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The five-dimensional universe and wave mechanics) (
By L. ROSENFELD

Translated by D. H. Delphenich

The first part of the present work is dedicated to stesyatic study of the five-
dimensional universe that was considered by O. KHinTh. De DonderZ], and L. de
Broglie [3]. One knows that it was the latter that whose seded in making the concept
of a five-dimensional universe satisfactory by showing th& possible to define the
metric of such a universe independently of the ration that characterizes an electrified
particle. We shall first show that concept can be dedugedously and very simply
from Einsteinian gravitation. Then, by generalizing the kwof Gordon #] and
Schrodinger %], we will show that introducing the de Broglie-Schiriger function®
will permit us to reduce the laws of gravitation, elestagnetism, and quantization (viz.,
the equation i) to a single variational principle in a five-dimemsal universe. One
likewise finds the conservation laws of energy, imeuland electricity united into a
single statement. Finally, an approximate formulestablished in order to calculate the
gravitational and electromagnetic potentials of a fiblat tdiffers only slightly from a
Minkowski field as a function o#. The calculation is developed in the cases of a static
charge and a charge that is animated with a uniform metith a small velocity. Upon
comparing the values thus-found to the classical valugbeopotentials, one will find
that the amplitude of the functid¥ that represents the charge must have a constant value
inside a finite volume and be zero outside of it. tThegult can be understood by means
of the beautiful interpretation of the functidhthat De Donder gave recently.f]. On
the other hand, it seems to be irreconcilable witdd_Broglie’s opinion that the charge
would be a point-like singularity of the functiti

In the second part, we shall say a few words abouethension of the preceding
considerations to Th. De Donder’s continuous systéins |

This work was carried out under the direction of L. dege and Th. De Donder,
who did not cease to assist me with their advice aarevgo helpful as to send me
manuscripts of their own work on the subject. | anagdel to be able to express my
deepest gratitude to them here.

|. — Point-like systems.

In what follows, we shall generally adopt the notatiounits, and sign conventions of
De Donder’sThéories des champs gravifiqye$ the main exceptions are the following:

() Presented by De Donder at the session on 3 May 1927.
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1. We shall write¢" and notx,, .

2. We shall use the well-known “summation conventiohe Latin indices are
supposed to vary from 1 to 4, while the Greek indices fvarg O to 4.

3. We shall sometimes use the notations of covadmnvatives:

U = ou, |Vu y
v, 1 axﬂ p P
v _ou  |pu

o _6x”+{ v }up,

U = 2U_[PH|OU etc
T axt X v | ax’ '

We further remark that one cannot distinguish betwkercontravariant components
that relate to thels of space-time and the ones that relate tod&é on the five-
dimensional universe, so no confusion should arise ictipea Only the components,
R* H* S F' @' which will be used later on, refer to the.

1. Introduction of the variable xX°. — We start with the Jacobi equati@ [equation
(15) of the second communication]:

g" (Si—®) (Sk=PY -4 =0, (1)
in which g is an invariant of the system:

Z.m
e

U= (2
T

that will become:

,U:—CZ, (3)
e

in particular, in the case of a chamgef rest massy, ; the Jacobi functio® has the form:

S=- %s +S7 (x4 ¢, X 4)

Now set:
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0 =-H9 g (5)

2

and replace the independent variabley the new variable thus-defineg;is auniversal
constant. The functionStakes the form:

0
s=2 4+ 570d 38 5 K . (6)
a
We infer that:

So=—, (7

Q|+

in such a way that the Jacobi equation (1) can beenritt
g Si Sk—2a® Sk So—a’® B SeSo— 4 =0.

That will then give (upon introducing a secamdversalconstanté for more generality):

fed
yr=y=-ad, ®)
. 1
O: 2q)|q)'__,
YO =a’o'o, 7
and
fa® =2y, 9)

SO we can put equation (1) into the form:

1
J=y*S,S, - | -—1|=0. 10
Vo ouS [,U 2)(} (10)

2. Interpretation of the preceding transformation. — Up to now, we have been
dealing with only a purely-analytical transformatiof the Jacobi equation. We shall
now interpret the transformed equation (10) by rgivia geometric meaning to the
variablex’.

In order to do that, it is first of all importatd point out that the relation (5) that
served as the starting point is indesedficient(and even particularly convenient) for us
to define our transformation, but it is nuécessary Indeed, the necessary and sufficient
relation betweeis andx’ is the relation (6) or its equivalent (7). Thelation will imply
the following properties fox® :

1. X isinvariant under all transformations of the coordinatesé, x°, x*.
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2. X enters intcSlinearly.

Having said that, we interpret the variakleas a fifth parameter that is necessary for
us to determine an “event”; i.e., a fifth dimensiortled universe. Its invariance under
the transformation that we can perform explains Hoat fifth dimension has escaped our
direct observation.

By means of that meaning of the variakleone will see that equation (10) has the
form of a Jacobi equation for a five-dimensional grawatat! field that isonly massive.
Thus, the trajectories of particles — even charged enwill be geodesican the five-
dimensional universe. The quadri-dimensional trajectdhat one observes will be the
projections of those geodesics onto space-time; thdynatilgenerally be geodesics in
space-time any more.

It is easy to calculate thiaclination of a five-dimensional trajectory over space-time.
Indeed, ifSis a complete integral of equation (1) or (10) thermf(@0), one will have:

1 dx¥
S, = / P 11
ySs U 2y do (11)
along a trajectory, and from (1), (8), (7), one will have
y™Sy= u—; (12)
dois the five-dimensional line element. One will thefer:

do 1
—= [1- . 13
ds \/ 2x U* (13)

One will then see that this inclination is determinedoloyy the ratioyz. That is the
geometric interpretation of the raiigp which is at the basis of L. de Broglie’s arguments

[3].

3. Metric on the five-dimensional universe—~ We shall start from formulas (8) and
calculate theld® and the curvature tensor of the five-dimensional us&ves functions of
the four-dimensional gravitational and electromagnetiemmils.

