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CHAPTER I 
 

INTRODUCTION  
 
 

 1.1 – Generalities on dynamical systems. – Since the time of the classic work of H. 
Poincaré and G. D. Birkhoff [37, 37a, 37b, 5], the sense of the locution “dynamical 
system” has been expanded considerably, to the point that it presently refers to some 
extremely general structures.  A dynamical system is always attached to a partition of a 
topological space E (viz., the phase space) into subsets (viz., trajectories) that verify 
certain conditions that relate to topology, the theory of ordered sets, or the theory of 
groups of transformations.  One thus distinguishes between topological dynamical 
systems, ordered dynamical systems, and general dynamical systems; cf., [36].  In a 
theory of such generality, one proposes to study the topological properties of trajectories 
and the things that pertain to them: e.g., regularity, recurrence, compactness, almost-
periodicity, transitivity, etc… We remark that the theory of fiber bundles [11, 16, 41] and 
the theory of foliated manifolds [39] are particular theories of topological dynamical 
systems. 
 
 We return to the more restricted notion of dynamical system (D.S.) that was 
envisioned by H. Poincaré and defined by G. D. Birkhoff and studied by numerous 
authors and scholars since then.  A D.S. is the pair of an n-dimensional differentiable 
manifold (1) Vn and a continuously-differentiable vector field (1) E on Vn .  Moreover, we 
propose to study certain global properties of the trajectories of E.  We remark that 
following certain authors [24a, 26], the properties that we have in mind must be “stable”: 
i.e., they must be verified by all fields (or at least by all of the fields in some class) that 
are sufficiently close to E.  Indeed, it is only with that condition that those properties will 
present any physical interest. (See the last paragraph of 1.3.) 
 The general results that are concerned with dynamical systems thus-defined are much 
less numerous [51, page 19].  In order to obtain more extensive results, one will then be 
led to make some restrictive hypotheses on the D.S. considered: Those hypotheses can 
be, for example, of an analytical nature (e.g., linear systems, perturbed linear systems, …) 
or of a topological nature (e.g., the trajectories are required to penetrate into a certain 
region [44]) or of a mechanical nature (e.g., conservative systems, …).  The latter 
hypotheses of a mechanical nature seem to be the most interesting.  In 1.2, we shall 
attempt to group certain important theories around some principal notions of a 
mechanical nature that come into play. 
 
 
 1.2. – Review of certain classical theories. 
 
 a. Conservative dynamical systems. – Those D.S.’s play an important role, since one 
comes back to them in analytical mechanics (e.g., celestial mechanics) and differential 

                                                
 (1) In order to not pointlessly encumber the presentations, we agree once and for all (unless stated to the 
contrary) to consider only manifolds, maps, homeomorphisms, etc., … that are indefinitely differentiable. 
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geometry (Finsler spaces, calculus of variations, …).  Those systems enjoy the following 
properties: 
 
 1. The existence of Liouville’s invariant integral. 
 
 2. The trajectories are the extremals of a problem in the calculus of variations. 
 
 3. The trajectories are the geodesics of a Riemann space. 
 
 4. The existence of canonical variables (pi , qi). 
 
These various properties correspond to the following classical theories: 
 
 1. Ergodic theory [22] and the statistical theory [32]. 
 
 2. The theory of the minimum and the min-max [41b, 5a], as it is perfected and 
generalized in the global theory of the calculus of variations [42a, 34]. 
 
 3. The theory of geodesics in a space of negative curvature [5a, 21, 7] and the theory 
of symbolic dynamics; see also [38]. 
 
 4. The study of neighboring trajectories to a closed trajectory [5a, 37a], the theory of 
perturbations [37]. 
 
 b. Periodically-excited dynamical systems. – That class of D.S.’s can be schematized 
thus: The D.S. is defined by the equation: 
 

dx = E (x, t) dt, 
 
in which x describes a manifold Vn and the vector E (x, t) is a periodic function of time t, 
and the period T is a constant that is independent of x [39c, 12, 30, 30a].  The study of the 
topological properties of the trajectories such a D.S. comes down to the study of the 
topological properties of the transformation of Vn onto Vn that associates the point x with 
its transform at the instant T along the trajectory that issues from x at the instant t = 0.  A 
particularly important class of those systems is composed of the D.S.’s that are energy 
dissipators at large velocities.  The latter systems can also be classified according to the 
rubric: 
 
 c. Relaxation oscillations. – These amount to systems that are subject to constraints 
and forces that are independent of time and have the following peculiarity: The energy of 
the system diminishes at large velocities and increases at small velocities [19, 19a, 40, 
31, 29, 29a, 33].  In particular, one studies the systems with one or two degrees of 
freedom [46, 46a]. 
 Without continuing that classification (which runs the risk of rapidly becoming 
arbitrary and artificial), we further indicate some classical methods that will present some 
interest in what follows. 



Reeb – Topological properties of trajectories of dynamical systems. 3 

 We first point out the use that Birkhoff [5a, Chap. IV] made of sectional surfaces 
(with boundary) in the study of the trajectories of conservative D.S.’s with two degrees of 
freedom.  We mention, in turn, the paper by H. Poincaré [37] on the geodesics of convex 
surfaces and the paper by H. Seifert [41a] on the existence of closed trajectories of 
certain vector fields that are defined on the three-dimensional sphere (cf., 6.1).  Those 
two papers play a leading role in the D.S.’s whose trajectories are all closed (and whose 
period is a continuous function).  We propose to study precisely those “fibered” systems 
(F.D.S.) in the present article. 
 
 
 1.3. Objective and plan of the present paper. – The objective of this work is to 
exhibit the role of fibered dynamical systems (F.D.S.) and the dynamical systems that 
admit Élie Cartan’s integral invariant (I.D.S.), as well as the systems that simultaneously 
enjoy both of those properties (I.F.D.S.). (The last two chapters VII and VII are only 
weakly coupled with the previous chapters and have no relationship to the F.D.S.’s and 
I.D.S.’s; meanwhile, some other considerations will permit one to associate them with the 
previous chapters.  Chapters VII and VIII are collectively the counterpart to chapter III.) 
 In 5.1, one will find a list of the principal F.D.S.’s that present themselves in 
dynamics and differential geometry [39a and b].  Here are some problems that relate to 
I.F.D.S.: 
 
 a. – The study of the distribution and the nature of periodic solutions of the D.S. that 
are obtained by perturbing an F.D.S.  That study is carried out by using the method of H. 
Poincaré [37, 39], which has the advantage of giving results that are particularly useful in 
the case of I.F.D.S., but which present the inconvenience that they are applicable to only 
weak perturbations that do not present certain accidental peculiarities.  By contrast, the 
Seifert method permits one to study finite perturbations (cf., Chapter VI). 
 
 b. – The fibration that is defined by the trajectories of an I.F.D.S. enjoys some 
remarkable structural properties.  In particular, that fibration is never trivial.  It then 
results that the perturbation problem (that was mentioned in a) cannot be reduced to the 
study of the fixed points of a transformation (as in 1.2b). 
 
 c. – One can demand a list of the I.F.D.S., or at least one can look for the topological 
conditions that are imposed on the phase manifold or the configuration manifold of such 
a system. 
 
 To that effect, we have adopted the following plan: 
 
 Some properties of I.D.S.’s are presented in Chapter III.  They essentially amount to 
the non-existence of compact transversal manifolds and certain applications of that 
property.  Some other problems concerned with the existence of I.D.S.’s are mentioned.  
The special properties of I.F.D.S.’s are studied in Chapter IV.  Chapter V is dedicated to 
H. Poincaré’s method of small parameters, while the finite perturbations are examined in 
VI.  The last Chapters VII and VIII are only weakly related to the preceding ones.  

Chapter VII is concerned with various results that relate to D.S.’s in the plane R2: e.g., 
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the Liénard equations… The main idea of Chapter VII can be summarized thus: The 
calculation of the characteristic exponent of a solution to an ordinary differential equation 
can be done quite simply with the aid of the operations of a differential algebra [39]. 
 The questions that were treated in Chapter VIII have very little relation to the theory 
of F.D.S.’s and I.D.S.’s.  At most, one can say that the notion of a P.D.S. that is 
introduced in Chapter VIII is the exact opposite of the notion of an I.D.S. (A P.D.S. is, in 
the large, a D.S. that admits only a finite number of recurrent motions, and they are 
assumed to be periodic.) The distribution of periodic motions of a P.D.S. can be studied 
by some methods that are analogous in every respect to the proof of the Morse 
inequalities that Thom proposed [49].  The results that will be found recall the statements 
of the theorems of M. Morse. 
 The articles [39a, 39b] were already devoted to the questions that were enumerated 
above.  It would seem pointless to recall the results of [39a, 39b] in detail.  By contrast, 
we believe that we have ameliorated certain proofs in those papers and we shall 
reproduce those proofs here. 
 The material in Chapters III and IV has been partly treated in [39a and b].  However, 
the systematic use of the formulas of differential algebra [11] will permit one to make a 
better grouping of the properties of I.D.S.’s and I.F.D.S.’s.  The results that are stated in 
that paper are more general than the ones in [39b], which are concerned solely with 
I.F.D.S.’s.  Chapters III and IV use only the formulas of differential algebra in [11] and 
the usual notions from the homology of manifolds (e.g., the de Rham theorems [4]). We 
have tried to give complete proofs of the other properties that are utilized. 
 Chapters V and VI are concerned with the study of perturbations of F.D.S.’s.  We 
briefly recall the results that were stated in [39b].  However, in 5.3, we shall show how 
the formulas of differential algebra permit one to simplify the very laborious proofs in 
[39b, § 4].  Chapter VI includes some remarks that relate to Seifert’s theorem [41a] and 
we shall indicate an extension of that theorem that is important for certain applications.  
The explicit editing of the proofs of the generalized Seifert theorem will lead us to almost 
reproduce the paper by that author [41a].  We therefore believed it to be good to do that 
while indicating only Seifert’s essential idea and pointing out the modifications that were 
used in the proof of the generalized theorem. 
 The last Chapters VII and VIII are concerned with some complete proofs.  One can 
refer to the introductions 7.1 and 8.1 of those chapters for their contents. 
 It was pointed out above that the theory of foliated manifolds is a theory of 
“dynamical systems” (cf., 1.1).  It seems to me that the questions that were treated in 
[39b] can be considered similarly to be ones that refer to the theory of dynamical 
systems. 
 Finally, it remains for us to say a few words about the stable character of the formulas 
that were stated in the course of this work (cf., 1.1).  It is clear that the results of Chapters 
VII and VIII are stable, or that they can at least be considered to be that way after some 
suitable modifications of the corresponding statements.  One easily sees the possible 
relations (which we do not have the time to specify in this paper) between Chapter VIII 
and [24a].  The stability properties of the statements that relate to periodically-excited 
D.S.’s (cf., 1, 2b) are specified in [39e].  As for the stability of the statements in Chapters 
V and VI, we shall content ourselves with the following remark: If those statements do 
not present the desirable stability character then they will nonetheless still have 
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something that justifies the interest in them.  The statements in Chapters III and IV have a 
“geometric” nature, and there is therefore no reason to discuss their stability. 
 
 
 1.4. Bibliography. – It is not possible to give a complete bibliography that relates to 
the topological properties of dynamical systems.  The list that follows includes the 
publications that have been more or less directly useful in the preparation of this work.  
For more extensive bibliographic references, one can refer to [25, 33, 26, 28, 7, 34a, 8, 
30, 40a, 47, 23]. 
 The titles of the publications that refer to dynamical systems directly are followed 
with an asterisk. 
 
1. P. ALEXANDROFF and HOPF, Topologie, Berlin, 1935. 
 
2. E. A. BARBASIN, “A condition for the existence of a transversal manifold,” Doklady Akad. 

Nauk U.S.S.R. 70 (1950), 365-367. (Russian) * 
 
3. Y. BENDIXON, “Sur les courbes définies par une équation différentielle,” Acta Math. 24 (1901), 

1-88. * 
 
4. P. BIDAL and G. DE RHAM, “Les formes différentielles harmoniques,” Comm. Math. Helv. 19 

(1947), 1-49. 
 
5. G. D. BIRKHOFF, Œuvres. * 
 

a. − Dynamical Systems, Amer. Math. Soc. Coll. pub., v. 9, 1937. * 
 
6. N. BOURBAKI, Éléments de mathématiques, Paris, 1940, et seq. 
 
7. H. BUSEMANN, “Spaces with non positive curvature,” Acta Math. 80 (1948), 259-310. * 
 
8. C. E. CARATHÉORDORY, Variationsrechnung und partielle Differentialgleichungen, i. 

Ordnung, Leipzig, 1935. * 
 
9. E. CARTAN, Les systèmes différentiels extérieurs, et … Paris, 1946. 
 

a. − Leçons sur les invariants intégraux, Paris, 1922. 
 
b. − “Sur certaines formes Riemanniennes…,” Ann. de l’École Norm. Sup. 44 (1927), 466-

467. * 
 
10. E. and H. CARTAN, “Note sur la génération des oscillations entretenues,” Annales des Postes, 

Télégraphes et Téléphones 1 (1925), 1196-1207. * 
 
11. H. CARTAN, “Notion d’algébre différentielle, applications aux groupes de Lie,” Coll. de Top. 

Bruxelles, Brussels, 1950. 
 
12. M. L. CARTWRIGHT, “Forced oscillations in nonlinear systems,” [29a], 149-150. * 
 
13. S. S. CHERN, “Characteristic classes of Hermitian manifolds,” Ann. Math. 47 (1946), 85-121. 
 
14. C. CHEVALLEY, Theory of Lie Groups, Princeton, 1946. 
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15. B. ECKMANN, “Systems von Richtungsfeldern in Sphären und stetige Lösungen komplexer 
linearer Gleichungen,” Comm. Math. Helv. 15 (1942), 1-26. 

 
a. − “Zur Homotopietheorie gefaserter Räume,” Comm. Math. Helv. 14 (1941), 141-192. 

 
16. C. EHRESMANN, “Sur la théorie des espaces fibrés,” Coll. top. alg., Paris, 1948. 
 

a. − “Sur la topologie de certaines variétés algébriques,” J. de Math. 104 (1937), 69-100. 
 
17. H. FREUDENTHAL, “Über die Klassen der Sphärenabbildungen,” Compositio Math. 5 (1934), 

299-314. 
 
