cote = 0 onB4; we confirm that this hypothesis is indeed in

accord with the demands of relativistic physics. If teatue then:

Mf =g 0,f d5f = (1 —g1) (U d.f) < 0.
One then deduces that:
(4.2) gu=1.

Having said that, the generalization of HUGONIOT’s hypsts will permit one to
evaluate what one can regard as the velocity of propagatithe electromagnetic wave

in question here. In order to do that, consider twghimring wave surface@)'), and
(8Y'), that are defined by the equations:

f(x%) =0, f(x%) = 3,
and taked to be infinitely small.
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The streamline that issues from the paiof (B'), will cut (BY'), at a point that is
defined, up to higher-order infinitesimals, Yy 77 u, wherer is given by the relation:

(4.3) nudqf =3

Let n be the normal vectont = 1) that is normal to the wave surfagBl'), atx. Its
covariant components atare:

(4.4) n, = a/] f

J-9%0,f0,f

The orthogonal trajectory t®B)' that issues from will cut (3B)'), at a point that is

written, up to higher-order infinitesimals, &st+ 7, n, where 7, is determined by the
relation:

mnof=39.
One deduces from this that:

9 —-g%a_fo,f -
(45) _ 79 _ g a B _ 79

= = = -
n'o, f 970, fo,f \/_gaﬂaafaﬂf

Introduce the vectdr= nu — 7. n. By virtue of (4.3) and (4.4), one will have:

nuth)=-m
and
tth=(Ru—-mn)h=npulh)+m=0.

The vectott will then be tangent to the wave surface. It is tlike since its square:

ne=@°=m-ni-2nmu)=rF+n
IS positive.

The vectorn u then appears to be the sum of two vectors, one ahakiorthogonal
to the wave surface and space-like, while the otheri®nangent to that surface and
time-like. The velocity of propagatiovi of the wave is found to be defined as the limit
of the ratio of the moduli of these two vectors, nme

V= lim| &
2-0 /70
One will then have:
,72
VZ=lim-L,
19”0/70

SO upon replacing,; and by their values, one will get:
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The velocity of propagation of the electromagnetic waizethenl/@. That

value suggests two remarks: First, it generalibesvialue that is obtained in classical
electromagnetism. Moreover, by our hypothesisX 1), the velocity of propagatioviis
less than a limiting value = 1; that limiting value will coincide with the ke of the
velocity of propagation of the electromagnetic waveacuo(gu = 1).

lI. Study of the characteristics

5. Definition of an associated metric

The integration of MAXWELL’'s equations involves ethintervention of the
symmetric contravariant tensor field:

(5.1) g7=g%- (1 -g) u"

whose associated quadratic form represents theadateaistic form of MAXWELL's
equations. The study of its characteristic mad#sB) will become more suggestive if
one introduces the Riemannian metric:

(5.2) ds? = g, dx"d¥’,

in which the matrix of coefficient§g,,) is the matrix inverse to the matr{g®). One
will easily obtain:

_ 1
(5.3) 9o =Yap~ [1_5_,Uj Ug Ug

upon performing the calculations in the proper fanMoreover, ifg and § represent
the determinant of the matrig4s) and that of the matriXg,,), respectively, then one
will have the relation:

(5.4) g=&UT.

The metricds® will be called theassociated metric It plays a fundamental role in
the study of the characteristic manifolds of MAXWE& equations. The world metric
ds’ = gup dx” d¥ is of the hyperbolic normal type. When referredatproper frame, it
will take the canonical form:

ds’ = (dJ)? - ()* - () - (W),
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in which the ¢J) are linearly-independent, local Pfaff forms. Theoa&ted metric itself
will then take the form:

ds? = {Jﬂ,ﬂ —(1—8—’1LJUHU[,} f

in which oysif a# B, &do=+ 1, anddi = - 1, andup = 1,u; = O in the proper frame. One
then deduces that:

NET

which shows that the associated metric is likewisth@hyperbolic normal type.
In what follows, we will letB, denote the Riemannian manifold that is defined by

the differentiable manifold that carrié®, and is endowed with the associated metric

ds’ :{ 2l j — (@)= () - @),

ds®. Furthermore, we will distinguish the quantities taet defined relative t&, by
an overbar. We shall call the real cafig at a poinix that consists of directions tangent
to %8, that are defined by the equatids® = 0 theassociated elementary cone.