One first easily finds that:

Vic = O« _ZXCDi cbk’
in:yiO:_gacDi’ (14)
yoo:_g-

If g is the determinant of tign then the determinangtof the y,, will become:
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y=-4g9.
Introduce the following quadri-dimensional tensor:

1. Electromagnetic field:
Hik = ®j  — Py

_ 0%, _0%,
ox< X

Set: |
H=HiH™,

and letF; denote the divergence Hi :
1 0 im
Fz=———(H™/-qg]- H™
ANl g){n}4 “
oH" il mr
=~ +H', —-H", '
ox™ kJ, rj,
Fi :Li(Him [-g)
J—g ox"
ik aHmk m _in mn im mr
=-9g m +H «9 +H .
0x k J, rj,
Tk :Eg'm(agrzi_*_agrin_agik},
1y, 2 ox¢ ox ox"
in order to distinguish it from:

HPL L (O o OV )
o, 2 ox?  ox'  oX

One has set:

2. Electromagnetic energy-impulse tensor:

Sk =40k H—Hi H'.
3. Curvature tensor:

e ml, oo L

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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with the curvature: _
R=g"R«k. (24)

We would like to calculate the five-dimensional curvattansor:

e R AT
axvpsaxppsaspspsas

and the curvature:

P=y"Pu. (26)
We first have:

rs s ) )

(4 s

| 5 | 4

0 5 2\ ox oX

{r O} =y O H, (27)

O 5

0 |

st

. 2

W
:O’

H s

and then:

Plk - Rk _XHmI |_|mk,

=9 F _go_p
2

R* =R -y HIH,'

p =24 p (28)
2

R =SHT YO,

Rk = Rk _)(2 HcDich _X(cbk Fi+cDi E( + Hmi an)’

fa fa
P=——""—-oF-—-2-—yHo,
Oi 2 i 2 X i
POO_ gXH’

2
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and finally:
P=R —% H. (28)

4. Introduction of the de Broglie-Schrodinger function. — We set:
W=w S X €S (29)
in whichk is apurely-imaginaryconstant, which will amount to:
k=il f (30)
h c
in the case of a charged particis real. As for the amplitudé&”, it will be generally
considered to be @mplexfunction of the form:
W' =A+iB. (31)
The conjugate of a complex quantityvill be denoted bya .

Suppose, for the moment, thHt = constant (real or imaginary). We will then infer
from (29) that:

and the Jacobi equation (10) will be written:

L= "W W, +K [yz—ijq@: 0.
2x
We then see the appearance of the “world-function”
— v 2 2 1 )
L=y*W W, +k (,u ——jww, (32)
’ ) 2X

which will play a very important role: It is the mgralization of an analogous function
that was considered by Gordot] pnd Schrodingery). The link between that equation
and the Jacobi equation was pointed out by De DdjiGdg].

If one considers the functio¥ and ¥ to be independent and one annuls the
variational derivatives ot/ —g with respect to those functions then one will tetir
equations of propagation:
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YW, — I (,uz —ij w=0, (33)
2x

y"”lTJW—kZ(,uz—ileJ:O, (33)
3 2X

which is a generalization of the de Broglie-Schrodinger tmué3].

In the general case whei€ is arbitrary, the functioh will no longer be zero along
the trajectory. It is interesting to perform the adtion in the case of eal amplitude
A. Upon setting:

6=logA, (34)
one will then have:
LIJ - ekS+€ q_, — e— kS0
{ _ ’ ) (35)
W, = Wk S, +6{ﬂ), W, =W(-kS+6)),
S0, upon taking (10) into account:
L: LIJ[TJVWQ#QV,
or rather:
L=y Auh.. (36)

The complex equation (33) is equivalent to twatiphdifferential equations i, B,
S It is easy to establish those equations. Toealdite the notation, we introduce the
d’Alembertian notation:

1 0
Ou=y*u, =——(J-9V"u,). 37
14 " 4 \/—79 aXﬂ ( g y‘u ,u) ( )
In the case of functions suchAsB, S for whichu ¢ = const., upon taking the Maxwell

equation:
_ 1 9 m) _
D=———=(J/=go") =0 (38)

J-9

into account, it is easy to see that one has:

Ou = ﬁa%(\/Tg g™ un). (39)

One easily finds that:
Dw—kz(,uz—zijw = eS[OW’+2k™” S, S+ WO s WI=0;
X s

i.e., upon taking (10), (12), aré’,= 0 into account:
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dy”

OW+2ku J +k@'0S=0.
S

Upon setting:
k=iK (40)

and separating the real and imaginary parts, one awkh

|:|A—2K/J$— KBOIS=0,
S

(41)

|:|B+2Kyz—A+ KAOS=0.
S

In the case of eeal amplitude B = 0), those relations reduce to:

OA=0,
dlog A’ (42)

HS=-# ds

5. Variational principle. — We shall show thaquations(33), (33) in W and ¥,
the equations of gravitatigrandthe Maxwell equationare unified by the variational
principle:

5'[(P+2)(L)\/—79 d¥... d¥ =0. (43)

We have already shown that equations (33)) (83ult from:

oLy -g ~0 5"“/_9:0
’ oy

oW

or, what amounts to the same thing, from:

O(P+2xL)y -9 _ 0 O(P+2xL)y -9 _ 0
oW ' oW '

It remains for us to write down the variationaliations with respect to thg, (one
must observe that, from (1460 = 0). In order to do that, set:

*P,uv = P,uv - % W P, (44)
and then:
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1 o/-g 45)

T/[V

J-g o
and as a result:
L —
=t 0N-0 (46)
J-g oy
and finally:
T, ="+ =¥ W +® W -y |, (47)
which is the symmetric part of:
o (2L - g)
5—y‘“’ .

One will then have the equations:
P = xTH, (48)

which one can further put into the form:
Py =-xT). (49)

The covariant form is a little less simple; we smait use it. For the sake of symmetry
and ease of calculation, we shall employ the ceatiant form fory =1, 2, 3, 4 and the
mixed form forx = 0; hence, one has the following system:

Pmn _%ymnP: _XT mn,

. . 50
Py =—XT,, (50)

which is equivalent to the system (49).
Thanks to formulas (28) and (28one immediately verifies that equations (50) are
formally identical to the equations of gravitation and thexiwlell equations:

R™M_1g"MR= — gmy m ,
{ L g x(S™+ ™) 1)

F' =aT,.

One first sees that the constgnwwhich has been undetermined up to now, is nothing
but Einstein’s gravitational constant:

x= @ G=6.7x10° CGS. (52)

In order for T, to be interpreted as an electric current quadttere it is further
necessary that it must satisfy the condition of ¢cbaservation of electricity. Before
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showing that this is indeed the case, we shall seafpearance that this condition takes
on in a five-dimensional universe.

6. Conservation of energy and electricity— We must distinguish between the
divergence of a tensor that is taken in the five-dingeradiuniverse and the divergence
that is taken in space-time; we propose:

—g ox a |, 53)
TvH = 1 i(Tpv\/Tg)_ ap oM
oo -goxt v,

(54)

o= (T~ ) —{' 5 } B

|
«Q
(=3
x

We deduce the conservation of energy-impulse from thisth@ conservation of
electricity can be deduced from the fundamental equat#@isand (50), thanks to the
well-knownidentity:

DP”Z =0, (55)
which one can also write:
DPVY s =0; (56)
we take:
P =0, (57)
DPOV . =0.

Upon combining (50) and (57), we will get:

PO-XTm=0,
DPO,C()) _XTO,nT =0.

We shall transform these two equations in suceassUpon observing thaP*” and
g do not depend upax, and upon taking (53) and (27) into account, care first write

them:
kO
XTnnT_{ } DPKOZO,
, n ]

Tom =0.