18. P. FUNK, “Über Flächen mit lauter geschlossen geodätischen Linien,” Math. Ann. 74 (1913), 

278-300. * 
 
19. T. GRAFFI, “Sopra alcune equationi differenziali non lineari della Fisica matematica,” Mem. R. 

Accad. Sci. Bologna 18 (1940), 1-11. * 
 

a. − “Sopra alcune equationi differentiali della radiotechnica,” Mem. R. Accad. Sci. 20 
(1942), 3-11. * 

 
20. J. HAAG, “Sur la synchronisation des systèmes à plusieurs degrés de Liberté,” Ann. Sci. de 

l’École Norm. Sup. 67 (1940), 321-392. * 
 

a. − “Sur la synchronisation des systèmes oscillants non linéaires,” Ann. Sci. de l’École 
Norm. Sup. 67 (1940), 321-392. * 

 
b. − “Sur la synchronisation harmonique ou sous-harmonique,” Ann. de Chronometrie, 

Toulouse, 1947. * 
 
c. − Les mouvements vibratoires, Paris, 1952. 
 
d. − "Sur certaines systèmes différentiels à période lentement variable,” Bull. Sci. math. 75 

(1951), 15-21. * 
 
21. J. HADAMARD, “Les surfaces à courbures opposées et les trajectoires en dynamique,” J. de 

Math. 4 (1898), 27-73. * 
 
22. E. HOPF, Ergodentheorie, Ergebnisse der Math. Wiss. * 
 
23. E. HUSSON, “Les trajectoires de la dynamique,” Mém. des Sci. math., vol. 65. * 
 
24. W. KAPLAN, “Topology of the two-body problem,” Amer. Math. Monthly 49 (1942), 316, 323. * 
 

a. − “Dynamical systems with indeterminacy,” Amer. J. Math. 72 (1950), 573-594. * 
 
25. T. VON KÁRMÁN, “The engineer grapples with nonlinear problems,” Bull. Amer. Math. Soc. 46 

(1940), 615-675. * 
 
26. B. O. KOOPMANN, “Review of Birkhoff’s Dynamical systems,” Bull. Amer. Math. Soc. 36 
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27. J. L. KOSZUL, “Homologies et cohomologie des algébres de Lie,” Thèse, 1949. 
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a. − Contributions to the theory of nonlinear oscillations, Ann. Math. Studies, v. 20, 
Princeton, 1950. * 

 
30. N. LEVINSON, “Transformation theory of differential equations,” Ann. Math. 45 (1944), 723-
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a. − “Existence of periodic solutions for a second order differential equation with a forcing 
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b. − “Perturbations of discontinuous solutions,” Acta Math. 82 (1942), 72-105. * 
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32. J. W. GIBBS, Elementare Grundlagen der statischen Mechanik, Leipzig, 1905. * 
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37. H. POINCARÉ, “Sur les lignes géodésiques des surfaces convexes,” Trans. Amer. Math. Soc. 6 
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Math. 3 (1951), 339-362. 
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CHAPTER II 
 

REVIEW OF SOME DEFINITIONS AND PROPERTIES OF 
DIFFERENTIAL GEOMETRY AND TOPOLOGY  

 
 

 2.1. Differential forms and vector fields on a numerical manifold (1). – For a 
complete and precise presentation of these questions, one can refer to [11].  For the 
notations of exterior algebra, cf. [6, 9, 9a].  See also [13, 14]. 
 On a numerical manifold Vn , one can define: 
 
 Exterior differential forms, which are denoted by Greek letters α, ω, … that are 
possibly affected with an upper integer index that indicates the degree of the form.  The 
numerical functions on Vn are the forms of degree 0.  One defines the exterior product α 
∧ β of two exterior forms α and β, as well as the exterior differential dα of an exterior 
differential form α .  The operator d increases the degree by one unit, and one recalls the 
following properties: 
 
(1)      d (α + β) = dα + dβ , 
 
(2)      d dα = 0, 
 
(3)     d (ω q ∧ α p) = dω q ∧ α p + (− 1)q ω q ∧ dα p . 
 
 Along with the exterior differential forms on Vn , one also defines vector fields on Vn , 
which are denoted by uppercase Latin letters X, Y, … A vector field X on Vn defines the 

additive group R of real numbers as a group (or more precisely, a “pseudo-group”) of 

transformations Γ (X) of Vn . 
 If t ⋅⋅⋅⋅ x denotes the transform of x ∈ Vn by t ∈ Γ (X) then: 
 

(4)      
0

( )
t

d
t x

dt =

 ⋅  
= X (x) . 

 
 Let Y be a second vector field.  One can associate the group Γ (X) with the transform 
of Y by X: 

(5)      θ (X) ⋅⋅⋅⋅ Y = 
0

( )
t

d
t Y

dt =

 ⋅  
, 

 
in which t ⋅⋅⋅⋅ Y denotes the transform of Y by t ∈ Γ (X) .  The “infinitesimal 
transformation” operator θ (X) enjoys the following property: 
                                                
 (1) Remark: Unless stated explicitly to the contrary, the manifolds, functions, homeomorphisms, 
differential forms, and vector fields that we will consider or that we will be led to introduce in our 
presentation will be assumed to be indefinitely differentiable. 
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(6)     θ (X) ⋅⋅⋅⋅ Y = − θ (Y) ⋅⋅⋅⋅ X = [X Y] . 
 
 If ω q is an exterior form of degree q then one can set: 
 

(7)     θ (X) ⋅⋅⋅⋅ ω q = 
0

( )q

t

d
t

dt
ω∗

=

 ⋅  
, 

 
in which t* ⋅⋅⋅⋅ ω q denotes the transform of ω q by the transpose of the map t ∈ Γ (X) . 
 Furthermore, one can prove the following formulas: 
 
(8)    θ (X) ⋅⋅⋅⋅ (ω q ∧ )pω  = (θ (X) ω q) ∧ pω + ω q ∧ θ (X) pω , 
 
and in particular, if λ is a numerical function then: 
 
(9)     θ (X) ⋅⋅⋅⋅ λω q = (θ (X) ⋅⋅⋅⋅ λ) ω q + λ θ (X) ⋅⋅⋅⋅ ω q. 
 
The operators d and θ (X) commute: 
 
(10)     d θ (X) ω q = θ (X) ⋅⋅⋅⋅ dω q. 
 
 One can associate the field X with the interior product operator i (X), which acts on 
exterior differential forms. 
 By definition: 
 
(11)    < i (X) ⋅⋅⋅⋅ ω q, uq−1 > = < ω q, X ∧ uq−1 >, 
 
in which < α r, u r > denotes the scalar product of the exterior form α r of degree r with 
the field of exterior r-vectors u r.  The operator i (X) diminishes the degree by one, and it 
verifies the following property: 
 
(12)  i (X) ⋅⋅⋅⋅ (ω q ∧ )pω  = (i (X) ⋅⋅⋅⋅ ω q) ∧ pω + ε ω q ∧ (i (X) ⋅⋅⋅⋅ pω ), 
 
in which: 

ε = ± 1. 
 
Finally, the operators i (X) ⋅⋅⋅⋅ θ (X) and d are coupled by the following very important 
relations: 
 
(13)    d (i (X) ⋅⋅⋅⋅ ω q) + i (X) ⋅⋅⋅⋅ dω q = θ (X) ⋅⋅⋅⋅ ω q, 
 
(14)    θ (X) ⋅⋅⋅⋅ i (Y) - i (Y) ⋅⋅⋅⋅ θ (X) = i ([X Y]). 
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 2.2. Spaces with groups of operators isomorphic to T or R . Manifolds fibered 

into circles. –  
 
 Definition 1. – A dynamical system (D. S.) is the pair (X, Vn) of an n-dimensional 
numerical manifold Vn and a vector field X.  The pseudo-group of transformations that is 
generated by the infinitesimal transformation X is denoted by Γ(X).  If x ∈ Vn and t  ∈ 
Γ(X) then t ⋅⋅⋅⋅ x will denote the transform of x by t . 
 
 Definition 2. – A general fibered D.S. (F′.D.S) is a dynamical system that verifies the 
following conditions: 
 
 1. X (x) ≠ 0 at every point x ∈ Vn . 
 

 2. The transformation X defines R as a group (and not just a pseudo-group) of 

transformations Γ(X) on Vn . 
 
 3. There exists a non-zero element T ∈ Γ(X) that fixes the points of Vn . 
 
 (Indeed, 2 is a consequence of 3.) 
 
 Remark: It seems natural to replace condition 3 of Definition 2 with a weaker one; 
for example: There exists a continuous map T (x) of Vn in Γ(X) [in which T (x) ≠ 0] such 
that T (x) ⋅⋅⋅⋅ x = x. 
 Indeed, one will see in 4.2 that those two conditions are equivalent, at least for the 
I.D.S.’s. 
 
 Definition 3. – A fibered dynamical system (F.D.S.) is an F′.D.S that verifies the 
following condition, in addition to conditions 1, 2, and 3 of Definition 2: 
 
 4. If t1 ∈ Γ(X) and x ∈ Vn then the relation x = t1 ⋅⋅⋅⋅ x will imply that t1 = n T, where n 
is a rational integer. 
 
 The quotient group of Γ(X) by the subgroup that is generated by the element T is a 
group of transformations Γ′(X) of Vn whose abstract group is isomorphic to the torus T1 
(viz., the additive group of real numbers, modulo 1).  Conversely, one can define an 
F′.D.S. by being given Vn and a group of transformations Γ′(X) (which is isomorphic to 
T1) without fixed points.  The group Γ′(X) is imagined to be the structure group of the 
F′.D.S.  The trajectories of the field X that is attached to an F′.D.S. are obviously 
compact and homeomorphic to T1 .  They are the “fibers” of the F′.D.S.  In the particular 
case of an F.D.S., those trajectories will define the structure of a fiber bundle in Vn that 
admits T1 for its structure group. 
 
 Definition 4. – The base space of an F.D.S. is an (n – 1)-dimensional manifold that is 
denoted by Vn−1 .  The canonical projection of Vn onto Vn−1 is denoted by γ . 



Reeb – Topological properties of trajectories of dynamical systems. 13 

 Recall that any point x of Vn admits an open neighborhood Ux and a homeomorphism 
ϕ of Ux × T1 onto γ −1 (Ux) such that ϕ (y × T1) = γ −1 (y) (in which y ∈ Ux). 
 
 Definition 5. – An F′.D.S. (X, Vn) is associated with the equivalence relation ρ that 
identifies the points that belong to the same fiber of Vn .  The quotient space of Vn by ρ is 
once more denoted by Vn−1 , and the canonical projection of Vn onto Vn−1 is denoted by γ . 
 
 Conforming to the convention that was made at the beginning of this chapter, we 
point out that the topological space Vn−1 is not necessarily a manifold and that γ is not 
necessarily indefinitely differentiable.  However, one can verify that any point x of Vn−1 
admits an open neighborhood Ux , and that there exists a finite covering W of γ −1 (Ux)  
such that the field p−1 (X) define an F.D.S. on W. [p denotes the canonical projection of W 
onto γ −1 (Ux).] A particularly important case of this is when Vn−1 can be endowed with 
the structure of an indefinitely-differentiable manifold such that the map p is indefinitely 
differentiable. 
 
 Definition 6. – An F′.D.S. that enjoys the property in the preceding statement is an 
F″.D.S. 
 

___________ 



CHAPTER III 
 

GLOBAL PROPERTIES THAT ARE DUE TO THE EXISTENCE  
OF É. CARTAN’S INTEGRAL INVARIANT 

 
 

 3.1. Definitions and notations. – 
 
 Definition 1. – An I.D.S. is the pair of a D.S. (E, Vn) (cf., 2.2, Definition 2) and a 
Pfaff form π on Vn that verifies the following conditions: 
 
 1. n is odd: n = 2q + 1 (q ≥ 1). 
 
 2. π ∧ [dπ]q ≠ 0 at any point of Vn . 
 
 3. i (E) ⋅⋅⋅⋅ dπ = 0. 

(cf., 2.1) 
 
 At the end of this paragraph, we shall recall the main questions of dynamics and 
differential geometry that lead to I.D.S.’s.  The stated global properties will be studied in 
3.2, 3.3, and 3.4. 
 Let u be a vector field on Vn and let i (u) be the operator of the interior product with u.  
The equation: 
 
(1)      i (u) ⋅⋅⋅⋅ dπ = 0 
 
is linear with respect to the vector u.  The solutions of (1) at a given point define a one-
dimensional vector space.  The last statement is a classical consequence of property 2 in 
Definition 1.  One can then prove that as follows: The solutions to: 
 
(2)      i (u) ⋅⋅⋅⋅ [dπ]q = 0 
 
form a one-dimensional vector space, since [dπ]q is a non-zero, completely-
decomposable form of degree n – 1.  It then results that the solutions to (1) form a vector 
space whose dimension is at most one, because: 
 

i (u) ⋅⋅⋅⋅ [dπ]q = (i (u) ⋅⋅⋅⋅ dπ) ∧ [dπ]q−1  [cf., 2.1, (12)]. 
 
It remains to show that (1) admits a non-zero solution.  That will result from the fact that: 
 

i (u) ⋅⋅⋅⋅ [i (v) ⋅⋅⋅⋅ dπ] = − i (v) [i (u) ⋅⋅⋅⋅ dπ] = i (u ∧ v) ⋅⋅⋅⋅ dπ, 
 
which is a relation that shows that the rank of the map u → i (u) dπ is less than n. 
 We append the equation: 
 
(3)      i (u) ⋅⋅⋅⋅ π = < u, π > = 1 
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to equation (1). 
 The system of equations (1) and (3) defines a non-zero vector at every point of Vn .  It 
is convenient to suppose that E verifies (3) precisely. 
 
 Proposition 1: 
 
 Let π be a Pfaff form on Vn that verifies conditions 1 and 2 of Definition 1.  There 
exists a well-defined vector field that verifies condition 3 of Definition 1.  In other words, 
being given π is sufficient for one to define an I.D.S. 
 
 Definition 2. – One says that π and dπ are a relative integral invariant and an 
absolute integral invariant, resp., of the unoriented direction field that E defines.  The 
field E is called the associated field to π. 
 
 The following proposition is also classical: 
 
 Proposition 2: 
 
 Let λ be a numerical function on Vn , and let θ (u) be the infinitesimal transformation 
that is attached to u; the following relations are verified: 
 
(4)      θ (E) ⋅⋅⋅⋅ π = 0, 
 
(5)      θ (λ E) ⋅⋅⋅⋅ dπ = 0 . 
 
