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Introduction  

 
 This paper is dedicated to the study of electromagnetic inductions in general 
relativity.  In it, one will find a proof of FERMAT’s principle that is based upon the 
properties of the characteristics of MAXWELL’s equations. 
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 The electric and magnetic inductions are introduced as GORDON, WEYL, and 
LICHNEROWICZ did with the aid of two antisymmetric tensors of order 2: viz., the 
electric field-magnetic induction tensor Hαβ and the electric induction-magnetic field 
tensor Gαβ .  Some constraint equations express the linear relations between inductions 
and fields.  It is the two tensors Hαβ, Gαβ collectively that constitute the electromagnetic 
field.  The energetic context in which they are introduced is that of a “charged, 
conducting fluid,” which was studied previously (*) and in which one recalls the essential 
results of the integration of the field equations. 
 In the presence of inductions, the characteristic manifolds of MAXWELL’s equations 
are not identical to the characteristic manifolds of EINSTEIN’s equations.  One knows 
that the latter are tangent to the elementary cones Cx at each of their points.  The 

characteristic cones xC  for the MAXWELL equations are interior to the elementary 

cones.  The characteristic manifolds that are tangent to the elementary cones xC  are time-

like, and the bicharacteristics are the null-length geodesics of the associated metric (** ): 

2ds  = 
1

1g u uαβ α βεµ
  − −  

  
 dxα dxβ , 

 
in which uα denotes the unitary world-velocity vector, and the scalars ε, µ denote the 
dielectric strength and magnetic permeability of each point of the medium considered. 
 Now, the characteristic manifolds of MAXWELL’s equations play the role of 
electromagnetic wave surfaces, and the bicharacteristics play that of the corresponding 
electromagnetic rays.  One is naturally led to introduce the Riemannian manifold 4B  that 

is defined by the differentiable manifold that carries the space-time and is endowed with 
the associated metric 2ds . 
 MAXWELL’s equations can be expressed in that manifold in which they take on a 
simple, symmetric form as they do in LORENTZ’s theory of electrodynamics.  The 
electromagnetic rays are null-length geodesics of 4B .  The geometric study of 

electromagnetic rays in space yields the statement of FERMAT’s principle. 
 In order to carry out that study, we begin by generalizing to the case of a charged, 
conducting, perfect fluid the notion of permanent motions that are linked to the existence 
of a connected, one-parameter group of global isometries whose trajectories are time-like 
and leave no point of B4 invariant (*** ).  If the motion of the fluid considered is 

permanent then a group of isometries that are induced by the group of the spacetime are 
induced in 4B .  We will then be in a situation in which “LICHNEROWICZ’s method of 

descent” applies (**** ).  Upon projecting the null-length geodesics of 4B  onto the 

quotient manifold of 4B  by the equivalence relation that is defined by its group of 

                                                
 (*) “Etude électromagnetique et thermodynamique d’un fluide relativiste chargé,” J. Rat. Mech. Anal. 
5 (1956), 473-583. 
 (** ) GORDON found this metric by taking an algebraic route.  
 (*** ) A. LICHNEROWICZ, Théories relativistes de la gravitation et de l’électromagnétisme, chap. IV, 
III, pp. 83-90.  Maison, 1955. 
 (**** ) ibid., Book II, chap. 1.  
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isometries, we will obtain a theorem that generalizes FERMAT’s principle in relativity.  
That theorem will be valid for a medium in an arbitrary state of permanent motion.  In 
particular, in the case of a MINKOWSKI spacetime without gravitation, it will yield a 
proof of the relativistic formula for the composition of velocities as a consequence. 
 

Notations employed 
 

 ∂α = 
xα
∂

∂
, ∂αβ = 

2

x xα β
∂

∂ ∂
: partial derivatives, 

  ∇α     : covariant derivative, 
 
 α, β, … (all Greek indices)  = 0, 1, 2, 3, 
 i, j, … (all Latin indices)  = 1, 2, 3. 
 
 

I.  Electromagnetic inductions.  Integration of MAXWELL’s equations. 
 

1. MAXWELL’s equations in the spacetime B4 . 

 
 Let a domain D in the spacetime B4 of general relativity, which is endowed with the 

world-metric: 
(1.1)    ds2 = gαβ dxα dxβ (α, β = 0, 1, 2, 3), 
 
be occupied with a material distribution that is schematized in the form of a fluid-
electromagnetic field.  Let u denote the unitary velocity vector at each point x of D.  One 

calls a frame at x a proper frame when it is an orthonormal frame whose first vector V(0) 
coincides with u and whose other three vectors V(i) are space-like and normalized by the 
condition that: 

gαβ V (i)α V (i)β = − 1. 
 

 Electromagnetic phenomena are characterized by two antisymmetric tensor fields of 
order 2: viz., the electric field-magnetic induction tensor Hαβ and the electric induction-
magnetic field tensor Gαβ , whose components relate to a proper frame at the point x 
considered will have the values: 
 

(Hαβ) = 

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

E E E

E B B

E B B

E B B

 
 − − 
 − −
 − − 

, (Gαβ) = 

1 2 3

1 3 2

2 3 1

3 2 1

0

0

0

0

D D D

D H H

D H H

D H H

 
 − − 
 − −
 − − 

, 

 
and verify the relations: 
 
(1.2)   G0i = ε H0i , Hij = µ Gij (i, j = 1, 2, 3), 
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in which the scalars ε and µ represent the dielectric strength and the magnetic 
permeability, respectively, of the medium considered. 
 We introduce the adjoint tensors: 
 

(1.3)    H αβ
∗

 = 1
2 ηαβγδ Hγδ ,  G αβ

∗
 = 1

2 ηαβγδ Gγδ , 

 
in which ηαβγδ is the completely-antisymmetric tensor that is attached to the volume 
element form of B4 .  The relations (1.2) can then be written in the invariant form: 

 
(1.4) Gαβ u

α  = ε Hαβ u
α, 

 

(1.5) µ G αβ
∗

uα = H αβ
∗

 uα, 
 
which is valid in an arbitrary local coordinate system.  These relations are called the 
constraint equations. 
 The tensor fields Hαβ and Gαβ  must satisfy MAXWELL’s equations, which are 
written: 

(1.6)     H αβ
α

∗
∇ = 0, 

(1.7)     ∇α Gαβ
  = Jβ, 

 
in which J β is the electric current vector.  The first group of MAXWELL equations can 
be further written: 

1
2 ηαβγδ ∇α Hβγ  = 0. 

 
This expresses the idea that there exists a local vector field ϕα such that Hαβ is its 
rotation; i.e: 

Hαβ = ∂α ϕβ − ∂β ϕα . 
 
 The evolution of the electromagnetic field is well-determined when one knows Jβ – 
i.e., the distribution of the electricity.  For a non-conducting medium, one can assume 
that J is collinear to the velocity vector: 
 

Jα = δ uα. 
 

δ is called the proper density of the electric charge, and the electric current is a 
convection current.  More generally, one is led to make the hypothesis: 
 

Jα = δ uα + σ uρ H
ρα, 

 
in which δ is again the proper density of electric charges and σ is a scalar that 
characterizes the electric conductivity of the medium.  J then possesses a component that 
is collinear to u and a component Γα = σ uρ H

ρα that is orthogonal to u.  The first one 
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represents the convection current, and the second one represents the conduction current, 
which satisfies OHM’s hypothesis. 
 Equations (1.4), (1.5), (1.6), (1.7) constitute the equations of electromagnetism in the 
presence of inductions in matter.  In vacuo, one has the equality: 
 
(1.8)     ε µ = 1, 
 
and MAXWELL’s equations become: 
 

(1.9)     H αβ
α

∗
∇ = 0, 

(1.10)     ∇α Gαβ
   = 0, 
 

while the constraint equations reduce to: 
 

(1.11)     Gαβ = 
1

µ
Hαβ = ε Hαβ . 

 
 In what follows, we will let E and D denote the vectors that figure in the left-hand 

side of MAXWELL’s equations, namely: 
 

(1.12)     E
β ≡ H αβ

α

∗
∇ , 

(1.13)     D
β ≡ ∇α Gαβ. 

 
One proves that their divergences are zero: 
 
(1.14)     ∇α Eα = 0, 

(1.15)     ∇α Dα = 0. 

 
These two equations are called the conservation conditions that relate to MAXWELL’s 
equations; they express the conservation of electricity.  Therefore, one infers from (1.7) 
and (1.15) that: 

∇α Jα = 0. 
 