(58)
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By means of (48), (58) can be initially written:

kO
T”nT+{ }TKOZO;
",

from (53), (54), and (27) that will become:
0 =Ty Om Tom, mil | mil Ty kO T
’ nJj, uj, nj, nj,

2
. 4T?g—2gH“mT°m—”2‘(E2¢l HoT ™

=T aH Voo T+ Yo T™
=T H AT

Now, from (51), one has:
H" aT§ =H"WF™

and one knows that the latter quantity is nothiag b

S
one will finally have the expression for theonservation of “material” and
electromagnetic energy:

iGN 4 4T IN= (60)

As for equation (59), using (53) and (27), it tenwritten:
1 0 — Om
-z T m _ — T m
\/—gaxm(” ) {0}5 :

fal aé

q)I Han(r)n_7Hanlm

L M (T + /T

:_Q HimTIm’
2
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or finally, sinceHm is skew-symmetric an@™ is symmetric:
1 0
——(T"J/—-g]| =0, 61

which expresses treonservation of electricity.
We now arrive at theverification of equation (61), wherT," is expressed as a

function ofW. It will suffice for us to show that equation (59)verified identically. In
order to do that, we first establish the identity:

T,4 =0, (62)

H

which is true for any functio that satisfies equation (33). Indeed, upon applying the
rules of covariant differentiation:

Tl =" WoP, +y" W W, - 2L,

:y/w qJ,qu'O/l+nyquV qJ,O,u+LPvO y/w qJ,,uv+ qJ,OnyLP,/IV —Lo

=0 B, 04 - P )L
=l yw, e, +k2(,u2—ijw¢'—L

’ ) 2X
=0, from (32).

It will then result that:
6T0°
ox°

m _ " _ 0 — _ 0 — _
TO,m - TO,,u TO,O - TO,O -

Now, it is clear that (29) and (7) imply that one vagive:

A

identically, and as a result:
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7. Mass density— From (28), one will have:

P -1yP=P-P’-2P
and from (49):

Consequently, if we define tireass densit§T by the equality:

R=x*T

then we will have:
T=T'-0T,.
From (51), one can write:
T=T-T-ad,T,

1 i
=T +E(yooT(? +¥e To)

= T +%TOO

=T+L +§WYO®’O

=T+L- 2k2inTJ.
2x
Moreover:

2L = y,uv (T/lv+ Vv I—) + ZkZ[,uz_zijq“‘P
X

=T+5 + 2k2[/,12—ijw¢;
2x
hence:
T=-2L+KAYY),
One deduces from (48), (63), (64), (28) that:
P,UV:_X(va _%VWT'),
with:
7o=or-H o T/ —(cpi F +ﬂj,
2 2

and in particular:
R™M = _X(-I-mn+ Smn_% gmn4 T) .

14

(63)

(64)

(65)

(66)

(67)

(68)
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8. Approximate calculation of a gravitational and electromagnet field that
differs slightly from a Minkowski field. — Take the Cartesian spatial coordinates to be

xt %, ¢, and set:
x* =ct.

Set:
Vi = Oui + Eui (69)

in which thed,; are the Galilean values:

511 = 522: 533: -1,
O, =14, (70)
0,=0, u#i.

Upon starting with (66) and (67), one will easbe by a well-known process that the
correctionss,; are given by:
X dx' dx dx
fu=- X [{m,} L (71)
with:
T,i=Tui-40,T'. (72)

2;1|

r is the (Euclidian) distance of the potential pdnatm the integration point, an{ij}t_y

denotes the “retarded” value of the function
From (70) and the fact that:

T'=Tas—T11— T2 —Tas, (73)
one has:
4TM =T, HMZ],
: % (Tll T22 T33 T4)
: %( T44 + T22 T33+ Tl) (74)
: % ( 11 T22+ T33+ T4)
: % (Tll + T22+ T33+ T4)

However, in the present, (32) will give:

L=KZYP-v § -9 -y _-p 9 |

in such a way that:

{ T, =W P40 W g, (75)

T =g (KWW +2q W W),
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Suppose that the amplitude‘8fis real:
W=AdS,
By means of (34) and (35), we will then have:

4Tl1i :_2k2A2 Sﬂ $+2 % A (76)
4Tii :qszz(’uz_zq $ ,$)+2 |A|A

Case of a static charge. Set:
0

= X? +ux 77)

Formulas (76) will then become:

‘T, =0, i=1,2,3,

T, =2k E
04 a (78)
T, =2A A, %K,

4-|-ii :_2k2A2/J2+21AJA A,

and as a result, if we take the values (3) and f(3Qy andk, resp., and set:

2,,2
|:—2k'uj{A2} rXmdde)?’ (79)
m e r
then, from (74), we will get:
& =0, 1=1,2,3
1l e
o T
dx dx dx (80)

£, :—%J’{AiAk}t_i ik,

_ﬂl_l {(Aj)z}t_rd)(ld)g d)g'.

r

E =

iyr Vi r

We now letro denote the distance from the potential point ® pbintO where we
finds the charge. When we take only the terms/inpl we will have:
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& =0, 1=1,2,3
e
&y =—¢a3—,
= artr, a1
& =0, i#k, (81)
__xmC
' amr,
The identification of the values (80) and (81) leads ¢octinditions:
A =0,
_c (82)
r0

The first condition indicates that the static chasyeepresented bystationaryphase
wave ofconstantamplitude.

From (79), the second condition will then be satikfie one imagines that the
amplitude is non-zero only in a finite volume around pmnt O. If one calls that
volume v then one can defing by the theorem of the mean by setting:

ﬂ - J’d)(1 dx d)g.
r r ’
one must then have:
8
= mAZu=1. (83)

Observe that the conditions (42) are indeed sadishen.

Case of a moving charge with a very low unifornoe®y. — Suppose that the charge
moves with the velocityd c alongx’, and that one can neglegf in comparison to unity.
An analogous calculation, to the same approximatigih lead to the same amplitude
and a phase velocity/ 5; i.e.:

0
S:X;+,ux4—,u,3x1. (84)
Other than the values (81) fgrand&,, one will find the potential vector:

En=téa G—eﬁ ,
4rr, (85)

502 = 503 = 0’
and the gravitational potential:
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Xme
arrr, A

&, =0, 1Zk,exceptfor (1,4

&4 =

Il. — CONTINUOUS SYSTEMS.

18

(86)

9. Case ofN point-like particles. — In the case where the system is composéd of
point-like particles, one carb.p, b] study the motion of each of them separatelyhby t
preceding method. One will then gétgeodesics in the five-dimensional universe that
might have differing inclinations over space-time. Wesghisectly to the general case.

10. General case— Let a system withf degrees of freedom be defined by
parameters|". We let the Latin indices vary from 1 t@nd the Greek indices from 0 to
f. Nonetheless, thenderlinedindices will vary from 1 to 4 when they are Latin syt

and from O to 4 when they are Greek ones. We set:

1

Xt =X (x xA xS x g ., qh),

by supposing that:
whens varies byds but that, on the other hand:
oxt 20, oq"=0, J0s=0.

