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Introduction. 

 

 The significance of the calculus of variation for the various domains of mathematics has 

emerged ever more clearly in recent times. Hilbert has discovered the connection between the 

theories of differential equations, integral equations, and the calculus of variations (*) and 

emphasized that the last of those theories is a more general discipline than the first one. 

 Hilbert had resolved the question of the existence of eigenvalues and eigenfunctions of a self-

adjoint second differential equation that contains a parameter by means of his new theory of linear 

integral equations in general. The Sturm-Liouville theory of the oscillatory properties of an 

ordinary differential equation of that kind, which Bôcher (**) gave a rigorous basis for in recent 

times, plays a very important tole in applied mathematics and has been revised quite a bit. One can 

consider such a differential equation to be a Lagrange equation for a certain variational problem 

with a certain quadratic auxiliary condition or with the same quadratic condition and a certain 

linear auxiliary condition. 

 However, the questions of the necessary and sufficient conditions for the occurrence of a 

minimum for that variational problem have not been sufficiently clarified. In particular, the Jacobi 

criterion and its meaning for the problem have still not been represented in a consistent way (***). 

The goal of the present article is to fill in that gap, and in particular, to exhibit the connection 

between the Jacobi criterion and the oscillatory properties of the solutions of the differential 

equation. 

 § 1 contains the formulation of the minimization problem and an overview of the tools from 

the theory of integral equations that are necessary. In § 2, we shall use Hilbert’s theory of integral 

equations to prove that a solution of the variational problem exists. In § 3, we will represent the 

 
 (*) “Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen,” Göttinger Nachrichten, first and 

second communication in 1904, fourth and fifth communication in 1906. 

 (**) Translations of the American Mathematical Society, vol. 1, no. 4, pp. 414-420. 

 (***) The dissertation of Robert König (Göttingen 1907), which treated the same topic, contains some incorrect 

conclusions. 
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extremals of our variational problem explicitly, in order to derive the oscillatory properties of the 

eigenfunctions of our differential equation from the Jacobi criterion in §§ 4-6. In § 7, we will give 

a method for developing the Jacobi determinant of our problem into a Taylor series and in that 

way prove certain facts that will be used in §§ 4-6. 

 I hope to examine the corresponding problem for two differential equations with two 

parameters in a second communication. I am fulfilling a pleasant duty by expressing my thanks to 

Herrn Professor Hilbert at this point, at whose encouragement I undertook this work. 

 

 

§ 1. – Statement of the minimization problem. 

 

 Let p be a function of x that is analytic inside of the interval from x = 0 to x = 1, and that proves 

to be positive inside that interval, moreover. Furthermore, let q be any function of x that is analytic 

and nowhere-positive on that interval. The integral: 

 

(1)     D (u) = 

21

2

0

( ) ( ) ( )
du

p x q x u x dx
dx

   
−  

   
  

 

will certainly take on nowhere-negative values then. One must now determine that continuously-

differentiable function u of x that satisfies the boundary conditions: 

 

(2)      u (0) = 0 , u (1) = 0 

 

and makes D (u) a minimum, while the quadratic auxiliary condition: 

 

(3)  

1

2

0

( ) ( )k x u x dx  = 1 

 

is fulfilled, in which we would like to assume that k (x) is a function of x that is likewise analytic 

in the entire interval including the boundary points. The calculus of variations then teaches us that 

the desired minimal function (whose existence will be proved in § 2) must satisfy the Lagrange 

second-order differential equation: 

(4)  L1 (u) = 
( )d pu

dx


 + q u +  k u = 0 . 

 

 We infer the following facts from Hilbert’s theory of integral equations: If k (x) is an 

everywhere-nonnegative function on the interval 0  x  1 then there will be infinitely many 

positive parameter values  = 1, 2, … that accumulate merely at infinity, namely, the so-called 

eigenvalues, for which the equation L1 (u) = 0 will possess one and only one solution U1 (x), U2(x), 

… that satisfies the conditions (2) and (3). When k (x) is not positive in the interval, we must pose 

the auxiliary condition: 
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(5)  

1

2

0

( )k x u dx  = − 1 , 

 

instead of (3). There will then be infinitely-many negative simple eigenvalues with the 

corresponding solution of the same equation (4). If k (x) changes its sign then there will be 

infinitely-many positive and infinitely-many negative simple eigenvalues 1, 2, …; −1, −2, …, 

for which L1 (u) = 0 possess solutions U1 (x), U2 (x), …; U−1 (x), U−2 (x), … that each satisfy the 

conditions (2) and (3) [(5), resp.]. Those solutions are called the eigenfunctions of the equation 

L1(u) = 0. 

 If we understand the kernel K (x, ) to mean the Green function of the self-adjoint second-

order differential expression: 

L (u) = 
( )d pu

dx


 + q u 

multiplied by k (x)  k () then we will have: 

 

(6)  k (x) u (x) = 

1

0

( , ) ( )K x u d     . 

 

That equation will be an orthogonal or polar integral equation according to whether k (x) has the 

same sign over the entire interval or not, resp. From Hilbert’s existence theorem on orthogonal 

(polar, resp.) integral equations, there are infinitely many parameter values 1, 2, … (1, 2, …; 

−1, −2, …, resp.) for which equation (6) has the solutions U1 (x), U2 (x), … [U1 (x), U2 (x), …; 

U−1 (x), U−2 (x), …, resp.], and those simple eigenvalues and eigenfunctions coincide precisely 

with those of the differential equation (4). 

 In § 2, we will show that when k (x)  0, the minimum of D (u) exists under the boundary 

conditions (2) and the auxiliary condition (3) and is equal to the first eigenvalue 1 of the Lagrange 

equation (4) or the integral equation (6). When k (x)  0, − −1 will be the minimum of D (u) under 

the conditions (2) and (5). However, when k (u) has both signs in the interval, either 1 or − −1 

will prove to be a minimum of D (u) according to whether the condition (3) or (5), resp., was 

posed. 

 If we modify our variational problem in such a way that we impose the linear auxiliary 

equation: 

(7)    

1

1

0

( ) ( ) ( )k x U x u x dx  = 0 , 

1

1

0

( ) ( ) ( )k x U x u x dx−  = 0 , resp., 

 

on the desired function u (x), in in addition to the quadratic auxiliary condition (3) or (5), where 

U1 (x) [U−1 (x), resp.] is the solution of the previous problem, then we will be led to the new 

Lagrange equation: 

L2 (u) = 
( )d pu

dx


 + q u +  k u +  k U1 = 0 . 
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We will show (§ 2) that a minimal function U2 (x) [U−2 (x), resp.] likewise exists in this case. It is 

clear that it is not equal to U1 (x) [U−1 (x), resp.], since such a solution cannot satisfy the two 

conditions (3) [(5) and (7), resp.]. As we will see (§ 3), moreover, the Lagrange factor m must be 

taken to be zero, and our minimal function will also be a solution to equation (4) then. In § 2, we 

will show that the minimal value of the integral D (U2) [D (U−2), resp.] is 2 (−2, resp.). 