In other words, the form π is invariant under the group of transformations that is 
generated by E, and dπ is invariant under all one-parameter groups that are generated by 
the infinitesimal transformations λ E. 
 The equalities (4) and (5) result from [2.1, (13)] and Definition 1, when one takes into 
account the fact that i (E) ⋅⋅⋅⋅ π = 1. 
 
 Remarks: 
 
 a. Let W2(q+1) be a 2(q + 1)-dimensional manifold (q is an integer and q > 0) on 
which a Pfaff form ω is defined that verifies the following relation: 
 
(6)      [dω]q+1 = 0. 
 
Let Vn (n = 2q + 1) be a manifold that is embedded in W2(q+1) by way of a map ϕ of rank 
n.  The image π = ϕ* (ω) of ω under the transposed map ϕ* to ϕ verifies: [dπ]q ≠ 0. 
 
 b. Let Vq+1 be a (q + 1)-dimensional manifold.  The covariant vectors (x, p) (in which 
x ∈ Vq+1, and p is an element of the dual vector space that is tangent to Vq+1 at x) define a 
2(q + 1)-dimensional manifold Wn+1 .  Let ω be the Pfaff form that is defined on Wn+1 in 
the following fashion: The restriction ω (x, p) of ω to the tangent space to Wn+1 at (x, p) is 
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equal to P*(p), where P* is the transposed map to the canonical projection P of Wn+1 onto 
Vq+1 [therefore, P (x, p) = x].  Let r i (i = 1, 2, …, q + 1) be local coordinates in Vq+1 .  One 
can prolong the coordinate system r to a coordinate system (r i , si) on Wn+1 upon letting si 
denote the covariant components of the covariant vector (x, s) that is attached to the point 
x whose coordinates are r i .  The form ω will then have the following structure: 
 

ω = i ii
s dr∑ . 

 
It will then result that ω verifies the relation (6). 
 Being given a Finsler space structure on Vq+1 is equivalent to being given a manifold 
Vn that is embedded in Wn+1 and verifies the following conditions: 
 
 α) The restriction P′ of P to Vn has rank n. 
 
 β) 1

( )x nP V− ∩  (where x ∈ Vq+1) is a compact, convex, (n – 1)-dimensional manifold 

that contains the origin (x, 0) in its interior.  [ 1
( )x nP V− ∩  is the figuratrix at x.] 

 
 The form π that is induced by ω in Vn is non-zero at all points.  One effortlessly 
verifies that the form π defines an I.D.S. on Vn .  It then results from E. Cartan’s theory of 
the integral invariant (and one can prove this directly) that the trajectories of that I.D.S. 
project onto Vq+1 along geodesics of the Finsler space Vq+1 . [8, 9a, 39a]. 
 
 c. Consider a dynamical system (of rational mechanics) with perfect holonomic 
constraints that are independent of time.  Suppose that the known forces derive from a 
force function.  From the analytical viewpoint, that system is characterized perfectly by 
the Hamilton function H (y) that is defined on the phase space.  Moreover, H is a first 
integral.  Suppose that the manifold V that is defined by the equation H (y) = h0 (constant) 
is regular (i.e., that dH = 0 at every point of V).  It results from É. Cartan’s classical 
theory of the integral invariant that the trajectories that are traced out in V are trajectories 
of an I.D.S. [9a]. 
 A remarkable analogy is valid for the regular problems of the calculus of variations 
[8, 9a]. 
 
 
 3.2. Nonexistence of a compact transversal manifold for an I.D.S. –  
 
 Definition 3. – Let X be a vector field on an n-dimensional manifold.  An (n – 1)-
dimensional manifold Wn−1 that is embedded in Vn by a map ϕ of rank n – 1 is a 
transversal manifold for X if for any x ∈ Wn−1 , the vector X (ϕ (x)) of the field X is not 
contained in the subspace ϕ (Tx), where Tx is the vector space that is tangent to Wn−1 at x. 
 
 Theorem 1: 
 
 The field E that is associated with an I.D.S. does not admit a compact transversal 
manifold. 
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 The proof is quite simple: Let (ϕ, Wn−1) be a possible transversal manifold of E that is 
compact, connected, and oriented.  The form ϕ* ([dπ]q) is non-zero at any point of Wn−1 .  
Hence: 

(7)      
1

([ ] )
n

q

W
dϕ π

−

∗
∫  ≠ 0. 

 
However, the left-hand side of (7) is zero, from Stokes’s formula; one has thus reached a 
contradiction. 
 We remark that the proof in Theorem 1 supposes only the existence of a form Ω (= 
[dπ]q) that verifies the following conditions: 
 
 Ω is homologous to 0 ; i.e., Ω = dβ . 
 
 Ω has degree n − 1 = 2q, and Ω ≠ 0 at any point. 
 
 i (E) ⋅⋅⋅⋅ Ω = 0. 
 
 Theorem 1 is valid for more general D.S.’s than the I.D.S.’s then. 
 
 
 3.3. Consequences of Theorem 1 and remarks. – 
 
 a. One knows the importance of sectional surfaces in the global study of the 
trajectories of dynamics [5, Chap. V].  Theorem 1 explains why the sectional surfaces 
that are used in the study of conservative systems have a boundary.  See [2], as well. 
 
 b. Theorem 1 admits some applications to the study of second-order contact 
elements to a Finsler space [39b].  Let us explain that with the aid of a very special 
example.  A Finsler space structure on the two-dimensional torus T 2 is associated with an 
I.D.S. (E, T 3) on the space T 3 of oriented tangent directions to T 2.  A direction field X 
on T 2 corresponds to a section of the fiber bundle T 3.  From Theorem 1, that section will 
be tangent to a trajectory of E at a non-vacuous set A of points: The trajectory of X that 
issues from x will then present a second-order contact with the geodesic that issues from 
x that is it tangent to. (One can say that x is a geodesic inflection point for the trajectory X 
that issues from that point.) 
 
 c. Theorem 1 can be extended to the regular problems of the calculus of variations 
that pertain to a multiple integral [39d].  The preceding remark (b.) thus extends to 
general Cartan spaces [39d]. 
 
 
 3.4. Other problems relating to I.D.S.’s. – If the manifold Vn (n = 2q + 1) is given, 
and if Vn is compact then one knows that there exists a vector field without singularities 
on Vn .  One is then led to pose the following problem: 
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 Problem 1. – If one is given a compact manifold Vn (n = 2q + 1) then does there exist 
an I.D.S. on Vn ? 
 
 The remark (a.) in 3.1 shows that there exists a Pfaff form π that verifies the relation 
[dπ]q ≠ 0 on any manifold Vn that is regularly embedded in a manifold Wn−1 that is 
endowed with a Pfaff form ω that verifies (6). 
 Problem 1 leads to the following more-general problem, which is a problem of 
constructing a section for a fiber bundle: 
 
 Problem 2. – Does there exist an exterior differential form Ω of degree two on Vn (n 
= 2q + 1) that verifies the relation: 

[Ω]q ≠ 0 
at every point? 
 
 One remarks that the form Ω defines a direction field E on Vn that one calls the 

associated field.  Indeed, one can associate Ω with the equation i (E) ⋅⋅⋅⋅ Ω = 0, which is 

analogous to (1). 
 Problem 2 can be approached by the usual methods of the theory of obstructions.  We 
shall forgo such a study here.  We nonetheless remark that if Vn is the topological product 
of a compact manifold Vn−1 with the circle S1 , and if the associated field E is homotopic 
to the direction field that is tangent to the fibers {x} × S1 (x ∈ Vn−1) then the manifold Vn−1 
will admit an almost-complex structure [16].  Consequently, a direction field on the 
topological product S4 × S1 that is homotopic to the direction field that is tangent to the 
fiber cannot generate an I.D.S. 
 
 One should point out that the form Ω that was considered in Problem 2 generates an 
integral invariance relation [48] for the D.S. that was envisioned.  Problem 2 then makes 
sense for a very broad class of D.S.’s that are governed by equations of Euler-Lagrange 
type. 
 

____________ 



CHAPTER IV 
 

TOPOLOGICAL PROPERTIES OF  
I. F. D. S.’S AND I. F. D. S.’S. 

 
 

 4.1. Introduction and definition. – In this chapter, we propose to study the 
topological properties of the I.D.S.’s that are, at the same time, properties of F′.D.S.’s.  
Theorems 1 and 3 show that the corresponding fiber structured is quite complex (e.g., a 
section does not exist when Vn is compact). 
 
 Definition 1. – An I.F′.D.S. is a D.S. that is simultaneously an F′.D.S. and an I.D.S.  
One defines an I.F.D.S. and an I.F″.D.S. similarly (Definitions 1.2 and 3 in 2.1). 
 
 Paragraphs 4.2 and 4.3 are concerned with a fundamental property of I.F′.D.S.’s (viz., 
Theorem 1) that makes Theorem 1 in 3 more precise.  In 4.4, we shall recall some 
classical properties of F′.D.S.’s (meanwhile, to simplify the presentation, we shall always 
consider the case of an I.F′.D.S.).  Paragraph 4.5 is devoted to the special properties of 
I.F′.D.S.’s.  One will find some examples of I.F′.D.S.’s in 5.1. (One should compare them 
with the results of that chapter in [11].) 
 
 
 4.2. Topological properties of an I.F′.D.S. – 
 
 Definition 2:  A form α that is defined in the manifold of an F′.D.S. (E, Vn) will be 
called an invariant form when: 
 
(1)      θ (E) ⋅⋅⋅⋅ α = 0. 
 
An invariant form α will be called a basic form if it verifies: 
 
(2)      i (E) ⋅⋅⋅⋅ α = 0, 
 
in addition to (1). 
 
 Proposition 1: 
 
 The form dπ on an I.F′.D.S. is a basic form; the form π is invariant. 
 
 Remark: If we had adopted the more general definition of an F′.D.S. (cf., 2.2) then 
Proposition 1 would permit us to show that condition 3 in Definition 2 of 2.2. is verified 
automatically in the case of an I.F′.D.S. 
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 Proposition 2: 
 
 In the particular case of an F.D.S., any basic form α is the image of a form β on Vn−1 
under the transpose of the projection γ1 – viz., α = γ *(β) .  Conversely, if β is a form on 
Vn−1 then γ *(β) will be a basic form. 
 
 We further point out that in the case of an F″.D.S., there also exists a bijective 
correspondence between basic forms and forms on Vn−1 . 
 
 Proposition 3: 
 
 If α1 and α2 are invariant [basic, resp.] forms then dα1 , α1 + α2 , α1 ∧ α2 will also be 
invariant [basic, resp.] forms.  In other words, the invariant [basic, resp.] forms define a 
differential ring. 
 
 Proposition 3 is an immediate consequence of (1) and (2) and of [2.1, (8) and (12)]. 
 
 Proposition 4: 
 
 If Vn is compact then the cohomology ring that is associated with the differential ring 
of the invariant forms is isomorphic to the cohomology ring of Vn . 
 
 Indeed, let Γ be the group of transformations that is generated by the infinitesimal 
transformation E.  Since Vn is compact, one can suppose that Γ is compact (cf., 2.2).  Let 

dg be the invariant measure on Γ such that dg
Γ∫  = 1.  Any differential form α on Vn can 

be associated with the invariant form: 
 

(3)      αɶ  = ( )g dgα∗

Γ∫ . 

 
One verifies that αɶ  is homologous to α ; one then has Proposition 4. 
 
 Definition 3. – The cohomology ring of the differential ring of basic forms will be 
called the basic cohomology ring; one defines the basic Betti numbers analogously. 
 
 Theorem 1: 
 
 If Vn is compact and if Vn is the defining manifold of an I.F′.D.S. then the basic forms: 
dπ, [dπ]2, …, [dπ]q will not be homologous to zero in the differential ring of basic forms. 
 
 Indeed, suppose that there exists a basic form α such that dα = [dπ]q.  The form π ∧ 
[dπ]q  is not homologous to zero in Vn since it is not annulled at any point of Vn : 
 

(4)      [ ]
n

q

v
dπ π∧∫  ≠ 0. 
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However, by hypothesis, [dπ]q = dα, so: 
 
(5)     [dπ]q ∧ π = d (α ∧ π) – α dπ . 
 
The first term in the left-hand side of (5) is homologous to zero; the second term is equal 
to zero.  That contradicts (4).  Hence, [dπ]q is not basically homologous to zero.  It will 
then result that [dπ]q (where 1 ≤ r ≤ q) is not basically homologous to zero. 
 
 
 4.3. Consequences of Theorem 1 and Proposition 2 in the case of an I.F.D.S. or 
an I.F″.D.S. 
 
 Proposition 5: 
 
 In the particular case of an I.F.D.S., there exists an exterior differential form Ω on 
the base Vn−1 of Vn that verifies the following property: 
 
(6)      dπ = γ * (Ω)    (cf., 2.2) . 
 
Furthermore, the basic cohomology ring is identified with that of Vn−1 . 
 
 This proposition is obvious.  It admits the following consequences: 
 
 a. d Ω = 0. 
 
 b. [Ω]q ≠ 0 at any point. 
 
 c. If Vn is compact then Ω will not be homologous to zero, nor will [Ω]2, …, [Ω]q. 
 
 The consequences (a.) and (c.), and the relation (6) show that the characteristic class 
of the fiber structure imagined [13] is the class of Ω. 
 In the case of an I.F″.D.S., it is possible to prove the existence of a form Ω on Vn−1 
that verifies (6) at any point where that formula makes sense. 
 
 
 4.4. Relations between the Betti numbers of a fiber bundle and its base. – (These 
relations are classical: cf., [11]). 
 
 Proposition 6: 
 
 Let α be an invariant form.  There exists a unique decomposition of α of the following 
type: 
 
(7)      α = α1 ∧ π + α0 , 
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in which α0 and α1 are basic forms.  Moreover, if α is closed (i.e., if dα = 0) then the 
same thing will be true for α1 . 
 
 In order to verify that proposition, it is sufficient to set α1 = i (E) ⋅⋅⋅⋅ α and use [2.1, 
(13)]. 
 Proposition 7 is a simple corollary to the Proposition 6. 
 