 

2.  Expressing the Gαβ as functions of the Hαβ . 
 

 The constraint equations (1.4) and (1.5) express the linear character of the relations 
between the inductions and the fields.  They show that the two tensor fields Hαβ and Gαβ 
are not independent of each other.  One can express the Gαβ as functions of the Hαβ . 
 Indeed, by starting with (1.4), we can form the equality: 
 
(2.1)   (Gαβ uγ + Gβγ uα) uβ = ε (Hαβ uγ + Hβγ uα) uβ. 
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On the other hand, (1.5) can be written in the following form: 
 

Gαβ uγ + Gβγ uα + Gγα uβ = 
1

µ
(Hαβ uγ + Hβγ uα + Hγα uβ), 

 
which is true for any group of given values for α, β, γ.  By contracted multiplication of 
this relation with uβ and then subtraction of (2.1) from the equality thus obtained, we will 
get: 

Gγα = 
1

µ
(Hαβ uγ + Hβγ uα + Hγα uβ) u

β − ε (Hαβ uγ + Hβγ uα) uβ. 

 
 We then deduce that: 
 

(2.2)   Gαβ = 
1

µ
Hαβ + 

1 εµ
µ

−
(Hσα uσ uβ − Hσβ u

σ uα). 

 
This is the desired relation.  In contravariant components, one will have: 
 

(2.3)   Gαβ = 
1

µ
Hαβ + 

1 εµ
µ

−
(Hσα uσ uβ − Hσβ uσ uα). 

 
 

3.  The integration of the MAXWELL-EINSTEIN equations  
 

 The electromagnetic fields (Hαβ, Gαβ) and the metric ds2 = gαβ dxα dxβ are linked by 
the MAXWELL-EINSTEIN equations.  If the medium is in motion, and the domain 
considered D4 is schematized in the form of a charged, conducting, perfect fluid then the 
EINSTEIN equations will be (*): 
 
(3.1)  Sαβ ≡ Rαβ – 1

2 R gαβ = χ Tαβ , 
 
   Tαβ ≡ (ρ + p) uα uβ – p gαβ – (uα qβ + uβ qα) + ταβ – (1 – εµ) ταρ u

ρ uβ , 
  
   ταβ ≡ 1

4  gαβ (Gρσ Hρσ) − Gρα Hρ
σ

 , 
 
(3.2)  qα = − κ ∂ρϑ ( gρ

α  − uρ uα), 

 
in which p is the pressure and ϑ is the temperature at each point of the fluid.  
MAXWELL’s equations are: 

                                                
 (*) Cf., “Étude électromagnetique et thermodynamique d’un fluide relativiste chargé,” J. Rat. Mech. 
Anal. 5 (1956), 473-583. 
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(3.3)    E
δ = 1

2 ηαβγδ ∇α Hβγ = 0, 

 
(3.4)    Dδ = gαβ ∇α Gρβ = δ uβ + σ uα Hαβ . 

 
One can add the following conservation equations to these equations: 
 
(3.5)     ∇α Tαβ = 0, 
 

(3.6)    ∇α qα = c ρ uα ∂αϑ − 
1

ρ
 uα ∂αϑ, 

 
(3.7)    ∇α (δ uα + σ uρ H

αβ) = 0. 
 
 The scalars κ, c, l, ε, µ, σ are assumed to be given: They characterize the fluid 
envisioned, which admits the following equation of state, moreover: 
 
(3.8)     ρ = ϕ (p, ϑ). 
 
The field variables are composed of the set: 
 

H (gαβ, Hαβ, ϑ, uα, p, δ), 

 
where the vector uα is normalized: 
(3.9)     gαβ u

α uβ = + 1. 
 
 The problem that one then poses is that of integrating the field equations.  One can 
study it by analyzing the Cauchy problem.  In order to do that, one is given a 
hypersurface S that is space-like and represented locally by: 

 
x0  = 0, 

and the values of the quantities: 
 

C (gαβ, ∂0 gαβ ; Hαβ, ϑ, ∂0 ϑ) 

 
on that surface, and one then proposes to determine the various fields H (gαβ, Hαβ, ϑ, uα, 

p, δ) outside of S in their domains of existence.  It suffices to study the possibility of 

calculating the values of the various quantities that were introduced and their successive 
derivatives on S. 

 If the spacetime B4 is a differentiable manifold of class (C2, piece-wise C4) then one 

can suppose that gαβ has class (C1, piece-wise C3), Hαβ has class (C0, piece-wise C2), and 
ϑ has class (C2, piece-wise C4). 
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 For g00 ≠ 0, the EINSTEIN equations are equivalent to the following set of two 
systems: 
(3.10)    Rij ≡ − 1

2 g00 ∂00 gij + Fij = χ (Tij – 1
2 T gij), 

 
(3.11)  0Sα  = χ [(ρ + p) u0 uα – p 0gα  – (u0 qα + uα q0) + τ 0α − (1 – εµ) τ 0ρ u

ρ uα], 

 
in which the Fij and 0Sα  have known values on S.  Equations (3.11), when combined with 

the unitary character of uα and the equation of state, yield the quantities p, uα.  (3.10) will 
then determine ∂00 gij when g00 ≠ 0. 
 MAXWELL’s equations are equivalent to the following system: 
 

(3.12) Di  ≡ 
1

µ
[g00 – (1 – εµ) (u0)2] ∂0 H0i + 

1

µ
[g0j − (1 – εµ) u0 u j] ∂0 Hji + Φi , 

  
 = δ ui + σ uρ Hρ i , 
 
(3.13)   E 

i ≡ 1
2 η0 jki ∂0 Hjk + Ψi = 0, 

and the two identities: 
(3.14)   D

0 = δ u0 + σ uα Hα0, 
 
(3.15)   E 

0 = 1
2 η jki 0 ∂i Hjk = 0, 

 
in which the Φi and Ψi do not depend upon the ∂0Hαβ , but they do depend upon the ∂0u

α, 
while the quantity D0 does not depend upon either ∂0Hαβ or ∂0 u

α.  (3.15) expresses the 

idea that there exists a local vector potential for Hij on S.  Equation (3.14) will determine 

δ if u0 ≠ 0.  In order to get ∂0 Hαβ , one must first seek to determine the derivatives of uα, 
namely, ∂0 u

α.  That determination can be accomplished simultaneously with that of ∂0p, 
∂0ϑ, by means of the conservation equations that relate to the EINSTEIN equations (3.5), 
to which one adds the unitary character of uα, the equations of thermal conduction (3.6), 
and the equation of state.  The derivative ∂0δ is then calculated by means of the equation 
of conservation of electrical current, which can be written: 
 

u0 ∂0δ = Ω, 
 
in which Ω depends upon ∂0 u

α, but not upon the ∂0Hαβ . 
 Once the ∂0u

α have been calculated, one substitutes them into (3.12) and (3.13), 
which will finally yield the ∂0Hαβ  if: 
 

g00 – (1 – εµ) (u0)
2 ≠ 0. 

 If the hypersurface S that carries the Cauchy data C is not exceptional then it will 

result from equations (3.10), (3.12), (3.13), (3.5), (3.6), (3.7) that the quantities ∂00 gij, 
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∂0Hαβ , ∂00ϑ, ∂0 uα, ∂0p, ∂0δ are well-determined and necessarily continuous upon 
traversing the hypersurface S.  The same conclusions can be extended to higher-order 

derivatives of these quantities if one supposes that the givens are differentiable to a 
higher order than was assumed by hypothesis. 
 The determination of the preceding quantities does not involve equations (3.11), 
(3.14), (3.15).  Now, they do not contain any mixed derivative of the Cauchy givens, so 
they are constrained to verify the three equations (3.11), (3.14), (3.15) on the manifold S 

or their equivalents: 
 0Qα  ≡ 0 0S Tα αχ−  = 0, 

(I) P0  ≡ D0 – (δ u0 + σ uα Hα0) = 0, 

 E
0  = 0, 

in which one has set: 
 

Qαβ = Sαβ – χ Tαβ , Pα = Dα − (δ uα + σ uρ Hρα) . 

 
 Now consider a set H (gαβ, Hαβ, ϑ, uα, p, δ) that is a solution to equations (3.10), 

(3.12), (3.13), (3.5), (3.6), (3.7) that corresponds to Cauchy data C that satisfy equations 

(I) on S.  By virtue of the conservative character of the left-hand sides of the 

MAXWELL-EINSTEIN equations and the conservation equations (3.5), (3.7), one will 
have: 

Qα
α β∇  = 0, ∇α Pα = 0, ∇α Eα = 0. 