 If we add even more linear auxiliary conditions: 

 

(8)    

1 1

2 2

0 0

1 1

0 0

0, 0, resp.,

....................... ....................... ........

0, 0, resp.,n n

kU u dx kU u dx

kU u dx kU u dx

−

−


= =





 = =


 

 

 

 

then that will imply that all of the associated Lagrange factors are equal to zero, and we will get 

the eigenfunctions Un+1 (U−n−1, resp.) of the differential equation (4) as solutions to the variational 

problem and n+1 (−n−1, resp.) as the minimal values. Due to the auxiliary condition (3), (5), (7), 

(8), the eigenfunctions will possess either orthogonality properties or polarity properties. Every 

four-times-differentiable function that fulfills certain conditions at the boundary points 0, 1 and 

the zeroes of k can be developed into a series of those successive eigenfunctions. 

 Obviously, we can restrict ourselves to the treatment of a series of positive eigenvalues 1, 2, 

…, since will arrive at positive eigenvalues again in the case of negative eigenvalues by the 

transformation k (x) = − h (x). 

 

 

§ 2. – Proof of the existence of a minimum. 

 

 We will now prove that our minimal problem (§ 1) actually has a solution by means of Hilbert’s 

theory of integral equations. 

 

 Theorem 1: 

 

 The integral: 

D (u) = 

1

2 2

0

( )pu qu dx −  

 

possesses a smallest value n when u (x) is a continuous function that satisfies the conditions: 
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(9)   

1

2

0

1 1 1

1 2 1

0 0 0

(0) (1) 0,

( ) 1,

0, 0, 0.n

u u

k x u dx

kU u dx kU u dx kU u dx−




= =



=


 = = =




  

 

 

It will be assumed for u (x) =  Un (x) . 

 

 The solutions u (x) = U1 (x), U−1 (x), U2 (x), U−2 (x), … to the integral equation (6) in § 1 satisfy 

the polarity properties: 

 

(10)   

1

0

1 1

2 2

0 0

( ) 0,

( ) 1, ( ) 1, 1, 2,3,

p q

n n

k x U U p q

k x U k x U n−


= 



 = = − =





 

 

 

They will also satisfy the differential equations: 

 

(11)  L (Ui) + i k (x) Ui  ( ) ( )i i ipU qU k x U  + +  = 0 , i = 1, 2, …; − 1, − 2, … 

 

 We would now like to develop u (x) in the eigenfunctions U1 , U−1 , U2 , U−2 , … (*). 

 

u (x) = c1 U1 (x) + c−1 U−1 (x) + c2 U2 (x) + c−2 U−2 (x) + …, 

 

ci = 

1

0

( ) ik x U u dx , i = 1, 2, 3, …; − 1, − 2, − 3, … 

 

When one recalls (9), one will then have: 

 

(12)  u (x) = cn Un (x) + cn+1 Un+1 (x) + … + c−1 U−1 (x) + c−2 U−2 (x) + …, 

 

and therefore, from (9) and (10): 

 

 
 (*) As one easily convinces oneself, that process is permissible, since one can regularly approximate every arbitrary 

continuously-differentiable function, along with its derivative, by functions that admit a development into a series in 

the successive twice-differentiable eigenfunctions U1 , U−1 , U2 , U−2 , …  
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(13)   1 = 

1

2

0

k u dx  = 2 2 2 2

1 1 2n nc c c c+ − −+ + − − −  

 

From (12) and (11), that will give: 

 

L (u) = − cn n k Un − cn+1 n+1 k Un+1 − … − c− − k U− − c−2 −2 k U2  − … 

 

and since: 

D (u) = − 

1

0

[( ) ]u pu qu dx +  = 

1

0

( )u L u dx , 

one will have: 

 

(14) D (u) = 2 2 2 2

1 1 1 1 2 2n n n nc c c c   + + − − − −+ + − − −  

 

If we multiply equation (13) by n and subtract it from (14) then we will get: 

 

D (u) − n = 2 2 2 2

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )n n n n n n n nc c c c       + + + + − − − −− + − + + − + − +  

 

We remark that … > 3 > 2 > 1 > 0 > − > − > …, so every term on the right-hand side will 

be positive or zero. Hence, D (u) will be a minimum when cn = 1, cn+1 = cn+2 = … = c−1 = c−2 = … 

= 0. u (x) = Un (x) will then be the desired solution to the variational problem, and n will be the 

minimal value. 

 When we replace the quadratic auxiliary condition (3) with the condition (5), we will find the 

minimal value − −n in just the same way and the solution u (x) = U−n (x) to the variational problem. 

 

 

§ 3. – The Lagrange equations and their solutions. 

 

 Since the treatment of the Lagrange equation for the problem with one quadratic auxiliary 

condition alone is very simple, here we will exhibit the equations for the problem with the 

quadratic auxiliary condition and one linear one. The cases of several linear auxiliary conditions 

yield nothing essentially new. 

 If we set: 

v1 (x) = 
2

0

( ) ( )

x

k x u x dx , v2 (x) = 1

0

( ) ( ) ( )

x

k x u x U x dx , 

 

where U1 (x) is the solution to the problem with only the quadratic auxiliary condition, then we 

can explain our variational problem geometrically as follows: We must look for a space curve u = 

u (x), v1 = v1 (x), v2 = v2 (x) in four-dimensional x u v1 v2-space that connects the points: 
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x = 0, u = 0, v1 = 0, v2 = 0 and x = 1, u = 0, v1 = 1, v2 = 0 

 

that makes the integral: 

D (u) = 

1

2 2

0

( )pu qu dx −  [p (x) > 0, q (x)  0] 

 

a minimum, while the auxiliary conditions: 

 
2

1 ( ) ( ) ( )v x k x u x −  = 0 , 2 1( ) ( ) ( ) ( )v x k x u x U x −  = 0 

are fulfilled. 

 Upon composing it with the Lagrange factors: 

 

 =  (x) , 2 = 2 (x) , 

 

our relative minimum problem will go to the following absolute minimum problem: 

 

(15)   

1

2 2 2

1 2 1

0

[ ( ) 2 ( )]pu qu v k u v k uU dx   − + − + −  = min. 