 Theorem 2: 
 
 Suppose that the defining manifold of an I.F′.D.S. is compact. Under those 
conditions: 
 
 a. The fibers of Vn are homologous to zero in Vn (homology with real coefficients). 
 
 b. The Betti numbers bi of Vn and pi of the base are coupled by the relation: 
 
(8)     bi = pi – pi−2 + χi−1 + χi−2 , 
 
in which χi denotes the dimensions of the vector subspace of the vector space of basic 
cohomology classes whose product with the cohomology class of dπ is zero. (If i < 0 then 
one sets pi = 0, by convention.) 
 
 In fact, Theorem 2 is classical.  It is true for more general F′.D.S.’s, but we shall 
apply to only I.F′.D.S.’s. 
 The first part (a.) results from Proposition 7.  Indeed, any closed form of degree 1 in 
Vn will be homologous to a basic form, so its integral over a fiber of Vn will be zero, and 
it will then result that the fiber is homologous to zero. 
 In order to prove (b.), one first remarks that the map α → α1 (cf., Proposition 6) 
induces a homomorphism ϕi of the Betti group Bi of Vn into the Betti group Pi−1 of the 
base.  Indeed, if α is an invariant form that is homologous to zero (in Vn) then there will 
exist an invariant form β such that dβ = α .  From (7), one can decompose β into β = β0 + 
β1 ∧ π ; hence: 

α = dβ = (dβ0 + ε β1 ∧ dπ) + dβ1 ∧ π  (ε = ± 1) 
and 

α1 = i (E) ⋅⋅⋅⋅ α = dβ1 . 
Q.E.D. 

 
 If the form α1 in (7) is homologous to zero (i.e., if there exists a basic form β such 
that dβ = α1) then: 
 

α = α0 + dβ ∧ π = (α0 + ε β ∧ dπ) + d (β ∧ π) (ε = ± 1) ; 
 
hence, α is homologous to a basic form.  The dimension r i of the kernel of ϕi is then 
equal to the dimension of the space of i-dimensional cohomology classes of Vn that 
contain basic forms.  Let α be a basic form that is homologous to zero in Vn ; there will 
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then exist an invariant γ such that α = dγ . Let γ = γ0 + π ∧ γ1 be the decomposition (7) of 
γ. 

α = (dγ0 + γ1 ∧ dπ) + π ∧ dγ1 . 
 
It will then result that dγ1 = 0 and that α is homologous to the product of a cocycle in 
dimension i − 2 with dπ .  The dimension of the subspace of P of classes that are 
homologous to zero in Vn will then be equal to pi−2 – χi−2 , so: 
 
  ri = pi – (pi−2 – χi−2) . 
 
 If the form α in (7) is closed then one will get the following relation upon exterior 
differentiating the two sides of (7): 
 

γ = dα0 + ε α1 ∧ dπ,     ε = ± 1. 
 
That relation shows that α1 ∧ dπ is basically homologous to zero.  Conversely, if α1 ∧ dπ 
is basically homologous to zero then there will exist a closed form α such that α0 + ε α1 
∧ π, where α0 is a basic form.  The image of Bi under ϕi will then be χi−1-dimensional.  
The relation (8) is obtained remarking that the dimension of Bi is the sum of the 
dimensions of the kernel and image of ϕi . 
 
 Proposition 8: 
 
 If bi = 0 then χi−1 = 0. 
 
 Indeed, from (8): 

bi = [pi − (pi−2 − χi−2)] + χi−1 . 
 
However, the two terms on the right-hand side are positive, so the proposition is proved. 
 
 Proposition 9: 
 
 If q is odd (n = 2q + 1) and if pq−2 = χq−2 then pq = bq – χq−1 will be even. 
 
 Since pq−2 − χq−2 = 0, any basic cocycle αq that is homologous to zero in Vn is 
likewise homologous to zero in the base.  Therefore, let αq be a basic cocycle in 
dimension q that is not homologous to zero.  The Poincaré duality theorem permits one to 
associate αq with a cocycle αq+1 on Vn such that: 
 
 a. αq+1 is not homologous to zero. 
 
 b. The correspondence αq → αq+1 is an isomorphism. 
 
 The cocycle αq+1 admits the decomposition (7): 
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αq+1 = βq ∧ π + γq+1 . 
 
Hence, αq ∧ αq+1 = αq ∧ βq ∧ π , so it will result that αq ∧ βq is not homologous to zero.  
The map that associates the cohomology class of αq with that of βq is therefore an 
isomorphism with no real proper values. Q.E.D. 
 
 Remark: In the particular case of an I.F.D.S. or an I.F″.D.S., the numbers pi are the 
Betti numbers of the differentiable manifold Vn−1 .  Therefore, if q is odd then pq will be 
even (Poincaré). 
 
 
 4.5. On the Betti numbers of an I.F′′′′.D.S. and some manifolds of class F′. – 
 
 Proposition 10: 
 
 A compact manifold Vn (n = 2q + 1, q odd) whose Poincaré polynomial is: 
 
  1 + t q + tq+1 + tn 
 
cannot be endowed with the structure of an I.F′.D.S. 
 
 More generally, one can show that if the Poincaré polynomial of the space Vn of an 
I.F.D.S. is: 

1 + s (t q + tq+1) + tn,    q odd, 
 
and if Vn is compact then s will be even.  Indeed: 
 

b1 = b2 = … = bq−1 = 0, so χ0 = χ1 = … = χq−2 = 0 . 
 

Hence, from (8): p0 = p2 = … = pq−1 = 1.  Since pq−1 = 1, and since [dπ]q is not basically 
homologous to zero, χq−1 = 0.  Therefore: s = bq = pq .  Proposition 10 will now be an 
immediate consequence of Proposition 9. 
 
 Definition 4. – A compact manifold Vn is said to have class F′ (F, resp.) if Vq can be 
endowed with the structure of a Finsler space such that the I.D.S. of the geodesic lines 
(which are defined in the phase space V2q−1 ; 3.1) is an I.F′.D.S. (I.D.F.S., resp.). 
 
 Proposition 11: 
 
 If the compact manifold Vq has class F′ then the Betti number in dimension 1 of Vq 
will be zero. 
 
 Indeed, the fibers of the associated I.F′.D.S. are homologous to zero (Theorem 2).  
Hence, the geodesics of Vq are homologous to zero in Vq .  However, if there exists a one-
dimensional cycle in Vq that is not homologous to zero then there will exist a closed 
geodesic that is homologous to that cycle, which is then a contradiction. 
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 One will find some properties that are peculiar to I.F.D.S.’s and manifold of class F in 
[39a]).  Those properties easily extend to I.F″.D.S.’s and manifolds of class F″.  Some 
examples are given in [39a] of simply-connected manifolds that do not have class F 
(since the topological product S2 × S3 of the spheres S2 and S3 does not have class F).  The 
only work that I know of that is concerned with manifolds of class F is in [45] and [18]. 
 

__________ 



CHAPTER V 
 

H. POINCARÉ’S METHOD OF SMALL PARAMETERS  
 
 

 5.1. Examples of I.F.D.S.’s – 
 
 a. Harmonic oscillators. – Consider q + 1 independent harmonic oscillators whose 
fundamental frequencies ωi (i = 1, …, q) are commensurable and proportional to integers 
Ni .  The differential system that governs the motion can be put into the form: 
 

(1)     idx

dt
= ωi ui , idu

dt
= − ωi xi , 

 

in which xi , ui are linear coordinates in the numerical space R
2(q+1).  The system (1) 

admits a first integral H (x, u) = 2 2( )i i
i

u x+∑ .  The equation H (x, u) = 1 defines a sphere 

Sn (n = 2q + 1).  The system (1) defines an I.D.S. on Sn .  The trajectories of (1) are 
closed, so one easily verifies that (1) indeed defines an I.F′.D.S., and more precisely, an 
I.F″.D.S.  In the particular case where ω1 = ω2 = … = ωq , the I.D.S. that one has in mind 
is an I.F.D.S.  The corresponding base space is the complex projective space in q 
complex dimensions. 
 
 b. Examples of manifolds of class F′ (4.5, Definition 4). – Élie Cartan [9b] gave the 
complete list of compact spaces that can be endowed with the structure of a symmetric 
Riemannian space whose geodesics are all closed.  One can verify that those manifolds 
belong to the class F (cf., 4.5, Definition 4).  The simply-connected coverings of those 
manifolds are: 
 
 Spheres, complex and quaternionic projective spaces, and the projective plane of the 
octaves.  It seems that no other manifolds of class F′ are known; on the other hand, it is 
not known whether those manifolds exhaust the class F′. 
 
 c. Elliptic trajectories of a planet around the Sun. 
 
 Remarks: These few examples show why I.F.D.S.’s are so interesting.  Theorems 2 
and 4 exhibit the complexity of the fiber structure that is associated with an I.F.D.S.  The 
problem of the perturbations of an I.F.D.S. is then particularly interesting (1.3). 
 
 
 5.2. Principle of the method of small parameters [37, 29]. – Let (E0 , Vn) be an 
F.D.S. on the manifold Vn whose base is Vn−1 .  Let Eµ be a vector field on Vn that 
depends upon the real, positive parameter µ such that: (Eµ)µ = 0 = E0 . 
 The field Eµ admits a limited development in the powers of µ : 
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(1)     Eµ = E0 + µ E′ + … 
 
 Definition 1. – Let Γ be the structure group of an F.D.S., and let dg be an invariant 
measure on Γ.  One sets: 
 

(2)     E ( )zµ  = 1(E ( ( ))g g z dgµ
−

Γ∫ . 

 
 E ( )zµ  admits the limited development: 

 
  Eµ = E0 + Eµ ′  + …, 

in which: 

  E′= 1(E ( ( ))g g z dg−

Γ
′∫ . 

 
 The field E′ is invariant under Γ.  There then exists a field Eɶ  on Vn−1 such that: 
 
(3)  (E )γ ′  = Eɶ . 
 
 One proposes to study the relations between the closed trajectories of Eµ and the 
singularities of Eɶ  for small values of µ .  Let (x, θ) be a local coordinate system in Vn 
such that x = constant represents a fiber of Vn and θ varies from 0 to 2π along the fibers 
of Vn . 
 
 Definition 2. – A trajectory of Eµ (for given µ) is called simply closed if it admits a 
parametric representation of the form: 
 

x = ϕµ (x0 , θ),  in which 0 ≤ θ  ≤ 2π, 
and 

ϕµ (x0 , 0) = ϕµ (x0 , 2π) = x0 . 
 
One can associate a simply-closed trajectory with the index of the fixed point x0 of the 
transformation x → ϕ (x, 2π). 
 
 The following lemmas are almost obvious and classical, and one will find proofs in 
[39b]. 
 
 Lemma 1: 
 
 1. Let ψ (µ, x0) = ϕµ (x0 , 2π), in which x = ϕµ (x0 , 0) is the equation of the trajectory 
of Eµ that issues from (x0, 0).  Under those conditions: 
 

(3)     0

0

( , )x
µ

ψ µ
µ =

 ∂
 ∂ 

= 0E( )xɶ . 
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 Lemma 2: 
 
 If Vn is compact and if the singularities of Eɶ  are isolated or if they are internal points 
of the simplexes of a convenient simplicial subdivision of Vn then there will exist µ′ > 0 
such that for µ < µ′, the trajectories of the field Eµ enjoy the following properties: 
 
 a. If all of the simply-closed trajectories of Eµ are isolated then the sum of their 
indices will be equal to the Euler-Poincaré characteristic χ of Vn−1 . 
 
 b. If χ ≠ 0 then the field Eµ will admit simply-closed trajectories. 
 
 In [39b], one will find various consequences of Lemma 2 and some applications to 
concrete problems (notably to relaxation oscillation). 
 We remark that Lemma 2 does not permit one to conclude the existence of simply-
closed trajectories for small values of µ (µ ≠ 0) in every case.  Meanwhile, Lemma 1 
gives some useful information about the behavior of the trajectories of Eµ even in the 
case where the singularities of Eɶ  are not isolated. 
  
 
 5.3. Particular case of an I.F.D.S. – Suppose that the D.S. that is defined by Eµ is an 
I.D.S., i.e., that Eµ admits the relative integral invariant πµ .  The form πµ admits the 
limited development: 
  πµ = π0 + µ π′ + … 
 Set: 
(4)      µπ  = ( )g dgπ∗

Γ
′∫ . 

 
Since π′  is an invariant form, it will admit the canonical decomposition (cf., Proposition 
6 in Chap. IV): 
 
(5)      π ′  = 0π ′ + f ⋅⋅⋅⋅ π0 , 

 
in which f is a numerical function on Vn .  One deduces from (5) that: 
 
(6)     dπ ′  = 0(dπ ′  + f dπ0) + df ∧ π0 . 

 
On the other hand: 
 

0 = [ (E ) ]g i d dgµ µπ∗

Γ
⋅∫ = 0 0{ [ (E ) ] [ (E ) ] [ (E ) ]}g i d dg g i d g i d dgµ µπ µ π π∗ ∗ ∗

Γ
′ ′⋅ + ⋅ + ⋅∫ , 

 
in which the terms that have been neglected have order greater than 1 in µ . 
 Hence: 

0 0(E ) (E )i d i dπ π′ ′⋅ + ⋅ = 0 
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and if one takes (6) into account then: 
 
(7)      0(E )i dπ′ ⋅ = df . 

 
The relation (7) determines the field E′  perfectly, and therefore the field E, as well.  The 
field Eɶ  is annulled exactly at points where: 
 
(8)      df = 0. 
 
These results permit one to state: 
 
 Theorem 1: 
 
 If the D.S. that is defined by Eµ is an I.D.S. that admits the relative integral invariant 
πµ  then the field Eɶ  will admit the critical points of the function f that is defined by (6) for 
its singular points. 
 
 In the particular case of a conservative dynamical system, one generally knows that 
function Hµ [9a].  It is then important to known how to calculate f upon starting with Hµ .  
To that effect, one easily sees that the function f is identified with the function Hɶ  in 

[39b]. (One recalls that Hɶ  is the integral of H′ = 
0

Hµ

µµ =

∂ 
 ∂ 

 over the fibers of the 

I.F.D.S. considered.) 
 One can refer to [39b] for some concrete applications of the preceding results.  In 
order to apply the theory of M. Morse, one must know the Betti numbers of Vn−1 .  One 
will find that information in [16b] in the case of an I.F.D.S. that cited in 5.1.  The 
Lyusternik-Schnirelmann theory gives some indications in regard to the minimum 
number of critical points [42a]. 
 Without stopping to review the applications that were treated in [39b], we rapidly 
discuss the following example: 
 
 On the Euclidian sphere S2 , we consider: The natural structure of a Riemann space 
that is defined by its line element ds0 = F0 (x, dx) and a closely-related Finsler space 

structure that is defined by its line element dsµ = Fµ (x, dx) . [One supposes that the 

function Fµ (x, dx) verifies the symmetry relation Fµ (x, dx) = Fµ (x, − dx).] The structure 

F0 (x, dx) is associated with an I.F.D.S. In that case, Vn = V3 = P3 (viz., three-dimensional 

real projective space) and Vn−1 = V2 = S2 (viz., the two-dimensional sphere).  However, 
the symmetry condition on Fµ shows that the D.S. that is associated with Fµ can be 

considered to be an I.D.S. on the manifold 3Vɶ  of unoriented tangent directions to S2 . 