6. Study of the bicharacteristics.

In the Riemannian spacB, , the characteristic manifolds of MAXWELL'’s equations

that are defined locally by tHéx“) = 0 are solutions to the first-order partial diffeiah
equation:

(6.1) A,f=g*»a,fa,f =0.

They are tangent to the associated elementary ¢gnat each point. The elementary

cones,_ of B, are thus characteristic cones for MAXWELL's equatjoasd they
admit the manifolds that are tangent to those codioescharacteristic manifolds.
However, the characteristic cones of MAXWELL’s eqoas in the spacetim®, are
generally different from the elementary coas(ds’ = 0). They will coincide with the
latter only in regions that are devoid of matter.

A characteristic manifolds)' — i.e., a solution to (6.1) — can be generated by means
of the characteristic bands of (6.1). Such a solutionbma generated by means of the
bands of, that are each composed of set of a culyand a one-parameter family of

elementary 3-planes that are tangent to those curvdse curvesl, are called the

bicharacteristicsof MAXWELL'’s equations.
In order to determine them, set:

2H(X/‘ Yu) = gaﬂya Vg
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and consider the partial differential equation:
(6.2) A f=2H(X', 9, =C,
where C is an arbitrary constant. Relative to the variaféd, yz the characteristic

bands of MAXWELL’s equations (3.1) and (3.2) are given by sbé&tions to the
differential system:

o _ df _dy, _ I
OH " oH 2H OH T oH
ayo ayg aXO aXS

that satisfy the first integral:
2H(x', 9,f) =C

for the valueC of the constant. If one introduces the auxiliary afale u then the
functionsx“(u), y4u) will be given by the canonical system:

(63) %:a_H, %:—GH
du oy, du ox?

that relates to the Hamiltonian functiet{x’, yu). The first group of equations (6.3) is
written out explicitly as:

_ dx’
6.4 x? = g¥” X7 =—
(6.4) a”y, ( duj
Inversely:
(6.5) Yp= Gop¥’ .

Having said that, the solution$(u) to (6.3) will be extremals of the Lagrangian
functionL that is defined by:

2L =g, x5,

since upon passing from the variablg$ (x*) to the canonical variables”( Yp), which
are coupled by (6.4) and (6.5), one will have the classatation:

o OL

H=x— -L=L
ox“

betweerH andL. These solutions are the extremals that satigfyitst integral:

(5.6) 2=C
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for the valueC of the constant. Now, from the existence of thedt fintegral, the
extremals thus defined will be also extremals of:

JoL =g,x %

that satisfy (6.6). It then results that #féu) define the geodesics @,. If C = 0 then
the differential system of the characteristics@®1i) will admit the first integrdl= const.,
and the manifoldsB)' can be generated by the band€5f that are defined by the null-

length geodesicsE,, with the associated 3-plane being the plane tangentheo t

elementary con€, along the tangent t&, .
We have proved the theorem:

Theorem. The bicharacteristics of MAXWELL'’s equations are the null-length
geodesics of the Riemannian manifég, which is endowed with the metric:

ds® = g,, dx” dx’.

In the language of the theory of the propagation of waVee characteristic manifolds
B) play the role of electromagnetic wave surfaces. BibbaracteristicsC, are the
associated electromagnetic rays. We can thus s&fleltowing result:

Theorem. In an isotropic medium with constant dielectric andgnetic variables;,
M, the electromagnetic rays can be considered to bklength geodesics of the
Riemannian spac8s,, which is endowed with the metric:

d§2 = gaﬂdxad)g: d§2 = {gaﬂ—(l—ijuauﬂ}dxad)g.

in which g,z is the fundamental metric tensor, angdisithe unitary world-velocity vector
that is defined at each point of the medium.

7. The equations of electromagnetism in the associated metr

Define the antisymmetric tensor field,, on B, such that at each point’j one
has:

Ha/] :Haﬁ

Upon raising the indices dﬁaﬂ with the aid of the metric tensor (534, we will have:
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H? =g g”H,, = [(0 - (1 - W uT [g% - (1 —g1) u” W) Hpo,
SO
H = g™ g% Hpo + (1~ ) (@ Hop U7 ¥ = g% Hpo U U,

Upon comparing this equality with the relation (2.3) thaegithe expression f&% as a
function ofH,z, we see that at each poirf); one will have:

GP= L,

The study of the CAUCHY problem that relates to XAMELL's equations inB,4
suggests that we should write the following equetim B, :