 

with the same boundary conditions. The Lagrange equations arise from (15): 

 

(16)    1( ) ( )pu q k u kU   + + +  = 0 , 

 

(17) 2

1v k u −  = 0 , 2 1v k uU −  = 0 . 

 

 If we consider the homogeneous equation that corresponds to (16): 

 

(18)    L1 (u) = ( ) ( )pu q k u  + +  = 0 

 

then we will see that arises from the same variational problem with only one (viz., the quadratic) 

auxiliary condition. However, the solution to that equation is U1 (x), and the corresponding value 

of  is 1 . A solution of the inhomogeneous equation (16) that satisfies the boundary conditions 

is then − 1

1

( )U x

 −
, as one will convince oneself by substitution. 

 The three Lagrange equations (16), (17) yield a six-parameter family of extremals: 

 

  u =  u1 (x1 ) +  u2 (x ) − 1

1

( )U x

 −
, 
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  v1 = 

2

1
1 2

10

( )

x
U

k x u u dx


 
 

 
+ − 

− 
 +  , 

  v2 = 1
1 1 2

10

( )

x
U

k x U u u dx


 
 

 
+ − 

− 
 +  , 

 

in which u1, u2 are two linearly-independent particular solutions of the homogeneous equation (18) 

that do not vanish in the entire interval 0, 1.  (x),  (x) are constant on each of those curves of that 

family (however, the values are not the same on two different curves). 

 If we establish, for the sake of simplicity, that the particular solution u1 (x) vanishes at the point 

x = 0 and pose the initial conditions v1 (0) = 0, v2 (0) = 0 then we select the following three-

parameter family that emanate from the starting point from the six-parameter , , , , ,  family 

of extremals: 

(19) 

1
1

1

2

1
1 1

10

1
2 1 1

10

( )
( , ) ,

( )
( ) ,

( ) .

x

x

U x
u u x

U x
v k x u dx

U
v k x U u dx


 

 




 




 


= −

−

  

= −  
− 

  
 = − 
 − 





 

 

 Any two solutions U1 (x), u1 (x) of the homogeneous equation (18) that satisfy the boundary 

conditions and correspond to two different parameter values 1, 2 satisfy the condition: 

 

(20)      

1

1 1

0

( ) ( ) ( )k x U x u x dx  = 0 . 

Namely, if we multiply: 

  1( )pU    + (q + 1 k) U1  = 0 , 

  1( )p u   + (q + 2 k) u1  = 0 

 

by u1 (U1, resp.), subtract, and integrate then we will get: 

 
1

2 1 1 1

0

( ) ( )k x U u dx −   = 

1

1 1 1 1

0

( )pU u pU u dx  −  = 1

1 1 1 1 0[ ]pU u pU u −  . 

 

Due to the boundary conditions, (20) is therefore proved. 

 We can now show that  = 0 for the solution u (x) = U2 (x) of our variational problem. Namely, 

as a result of the last equations (19) and (20), we have: 
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0 = v2 (1) = − 

1

2

1

1 0

kU dx


 −  . 

 

Since the integral is non-zero, it will follow that  = 0 for our extremal. 

 The extremal family for the problem with two auxiliary condition is thus posed. The method 

will remain the same when a third, fourth, … auxiliary condition is added. For example, when we 

demand that the desired minimal function must fulfill the auxiliary condition: 

 
1

2

0

( ) ( )U x u x dx  = 0 , 

 

along with the previous two conditions, the extremal family though the origin of the corresponding 

five-dimensional space will become: 

 

(21)   

1 2
1

1 1

1 2
1 1

1 1

1 2
2 1 1

1 10

1 2
3 2 1

1 10

( ) ( )
( , ) ,

( ) ( )
( , ) ,

( ) ,

( ) ,

x

x

U x U x
u u x

U x U x
v u x

U U
v k x U u dx

U U
v k x U u dx

 
 

   

 
 

   

 


   

 


   


= − − − −




= − − − −



 
 = − − 
 − − 


 
= − −  − − 





 

 

in which u1 is a particular solution of the differential equation (18). It can be shown, analogous to 

the above, that  =  = 0 on the desired curve u (x) = U3 (x) (but not on all curves of the family) 

(*). 

 

 

 

 

 

 
 (*) Exhibiting the Weierstrass criterion does not differ essentially from the case of a problem without auxiliary 

conditions. In fact, since the part 2

1 2 1( ) ( )v k u v k uU  − + −  of the integral (15) does not include the derivative ,u  

the form of the Weierstrass E-functions will be no different than the E-function for the problem without auxiliary 

conditions. One can easily show by means of the Hilbert independence theorem that in the case of n auxiliary 

conditions: 

E (x, u, v1, v2, …;  , , …) = 2( )p u −P , 

 

in which P denotes the Hilbert field function. Due to the positive sign on p, one will always have E  0 then, and the 

Weierstrass condition will then be fulfilled. 
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§ 4. – The Jacobi criterion for the case of one auxiliary condition. 
1

2

0

( )k x u dx  = 1 . 

 

 Let the function U1 (x) = u (x) = 1 u1 (x, ) be the solution to our variational problem (§ 1) 

with the quadratic auxiliary condition. In § 2, we proved that a minimum actually exists. It follows 

from this that our function U1 fulfills the Jacobi criterion. We will now exhibit the Jacobi criterion 

explicitly and use it to prove that the function U1 does not oscillate in the interval 0, 1. 

 We assume that the particular solution u1 (x) of the Lagrange equation at the point x = 0 has a 

positive derivative. For instance, let: 

(22) 1

0x

du

dx =

 
 
 

=  . 

 

That is by no means a restriction on the generality of the problem, since the value 1 (0)u  = 0 is 

excluded, because the only solution to the differential equation (18) with the boundary conditions 

u (0) = 0, 1 (0)u  = 0 is u (x)  0. 