 
By virtue of (3.11), (3.12), (3.13), these identities will reduce to the equations: 
 
 00 0

0g Qα∂  = 0 0i
iA Q B Qβ β

α β α β∂ + , 

 ∂0 P 0  = − Ci ∂i P 0 − (∂i C
i +  α

αβΓ Cβ) P 0, 

 ∂α Eα = − 0
α
αΓ  E 

0, 

 
in which the iA β

α , Bβ
α , Cα are continuous functions.  These equations are linear and 

homogeneous with respect to the unknowns 0Qα , P 0, E 0.  Since 0Qα = P 0 = E 0 = 0 on S, 

they will admit no other solution besides the identically zero solution.  It then results that 
if equations (I) are verified by the Cauchy data on S then they will likewise be verified in 

all of the domain of spacetime considered by the solution H (gαβ, Hαβ, ϑ, uα, p, δ) of the 

field equations. 
 The problem of integrating the field equations finally consists of the choice of 
Cauchy data that will render equations (3.11), (3.14), (3.15) compatible, which will 
permit one to calculate uα, p, δ, and then the integration of the system of equations (3.10), 
(3.12), (3.13), (3.5), (3.6), (3.7), which will permit one to study the evolution of the fields 
H (gαβ, Hαβ, ϑ, uα, p, δ).  If the givens of the problem are real-analytic then, with the aid 
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of the CAUCHY-KOWALEWSKI existence theorem for partial differential equations, 
one can establish that the problem will admit one and only one real-analytic solution 
whose development in powers of x0 we know, up to a coordinate change that preserves 
the hypersurface S point-by-point, along with the Cauchy data on S.  The method of 

FOURES will permit one to establish the existence and uniqueness of the solution under 
the hypothesis of simple differentiability. 
 
 

4.  The characteristic manifolds 3
M
B  

 
 In regard to equations (3.12), one sees that if the hypersurface S that carries the 

Cauchy data is such that one has: 
 

g00 – (1 – εµ) (u0)2 = 0 
 
on S then the derivatives ∂0 H0 of the electromagnetic field can be discontinuous upon 

traversing S.  An infinitude of distinct solutions to MAXWELL’s equations that 

correspond to the same CAUCHY data can exist.  The manifold S is a characteristic 

manifold for MAXWELL’s equations; such a manifold will be denoted by 3
M
B . 

 In an arbitrary local coordinate system, the characteristic manifolds 3
M
B  that are 

defined by f(xα) = 0 will be the manifolds that satisfy the equation: 
 
(4.1)    [gαβ – (1 – εµ) uα uβ] ∂α f ∂β f = 0. 
 
Discontinuities of the electromagnetic field can be produced when one traverses these 
manifolds that constitute the relativistic extension of the classical electromagnetic wave 
fronts.  We suppose that the wave fronts are time-like, or, more rigorously, they are 
tangent to the elementary cone ds2 = 0 on B4; we confirm that this hypothesis is indeed in 

accord with the demands of relativistic physics.  If that is true then: 
 

∆1f ≡ gαβ ∂α f ∂β f = (1 – εµ) (uα ∂α f) ≤ 0. 
One then deduces that: 
(4.2)     εµ ≥ 1. 
 
 Having said that, the generalization of HUGONIOT’s hypothesis will permit one to 
evaluate what one can regard as the velocity of propagation of the electromagnetic wave 
in question here.  In order to do that, consider two neighboring wave surfaces 3 0( )M

B  and 

3( )M
ϑB  that are defined by the equations: 

 
f(xα) = 0, f(xα) = ϑ, 

and take ϑ to be infinitely small. 



Quan – Electromagnetic inductions in general relativity and Fermat’s principle. 11 

 The streamline that issues from the point x of 3 0( )M
B  will cut 3( )M

ϑB  at a point that is 

defined, up to higher-order infinitesimals, by x + η u, where η is given by the relation: 
 
(4.3)     η uα ∂α f = ϑ. 
 
Let n be the normal vector (n2 = 1) that is normal to the wave surface 3 0( )M

B  at x.  Its 

covariant components at x are: 

(4.4)     nλ = 
f

g f f

λ
αβ

α β

∂

− ∂ ∂
. 

 
 The orthogonal trajectory to 3

M
B  that issues from x will cut 3( )M

ϑB  at a point that is 

written, up to higher-order infinitesimals, as x + η1 n, where η1 is determined by the 
relation: 

η1 n
λ ∂λ f = ϑ. 

One deduces from this that: 
 

(4.5)  η1 = 
n fλ

λ

ϑ
∂

 = 
g f f

g f f

αβ
α β

αβ
α β

ϑ − ∂ ∂
∂ ∂

 = 
g f fαβ

α β

ϑ−
− ∂ ∂

. 

 
 Introduce the vector t = η u – η1 n.  By virtue of (4.3) and (4.4), one will have: 
 

η(u ⋅⋅⋅⋅ n) = − η1  
and 

t ⋅⋅⋅⋅ n = (η u – η1 n) ⋅⋅⋅⋅ n = η (u ⋅⋅⋅⋅ n) + η1 = 0. 
 

The vector t will then be tangent to the wave surface.  It is time-like since its square: 
 

2
0η = (t)2 = η2 − 2

1η  − 2η η1 (u ⋅⋅⋅⋅ n) = η2 + 2
1η  

is positive. 
 The vector η u then appears to be the sum of two vectors, one of which is orthogonal 
to the wave surface and space-like, while the other one is tangent to that surface and 
time-like.  The velocity of propagation V of the wave is found to be defined as the limit 
of the ratio of the moduli of these two vectors, namely: 
 

V = 1

0
0

lim
ϑ

η
η→

. 

One will then have: 

V 2 = 
2
1
20
0

lim
ϑ

η
η→

, 

 
so upon replacing η1 and η0 by their values, one will get: 
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V 2 = 
1

εµ
. 

 

 The velocity of propagation of the electromagnetic waves is then 1 εµ .  That 

value suggests two remarks: First, it generalizes the value that is obtained in classical 
electromagnetism.  Moreover, by our hypothesis (εµ ≥ 1), the velocity of propagation V is 
less than a limiting value c = 1; that limiting value will coincide with the value of the 
velocity of propagation of the electromagnetic wave in vacuo (εµ = 1). 
 
 

II.  Study of the characteristics 
 

5.  Definition of an associated metric 
 

 The integration of MAXWELL’s equations involves the intervention of the 
symmetric contravariant tensor field: 
 
(5.1)    gαβ = gαβ − (1 – εµ) uα uβ, 
 
whose associated quadratic form represents the characteristic form of MAXWELL’s 
equations.  The study of its characteristic manifolds 3

M
B  will become more suggestive if 

one introduces the Riemannian metric: 
 
(5.2)     2ds  = g dx dxα β

αβ , 

 
in which the matrix of coefficients ( )gαβ  is the matrix inverse to the matrix ( )gαβ .  One 

will easily obtain: 

(5.3)    gαβ  = gαβ − 
1

1
εµ

 − 
 

uα uβ 

 
upon performing the calculations in the proper frame.  Moreover, if g and g  represent 

the determinant of the matrix (gαβ) and that of the matrix ( )gαβ , respectively, then one 

will have the relation: 
(5.4)     g = ε µ g . 
 
 The metric 2ds  will be called the associated metric.  It plays a fundamental role in 
the study of the characteristic manifolds of MAXWELL’s equations.  The world metric 
ds2 = gαβ dxα dxβ is of the hyperbolic normal type.  When referred to a proper frame, it 
will take the canonical form: 
 

ds2 = (ω0)2 – (ω1)2 – (ω2)2 – (ω3)2, 
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in which the (ωα) are linearly-independent, local Pfaff forms.  The associated metric itself 
will then take the form: 

2ds  = 
1

1 u uαβ α βδ
εµ

  − −  
  

ωα ωβ, 

 
in which δαβ if α ≠ β, δ00 = + 1, and δii = − 1, and u0 = 1, ui = 0 in the proper frame.  One 
then deduces that: 

2ds  = 

2
0ω

εµ
 
  
 

– (ω1)2 – (ω2)2 – (ω3)2, 

 
which shows that the associated metric is likewise of the hyperbolic normal type. 
 In what follows, we will let 4B  denote the Riemannian manifold that is defined by 

the differentiable manifold that carries B4 and is endowed with the associated metric 
2ds .  Furthermore, we will distinguish the quantities that are defined relative to 4B  by 

an overbar.  We shall call the real cone xC  at a point x that consists of directions tangent 

to 4B  that are defined by the equation 2ds  = 0 the associated elementary cone. 