_ b
(7.1) O H®=0,
(7.2) 0,G?%= 173",

in which c‘;aﬂ is a tensor that is proportional H)aﬂ. The first group (7.1) can once more

be written:
_ D

O,H% = Jig] g9 H = 0.
2 )z

It expresses the idea that there exists a locabwdield @, whose rotation isl—_laﬂ.
Sinceg = ug # 0 and H_aﬂ: Hap at the point considered, one sees that equatiof$ (
are equivalent to MAXWELL'’s equations of the figtoup (16) in®B, . We can then

identify the two vector potentiaks, andg, .
As for equations (7.2), one can write them as:

5,6 = ﬁaa (JI516%) = %a{m%j _ 3

or

1 G” J?

Aol @S- 2

lg| { EU U

Upon comparing this equation with MAXWELL'’s equatgof the second group (1.7) in
B4, when they are written in the form:
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1 a
L, (Jigle”) =¥
V19|
one sees that equations (7.2) will be equivalent to equdtiofsif one takes:

G¥ = JeuG”¥ and JIP=Jeul.
One is led to set:

(7.3) G :Fﬁaﬂ.
7]

In particular, if one makes the hypothesis that:

F=5L+0ou,H?
then one will verify that:

Jf=0uf+oU H?,

in which T, =dx’/ dS. One will observe that the scal&sy, g, J are the same i,

and ‘B, . It should be noted that in classical physics, MAXWELequations lead to the
study of the second-order, hyperbolic, linear operator:

10° 9% 0% 92

VZatt o 0y: 07

That operator will remain invariant under the LORENgroup — i.e., the group of
transformations that leave invariant the quadifatin in the differentials:

V2 df? —d¥ —dy? —dZ,

and that is only the translation into the propanfe of the associated metric form, which
IS written:

ds? = C—Zdtz—d><2—d)/2—dzz
U

here. One sees that:

The quantity/ gz that presents itself in our study can be integateds the index of
refraction of the medium considered. We set:

n= e,
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son will be a dimensionless positive numkzet.

[ll. Permanent motion of a charged, perfect fluid
8. Spacetime that is stationary in a domain

Consider a well-defined, four-dimensional domaln in 8, and suppose that the
Riemannian manifold that is defined By is endowed with the world metric:

ds’ = ggp dX” d¥’

admits a connected, one-parameter group of global isométae leaves no point ai,
invariant and whose trajectoriesire time-like. We suppose, moreover, that:

a) Thezare homeomorphic to the real litfe

b) One can find a three-dimensional differentiable madahif®; that satisfies the
same differentiability hypotheses & and is such that there exists a differentiable
homeomorphism of the same class fr@mto the topological produd®; x R that maps
z to the line factor.

Under these conditions, we say that the Riemanniacetp®®B, is stationaryin 0.
The trajectoriez are calledime lines The manifold®3 that is the quotient of th®,4 by

the equivalence relation that is defined by the grouplisdspace
Let & be the infinitesimal generator of the group of isometri&gice no point 0P,

is invariant,é # 0 at every point dD4. One knows that this vector satisfies the KILLING

equations:
(8.1) Xga/;E Dafﬂ+ Dﬁfa: 0,

in which X denotes the Lie derivative operator that relatesdoéctoré.
One can define a local coordinate systefi in D4 (which are said to badaptedto

the stationary character) in the following manner: Tke are an arbitrary local
coordinate system dDgs; being given thex) will then determine a time line. In order to

determine a point on that line, one gives the manitold const. to which it belongs, and
these manifolds will be the manifolds that are homeomor@hi®; and are defined by

the homeomorphist), and are such that the componentg afe:
£0=1, &'=o.

In these adapted coordinate systems, one will have:
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¢a=0a0,
and the KILLING equations will translate into:
X gaﬂ:aogaﬂ: 0

Therefore, thesare independent of the variabfe

In what follows, we shall introduce only adapted loaabrdinate systems.

performing the decomposition of the fundamental quadrati:fo
ds’ = ggp dX” d¥¢

into squares, starting with the director variai#® we will get:

(8.2) ds* = (gao dX)? + d¥,

in which:

8.3) d¥ = g, dx dx! = [gu —Mj dxX dx]
00

is independent of and defines a negative-definite Riemannian meti®; .