 Expressed geometrically, the Jacobi condition demands that one and only one extremal of the 

two-parameter family that begins at the initial point (*): 

 

(23)     

1

2 2

1 1

0

( , ) ,

( )

x

u u x

v k x u dx

 



=



=



 

 

can go through each point of a certain neighborhood of our extremal. That is, for no value x > 0 in 

the interval 0, 1 can the two equations: 

 

u1 (x, 1)  + 1 1
1

( , )u x 
 






 = 0 , 

 

2 2 1
1 1 1 1

0 0

( ) ( )

x x
u

k x u dx k x u dx   


   
+   

   
   = 0 

 

 
(*) Naturally, for the case of one auxiliary condition, the family above will enter in place of (19). 
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be fulfilled simultaneously, where 1 and 1 mean the values of the parameter for the curve u = 

U1(x), v1 = 
2

1

0

x

kU dx , and ,  are constants that lie below certain limits. If there is a point X > 

0 – namely, a so-called “conjugate point” to the starting point x = 0 – where those equations are 

true simultaneously then that value will be a zero of the determinant D1 (x, 1), where: 

 

(24) D1 (x, 1) =  

1
1

2 1
1 1

0 0

( , )
( , )

( , )
( ) ( , ) ( ) ( , )

x x

u x
u x

u x
k x u x dx k x u x dx







 









 

 . 

 

The Jacobi criterion demands that the first zero (beside the point x = 0) of the determinant D1 (x, 

1) does not lie in the interval 0, 1. It would then follow from this that the function u1 (x), and 

therefore the function U1 (x) = 1 u1 (x) does not oscillate in the interval. 

 The discussion of the determinant D1 (x, 1) demands that one must know something about the 

sign of the function u1 (x, ) / ; the following two theorems will give us information about that: 

 

 Theorem 2: 

 

 If a is a zero of the solution u (x) of the differential equation: 

  

(25)  ( ( ))pu x   + q u (x) +  k (x) u (x) = 0  [p (x) > 0 , q (x)  0,  > 0] 

 

and a1 > a is a second zero of u (x) or a zero of ( )u x  then one will have: 

 
1

2

0

( ) ( )

a

k u u x dx  > 0 . 

 Proof: 

 

 If we multiply (25) by u and then integrate then we will have (*): 

 
1

2

a

a

k u dx   = −
1

2{( ) }

a

a

pu u qu dx  +  =
1

12 2{ } [ ]

a

a

a

a

pu qu dx pu u − −  = 
1

2 2[ ]

a

a

pu qu dx − , 

 

and since 
2 2pu qu −  > 0, the theorem is proved. 

 

 (*) One can easily confirm from this that the integral D (u) (§ 2) actually has the value 1, since 
1

2

1

0

kU dx  is equal 

to 1. 



Richardson – The Jacobi criterion and the oscillatory properties of 2-O. PDE’s. 12 
 

 Theorem 3: 

 

 Let u (x, ), ( , )u x    be two solutions to the differential equation: 

 

( )pu   + q u +  k (x) u = 0  [p (x) > 0, q (x)  0] 

 

that satisfy the initial conditions u (0) = 0, (0)u  = 0 and belong to the parameter values ,   , 

resp. If one then has    >  > 0 then the second, third, … zero of u  will lie before the second 

(third, …, resp.) zero of u (*). 

 

 Proof: 

 

 It is only necessary to show that when  
 =  +  ( > 0 is arbitrarily small). If we multiply: 

 

  ( )pu   + q u +      k (x) u = 0 , 

( ) [ ]pu qu k u     + + +  = 0 

 

by u
 (u, resp.), subtract, and integrate from 0 to any zero  of u then we will get: 

 

( ) ( ) ( )p u u    = 
0

k uu dx



 

  . 

 

Since the solution to the differential equation is a continuous function of , we can express that as 

follows: 

( ) ( ) ( )p u u    = 2

0

k u dx



 
 

+ 
 
  , 

 

in which   is an infinitesimal quantity of the same order as . We can then conclude from 

Theorem 2 that ( ) ( )u u    > 0 . If  = a1 is the first zero of u then 1 1( )u a  < 0 and therefore 

1( )u a  < 0. However, since u
 is positive in the neighborhood of the point x = 0, the zero of u

 

must fall between 0 and a1 . When  = a2 is the second zero of u, we will have 2( )u   > 0 and 

therefore 
2( )u   > 0. However, since 

1( )u a  < 0, the second zero of u
 must lie between a1 and 

a2, and in general, the nth zero of u
 will lie before the nth root of u. 

 We now consider the zeros of u1 on the positive real axis (x > 0), a1 > 0, a2, a3, … Obviously, 

1 1( )u a  < 0, 1 2( )u a  > 0, 1 3( )u a  < 0, and so on. Now: 

 

 
 (*) That fact is well-known for the case of k (x)  0. 
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D1 (a1, ) = − 
1

1

21
1

0

a

x a

u
k u dx

 =

 
 

 
 . 

 

The first factor is negative, which would follow from Theorem 3; the second factor is positive 

(Theorem 2), and therefore D1 (a1, ) > 0. It can be shown in the same way that D1 (a2, ) < 0, D1 

(a3, ) < 0, and so on. The continuous function D1 (x, ) must then have zeroes between a1 and a2, 

between a2 and a3, and so on. However, since D1 (x, ) has no zero in the interval 0, 1, one must 

have a1 = 1, and the function U1 will not oscillate in the interval. 

 It is useful to examine how the curve u1 (x, ) lies in relation to a neighboring curve with the 

parameter  +  that differs by the small positive quantity . In order to have a simple picture 

in mind, we indicate the particular solution of the differential equation (18) by u1 (x, ), as below. 

Since all curves of the one-parameter family u1 (x, ) start from the point x = 0, we have 1

0x

u

 =

 
 

 
 

= 0. We now assert that: 

1

0x

u

 =

 
 

 
 = 1

0x

u


=

    
  

 

 

 

is always positive. In order to prove that it cannot be zero, it is only necessary to derive the relation: 

 

(26)    
u u u

p q k k u
  

   
+ + + 

   
 = 0 

 

from equation (18) by differentiation with respect to  and to remark that when we have: 

 

1

0x

u

 =

 
 

 
 = 0 ,  1

0x

u

 =

 
 

 
 = 0 , 

we must also have: 

1

0x

u

 =

 
 

 
 = 0 . 

We conclude analogously that: 

1

0x

u

 =

 
 

 
 = 0 ,  

 

and so on, such that it would follow that u1 /   0. However, it is impossible for the solutions 

to the differential equation (18) to coincide for two different parameter values ,  +  (Theorem 

3), and therefore 1

0x

u

 =

 
 

 
 is nowhere zero. The solution is zero over the entire interval for the 
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parameter  = 0; the solution is positive for  > 0. The function 1

0x

u

 =

 
 

 
, which is continuous in 

, is then positive for at least one value , and since it cannot be zero anywhere, it must always be 

positive. 

