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CHAPTER |

INTRODUCTION

1.1 — Generalities on dynamical systems. Since the time of the classic work of H.
Poincaré and G. D. Birkhoff3[r, 37a 37b, 5], the sense of the locution “dynamical
system” has been expanded considerably, to the pointttpatgently refers to some
extremely general structures. A dynamical systemwsyad attached to a partition of a
topological spaceée (viz., the phase space) into subsets (viz., trajectoties) verify
certain conditions that relate to topology, the tlheoi ordered sets, or the theory of
groups of transformations. One thus distinguishes betwepalogical dynamical
systems, ordered dynamical systems, and general dynasysigms; cf.,36]. In a
theory of such generality, one proposes to study thddgieal properties of trajectories
and the things that pertain to them: e.g., regularity, renue; compactness, almost-
periodicity, transitivity, etc... We remark that the theof fiber bundles 11, 16, 41] and
the theory of foliated manifolds39] are particular theories of topological dynamical
systems.

We return to the more restricted notion of dynamicgtem (D.S.) that was
envisioned by H. Poincaré and defined by G. D. Birkhoff ahdlied by numerous
authors and scholars since then. A D.S. is the paanmafdimensional differentiable
manifold ¢) Vi, and a continuously-differentiable vector fiell E onV, . Moreover, we
propose to study certain global properties of the tmajeet of E. We remark that
following certain authors2a 26|, the properties that we have in mind must be “stable”:
i.e., they must be verified by all fields (or at lebgtall of the fields in some class) that
are sufficiently close t&. Indeed, it is only with that condition that thosepgerties will
present any physical interest. (See the last paragrapB pf

The general results that are concerned with dynamsysaéms thus-defined are much
less numerousbfl, page 19]. In order to obtain more extensive resultswilhéhen be
led to make some restrictive hypotheses on the D.Sidened: Those hypotheses can
be, for example, of an analytical nature (e.g., lirsggtems, perturbed linear systems, ...)
or of a topological nature (e.g., the trajectories @quired to penetrate into a certain
region B4]) or of a mechanical nature (e.g., conservative syste...). The latter
hypotheses of a mechanical nature seem to be the nmeststing. Inl.2, we shall
attempt to group certain important theories around somecipal notions of a
mechanical nature that come into play.

1.2.— Review of certain classical theories.

a. Conservative dynamical systemslhose D.S.’s play an important role, since one
comes back to them in analytical mechanics (e.g.st@lanechanics) and differential

() In order to not pointlessly encumber the presentatisasagree once and for all (unless stated to the
contrary) to consider only manifolds, maps, homeomarphj etc., ... that are indefinitely differentiable.
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geometry (Finsler spaces, calculus of variations, ThHose systems enjoy the following
properties:

1. The existence of Liouville’s invariant integral.
2. The trajectories are the extremals of a problethdarcalculus of variations.
3. The trajectories are the geodesics of a Riemarme spa
4. The existence of canonical variablgs, ).
These various properties correspond to the followingidaktheories:
1. Ergodic theoryd?2] and the statistical theor32).

2. The theory of the minimum and the min-ma&dlj, 54|, as it is perfected and
generalized in the global theory of the calculus oiatmns @23 34).

3. The theory of geodesics in a space of negative auevfia, 21, 7] and the theory
of symbolic dynamics; see alsgg].

4. The study of neighboring trajectories to a closgddtary [ba, 374, the theory of
perturbations37].

b. Periodically-excited dynamical systemsTlhat class of D.S.’s can be schematized
thus: The D.S. is defined by the equation:

dx=E & t) dt,

in whichx describes a manifold, and the vector Ex(t) is a periodic function of timg
and the period is a constant that is independenk ¢89¢ 12, 30, 30g. The study of the
topological properties of the trajectories such a.@@nes down to the study of the
topological properties of the transformationv@fontoV, that associates the pokwith

its transform at the instafitalong the trajectory that issues frarat the instant = 0. A
particularly important class of those systems is caegoof the D.S.’s that are energy
dissipators at large velocities. The latter systeamsaiso be classified according to the
rubric:

c. Relaxation oscillations- These amount to systems that are subject to contstrai
and forces that are independent of time and have lbeviiog peculiarity: The energy of
the system diminishes at large velocities and inceeasesmall velocities1P, 19a 40,

31, 29, 29a 33. In particular, one studies the systems with ondwar degrees of
freedom {16, 464.

Without continuing that classification (which runs thsk of rapidly becoming
arbitrary and artificial), we further indicate somasdical methods that will present some
interest in what follows.
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We first point out the use that Birkhofbd, Chap. IV] made of sectional surfaces
(with boundary) in the study of the trajectories ofigervative D.S.’s with two degrees of
freedom. We mention, in turn, the paper by H. Poincargdn the geodesics of convex
surfaces and the paper by H. Seifetld on the existence of closed trajectories of
certain vector fields that are defined on the threeedsional sphere (cf6.1). Those
two papers play a leading role in the D.S.’s whosedtaries are all closed (and whose
period is a continuous function). We propose to study gegcthose “fibered” systems
(F.D.S.) in the present article.

1.3. Objective and plan of the present paper The objective of this work is to
exhibit the role of fibered dynamical systems (F.D.®d the dynamical systems that
admit Elie Cartan’s integral invariant (1.D.S.), aslivas the systems that simultaneously
enjoy both of those properties (I.F.D.S.). (The lag thapters VII and VII are only
weakly coupled with the previous chapters and have ndomdhip to the F.D.S.’s and
[.D.S.’s; meanwhile, some other considerations wilhpeone to associate them with the
previous chapters. Chapters VII and VIII are collecyitbe counterpart to chapter 1l1.)

In 5.1, one will find a list of the principal F.D.S.’s tha@resent themselves in
dynamics and differential geometr§9a andb]. Here are some problems that relate to
I.F.D.S.:

a. — The study of the distribution and the nature of perigdiations of the D.S. that
are obtained by perturbing an F.D.S. That study is camtédy using the method of H.
Poincaré 37, 39|, which has the advantage of giving results that arécpéarly useful in
the case of I.F.D.S., but which present the inconvenidratethey are applicable to only
weak perturbations that do not present certain accidpatalliarities. By contrast, the
Seifert method permits one to study finite perturbat{ehs Chapter VI).

b. — The fibration that is defined by the trajectories ofl&.D.S. enjoys some
remarkable structural properties. In particular, thiatafion is never trivial. It then
results that the perturbation problem (that was meatiana) cannot be reduced to the
study of the fixed points of a transformation (a4.i2b).

c.— One can demand a list of the I.F.D.S., or at leastcan look for the topological
conditions that are imposed on the phase manifoldeocdinfiguration manifold of such
a system.

To that effect, we have adopted the following plan:

Some properties of 1.D.S.’s are presented in ChagterThey essentially amount to
the non-existence of compact transversal manifolds amthic applications of that
property. Some other problems concerned with the existehtD.S.’s are mentioned.
The special properties of I.F.D.S.’s are studied in ChdpterChapter V is dedicated to
H. Poincaré’s method of small parameters, while ihigefperturbations are examined in
VI. The last Chapters VII and VIII are only weaklylated to the preceding ones.

Chapter VIl is concerned with various results thatteeta D.S.’s in the plan®* e.g.,
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the Liénard equations... The main idea of Chapter VIl casuremarized thus: The
calculation of the characteristic exponent of a smiuto an ordinary differential equation
can be done quite simply with the aid of the operatafrssdifferential algebra3p).

The questions that were treated in Chapter VIII havg Mgle relation to the theory
of F.D.S.’s and I.D.S.’s. At most, one can say ttie notion of a P.D.S. that is
introduced in Chapter VIl is the exact opposite of tbeam of an I.D.S. (A P.D.S. is, in
the large, a D.S. that admits only a finite numbereamurrent motions, and they are
assumed to be periodic.) The distribution of periodi¢ions of a P.D.S. can be studied
by some methods that are analogous in every respedtetgproof of the Morse
inequalities that Thom propose#d]. The results that will be found recall the statatae
of the theorems of M. Morse.

The articles 39a 39b] were already devoted to the questions that were eraied
above. It would seem pointless to recall the resudlf8%g 39b] in detail. By contrast,
we believe that we have ameliorated certain proofshosd papers and we shall
reproduce those proofs here.

The material in Chapters Il and IV has been partlgtee in B9aandb]. However,
the systematic use of the formulas of differentlgeblra [L1] will permit one to make a
better grouping of the properties of I.D.S.’s and |.F.[3.SThe results that are stated in
that paper are more general than the ones3%][ which are concerned solely with
I.F.D.S.’s. Chapters Ill and IV use only the formulagiferential algebra in11] and
the usual notions from the homology of manifolds (elge,de Rham theoremd]]. We
have tried to give complete proofs of the other propetitisare utilized.

Chapters V and VI are concerned with the study of pertormtf F.D.S.’s. We
briefly recall the results that were stated 38lf]. However, in5.3, we shall show how
the formulas of differential algebra permit one to @ifg the very laborious proofs in
[39b, §4]. Chapter VI includes some remarks that relate toe8&ftheorem41g and
we shall indicate an extension of that theorem thatnportant for certain applications.
The explicit editing of the proofs of the generalizedf&t theorem will lead us to almost
reproduce the paper by that authétd. We therefore believed it to be good to do that
while indicating only Seifert’'s essential idea and pomtut the modifications that were
used in the proof of the generalized theorem.

The last Chapters VII and VIII are concerned with saomplete proofs. One can
refer to the introductions.1 and8.1 of those chapters for their contents.

It was pointed out above that the theory of foliatednifolds is a theory of
“dynamical systems” (cf.1.1). It seems to me that the questions that were titaate
[39b] can be considered similarly to be ones that refethie theory of dynamical
systems.

Finally, it remains for us to say a few words aboutstiadle character of the formulas
that were stated in the course of this work (cfl). It is clear that the results of Chapters
VII and VIII are stable, or that they can at leastcbasidered to be that way after some
suitable modifications of the corresponding statemerne easily sees the possible
relations (which we do not have the time to specifthis paper) between Chapter VIii
and R4d. The stability properties of the statements thédteeto periodically-excited
D.S.’s (cf.,1, 2b) are specified ind99. As for the stability of the statements in Chapters
V and VI, we shall content ourselves with the follogiiremark: If those statements do
not present the desirable stability character then twdly nonetheless still have
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something that justifies the interest in them. Tia¢esnents in Chapters Il and IV have a
“geometric” nature, and there is therefore no reasalisttuss their stability.

1.4. Bibliography. — It is not possible to give a complete bibliography teé&ites to

the topological properties of dynamical systems. Ti$tethat follows includes the
publications that have been more or less directly usefthe preparation of this work.
For more extensive bibliographic references, one cfm te [25, 33, 26, 28, 7, 344 8,
30, 403 47, 23].
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CHAPTER I

REVIEW OF SOME DEFINITIONS AND PROPERTIES OF
DIFFERENTIAL GEOMETRY AND TOPOLOGY

2.1. Differential forms and vector fields on a numerical ranifold (*). — For a
complete and precise presentation of these questioescam refer toJ1]. For the
notations of exterior algebra, c6,[9, 9al. See alsol3, 14].