 
 

6.  Study of the bicharacteristics. 
 

 In the Riemannian space 4B , the characteristic manifolds of MAXWELL’s equations 

that are defined locally by the f(xα) = 0 are solutions to the first-order partial differential 
equation: 
(6.1)     1 f∆ ≡ g f fαβ

α β∂ ∂  = 0. 

 
They are tangent to the associated elementary cone xC  at each point.  The elementary 

cones xC  of 4B  are thus characteristic cones for MAXWELL’s equations, and they 

admit the manifolds that are tangent to those cones for characteristic manifolds.  
However, the characteristic cones of MAXWELL’s equations in the spacetime B4 are 

generally different from the elementary cones C4 (ds2 = 0).  They will coincide with the 

latter only in regions that are devoid of matter. 
 A characteristic manifold 3

M
B  – i.e., a solution to (6.1) – can be generated by means 

of the characteristic bands of (6.1).  Such a solution can be generated by means of the 
bands of 4B  that are each composed of set of a curve L0 and a one-parameter family of 

elementary 3-planes that are tangent to those curves.  The curves L0 are called the 

bicharacteristics of MAXWELL’s equations. 
 In order to determine them, set: 
     2H(xλ, yµ) = gαβ yα yβ , 
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and consider the partial differential equation: 
 
(6.2)    1 f∆ ≡ 2H(xλ, ∂µ f) = C, 

 
where C is an arbitrary constant.  Relative to the variables xα, f, yβ, the characteristic 
bands of MAXWELL’s equations (3.1) and (3.2) are given by the solutions to the 
differential system: 
 

0

0

dx
H

y

∂
∂

= … = 
3

3

dx
H

y

∂
∂

 = 
2

df

H
= − 0

0

dy
H

x

∂
∂

= … = − 3

3

dy
H

x

∂
∂

 = du 

 
that satisfy the first integral: 

2H(xλ, ∂µ f) = C 
 
for the value C of the constant.  If one introduces the auxiliary variable u then the 
functions xα(u), yβ(u) will be given by the canonical system: 
 

(6.3)    
dx

du

α

= 
H

yα

∂
∂

,  
dy

du
α = − H

xα
∂
∂

 

 
that relates to the Hamiltonian function H(xλ, yµ).  The first group of equations (6.3) is 
written out explicitly as: 

(6.4)    xα
ɺ  = g yαβ

β   
dx

x
du

α
α 

= 
 
ɺ . 

Inversely: 
(6.5)    yβ = g xβ

αβ ɺ . 

 
 Having said that, the solutions xα(u) to (6.3) will be extremals of the Lagrangian 
function L that is defined by: 

2L = g x xα β
αβ ɺ ɺ , 

 
since upon passing from the variables (xα, xα

ɺ ) to the canonical variables (xβ, yβ), which 
are coupled by (6.4) and (6.5), one will have the classical relation: 
 

H = 
L

x
x

α
α

∂
∂

ɺ  − L = L 

 
between H and L.  These solutions are the extremals that satisfy the first integral: 
 
(5.6)     2L = C 
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for the value C of the constant.  Now, from the existence of that first integral, the 
extremals thus defined will be also extremals of: 
 

2L  = g x xα β
αβ ɺ ɺ  

 
that satisfy (6.6).  It then results that the xα (u) define the geodesics of 4B .  If C = 0 then 

the differential system of the characteristics of (6.1) will admit the first integral f = const., 
and the manifolds 3

M
B  can be generated by the bands of 4B  that are defined by the null-

length geodesics 0L , with the associated 3-plane being the plane tangent to the 

elementary cone xC  along the tangent to 0L . 

 We have proved the theorem: 
 
 Theorem.  The bicharacteristics of MAXWELL’s equations are the null-length 
geodesics of the Riemannian manifold 4B , which is endowed with the metric: 

 
2ds  = gαβ dxα dxβ. 

  
 In the language of the theory of the propagation of waves, the characteristic manifolds 

3
M
B  play the role of electromagnetic wave surfaces.  The bicharacteristics 0L  are the 

associated electromagnetic rays.  We can thus state the following result: 
 
 Theorem.  In an isotropic medium with constant dielectric and magnetic variables ε, 
µ, the electromagnetic rays can be considered to be null-length geodesics of the 
Riemannian space 4B , which is endowed with the metric: 

 

2ds  = gαβ dxα dxβ = 2ds  = 
1

1g u uαβ α βεµ
  − −  

  
dxα dxβ. 

 
in which gαβ is the fundamental metric tensor, and uα is the unitary world-velocity vector 
that is defined at each point of the medium. 
 
 

7.  The equations of electromagnetism in the associated metric 
 

 Define the antisymmetric tensor field Hαβ  on 4B  such that at each point (xα) one 

has: 
Hαβ  = Hαβ . 

 
Upon raising the indices of Hαβ with the aid of the metric tensor on 4B , we will have: 
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  H αβ = g g Hρα σβ

ρσ  = [(gρα – (1 – εµ) uρ uα] [gσβ – (1 – εµ) uσ uβ) Hρσ , 

so 
   H αβ = gρα gσβ Hρσ + (1 – εµ) (gρα Hσρ u

σ uβ − gσβ Hρσ uρ uα). 
 

Upon comparing this equality with the relation (2.3) that gives the expression for Gαβ as a 
function of Hαβ , we see that at each point (xα), one will have: 
 

Gαβ = 
1

H αβ

µ
. 

 
 The study of the CAUCHY problem that relates to MAXWELL’s equations in B4 

suggests that we should write the following equations in 4B : 
 

(7.1)     H αβ
α

∗

∇ = 0, 

 
(7.2)     Gαβ

α∇ = J β , 

 
in which Gαβ  is a tensor that is proportional to Hαβ .  The first group (7.1) can once more 

be written: 

H αβ
α

∗

∇  = 
| |

2

g
Hαβγδ

α γδε ∂ = 0. 

 
It expresses the idea that there exists a local vector field αϕ  whose rotation is Hαβ .  

Since g = εµ g  ≠ 0 and Hαβ = Hαβ at the point considered, one sees that equations (7.1) 

are equivalent to MAXWELL’s equations of the first group (16) in B4 .  We can then 

identify the two vector potentials αϕ  and ϕα . 

 As for equations (7.2), one can write them as: 
 

Gαβ
α∇ = ( )1

| |
| |

g G
g

αβ
α∂  = | |

| |

G
g

g

αβ

α
εµ

εµ
 

∂   
 

 = J β  

or 

1
| |

| |

G
g

g

αβ

α εµ
 

∂   
 

 = 
J β

εµ
. 

 
Upon comparing this equation with MAXWELL’s equations of the second group (1.7) in 
B4, when they are written in the form: 
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( )1
| |

| |
g G

g
αβ

α∂  = Jβ, 

 
one sees that equations (7.2) will be equivalent to equations (1.7) if one takes: 
 

Gαβ  = εµ Gαβ and  J β = εµ Jβ . 

One is led to set: 

(7.3)     Gαβ  = Hαβ
ε
µ

. 

 
 In particular, if one makes the hypothesis that: 
 
 Jβ = δ uβ + σ uα Hαβ 
 then one will verify that: 
 J β = u u Hβ αβ

αδ σ+ , 

 
in which uα  = dxα / ds .  One will observe that the scalars ε, µ, σ, δ are the same in B4 

and 4B .  It should be noted that in classical physics, MAXWELL’s equations lead to the 

study of the second-order, hyperbolic, linear operator: 
 

2 2 2 2

2 2 2 2 2

1

V t x y z

∂ ∂ ∂ ∂− − −
∂ ∂ ∂ ∂

. 

 
That operator will remain invariant under the LORENTZ group – i.e., the group of 
transformations that leave invariant the quadratic form in the differentials: 
 

V2 dt2 – dx2 – dy2 – dz2, 
 
and that is only the translation into the proper frame of the associated metric form, which 
is written: 

2ds  = 
2c

εµ
dt2 – dx2 – dy2 – dz2 

here.  One sees that: 

V = 
2c

εµ
. 