9. Permanent motion of a charged, perfect fluid

Consider a charged, perfect, conducting fluid tmatves in a domairD, .

19

Upon

The

motion of that fluid will be calleghermanenif the associated Riemannian spacetiBe
is stationary in the domai®,, and the group of isometries leaves invariantuhigary
velocity vectoru®, the pressur@, the temperature?, the electric charge density the

heat current vectar,, and the induced electromagnetic fieltlsgs, Ggps:
X ga/;:X Haﬁ:X Gaﬁzao Gaﬁ:ao Ua:aoﬂzaoqa:ao p =00 0=0;

hence, th@,z, Has, Gag, U, &, Qa, p, ddo not depend upon the variakfe
Consider a motion of the fluid envisioned suclt:tha

a) The associated Riemannian spacet¥#ngs stationary i, .

b) The group of isometries leaves invariah, 7, c, |, &, & 4, O.
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We shall show that if this is true then the motionhef fluid will be permanent. Now,
the hypothesea andb translate into the following conditions in adapted dimates {):

009ap = 0oHap = 008 = 0ok =00C = 0ol =0p& =00/ =000 = 0.
It suffices to show thaGas = 00U’ =09y = o = od = 0.

Let x be an arbitrary point @, . Choose an adapted coordinate syst€mx{ such
that the poinix belongs to the manifol& whose equation ig° = 0. Suppose that the
manifold S is space-like and that it is not an exceptional méhisd the Cauchy problem
that relates to the field equations that correspontigdiuid considered. We then know
(cf., 8§ 3) that the system of field equations will admitell-defined solutiort{ (9us, Has
, 9, U% p, J for a system of Cauchy da€a(gas, 90 Jag; Hag ; 9, 00 I) that is carried by
G and satisfies:

Q) Q% =0, P’ =0, £°=o.

Moreover, equations (I), which are verified @h are likewise verified on the entire
domain of the spacetim®, being considered. Now consider the maniféldwhose
equation is:

which corresponds, point-by-point, to manifadunder the homeomorphism that maps
9,4 onto the topological produ@s; x R in which the time linez maps to the line factor.
By virtue of the hypothese® andb), the solutior{ (gas, Has, 9, UY, p, J) is such that
the quantitie€ (9as, 00 9as; Hap: &, 00 ) will have equal values at the poiatef G and

&' that have the same local coordinatds (These quantities verify equation$,(Which

are identical to (l), for the solutioH. Thus, if one poses the Cauchy problem with the

preceding dat& being carried bys' then one must first calculate the quantitiésp, o
by starting with equations'jland then integrate the field equation. Since allhef t
equations are identical, and the givens are identicalwolh obtain a solutior¥{’ that is

identical to the solutiori{. In other words, the quantitiegag, Has , 9, u?, p, 9 will

() In a previous paper “Sur une théorie relativiste tiedds thermodynamiques” [Ann. di Math. pura
ed applicata, ser. IV38 (1955)], we studied the permanent motions of a pure thermoilyrfuid by
supposing that, in addition to the conditi@y$),z = 004 = 0, one also satisfied the hypothesis that:

aoq°=cpu°6019—|;u°p;

indeed, the latter hypothesis is a consequendgt 0. The conditionX g,z = X & = 0 suffice to insure
that the motion of the thermodynamic fluid is pernmne
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have the same values, along with their derivativethatpoints with the same local
coordinatesx); they are thus invariant along the time lines.
It then results that the hypothesgsandb) imply that:

aou"zaop 2605: 0,
and by virtue of the defining equations@fz andq, :

aoGaﬂ:ao qa: 0
Consequently:
X0p=XHp=XGp=XU=XI=Xp=Xp=X=0.

The motion of the fluid being considered is therefpegmanent. One can state the
theorem:

Theorem. If one is given a charged, perfect, conducting fluid in a dor®aithen in
order for the motion of that fluid to be permanent it is necessargaffidient that:

a) The associated Riemannian spacetiyanust be stationary i, .

b) The group of isometries must leave invariant the fiefdand H,, and the
coefficients c, I, & u, o

Remark. — If there exists a global vector potential for trecebmagnetic field — i.e.,
a vector fieldg, such that:

Haﬂ: aa ¢ﬂ_ aﬁ¢a

(which is the case, in particular, when the domain ngphi-connected) then one can
replace the hypothesis that concerns the fi¢ld with the equivalent hypothesis that
concerns the vector potential; one supposes thaptlee invariant under the group of
iIsometries.