On a numerical manifoldt,, , one can define:

Exterior differential forms, which are denoted by €kdettersa, w ... that are
possibly affected with an upper integer index that indic#tte degree of the form. The
numerical functions oW, are the forms of degree 0. One defines the exterialuptar
[0 B of two exterior formsa and S, as well as the exterior differentidér of an exterior
differential forma. The operatod increases the degree by one unit, and one recalls the
following properties:

(1) d(a+p =da+d3,
(2) dda=0,
(3) d(w'0aP)=dw'0a®+ (- 1)1 v 0OdaP.

Along with the exterior differential forms on, , one also defines vector fields @p,
which are denoted by uppercase Latin letters X, Y, ... Aordetld X onV, defines the

additive groupR of real numbers as a group (or more precisely, a “psewmgy9rof

transformations$ (X) of V, .
If t Ok denotes the transform ] V, byt O T (X) then:

d
4 — (x| =X(X.
(4) [dt( )LJ (x)
Let Y be a second vector field. One can assotegroud (X) with the transform

of Y by X:
(5) 6 (X) 0¥ = [%(t m} |

t=0

in which t OY denotes the transform of Y by O ' (X) . The ‘“infinitesimal
transformation” operatd (X) enjoys the following property:

() Remark: Unless stated explicitly to the contrary, the mdd#p functions, homeomorphisms,
differential forms, and vector fields that we will catesi or that we will be led to introduce in our
presentation will be assumed to be indefinitely differdattia
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(6) BX)D¥=-8(Y)IX=[XY].

If w%is an exterior form of degregthen one can set:

@) 6 (X) [wd = [%(FW)} |

t=0

in whicht” Cko® denotes the transform af® by the transpose of the map " (X) .
Furthermore, one can prove the following formulas:

(8) X)) Qw0 ®®) =0 (X) ) 0o+ w06 (X) ©°,
and in particular, il is a numerical function then:
9) B (X) Nwf=® (X) N) w + A6 (X) O
The operatordl and8 (X) commute:
(20) do (X) w?=6 (X) Maw".
One can associate the field X with the interiawdurct operator (X), which acts on
exterior differential forms.
By definition:
(11) <i (X) Ot w7t > =< X Out™ >,
in which <a', u" > denotes the scalar product of the exterior farhof degreer with
the field of exterior-vectorsu'. The operator (X) diminishes the degree by one, and it
verifies the following property:

(12) i () Qw0 @°) = (X) w® 0@+ w0 (X) 0o°),

in which:
E=+1.

Finally, the operators (X) 008 (X) andd are coupled by the following very important
relations:

(13) d (i (X) Dw® +i (X) D =8 (X) T,

(14) 6.(X) 0 (Y)-i(Y) DB (X)=i([XY]).
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2.2. Spaces with groups of operators isomorphic t® or R . Manifolds fibered
into circles. —

Definition 1. — A dynamical systenfD. S.) is the pair (XV,) of ann-dimensional
numerical manifoldv, and a vector field X. The pseudo-group of transformatibatis
generated by the infinitesimal transformation X is deddtyl' (X). If x O V, andt [
I"(X) thent Ok will denote the transform ofbyt .

Definition 2. — A general fibered.S. (F.D.S) is a dynamical system that verifies the
following conditions:

1. X (x)#0 at every poink [ V,.

2. The transformation X defineR as a group (and not just a pseudo-group) of
transformation$ (X) on V, .

3. There exists a non-zero elem@ril ' (X) that fixes the points of, .
(Indeed 2 is a consequence 8i)

Remark: It seems natural to replace condit®mf Definition 2 with a weaker one;
for example: There exists a continuous ma@) of V, in '(X) [in which T (x) # 0] such
thatT (x) [k = x.

Indeed, one will see in 4.2 that those two conditiaeseguivalent, at least for the
I.D.S.’s.

Definition 3. — A fibered dynamical systeiffr.D.S.) is an FED.S that verifies the
following condition, in addition to conditioris 2, and3 of Definition 2:

4. If t1 O IM(X) andx O V, then the relatiom = t; Ok will imply thatt; =n T, wheren
is a rational integer.

The quotient group df(X) by the subgroup that is generated by the elenfesta
group of transformationk’(X) of V, whose abstract group is isomorphic to the tarus
(viz., the additive group of real numbers, modulo 1). @osely, one can define an
F.D.S. by being giveW, and a group of transformatioh§X) (which is isomorphic to
T,) without fixed points. The group’(X) is imagined to be thetructure groupof the
F.D.S. The trajectories of the field X that is atethto an ED.S. are obviously
compact and homeomorphicTe@. They are the “fibers” of the'®.S. In the particular
case of an F.D.S., those trajectories will definedtnecture of a fiber bundle ¥, that
admitsT; for its structure group.

Definition 4. — Thebase spacef an F.D.S. is am(— 1)-dimensional manifold that is
denoted by,-; . The canonical projection & ontoV,-; is denoted by .
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Recall that any point of V, admits an open neighborhotid and a homeomorphism
¢ of Uy x Tyonto y ! (Uy) such thaw (y x T1) = y~* (y) (in whichy O Uy).

Definition 5. — An F.D.S. (X, V,) is associated with the equivalence relafthat
identifies the points that belong to the same fibev,of The quotient space ¥f, by pis
once more denoted -1, and the canonical projection\gf ontoV,-; is denoted by .

Conforming to the convention that was made at thenb@gj of this chapter, we
point out that the topological spa¥g; is not necessarily a manifold and thais not
necessarily indefinitely differentiable. However.eoran verify that any point of V-1
admits an open neighborhodt} , and that there exists a finite covergof y* (U,)
such that the fielg™ (X) define an F.D.S. oW. [p denotes the canonical projectionvf
onto ;™ (U,).] A particularly important case of this is wh&h, can be endowed with
the structure of an indefinitely-differentiable manifaduch that the mapis indefinitely
differentiable.

Definition 6. — An F.D.S. that enjoys the property in the preceding statemmeam
F'.D.S.




CHAPTER IlI

GLOBAL PROPERTIES THAT ARE DUE TO THE EXISTENCE
OF E. CARTAN'S INTEGRAL INVARIANT

3.1. Definitions and notations—

Definition 1. — An I.D.S. is the pair of a D.S. (&,) (cf., 2.2, Definition 2) and a
Pfaff form ronV, that verifies the following conditions:

1. nisoddin=29+1@Q=1).
2. md[d729# 0 at any point oY/, .

3. i(E)™m=0.
(cf., 2.
At the end of this paragraph, we shall recall the mairstgues of dynamics and
differential geometry that lead to 1.D.S.’s. Thatetl global properties will be studied in
3.2, 3.3 and3.4.

Letu be a vector field oW, and leti (u) be the operator of the interior product with
The equation:

(1) i (u™mr=0
is linear with respect to the vector The solutions of (1) at a given point define a one-

dimensional vector space. The last statement issaicéd consequence of propetyn
Definition 1. One can then prove that as follows: The solutions t

(2) i (uOdrd%=0
form a one-dimensional vector space, sinaiq is a non-zero, completely-

decomposable form of degrae- 1. It then results that the solutions to (1) forueetor
space whose dimension is at most one, because:

i (u) OQd72%= (i (u) ™A O[dA"  [cf, 2.1, (12)].
It remains to show that (1) admits a non-zero solutibimat will result from the fact that:
i (u) OO (v) Doz = =i (v) [i (u) 7 =i (uDv) Qg

which is a relation that shows that the rank of tla@m- i (u) dzis less tham.
We append the equation:

(3) (U Or=<u, m>=1
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to equation (1).
The system of equations (1) and (3) defines a non-zetorvat every point 0¥, . It
IS convenient to suppose that E verifies (3) precisely.

Proposition 1.:

Let rbe a Pfaff form on \that verifies conditiond and 2 of Definition1l. There
exists a well-defined vector field that verifies condifioof Definition1. In other words,
being givervris sufficient for one to define aD.S.

Definition 2. — One says thatr and d/r are arelative integral invariantand an
absolute integral invariantresp.,of the unoriented direction field th& defines. The
field E is called theasssociated fieldo 7z

The following proposition is also classical:
Proposition 2:

Let A be a numerical function on,V and letd (u) be the infinitesimal transformation
that is attached to u; the following relations are verified:

(4) 6(E) O7=0,
(5) 6(AE)m=0.

In other words, the fornyr is invariant under the group of transformations that is
generated by E, arb7is invariant under all one-parameter groups that are gedelog
the infinitesimal transformations E.

The equalities (4) and (5) result froéh1, (13)] and Definitiorl, when one takes into
account the fact that(E) (7= 1.

Remarks:

a. Let Woq+1) be a 2¢ + 1)-dimensional manifoldg(is an integer and > 0) on
which a Pfaff formwis defined that verifies the following relation:

(6) dd™ =0.

Let V, (n = 29 + 1) be a manifold that is embeddedNq:1) by way of a mag of rank
n. The imager= ¢ (o) of wunder the transposed mapto ¢ verifies: [d74° # 0.

b. Let Vg+1 be a § + 1)-dimensional manifold. The covariant vectogspj (in which
x O Vg1, andp is an element of the dual vector space that is tarigéfy+1 atx) define a
2(gq + 1)-dimensional manifoldVh:1 . Let wbe the Pfaff form that is defined &4 in
the following fashion: The restrictiog (X, p) of wto the tangent space W&, at (x, p) is
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equal toP'(p), whereP’ is the transposed map to the canonical projed®iofiW,.; onto
Vg1 [therefore P (x, p) =x]. Letri (i =1, 2, ...,g+ 1) be local coordinates Wy:1. One
can prolong the coordinate systero a coordinate system (s) onWa.1 upon lettings
denote the covariant components of the covariant v€gte) that is attached to the point
X whose coordinates are. The formwwill then have the following structure:

w=) 5 dr.

It will then result thatwverifies the relation (6).
Being given &insler spacestructure orVgy.1is equivalent to being given a manifold
V, that is embedded M., and verifies the following conditions:

@) The restrictiorP’ of P to V,, has rankn.

6] F{;i nV, (wherex [0 Vg1) is a compact, convexn (- 1)-dimensional manifold

that contains the origirx(0) in its interior. R;)l n 'V, is thefiguratrix atx.]

The form rthat is induced byw in V, is non-zero at all points. One effortlessly
verifies thatthe formsrdefines an.D.S.on \, . It then results from E. Cartan’s theory of
the integral invariantand one can prove this directlyjat the trajectories of thdtD.S.
project onto .1 along geodesics of the Finsler spacg;V [8, 9a, 394.

c. Consider a dynamical system (of rational mechanicsh werfect holonomic
constraints that are independent of time. Supposelhatnown forces derive from a
force function. From the analytical viewpoint, tlsgstem is characterized perfectly by
the Hamilton functiorH (y) that is defined on the phase space. Moreddes a first
integral. Suppose that the manifdldhat is defined by the equatibh(y) = hy (constant)
is regular (i.e., thatH = 0 at every point o¥). It results from E. Cartan’s classical
theory of the integral invariant that the trajectotiest are traced out M are trajectories
of an I.D.S. Pal.

A remarkable analogy is valid for the regular problemshefcalculus of variations

8, 94l.