 

 The quantity εµ  that presents itself in our study can be interpreted as the index of 

refraction of the medium considered.  We set: 
 

n = εµ , 
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so n will be a dimensionless positive number ≥ 1. 
 
 

III.  Permanent motion of a charged, perfect fluid 
 

8.  Spacetime that is stationary in a domain 
 

 Consider a well-defined, four-dimensional domain D4 in B4 and suppose that the 

Riemannian manifold that is defined by D4 is endowed with the world metric: 

 
ds2 = gαβ dxα dxβ 

 
admits a connected, one-parameter group of global isometries that leaves no point of D4 

invariant and whose trajectories z are time-like.  We suppose, moreover, that: 
 
 a) The z are homeomorphic to the real line R. 

 
 b) One can find a three-dimensional differentiable manifold D3 that satisfies the 

same differentiability hypotheses as B4 and is such that there exists a differentiable 

homeomorphism of the same class from D4 to the topological product D3 × R that maps 

z to the line factor. 
 
 Under these conditions, we say that the Riemannian spacetime B4 is stationary in D4.  

The trajectories z are called time lines.  The manifold D3 that is the quotient of the D4 by 

the equivalence relation that is defined by the group is called space. 
 Let ξξξξ be the infinitesimal generator of the group of isometries.  Since no point of D4 

is invariant, ξξξξ ≠ 0 at every point of D4.  One knows that this vector satisfies the KILLING 

equations: 
(8.1)    X gαβ ≡ ∇α ξβ + ∇β ξα = 0, 
 
in which X denotes the Lie derivative operator that relates to the vector ξξξξ. 
 One can define a local coordinate system (xα) in D4 (which are said to be adapted to 

the stationary character) in the following manner: The (xi) are an arbitrary local 
coordinate system on D3; being given the (xi) will then determine a time line.  In order to 

determine a point on that line, one gives the manifold x0 = const. to which it belongs, and 
these manifolds will be the manifolds that are homeomorphic to D3 and are defined by 

the homeomorphism b), and are such that the components of ξξξξ are: 
 

ξ 0 = 1,  ξ i = 0. 
 
In these adapted coordinate systems, one will have: 
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ξα = gα 0 , 
 
and the KILLING equations will translate into: 
 

X gαβ = ∂0 gαβ = 0. 
 
Therefore, the gαβ are independent of the variable x0. 
 In what follows, we shall introduce only adapted local coordinate systems.  Upon 
performing the decomposition of the fundamental quadratic form: 
 

ds2 = gαβ dxα dxβ 
 
into squares, starting with the director variable dx0, we will get: 
 
(8.2)     ds2 = (gα 0 dxα)2 + 2ˆds , 
in which: 

(8.3)    2ˆds  = ˆ ijg  dxi dx j = 0 0

00

i j
ij

g g
g

g

 
− 

 
dxi dx j 

 
is independent of x0 and defines a negative-definite Riemannian metric on D3 . 

 
 

9.  Permanent motion of a charged, perfect fluid 
 

 Consider a charged, perfect, conducting fluid that moves in a domain D4 .  The 

motion of that fluid will be called permanent if the associated Riemannian spacetime B4 

is stationary in the domain D4, and the group of isometries leaves invariant the unitary 

velocity vector uα, the pressure p, the temperature ϑ, the electric charge density δ, the 
heat current vector qα , and the induced electromagnetic fields Hαβ, Gαβ : 
 

X gαβ = X Hαβ = X Gαβ = ∂0 Gαβ = ∂0 u
α = ∂0ϑ = ∂0 qα = ∂0 p  = ∂0 δ = 0; 

 
hence, the gαβ , Hαβ , Gαβ , u

α, ϑ, qα , p, δ do not depend upon the variable x0. 
 Consider a motion of the fluid envisioned such that: 
 
 a) The associated Riemannian spacetime B4 is stationary in D4 . 

 
 b) The group of isometries leaves invariant Hαβ , ϑ, c, l, κ, ε, µ, σ. 
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We shall show that if this is true then the motion of the fluid will be permanent.  Now, 
the hypotheses a and b translate into the following conditions in adapted coordinates (1): 
 

∂0gαβ = ∂0Hαβ = ∂0ϑ = ∂0κ  = ∂0 c = ∂0 l = ∂0ε = ∂0µ = ∂0σ = 0. 
 
It suffices to show that ∂0Gαβ = ∂0 u

α = ∂0 qα = ∂0 p = ∂0δ = 0. 

 Let x be an arbitrary point of D4 .  Choose an adapted coordinate system (x0, xi) such 

that the point x belongs to the manifold S whose equation is x0 = 0.  Suppose that the 

manifold S is space-like and that it is not an exceptional manifold of the Cauchy problem 

that relates to the field equations that correspond to the fluid considered.  We then know 
(cf., § 3) that the system of field equations will admit a well-defined solution H (gαβ , Hαβ 

, ϑ, uα, p, δ) for a system of Cauchy data C (gαβ , ∂0 gαβ ; Hαβ ; ϑ, ∂0 ϑ) that is carried by 

S and satisfies: 

(I)     0Qα = 0, P0 = 0,  E 
0 = 0. 

 
Moreover, equations (I), which are verified on S, are likewise verified on the entire 

domain of the spacetime D4 being considered.  Now consider the manifold S′ whose 

equation is: 
x 0 = h, 

 
which corresponds, point-by-point, to manifold S under the homeomorphism that maps 

D4 onto the topological product D3 × R in which the time line z maps to the line factor.  

By virtue of the hypotheses a) and b), the solution H (gαβ , Hαβ , ϑ, uα, p, δ) is such that 

the quantities C (gαβ , ∂0 gαβ ; Hαβ ; ϑ, ∂0 ϑ) will have equal values at the points z of S and 

S′ that have the same local coordinates (xi).  These quantities verify equations (I′), which 

are identical to (I), for the solution H.  Thus, if one poses the Cauchy problem with the 

preceding data C being carried by S′ then one must first calculate the quantities uα, p, δ 

by starting with equations (I′) and then integrate the field equation.  Since all of the 
equations are identical, and the givens are identical, one will obtain a solution H′ that is 

identical to the solution H.  In other words, the quantities (gαβ , Hαβ , ϑ, uα, p, δ) will 

                                                
 (1) In a previous paper “Sur une théorie relativiste des fluides thermodynamiques” [Ann. di Math. pura 
ed applicata, ser. IV, 38 (1955)], we studied the permanent motions of a pure thermodynamic fluid by 
supposing that, in addition to the conditions ∂0 gαβ = ∂0ϑ = 0, one also satisfied the hypothesis that: 
 

∂0 q
0 = c ρ u0 ∂0 ϑ – 

l

ρ
u0 ρ ; 

 
indeed, the latter hypothesis is a consequence of ∂0ϑ = 0.  The conditions X gαβ = X ϑ = 0 suffice to insure 
that the motion of the thermodynamic fluid is permanent. 
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have the same values, along with their derivatives at the points with the same local 
coordinates (xi); they are thus invariant along the time lines. 
 It then results that the hypotheses a) and b) imply that: 
 

∂0 u
α = ∂0 p = ∂0 δ = 0, 

 
and by virtue of the defining equations of Gαβ and qα : 
 

∂0 Gαβ = ∂0 qα = 0. 
Consequently: 

X gαβ = X Hαβ = X Gαβ = X uα = X ϑ = X qα = X p = X δ = 0. 
 
The motion of the fluid being considered is therefore permanent.  One can state the 
theorem: 
 
 Theorem.  If one is given a charged, perfect, conducting fluid in a domain D4 then in 

order for the motion of that fluid to be permanent it is necessary and sufficient that: 
 
 a) The associated Riemannian spacetime B4 must be stationary in D4 . 

 
 b) The group of isometries must leave invariant the fields ϑ and Hαβ , and the 
coefficients c, l, κ, ε, µ, σ. 
 
 Remark. – If there exists a global vector potential for the electromagnetic field – i.e., 
a vector field ϕα such that: 

Hαβ = ∂α ϕβ − ∂β ϕα  
 
(which is the case, in particular, when the domain is simply-connected) then one can 
replace the hypothesis that concerns the field Hαβ with the equivalent hypothesis that 
concerns the vector potential; one supposes that the ϕα are invariant under the group of 
isometries. 
 