10. Isometries that are induced in‘B,

In what follows, we shall consider a simply-connectechao®, that is occupied by
a charged, conducting fluid. We suppose, more generaltyththanotion of that medium
is such that the associated Riemannian spacéBime stationary ir0, and the group of
isometries leaves invariant the unitary velocity vectand the index = ./ gy of the

medium:
(10.1) X0p=XU=Xn=0.

That will be true, in particular, when the medium sidered is a charged, perfect,
conducting fluid in a state of permanent motion.
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From (10.1), the quantities:

_ 1
ggﬂ = gaﬁ— (1_Fj Ug Uﬂ

are invariant under the group of isometries®f. It then results that the contravariant
vector field & that is the generator of the group of isometrie$B8g will determine a

connected, global group of isometries in the Rieman manifold that is defined by the
differentiable manifold that carrieé8,; and is endowed with the associated metric:

ds® = g, dx’ d¥’,

and that group will leave no point of the corresting domain®, invariant, and the

coordinate systemx{, X) will be an adapted, local coordinate system liat group. One
can take the infinitesimal generator of that grdopbe the vector{ that has the
contravariant components:

50250:1’ Zizfizo.

It is obvious that the square of the vector wiNdahe value:
p R— 1 2
(10.2) @ = Ugo= Yoo — (1_Fj (Uo)”.

Now, introduce the spatial quantity that takesftren of the vectou that relates to
the time directior{. Let: o
-w=g, uu.

By virtue of the unitary character of one will have:

Jap U U = i(gmu"’)2 +gud =1,
00
One will then deduce that:
(Uo)® = Qoo (1 +WP).

Upon substituting this value into (10.2) and refpigcl /n? with V 2 in it, it will become:

(9% = Tpo=Goo (VW +V? —w).

One sees that the sign @)y can change. In3,, the vector can be time-like,
space-like, or isotropic; the same thing will beetfor the trajectories of the isometries of
B, .
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IV. Geometric study of electromagnetic rays in space
11. A problem in the calculus of variations

We propose to interpret the electromagnetic rays ieetdimensional space
geometrically. To that effect, we begin by brieflgaling a problem in the calculus of
variations.

If one is given a differentiable manifof8,., then let?0,.1) be the fiber bundle of
tangent vectors to the various pointsfyfi;. If one adopts local coordinate€) onB.1
then each element MJyp.1) Will consist of the union of the coordinates’)( of the

corresponding poink and then + 1 componentgx”) of the vectorx in the natural
frame atx that is associated witx{). The structure of a Finslerian manifold ¥., is
defined by being given a functiaf(x, x) with scalar values i20>n+1) such that for fixed
x, one will havel(x, AX) =A L(x, X). Such a function is represented &°, x*) in
local coordinates, and is homogeneous of the first degtbeaspect tox” .

Consider a differentiable manifol®,.; that is endowed with the structure of a
Finslerian manifold and suppose that it admits a connecteelparameter group of
global isometries that ha§for an infinitesimal generator and leaves no poinf3af;
invariant ¢ # 0). Furthermore, suppose that the trajectodesf the group are
homeomorphic to the real lin®&, and let®B, be the manifold of8,.; modulo the

equivalence relation that is defined by the group. Onevkrthat there exists a local
coordinate systemx{, X) that is adapted to the group of isometries suchd&twtl have
the contravariant components:

50:1’ g(i:l

in the associated natural frame, and tie gre an arbitrary local coordinate system on
Bn. When the X) are given, that will determine a trajectory. In ortedetermine a

point on that trajectory, one gives the r_nanifxﬂd= const. that it belongs to.
In an adapted coordinate systeth ), the hypothesis of isometry translates into the

fact that the functiort is locally independent of the variabf:
L=L(X,%,5).

We shall show that it is possible to give the quotieanifold B, the structure of a

Finslerian manifold by means of functiob&, z) in such a fashion that the geodesics of
Bn:+1, Which are extremals to the integral:

(11.1) L?S(x, %) du, X = %,

correspond to the extremals of:
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(11.2) j:L(z, 2) du, 7 = %.