3.2. Nonexistence of a compact transversal manifold for an 1.5.—

Definition 3. — Let X be a vector field on amdimensional manifold. Ann(— 1)-
dimensional manifoldW,-; that is embedded iV, by a map¢g of rankn — 1 is a
transversal manifoldor X if for any x 00 W,-1, the vector X ¢ (x)) of the field X is not
contained in the subspaggTy), whereTy is the vector space that is tangent\p; at x.

Theorem 1:

The fieldE that is associated with ahD.S. does not admit a compact transversal
manifold.
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The proof is quite simple: Letp( W,,-1) be a possible transversal manifold of E that is
compact, connected, and oriented. The fgrn{d71% is non-zero at any point &% .
Hence:

) J,, #°0dmY) #o0.

However, the left-hand side of (7) is zero, from Sgxkéormula; one has thus reached a
contradiction.

We remark that the proof in Theorem 1 supposes onlyxXiseeace of a fornf2 (=
[d719) that verifies the following conditions:

Q is homologous to 0 ; i.eQ =dg.
Q has degrea— 1 = 3, andQ # 0 at any point.
i(E)M=0.

Theoreml is valid for more general D.S.’s than the I.D.Shert.

3.3. Consequences of Theorem 1 and remarks.

a. One knows the importance of sectional surfaceshe dglobal study of the
trajectories of dynamics5[ Chap. V]. Theorenl explains why the sectional surfaces
that are used in the study of conservative systemseéhbwendary. Se&], as well.

b. Theorem1l admits some applications to the study of second-ordetact
elements to a Finsler spacgp]. Let us explain that with the aid of a very special
example. A Finsler space structure on the two-dimensiona$ T ? is associated with an
1.D.S. (E, T ®) on the spac@ 2 of oriented tangent directions To>. A direction field X
onT 2 corresponds to a section of the fiber buriife From Theorem 1, that section will
be tangent to a trajectory of E at a non-vacuou# s#tpoints: The trajectory of X that
issues fromx will then present a second-order contact with the gaodkat issues from
x that is it tangent to. (One can say th& a geodesic inflection point for the trajectory X
that issues from that point.)

c. Theoreml can be extended to the regular problems of the calailuariations
that pertain to a multiple integraB3d]. The preceding remarkb.) thus extends to
general Cartan spaceo(].

3.4. Other problems relating to 1.D.S.’s— If the manifoldV, (n = 29 + 1) is given,
and ifV,, is compact then one knows that there exists a vdieldrwithout singularities
onV,. One is then led to pose the following problem:
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Problem 1.—1If one is given a compact manifold ¥ = 2q + 1) then does there exist
anl.D.S.on \,,?

The remarkd.) in 3.1 shows that there exists a Pfaff fornthat verifies the relation
[d72% # 0 on any manifoldV, that is regularly embedded in a manifdld-; that is
endowed with a Pfaff fornwthat verifies (6).

Problem1 leads to the following more-general problem, which is ablpra of
constructing a section for a fiber bundle:

Problem 2. - Does there exist an exterior differential fofinof degree two onMn
= 2q + 1)that verifies the relation:
[Q]9#0
at every point?

One remarks that the for@ defines a direction fiel& on V, that one calls the

associated field Indeed, one can associ@ewith the equation (£) Q = 0, which is

analogous to (1).

Problem2 can be approached by the usual methods of the theohstifictions. We
shall forgo such a study here. We nonetheless remdrK thais the topological product
of a compact manifol&,,-; with the circleS, , and if the associated field E is homotopic
to the direction field that is tangent to the fibexs ¥ S, (x O V1) then the manifold/,-1
will admit an almost-complex structurdq]. Consequentlya direction field on the
topological product $x § that is homotopic to the direction field that is tangent to the
fiber cannot generate amD.S.

One should point out that the folfhthat was considered in Probléhgenerates an
integral invariance relatiordg] for the D.S. that was envisioned. Probl2rthen makes
sense for a very broad class of D.S.’s that are gedeby equations of Euler-Lagrange

type.




CHAPTER IV

TOPOLOGICAL PROPERTIES OF
. F.D.S'SAND I. F. D. S.’S.

4.1. Introduction and definition. — In this chapter, we propose to study the
topological properties of the I.D.S.’s that are, & same time, properties of.[B.S.’s.
Theoremsl and3 show that the corresponding fiber structured is qutepex (e.g., a
section does not exist wh&h is compact).

Definition 1. — Anl.F’D.S.is a D.S. that is simultaneously an¥S. and an 1.D.S.
One defines ahF.D.S.and an.F”.D.S.similarly (Definitions1.2and3 in 2.1).

Paragraphd.2 and4.3 are concerned with a fundamental property dfDfS.’s (viz.,
Theorem1l) that makes Theorerh in 3 more precise. Iml.4, we shall recall some
classical properties of ID.S.’s (meanwhile, to simplify the presentation, stall always
consider the case of an'lB.S.). Paragrapl.5is devoted to the special properties of

I.F.D.S.’s. One will find some examples of'l[P.S.’s in5.1 (One should compare them
with the results of that chapter ih1].)

4.2. Topological properties of an.F'.D.S. —

Definition 2: A form a that is defined in the manifold of an.B.S. (E,V,) will be
called annvariant formwhen:

(1) 6 (E) r = 0.
An invariant forma will be called aasicform if it verifies:
2) i (E)Ox =0,
in addition to (1).
Proposition 1.:
The form dron anl.F'.D.S.is a basic form; the fornwis invariant.
Remark: If we had adopted the more general definition of aB.5. (cf.,2.2) then

Propositionl would permit us to show that conditi@nn Definition 2 of 2.2 is verified
automatically in the case of an’LIB.S.
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Proposition 2:

In the particular case of aR.D.S.,any basic forma is the image of a fornpf on -1
under the transpose of the projectign- viz., a = y'(£) . Conversely, if3is a form on
V-1 theny'(B) will be a basic form.

We further point out that in the case of ahCFES., there also exists a bijective
correspondence between basic forms and formg.qn

Proposition 3:

If a1 and a» are invariant [basic, resp.] forms therog, ;1 + a2, on O a» will also be
invariant [basic, resp.] forms. In other words, the invariant [basssp.] forms define a
differential ring.

Propositior3 is an immediate consequence of (1) and (2) and.tf(8) and (12)].

Proposition 4:

If Vi, is compact then the cohomology ring that is associated with the difédneng
of the invariant forms is isomorphic to the cohomology ringnaf V

Indeed, letl be the group of transformations that is generated byntivetesimal
transformation E. Sinc¥, is compact, one can suppose thas compact (cf.2.2). Let

dg be the invariant measure érsuch thatJ'r dg = 1. Any differential forma onV, can
be associated with the invariant form:

(3) a = [ ga)dg.

One verifies thaty is homologous tar ; one then has Propositidn

Definition 3. — The cohomology ring of the differential ring lodsic forms will be
called thebasiccohomology ringpne defines thbasic Betti numberanalogously.

Theorem 1:

If Vi, is compact and if Ms the defining manifold of drF'.D.S.then the basic forms:
dzz [d7#% ..., [d74° will not be homologous to zero in the differential of basic forms.

Indeed, suppose that there exists a basic fmsuch thatda = [d72°. The formmr O
[d72 is not homologous to zero Y since it is not annulled at any point\Gf:

(4) j 70[dm® #0.
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However, by hypothesisg[1% = da, so:
(5) d7290m=d(a0n) —adnm.

The first term in the left-hand side of (5) is homalog to zero; the second term is equal
to zero. That contradicts (4). Hences[" is not basically homologous to zero. It will
then result thatd7z® (where 1< r < @) is not basically homologous to zero.

4.3. Consequences of Theorem 1 and Proposition 2 in the caseaofl.F.D.S.or
anl.F'.D.S.
Proposition 5:

In the particular case of ahF.D.S.,there exists an exterior differential foréh on
the base ¥ of \;, that verifies the following property:

(6) dr=y (Q) (cf.,2.2).
Furthermore, the basic cohomology ring is identified with that,of V

This proposition is obvious. It admits the followingnsequences:

a dQ=0.

b. [Q]9#0 at any point

c. If Vnis compact the@ will not be homologous to zero, nor wWi]?, ..., [Q]°

The consequencea.] and €.), and the relation (6) show that the charactergtss
of the fiber structure imagined3d is the class 0f.

In the case of an I"ED.S., it is possible to prove the existence of a f@rmanV,;
that verifies (6) at any point where that formula madessse.

4.4. Relations between the Betti numbers of a fiber butke and its base— (These
relations are classical: cf17]).
Proposition 6:

Let a be an invariant form. There exists a unique decompositionobthe following
type:

(7) a=a 0+ a,
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in which ap and a; are basic forms. Moreover, if is closed (i.e., if d = 0) then the
same thing will be true faom .

In order to verify that proposition, it is sufficieto setar =i (E) Oa and use 3.1,

(13)].

Proposition7 is a simple corollary to the Propositién
Theorem 2:

Suppose that the defining manifold of &R'.D.S. is compact. Under those
conditions:

a. The fibers of ¥are homologous to zero in, Yhomology with real coefficients).

b. The Betti numbers bf \f, and p of the base are coupled by the relation:

(8) b =pi —pi2 + Xi-1 + Xi2,

in which x; denotes the dimensions of the vector subspace of the vector space of basi
cohomology classes whose product with the cohomology claga®tdro.(If i < 0then
one setsp= 0, by convention

In fact, Theoren® is classical. It is true for more generdlES.’s, but we shall
apply to only I.LE.D.S.’s.
The first part &) results from Propositiod. Indeed, any closed form of degree 1 in
Vi, will be homologous to a basic form, so its integradroa fiber ofV, will be zero, and
it will then result that the fiber is homologous to@e
In order to provel(), one first remarks that the map - o1 (cf., Proposition6)
induces a homomorphisgh of the Betti groud; of V, into the Betti groug?; of the
base. Indeed, ifr is an invariant form that is homologous to zero\{ihthen there will
exist an invariant forn® such thatl3=a. From (7), one can decompg@ato = +
L1 07T, hence:
a=dp=dLh+L0dn) +da O (e=x1)
and
=i (E)o=ds .
Q.E.D.

If the form a1 in (7) is homologous to zero (i.e., if there existsaaid form/ such
thatdf = o) then:

a=a+dp0m=(aw+cp0dR +d (B0 (e=x1);
hence,a is homologous to a basic form. The dimengipof the kernel ofg; is then

equal to the dimension of the spacei@limensional cohomology classes 4f that
contain basic forms. Let be a basic form that is homologous to zer¥n there will
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then exist an invariargsuch thator =dy. Let y= ) + 7700 )4 be the decomposition (7) of
4
a=dw+u0dn +a0dy .

It will then result thatdys = 0 and thata is homologous to the product of a cocycle in
dimensioni — 2 with d7z. The dimension of the subspace Pfof classes that are
homologous to zero ¥, will then be equal t@i-> — Xi-2, SO:

i =pi— Pi2—X-2) -

If the form a in (7) is closed then one will get the following regatiupon exterior
differentiating the two sides of (7):

y=dao+ e Udr £e=+1.

That relation shows that; [1ds7is basically homologous to zero. Converselynifldmr
is basically homologous to zero then there will existosed forma such thata, + € o
O 7z whereap is a basic form. The image Bf underg; will then be xi-1-dimensional.
The relation (8) is obtained remarking that the dimemzé B; is the sum of the
dimensions of the kernel and imagegpf

Proposition 8:

If by = Othenyi-1 = 0.