If gm) , ) are the mass and electromagnetic densities then haewi

OT 1y = Oy OX* OXZ OX* O XY,
0Ty =0y OX OX?IX* XY,
L (m) :J“ST(m)’
T = I (g,
_fm
Le

The integrations extend over the system.
We define theg,,, and the®_ by the equalties:

ds = g dx dk= ¢, df dy
@, dx' =, dd,

(87)

(88)

(89)

(90)

(91)
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and we will introduce the “mean” values:

G, :ij 92,07, 1,

T
L (92)
Q,=—[® dr,.
o)
We then have the Jacobi equation:
o[ 0S 0S
G™—=-Q,||=—=-Q|-#*=0 (93)
oq daq

in which the contravariant components are taken icoméiguration spac&m, dxX" dx'.
If we introduce the fifth variablg® then, at the same time, we must introducef an (
1)" parameter ; we can take:
X’ =0, (94)
and if:

0
S:%+S’(ql, g (95)

then the Jacobi equation (93) will take the form:

rﬂVEaS: 2 1

-— 96
oq” oq’ s 2 49)
in the  + 1)-dimensional configuration space that is dediby:
rmn = G mn’
rm=-aQm, (97)
1
rOO - aZQm Qm -=
'3
The quantization condition will take the form:
: 21
In the case of a real amplitude:
W=Aeks, (99)

that equation will be equivalent to the two real&ipns:
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2 100
Og=_dlog A’ (100)
ds

Suppose, moreover, thatis invariant during the motion of the system. Equations
(100) will then become:

101
aS=o0. (101)

{ OA=0,
De Donder showedblf] that under those conditions, one can interfras annternal
stress potential
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The five-dimensional universe and wave mechanics) (
By L. ROSENFELD
(Second communicatipn

Translated by D. H. Delphenich (

On continuous systems that have an internal tension potential

This communication is a continuation of the secontl gfamy preceding work and is
concerned, more particularly, with continuous systehad admit an internal tension
potential. The calculations are developed in the gewcass of a system withdegrees
of freedom, but they will be applied, in particular, docontinuous system in four
dimensions (viz., space-time), or, if one prefers, to@inuum in five-dimensions, as it
was defined in the first communication.

De Donder recently introduced two important ideas wéye mechanics: viz., the
notion of thepermanencél] of a system and the interpretatidt) f the amplitudeA of
the Schrodinger functiod as theinternal tension potentiabf the system. In the first
part of the present article, | shall study the coadgi under which those ideas are
introduced, and | shall establish a deep relationship thks lihem:Any permanent
system admits an internal tension potential, and conversely.

In the second part, | shall indicate the “world-funetid., which permits one to
recover the internal tensions by starting from thed&mental variational principle (43)
of my first communication. My results permit onebietter account for the meanings of
the mass and charge densit@s , e that are defined by means of the functinviz.,
they aremeandensities. Thdrue densitiesgm) , g Serve only to define a “mean”
configuration space that is equivalent from a spectral standpointmust thank De
Donder for the very important remark that this is aipaldrly instructive aspect of the
correspondence principlé;hope to return soon to that question in more detail aomd &
more general viewpoint.

Finally, in the third part, | shall develop some cosmumlalgconsequences of the
notion of internal tension. Those remarks are onlyipr@nal, moreover. One will still
be quite far from a solution to the fundamental cosgio& problems.

I must express my deepest gratitude to De Donder, whadtitease to exhibit a
very active interest in my work.

() Presented by De Donder.
(") Translator’s note: The erratum that was descrilvegm 580 of this volume was incorporated into
the text.
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|. - PERMANENCE AND INTERNAL TENSION POTENTIAL.

1. Quantization of systems withf + 1 degrees of freedom-— Take the second part
of our preceding article3] to be the starting point. One defines &r (1)-dimensional
meanconfiguration space metric”” with the aid of the given distribution of mass and
charge densitiegy) , g , resp. Inthat space, the Jacobi equation is:

Jsrﬂ”a—sﬂdls— w-L]=o 1)
ox" ox’ 2x

and the quantization condition is:

1
Y, - k| g>—— ¥ =0. 2
! (,u ZXJ @
If one sets:
W=AeS (3)

to simplify, then equation (2) will give, separately:

OA=0,
2 4
Os=-y g~ (4)
ds
in which:
aof =r-f, . (5)

The functionSthat enters into (3) and (4) always has the form:
S_ qn + S/( 1 f 6
= q,...q ) (6)

but the same thing will not be tr@epriori for the Jacobi function that enters into (1)
when the system is subjected to internal tensidvisanwhile, De Donder has showgj [
that even in that case, equation (1) will persighwhe significance that (6) gives ®
For the reader’s convenience, we shall rapidly sanma De Donder’s presentation.

2. Invariance conditions forA. — If we introduce the tension:(

() De Donder had set:
J-gn =o oA
_g a = m A oa
a ( )aX’
The difference is just a question of homogeneity; Ded2os A does not have the same dimensions as
mine.
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[T, = g, PR A) -

ox?

which is derived from a potenti&l then the conservation of mass will demaf)dtifat
one must have:

dx?
n,—=0; 8
a dS ( )
ie.:
dA
—=0. 9
5 9

The tension potential is invariant under the motion of the system.
The Hamiltonian function of the system withoutsiem is:

H (p) = i{r“” PR +2—;}; (10)
it was obtained by setting:
_ oS
Pu = PRz

in (96) of our preceding note.
The Hamiltonian function of the system with int@rtensions will be:

*

H =H-A, (11)

and the Jacobi equation will have the form:

]
J'= rﬂ”aidlsg— yz—i =0, (12)
oq” o 2x
with
S =As+ %+S'(ql, nqh). (13)

Upon observing thatA / d¢® = 0, one will infer from (13), (6), (12), and (that:

% aS_{_SZr/IVa_'A\%—

J'=J+2s™ =
oq” o’ oq' od

(14)

Now, from (9):

(®) See equation (339) ifhéorie des Champs gravifiquis.
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dA A dd dA 35S
O=py—-= =

Has aqd ¥ ds o4 o4
=~ %E+SF/‘V %ﬂ\

aq’ ag” od oo

(15)

Since the two double sums in (15) are independextafe will have, separately:

i OA S _

0, 16

oq” o’ (16)
0A 0A

r’+* ——=0, 17
oq” o’ a7

and (14) or (12) reduce tb= 0.

Remark. — From the second equation (4), the fundamental invariamcitiom (9) is
equivalentto the condition:
os=0. (18)

The condition (9) or (18) isecessary and sufficiefdr one to be able to interprAt
as an internal tension potential.

The quantization of systems that have an internaicemotential is then determined
by the equations:

OA=0, OS=0. (19)

A satisfies the condition (9).

3. Permanence-— One says that the system considergeeisnanentvhen one has
the integral invariant:

S [J1G1dd - dd =o0. (20)

When one takes the complementary Maxwell equatit;m account, one will easily
see that equation (20)esjuivalentto the equation:

O0s’=0; (21)
OS+4d1A=0,

or rather, since will always hav@A= 0, from (4):

O0S=0;
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the permanence condition is thequivalentto the fundamental condition (9). In other
words:

Any permanent system admits an internal tension potential, and conversely

Il. - THE FUNCTION L OF SYSTEMS THAT HAVE
AN INTERNAL TENSION POTENTIAL.