In what follows, any Greek index will equal O, 1,.2, n, and any Latin index will equal
1, 2, ...,n, and we will suppose that:

0,8 20, 0, =

We give an extremal of (11.1) by its parametrioresentatiorx”(u), whereu is an
arbitrary parameter. The differential system ef éixtremals of (11.1):

(11.3) LI X7,

du
where x? satisfies:

d ¢ 08
11.4 ———-— =0,
( ) duo¥ oX

is characterized by the fact that it admits thatre¢ integral invariant:

(11.5) w= Zg; dx’ = 9, Ldx +0,L dX .

By virtue of the hypothesiy £ = 0, one will have the first integral:
(11.6) 0.L =h.

Since 9., £ # 0, one can solve (11.6) with respectdboand one will get the equivalent

equation:
(11.7) =g (& K, h),

in which ¢ is a homogeneous function of degree oneinand ¢ depends essentially
uponh.
Consider the family of extremalgy) that correspond to a well-defined value of the

constanth. The last term irw has the valué d¥ for that family and defines a relative
integral invariant. It will then result that thiamily of extremals admits the relative
integral invariant:

(11.8) 9.L dX

Now, from the homogeneity af, one has:
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X9,L+50,L = L.

As a result, for any solution (11.6) or (11.7), the quantaty be expressed by a function
L of the variableg®, X', h:

(11.9) LOE X, h=L[X X, & X, h]=hg & &, h),
and one will have:
oL =0,£+0,L0,6-hd p =0.L.

Thus, from (11.8), the projections af,J onto B, will be defined by a differential
system that admits the relative integral invariant:

= 9,L dxX

In other words, they are extremals of the integral:

(11.10) TL(X", X', h) du,
Z

in whichh has the chosen value.
One calls the correspondence that makes the &Bmet{(x‘, X', x°) correspond to the

functionL (X, X', h) adescent The inverse problem admits a solution (

12. Projection of null-length geodesics onto the Riemannian mémoid 8,4

We suppose that the Riemannian manifiiig satisfies the hypotheses of paragraph
10. The functiorC is defined by the relation:

(12.1) L%=G,x" %,

where the left-hand side is a non-degenerate gtiadoam, sinceg = det@, ) # 0.

We shall first study the extremals that correspmnthe values of” for which the left-
hand side is positive. One knows, moreover, thatffices for a geodesic to make it
positive at a point in order for it to be positetalong the geodesic.

First case: @, is not annulled in the domain studiedThe descent procedure leads
us to form the equation:

() See A. LICHNEROWICZThéories relativistes de la gravitation et de I'électromagnégisBook
I, chap. I.
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(12.2) 10.L% = §ooX’ + Ty X=h(
and eliminatex’ from this equation and:
(12.3) L=L-hx".

Upon decomposing? into squares by starting with the director variaifle one will get:

in which one sets:

and one will see thaljij X ¥ is negative ifg,, > 0 and positive ifg,, < 0. In the first

case, one takds> max g,,. Since$d,L? =h L, one will infer the equation:

(12.4) L=

which yields. as a function of the variablg§ X', h. One then infers from (12.2) that:

(12.5) 0= p GaX
gOO gOO

One deduces from (12.3), and by virtue of (12kg;:t

2 —
(12.6) L= £\/[1—P—j G, K8+ hJa X
gOO gOO

wherec¢ is the sign ofg,,,

L is a function of*, X', h that is homogeneous of degree one with respettieta’ .
It defines a Finslerian manifold structure on thetignt manifold8,. Conversely, if

one is given the preceding functiaX®, X', h) locally in B, then one will easily prove
that there exists a functiofi(x, X', x°) that is homogeneous and of degree one with
respect to thex” and leads back to by descent, and that this function is:
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L£=,7,%% .
The corresponding extremal curves are thus geodesig of

Thus, the geodesics of the Riemannian manifigd that correspond to the first
integral:

project onto the quotient manifol, along extremals of the integral:

z 2 I
(12.7) j -& [1—P—j§u>'éxi+hg_°l d,
g g

2% 00 00

in whichh has the same value. These extremals coincidethade of:

7 2 —
(12.8) [ f\/[l—b—j g, % “5X | gy
% h Goo 900

From the expression fat’, one will have:

(12.9) =1 %@H o ot —JudX
gOO 1_L gOO
gOO

along these extremals.
This being the case, one can define the null-teggiodesics of5, to be the limit

curves that the time-like geodesics tend td as 0. It results from the relation:
hlZ=g,x

thath - o« whenl - 0 andh has the same sign ag, X”. Now:

2= L (g, )2 +g % = 0.
00

One then deduces thg}, X" has a non-zero value and keeps a constant sign.