Indeed, from (8):
bi = [pi = (P2 = Xi-2)] + Xi1.

However, the two terms on the right-hand side are iges#o the proposition is proved.

Proposition 9:

If g is odd(n =29 + 1)and if g2 = xg-2 then g = bq — Yg-1 Will be even.

Sincepg-2 — xq2 = 0, any basic cocycley that is homologous to zero M, is
likewise homologous to zero in the base. Therefore,alebe a basic cocycle in
dimensiong that is not homologous to zero. The Poincaré dudlégrem permits one to
associater; with a cocycleag+1 onV, such that:

a. ag+1is not homologous to zero.

b. The correspondena®, — ag+1 is an isomorphism.

The cocycleng:1 admits the decomposition (7):
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a'q+1:ﬁq U+ Yo+l -
Hence,aq U ag+1 = aq U B, O 77, so it will result thatag O 4, is not homologous to zero.
The map that associates the cohomology clasgqofvith that of 4, is therefore an
isomorphism with no real proper values. Q.E.D.
Remark: In the particular case of ahF.D.S.or anl.F'.D.S.,the numbers;mare the

Betti numbers of the differentiable manifolglV. Therefore, if g is odd then, pvill be
even(Poincaré).

4.5. On the Betti numbers of an I.ED.S.and some manifolds of clasF'. —
Proposition 10:
A compact manifold Mn = 2g + 1,q odd whose Poincaré polynomial is:
1+t +t" +¢"
cannot be endowed with the structure of &D.S.
More generally, one can show tlifathe Poincaré polynomial of the spacg &f an
I.F.D.S.is:
1+s(td+t7Y) +1¢", qodd,
and if \j, is compact then s will be eveindeed:
bi=by=...=bg1=0, SO Yo=X1=...=Xq2=0.
Hence, from (8)po =p2 = ... =pg-1 = 1. Sincerq-1 = 1, and sinced71? is not basically
homologous to zergy,-1 = 0. Therefores = bq = pq. Proposition10 will now be an
immediate consequence of Propositgon
Definition 4. — A compact manifold/, is said to havelassF (F, resp.) ifVyq can be
endowed with the structure of a Finsler space such lkeal. D.S. of the geodesic lines
(which are defined in the phase spakg; ; 3.1) is an I.F.D.S. (I.D.F.S., resp.).

Proposition 11:

If the compact manifold phas class then the Betti number in dimensiarof
will be zero.

Indeed, the fibers of the associated.DFS. are homologous to zero (Theorgmn
Hence, the geodesics \¢f are homologous to zero Yy . However, if there exists a one-
dimensional cycle invg that is not homologous to zero then there will existiased
geodesic that is homologous to that cycle, which is gheontradiction.
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One will find some properties that are peculiar to I.5.I3 and manifold of class F in
[394]). Those properties easily extend to"IS.’s and manifolds of class'.F Some
examples are given B9 of simply-connected manifolds that do not have class F
(since the topological produ& x S; of the sphereS§; andS; does not have class F). The
only work that | know of that is concerned with manifotd€lass F is in45] and [L§].



CHAPTER V

H. POINCARE’'S METHOD OF SMALL PARAMETERS

5.1. Examples of I.LF.D.S.’s-

a. Harmonic oscillators— Considerg + 1 independent harmonic oscillators whose
fundamental frequencies (i = 1, ...,q) are commensurable and proportional to integers
Ni . The differential system that governs the motian be put into the form:

dx du
1 = i, i .
(1) pn a U it aw %

in which x , u; are linear coordinates in the numerical spBé&'™. The system (1)
admits a first integral (x, u) = > (U? +%°). The equatioi (x, u) = 1 defines a sphere

S (n=29+ 1). The system (1) defines an I.D.S. ®n The trajectories of (1) are
closed, so one easily verifies that (1) indeednaésfian I.FED.S., and more precisely, an
I.LF".D.S. Inthe particular case wheie= a = ... = @, the I.D.S. that one has in mind
is an I.LF.D.S. The corresponding base space isctimeplex projective space ig
complex dimensions.

b. Examples of manifolds of claBs(4.5, Definition 4). — Elie Cartangb] gave the
complete list of compact spaces that can be endevithdthe structure of a symmetric
Riemannian space whose geodesics are all close@. cén verify that those manifolds
belong to the class F (c#.5, Definition 4). The simply-connected coverings of those
manifolds are:

Spheres, complex and quaternionic projective spaaas the projective plane of the
octaves. It seems that no other manifolds of clasafe known; on the other hand, it is
not known whether those manifolds exhaust the ¢fass

c. Elliptic trajectories of a planet around the Sun

Remarks: These few examples show why I.F.D.S.’s are saasteng. Theorem2
and4 exhibit the complexity of the fiber structure tietissociated with an I.F.D.S. The
problem of the perturbations of an I.F.D.S. is tparticularly interestingl(3).

5.2. Principle of the method of small parameters [37, 29} Let (B, Vi) be an
F.D.S. on the manifold/, whose base i¥,1 . Let E, be a vector field orv, that
depends upon the real, positive paramgtsuch that: (B,-0= .

The field E, admits a limited development in the powergof
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(1) E,=E+uE + ..

Definition 1. — Letl" be the structure group of an F.D.S., anddgbe an invariant
measure oih. One sets:

2) E.(2) =] 9(E.(g7(2) dg

Eﬂ (z) admits the limited development:

in which:
E=[ 9(E(g"(2)dg

The field E' is invariant undeF. There then exists a fiel onV,-; such that:
(3) y(E) = E.

One proposes to study the relations between twedl trajectories of Fand the
singularities ofE for small values ofz . Let &, 6 be a local coordinate system\ify

such thatx = constant represents a fiber\gfand 8 varies from 0 to Zralong the fibers
of Vi, .

Definition 2. — A trajectory of E (for giveny) is calledsimply closedf it admits a
parametric representation of the form:

X=¢@, (%, 6), in which 0<8<2rz
and

Pu(%0,0) =@, (%, 27) =X .

One can associate a simply-closed trajectory withimdex of the fixed point, of the
transformatiorx - ¢ (x, 27).

The following lemmas are almost obvious and ctadsiand one will find proofs in
[390h)].

Lemma 1:

1. Lety (u, xo) = ¢y (%o, 279, in whichx = ¢,, (X0, 0) is the equation of the trajectory
of E, that issues fromxg, 0). Under those conditions:

d .
3) {alﬂ(ﬂ,xo)} = E().

H=0
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Lemma 2:

If Vi is compact and if the singularities &f are isolated or if they are internal points
of the simplexes of a convenient simplicial subdivision,ah®&h there will exis’> 0
such that for < 1, the trajectories of the field, enjoy the following properties:

a. If all of the simply-closed trajectories Bf, are isolated then the sum of their
indices will be equal to the Euler-Poincaré characterigtiof Vi1 .

b. If y# Othen the field, will admit simply-closed trajectories.

In [39b], one will find various consequences of Lemghand some applications to
concrete problems (notably to relaxation oscilkatio

We remark that Lemma does not permit one to conclude the existencengblg-
closed trajectories for small values @f(¢ # 0) in every case. Meanwhile, Lemrta
gives some useful information about the behaviothef trajectories of Eeven in the

case where the singularities Bfare not isolated.

5.3. Particular case of an I.F.D.S= Suppose that the D.S. that is defined pysEan
1.D.S., i.e., that  admits the relative integral invariarg, . The form7; admits the
limited development:

T, =T+ T+ ...
Set:

(4) 7, = | 9°(7)dg.

Sincesr is an invariant form, it will admit the canoniaddcomposition (cf., Proposition
6 in Chap. IV):

(5) T =Tn+f0s,

in whichf is a numerical function ovt, . One deduces from (5) that:
(6) d77 = (d7g, +fd7mp) +df 075 .

On the other hand:

0= gTi(E,)@m,]dg= [ {gTi(E ) W] dg+ gl (E) T + df (E ) T}y d,

in which the terms that have been neglected haler greater than 1 ja.
Hence:

i (E)d7m,+i (E,)d7 =0
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and if one takes (6) into account then:
(7) i (E") [ 7, = df .

The relation (7) determines the fiell perfectly, and therefore the field E, as well. The
field E is annulled exactly at points where:

(8) df = 0.
These results permit one to state:
Theorem 1:

If the D.S.that is defined b¥, is anl.D.S. that admits the relative integral invariant

77, then the fieldE will admit the critical points of the function f that is defined®)for
its singular points.

In the particular case of a conservative dynansgatem, one generally knows that
functionH, [94]. It is then important to known how to calcultgpon starting withH,, .
To that effect, one easily sees that the functidgs identified with the functionH in

~ oH
[39b]. (One recalls thatH is the integral oH’ = ( a,uﬂj over the fibers of the
#=0

I.F.D.S. considered.)

One can refer to3Ph] for some concrete applications of the precedesgults. In
order to apply the theory of M. Morse, one mustwribe Betti numbers d¥,-; . One
will find that information in L6b] in the case of an I.F.D.S. that cited 5L The
Lyusternik-Schnirelmann theory gives some indigaian regard to the minimum
number of critical points424].

Without stopping to review the applications thagrevtreated in39b], we rapidly
discuss the following example:

On the Euclidian sphet® , we consider: The natural structure of a Riemgrats
that is defined by its line elemedt = F, (X, dX) and a closely-related Finsler space

structure that is defined by its line elemels = 7, (x, dx) . [One supposes that the
functionF, (x, dX) verifies the symmetry relatiafy, (x, dx) = F, (X, — dX).] The structure
Fo (%, dX) is associated with an I.F.D.S. In that caées Vs = P3 (viz., three-dimensional

real projective space) and-; =V, = S (viz., the two-dimensional sphere). However,
the symmetry condition otfF, shows that the D.S. that is associated thcan be

considered to be an 1.D.S. on the manifdld of unoriented tangent directions % .
(The manifoldV, admitsP; as a two-sheeted covering.) The structure thasseciated
with Fo defines an I.F.D.S. oN, whose base is homeomorphic to the real projective
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planeP, . The Betti numbers d?, are 1, 1, 1, resp. The categoryRafis 3; hence, the
function f admits at least three distinct critical points. Gmes the relation that is
involved with those remarks from the classical reswolfsLyusternik-Schnirelmann
(which are obviously much stronger).



CHAPTER VI

FINITE PERTURBATIONS OF
A FIBERED DYNAMICAL SYSTEM

6.1. Statement of the problem— Consider an F.D.S. {EV,) that is defined in a
compact manifold/, . Let E = B + i X be a vector field that is close t@ E In Chapter
V, we established certain properties of the simply-clasajectories of the field E for
small values of the parametgrby means of certain supplementary hypotheses on the
field X. The properties that are established by that mae#ine valid only for values qf
that are less than a real numiger O that depends upo¥.(, Ey, X). H. Seifert stated the
following theorem 414:

(Seifert’s) theorem:

Let Ep be a vector field that defines &D.S. on the compact (three-dimensional)
manifold \4 . Furthermore, suppose that, 6 endowed with a Riemann space structure,
and let|| E &) ||denote the norm of the vectér(x). Under those conditions, there exists
an £ > 0 [where& depends upon only the pdW,, Eo)] such thatif| E@ - & (2 || <&
for any z 00 V, then the sum of the indices of the simply-closed trajectoriesvare
assumed to be isolated) of the fi@dnill be equal to the Euler-Poincarg of the base
Vp-1 of the F.D.S. In particular, if y # 0 then the fieldE will possess simply-closed
trajectories.