(The manifold 3Vɶ  admits P3 as a two-sheeted covering.) The structure that is associated 

with F0 defines an I.F.D.S. on 3Vɶ  whose base is homeomorphic to the real projective 
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plane P2 .  The Betti numbers of P2 are 1, 1, 1, resp.  The category of P2 is 3; hence, the 
function f admits at least three distinct critical points.  One sees the relation that is 
involved with those remarks from the classical results of Lyusternik-Schnirelmann 
(which are obviously much stronger). 
 

__________ 



CHAPTER VI 
 

FINITE PERTURBATIONS OF  
A FIBERED DYNAMICAL SYSTEM  

 
 

 6.1. Statement of the problem. – Consider an F.D.S. (E0 , Vn) that is defined in a 
compact manifold Vn .  Let E = E0 + µ X be a vector field that is close to E0 .  In Chapter 
V, we established certain properties of the simply-closed trajectories of the field E for 
small values of the parameter µ by means of certain supplementary hypotheses on the 
field X.  The properties that are established by that method are valid only for values of µ 
that are less than a real number ε > 0 that depends upon (Vn , E0 , X).  H. Seifert stated the 
following theorem [41a]: 
 
 (Seifert’s) theorem: 
 
 Let E0 be a vector field that defines an F.D.S. on the compact (three-dimensional) 
manifold Vn .  Furthermore, suppose that Vn is endowed with a Riemann space structure, 
and let || E (x) || denote the norm of the vector E (x).  Under those conditions, there exists 
an ε > 0 [where ε depends upon only the pair (Vn , E0)] such that if || E (z) – E0 (z) || < ε 
for any z  ∈ Vn then the sum of the indices of the simply-closed trajectories (which are 
assumed to be isolated) of the field E will be equal to the Euler-Poincaré χ of the base 
Vn−1 of the F.D.S.  In particular, if χ ≠ 0 then the field E will possess simply-closed 
trajectories. 
 
 We propose to show how Seifert’s method permits us to prove an analogous theorem 
for certain four-dimensional manifolds V4 with boundaries.  That generalization will be 
sufficient to permit us to study the simply-closed trajectories in certain dynamical 
problems. 
 One can also refer to [39b], in which some analogous results are proved. 
 In order to show why Seifert’s theorem (and some analogous theorems) is so 
interesting, it is convenient to explicitly determine an acceptable value of the number ε 
that appears in its statement.  We shall not go into that problem, but only point out the 
following result: 
 If V3 denotes the three-dimensional Euclidian sphere of radius 1 in Seifert’s theorem, 
and E0 is a unit vector field on S3 that generates the usual fibration of S3 over S2 (cf., 5.1) 
then an acceptable value for ε will be ε = 1/2. 
 That result shows that the scope of the fields E and E0 is quite considerable and 
covers a great number of nonlinear phenomena. 
 
 
 6.2. The generalized Seifert theorem. – Let V3 be a compact three-dimensional 
manifold on which an F.D.S. (V3 , E0) is defined whose base is V2 .  One supposes that V3 

is endowed with the structure of a Riemann space.  Let R be the Euclidian number line.  
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The topological product V3 × R is endowed with the structure of a Riemann product 

space and the structure of an F.D.S. that is defined by the field E whose components at 
the point (x, t) are (E0 (x), 0). 

 We associate any point (x, t) ∈ V3 × R with the plaque Q (x, t) that is composed of the 

geodesic segments of length l that issue from (x, t) and are orthogonal to E (x, t).  We 
suppose that l is very small in such a fashion that Q (x, t) will be a local section of the 

fiber space (i.e., that Q (x, t) will meet each fiber of V3 × R at no more than one point). 

 Let E′ be a second vector field on V3 × R.  One lets || E (x, t) || denote the norm of the 

vector E (x, t).  The following Lemma is almost obvious: 
 
 Lemma 1: 
 

 One can associate the pair (V3 × R, E) with a real number ε > 0 such that the relation 

|| E (x, t) − E′ (x, t) || < ε will imply the following consequences: 
 
 a. After one circuit, the trajectory of E′ that issues from (x, t) will meet the plaque 

Q(x, t) again at a point z = (x′, t′ ) ∈ V3 × R . 

 
 b. The point z is a continuous function of (x, t). 
 
 If z = (x, t) then the trajectory of E that issues from (x, t) will be simply closed (cf., 
Chap. V). 
 
 Definition 1. – If the field E′ verifies || E (x, t) – E′ (x, t) || < ε then one can associate 
it with the field U, which is defined in the following manner: 
 
 The vector U (x, t) is tangent to the arc of the geodesic that issues from (x, t) whose 
extremity is z.  It points in the same direction as that arc and has a modulus that equals 
the length of that arc.  One lets U′ (x, t) denote the projection of the vector U (x, t) onto 

V2 × R. 

 Let I be the interval [− 1, + 1] in R. 

 
 Hypothesis 1: One supposes that the restriction of the field U to the boundary V3 × 
({ − 1} ∪ {1}) of V3 × I points towards the interior of V3 × I . 
 
 Definition 2:  Let w ∈ V2 , and let Gw be the inverse image of w under the canonical 
projection of V3 × I onto V2 . 
 
 Suppose that Gw does not meet any simply-closed trajectory of E′.  Associate the 
point z ∈ Gw with the vector U′ (z) ≠ 0 and the oriented direction U″ that is defined by 
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that vector at the point (w, 0). (One points out that the vector spaces that are tangent to 

the points of w × R are endowed with a natural parallelism.) One thus defines a map Π of 

Gw into the sphere S (w) that corresponds to the two tangent directions to w × I .  If 
Hypothesis 1 is verified then the map Π will map the boundary G+1 = Gw ∩ (V3 × 1) to 
the northern hemisphere of S (w) and G−1 = Gw ∩ (V3 × {1}) to the southern hemisphere.  
Complete Gw into a sphere Σ2 by considering G+1 and G−1 to be the boundary discs D and 
D′.  Prolong Π to a map Π′ of Σ2 into S2 (w) such that D maps to the northern hemisphere 
and D′ maps to the southern hemisphere.  One verifies that the degree of that map Π′ 
depends upon only the map Π. 
 
 Definition 3: One denotes the degree of the map Π′ by N (Gw). 
 
 Lemma 2: 
 
 Suppose that Hypothesis 1 is verified and that N (Gw) is defined for all w ∈ V2 .  If 
N(Gw) = 0 then the Euler-Poincaré χ of V2 is zero. 
 
 [One should remark that if E′ does not admit simply-closed trajectories, and if N (Gw) 
= 0 for some w then N (Gw′) = 0 for any w′.  On the other hand, in order for N (Gw) to be 
defined for any w, it is necessary and sufficient that E′ should not admit simply-closed 
trajectories.] 
 Let 2Vɶ  be a manifold with a boundary S that is homeomorphic to the circle, such that 

there exists a map ϕ of 2Vɶ  onto V2 that enjoys the following properties: 

 
 a. ϕ (S) = w ∈ V2 . 
 
 b. The restriction of ϕ of 2Vɶ  − S is a homeomorphism. 

 
 It is easy to construct such a manifold and such a map.  One again lets ϕ denote the 
product map of ϕ with the identity map of I to I.  The theory of the construction of a 
section of a fiber bundle shows that it is possible to find a map f of 2Vɶ  × I into V3 × I such 

that: 
γ ⋅⋅⋅⋅ f = ϕ (in which γ is the projection of V3 × I onto V2 × I). 

 
Let f′ be the restriction of f to S × I.  One can define the degree N′ of the map Π ⋅⋅⋅⋅ f′ in the 
same way that one defined the degree N (Gw) above.  By hypothesis: N (Gw) = 0; it will 
then result that N′ = 0.  The map Π ⋅⋅⋅⋅ f defines a direction U″ at every point of ϕ ([V2 – S) 
× I]).  One then deduces that there exists a direction field U″′ on V2 × I whose restriction 
to the boundary V2 × ({− 1} ∪ {+ 1}) of V2 × I points to the interior of V2 × I ; hence, 
Lemma 2. 
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 Lemma 3: 
 
 One supposes that Hypothesis 1 is verified and that the field E′ does not admit any 
simply-closed trajectory.  Under those conditions, N (Gw) = 0. 
 
 The proof of that lemma is sketched out in paragraph 6.3.  Lemmas 2 and 3 have the 
generalized Seifert theorem as an immediate consequence: 
 
 Theorem 1: 
 
 Suppose that Hypothesis 1 is verified.  If the Euler-Poincaré characteristic of V2 is 
not zero then the field E′ will admit at least one simply-closed trajectory. 
 
 Indeed, a deeper study will permit one to show that χ is equal to the sum of the 
indices of the simply-closed trajectories.  We shall not go into that study because its 
detailed presentation would be too long. 
 
 
 6.3. Proof of Lemma 3. – The hypotheses are the ones in Lemma 3.  One can then 
find a system of three open neighborhoods B1 ⊂ B2 ⊂ B3 of the point w in V2 and a field 
E″ on Vn that verifies the following conditions (recall that γ denotes the canonical 
projection of V3 onto V3 and γ′ is the canonical projection of V3 × I onto V2 × I): 
 

 1. || E (z) – E (z) || < ε for z ∈ V3 × R . 

 
 2. Under the map ϕ, the system of neighborhoods B1 ⊂ B2 ⊂ B3 is homeomorphic to 

the system of three concentric balls in the Euclidian plane R2 that are centered at ϕ (w) = 

w . 
 
 3. The field E″ admits a finite number of simply-closed trajectories. 
 
 4. The restriction of E″ to 

1

1
( )B Iγ −

×′  is identical to the restriction of E′. 
 
 5. The restriction of E″ to the boundary of V3 × I is identical to the restriction to E′. 
 
 6. The simply-closed trajectories of E are contained in γ′ −1 (B2 – B1). 
 
 7. The simply-closed trajectories of E″ are homotopic to the fibers of γ′ −1 (B2 – B1) 
in 

2 1

1
( )B Bγ −

−′ . 

 
 8. The field E″ projects onto B3 – B2 along a vector field Γ. (The field U projects 
onto B3 – B2 along a field of parallel directions.) 
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 The proofs of these assertions are very simple and almost obvious; however, the 
details are very lengthy.  We remark only that the proofs will indeed possibly demand a 
new choice of the constant ε in Lemma 1.  It will suffice for us to know that we can 

attach an ε > 0 to the pair (V3 × R, E′) as in Lemma 1, and the preceding eight properties 

will be verified.  The proof of Lemma 3 is easily achieved then: 
 
 Indeed, let w′ ∈ B3 – B2 .  The manifolds with boundary Gw and Gw′ define two cycles 
modulo V3 × ({1} ∪ {− 1}).  The property 7 will permit one to show that there exists a 
chain Γ whose boundary [modulo V3 × ({1} ∪ {− 1})] is Gw − Gw′ and whose intersection 
with the simply-closed trajectories of E″ is vacuous. [Indeed, the intersection number of a 
simply-closed trajectory of E″ and a chain whose boundary is contained in V3 × ({1} ∪ 
{ − 1}) is zero.] It then results that N (Gw′) = N (Gw); however, from the property 8, N 
(Gw′) = 0, which gives Lemma 3. 
 
  
 6.4. Applications. – Here are two examples of dynamical systems that lead 
immediately to some applications of Seifert’s theorem: 
 
 a. The dynamical system is composed of a material point that moves without friction 
on a Euclidian sphere S2 subject to the action of very weak perturbing forces that depend 
upon the position and velocity in such a way that the system admits a first integral of vis 
viva.  In this particular case, V3 is homeomorphic to three-dimensional real projective 
space (cf., 5.4), and V2 is homeomorphic to the sphere S2 .  Hence, χ (V2) = − 2. 
 
 b. The dynamical system is composed of two harmonic oscillators under the action 
of perturbing forces of the same type as in the preceding example (a.).  Now, V3 will be 
homeomorphic to the sphere S3 , and V2 will be homeomorphic to the sphere S2 . 
 
 We shall now give an application of the generalized Seifert theorem.  The differential 
system: 

(1)    
( , ) ( ) ( , , , ),

( , ) ( ) ( , , , )

x f x x x x g x x x y y

y h y y y y i y x x y y

ϕ
ψ

′′ ′ ′ ′ ′+ + + =
 ′′ ′ ′ ′ ′+ + + =

 

 
admits an obvious geometric interpretation [cf., Example (b.) above].  The system (1) can 
be replaced with: 

(2)    

,

[ ( , , , ) ( ) ( , ) ],

,

[ ( , , , ) ( ) ( , ) ].

dx
u

dt
du

x x u y v g x f x u u
dt
dy

v
dt
dv

y x u y v i y h y v v
dt

ϕ

ψ

 =

 = − + − − ⋅


 =


 = − + − − ⋅

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 If the functions ϕ, ψ, f, h, g, i are zero then the system (2) will define an F.D.S. (E0 , 
0
4ℝ ) in the space 0

4ℝ  that is obtained by removing the point (0, 0, 0, 0) from the space R4 

of the variables x, u, y, v.  Hence, 0
4ℝ  is homeomorphic to S3 × R, and E0 defines an 

F.D.S. on the spheres whose equations are: 
 

x2 + u2 + y2 + v2 = constant. 
 
We are then within the scope of the general hypotheses of 6.2.  Let ∆ (M, m) be the 
hollow sphere whose equation is: 
 

0 < m ≤ x2 + u2 + y2 + v2 ≤ M,  in which M > m. 
 