 
 We can now say something about the relative position of the curve u1 (x, ) and the neighboring 

curve u1 (x,  + ) that is sketched in the figure. The curve u1 (x,  + ) leaves u1 (x, ) with a 

steep tangent at the starting point and runs (Theorem 3) beneath that curve at the first zero a1, 

above it at the second one a2, beneath it at the third a3, and so on. As a result, the two curves must 

meet at least once in each subinterval 0a1, a1 a2, a2 a3, and so on. 

 When k (x)  0, we can show that they meet only once in each subinterval. Namely, if we 

multiply (18), (26): 

( )pu   + q u +  k u = 0 , 

 

u u u
p q k k u

  

   
+ + + 

   
 = 0 

 

by u /  (− u, resp.), add them and integrate then we will get: 

 

(27) 
2

0

x

k u dx  = 
u u

p u u
 

  
 − 
  

 . 

 

At the point of the subinterval 0, a1 where the curves meet, we have u /  = 0, u > 0, and therefore 

/u    < 0. That is, the neighboring curve always intersects from above to below. Obviously, the 

curve will meet only once in the interval 0, a1 then. We show, in the same way, that the curves 

intersect only once in the other subintervals. 

 One easily sees that the zeroes (*) of the functions u, u /  can never coincide from (27) and 

Theorem 2. 

 We can now also say something about the course of the function D1 (x, ). From (24), we have: 

 

1 ( , )D x   = 1dD

dx
 = 

1 1
1 1

2 21 1
1 1 1 1

0 0

( ) ( )( ) ( )

x x

u x u xu x u x

u u
k u dx k u dx k u k u

 

 

 
 

+
 

 
 

 = 

1
1

2 1
1 1

0 0

( )
( )

x x

u x
u x

u
k u dx k u dx












 

 , 

 
 (*) Here, as in what follows, we will speak of only the zeroes that are different from x = 0. 

u1 (x, ) 

0 a1 a2 a3 
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1 1 1 1D u D u −  = 

1 1
1 1

1 1
2 21 1
1 1 1 1

0 0 0 0

( ) ( )
( ) ( )

x x x x

u x u x
u x u x

u u
u u

k u dx k u dx k u dx k u dx

 

 

 


 
−

 

    

 

 

= 
21 1

1 1 1

0

( )
( ) ( ) ( )

x
u x u

u x u x k u x dx
 

  
 −   

 . 

From (27), one then has: 

1

1

Dd

dx u

 
 
 

 = 1 1 1 1

2

1

D u D u

u

 −
 = 

2

2

1

0

2

1( )

x

k u dx

p x u

 
 
 


  0 . 

 

The function D1 / u1 is always non-decreasing then and will become infinite at the points a1, a2, 

a3, …, which are the zeroes of u1 for x > 0, because: 

 

D1 (ai , ) = 21
1

0

( ) ia

iu a
k u dx





   

 

is always non-zero at those points. D1 has at least one six-fold zero (see § 7) at the point x = 0, and 

therefore D1/u1 will have the value zero. D1 / u1 assumes all values between 0 and +  between 0 

and a1, and D1 / u1 assumes all values between –  and +  between a1 and a2, a2 and a3, and so 

on. Therefore, S1 will have a zero in every subinterval a1 a2, a2 a3, … 

 In the same way, it follows from the fact that: 

 

1

1

ud

dx D

 
 
 

 = − 

2

2

1

0

2

1( )

x

k u dx

p x D

 
 
 


 0 

 

that u1 / D1 will assume all values from –  to +  between two zeroes of D1, and therefore u1 will 

assume the value zero. Since u1 and D1 are both positive in the vicinity of the starting point x = 0, 

one will have: 

1

1 0x

u

D
=

 
 
 

 =  , 

 

and u1 must vanish between 0 and the first zero of D1. 
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 Theorem 4: 

 

 The zeroes of the functions u1 (x, ), D1 (x, ), which vanish at the starting point, separate each 

other, and the first zero of u1 (x, ) lies before the first zero of D1 (x, ) . 

 

 

§ 5. – The Jacobi criterion for the case of two auxiliary conditions. 
1

2

0

( )k x u dx  = 1 , 

1

1

0

( )k x U u dx = 0 . 

 

 One sees immediately from the form of the auxiliary conditions that u = U1 is not a solution to 

the problem. The minimum value 2 of the integral D (u) is therefore greater than 1 now, and as 

a result, from Theorem 3, the minimal function u (x) = U2 (x) must vanish at least once in the 

interval 0, 1. From Theorem 4, the determinant D1 (x, ) will then have at least one zero in the 

interval. We will show that is has only one, and that U2 (x) cannot vanish twice then. In other 

words: We will show that the Jacobi criterion demands that the minimal function U2(x) must be a 

function that oscillates once in the interval 0, 1 in this case. 

 In § 3, we exhibited the three-parameter family of extremals (19) in which the solution of our 

variational problem is included for certain parameter values  = 2,  = 2,  = 0 (*). The projection 

of that curve in four-dimensional space onto the (xu)-plane is the curve U2 (x). The Jacobi criterion 

demands that our space curve must not meet any of its neighboring curves of the family (19) in the 

interval 0 < x < 1. If we consider that  = 0 then we will easily see that this requirement is 

equivalent to the one that the three equations: 

 

  1 2 1
1 2 2

2 1

( , ) ( )
{ ( , )}

u x U x
u x


    

  

  
+ −   

 −   
 = 0 ,  

 

2 2 1 2
2 1 2 1 1 1

2 10 0 0

2
2 2

x x x
u

k u dx k u dx k u U dx
 

   
  


+ −

 −    = 0 , 

 

  21
1 1 2 1 1

2 10 0 0

x x x
u

k u U dx k u dx kU dx


  
  


+ −

 −    = 0   

 

cannot be satisfied by three constant quantities , ,  for any value x in the interval 0, 1. After 

one neglects the constant factor be − 
2

2

1

2

 −
, the Jacobi determinant will then be: 

 

 
 (*) Naturally, the function u1 that appears there should probably be distinguished from the one that was considered 

in the previous section. 
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(28)   D2 (x, ) = 

1
1 1

2 1
1 1 1 1

0 0 0

21
1 1 1 1

0 0 0

( , )
( , ) ( )

x x x

x x x

u x
u x U x

u
k u dx k u dx k u U dx

u
kU u dx kU dx kU dx






















  

  

 . 

 

The Jacobi criterion demands that the first zero (beyond the point x = 0) of the determinant D2 (x, 

) must not lie in the interval 0, 1. 