From (12.8), the projections of the null-lengthodesics of%5, onto B, are the
extremals of the integral:
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4 2
j lim f\/[ h jg,jx‘ _golx' du.
% h-=| h oo Ooo

Upon passing to the limit, one will deduce the followingute

Lemma 1. The null-length geodesics @, project onto®s, along the extremals of
the integral:

(12.10)

in which£is the sign ofg,,, and&’is the sign ofg,, X”

From (12.9)pone will have:
(12.11) dxX = gg’\/——g” dxX dxX - 9o OX dx

00 gOO
along these extremals

One remarks thabd = L du
Second caseg,, = 0.— One will then have:
(12.12) L% =2g, X5 +g %%

We supposej,, X is finite and non-zero. The descent process leads eliminateC and
x° from (12.12), and we will get:

(12.13) g,X =hZ,
(12.14) L=L-hx".
One infers from (12.13) that:
£ — goi XI
et

Upon substituting this into (12.12), one will get:

—  in2
% = 2G, %+ XX
One will then deduce that:
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Equation (12.14) will then determinhe

— T
L = 9aX +hgin|X

(12.15) iz
2h 2g, X

Conversely, any functioh of the preceding form will correspond to the functidn
that is defined by (12.12) by ascent. One noteslth@esents itself with respect to the
variablesx' as the quotient of a quadratic form with a linear form.

Therefore, in the case @, = 0, the projections of the geodesics®f onto B, will

be the extremal curves of:
.Zf %X, GXX g,
2h 29, X

A

for the corresponding value of the constanfThese extremals coincide with those of:

2 g.x G XX
j(——g‘)‘f ——g“_ - jdu.
L2 2g,X

As before, the projections of the null-length gesace will be defined by:

m{ﬂg_jd
» el 2ht 20, X

Upon passing to the limit, one deduces the lemma:

Lemma 2. In any domain ofB,where g,, = 0, the null-length geodesics &8,
project ontoB, along extremals of the integral:

2 g X¥
2g, X
One will have:
g XX
e =— IXX 4y,
20, X

along these extremals.
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13. FERMAT’s principle

We have established that electromagnetic rays harentll-length geodesics of the
Riemannian manifold8,. We can interpret this geometrically in space if tiedium

considered is in a state of permanent motion. Indeechmas 1 and 2 provide an
immediate proof of the following:

Theorem. If the motion of the medium considered is permanent and such that:
Too =900 (VW +VZ—w) £ 0

then the electromagnetic rays in space will be the lines that eeatizextremum for the
integral:

(13.1)

for the variations with fixed extremities, whexés the sign ofg,, and &’ is the sign of
0,,X'. The time that it takes for a ray to go from gwént 2 to the point zis given by:

(13.2) j dx® =

This length of time is an extremum.

One will obtain an analogous statement in the evds®e g,,= 0 by replacing (13.1)
and (13.2) with:

2 g X«
2g, X
and
><x'
(13.4) j dx’ = j 9y xx
Z 2gOl

respectively.

One finds that the preceding theorem proves the/algnce of the geodesic principle
and the principle of least time.

In particular, if the universe istatic in the sense of LEVI-CIVITA — i.e., if the
streamlines coincide with the time lineshen the spacetintB, will be orthogonal. Let:

d$ = U (dX)? + g; dX d¥

be the world metric o%8, . Since thed are zero, one will then deduce the associated
metric:
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ds? = % ()2 + g dX .

One can put (13.2) into the form:
z z n
(13.5) jde = j—da,
A

in which one sets: o
d$2 =~ G dx d¥X.

That integral recalls an integral that presents itsethé study of holonomic fluidsU is
then the principal potential of gravitation. The gravataal field will act, one might say,
as a type of pressure on electromagnetic rays.

If U =1 then one can prove that the spacetinas Euclidian. The statement of the

theorem becomes:

5de°: 5/ ndo=o0.
A

We recover the exact statement of FERMAT’s principleptics. The theorem that we
have established then constitutes its generalization ergeelativity.