4. The functionL. — We first introduce the notations:

P == 2K 1 A2, (22)
Oo =— 2K 1A, (23)
in such a way that:
P T(m
Pe Lo

we shall have to discuss the meaning of these quantt@&sioment.
Having said that, we define the functibry:

, 0¥ oy 1), —
L:r# W%_(ﬂz_ajww_ﬂap\, (25)

i.e., we simply add the “tension function”ge Ato the functiorlL of the system without
tensions. Since the former function does not coritaior W explicitly, the quantum

equation of the continuous system (2) will not be medifi Furthermore, one also has:

_ 0w oP v v

L= T 26
H aqp aqv aqu ad H ( )

We shall develop the calculation of that expression.

In order to do that, first recall that equation (36)h&f first communication3]:

rw QWP (o 1) go pw OA OA
og” o9’ 2x oq” oq’
as a result, due to (17), the functlomvill have the value:
L=—-peA. (27)

Now, by virtue of the Jacobi equation, upon setting:
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¥
u = di (28)
ds
we will have:
uuw=rw 6SV , (29)
0q

or, incovariant components with respect to (he 1)-dimensional formr ,, dof’ dq”:

_8s

o (30)

H Uy

Furthermore:
0S 0S 49 0A0A

og“oq o od

TyV:_2k2A2+ +rlu|/Ae)A,

which can be written, by means (30) and (22):

T = Pm) Uz Uy + My, (31)
with
2 0A O0A

N, =222 97
T Tagt og

+Twpoe A (32)

5. The mean densities— We shall now compare the expression (31)-(3R)tHe
material tensor 7, to the classical expression femsteinian gravityin such a way that
we can specify the significance of the magnitudgs o, and . .

First observe that sindeis independent af’, one will have:

My, =0;
on the other hand, from (30) and (6):
Up = i .
Ha

If one introduces those results into (31) for= 0, v = 1, after passing to mixed
components, then upon taking (24) into account,vaiitéind that:

aT/=pe U . (33)
For the components relative to space-time, onehaile simply:
T™M=pmu™u"+0O™ (33)

The material tensof ™ is decomposed into dynamical tensopym u™ u” and amassive
tensor1™" (cf., equation (41), pp. 11, dhéorie des Champs gravifiquies).
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We first addres@m and g ; formulas (33)-(33 show thatom and pe must be
interpreted as the mass and charge densities of thensyst better §, the ones that
correspondo the densities of the system in configuration space:

Indeed, it is essential to observe tpgy andge are notgenerally the densitiegy,
and g that were given originally; that will exhibit the ra@t (24) immediately:

Py _ | Ty XX SRR
Po  [0n0x oX? XX

From that relation, one can set:

Jo T =l Pe = @ (34)
v’ v’

and one can always “normaliz&”in such a way that:
I%\/@dql...dqul, (35)

which will show thatom) andpge are (ponderablapean densities.
One then sees that thele densitiesgm and g serve to simply define enean
configuration space metric¢” :

— 1 O — 1 O
{recall thalen—%jgmncfr(m , Qm—EJCD 7 )ej.

In thatmeanconfiguration space, one determines a functiowith the aid of which one
defines themeandensitiesgm and ge , which permit one to calculate the “global”
gravitational and electromagnetic actions of th&tey.

6. Internal tensions. — Finally, we move on to consider the tensby, . The
tensiond1, that are defined by, are:
n,=n,,. (36)

We first confirm that the first terrﬂrp”:—A A

q” 0g’

of I'I; makes no contribution to

the tensiorf1, . Indeed:

() Remark by De Donder.
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, 0A _0A ) _ ” _ v
Z[Fp W%aq_vj =T (A,pA;z),u = (Apvpﬁl+ A’ A‘V ),

=2A,T A, ¥ 2 AR, @37
=2A0A+ (T AA)
= O,

due to (4) and (17).
It then results that the system behaves like a Swasperfect fluid” from the
standpoint of1, . (Théorie des Champs gravifiqueg, pp. 15). One has:

rl/f = r;(p(e)A),v ;

_ 0(0mA)

M
H o

(38)

It is easy to see that one will indeed arrivehait tvalue offl, when one starts from
the value (7) of1,.

lll. - COSMOLOGICAL CONSIDERATIONS IN REGARD TO
INTERNAL TENSIONS.

It is interesting to develop some of the conseqesnof introducing an internal
tension function, especially from the cosmologis&ndpoint. In order to do that, we
shall place ourselves in the five-dimensional ursgeand repeat the calculation of the
scalar’T that was developed in numb2of our preceding article3] with the new value
of L. We effortlessly find that:

T=-20L+K [ YP)+209A=pm+ 400 A, (39)
in such a way that the curvature of space-time vell

R=)Xpm + 4@, (40)
with

A@=XPEA. (41)
We will then be led to a “cosmic” term with a cature that igadically different

from Einstein’s, since it will depend upon the disition of electricity.
In order to see what happens, considethhge fundamental formulas:

P =~ 2k? Azluz’
Pe =~ 2k Ap, (42)
A = XPro A
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which one can write:

Py = (eA? 12,
P = (eA° L, (43)
/](e) = X(p(e) A),

when one takes into account the meaning.ofln those formulas{ and y are two
universal constantsande, 4, A are thethree fundamental magnituddsat determine the
state of the universe at each point. The magnita@ady are such that their produet/

is a quantity that is independent @f The fundamental formulas then define theee
auxiliary quantities p;m) , pP@E , A@ that suffice to describe the massive and
electromagnetic systems in equilibrium, such astedas, protons, light quanta (from the
microscopic viewpoint), or even molecules and systems of mddéec (from the
macroscopicviewpoint), or finally stars and star systems ffrtheultra-macroscopicor
cosmic viewpoint). A system for whicpe = 0, om # 0 at each point is calledneutral
material system From the microscopic viewpoint, there exist eoitnal material systems
except for possibly light quanta, if one (like Le Broglie) would like to attribute a non-
zero mass to them. A system for which one bas = p = 0 at each point is called
vacuous

A discussion of the first two fundamental formwial give the following result:

The systemg, A, L) is vacuous only if at least one of the three tjtiaa e, A, i is
zero at each point. Meanwhile, there is one ingrdrexceptional case: It is the one
where A # 0, wheree tends to zero angl tends to infinity in such a manner that the
producteu has a finite limit, which is necessarily non-zénen. The system will then be
a neutral material system, and that is the onlg @asvhich one can have such a system.

The third fundamental formula, in turn, shows thgj is zero only for a vacuous
system or a neutral material system.

We see that a vacuous system or a neutral masygtgm can be under tension, but
those tensions will not lead to any supplementaryature of the universe.