 Due to the boundary and auxiliary conditions, one has: 

 

D2 (1, ) = − 21
1

1 0

x

x

u
k u dx

 =

 
 

 
 . 

 

If the function u1 has an even (odd, resp.) number of zeroes between 0 and 1 then, due to Theorems 

2 and 3, D2 (1, ) will be positive (negative, resp.). Later on (§ 7), we will develop D2 into a 

Taylor series and show by means of that series that D2 < 0 in a neighborhood of the point x = 0. 

Assuming that u1 oscillates an even number of times in the interval, we likewise see that the 

continuous function D2 has a zero between 0 and 1. However, that is impossible, and we conclude 

that the eigenfunction oscillates an odd number of times. 

 One can now show by continuity considerations that it oscillates only once. However, it is 

more satisfying to prove that fact by discussing the determinant D2, as we would now like to do 

by an extension of the method that was given at the conclusion to section 3. We will first show 

that 1

2

Dd

dx D

 
 
 

 is nowhere negative in the entire interval 0  x   . 

 Two of the solutions Un (x), U (x) to the differential equation ( )pu   + q u +  k u = 0 with the 

initial conditions Un (0) = 0, U (0) = 0 that correspond to the parameter values n ,  will satisfy 

the identity: 

(29)    n nU U U U −  = 
0

x

n
nkU U dx

p

  −
 
 

 , 

 

whose proof is analogous to that of equation (20). It follows from (29) upon differentiating with 

respect to  that: 

(30) n n

U U
U U

 

 
 −

 
 = 

0 0

1
x x

n
n n

U
kU dx kU U dx

p p

 



− 
+

  . 

 We remark that: 
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2 ( , )
d

D x
dx

  = 2D  = 

1
1 1

2 1
1 1 1 1

0 0 0

21
1 1 1 1

0 0 0

( , )
( , ) ( )

x x x

x x x

u x
u x U x

u
k u dx k u dx k u U dx

u
kU u dx kU dx kU dx











 











  

  

 , 

or more briefly: 

2D  = 

1
1 1

21 22 23

31 32 33

( , )
( , ) ( )

u x
u x U x

a a a

a a a







 



 , 

 

then due to (27), (29), and (30), we will get: 

 

2 1 2 1D D D D −  

 

 = 

1 1
1 1 1 1

1 1
1 1

21 22 23 21 22 23

21 22 21 2231 32 33 31 32 33

( , )
( , ) ( )

u u x
u U u x U x

u u
u u

a a a a a a

a a a aa a a a a a




 

 

 
 

  


 −    

 

 = 1 1 21 1 1 21
1 1 1 1 11 22 1 1 11 21 1 1 12 22( 0)

u u a u u a
u u u u A a u u A a u u A a

p p   

       
   − = − − = − + − =   

      
 

 + 1 1 1 1 1
12 21 1 1 1 1 31 13 220

u u u u
A a U u U u a A a

p

 

   

       − 
 − = + − = −  

      
 

 + 231 1 1
1 1 31 13 21

au u
U U a A a

p p

 

 

   −
− = − − 

  
 , 

 

in which A11, A12, A13 are the sub-determinants that belong to the first rows of D2 . Since A11 a21 + 

A13 a23 = − A12 a22 , we will have: 

 

2 1 2 1D D D D −  = 1 13
21 32 22 31

( )
( )

A
a a a a

p

 −
−  = 

2

1 13( ) A

p

 −
 

and 
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1

2

( , )

( , )

D xd

dx D x




 = 2 1 2 1

2

2

D D D D

D

 −
 = 

2

1 13

2

2

( )

( )

A

p x D

 −
. 

 

Since p (x) is a positive function, and 2 – 1 > 0, we have 1 2

2 2

( , )

( , )

D xd

dx D x




 > 0. In § 7, we will show 

that D1 and D2 will have opposite signs and D2 will vanish to a higher order than D1 in a 

neighborhood of the starting point x = 0. The function D1 / D2 will then have the value −  at the 

point x = 0. Since D2 has no zero in 0, 1, D1 can no longer have a zero. The function u1 has at least 

one zero in the interval 0, 1, and as a result, we conclude from Theorem 4 that D1 also has at least 

one. Therefore, D1 (x, 2) vanishes exactly once in the interval, and we see from Theorem 4 that 

the function u1, and therefore the function U2, oscillates once and only once. 

 

 

§ 6. – Adding more linear auxiliary conditions. 

 

 The addition of new linear auxiliary conditions: 

 
1

2

0

( ) ( )U x u x dx  = 0 , 

1

3

0

( ) ( )U x u x dx  = 0, etc., 

 

will offer no essential complexities and will yield nothing new, in principle. For the case of one 

new condition, the Jacobi determinant, except for the constant factor 
2

3

1 2

2

( )( )



   − −
, is written 

as follows with the use of the solutions (21): 

 

D3 (x, ) = 

1
1 1 2

2 1
1 1 1 1 2 1

0 0 0 0

21
1 1 1 1 2 1

0 0 0 0

21
2 1 2 2 1 2

0 0 0 0

( , ) ( ) ( )

( )

( )

( )

x x x x

x x x x

x x x x

u
u x U x U x

u
k x u dx k u dx kU u dx kU u dx

u
k x U u dx kU dx kU dx kU U dx

u
k x U u dx kU dx kU U dx kU dx


























   

   

   

 . 

 

The functions U1 and U2 are the first two eigenfunctions that were considered above. The law for 

constructing the determinants D4 (x, ), D5 (x, ), … is easy to recognize. 

 The Jacobi criterion demands that D3 (x, ) must have no zero in 0, 1. The fact that u1 (x) must 

oscillate at least twice will indeed follow from Theorem 5, since the parameter 3 that belongs to 
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the present variational problem is greater than 2 . We prove that u1 (x) cannot oscillate an odd 

number of times by considering the determinant D3 (x, ). Namely, at the endpoint x = 1, we have: 

 

D3 (1, ) = − 

1

21
1

1 0x

u
k u dx

 =

 
 

 
  . 

If u1 were to oscillate an odd number of times then we would have (Theorem 2 and 3) 1

1x

u

 =

 
 

 
> 

0, and therefore D3 (1, ) < 0. However, when we develop D3 (x, ) into a Taylor series (§ 7), that 

will imply that D3 (x, ) > 0 in a neighborhood of x = 0. Therefore, the continuous function D3 

must have a zero in the interval 0, 1, which contradicts the Jacobi condition. It is then excluded 

that u1 (x, 3) oscillates an odd number of times. 