 

10.  Isometries that are induced in  4B  

 
 In what follows, we shall consider a simply-connected domain D4 that is occupied by 

a charged, conducting fluid.  We suppose, more generally, that the motion of that medium 
is such that the associated Riemannian spacetime B4 is stationary in D4 and the group of 

isometries leaves invariant the unitary velocity vector u and the index n = εµ  of the 

medium: 
(10.1)     X gαβ = X uα = X n = 0. 
 
That will be true, in particular, when the medium considered is a charged, perfect, 
conducting fluid in a state of permanent motion. 
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 From (10.1), the quantities: 

gαβ = gαβ – 2

1
1

n
 − 
 

uα uβ 

 
are invariant under the group of isometries of B4 .  It then results that the contravariant 

vector field ξξξξ that is the generator of the group of isometries of B4 will determine a 

connected, global group of isometries in the Riemannian manifold that is defined by the 
differentiable manifold that carries D4 and is endowed with the associated metric: 

 
2ds  = gαβ dxα dxβ, 

 
and that group will leave no point of the corresponding domain 4D  invariant, and the 

coordinate system (x0, xi) will be an adapted, local coordinate system for that group.  One 
can take the infinitesimal generator of that group to be the vector ζζζζ that has the 
contravariant components: 
 

ζ 0 = ξ 0 = 1, ζ i = ξ i = 0. 
 
It is obvious that the square of the vector will have the value: 
 

(10.2)    (ζζζζ)2 = 00g = g00 – 2

1
1

n
 − 
 

(u0)
2. 

 
 Now, introduce the spatial quantity that takes the form of the vector u that relates to 
the time direction ξξξξ.  Let: 

− w2 = ˆ ijg  ui uj . 

 
By virtue of the unitary character of u, one will have: 
 

gαβ u
α uβ ≡ 2

0
00

1
ˆ( ) i j

ijg u g u u
g

α
α +  = 1. 

One will then deduce that: 
(u0)

2 = g00 (1 + w2). 
 
Upon substituting this value into (10.2) and replacing 1 / n2 with V 2 in it, it will become: 
 

(ζζζζ)2 = 00g = g00 (V 2 w2 + V 2 – w2). 

 
 One sees that the sign of (ζζζζ)2 can change.  In 4B , the vector ζζζζ can be time-like, 

space-like, or isotropic; the same thing will be true for the trajectories of the isometries of 

4B . 
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IV.  Geometric study of electromagnetic rays in space 
 

11.  A problem in the calculus of variations 
 

 We propose to interpret the electromagnetic rays in three-dimensional space 
geometrically.  To that effect, we begin by briefly recalling a problem in the calculus of 
variations. 
 If one is given a differentiable manifold Bn+1 then let W2(n+1) be the fiber bundle of 

tangent vectors to the various points of Bn+1.  If one adopts local coordinates (xα) on Bn+1 

then each element of W2(n+1) will consist of the union of the coordinates (xα) of the 

corresponding point x and the n + 1 components ( )xβ
ɺ  of the vector xɺ  in the natural 

frame at x that is associated with (xα).  The structure of a Finslerian manifold on Bn+1 is 

defined by being given a function L(x, xɺ ) with scalar values in W2(n+1) such that for fixed 

x, one will have L(x, xλ ɺ ) = λ L(x, xɺ ).  Such a function is represented by L(xα, xβ
ɺ ) in 

local coordinates, and is homogeneous of the first degree with respect to xβ
ɺ . 

 Consider a differentiable manifold Bn+1 that is endowed with the structure of a 

Finslerian manifold and suppose that it admits a connected, one-parameter group of 
global isometries that has ξξξξ for an infinitesimal generator and leaves no point of Bn+1 

invariant (ξξξξ ≠ 0).  Furthermore, suppose that the trajectories z of the group are 
homeomorphic to the real line R, and let Bn be the manifold of Bn+1 modulo the 

equivalence relation that is defined by the group.  One knows that there exists a local 
coordinate system (x0, xi) that is adapted to the group of isometries such that ξξξξ will have 
the contravariant components: 

ξ 0 = 1,  ξ i = 1 
 

in the associated natural frame, and the (xi) are an arbitrary local coordinate system on 
Bn.  When the (xi) are given, that will determine a trajectory.  In order to determine a 

point on that trajectory, one gives the manifold x0 = const. that it belongs to. 
 In an adapted coordinate system (x0, xi), the hypothesis of isometry translates into the 
fact that the function L is locally independent of the variable x0 : 

 
L = L 0( , , )i jx x xɺ ɺ . 

 
We shall show that it is possible to give the quotient manifold Bn the structure of a 

Finslerian manifold by means of functions L(z, zɺ ) in such a fashion that the geodesics of 

Bn+1 , which are extremals to the integral: 

 

(11.1)    
1

0

( , )
x

x
x x du∫ ɺL ,  xɺ  = 

dx

du
, 

 
correspond to the extremals of: 
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(11.2)    
1

0

( , )
z

z
L z z du∫ ɺ ,  zɺ  = 

dz

du
. 

 
In what follows, any Greek index will equal 0, 1, 2, …, n, and any Latin index will equal 
1, 2, …, n, and we will suppose that: 
 

00
∂
ɺ ɺ
L  ≠ 0, α∂

ɺ
 = 

xα
∂

∂ɺ
. 

 
 We give an extremal of (11.1) by its parametric representation xα (u), where u is an 
arbitrary parameter.  The differential system of the extremals of (11.1): 
 

(11.3)     
dx

du

α

 = xα
ɺ , 

where xα
ɺ  satisfies: 

(11.4)     
d

du x xα α
∂ ∂−
∂ ∂ɺ

L L
 = 0, 

 
is characterized by the fact that it admits the relative integral invariant: 
 

(11.5)    ω = dx
x

α
α

α

∂
∂∑
ɺ

L
= 0

0
k

k
dx dx∂ + ∂

ɺ ɺ
L L . 

 
 By virtue of the hypothesis ∂0 L = 0, one will have the first integral: 

 
(11.6)     

0
∂
ɺ
L  = h. 

 
Since 

00
∂
ɺ ɺ
L  ≠ 0, one can solve (11.6) with respect to 0xɺ  and one will get the equivalent 

equation: 
(11.7)     0xɺ = ϕ (xk, lxɺ , h), 
 
in which ϕ is a homogeneous function of degree one in lxɺ , and ϕ depends essentially 
upon h. 
 Consider the family of extremals (Ch) that correspond to a well-defined value of the 

constant h.  The last term in ω has the value h dx0 for that family and defines a relative 
integral invariant.  It will then result that this family of extremals admits the relative 
integral invariant: 
(11.8)     

k
∂
ɺ
L  dxk. 

 
Now, from the homogeneity of L, one has: 
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0
0

k
xx x∂ + ∂

ɺɺ
ɺ ɺL L  = L. 

 
As a result, for any solution (11.6) or (11.7), the quantity can be expressed by a function 
L of the variables xk, lxɺ , h: 
 
(11.9)   L (xk, lxɺ , h) = L [xk, lxɺ , ϕ (xk, lxɺ , h)] – h ϕ (xk, lxɺ , h), 

and one will have: 

k
L∂
ɺ

 = 
0k k k

hϕ ϕ∂ + ∂ ∂ − ∂
ɺ ɺ ɺ ɺ
L L  = 

k
∂
ɺ
L . 

 
 Thus, from (11.8), the projections of (Ck) onto Bn will be defined by a differential 

system that admits the relative integral invariant: 
 

π = 
k
L∂
ɺ

dxk. 

 
In other words, they are extremals of the integral: 
 

(11.10)     
1

0

( , , )
z

k l

z

L x x h du∫ ɺ , 

in which h has the chosen value. 
 One calls the correspondence that makes the function L (xk, lxɺ , 0xɺ ) correspond to the 

function L (xk, lxɺ , h) a descent.  The inverse problem admits a solution (*). 
 
 

12.  Projection of null-length geodesics onto the Riemannian manifold B4 

 
 We suppose that the Riemannian manifold 4B  satisfies the hypotheses of paragraph 

10.  The function L is defined by the relation: 

 
(12.1)     L

2 = gαβ xα xβ, 

 
where the left-hand side is a non-degenerate quadratic form, since g  = det( )gαβ  ≠ 0.  

We shall first study the extremals that correspond to the values of xα
ɺ  for which the left-

hand side is positive.  One knows, moreover, that it suffices for a geodesic to make it 
positive at a point in order for it to be positive all along the geodesic. 
 