A general (massive or electromagnetic) systenecessarily under tension, and those
tensions will produce a supplementary curvaturthefuniverse.

If one adopts the cosmic point of view and one a® that the universe, taken
globally, is a neutral material system then ond waifive at the conclusion that the
cosmic curvaturé (g is zero: One knows how many arguments exist ag#ias concept.

It then seems necessary to introduce, as Einstdinadthird fundamental universal
constant namely, the curvature of the vacuumy4 That introduction can be achieved
with no difficulty; it suffices to replace the vational principle:

S[(P+2xL)/-gdX-- d¥ =0 (44)

with the principle:

5J(P—4A0+2xL)/—gd>?-~-d)é‘:O. (45)
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However, the curvaturedd will no longer play precisely the same role thadid in
Einstein’s theory. It will enter onlyn part to ensure the equilibrium of massive and
electromagnetic systems.
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Translated by D. H. Delphenich

THE CORRESPONDENCE PRINCIPLE

The goal of the present article has been touched upe@adglrin my second
communication (). | shall now take up the question again systematitsilyeferring
back to my first communication (), and the present one constitutes an indispensible
complement to it. All of the arguments will be dieyeed for a point-like system in the
five-dimensional universe, but the extension to continibtisl)-dimensional systems is
immediate.

Wave mechanics, as contained in tlagiational principle[U *, (43)], is a formal
theory. In order to give a physical interpretatione s guided by theorrespondence
principle, with the meaning that O. Kleil'} gave to it, and in a more general and
precise manner, Th. De Dondé&}.(

The compatibility of the two principles — i.e., thespibility of establishing such a
correspondence — is assured bigadamental theorerwhose proof will be the goal of
number2 below.

Having laid those general foundations, it will essentiadiyain for us to establish the
correspondence in question. Thanks to some extremglgriant consideration that that
are contained in a letter from L. de Broglie, | haveceeded in generalizing paragraph
in his recent papet’|. The details are presented in number

De Donder played an essential part in this articleuggessting the fundamental idea
to me. | also have much to thank Louis de Broglieidro was kind enough to continue
a correspondence with me that was greatly profitable.

*

() Presented by Th. De Donder.
(")  Bull. Acad. roy. Belg. (513 (1927), session on 2 July. In that communication, whidedtcated
to the study of the internal tension potential, | keghtapproximation that is called “geometrical optics.”
The existence of an internal tension potential imgiesstriction on the functioW. In the general case

(cf., no.3 of that communication), one will see internal tensioha different type appear.

(") Bull. Acad. roy. Belg. (513 (1927), session on 3 May. In what follows, that work v
denoted by *. Similarly, De Donder'Shéorie des champs gravifiqupgém. des Sc. math., fasc. XIV
(21926)] will be denoted bg. Hence, formula (12) i€hamps gravifiqguewill be denoted by ‘@5, (12)].”

(V) O. KLEIN, Zeit. Physt1(1927), 407-442.

(Y) TH. DE DONDER, Bull. Acad. roy. Belg. (3)3 (1927), session on 2 August.

('Y L. DE BROGLIE, J. de Phys. (5) (May 1927).
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1. Correspondence principle— Wave mechanics, which is contained entirely in the
variational principle P!, (43)], formally realizes the fusion of the general theory of
relativity and quantum theory. Along with theld equationghat describe gravitational
and electromagnetic phenomena, one also haguiatization equatiofiu®, (33)], which
governs the quantum exchanges of energy. That latteri@uua¥olves afundamental
quantity¥, and the fusion of the two theories consists preciskthe fact that the five-
dimensional material tensor that appears in the figichgons is defined by means of the
fundamental quantiti¥. On the contrary, ipure Einsteinian gravity, it is a function of
some other fundamental quantities of system: viz.,nlass densityy and charge
densityge . (For the moment, | shall abstract from the massleetromagnetic tensor
H,. that Th. De Donder introducedpriori into gravitation.)

The new definitionJ*, (47)] of the material tensor as a functiordbthen implies a
modification of our new conception of the role of fbedamental quantitieg; and .

In Einsteinian gravitation, those quantities emtieectly into the field equations in order
to determine the gravitational and electromagnetic potsnhat correspond to the given
distribution (gm) , gg). In wave mechanics, they enter directly into ohly guantization
equations by which they determine the quantty It is therefore the latter quantity that
one must introduce into the field equations in order tainlpotentials.

A little reflection will show that the materialrtsorT#, when defined as a function of
W, is not necessarily identical to the material terefqoure gravity, which is defined as a
function of g and g . Moreover, it seems desirable to analyze the behayithe
tensorT“” a little more closely in such a way as to exhibitpghesible modifications that
the introduction of the quantization quant#ycan afford to gravitation; that is precisely
the role of thecorrespondence principlelt comes down to interpreting the ten3éf as
an ordinary gravitational tensor, which is a function eftain mass and charge
“densities” om) , P , Which naturally depend updH. A comparison o , Oe With
Om , e WIll indicate how quantization modifies gravitationahdaelectromagnetic
phenomena. One cannot give a more prege®eralstatement of the correspondence
principle. One will see later on how one can effety define gm andpge as functions
of dm , g¢ , and¥. One will see that one must introducenassive tensofl”’ that
determines thanternal quantum tensions Those defining formulas constitute the
correspondence principle in the strict sense. Ibéshes the identification of the formal
schema of wave mechanics with the gravitational sch&mid. De Donder@, Chapter
VI], which then illustrates the manner in which wave hasdcs enlarges the scope of
pure gravitation in order to introduce quantum phenomenatinto

2. The fundamental theorem.— Before going further, it would be appropriate to
turn our attention to a very remarkable property oftéesorT #“: In order for that
tensor to be capable of being interpreted as an ordgramtational tensor, conforming
to the correspondence principle, it must satisfy theseovation equations for energy-
impulse and electricity*, (60)] and *, (61)]. That condition is entirely essential to
ensure the compatibility of the two principles: viz.e thariational principle J*, (43)]
and the correspondence principle, which constitute waa@hanics.



Rosenfeld — The five-dimensional universe and eave measharill. 3

We shall show precisely thaguationgU*, (60)], [U%, (61)] are verified identically
for any solution of the quantization equatiofis!, (33)], [U*, (33)]. That is the
fundamental compatibility equatioit: is aconsequencef the variational principle. The
latter point is particularly remarkable. The variatb principle is “intrinsically”
compatible with the correspondence principle with netri@ion or supplementary
condition.