We propose to show how Seifert’s method permits ysdoe an analogous theorem
for certain four-dimensional manifold$ with boundaries. That generalization will be
sufficient to permit us to study the simply-closed trajdes in certain dynamical
problems.

One can also refer t@9b], in which some analogous results are proved.

In order to show why Seifert’'s theorem (and somelogoaus theorems) is so
interesting, it is convenient to explicitly determine acceptable value of the numbker
that appears in its statement. We shall not gotimb problem, but only point out the
following result:

If V3 denotes the three-dimensional Euclidian sphere afisaldin Seifert’s theorem,
and k is a unit vector field 0% that generates the usual fibrationSpbverS; (cf., 5.1)
then an acceptable value fowill be £ = 1/2.

That result shows that the scope of the fields E EBndés quite considerable and
covers a great number of nonlinear phenomena.

6.2. The generalized Seifert theorem— Let V3 be a compact three-dimensional
manifold on which an F.D.SV§, Ep) is defined whose baseVs . One supposes the

is endowed with the structure of a Riemann space.RLUa¢ the Euclidian number line.
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The topological producV; x R is endowed with the structure of a Riemann product

space and the structure of an F.D.S. that is defined bfyeldeE whose components at
the point §, t) are (& (x), 0).

We associate any point, t) [J V3 x R with the plaque (x, t) that is composed of the

geodesic segments of lendthhat issue fromx, t) and are orthogonal to K, (t). We
suppose thakt is very small in such a fashion th@t(x, t) will be a local section of the

fiber space (i.e., tha (x, t) will meet each fiber o¥/; x R at no more than one point).
Let E be a second vector field &3 x R. One lets || Ex(t) || denote the norm of the

vector E , t). The following Lemma is almost obvious:

Lemma 1:

One can associate the pdW; x R, E) with a real numbee > 0 such that the relation
[| E & t) — E (x t) || <ewill imply the following consequences:

a. After one circuit, the trajectory &' that issues fronfx, t) will meet the plague
Q(x,t) againata pointz (x,t") O Vs xR

b. The point z is a continuous functior(ft).

If z = (x, t) then the trajectory oE that issues fronfx, t) will be simply closedcf.,
Chap. V).

Definition 1. — If the field E verifies || EX, t) — E (X, t) || <€then one can associate
it with the field U, which is defined in the following maer:

The vector UX t) is tangent to the arc of the geodesic that issues (xpt) whose
extremity isz. It points in the same direction as that arc andaha®dulus that equals
the length of that arc. One lets (¢, t) denote the projection of the vector XJ ) onto

Vo x R.

Let| be the interval{ 1, + 1] inR.

Hypothesis 1:One supposes that the restriction of the figdltb the boundary y/x
({-1} O {1}) of 5 x| points towards the interior of3\k | .

Definition 2: Letw O V,, and letG,, be the inverse image @f under the canonical
projection of\/3 X | ontoV, .

Suppose thaG,, does not meet any simply-closed trajectory af RAssociate the
point z [0 G, with the vector U(2) # 0 and the oriented direction’What is defined by
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that vector at the poiniM 0). (One points out that the vector spaces thataggent to
the points ofwv x R are endowed with a natural parallelism.) One thus den@magd1 of

Gy into the spheré& (w) that corresponds to the two tangent directionsvte | . If
Hypothesisl is verified then the map will map the boundarg.; = Gy n (V3 x 1) to
the northern hemisphere 8f(w) andG-; = Gy n (V3 % {1}) to the southern hemisphere.
CompleteG,, into a spher&; by considerings.:; andG_; to be the boundary dis€sand
D’ Prolongll to a mad1’ of % into & (w) such thaD maps to the northern hemisphere
and D" maps to the southern hemisphere. One verifiesthigatlegree of that map’
depends upon only the mép

Definition 3: One denotes the degree of the My N (Gy).
Lemma 2:

Suppose that Hypothesisis verified and that NG,) is defined for all wi V, . If
N(Gy) = Othen the Euler-Poincarg of \, is zero.

[One should remark that if Eloes not admit simply-closed trajectories, ard (5y,)
= 0 for somew thenN (Gy) = 0 for anyw”. On the other hand, in order fdr(G,) to be
defined for anyw, it is necessary and sufficient that $ghould not admit simply-closed
trajectories.]

Let V, be a manifold with a boundaBthat is homeomorphic to the circle, such that
there exists a mag of \72 ontoV, that enjoys the following properties:

a. ¢ =wlVs.
b. The restriction of of V, — Sis a homeomorphism.

It is easy to construct such a manifold and such a riage again let denote the
product map ofp with the identity map of to I. The theory of the construction of a
section of a fiber bundle shows that it is possibléirtd a mag of V, x | into V3 x | such
that:

yd=¢ (in which yis the projection o¥/; x | ontoV, x 1).

Let f’be the restriction dfto Sx I. One can define the degrdéof the mad1 3’ in the
same way that one defined the degke@,) above. By hypothesi® (Gy) = O; it will
then result thaN’= 0. The mapl [T defines a direction Uat every point ofp ([V> -9
x 1]). One then deduces that there exists a directiot i€l on V. x | whose restriction
to the boundary, x ({— 1} O {+ 1}) of V> x | points to the interior o¥> x | ; hence,
Lemma2.
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Lemma 3:

One supposes that Hypothesiss verified and that the fiel# does not admit any
simply-closed trajectory. Under those conditiongQ¥) = 0.

The proof of that lemma is sketched out in parag@pBh Lemmas?2 and3 have the
generalized Seifert theorem as an immediate consequence:

Theorem 1:

Suppose that Hypotheslsis verified. If the Euler-Poincaré characteristic of ¥
not zero then the field will admit at least one simply-closed trajectory.

Indeed, a deeper study will permit one to show pha equal to the sum of the
indices of the simply-closed trajectories. We shall go into that study because its
detailed presentation would be too long.

6.3. Proof of Lemma 3.— The hypotheses are the ones in Len83malne can then
find a system of three open neighborhoBg$] B, 1 B; of the pointw in V, and a field
E" on V, that verifies the following conditions (recall thatdenotes the canonical
projection of\/3 ontoV; andy/is the canonical projection ¥ x | ontoV, x |):

1. |IEQ-E@]| < forzOVzxR.

2. Under the map, the system of neighborhooBs [J B, [J Bz is homeomorphic to
the system of three concentric balls in the EucligilameR? that are centered gt (w) =

W.

w

The field E admits a finite number of simply-closed trajectories.

»

The restriction of Eto V( is identical to the restriction of E

-1
By x1)

5. The restriction of Eto the boundary o3 x | is identical to the restriction td.E

o

The simply-closed trajectories of E are containeg ih (B, —By).

7. The simply-closed trajectories of Bre homotopic to the fibers gf ™ (B, — By)
N Yie, g -

8. The field E projects ontdB; — B, along a vector field. (The field U projects
ontoBs; —B; along a field of parallel directions.)
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The proofs of these assertions are very simple amosal obvious; however, the
details are very lengthy. We remark only that the praalfsindeed possibly demand a
new choice of the constaatin Lemmal. It will suffice for us to know that we can

attach are > 0 to the pair\(; X R, E) as in Lemmél, and the preceding eight properties
will be verified. The proof of Lemmais easily achieved then:

Indeed, letw’[J B3 —B, . The manifolds with boundafsy,, andG,,- define two cycles
moduloVsz x ({1} O {- 1}). The property7 will permit one to show that there exists a
chainl whose boundary [modul; x ({1} O {-1})] is Gy — G- and whose intersection
with the simply-closed trajectories of is vacuous. [Indeed, the intersection number of a
simply-closed trajectory of'Eand a chain whose boundary is containedsix ({1} [
{—1}) is zero.] It then results th&d (G,) = N (Gy); however, from the propert§, N
(Gw) =0, which gives Lemma.

6.4. Applications. — Here are two examples of dynamical systems thad le
immediately to some applications of Seifert’s thearem

a. The dynamical system is composed of a material plo@ttmoves without friction
on a Euclidian spher& subject to the action of very weak perturbing forces diegend
upon the position and velocity in such a way that theegystdmits a first integral ods
viva. In this particular case/s is homeomorphic to three-dimensional real projective
space (cf.5.4), andV, is homeomorphic to the sphe8e Hencey (V2) = - 2.

b. The dynamical system is composed of two harmoniclasmié under the action
of perturbing forces of the same type as in the preceskagiple &). Now, Vs will be
homeomorphic to the sphe$g, andV, will be homeomorphic to the sphesg.

We shall now give an application of the generalizeite&e¢heorem. The differential
system:

(1) { X'+ (% X)X+ x+ d¥=p(xX y Y,

Y +h(y, Y) y+ v (9=¢(x%k y}Y

admits an obvious geometric interpretation [cf., Exar{ipleabove]. The system (1) can
be replaced with:

dx _
dt
du

a:—x+[¢(x,u, yV-d3- (x0o0y

dy

(2)

— =-yH@(xu y - (Y- Ky YO

dt
dv
dt
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If the functionsg, ¢, f, h, g, i are zero then the system (2) will define an F.D.g., (E
R9) in the spaceR’ that is obtained by removing the point (0, 0, 0, 0) fronsfiaceR’

of the variables, u, y, v. Hence, R} is homeomorphic t& x R, and k& defines an
F.D.S. on the spheres whose equations are:

X% + % +y? + V2 = constant.

We are then within the scope of the general hypothesés2ofLet A (M, m) be the
hollow sphere whose equation is:

O<msX +UW+y¥ +V< M, in which M >m.

A (M, m) is homeomorphi& x |. Let E be the vector field that is defined by (2). In
order for us to be able to apply the generalized Seliedrem to4 (M, m), Ey, E), it is
sufficient for us to suppose that:

a. The functiond, g, ¢, ¢, h, i are bounded oA (M, m) by a convenient positive
number £ that depends upon only, m. (Under those conditions, it is possible to
construct the field U, cf., Definitioh.)

b. Hypothesisl is verified by the field U.

It is easy to indicate the analytical conditionstba functionsf, g, @, ¢, h, i that
ensure conditionk(). We simply remark that conditiob.] expresses the idea that the
energy € + y* + U + V%) of the dynamical system increases in time when tieegy is
weak and, on the contrary, diminishes when the enerdgrge. That is the general
situation that is produced in the case of relaxationlatsons.

The same method will likewise permit one to estahliighexistence of the periodic
solutions of period (forced oscillations) for differential equations oé tiype:

X7+f (X, X)X +x=¢(t, x x'),
in which the function admits the periddin t and in which the functiof(x, x") verifies

the general hypotheses of relaxation. (Of course, oppases that the perturbing terms
andf are not too large.) Cf.4pa.




CHAPTER VII

ON THE STABILITY OF PERIODIC SOLUTIONS OF THE
DIFFERENTIAL EQUATION

XX y)dx+Y(x,y)dy=0.