 First case:  00g  is not annulled in the domain studied. – The descent procedure leads 

us to form the equation: 

                                                
 (*) See A. LICHNEROWICZ: Théories relativistes de la gravitation et de l’électromagnétisme, Book 
II, chap. I. 
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(12.2)    21
2 0

∂
ɺ
L  = 0

00 0
i

ig x g x+ɺ ɺ  = h L 

 
and eliminate 0xɺ  from this equation and: 
 
(12.3)     L = L – h 0xɺ . 

 
Upon decomposing L2 into squares by starting with the director variable 0xɺ , one will get: 

 

L
2 = 2

0
00

1 1 ˆ
2

i j
ijg x x

g
 ∂ + 
 

ɺ
ɺ ɺL , 

in which one sets: 

ˆ
ijg  = 0 0

00

i j
ij

g g
g

g
− , 

 

and one will see that ̂ i j
ijg x xɺ ɺ  is negative if 00g  > 0 and positive if 00g  < 0.  In the first 

case, one takes h > max 00g .  Since 21
2 0

∂ ɺL  = h L, one will infer the equation: 

 

(12.4)     L = 2

00

ˆ

1

i j
ijg x x

h

g
−

ɺ ɺ

, 

 
which yields L as a function of the variables xk, lxɺ , h.  One then infers from (12.2) that: 

 

(12.5)     0xɺ  = 0

00 00

i
ig xh

g g
−

ɺ
L . 

 
One deduces from (12.3), and by virtue of (12.4), that: 
 

(12.6)    L = 
2

0

00 00

ˆ1
i

i j i
ij

g xh
g x x h

g g
ε

 
− + 

 

ɺ
ɺ ɺ , 

where ε is the sign of 00g , 

 L is a function of xk, lxɺ , h that is homogeneous of degree one with respect to the lxɺ .  
It defines a Finslerian manifold structure on the quotient manifold 3B .  Conversely, if 

one is given the preceding function L(xk, lxɺ , h) locally in 3B  then one will easily prove 

that there exists a function L(xk, lxɺ , 0xɺ ) that is homogeneous and of degree one with 

respect to the xα
ɺ  and leads back to L by descent, and that this function is: 
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L = g x xα β
αβ ɺ ɺ . 

 
The corresponding extremal curves are thus geodesics of 4B . 

 Thus, the geodesics of the Riemannian manifold 4B  that correspond to the first 

integral: 

0
∂
ɺ
L  = h 

 
project onto the quotient manifold 3B  along extremals of the integral: 

 

(12.7)    
1

0

2
0

00 00

ˆ1
z i

i j i
ij

z

g xh
g x x h du

g g
ε

  
 − − + 
   
∫

ɺ
ɺ ɺ , 

 
in which h has the same value.  These extremals coincide with those of: 
 

(12.8)    
1

0

2
0

00 00

ˆ1
z i

i j i
ij

z

g xh
g x x du

h g g

ε  
 − − 
   
∫

ɺ
ɺ ɺ . 

 
From the expression for 0xɺ , one will have: 
 

(12.9)    dx0 = 0
2

00 00

00

1 ˆ

1

i
i j i

ij

g dxh
g dx dx

hg g
g

−
−

 

along these extremals. 
 This being the case, one can define the null-length geodesics of 4B  to be the limit 

curves that the time-like geodesics tend to as L → 0.  It results from the relation: 

 
h L = 0g xα

α ɺ  

 
that h → ∞ when L → 0 and h has the same sign as 0g xα

α ɺ .  Now: 

 

L
2 ≡ 2

0
00

1 ˆ( ) i j
ijg x g x x

g
α

α +ɺ ɺ ɺ  = 0. 

 
One then deduces that 0g xα

α ɺ  has a non-zero value and keeps a constant sign. 

 From (12.8), the projections of the null-length geodesics of 4B  onto 3B  are the 

extremals of the integral: 
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1

0

2
0

00 00

ˆlim 1
z i

i j i
ij

h
z

g xh
g x x du

h g g

ε
→∞

   
  − −      
∫

ɺ
ɺ ɺ . 

 
Upon passing to the limit, one will deduce the following result: 
 
 Lemma 1.  The null-length geodesics of 4B  project onto 3B  along the extremals of 

the integral: 

(12.10)    
1

0

0

00 00

1 ˆ
z i

i j i
ij

z

g x
g x x du

g g
εε
 

′ − −  
 
∫

ɺ
ɺ ɺ , 

 
in which ε is the sign of 00g , and ε′ is the sign of 0g xα

α ɺ . 

 
 From (12.9), one will have: 

(12.11)    dx0 = 0

00 00

1 ˆ
i

i j i
ij

g dx
g dx dx

g g
εε ′ − −  

along these extremals. 
 
One remarks that dx0 = L du. 
 
 Second case: 00g  = 0. − One will then have: 

 
(12.12)    L

2 = 0
02 i i j
i ijg x x g x x+ɺ ɺ ɺ ɺ . 

 
We suppose 0

i
ig xɺ  is finite and non-zero.  The descent process leads us to eliminate L and 

0xɺ  from (12.12), and we will get: 
 
(12.13)    0

i
ig xɺ  = h L, 

 
(12.14)    L = L – h 0xɺ . 

One infers from (12.13) that: 

  L = 0
i

ig x

h

ɺ
. 

 
Upon substituting this into (12.12), one will get: 
 

2
0

2

( )i
ig x

h

ɺ
 = 0

02 i i j
i ijg x x g x x+ɺ ɺ ɺ ɺ . 

One will then deduce that: 
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     0xɺ  = 0

02 2

i ji
iji

i
i

g x xg x

h g x
−
ɺ ɺɺ

ɺ
. 

 
Equation (12.14) will then determine L: 
 

(12.15)    L = 0

02 2

i ji
iji

i
i

g x xg x
h

h g x
+

ɺ ɺɺ

ɺ
. 

 
 Conversely, any function L of the preceding form will correspond to the function L 

that is defined by (12.12) by ascent.  One notes that L presents itself with respect to the 
variables ixɺ  as the quotient of a quadratic form with a linear form. 
 Therefore, in the case of 00g  = 0, the projections of the geodesics of 4B  onto 3B  will 

be the extremal curves of: 
1

0

0

02 2

z i ji
iji

i
iz

g x xg x
h du

h g x

 
+  

 
∫

ɺ ɺɺ

ɺ
 

 
for the corresponding value of the constant h.  These extremals coincide with those of: 
 

1

0

0
2

02 2

z i ji
iji

i
iz

g x xg x
du

h g x

 
− −  
 
∫

ɺ ɺɺ

ɺ
. 

 
As before, the projections of the null-length geodesics will be defined by: 
 

1

0

0
2

0

lim
2 2

z i ji
iji

ih
iz

g x xg x
du

h g x→∞

 
− −  
 

∫
ɺ ɺɺ

ɺ
. 

 
Upon passing to the limit, one deduces the lemma: 
 
 Lemma 2.  In any domain of 4B where 00g  = 0, the null-length geodesics of 4B  

project onto 3B  along extremals of the integral: 

 

(12.16)     
1

0 02

z i j
ij

i
iz

g x x
du

g x
−∫
ɺ ɺ

ɺ
. 

One will have: 

dx0 = − 
02

i j
ij

i
i

g x x
du

g x

ɺ ɺ

ɺ
 

along these extremals. 
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13.  FERMAT’s principle  
 

 We have established that electromagnetic rays are the null-length geodesics of the 
Riemannian manifold 4B .  We can interpret this geometrically in space if the medium 

considered is in a state of permanent motion.  Indeed, Lemmas 1 and 2 provide an 
immediate proof of the following: 
 
 Theorem.  If the motion of the medium considered is permanent and such that: 
 

00g  = g00 (V 2 w2 + V 2 – w2) ≠ 0 

 
then the electromagnetic rays in space will be the lines that realize an extremum for the 
integral: 

(13.1)    
1

0

0

00 00

1 ˆ
z i

i j i
ij

z

g x
g x x du

g g
εε
 

′ − −  
 
∫

ɺ
ɺ ɺ  

 
for the variations with fixed extremities, where ε is the sign of 00g  and ε′  is the sign of 

0g xα
α ɺ .  The time that it takes for a ray to go from the point z0 to the point z1 is given by: 

 

(13.2)    
1

0

0
z

z

dx∫  = 
1

0

0

00 00

1 ˆ
z i

i j i
ij

z

g x
g x x du

g g
εε
 

′ − −  
 
∫

ɺ
ɺ ɺ . 