14. Interpretation of the sign ofg,, X’

We have interpreted® as the time variable. The interpretation of then sigof
0,, X' is simple. Indeed, the equation:

€) L2d0 = 2(Go, )7+ dkdk = 0
Y00
represents the characteristic cof®) of MAXWELL's equations at the point. The
two sheets of that cone are symmetric with resjpettte elementary hyperplane:
(7%) g,, 0¥ = 0.
Let M (x%) denote the vertex of the co@,). Take a pair of neighboring pointsikb

that have the spatial coordinates € dxX) and belong to the two sheets of the cone,
respectively, and are symmetric with respecigto Let:

My (X + dX, x° + dxd), M, (X +dX,x*+d"0).
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One can say thaviM; represents, up to higher-order infinitesimals, the infmibal
displacement that is associated with an electromagrey that goes from the spatial
point A(X) to the spatial poinA’ (X + dX) during the time intervadX’. Likewise, MM
can be considered to represent the infinitesimal displeat that is associated with an
electromagnetic ray that goes from the pa@ingX + dx) to the pointA(X) during the time
intervald” x’.

The two pointdV; and M; are symmetric with respect to the elementary hypeepla

7%, SO one must have:
0,,0X =-7,,dX.
One then deduces that:

d'x°:dx°+zg‘i—dx.
Yoo

This relation shows that, except for the static cdsetime that it takes for a ray to go
from the spatial poinA(X) to the spatial poinA’ (X + dx) will not be the same as the
time that it takes for another ray to go frér(x + dx) to A(X).

15. MINKOWSKI spacetime and the relativistic law of the compsition of velocities

We now place ourselves in the case of a spacetinte maitgravitation— namely,
MINKOWSKI space- and refer it to a reduced Galilean coordinate syst&m.have the
world metric:

(15.1) ds’ = ()2 — dx)? = @)% - [dx°)2

In the present case, will represent the unitary velocity vector whose conguus are
classically determined by starting with the spatial vigjog, if the limiting velocityc is
taken to be unity.

An easy calculation gives the associated metric:

(15.2) ds? :Vz_[fz (dx°)2+ L ;(ﬁ dy’.

1-B

This metric is of the hyperbolic normal type, ashie world metric (15.1). Meanwhile, it
is interesting to note that there is a change déom the signature of that metric upon
passing tov? = 8% One easily exhibits this by choosing ttieaxis to be parallel to the
velocity S of the medium. One then gets the metric:

1V,[>’

2 _,3 (1 v? ),3 2_ Z
(15.3) ds* =" 7 (dX)2 +2=—— 22 o dxX dx - (dR)2-(dR>-( dR?

which one can put into the canonical form by a degosition into squares. f?# g2
then one will get:
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,_ 1-p [Vvi-p @-v3s | @ pHv? )
ds VzﬁLﬁde T dxl} L (dd)2-(dR)2-( dR %,

and one will see that this metric will have thensiure “+— - =" for V2 > 82 and that it
will have the signature=“+ - =" for V? < 82 ForV ? = £2, one will get:

ds2 = 2V d¥ dxt — (1 +V?) (dx)? = (@) — ([dxX°)>.

One likewise verifies that this metric has the aigme “+——-" by putting it into the

form:
2

ds? =

(dx’)* - P—(dR=( d§“

1-V?) 1+V?

Starting with the associated metric (15.2), wekdeeexpress FERMAT’s theorem by
taking the arc lengtlr of the electromagnetic ray to be a parameter. hee to replace
x%in (13.2) with:

A = %,
do

wheredd? = - 2, (dX)2 It will then become:

t t @-5°) n,2 (1V)(ﬁ/1)
15.4 dx’ = \Y 1-V A A S A Vot b
(15.4) i a{%JN TV B AVABAY - }
and one can deduce from this that:
ax’ _ 1 _ 1-5°) (1V)(/M)
dU—W—&f\/(V ﬁ)[\/ - B2+(A-VA)(BA)] - mys
If V2 — 32 % 0 then that relation will give:
(15.5) 1-82-(1-B)W?-(1-V)1-WB A)*=0.

If one interpretsy/ as the absolute velocity of the propagation ofdleetromagnetic
wave considered an¥ as its relative velocity then one will obviousigve:

1

2 2 2 2 p2
Gwigy W TAT AN DB W -WI AL

(15.6) V2=
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One verifies that this relation will remain valid in toase where/? = 82 by direct
calculation upon starting with (11.4). It is the relaid formula for the composition of
velocities. It is easy to verify that one can puntib the form ():

s

I I

We thus obtain a proof of the relativistic law of comsipion of velocities by starting with
FERMAT's principle.
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