The proof is extremely simple. It has been performkdady [P*, no. 6] in the
context of electricity, moreover. From the caltiolas in [U', no. 6], equations [,
(61)], [U%, (60)] are equivalent to:

Tom =0,

ko
T”;;w{ }TKO:O,
’ n

however, from [*, (20)] and U*,(7)], one will have:

oT
50,
0x

in such a way that by means &f' (53)], the preceding equations are equivalent to:
{ T4 =0,
T% =0,

or rather, it will suffice to show that one will v

T%=0 (1)

V.U

for any solutiort?, W, of [U*, (33)], [U%, (33)].
Formula (1) can be verified by direct calculatjot, no.6]. However, as De Donder
and Nuyens suggested to me, it is more elegamstortrto the fundamental identities of

gravitation when they are applied to the invari@hj,j—_g . Upon observing that,,
| 5(2-0) . |
precisely the symmetric part eFf———, those identities can be written:

o

2T # +—5(2L\/—79) W +—5(2L\_/—79) s
N ' N '

V.U

01

but [U?, (33)], U, (33)] are equivalent to:
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5(2L{-q) o 5(2L{-q) _
’ b6 1L

which result immediately from formula (1).

3. The correspondence principle and Schrodinger-de Broglidynamics.— It now
remains for us to construct a systemm(, ge) that correspondso the given system
(gm, ge) In the manner that was specified above. It is presemppossible for me to
resolve the question of knowing whether the correspmelthat | established is the only
acceptable one; that seems quite probable. In whaivglll have made much use of the
letter from De Broglie to which I alluded in the Introdoat

Set:

w=AekS; 2)

it is easy to see [cfl)?, no. 4] that the quantization equatidst] (33)] is equivalent to
the system of two real equations:

1 OA

WS §=f-— , 3

y"S, S,=1f 27 KA (3)

2uy™ S, A+ AO 8= 0. (4)

Set:
12 , oA
= + . 5
ﬂ /’l KZAI ( )

By means of that notation, we confirm that equaf®ntakes the form [cfU?, (10)] of
the Jacobi equation:

J=yms & -| y?-—1|=0 6
y“'Ss, S [ﬂ )(J (6)

that relates to a system that is characterized dpyaatity .’ (which differs slightly from

H): We shall take that new system to be the basih®&fdorresponding” system.lt is
important to note that the Jacobi equation of tumatesponding system is a consequence
of the quantization condition. In the case of gipl@ of massn, and charge, the only
modification that wave mechanics brings with ittasreplace the mass, with L. de
Broglie’s mass:

\/”b 4773 A' 0

Now, the correspondence, properly speaking, iy a®stablish. By virtue of the
Jacobi equation (6), we will have:
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puw= s, (8)
for the velocity vectou” of the corresponding system or:

Hu =S,
1 9)

UOI_

Ha

for the covariant vectar, with respect to thea®.
If one sets:

12,02

p(m) :2K2A /'1 ’

10
p(e) - 2K2A12/jr ( )

then one will have:

Tpv:p(m)upl"l/-i_z'dﬂz'dﬁ/_ypvl" (11)

in whichL is the world-function that was defined in our first goumication; upon taking
(3) into account, one will have:

L=y"A A, + AOA (12)
here.
In particular, one will have:
T = pgmy u™u" + 0™, (13)
with the notation:
n,=2A,A, -y,L (14)

Upon taking (9) and (10) into account, one will haveaddition, that:
aTy=pgu’ (15)

We will then recover the material tens@, [(38)] in (13), on the condition that we
must interpretgm as a (mean) mass density of the corresponding systdifi'd' as a
mass tensothat determines thaternal tensions:

n'=*npe. (16)
Similarly, (15) gives us the current quadri-vector ofimterpretge as a (mean) charge
density of the corresponding system. The correspongenuaple is then expressed by

formulas (5), (10), (14), and (12).

Institut de Physique mathématique de I'Université libre dex&les
29 July 1927
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Translated by D. H. Delphenich

THE PRINCIPLES OF WAVE MECHANICS

The present article has the main goal of presentingithessis of my first and third
communications (), and to include De Donder’s important note on the cpomedence
principle (7).

Wave mechanics is initially based upon tiwamal principles:

1. Thevariational principle that was established in my first communicatitf, [
(43)] and which permits one to write out partial diffef@nequations by means of the
introduction of a complex auxiliary functicH.

2. Theeigenfunction principl®r Schrodinger’s principlewhich gives the boundary
conditions for the functiok.

One must add physicalprinciple to those formal principles: viz., tberrespondence
principle, which was stated most precisely in the cited note bypbeder, and which
indicates the physical meaning of the formal operatioaswere performed by virtue of
the first two principles.

A compatibility theorenestablishes the link between the two groups of pringiple

Having posed those fundamentals, one @arstructvarious corresponding systems.
| shall give two examples: The first one, which igirefy new, introduces guantum
current The second one, which was treated already in my ¢toindmunication, is the
system that L. de Broglie adoptetf)( By now, it is well-ensconced in the general
framework of the theory. It will take on some conmpénts here that relate toternal
tensionsespecially.

In the first part of this paper, everything will be deyed in detail for the case of an
electrically-charged point particle In the second part, | shall indicate how one edden
that to theholonomic systemthat were considered in my first communication. Mnal

()  Presented by Th. De Donder.

(") Bull. Acad. roy. de Belg. (5)3 (1927), sessions on 3 May and 2 August 1927, which will bd cit
asU *andU ?, respectively. One should refer to them for the imtatthat are not explained here.

(™) Ibid., session on 2 August 1927.

Yy J.de Phys. (May 1927), 225-241, and above &, €. R. Acad. Sci. Paris 8 August 1927.
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in the third part, | will study certaisystems of N pointsy a method that is due to De
Donder {). | will show how the present synthesis encompagbesstatistical
conceptionsof Born and his school by means of the results oétiainl will conclude
with some brief remarks on non-holonoraistems oN points.

In the editing of my present communication, | haventsae to profit from numerous
instructive conversations with De Donder, as well amfiork done at his remarkable
institute, which he placed at my disposal with indefatigdigipfulness.

I. POINT-LIKE SYSTEM.
1. — Wave mechanics is based upon three principles:

1. A variational principle which permits one to write down the field equations
formally.

2. A correspondence principlewhich gives the physical meaning of those
equations.

3. An eigenfunction principle which determines the quantization of the system
considered.

We shall study the first two principles in detail, andtfof all in the case of point-
like system in the five-dimensional universe.

2. The variational principle. — Let my be the rest mass, and &be the charge of
the point considered. The ratio:

UL 3) p= r%cz (1)

is then aconstant of the point-like systemder study.
The motion of the point is determined by five paramet@rs, ..., q* that forms a
configuration space:
do? =y, dd' do’ (u, v=0,1, ..., 4); 2)
one can, for example, set:
X = (3

Our problem consists of calculating thg in the form (2); i.e., the gravitational and
electromagnetic field of the point-like systemy(, €) in the configuration space.The
field potentials are given as functions of fheby the formulas:

() DE DONDER, C. R. Acad. Sci. Pari$4(1927), 698-700 (presented at the session on 20 September
1927).
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Vi =0y —2X PP,
[UY (14)] Vo =Vio=—a®,, (i,k=1,2, ..., 4), (4)
yoo:_ga

or, in contravariant components:

yik - gik,
[U% (8)] V' =yi=-ad, ®)
VO =a’o'o, —:1(.