 In order to prove our assertion that u1 (x) oscillates exactly twice, we again consider the 

function 2

3

( , )

( , )

D x

D x




 . Analogously to the notation (page 18) of the previous section, we write: 

 

3 2 3 2D D D D −  

 

= 

1 11 1
1 1 2 1 1 21 1 1 1

21 22 23 24 21 22 23 2421 22 23 21 22 23

31 32 33 34 31 32 33 3431 32 33 31 32 33

41 42 43 44 41 42 43 44

u uu u
u U U u U Uu U u U

a a a a a a a aa a a a a a

a a a a a a a aa a a a a a

a a a a a a a a

  

     
  

 −   . 

 

If 11, 12, 13, 14 are the sub-determinants that belong to the first row in D3 then: 

 

3 2 3 2D D D D −  

 

  = 

1 1 1 11 1
1 1 1 1 1 1

11 11 12 11 13 111 31( )
0

0

u U u Uu u
u u u u u u

A A Aa

p

    

 −    
  − −    + + −      ==     =   

 

 

+ 

1 11 1
1 11 1 1 1 1 1

11 12 12 12 13 12

2321 1
320

u uu u
U Uu u u u u u

A A A
aa

a
p p p

  
     

 

      
 −−          −         + +   

  −    = = +=    
   
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 + 

1 1
1 1 1 1 1 1

1 1 1 1

11 13 12 13 13 131
23131

32

0

u u
U u U u U U

U U U U
A A A

aa
ap

p p

 
   

 

  
  − −     −     + +−    −= − =     = − −  

 

 

 

+ 

1 1
2 1 2 12 1 2 1 2 2

11 14 12 14 13 141 34 2 432
2 2441

42

( ) ( )

u u
U U U UU u U u U U

A A Aa a
aa

ap p p
p p

 
      

 

  
    −− −           + + − −−    −= = −    = − −    

 

. 

 

Since – (11 a31 + 13 a23 + 14 a24) = 12 a22 , the sum of the terms with the coefficients ( – 1) / 

p will be – 13 (a31 A11 + a42 A12 + a43 A13) = 0. We therefore finally have: 

 

3 2 3 2D D D D −  = – 2

p

 −
 14 (a41 A11 + a42 A12 + a43 A13) = 22

14
p

 


−
, 

and 

2

3

( , )

( , )

D xd

dx D x





 
 
 

 = 
2

2 14

2

3

( )

p D

  −
. 

 

 The calculations in the cases of 4, 5, … auxiliary conditions take an entirely analogous form, 

such that we can state the following theorem: 

 

 Theorem 5: 

 

 If Dn−1, Dn mean the Jacobi determinants for the minimization problem with n – 1 (n, resp.) 

auxiliary conditions then: 

1( , )

( , )

n

n

D xd

dx D x




−

 
 
 

 = 

2

1 1, 1

2

( ) ( )

( )

n n

n

A

p x D

  − +−
, 

 

in which A1, n+1 is a certain sub-determinant of Dn . 

 

 One will see from the development of the determinants D2 and D3 (§ 7) that the value of the 

increasing function 2

3

( , )

( , )

D x

D x




 is –  at the starting point. Since D3 (x, 3) has no zero in the interval 

0, 1, D2 (x, 2) can have at most one. The same considerations will suffice to show that in this case 

D1 (x, 3) will have no more than two zeroes in the intervals. We ultimately conclude from 

Theorem 4 that u1 will vanish no more than twice. However, since Theorem 3 says that the function 

u1 (x) vanishes at least twice, we will finally get the desired result. The solution to the minimization 

problem with one quadratic and two linear auxiliary condition is a twice-oscillating function. 
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 The arguments will be entirely the same when we have n auxiliary conditions. We know that 

the function u1 must oscillate at least n – 1 times. Since the Jacobi determinant Dn (x, n) has no 

zero in the interval 0, 1, D n−1 (x, n) can vanish at most once, Dn−2 (x, n), at most twice, and 

finally, D1 (x, n), at most n – 1 times. From Theorem 4, u1 can then oscillate at most n – 1 times. 

The function u1 (x, n) must then vanish exactly n – 1 times in the interval 0, 1, D1 (x, n), exactly 

n – 2 times, D2 (x, n), exactly n – 3 times, and so on. 

 

 Main theorem: 

 

 The Jacobi criterion for the calculus of variations says that the solution u(x) = U1 (x) of the 

minimization problem (§ 1): 

 
1

2 2

0

( )pu qu dx −  = min. [p (x) > 0, q (x)  0, u(0) = u (1) = 0] 

 

with the quadratic auxiliary condition 

1

2

0

( )k x u dx  = 1 will not oscillate in the interval 0, 1, that 

the solution u (x) = U2 (x) of the same problem with the quadratic and one linear auxiliary 

condition 

1

1

0

( ) ( )U x u x dx  = 0 will oscillate once in the interval, and that in general the solution 

u (x) = Un+1 (x) to the problem with the quadratic and n linear auxiliary conditions: 

 
1

1

0

( ) ( ) ( )k x U x u x dx  = 0 , 

1

2

0

( ) ( ) ( )k x U x u x dx  = 0 ,  …, 

1

0

( ) ( ) ( )nk x U x u x dx  = 0 

 

will oscillate exactly n times in the interval. 

 

 

§ 7. – Developing the determinants D1, D2, … 

 

 In this section, we will give a method for developing the determinants D1 (x, ), D2 (x, ), … 

into Taylor series. We will carry it out for the three-rowed determinant D2 . The other cases would 

give nothing new, in principle. 

 We would like to distinguish two cases in the development of D2 (28) according to whether: 

 

 1. k (0)  0 

or 

 2. k (0) = (0)k  = … = 
( 1) (0)nk −

 = 0, 
( ) (0)nk   0 . 
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 We develop the four functions u1 /  , U1 (x), u1 (x), k (x) in the first case, as follows [see 

(22)]: 

(31)     

1

1 1

1 2

3

,

( ) ,

( ) ,

( )

u
x

U x m x

u x m x

k x m




= + 

 = +
 = +


= +

 

 

If we replace those values in the determinant D2 (28) then we will easily see that the first terms of 

the corresponding functions in the first and second columns differ by only the multiplicative 

constant m2 . If we multiply the first one by 1 / m2 and subtract it from the second then the first 

terms in the functions in the second column will drop out. In fact, as will be shown later, not only 

the first ones, but also the second terms in the functions in the second column will drop out. The 

third column can be treated the same as the second one. We can treat the new second and third 

column in the same way and eliminate the first two terms of each function in the third. That process 

is best performed in the following way: 

 If one sets: 

(32)    s (x) = 1 1

2

u u

m


−


, t (x) = 1 1

1

2

m u
U

m
−  

 

then it will follow, upon considering (31), that s (0) = t (0) = (0)s  = (0)t  = 0. One immediately 

produces the equations for s (x), t (x) from the equations (18) and (26) for the functions u1, U1, u1 

/  : 

 

(33) ( )p s   + q s + 2 k s + k u1 = 0 , 

 

(34)    1
1 1 2 1

2

( ) ( )
m

pt q t k t k u
m

    + + + −  = 0 . 