 
This length of time is an extremum. 
 
 One will obtain an analogous statement in the case where 00g = 0 by replacing (13.1) 

and (13.2) with: 

(13.3)     
1

0 02

z i j
ij

i
iz

g x x
du

g x
−∫
ɺ ɺ

ɺ
 

and 

(13.4)     
1

0

0
z

z

dx∫ = 
1

0 02

z i j
ij

i
iz

g x x
du

g x
−∫
ɺ ɺ

ɺ
, 

respectively. 
 One finds that the preceding theorem proves the equivalence of the geodesic principle 
and the principle of least time. 
 In particular, if the universe is static in the sense of LEVI-CIVITA – i.e., if the 
streamlines coincide with the time lines − then the spacetime B4 will be orthogonal.  Let: 

 
ds2 = U (dx0)2 + gij dxi dxj 

 
be the world metric of B4 .  Since the ui are zero, one will then deduce the associated 

metric: 
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2ds  = 
2

U

n
(dx0)2 + gij dxi dxj. 

 
One can put (13.2) into the form: 

(13.5)     
1

0

0
z

z

dx∫  = 
1

0

z

z

n
d

U
σ∫ , 

in which one sets: 
ds2 = − gij dxi dxj. 

 
That integral recalls an integral that presents itself in the study of holonomic fluids.  U is 
then the principal potential of gravitation.  The gravitational field will act, one might say, 
as a type of pressure on electromagnetic rays. 
 If U = 1 then one can prove that the spacetime B4 is Euclidian.  The statement of the 

theorem becomes: 

δ 
1

0

0
z

z

dx∫ = δ ∫ n dσ = 0. 

 
We recover the exact statement of FERMAT’s principle in optics.  The theorem that we 
have established then constitutes its generalization to general relativity. 
 
 

14.  Interpretation of the sign of 0g xα
α ɺ  

 
 We have interpreted 0xɺ  as the time variable.  The interpretation of the sign ε′ of 

0g xα
α ɺ  is simple.  Indeed, the equation: 

 

( )xC     L
 2 du2 = 2

0
00

1 ˆ( ) i j
ijg dx g dx dx

g
α

α +  = 0 

 
represents the characteristic cone ( )xC  of MAXWELL’s equations at the point x.  The 

two sheets of that cone are symmetric with respect to the elementary hyperplane: 
 
(πx)     0g dxα

α = 0. 

 
 Let M (xα) denote the vertex of the cone ( )xC .  Take a pair of neighboring points to M 

that have the spatial coordinates (xi + dxi) and belong to the two sheets of the cone, 
respectively, and are symmetric with respect to πx .  Let: 
 

M1 (x
i + dxi, x0 + dx0),  1M ′ ( xi + dxi, x0 + d′ x0). 
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One can say that MM1 represents, up to higher-order infinitesimals, the infinitesimal 
displacement that is associated with an electromagnetic ray that goes from the spatial 
point A(xi) to the spatial point A′ (xi + dxi) during the time interval dx0.  Likewise, 1MM ′  
can be considered to represent the infinitesimal displacement that is associated with an 
electromagnetic ray that goes from the point A′ (xi + dxi) to the point A(xi) during the time 
interval d′ x0. 
 The two points M1 and 1M ′  are symmetric with respect to the elementary hyperplane 

πx, so one must have: 

0g dxα
α = − 0g d xα

α ′ . 

One then deduces that: 

d′ x0 = dx0 + 2 0

00

i
ig dx

g
. 

 
This relation shows that, except for the static case, the time that it takes for a ray to go 
from the spatial point A(xi) to the spatial point A′ (xi + dxi) will not be the same as the 
time that it takes for another ray to go from A′ (xi + dxi) to A(xi). 
 
 
15.  MINKOWSKI spacetime and the relativistic law of the composition of velocities 

 
 We now place ourselves in the case of a spacetime with no gravitation − namely, 
MINKOWSKI space − and refer it to a reduced Galilean coordinate system.  We have the 
world metric: 
(15.1)    ds2 = (dx0)2 – (dx1)2 – (dx2)2 − (dx3)2. 
 
In the present case, u will represent the unitary velocity vector whose components are 
classically determined by starting with the spatial velocity ββββ, if the limiting velocity c is 
taken to be unity. 
 An easy calculation gives the associated metric: 
 

(15.2)     2ds  = 
2 2 2 2

0 2 0 2 2
2 2 2

1 1
( ) 2 ( ) ( )

1 1 1
i i i

i i
i

V V V
dx dx dx dx dx

β β β
β β β

− − −+ − −
− − −∑ . 

 
This metric is of the hyperbolic normal type, as is the world metric (15.1).  Meanwhile, it 
is interesting to note that there is a change of order in the signature of that metric upon 
passing to V2 = β 2.  One easily exhibits this by choosing the x1-axis to be parallel to the 
velocity ββββ of the medium.  One then gets the metric: 
 

(15.3)     2ds  = 
2 2 2 2 2

0 2 0 1 1 2 2 2 3 2
2 2 2

(1 ) 1
( ) 2 ( ) ( ) ( )

1 1 1

V V V
dx dx dx dx dx dx

β β β
β β β

− − −+ − − −
− − −

, 

 
which one can put into the canonical form by a decomposition into squares.  If V 2 ≠ β 2 
then one will get: 
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2ds  = 
22 2 2 2 2 2

0 1 1 2 2 2 3 2
2 2 2 2 2

1 (1 ) (1 )
( ) ( ) ( )

1 1 1

V V V
dx dx dx dx dx

V

β β β β
β β β β

 − − − −+ − − − − − − − 
, 

 
and one will see that this metric will have the signature “+ − − −” for V 2 > β 2, and that it 
will have the signature “− + − −” for V2 < β 2.  For V 2 = β 2, one will get: 
 

2ds  = 2V dx0 dx1 – (1 + V 2) (dx1)2 – (dx2)2 – (dx3)2. 
 
One likewise verifies that this metric has the signature “+ − − −” by putting it into the 
form: 

2ds  = 
2

0 2 2 1 0 2 2 2 3 2
2 2

1
( ) [(1 ) ] ( ) ( )

(1 ) 1

V
dx V dx Vdx dx dx

V V
− + + − −

− +
. 

 
 Starting with the associated metric (15.2), we seek to express FERMAT’s theorem by 
taking the arc length σ of the electromagnetic ray to be a parameter.  We have to replace 
xα
ɺ in (13.2) with: 

λ i = 
idx

dσ
, 

 

where dσ2 = − ∑ (dxi)2.  It will then become: 
 

(15.4)     
1

0

0
z

z

dx∫ =
1

0

22
2 2 2 2

2 2 2 2

(1 )( )(1 )
[ (1 )( ) ]

( )

z i
i i

i

z

V
V V d

V V

β λβεε β β λ σ
β β

 −− ′ − + − − − −  
∫ , 

 
and one can deduce from this that: 
 

0dx

dσ
 = 

1

W
 = 

22
2 2 2 2

2 2 2 2

(1 )( )(1 )
[ (1 )( ) ]

( )

i
i i

i

V
V V

V V

β λβεε β β λ
β β

−−′ − + − −
− −

. 

 
If V2 − β 2 ≠ 0 then that relation will give: 
 
(15.5)   1 – β 2 – (1 – β 2) W 2 – (1 – V 2) (1 – W βi λ i)2 = 0. 
 
 If one interprets V as the absolute velocity of the propagation of the electromagnetic 
wave considered and W as its relative velocity then one will obviously have: 
 

(15.6)  V2 = 2

1

(1 )+ ⋅W ββββ
[W2 + ββββ 2 + 2W ⋅⋅⋅⋅ ββββ + (W ⋅⋅⋅⋅ ββββ)2 – W2 ββββ    2].  
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One verifies that this relation will remain valid in the case where V2 = β 2 by direct 
calculation upon starting with (11.4).  It is the relativistic formula for the composition of 
velocities.  It is easy to verify that one can put it into the form (*): 
 

V = 2
2 2

1
1 1

1
β

β β
    ⋅ ⋅+ + − −    + ⋅     

W W
W

W
β ββ ββ ββ ββ ββ ββ ββ β

ββββ
. 

 
We thus obtain a proof of the relativistic law of composition of velocities by starting with 
FERMAT’s principle. 
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