7.1. Introduction. — Some classical formulas will permit one to calmiléhe
characteristic exponent of a closed trajectoryf the differential equatioX dx+ Y dy=
0 [47, 31]. Those formulas will then permit one to study ttebgity of C. Levinson has
shown what one can infer from those formulas in the study of a number efctbesd
trajectories[31, 47]. One knows the importance of those questions irsthdy of the
Liénard equation or some analogous equations of mathehatigscs.

We propose to restate those two questions by usingngtbods of differential
algebra. In the first place, we shall prove the feilgy two lemmas:

Lemma 1:

Let L be a two-dimensional numerical manifold, and dgbe a Pfaff form without
singularities on Y. There exist a Pfaff forrm on \4 that is defined modula such that
dw= w 0 w. Let C be an integral curve of the equatiar= 0. The forma that is
induced in C byw is closed. The cohomology class @mfdepends upon only the
differential equationw= 0, but it does not depend upon the particular choicev@ivhich
can be replaced by « in whichA is a numerical function that is not annulled at any
point of \4).

Lemma 2:

In addition to the hypotheses of Lemfinaone also supposes that C is compact and
oriented; one sets(C) = ch' The characteristic exponent of C is equal-tio(C).

It will then result from Lemma that if I (C) <0 [I (C) > 0, resp.then the trajectory
C will be stable (unstable, resp.).

One should point out that the statements in Lerhrage all obvious, except for the
last one. However, Lemniacan be stated in a more general form:

Lemma 3:

Let \,, be an n-dimensional numerical manifold, andddbe a completely-integrable
Pfaff form without singularities on,V There will then exist a Pfaff for@ on \4, that is
defined modulavand is such that@= w O w Let \j-1 be an integral manifold of the
equationw= 0. The forma that is induced in \; by @ is closed. The cohomology
class ofwdepends upon only the equatia 0 [39].
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Lemma2 admits an analogous generalizatiBf][

7.2. Proofs of Lemmas 1, 2, and 3: We immediately prove Lemnf which has
Lemmal as a consequence. Singdas completely integrablep0dw= 0 ; i.e.,dwis
divisible by cy which implies the existence @ (which is defined modula). However,
ddw= 0, so:

dwlDy=0=dwUw-w 0w Dw=dw 0w.

Now, dw O w= 0 is equivalent talco = 0. One then replaceswith s = Aaw One
can write:
daw=dd0w+Adw=dA/ 1+ w)Ow

with some obvious notations. Hence:

@=w+dl/Amodw and @ =w+dAlA,

in which dA/ A is the form oV, that is induced bgA /1. Q.E.D.

It should be remarked that one can replace thma towith a “twisted” form (i.e., one
that is defined up to sign) in the statement of hexB.

In order to prove Lemma, one introduces local coordinatas @ in an annular
neighborhood o€, in whichr and @ are some real numbers, afits defined modulo Z
such that the equation @fisr = 0, andé increases whe@ is described in the positive
sense. Under those conditions, the proposed equatil be transformed into:

w=dr+¢(r, §dé=0,

in which ¢ (r, 8 is a periodic function of period&in 6 and¢ (0, 6) = 0.
Here, one has:

daw = ¢ (r, & dr 0dE and 4 =-¢(r, 6 dg (mod ).
The functiong (r, & admits the limited development (i

o, 0=r¢go (6 + ..., in which #o (8 = ¢.(0,0).

The solutions of (2) have the form= W (ro, 6), in which 0< < 277 andW (ro, 6
admits the limited developmeHt (ro, 6 =ro W (6 + ... One then concludes th&
verifies the equation:

dW¥o+ W ¢o(@ déa,
o)
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Wo (6 =Wo 0) exp| -], (&) dé |

The conclusions of Lemnfaresult immediately.
Remarks:
1. A particularly simple form for the equatiohdx+Y dy= 0 is the following one:
w= cosW dx + sinW dy= 0,

in whichW is a (possibly multi-valued) function in a domarof the Euclidian planex(
y) whose various determinations differ by a multiplaf Under those conditions:

dw= (sinW ¥y + cosW W,) dx I dy,
and one can set:

The form da, which will play an important role in what follows,lishave a remarkable
structure then:
dw = (¥, +Wy2)dedy:AqJ dxOdy.

2. It should be pointed out that the foran is coupled with the integrating factors of
w Indeed, ifg is an integrating factor abthen:

0=d(¢ ) =d¢ 0 w+ ¢ dw,
SO
dw=-d¢/@9)0w and w=-d¢/¢ (modulod) .

If e is a closed form then there will (locally) existuactionf thatdf = . One can then

deduce thate'w is a closed form, and that the equati@r= 0 can be integrated by
guadratures.

Examples:

a. Consider the linear equatiow=dy + [f (X) y +g (X)] dy=0. Heredw=f (x) dy
Odxandw =-f (x) dx hence, extﬁ f (x) dx is an integrating factor.

b. Letx”+f (xX) x’2+ g (x) = 0 be a differential equation. lIts integraticomes
down to the integration of the system:

dx=vy dt w=ydy+[f(x)y*+g(X)] dx=0 (Bernoulli equation).

Thus:
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dw=2f (X) y dy dx; w =-2f () dx.
One then sees that the proposed differential equat&m ke integrated by

quadratures. One should note the analogy between the pdopgsiation and the
Liénard equation (cf7.4).

7.3. Applications to the equationw=dp—f (p, & d&d = 0. — We propose to show
how Levinson’s ideas permit one to establish very simpéy uniqueness of a closed

trajectory in certain vector fields that are definethieR? [31].

To that effect, we recall certain classical resoiighe integral curves of a vector field
that is defined in the plari?®.

We suppose that the vector field E verifies the folfgnahypotheses:

Hypothesis 1:The fieldE admits only one singular point, namely, the origin

Under those conditions, the closed trajectories @r& arranged in the manner of
concentric circles around the origin 0. Each trajgct®obviously oriented in the natural
fashion by E.

Hypothesis 2: The sense of rotation arour@of a moving point that describes a
closed trajectory oE in the positive sense does not depend upon the particular choice of
that closed trajectory.

Under those conditions, one can state the followiagsital result:

Lemma 4:

Let C and Cbe two closed trajectories &fthat verify the following conditions:

a. There exists no closed trajectory between C andh&t is either stable or
unstable.

b. Cis stable (unstable, resp.).

Under those conditions ‘@vill not be stable (unstable, resp.).

Let (o, 8 be a polar coordinate system with its poléan the planeR?. Consider
the differential equation:

(1) w=dp—f(p, §d=0,  inwhich (o, 8+27=f(p 6,

and the corresponding vector field whose componentgjdlte polar axes are {, 1). It
is clear that this field E verifies Hypothedeand?.
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The exterior differential ofvis:

() dw=",(p, 6 dp0dE;
hence:

() w=-1,(0, 6do

and

4) do=-1 (o 6 dpo0dE.

One should point out that in the particular casef/gf: 0, the forme will be closed;

equation (1) will then be very easy to discuss.
We examine the case Iin whid’r})2 keeps a constant sign in the entire plaﬁ[gg:é 0,

or f ,<0).
Yol
Theorem 1:

If the function f (o, 8 keeps a constant sign in the plaR&then equatior(1) will

admit at most three closed trajectories. Moreovds), admits at most one closed
trajectory C for which (C) >0 (C) =0 and (C) <0, resp.].

Indeed, lefC be a closed trajectory of (1) such thg€C) = 0. IfC’is another closed
trajectory of (1) then Stokes’s formula will showttha

(5) | (C) =1 (C’) = jAda) 20,

in which A is the annulus that is bounded Gyand C” and endowed with a convenient
orientation. Hencd, (C’) # 0. Lete (C’) be the function that takes the value + 1 or — 1
according to whether (C’) > 0 orl (C’) < 0. LetC”be a closed trajectory that is
distinct fromC andC’. One letss (C’, C) denote the function that takes the value + 1 or
— 1 according to whetheZ’ is interior toC” or exterior to it, resp. When Stokes’s
formula is applied to the domain that is boundedZywnd C”, that will permit one to
establish the following property:

(6) ECHEC,C") () >0 impliesthat £(C)(C’)>0,
in which:

efM=+1 if f,>0 and ¢(f)=-1 if f, <O.
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However, it is impossible to havwe(C’) Os (C”) > 0 for all closed trajectorieS” that
verify € (C’, C”) = constant. (It will suffice to apply Lemnda) Hence:

(7) eCHEEC,CH=(()<O.
Similarly:
(8) eCMEEC”,C)EF <O.

Hence, (C”, C’) <0, which completes the proof.
Remarks:
1. Consider the clags of functionsf (r, 6 that verify the following condition:

The function f(r, 8 will verify the inequality— fp2 < p[k for a giveng > 0in the

circular annulus D(which is defined by the inequally<m < p <M, in which M and m
are given.

LetC;, C,, ... be the closed trajectories of equation (1) thatcargained inD and
have a positive characteristic exponet(€). [One supposes tha{p, 8 belongs to the
classA.] There are a finite number of those trajectoriespese can suppose th@t is
interior to Ci+1 . There then exists a closed trajectbrypetweenC; and Ci+; such that
() = 0. When Stokes’s theorem is applied to the trajecdtiandC; , that will show
that:

1) 1==1(C)s1 M) ~1(C) =~ in[%prderdqsem,

in which A; denotes the area of the annulushat is bounded b§; andrl; .
Hence:

areaoD =Az > A 2> 1(C)/¢ because A=1(C)/e.

Letl =infi |1 (C) |, and leth be the number of closed trajector@&s

as
E

The latter inequality shows that if the trajectari€ are strongly stable then the number
of those trajectories will be small.

It goes without saying that inequalities that @amalogous to the preceding one can be
proved for equations of a more general type tharptbposed equation.
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2. Recall the formw= cosW¥ dx + sinW dy (cf., Remarkl in 7.2). We suppose that
W is defined in the entire plang, §), except for the point O.

Let ¢ (x, y) be the polar angle of the radius vector whose oigyiat 0 and whose
extremity is &, y). One easily verifies that if:

W=g+log, X +y

then the formwwill enjoy the following properties:

a. There exists an infinitude of closed trajectories tleaify w= 0; the set of those
trajectories admits the point (0, 0) as its accutimrgpoint.

b. AW =0.
The results that were stated above (Thedremd Remarld) will therefore no longer

be valid when Hypothesikis not verified.

7.4. Applications to the Liénard equation.— In this paragraph, we shall once again
use the method of N. Levinson (cf.3).

Before discussing the Liénard equation:
9) x"+f(x) x’+g(x) =0,
let us make some very simple remarks about the anal@gpasion 1):

(10) X"+e(X)f () x?+g(X) =0,

in which:
ExN)=+1 ifx’>0 and &(XxX’)=-1 ifx'<0.

(Cf., 7.2, Remark2, Example2) Equation (10) has a mechanical interpretation that is

analogous to that of (9).
The equation:

(11) w=y dy+[£(y) f () ¥ +g ()] dx=0
that is associated with (10) verifies Hypothdsaf 7.3
(12) w=-2&(y)f(x)dx for y#0.

The forma is a closed form foy # 0.