∆ (M, m) is homeomorphic S3 × I.  Let E be the vector field that is defined by (2).  In 
order for us to be able to apply the generalized Seifert theorem to (∆ (M, m), E0, E), it is 
sufficient for us to suppose that: 
 
 a. The functions f, g, ϕ, ψ, h, i are bounded on ∆ (M, m) by a convenient positive 
number ε that depends upon only M, m. (Under those conditions, it is possible to 
construct the field U, cf., Definition 1.) 
 
 b. Hypothesis 1 is verified by the field U. 
 
 It is easy to indicate the analytical conditions on the functions f, g, ϕ, ψ, h, i that 
ensure condition (b.).  We simply remark that condition (b.) expresses the idea that the 
energy (x2 + y2 + u2 + v2) of the dynamical system increases in time when the energy is 
weak and, on the contrary, diminishes when the energy is large.  That is the general 
situation that is produced in the case of relaxation oscillations. 
 The same method will likewise permit one to establish the existence of the periodic 
solutions of period T (forced oscillations) for differential equations of the type: 
 

x″ + f (x, x′ ) x′ + x = ϕ (t, x, x′ ) , 
 
in which the function admits the period T in t and in which the function f (x, x′ ) verifies 
the general hypotheses of relaxation. (Of course, one supposes that the perturbing terms 
and f are not too large.) Cf., [46a]. 
 

____________ 



CHAPTER VII 
 

ON THE STABILITY OF PERIODIC SOLUTIONS OF THE 
DIFFERENTIAL EQUATION  

 
X (x, y) dx + Y (x, y) dy = 0. 

 
 

 7.1. Introduction. – Some classical formulas will permit one to calculate the 
characteristic exponent of a closed trajectory C of the differential equation X dx + Y dy = 
0 [47, 31].  Those formulas will then permit one to study the stability of C.  Levinson has 
shown what one can infer from those formulas in the study of a number of those closed 
trajectories [31, 47].  One knows the importance of those questions in the study of the 
Liénard equation or some analogous equations of mathematical physics. 
 We propose to restate those two questions by using the methods of differential 
algebra.  In the first place, we shall prove the following two lemmas: 
 
 Lemma 1: 
 
 Let V2 be a two-dimensional numerical manifold, and let ω be a Pfaff form without 
singularities on V2 . There exist a Pfaff form ω  on V2 that is defined modulo ω such that 
dω = ω  ∧ ω .  Let C be an integral curve of the equation ω = 0.  The form ϖ that is 
induced in C by ω  is closed.  The cohomology class of ϖ depends upon only the 
differential equation ω = 0, but it does not depend upon the particular choice of ω (which 
can be replaced by λ ω, in which λ is a numerical function that is not annulled at any 
point of V2). 
 
 Lemma 2: 
 
 In addition to the hypotheses of Lemma 1, one also supposes that C is compact and 

oriented; one sets I (C) = 
C
ω∫ .  The characteristic exponent of C is equal to – I (C). 

 It will then result from Lemma 2 that if I (C) < 0 [I (C) > 0, resp.] then the trajectory 
C will be stable (unstable, resp.). 
 
 One should point out that the statements in Lemma 1 are all obvious, except for the 
last one.  However, Lemma 1 can be stated in a more general form: 
 
 Lemma 3: 
 
 Let Vn be an n-dimensional numerical manifold, and let ω be a completely-integrable 
Pfaff form without singularities on Vn .  There will then exist a Pfaff form ω  on Vn that is 
defined modulo ω and is such that dω = ω  ∧ ω.  Let Vn−1 be an integral manifold of the 
equation ω = 0.  The form ϖ that is induced in Vn−1 by ω  is closed.  The cohomology 
class of ϖ depends upon only the equation ω = 0 [39]. 
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 Lemma 2 admits an analogous generalization [39]. 
 
 
 7.2. Proofs of Lemmas 1, 2, and 3. – We immediately prove Lemma 3, which has 
Lemma 1 as a consequence.  Since ω is completely integrable, ω ∧ dω = 0 ; i.e., dω is 
divisible by ω, which implies the existence of ω  (which is defined modulo ω).  However, 
ddω = 0, so: 

d (ω  ∧ ω) = 0 = dω  ∧ ω − ω  ∧ ω  ∧ ω = dω  ∧ ω . 
 
 Now, dω  ∧ ω = 0 is equivalent to dϖ = 0.  One then replaces ω with ω1 = λω.  One 
can write: 

dω1 = dλ ∧ ω + λ dω = (dλ / λ + ω ) ∧ ω, 
 

with some obvious notations.  Hence: 
 

1ω  = ω  + dλ / λ mod ω and ϖ1 = ϖ + �/dλ λ , 

 

in which �/dλ λ  is the form on Vn−1 that is induced by dλ / λ .  Q.E.D. 
 
 It should be remarked that one can replace the form ω with a “twisted” form (i.e., one 
that is defined up to sign) in the statement of Lemma 3. 
 In order to prove Lemma 2, one introduces local coordinates (r, θ) in an annular 
neighborhood of C, in which r and θ are some real numbers, and θ is defined modulo 2π, 
such that the equation of C is r = 0, and θ increases when C is described in the positive 
sense.  Under those conditions, the proposed equation will be transformed into: 
 

ω1 ≡ dr + ϕ (r, θ) dθ = 0, 
 
in which ϕ (r, θ) is a periodic function of period 2π in θ, and ϕ (0, θ) = 0. 
Here, one has: 
 

dω1 = ϕr (r, θ) dr ∧ dθ and 1ω  = − ϕr (r, θ) dθ  (mod ω1). 

 
 The function ϕ (r, θ) admits the limited development (in r): 
 

ϕ (r, θ) = r ϕ0 (θ) + …, in which  ϕ0 (θ) = (0, )rϕ θ′ . 

 

The solutions of (2) have the form r = Ψ (r0 , θ), in which 0 ≤ θ ≤ 2π, and Ψ (r0 , θ) 
admits the limited development Ψ (r0 , θ) = r0 Ψ0 (θ) + …  One then concludes that Ψ0 
verifies the equation: 

d Ψ0 + Ψ0 ϕ0 (θ) dθ , 
so 



Reeb – Topological properties of trajectories of dynamical systems. 39 

Ψ0 (θ) = Ψ0 (0) exp 00
( ) d

θ
ϕ ξ ξ −

  ∫  . 

The conclusions of Lemma 2 result immediately. 
 
 Remarks: 
 
 1. A particularly simple form for the equation X dx + Y dy = 0 is the following one: 
 

ω ≡ cos Ψ dx + sin Ψ dy = 0, 
 

in which Ψ is a (possibly multi-valued) function in a domain ∆ of the Euclidian plane (x, 
y) whose various determinations differ by a multiple of 2π .  Under those conditions: 
 

dω = (sin Ψ ⋅⋅⋅⋅ Ψy + cos Ψ ⋅⋅⋅⋅ Ψx) dx ∧ dy, 
and one can set: 

ω  = Ψy dx − Ψx dy . 
 
The form dω , which will play an important role in what follows, will have a remarkable 
structure then: 

dω  = 2 2( )
x y

Ψ + Ψ dx ∧ dy = ∆Ψ dx ∧ dy . 

 
 2. It should be pointed out that the form ω  is coupled with the integrating factors of 
ω.  Indeed, if ϕ is an integrating factor of ω then: 
 

0 = d (ϕ ⋅⋅⋅⋅ ω) = dϕ ∧ ω + ϕ dω , 
so 

dω = − (dϕ / ϕ) ∧ ω and ω  = − dϕ / ϕ (modulo ω) . 
 
If ω  is a closed form then there will (locally) exist a function f that df = ω .  One can then 
deduce that fe ω  is a closed form, and that the equation ω = 0 can be integrated by 
quadratures. 
 
 Examples: 
 
 a. Consider the linear equation. ω ≡ dy + [f (x) y + g (x)] dy = 0 .  Here, dω = f (x) dy 

∧ dx and ω  = − f (x) dx; hence, exp ( )f x dx∫  is an integrating factor. 

 
 b. Let x″ + f (x) x′ 2 + g (x) = 0 be a differential equation.  Its integration comes 
down to the integration of the system: 
 

dx = y dt, ω ≡ y dy + [f (x) y2 + g (x)] dx = 0 (Bernoulli equation). 
 
 Thus: 
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dω = 2 f (x) y dy dx ;  ω  = − 2 f (x) dx . 
 
 One then sees that the proposed differential equation can be integrated by 
quadratures.  One should note the analogy between the proposed equation and the 
Liénard equation (cf., 7.4). 
 
 
 7.3. Applications to the equation ω ≡ dp – f (p, θ) dθ = 0. – We propose to show 
how Levinson’s ideas permit one to establish very simply the uniqueness of a closed 

trajectory in certain vector fields that are defined in the R2 [31]. 

 To that effect, we recall certain classical results on the integral curves of a vector field 

that is defined in the plane R2. 

 We suppose that the vector field E verifies the following hypotheses: 
 
 Hypothesis 1: The field E admits only one singular point, namely, the origin 0. 
 
 Under those conditions, the closed trajectories of E are arranged in the manner of 
concentric circles around the origin 0.  Each trajectory is obviously oriented in the natural 
fashion by E. 
 
 Hypothesis 2: The sense of rotation around 0 of a moving point that describes a 
closed trajectory of E in the positive sense does not depend upon the particular choice of 
that closed trajectory. 
 
 Under those conditions, one can state the following classical result: 
 
 Lemma 4: 
 
 Let C and C′ be two closed trajectories of E that verify the following conditions: 
 
 a. There exists no closed trajectory between C and C′ that is either stable or 
unstable. 
 
 b. C is stable (unstable, resp.). 
 
 Under those conditions C′ will not be stable (unstable, resp.). 
 

 Let (ρ, θ) be a polar coordinate system with its pole at O in the plane R2.  Consider 

the differential equation: 
 
(1)   ω ≡ dρ – f (ρ, θ) dθ = 0, in which f (ρ, θ + 2π) = f (ρ, θ) , 
 
and the corresponding vector field whose components along the polar axes are (− f, 1).  It 
is clear that this field E verifies Hypotheses 1 and 2. 
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 The exterior differential of ω is: 
 
(2)     dω = fρ (ρ, θ) dρ ∧ dθ ; 
 
hence: 
 
(3)     ω  = − fρ (ρ, θ) dθ  
 
and 
 
(4)     dω  = − 2fρ (ρ, θ) dρ ∧ dθ . 
 
One should point out that in the particular case of 2fρ = 0, the form ω  will be closed; 

equation (1) will then be very easy to discuss. 
 We examine the case in which 2fρ  keeps a constant sign in the entire plane (2fρ > 0, 

or 2fρ < 0). 

 
 Theorem 1: 
 

 If the function fρ (ρ, θ) keeps a constant sign in the plane R2 then equation (1) will 

admit at most three closed trajectories.  Moreover, (1) admits at most one closed 
trajectory C for which I (C) > 0 [I (C) = 0 and I (C) < 0, resp.]. 
 
 Indeed, let C be a closed trajectory of (1) such that I (C) = 0.  If C′ is another closed 
trajectory of (1) then Stokes’s formula will show that: 
 

(5)     I (C) – I (C′ ) = dω
∆∫  ≠ 0, 

 
in which ∆ is the annulus that is bounded by C and C′ and endowed with a convenient 
orientation.  Hence, I (C′ ) ≠ 0.  Let ε (C′ ) be the function that takes the value + 1 or – 1 
according to whether I (C′ ) > 0 or I (C′ ) < 0.  Let C″ be a closed trajectory that is 
distinct from C and C′.  One lets ε (C′, C ) denote the function that takes the value + 1 or 
– 1 according to whether C′ is interior to C″ or exterior to it, resp.  When Stokes’s 
formula is applied to the domain that is bounded by C′ and C″, that will permit one to 
establish the following property: 
 
(6)   ε (C′ ) ⋅⋅⋅⋅ ε (C′, C″ ) ⋅⋅⋅⋅ ε (f) > 0 implies that ε (C) ⋅⋅⋅⋅ ε (C′ ) > 0 , 
 
in which: 
 

ε (f) = + 1 if 2fρ  > 0 and ε (f) = − 1 if 2fρ  < 0. 
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However, it is impossible to have ε (C′ ) ⋅⋅⋅⋅ ε (C″ ) > 0 for all closed trajectories C″ that 
verify ε (C′ , C″) = constant. (It will suffice to apply Lemma 4.) Hence: 
 
(7)      ε (C′ ) ⋅⋅⋅⋅ ε (C′ , C″) ⋅⋅⋅⋅ ε (f) < 0. 
 
Similarly: 
 
(8)      ε (C″ ) ⋅⋅⋅⋅ ε (C″ , C′ ) ⋅⋅⋅⋅ ε (f)  < 0. 
 
Hence, ε (C″ , C′ ) < 0, which completes the proof. 
 
 Remarks: 
 
 1. Consider the class ∆ of functions f (r, θ) that verify the following condition: 
 
 The function f (r, θ) will verify the inequality − 2fρ  ≤ ρ ⋅⋅⋅⋅    ε for a given ε > 0 in the 

circular annulus D (which is defined by the inequality 0 < m < ρ < M, in which M and m 
are given). 
 
 Let C1 , C2 , … be the closed trajectories of equation (1) that are contained in D and 
have a positive characteristic exponent – I (C). [One supposes that f (ρ, θ) belongs to the 
class ∆.] There are a finite number of those trajectories, so one can suppose that Ci is 
interior to Ci+1 .  There then exists a closed trajectory Γi between Ci and Ci+1 such that 
I(Γi) ≥ 0.  When Stokes’s theorem is applied to the trajectories Γi and Ci , that will show 
that: 

| I (Ci) | = − I (Ci) ≤ I (Γi) – I (Ci) = − 21
i

f ρ
ρ∆

 
 
 

∫ ρ dr dq ≤ ε ⋅⋅⋅⋅ Ai , 

 
in which Ai denotes the area of the annulus ∆i that is bounded by Ci and Γi . 
 Hence: 
 

area of D = A ≥ i
i

A∑  ≥ ( ) /i
i

I C ε∑   because Ai ≥ I (Ci) / ε . 