 

It follows immediately from (33) and (34) that (0)s  = (0)t  = 0. Upon differentiating the two 

equations (33), (34), we will get: 

 

2 1 12 ( )p s p s p s q s s q k s k s k u k u          + + + + + + + +  = 0 , 

 

1
1 1 2 1 1

2

2 ( ) ( ) ( )
m

pt p t p t q t t q k t k t k u k u
m

            + + + + + + + − +  = 0 , 

and 

(0)s  = − 1(0) (0)

(0)

k u

p


 = − 3 2

(0)

m m

p
, (0)t = − 

3

3 1 1 2( )

(0) 3!

m m x

p

 −
+  
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One can write the determinant D2 in a different form by means of the transformations (32): 

 

(36)   D2 (x, ) = 

1

2

1 1 1

0 0 0

2

1

0 0 0

( , ) ( , ) ( , )

x x x

x x x

u x s x t x

k u dx k u s dx k u t dx

k t u dx k t s dx k t dx

  

  

  

 . 

 

The first terms in the development of each function in the second and third columns behave like 

m2 : m1 (1 – 2) . If we now set: 

(37)    r (x) = t (x) − 1 1 2

2

( )
( )

m
s x

m

 −
 

 

then we will get the equation for r (x) from (33) and 34): 

 

(38)   
2 1

1 1 2

2

( ) ( )
m

p r q r k r k s
m

    + + + −  = 0 . 

It follows from (35) and (37) that: 

 

(0)r  = (0)r  = (0)r  = r (0) = 0 , 

 

and one will get that IV (0)r  = 0 by differentiating equation (38) twice. It will follow upon repeated 

differentiation that: 

 
V IV IV4 6 4 3 3p r p r p r p r p r q r q r q r q r           + + + + + + + +  

 

2 1
1 1 2

2

( 3 3 ) ( ) ( 3 3 )
m

k r k r k r k r s k s k s k k s
m

            + + + + − + + +  = 0 , 

and 

V (0)r  = − 
2

1 2 1

2

( )
(0) (0)

(0)

m
s k

m p

 −



 = 

2 2

1 2 3 1

2

( )

( (0))

m m

p

 −
. 

Therefore: 

(39)     r (x) = 
2 2 5

1 2 3 1

2

( )

( (0)) 5!

m m x

p

 −
+  

 

If we now perform the transformation (37) on the determinant (36) then we will get a new 

determinant in which the functions u1, s, r, k appear, and upon substituting (31), (35), (39): 
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D2 (x, 2) = 

2 23 5

3 1 1 2 3 1
2 2

2 2 33 5 7
2 3 2 3 2 1 1 2
2 3 2

2 3 6 3 4 2 35 7 9

1 2 3 1 2 3 2 1 1 2 3 1 1 2

4 2 3

( )

(0) 3! ( (0)) 5!

( )

3 3! (0) 5 5!( (0)) 7

( ) ( ) ( )

5!3!3!( (0)) 5 3!3!( (0)) 7 5!3!( (0)) 9

m m m mx x
m x

p p

m m m m mx x x
m m

p p

m m m m m m m mx x x

p p p

 

 

     

−
+ − + +

−
+ − + +

− − −
− + + − +

 

 

= 
2 3 6 3

151 2 3 1 2

4

1 1 1

( ) 1 1 1

5!3!3!( (0)) 3 5 7

1 1 1

5 7 9

m m m
x

p

 −
+  

 

Since m2 and the numerical determinant are positive and 1 – 2 is negative, D2 (x, 2) will be 

negative in a neighborhood of x = 0. 

 The method remains entirely the same in the case of: 

 

k (0) = (0)k  = … = 
( 1) (0)nk −

 = 0 , 
( ) (0)nk   0 

 

as it was in the simplest cast, although the calculations will be more complicated. One finds that 

(*): 

D2 (x, 2) = 
2 3 2 3 6 3 3

6 153 1 2 3 1 2

4

1 1 1

( ) ( 1) 1 1 1

2 5!2 3!2 3!( (0)) 3 2 5 3 7

1 1 1

2 5 3 7 4 9

n
nnC m m m n

x
n n n p n n n

n n n

 +
++ − +

+
+ + + + + +

+ + +

 

 

Therefore, D2 (x, 2) is also negative in a neighborhood of the point x = 0 in this case. 

 In the case of the determinant D3 (§ 6), we add the development: 

 

U2 = m4 x + … 

 

to the series (31). When k (0)  0, we will then get: 

 

 
 (*) The sign hCk means the number of combinations of h elements k at a time. 
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D3 (x, 3) = 
2 4 12 2 4 3

282 3 1 1 3 2 3 1 2

9

1 1 1 1

1 1 1 1

3 5 7 9
( ) ( ) ( )

1 1 1 1
( (0)) 3!5!7!3!5!

5 7 9 11

1 1 1 1

7 9 11 13

B m m m
x

p

     − − −
+  

 

by calculation, where is a positive constant. Since m4 is positive and 1 – 2 and the numerical 

determinant are negative, D3 (x, 3) will then be positive in a neighborhood of x = 0. 

 For the case of k (0)  0, the first terms in the developments of the determinants: 

 

D4, D5, … will be  − 2 1 5 9 13 17

4c x + + + + , 2 1 5 9 13 17 21

5c x + + + + + , …, resp., 

 

in which c4, c5, … are constants. Naturally, when k (0)  0, the first terms will be of higher orders. 

As one can easily show, the numerical determinant: 

 

1 1 1 1

1 1 1 1

3 5 7 2 1

1 1 1 1

5 7 9 2 3

1 1 1 1

2 1 2 1 2 3 4 3

n

n

n n n n

+

+

− + + −

 

 

will be positive or negative according to whether n is odd or even, resp. Corresponding to that 

change of sign in the numerical determinant, the (n + 1)-rowed determinant Dn (x, n) will be 

positive or negative in a neighborhood of x = 0 according to whether n is odd or even, resp. 

 

___________ 

 