() Contrary to our conventions, the functier(x’) is not indefinitely differentiable; meanwhile, our
statements are easy to justify.
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We make the following natural hypotheses on (10):

Hypothesis 2:

a. f(x)=0 if X=a or Xx=p where  a<0<pf.
b. f(x)<0 if a<x<p.
C. f(x)>0 if Xx<a or X>p.

d. Each closed trajectory C ¢11) meets the axesxa and x= L.

One should note that a closed trajectory of (11) saci#g meets one of the axes
a andx = . Indeed, the integral @fw= 2f (X) £ (y) y dx dy over the domain that is
bounded byC must be zero, from Stokes'’s formula. The condi{thih in HypothesiL is
then verified wher (X) is an even function angl (x) is an odd function, because in that
case, equation (11) will be invariant under the symmetsy— x andy — —.

Suppose that (11) admits closed trajectories. _bt the closed trajectory of (11)
that contains no other closed trajectory in its iateriC is not unstable, because (0, 0) is
an unstable stationary position. Therefdr€) < 0. LetC’be another closed trajectory
of (11), and lew, v [u’, v/, resp.] be the abscissa of the points wi&f€’, resp.] meets
they = 0 axis, withu <u’< 0 <v <V’ so:

€)=-4["f(xdx,  1(C")=- 4jvﬁ"f(x)dx.

Hence, when one takes Hypothe3igito account, one will see thatC) >1 (C’).
Hence:

Theorem 2:
If equation(10) verifies Hypothesi2 then that equation will admit at most a single
stable periodic solution and possibly one periodic solution whose charaictesgionent

is zero.

Let us now examine the Liénard equation (9). Introduee/dhniable:
X +F (X) = u, in which F (X :onf(f)df.
Equation (9) then comes down:

(13) w=g(X)dx+[u-F (X)] du=0.

Therefore:
dw=-f(x) dxOdu,
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and one can set:
w=fX)/gXdu, Iif g(x)#0,
and
w=—[f(X)/(u-F (x))] du, if [u-F (xX)] #0.

Hypothesis 3:

a. x>0 Iif x#0; g(0)=0.

b. The function {X) is annulled for two values xand % of the variable x such that:
X1<0<x; f(X)<0 ifxg<x<xx and f(X)>0 if X<xz Orx>xs.

c. Each closed trajectory; ©f (3) meets the axis % x, at B and $and the axis x
x; at Q and R; those points follow in the order PQ, R, Son G.

One remarks that the condition)(is necessarily verified when the functibgx) is
even and (x) is odd. (Cf., the preceding example.) If (13) admibsetl trajectories then
there will exist a closed trajecto@ that contains no other closed trajectory in itsriate
(indeed, the origin is an unstable focus). It will thesult thatl (C;) < 0. LetC, be
another closed trajectory of (13). UeglP; Q), ... denote the integrals afalong the arcs

PQ:

(14)

I (P2 Q) <1 (P1Qu),
RS <IRS) .

Indeed, one can verify the first of these inequalitigs@pplying Stokes’s formula to
—f(x)
u-F(x
Q1 (of C; andCy) and some rectilinear segmeRtsP; andQ, Q. upon remarking that the
[u-F(XI°
—-f(x)

[u—F (X)] # 0 in the useful region.]
In order to establish the analogous inequalities:

the formow = dx and to the contour that is composed of the ares Q, andP;

integral ofdw = dx O duover the interior ot is negative. (One verifies that

l (Q2R) <I (Q1Ry),
1 (& P)<I (& Py),

(15)
it is convenient to set:
w=-1TX/gXdu=—¥ (X)du, inwhich WX =+f(X) /g (x#0).

Consider the contol¥ = Q, R Ry Q1, which is composed of the ar@g R, andQ1 R;
and the segmen&® R; andQ; Q. . Stokes’s formula will show that:
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.[FCT) - '[AdCT),
in whichA is the area that is bounded By Now:
dow =-W (X) dxOdu.

The inequalities (15) will then be valid wheri(x) > 0 (forx # 0, or even better, for <
X1 Or X > Xp). It results from (14) and (15) and the fact th&C;) < O thatl (C;) < 0.
Upon taking into account some results that were obtabegte, one will finally see that
C: is the only closed trajectory except for possibly wh€@;) = 0. In the latter case,
there will possibly be yet another closed trajectorme ©@an summarize these results as:

Theorem 3:
If equation(13) verifies Hypothesi8, and if the functiony (x) =f (x) / g (X) verifies
Y'(x) > 0for x < x; or X > Xz, moreover, then equatiaf®) will admit at maximum one

stable periodic solution, and it will admit no ualste periodic solution.

One should note that fif(x) = € (¢ — 1),g (X) (viz., the Van der Pol equation) then
W(x) =x—1/xandy’(x) =1 + 1 /¢ > 0. One then recovers that classical result.




CHAPTER VI

ON THE NATURE AND DISTRIBUTION OF THE
PERIODIC TRAJECTORIES OF CERTAIN
DYNAMICAL SYSTEMS

8.1. Introduction.

8.1.1. The dynamical systems that are envisioned in thigtiale: A dynamical
system is the paing , E) that consists of amdimensional numerical manifold and a
vector field E that is defined ovi, . Here, we shall consider some particular dynamical
systems (P.D.S.) that verify the following properties:

a. The fieldE admits no singularities. The fielel admits a finite number of closed
trajectories G (i = 1, ...,N). The characteristic exponents that relate to any one of those
closed trajectories are all different and their real parts are naw-zeThe qualitative
behavior of the trajectories @& in the neighborhood of {Gs the behavior that one will
observe upon replacing with the differential system that is defined by the equations of
first variation.

b. Let x(t, Xo) (in whichx, xo O V) be the trajectory ok that passes through the
point % at the instant £ 0. For any open neighborhoad of the setUiCi , there exists

a T (xo) > Osuch that: Xt, xo) JQ for |t | >T.

8.1.2. Objective of this chapter— The hypotheses{ and p.) in 1.1 do not seem
very naturala priori. One hardly knows any criteria that will permiteoto recognize
whether a given dynamical syste¥ ( E) will verify those hypotheses. Meanwhile, it is
clear that one knows numerous dynamical systems rip@linear mechanical ones) that
verify properties 4.) and p.), and the physical behavior of such systems is paatigul
simple and agreeable (e.g., the absence of recurremnaatiher than periodic motions).
We propose to show that the distribution of periodations of such a system will obey
some simple laws.

We remark that the known laws of the distributiorpefiodic motions are, for the
most part, coupled with some theorems on the fixed poaftsa topological
transformation. They are valid by means of some hygset on the topology &, (for
exampleV, is a topological produd?,-; x Sof a manifoldV,-; with a circleS, or rather:
Vi, admits the structure of a fiber bundle whose fis&) and on the field E (for example:
the field E has a non-zero component along the fibeYg)o In our article, we make the
hypothesesa) and b.), but no other hypotheses of the same type as tistbatwe just
recalled.

Later on 8.5), we shall recall the justification for that study.
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8.2. Preliminaries. Definition of a P.D.S.
Definition: A dynamical system\,, E) will be called &.D.S.if:
1. The phase spatk is compact.

2. (Vn, E) enjoys the propertiea.j and p.) in 1.1

8.2.1. On the closed trajectories of a P.D.S. Consider a closed trajecto@y of a
P.D.S. Vn, E). We leta], ...,a. , denote the — 1 characteristic exponents@fand let

B, ..., denote the real parts of , ...,a. ,. We can suppose:
B<B<s..B<0<Bl <.<B,.

The whole numbes is called thecharacterof G, and (—1)% = y is called thendexof C..

In this paragraph, we consider a particular trajed@®and thus suppress the index
The hypothesisa)) of 1.1 0on the closed trajectoy is stated precisely as follows:

Hypothesis: There exists a neighborho& of C that is homeomorphic by a map h to
the topological produdR™™ x S of the(n — 1)-dimensional numerical spad@"* with the

circle S. The function h enjoys the following properties:
The map h maps the trajectories Bfonto the curves that are defined by the
equations:
X = expAb,

in which xO R"™™, @ is the abscissa (defined modul) on S, and A is a linear
transformation whose characteristic roots arg, ..., Gn-1 .

It is clear thah mapsC to the trajectorx = 0.
The transformatior is completely reducible to the sum of two transfaiomes A;

andA; that operate on two complementary subspa&psnd R2** of R"*. Moreover,

the characteristic roots & area, , ..., as, and those o\, ares.y, ..., On-1 .
Since:
A= A]_ U A2 ,

expA = expA; U expA; .

Finally, one can endo®" with a Euclidian metric such that the subspa&&sand

R} are orthogonal and such that:
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| (expA) x||ls (L =9 [Ix|| if  xOR]
| (expAg) x|z (L -9 |Ix|| if  xORF,

in which ||u || denotes the norm ofande& (&> 0) do not depend upon

Definition: Set:
P1(C) = (R} x9),
P, (C) = h‘l(RQ‘l‘sx S.

8.2.2. On the canonical decomposition of the defining space @fP.D.S.— Let p
denote the equivalence relation that is definedVjn whose equivalence classes
correspond to the trajectories of E. Suppose Watf) is a P.D.S. Le€; be one of the
closed trajectories of E. The spad¢as(Ci) andP, (C) are not defined in a canonical
fashion; however, the following properties are obvious:

Definition 1: Let Q; (C) andQ: (C) be the sets that are obtained by saturd®ng
(G) andP; (G)) for the equivalence relatigm

Proposition:

The sets Q(Ci) and Q. (C) depend upon onlfCi, E, V;)). The sets Q(C;) andQ2(Ci)
are homeomorphic t®R] xS and R" xS, respectively

For what follows, it will be convenient to enumertte trajectorie<; in a different
way; to that effect, we set:

Definition 2: One divides the trajectori€} into n classes, where each clasgj = 0,
..., N — 1) includes all of the trajectori€s that have a given charactgr=j ; one
enumerates the trajectories of the same classr@ilyt. An arbitrary closed trajectory
will be defined by its charactgand its number ; one then write€; . The index varies
from O ton — 1, andi varies from 1 toN; , whereN; is the number of trajectories of
charactery .

Definition 3: One sets:

Li = UJ—Ql(C.j)a
Kn=Vn,

Kn-1 = Kn = Lp-1,
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Kr-1 =K = Lp-1,

Ko:Kl—Lo.

One easily sees th#t, = 6 L, is an open subset i{;.;, and K, is at mostr-
dimensional.

8.3. Some examples of P.D.S.'s.

8.3.1. Dynamical systems that are defined in the plari®’. — Suppose then thit,

= R? and let E be a vector field iR? that admits a unique singular point 0 whose

coordinates arg = 0,y = 0.

Under those conditions, the trajectories of E wilher be closed trajectori€3 that
surround the origin O or curves that unroll like spiratsuad those orbits. Hypotheses
(a.) and b.) in 1.1 imply the following properties:

1. There are a finite number of trajector@s
2. Each trajectorg; is completely stable or completely unstable.

A dynamical system that verifies the preceding twopprties is not a P.D.S.
(because/, is not compact, and E admits a singular point), but Wesee later on that it
is possible to extend the properties of P.D.S.’s to dyolamical systems.