 
 Let I = infi | I (Ci) |, and let n be the number of closed trajectories Ci : 
 

.
nI

A
ε

≥  

 
The latter inequality shows that if the trajectories Ci are strongly stable then the number 
of those trajectories will be small. 
 It goes without saying that inequalities that are analogous to the preceding one can be 
proved for equations of a more general type than the proposed equation. 
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 2. Recall the form ω = cos Ψ dx + sin Ψ dy (cf., Remark 1 in 7.2).  We suppose that 
Ψ is defined in the entire plane (x, y), except for the point 0. 
 Let ϕ (x, y) be the polar angle of the radius vector whose origin is at 0 and whose 
extremity is (x, y).  One easily verifies that if: 
 

Ψ = ϕ + log 2 2x y+  

 
then the form ω will enjoy the following properties: 
 
 a. There exists an infinitude of closed trajectories that verify ω = 0; the set of those 
trajectories admits the point (0, 0) as its accumulation point. 
 
 b. ∆Ψ = 0. 
 
 The results that were stated above (Theorem 1 and Remark 1) will therefore no longer 
be valid when Hypothesis 1 is not verified. 
 
 
 7.4. Applications to the Liénard equation. – In this paragraph, we shall once again 
use the method of N. Levinson (cf., 7.3). 
 Before discussing the Liénard equation: 
 
(9)     x″ + f (x) x′ + g (x) = 0, 
 
let us make some very simple remarks about the analogous equation (1): 
 
(10)    x″ + ε (x′ ) f (x) x′ 2 + g (x) = 0, 
 
in which: 

ε (x′ ) = + 1  if x′ > 0  and ε (x′ ) = − 1  if x′ < 0 . 
 
(Cf., 7.2., Remark 2, Example 2) Equation (10) has a mechanical interpretation that is 
analogous to that of (9). 
 The equation: 
 
(11)    ω = y dy + [ε (y) f (x) y2 + g (x)] dx = 0 
 
that is associated with (10) verifies Hypothesis 1 of 7.3. 
 
(12)    ω  = − 2 ε (y) f (x) dx  for y ≠ 0. 
 
 The form ω  is a closed form for y ≠ 0. 

                                                
 (1) Contrary to our conventions, the function ε (x′ ) is not indefinitely differentiable; meanwhile, our 
statements are easy to justify. 
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 We make the following natural hypotheses on (10): 
 
 Hypothesis 2: 
 
 a. f (x) = 0 if x = α or x = β, where α < 0 < β . 
 
 b. f (x) < 0 if α < x < β . 
 
 c. f (x) > 0 if x < α or x > β . 
 
 d. Each closed trajectory C of (11) meets the axes x = α and x = β. 
 
 One should note that a closed trajectory of (11) necessarily meets one of the axes x = 
α and x = β .  Indeed, the integral of dω = 2 f (x) ε (y) y dx ∧ dy over the domain that is 
bounded by C must be zero, from Stokes’s formula. The condition (d.) in Hypothesis 2 is 
then verified when f (x) is an even function and g (x) is an odd function, because in that 
case, equation (11) will be invariant under the symmetry x → − x and y  → − y. 
 Suppose that (11) admits closed trajectories.  Let C be the closed trajectory of (11) 
that contains no other closed trajectory in its interior.  C is not unstable, because (0, 0) is 
an unstable stationary position.  Therefore, I (C) ≤ 0.  Let C′ be another closed trajectory 
of (11), and let u, v [u′, v′, resp.] be the abscissa of the points where C [C′, resp.] meets 
the y = 0 axis, with u < u′ < 0 < v < v′, so: 
 

I (C′ ) = − 4 ( )
u

v
f x dx∫ , I (C″ ) = − 4 ( )

u

v
f x dx

′

′∫ . 

 
 Hence, when one takes Hypothesis 2 into account, one will see that I (C) > I (C′ ).  
Hence: 
 
 Theorem 2: 
 
 If equation (10) verifies Hypothesis 2 then that equation will admit at most a single 
stable periodic solution and possibly one periodic solution whose characteristic exponent 
is zero. 
 
 Let us now examine the Liénard equation (9).  Introduce the variable: 
 

x′ + F (x) = u,  in which F (x) =
0

( )
x

f dξ ξ∫ . 

 
Equation (9) then comes down: 
 
(13)    ω ≡ g (x) dx + [u – F (x)] du = 0. 
 
Therefore: 

dω = − f (x) dx ∧ du, 



Reeb – Topological properties of trajectories of dynamical systems. 45 

and one can set: 
ω  = f (x) / g (x) du, if g (x) ≠ 0, 

and 
ω  = − [f (x) / (u – F (x))] du,  if [u – F (x)] ≠ 0. 

 
 Hypothesis 3: 
 
 a.  x ⋅⋅⋅⋅ g (x) > 0 if x ≠ 0; g (0) = 0. 
 
 b. The function f (x) is annulled for two values x1 and x2 of the variable x such that: 
 

x1 < 0 < x2 ; f (x) < 0      if x1 < x < x2      and      f (x) > 0      if     x < x1  or x > x2 . 
 

 c. Each closed trajectory Ci of (3) meets the axis x = x2 at Pi and Si and the axis x = 
x1 at Qi and Ri ; those points follow in the order Pi , Qi , Ri , Si on Ci . 
 
 One remarks that the condition (c.) is necessarily verified when the function f (x) is 
even and g (x) is odd. (Cf., the preceding example.) If (13) admits closed trajectories then 
there will exist a closed trajectory C1 that contains no other closed trajectory in its interior 
(indeed, the origin is an unstable focus).  It will then result that I (C1) ≤ 0.  Let C2 be 
another closed trajectory of (13).  Let I (Pi Qi), … denote the integrals of ϖ along the arcs 
PQ : 

I (P2 Q2) < I (P1 Q1),  
(14) 

I (R2 S2) < I (R1 S1) . 
 
 Indeed, one can verify the first of these inequalities by applying Stokes’s formula to 

the form ω  = 
( )

( )

f x

u F x

−
−

dx and to the contour L that is composed of the arcs P2 Q2 and P1 

Q1 (of C1 and C2) and some rectilinear segments P2 P1 and Q2 Q1 upon remarking that the 

integral of dω  = 
2[ ( )]

( )

u F x

f x

−
−

dx ∧ du over the interior of L is negative. (One verifies that 

[u – F (x)] ≠ 0 in the useful region.] 
 In order to establish the analogous inequalities: 
 

I (Q2 R2) < I (Q1 R1),  
(15) 

I (S2 P2) < I (S1 P1) , 
it is convenient to set: 
 

ω  = − f (x) / g (x) du = − Ψ (x) du, in which Ψ (x) = + f (x) / g (x) (x ≠ 0). 
 
 Consider the contour F = Q2 R2 R1 Q1 , which is composed of the arcs Q2 R2 and Q1 R1 
and the segments R2 R1 and Q1 Q2 .  Stokes’s formula will show that: 
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F
ω∫  = dω

∆∫ , 

 
in which ∆ is the area that is bounded by F.  Now: 
 

dω  = − Ψ (x) dx ∧ du . 
 
The inequalities (15) will then be valid when ψ′ (x) > 0 (for x ≠ 0, or even better, for x < 
x1 or x > x2).  It results from (14) and (15) and the fact that I (C1) ≤ 0 that I (C2) < 0.  
Upon taking into account some results that were obtained above, one will finally see that 
C1 is the only closed trajectory except for possibly when I (C1) = 0.  In the latter case, 
there will possibly be yet another closed trajectory.  One can summarize these results as: 
 
 Theorem 3: 
 
 If equation (13) verifies Hypothesis 3, and if the function ψ (x) = f (x) / g (x) verifies 

( )xψ ′ > 0 for x < x1 or x > x2 , moreover, then equation (9) will admit at maximum one 
stable periodic solution, and it will admit no unstable periodic solution. 
 
 One should note that if f (x) = ε (x2 – 1), g (x) (viz., the Van der Pol equation) then 

( )xψ  = x – 1 / x and ψ′ (x) = 1 + 1 / x2 > 0.  One then recovers that classical result. 
 

_____________ 



CHAPTER VIII 
 

ON THE NATURE AND DISTRIBUTION OF THE 
PERIODIC TRAJECTORIES OF CERTAIN  

DYNAMICAL SYSTEMS  
 
 

 8.1. Introduction. 
 

 8.1.1. The dynamical systems that are envisioned in this article:  A dynamical 
system is the pair (Vn , E) that consists of an n-dimensional numerical manifold and a 
vector field E that is defined on Vn .  Here, we shall consider some particular dynamical 
systems (P.D.S.) that verify the following properties: 
 
 a. The field E admits no singularities.  The field E admits a finite number of closed 
trajectories Ci (i = 1, …, N).  The characteristic exponents that relate to any one of those 
closed trajectories are all different and their real parts are non-zero.  The qualitative 
behavior of the trajectories of E in the neighborhood of Gi is the behavior that one will 
observe upon replacing E with the differential system that is defined by the equations of 
first variation. 
 
 b. Let x (t, x0) (in which x, x0 ∈ Vn) be the trajectory of E that passes through the 
point x0 at the instant t = 0.  For any open neighborhood Ω of the set ii

C∪ , there exists 

a T (x0) > 0 such that: x (t, x0) ∈ Ω for | t | > T.  
 
 
 8.1.2. Objective of this chapter. – The hypotheses (a.) and (b.) in 1.1 do not seem 
very natural a priori.  One hardly knows any criteria that will permit one to recognize 
whether a given dynamical system (Vn , E) will verify those hypotheses.  Meanwhile, it is 
clear that one knows numerous dynamical systems (i.e., nonlinear mechanical ones) that 
verify properties (a.) and (b.), and the physical behavior of such systems is particularly 
simple and agreeable (e.g., the absence of recurrent motions other than periodic motions).  
We propose to show that the distribution of periodic motions of such a system will obey 
some simple laws. 
 We remark that the known laws of the distribution of periodic motions are, for the 
most part, coupled with some theorems on the fixed points of a topological 
transformation.  They are valid by means of some hypotheses on the topology of Vn (for 
example: Vn is a topological product Vn−1 × S of a manifold Vn−1 with a circle S, or rather: 
Vn admits the structure of a fiber bundle whose fiber is S) and on the field E (for example: 
the field E has a non-zero component along the fibers of Vn).  In our article, we make the 
hypotheses (a.) and (b.), but no other hypotheses of the same type as the ones that we just 
recalled. 
 
 Later on (8.5), we shall recall the justification for that study. 
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 8.2. Preliminaries. Definition of a P.D.S. 
 
 Definition:  A dynamical system (Vn , E) will be called a P.D.S. if: 
 
 1. The phase space Vn is compact. 
 
 2. (Vn , E) enjoys the properties (a.) and (b.) in 1.1. 
 
 
 8.2.1. On the closed trajectories of a P.D.S. – Consider a closed trajectory Ci of a 
P.D.S. (Vn , E).  We let 1

iα , …, 1
i
nα −  denote the n – 1 characteristic exponents of Ci and let 

1
iβ , …, 1

i
nβ −  denote the real parts of 1

iα , …, 1
i
nα − .  We can suppose: 

 

1
iβ  ≤ 2

iβ  ≤ …
i

i
sβ < 0 < 1i

i
sβ +  ≤ … ≤ 1

i
nβ −  . 

 
The whole number si is called the character of Ci , and ( 1) is− = γi is called the index of Ci. 
 In this paragraph, we consider a particular trajectory C and thus suppress the index i.  
The hypothesis (a.) of 1.1 on the closed trajectory C is stated precisely as follows: 
 
 Hypothesis: There exists a neighborhood Ω of C that is homeomorphic by a map h to 

the topological product Rn−1 × S of the (n − 1)-dimensional numerical space Rn−1 with the 

circle S.  The function h enjoys the following properties: 
 The map h maps the trajectories of E onto the curves that are defined by the 
equations: 

x = exp Aθ, 
 

in which x ∈ Rn−1, θ is the abscissa (defined modulo 1) on S, and A is a linear 

transformation whose characteristic roots are α1 , …, αn−1 . 
 
 It is clear that h maps C to the trajectory x = 0. 
 The transformation A is completely reducible to the sum of two transformations A1 

and A2 that operate on two complementary subspaces 1
s
ℝ  and 1

2
n s− −
ℝ  of Rn−1.  Moreover, 

the characteristic roots of A1 are α1 , …, αs , and those of A2 are αs+1, …, αn−1 . 
 Since: 

A = A1 ⊕ A2 , 
 

exp A = exp A1 ⊕ exp A2 . 
 

 Finally, one can endow Rn with a Euclidian metric such that the subspaces 1
s
ℝ  and 

1
2
n s− −
ℝ  are orthogonal and such that: 
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  || (exp A1) x || ≤ (1 – ε) || x || if x ∈ 1
s
ℝ  

 
  || (exp A2) x || ≥ (1 – ε) || x || if x ∈ 1

2
n s− −
ℝ , 

 
in which || u || denotes the norm of u and ε (ε > 0) do not depend upon x. 
 
 Definition:  Set: 
  P1 (C) = 1

1( )sh S− ×ℝ , 

  P2 (C) = 1 1
1( )n sh S− − − ×ℝ . 

 
 
 8.2.2. On the canonical decomposition of the defining space of a P.D.S. – Let ρ 
denote the equivalence relation that is defined in Vn whose equivalence classes 
correspond to the trajectories of E.  Suppose that (Vn , E) is a P.D.S.  Let Ci be one of the 
closed trajectories of E.  The spaces P1 (Ci) and P2 (Ci) are not defined in a canonical 
fashion; however, the following properties are obvious: 
 
 Definition 1:  Let Q1 (Ci) and Q2 (Ci) be the sets that are obtained by saturating P1 
(Ci) and P2 (Ci) for the equivalence relation ρ. 
 
 Proposition: 
 
 The sets Q1 (Ci) and Q2 (Ci) depend upon only (Ci, E, Vn).  The sets Q1 (Ci) and Q2(Ci) 
are homeomorphic to 1

is S×ℝ  and  1in s S− − ×ℝ , respectively. 

 
 For what follows, it will be convenient to enumerate the trajectories Ci in a different 
way; to that effect, we set: 
 
 Definition 2:  One divides the trajectories Ci into n classes, where each class Γj (j = 0, 
…, n – 1) includes all of the trajectories Gi that have a given character sj = j ; one 
enumerates the trajectories of the same class (arbitrarily).  An arbitrary closed trajectory 
will be defined by its character j and its number i ; one then writes Cji .  The index j varies 
from 0 to n – 1, and i varies from 1 to Nj , where Nj is the number of trajectories of 
character j . 
 
 Definition 3: One sets: 
  Li = 1( )ijj

Q C∪ , 

 
  Kn = Vn , 
 
  Kn−1 = Kn − Ln−1 , 
 
  ……………….., 
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  Kr−1 = Kr − Ln−1 , 
  …………… 
  
  K0 = K1 − L0 . 
 