Let C; andC; be two completely-stable closed trajectories ofLEt s be the number
of completely-stable closed trajectories betw€grandC, , and leti be the number of
completely-unstable closed trajectories betw€grandC, . The following relation is
obvious:

i—-s=1.

We propose to establish some relations of that typ®.D.S.’s [Cf.,8.4.3(2) and8.4.4
Theoremsl and?2].

One will then be led to consider a P.D.S. when amasiders a vector field without
singularities E that is defined on the two-dimenaictorusT 2. If E admits a (non-zero)
finite number of closed trajectories, and if eathhose trajectories is completely stable
or completely unstable theft ¢, E) will be a P.D.S. With the preceding notatjomse
can write the following relation under those coiaahs:

i-s=0.

8.3.2. Examples of P.D.S.’s- The (three-dimensional) sphe&ecan be considered
to be a fiber space whose base is the two-dimealsgphereS, and whose fibef is
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isomorphic to the one-dimensional torlis(T is the multiplicative group of complex
numbers modulo 1).

Let P be the canonical projection & onto S, . Let U be a vector field with no
irregularities orfs; that is tangent to the fibers 8f. Finally, let V be a vector field d&
that has a finite number of singular poirt$ = 1, ...,s) of the saddle or focus type, and
enjoys the following property:

Any trajectory of V will tend to a singular poirt(fort — +oc andt - — ).

There exists a field W o0& such thaP (W) = U. Set E=U + W. ltis clear th&f,
E) defines a P.D.S.

Let:

N> = number of stable foci (or nodes)

No = number of unstable foci (or nodes)

N; = number of saddles.
Under those conditions:
N> —N; +Ng = 2.

There will then exist a particular P.D.S. nthat admits a single completely-stable
periodic trajectory and a single completely-unstable opési trajectory, with the
exclusion of any other type of closed trajectory.isltemarkable that this phenomenon
cannot be produced &q+1 whenq = 2 (cf.,8.4.4).

It is easy to give some examples of P.D.S.’s whpbkase spaces are time
dimensional spher§, (n odd).

8.3.3. Systems of] oscillators. — The study of a dynamical system that is composed
of q oscillators frequently (in the case of relaxatiogds to the study of a dynamical
system Qoq+1, E), wherelyq+1 is @ manifold with boundary that is homeomorphic to the
topological productSg:1 x | of the (Z) + 1)-dimensional spher§:1 with the closed
intervall = [0, 1], and in which E is a vector field without sifayities onAxq+1 whose
restriction to the boundary ébq+1 points to the interior dfizg.s .

The study of dynamical systems of the type that venigperties4.) and p.) in 8.1
is therefore particularly important from the physicawpoint.

8.4. On the distribution of periodic solutions of a P.D.S-

8.4.1. On the homology oK, / K.—1 . — In all of what follows, we shall 16t ' (K;)
denote the cohomology groupkfin dimension when the coefficient ring is the ring of
integers. The dimension of the Betti group 7éf' (K;) will be denoted byp (K;).

Finally, if one takes the domain of the coefficientsdmlo 2 then one will denote the
dimension of the Betti group in dimensiohy b; (K).
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In order to find the cohomology & / K,—1, it will suffice to note thak, — K,_; =
L1 is homeomorphic to the sum Kf_; spaces that are homeomorphi®@' x S Now,

R can be completed to an+ 1)-dimensional topological spheXe; by adding a point

at infinity w. The cohomology group df: / K- will then be isomorphic to the
cohomology group of:
SaxSlH{ad xS=Ea/{d) xS

It will then result that the torsion groups &f' (K, / K,—;) are all zero and that the
Poincaré polynomials:

SR IK )X or  Sh(K /K )X

are equal to:
N1 (X" +X ™) =P (X).

In order to obtain the desired laws, it will nouffice to write down the well-known
classical relation between the cohomology groupthefspacek , K.-;, andK; / K;_; .
We shall look for relations between the numbés(viz., the number of closed
trajectories of charactéy and the cohomology of, .

8.4.2. Review of the classical relations between the cohomoésyof the spacek,
Kr-1,and K, / K,;-; . — Those relations can be summarized thus:

There exist canonical homomorphismef H ' (K;) into X ' (K;-1), and therd; takes
H' (K1) into H ™ (K, / K1) and ¢ takesH ' (K; / Ki-1) into H ' (K,), such that the
sequence of homomorphisms:

0i4 ) [ . I . 0, . Fia
e o H ! (Kr/Kr—]_) — H ! (Kr) — H ! (Kr—l) bd H I+ (Kr/Kr—l) > e

is exact (i.e., the image of each of the homomarpkiin the sequence is equal to the
kernel of the following homomorphism).

One letsH’" (K, / Ki-1), H’' (K,), andH”" (K,-1), denote the images af., ¢, and

li, respectively.
We now propose to exhibit some consequences eétteations.

8.4.3. A general formula.— With some obvious notations, the exact sequende?
will give the following relations between the Bettimbers:

a. PI(K)+ R(K ) =pi (K)
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(1) b pl’(Kr / Kr—l) + p"( K ): pi (Kr / Kf—l) ’
C. pi,+1(Kr / Kr—l) + F?"( K —1) =hi (Kr—l) ,
from which, it results that:

pi (Kr / K1) +pi (Kr-) = pi (Ko) = pi (Kr / K1) + pies (Kr / Ki—1) 2 0.

Upon adding corresponding sides of the precedingequalities that are obtained by
varyingr fromn to 0, one can write (taking the preceding paragrapbsairtount):

(2) N, +N_ - p(¥)=0.

Obviously, one has the analogous relation betwleemBetti numbers (mod 2):
N + Ni—s — b (Vo) = 0.
These inequalities have a striking analogy with ittegualities of M. Morse, which are
concerned with the distribution of critical poirtsa numerical function (cf8.5.2.
8.4.4. Particular case in whichv, is a homology sphere:
Lemma 1:

If pq (Ky) = Ofor 1< g<r (r fixed), and if p(K;) # Othen p-, (Ki-2) Z 0 and p-(Kr-2)
=0whenl<q-2<r-2.

Proof:

Indeed, it results from formulas (2) 48 that:

Po-2 (Kr-1) = p('q—l(Kr IK )+ pg—z( ) [cf., )]
Now:
Pg-1 (Ki /K1) =0 if qg-1<r-1
and:
p;—Z(Kr—l) = Pg-2 (Kr) - p(’q—l(Kr) =0 if 3sq<r
Hence:
Pg-2 (Ki-1) = 0.

One likewise shows that:
Pg-2 (Ki-2) =0 if l<g-2<r-2.

Now, suppose that—, (Ki-2) = 0. It will result from (1)c. that:
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P4 (K /K ) =0,
and as a result:
p;—l(Kr): pr—]_( Kr / Kr—l) = Nr—l y

but p,_,(K,)= 0, by hypothesis, si§-1 = p,_,(K, /K _)=0.

Now, p,,(K. /K _)= p (K /K_), so another application of (b)will give p;(K.)
=0, but from (1x, p/(K._)= p,(K. ), butdim K-1) <r -1, sop, (K _) =0, and due
to (1)a, one will arrive at a contradiction; thus:

p (K )=0.
Consequence of Lemma 1:

If Vi, is a homology spher@ dd) then the Betti numbers:

Pn (Vn), Pr-2 (Kn-2), ---s Pr-2q (Kn-2q), -+, P1 (Ka)

will all be non-zero.
Now, (2) shows that if; (V;) # 0 then p (K,)# 0, and it will result from (1h that

pr(Kr / Kr—]_) ¢ 0 .

Theorem 1:

If V, is @ homology sphere, and(W,, E) is aP.D.S.then the numbers,Nvith odd
index r will be non-zerd.In other words, there exists at least one closed trajectory that
has a given even characterik n—1).]

Corollary:

If V, is a homology sphere, and (¥, , E) is a P.D.S.then the number of closed
trajectories will be greater than or equal fo + 1) / 2.

The same method will permit one to prove the foitayvproperty (which we shall
state without proof):

Theorem 2:

If V,, is a three-dimensional (homology) sphere, ariy3f, E)is aP.D.S.then:

N, - N, + N, = 2.
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8.5. Remarks on the nature and distribution of the trajectores of a dynamical
system.—

8.5.1. Remarks on hypothese&.) and (b.) in 1.1. — One will be led naturally to
consider dynamical systems that verify hypothesgsand p.) in 1.1 However, it is
appropriate to point out the following reservation: Hypothesis that was made about
the qualitative behavior of the neighboring trajectot@s closed trajectory is neither
natural nor consistent with the properties of the grdak curves of a vector field.
However, if we suppose that the characteristic expsre trajector; are all distinct
and have non-zero real parts then it will be possibleptace the field E with a field'E
that verifies the following properties:

1. -G is a trajectory of Eand the characteristic exponent¥pthat relate to Eare
the same as the characteristic exponents that tel&e

2. — The fields E and E are identical, except in esengll neighborhood di; .

That remark justifies the consideration of P.D.S.Binally, we point out that the
results o#4.4 are “stable.”

8.5.2. Another class of dynamical systems. Basically, we know some dynamical
systems that are even simpler, and in a certairesanse interesting, than the P.D.S.’s.
They amount to the dynamical systeis ,(E) that verify the following properties:

1. —The fieldE admits a finite number of singular poir(ishich have characteristic
exponents that are all distinct and have non-zel@eets).

2. —All of the trajectories oE converge to a singularity &.

One can study such dynamical systems by some procedtiatese analogous to the
ones that we just studied. Such a study is virtuallyiezhout in B9 by Thom. Thom’s
results completely clarify the analogies with theMbrse’s theory of critical points.

8.5.3. On a general problem— We remark that the preceding study shows that a
dynamical system\{, , E) (whereV, is compact) that does not admit “enough” periodic
motions will admit certain stable motiong, la Poisson, of a type that is more
complicated than the periodic motions. That is whyoaesider the preceding study to
be a first step into the study of a general problemdaat in our opinion, be stated in a
tractable form in the following manner:

Consider a dynamical systei,( E) with indeterminacyd44. One then studies the
relations between the topologydf and the distribution and nature of the “stable states”
of the dynamical system envisioned.




REMARKS ADDED DURING
CORRECTION OF THE PROOFS

1. The article $3], which we were just informed about, treats some qouestihat
are close to the ones that are examined in Chapter VIII.

2. It is appropriate to add the following hypothesis to Hypstkef.) and p.) of
8.1.1 V, is orientable. Indeed, ¥, were not orientable then the statement$8.@f1
might break down. It is nonetheless clear that thdysin Chapter VIII can be extended
to non-orientable manifolds.

3. The statement that was made at the en8.2R that would makd., be open in
Kr+1 IS not exact. However, the only case in wHigltannot be an open subsetgf; is
the one in which there exist trajectories of E thaidtéo closed trajectories that are
neither stable nor unstable when- + « andt — — o . Now, the latter situation is
highly exceptional, and it would then be legitimate tscdrd it by way of a
supplementary hypothesis.

Indeed, in order to give a correct proof of the resafliShapter VI, it would suffice
to make the following very simple modification: Rem@abe set&, with the sets that are
obtained by removing the closed trajectories that areaced inL, . The vexations that
were pointed out above (e.d.; is not an open subset &f.1) would no longer be
produced; on the other hand, the proofs would mimic the thia¢svere made exactly.