 One easily sees that K0 = θ, Lr is an open subset in Kr+1, and Kr is at most r-
dimensional. 
 
 
 8.3. Some examples of P.D.S.’s. – 
 

 8.3.1. Dynamical systems that are defined in the plane R2. – Suppose then that Vn 

= R2, and let E be a vector field in R2 that admits a unique singular point 0 whose 

coordinates are x = 0, y = 0. 
 Under those conditions, the trajectories of E will either be closed trajectories Ci that 
surround the origin 0 or curves that unroll like spirals around those orbits.  Hypotheses 
(a.) and (b.) in 1.1 imply the following properties: 
 
 1. There are a finite number of trajectories Ci . 
 
 2. Each trajectory Ci is completely stable or completely unstable. 
 
 A dynamical system that verifies the preceding two properties is not a P.D.S. 
(because Vn is not compact, and E admits a singular point), but we will see later on that it 
is possible to extend the properties of P.D.S.’s to such dynamical systems. 
 Let C1 and C2 be two completely-stable closed trajectories of E.  Let s be the number 
of completely-stable closed trajectories between C1 and C2 , and let i be the number of 
completely-unstable closed trajectories between C1 and C2 .  The following relation is 
obvious: 

1.i s− =  

 
We propose to establish some relations of that type for P.D.S.’s [Cf., 8.4.3 (2) and 8.4.4, 
Theorems 1 and 2]. 
 One will then be led to consider a P.D.S. when one considers a vector field without 
singularities E that is defined on the two-dimensional torus T 2.  If E admits a (non-zero) 
finite number of closed trajectories, and if each of those trajectories is completely stable 
or completely unstable then (T 2, E) will be a P.D.S.  With the preceding notations, one 
can write the following relation under those conditions: 
 

0.i s− =  

 
 
 8.3.2. Examples of P.D.S.’s. – The (three-dimensional) sphere S3 can be considered 
to be a fiber space whose base is the two-dimensional sphere S2 and whose fiber S is 
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isomorphic to the one-dimensional torus T (T is the multiplicative group of complex 
numbers modulo 1). 
 Let P be the canonical projection of S3 onto S2 .  Let U be a vector field with no 
irregularities on S3 that is tangent to the fibers of S3 .  Finally, let V be a vector field on S2 
that has a finite number of singular points xi (i = 1, …, s) of the saddle or focus type, and 
enjoys the following property: 
 Any trajectory of V will tend to a singular point xi (for t → + ∞  and t → − ∞). 
 There exists a field W on S3 such that P (W) = U.  Set E = U + W.  It is clear that S3 , 
E) defines a P.D.S. 
 Let: 
 N2 = number of stable foci (or nodes) 
 
 N0 = number of unstable foci (or nodes) 
 
 N1 = number of saddles. 
 Under those conditions: 

N2 – N1 + N0 = 2. 
 
 There will then exist a particular P.D.S. on S3 that admits a single completely-stable 
periodic trajectory and a single completely-unstable periodic trajectory, with the 
exclusion of any other type of closed trajectory.  It is remarkable that this phenomenon 
cannot be produced on S2q+1 when q ≥ 2 (cf., 8.4.4). 
 It is easy to give some examples of P.D.S.’s whose phase spaces are the n-
dimensional sphere Sn (n odd). 
 
 
 8.3.3. Systems of q oscillators. – The study of a dynamical system that is composed 
of q oscillators frequently (in the case of relaxation) leads to the study of a dynamical 
system (∆2q+1, E), where ∆2q+1 is a manifold with boundary that is homeomorphic to the 
topological product S2q+1 × I of the (2q + 1)-dimensional sphere S2q+1 with the closed 
interval I = [0, 1], and in which E is a vector field without singularities on ∆2q+1 whose 
restriction to the boundary of ∆2q+1 points to the interior of ∆2q+1 . 
 The study of dynamical systems of the type that verify properties (a.) and (b.) in 8.1 
is therefore particularly important from the physical viewpoint. 
 
 
 8.4. On the distribution of periodic solutions of a P.D.S. – 
 
 8.4.1. On the homology of Kr / Kr−1 . – In all of what follows, we shall let H i (Kr) 

denote the cohomology group of Kr in dimension i when the coefficient ring is the ring of 
integers.  The dimension of the Betti group of H i (Kr) will be denoted by pi (Kr).  

Finally, if one takes the domain of the coefficients modulo 2 then one will denote the 
dimension of the Betti group in dimension i by bi (Kr). 
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 In order to find the cohomology of Kr / Kr−1 , it will suffice to note that Kr − Kr−1 = 

Ln−1 is homeomorphic to the sum of Nr−1 spaces that are homeomorphic to R
r−1 × S.  Now, 

R
r−1 can be completed to an (r – 1)-dimensional topological sphere Σr−1 by adding a point 

at infinity ω .  The cohomology group of Kr / Kr−1 will then be isomorphic to the 
cohomology group of: 

Σr−1 × S / {ω} × S = (Σr−1 / {ω}) × S. 
 
 It will then result that the torsion groups of H i (Kr / Kr−1) are all zero and that the 

Poincaré polynomials: 
 

1( / ) i
i r r

i

p K K X−∑  or 1( / ) i
i r r

i

b K K X−∑  

are equal to: 
Nr−1 (X r + X r−1) ≡ Pr (X). 

 
 In order to obtain the desired laws, it will now suffice to write down the well-known 
classical relation between the cohomology groups of the spaces Kr , Kr−1, and Kr / Kr−1 .  
We shall look for relations between the numbers Ni (viz., the number of closed 
trajectories of character i) and the cohomology of Vn . 
 
 
 8.4.2. Review of the classical relations between the cohomologies of the spaces Kr, 
Kr−1 , and Kr / Kr−1 . – Those relations can be summarized thus: 
 
 There exist canonical homomorphisms I i of H i (Kr) into H i (Kr−1), and then ∂i takes 

H 
i (Kr−1) into H i+1 (Kr / Kr−1) and ϕi takes H i (Kr / Kr−1) into H i (Kr), such that the 

sequence of homomorphisms: 
 

.. 
1i−∂

→  H i (Kr / Kr−1) 
iϕ

→  H i (Kr) 
iI

→  H i (Kr−1) 
i∂

→  H i+1 (Kr / Kr−1) 
1iϕ +

→  … 

 
is exact (i.e., the image of each of the homomorphisms in the sequence is equal to the 
kernel of the following homomorphism). 
 One lets H′ i (Kr / Kr−1), H′ i (Kr), and H″ i (Kr−1), denote the images of ∂i−1 , ϕi , and 
I i , respectively. 
 We now propose to exhibit some consequences of those relations. 
 
 
 8.4.3. A general formula. – With some obvious notations, the exact sequence in 4.2 
will give the following relations between the Betti numbers: 
 
 a. 1( ) ( )i r i rp K p K −′ ′′+ = pi (Kr) , 
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(1) b. 1( / ) ( )i r r i rp K K p K−′ ′′+ = pi (Kr / Kr−1) , 

 
 c. 1 1 1( / ) ( )i r r i rp K K p K+ − −′ ′′+ = pi (Kr−1) , 

 
from which, it results that: 
 

pi (Kr / Kr−1) + pi (Kr−1) − pi (Kr) = pi (Kr / Kr−1) + pi+1 (Kr / Kr−1) ≥ 0. 
 
Upon adding corresponding sides of the preceding n inequalities that are obtained by 
varying r from n to 0, one can write (taking the preceding paragraphs into account): 
 

(2)     1 ( ) 0.i i i nN N p V−+ − ≥  

 
Obviously, one has the analogous relation between the Betti numbers (mod 2): 
 

Ni + Ni−1 – bi (Vn) ≥ 0. 
 
These inequalities have a striking analogy with the inequalities of M. Morse, which are 
concerned with the distribution of critical points of a numerical function (cf., 8.5.2). 
 
 
 8.4.4. Particular case in which Vn is a homology sphere: 
 
 Lemma 1: 
 
 If pq (Kr) = 0 for 1 ≤ q < r (r fixed), and if pr (Kr) ≠ 0 then pr−2 (Kr−2) ≠ 0 and pr−2(Kr−2) 
= 0 when 1 ≤ q – 2 < r – 2 . 
 
 Proof: 
 
 Indeed, it results from formulas (2) of 4.3 that: 
 

pq−2 (Kr−1) = 1 1 2 1( / ) ( )q r r q rp K K p K− − − −′ ′′+    [cf., (c.)]. 

Now: 
pq−1 (Kr / Kr−1) = 0  if q – 1 < r – 1 

and: 

2 1( )q rp K− −′′  = pq−2 (Kr) − 1( )q rp K−′  = 0 if 3 ≤ q < r 

Hence: 
pq−2 (Kr−1) = 0. 

One likewise shows that: 
 

pq−2 (Kr−2) = 0  if 1 ≤ q – 2 < r – 2 . 
 
Now, suppose that pr−2 (Kr−2)  = 0.  It will result from (1). c. that: 
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1 1( / )r r rp K K− −′ = 0, 

and as a result: 

1( )r rp K−′ = 1 1( / )r r rp K K− −  = Nr−1 , 

 
but 1( )r rp K− = 0, by hypothesis, so Nr−1 = 1 1( / )r r rp K K− − = 0. 

 Now, 1 1( / )r r rp K K− − = 1( / )r r rp K K − , so another application of (1).b will give ( )r rp K′  

= 0, but from (1).c, 1( )r rp K −′′ = 1( )r rp K − , but dim (Kr−1) ≤ r – 1, so 1( )r rp K −  = 0, and due 

to (1).a, one will arrive at a contradiction; thus: 
 

( )r rp K = 0. 

 Consequence of Lemma 1: 
 
 If Vn is a homology sphere (n odd) then the Betti numbers: 
 

pn (Vn), pn−2 (Kn−2), …, pn−2q (Kn−2q), …, p1 (K1) 
 

will all be non-zero. 
 Now, (2) shows that if pr (Vr) ≠ 0 then ( )r rp K′ ≠ 0, and it will result from (1).b that 

pr(Kr / Kr−1) ≠ 0 . 
 
 Theorem 1: 
 
 If Vn is a homology sphere, and if (Vn , E) is a P.D.S. then the numbers Nr with odd 
index r will be non-zero. [In other words, there exists at least one closed trajectory that 
has a given even character, i (i ≤ n – 1).] 
 
 Corollary:  
 
 If Vn is a homology sphere, and if (Vn , E) is a P.D.S. then the number of closed 
trajectories will be greater than or equal to (n + 1) / 2. 
 
 The same method will permit one to prove the following property (which we shall 
state without proof): 
 
 Theorem 2: 
 
 If Vn is a three-dimensional (homology) sphere, and if (V3 , E) is a P.D.S. then: 
 

2 1 0 2.N N N− + =  
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 8.5. Remarks on the nature and distribution of the trajectories of a dynamical 
system. – 
 
 8.5.1. Remarks on hypotheses (a.) and (b.) in 1.1. – One will be led naturally to 
consider dynamical systems that verify hypotheses (a.) and (b.) in 1.1.  However, it is 
appropriate to point out the following reservation: The hypothesis that was made about 
the qualitative behavior of the neighboring trajectories to a closed trajectory is neither 
natural nor consistent with the properties of the integral curves of a vector field.  
However, if we suppose that the characteristic exponents of a trajectory Ci are all distinct 
and have non-zero real parts then it will be possible to replace the field E with a field E′ 
that verifies the following properties: 
 
 1. – Ci is a trajectory of E′ and the characteristic exponents of Ci that relate to E′ are 
the same as the characteristic exponents that relate to E. 
 
 2. – The fields E and E are identical, except in every small neighborhood of Ci . 
 
 That remark justifies the consideration of P.D.S.’s.  Finally, we point out that the 
results of 4.4 are “stable.” 
 
 8.5.2. Another class of dynamical systems. – Basically, we know some dynamical 
systems that are even simpler, and in a certain sense more interesting, than the P.D.S.’s. 
 They amount to the dynamical systems (Vn , E) that verify the following properties: 
 
 1. – The field E admits a finite number of singular points (which have characteristic 
exponents that are all distinct and have non-zero real parts). 
 
 2. – All of the trajectories of E converge to a singularity of E. 
 
 One can study such dynamical systems by some procedures that are analogous to the 
ones that we just studied.  Such a study is virtually carried out in [49] by Thom.  Thom’s 
results completely clarify the analogies with the M. Morse’s theory of critical points. 
 
 8.5.3. On a general problem. – We remark that the preceding study shows that a 
dynamical system (Vn , E) (where Vn is compact) that does not admit “enough” periodic 
motions will admit certain stable motions, à la Poisson, of a type that is more 
complicated than the periodic motions.  That is why we consider the preceding study to 
be a first step into the study of a general problem that can, in our opinion, be stated in a 
tractable form in the following manner: 
 Consider a dynamical system (Vn , E) with indeterminacy [24a].  One then studies the 
relations between the topology of Vn and the distribution and nature of the “stable states” 
of the dynamical system envisioned. 
 

____________ 



REMARKS ADDED DURING  
CORRECTION OF THE PROOFS 

 
 

 1. The article [53], which we were just informed about, treats some questions that 
are close to the ones that are examined in Chapter VIII. 
 
 2. It is appropriate to add the following hypothesis to Hypotheses (a.) and (b.) of 
8.1.1: Vn is orientable.  Indeed, if Vn were not orientable then the statements of 8.2.1 
might break down.  It is nonetheless clear that the study in Chapter VIII can be extended 
to non-orientable manifolds. 
 
 3. The statement that was made at the end of 8.2.2 that would make Lr be open in 
Kr+1 is not exact.  However, the only case in which Lr cannot be an open subset of Kr+1 is 
the one in which there exist trajectories of E that tend to closed trajectories that are 
neither stable nor unstable when t  → + ∞ and t → − ∞ .  Now, the latter situation is 
highly exceptional, and it would then be legitimate to discard it by way of a 
supplementary hypothesis. 
 Indeed, in order to give a correct proof of the results of Chapter VIII, it would suffice 
to make the following very simple modification: Replace the sets Lr with the sets that are 
obtained by removing the closed trajectories that are contained in Lr .  The vexations that 
were pointed out above (e.g., Lr is not an open subset of Kr+1) would no longer be 
produced; on the other hand, the proofs would mimic the ones that were made exactly. 
 

___________ 
 

 
 
 