In these formulasy, & x areuniversal constantsvhich satisfy the relations:

[U* (9] Ea’ =2y,
(6)
[UY (52)] XY = %, G=6.7x10% CGS.

The formal solution to that problem is given by the followimgriational principle:

Introduce an (unknown) complex functiéiy as well as the conjugate functiéh, and
set:

W= P+2xL,

U (32)] 1

_ 7
L=y"W W +Kk*| 1P-— WY, O
MV 2X

P is the five-dimensional curvature invariant; itasfunction of they,, . kis asystem
constantthat is given by:

(UL, (30), (40)] K=iK =i azhﬂgi 8)

Having said thatthe partial differential equations give thg, and the auxiliary
functions¥, W are deduced from the variational equation:

[UY (43)] s[w./-gdd--- dd=0. (9)

One will thus obtain the twquantization conditions:
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and the fourteefield equations:

(except for = v = 0).

oy

They are written explicitly as:
U, (33), (37) oW —k{,f —ijw -0,

2x

(10)

UL (33)] Y —kz[,uz _ijm =0,

2x
and

Rmn_i mnR:_ Snn+ Tm, .
[UY (51)] { 24?_' . —a)'(l'(‘ ) (mn,i=1,..,4) (11)
m = 0°

by means of the notations:
U1 (22)] S"™= 1g™ Hy H* —H" H" (,kl,mn=1,..4) (12
and
[UY, (47)] Tw=W, @, +P W -y, L (U v=0,1,..,4). (13)

3. The correspondence principle— As one sees, the problem is solfeanally by
the sixteen equations (10), (11) in the sixteennomins ), (except)so), W, W. The
boundary conditions for the function¥, W are given by the third principlethe
eigenfunction principleor Schrédinger’s principlg which we shall not discuss here.
However, it is important now to extract the physgense of those equations: That is the
role of thecorrespondence principlavhich we shall examine.

First, let us introduce some useful terminologymagine a system of charged masses
that are defined by the mass and chatgesitiesgm and ge , resp. Suppose that the
system also includescuantum current\; , and that it is subject iaternal tensions A".
Having done that, we will say that the system iesgion isMaxwellianif it satisfies the
four equations:

HIN=am U +A (14)

We say that it i€insteinianif it satisfies the ten equations:

RM—1g™R=~x(S™+ pgm u"u" +H™), (15)
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when we use the notation (12). In the formulas (14) &tb), Uu' represents the
contravarianwelocityat the pointd®, ', ¢?, ¢°, *). In particular, a Maxwellian system
for which A' = 0 will be calledoure Maxwellian. An Einsteinian system for whidh™ =
0 will be calledpure Einsteinian

One knows that for a Maxwellian system, one will dnahe equation fothe
conservation of total electric current:

og U +A),;=0. (16)

For an Einsteinian system, one will have the equatmiithe conservation of energy-
impulse which give thedlynamicsf the system in question:

ST+ Yo U "+ H™) 5 = 0. (17)

Having said that, we return to equations (11). We obsbatghey have theorm of
the Einstein equations (15) and the Maxwell equations (T4)e vectoraT, and the
tensorT ™, which are both functions 6P, ¥, by virtue of (13), take the places of the

total currentge U + A' and the material currenty, u™ u” + H™ in them. The
correspondence principleonsists precisely of asserting that this analogy is junst

formal, but also physical. More preciseljhe two functionszT, and T of W, W

define a system that is both Einsteinian and Maxwellian in the coafigarspace
which will be called theorresponding systeto the given point-like one. In formulas:

P U +N =aT (W, W),

_ 18
Prmyu™u”+ H™=T™W, W), (18)

It is essential to remark, first of all, that therrespondence thus-established takes
place in configuration space. In the second place, it is necessary pve the
compatibility of the correspondence principle with tlaiational principle, because if
the systemaT,, T™ is both Maxwellian and Einsteinian thenniustgive rise to the

conservation equations (16) and (17), in the form:

{ (@Ty), =0, (19)

IS+ AT =0.

The left-hand sides of formulas (19) are functioh®’, ¥ that must bédentically zero
for any solution®, ¥ of the quantization equatior(40). One verifies that this is, in
fact, the case (viz., theindamental compatibility theorgm One will then see that the
correspondence principle has a different chardoben the other two principles. They
are postulates in the sense of formal logic, whereas the cowedpnce principle is a
physical principle The compatibility of the two groups is ensurgdiiee intermediary of
formulas (18), thanks to the compatibility theorem.



Rosenfeld — The five-dimensional universe and wave nmechéV. 6

It now remains for us t@&ffectivelydetermine the corresponding systems; i.e., to
calculategy , om, A, andH™ as functions o, W, in such a manner that they satisfy
formulas (18). As we have posed that problem, it is alslyoindeterminate.

We shall give two particularly remarkable solutions, chive will then compare
briefly.

4. Corresponding system with quantum currentA’. — We can always put the
functionW into the form:

[U% (2] W=A €S (20)

in which A”and S’ are tworeal functions, andk has the meaning that it had in (8):is
the modulusor amplitudeor amplitudeof W; its argumentor phaseis KS’. Thanks to
formula (20), one can replace the tammplexquantization equations (10) with tweal
equations by replacing, for examptg,with the value (20) in the first equation (10) and
separating the real and imaginary parts. One will get:

1  OA
VS’ - 2__+ ’
FIS. S =H 2x Kk*A

(21)

[U° (3)]0)
(y*s, A%, =0 (22)
by a simple calculation.

If one performs the same substitution in the essioms (7) and (13) df and T,
then, upon taking (21) into account, one will get:

[U3 (12)] L=y"S, A+ AOS = 10(A?) (23)

and

T, =2KZA’S, $+2 A A-y, L (24)

Up to now, we have performed only some absolugelyeral formal transformations.
Before going further, we point out two more gendoamulas that will be useful for us:
They will permit one to pass from a divergence tisataken in the five-dimensional
universe to a divergence that is taken in the spame If U is an arbitrary five-
dimensional vector, and”” is an arbitrary five-dimensional symmetric tensiegn one

will have:
4w, ou°
uyfj = 4Llym +w, (25)

() The second equatiot[®, (3)] must be writter2y*’S' A + A0 $= 0. The form (22) is found in

LONDON, Zeit. Phys42 (1927), pp. 385. Cf., also L. DE BROGLIE, C. R. Acad. Beiris, 8 August
1927.
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my — 4,.mn az'mn Hm n 2
™ o="r" '+ +tHLar,. (26)

W N aXO

the proofs are accomplished very easily thanks to fostuld, (27)], [U %, (53)], U %,
(54)].

Having establishgd those preliminaries, we arrive at orst fxample of a
corresponding system)( The hypothesis that characterizes that systehaighe Jacobi
equation is true in itslassicalform:

(U, (10)] PSuS =i (27)
X

One then deduces that the velocity vector in coraptathat areovariant with respect
to do?:

MUy =S, (28)
hence, since:
1
[U*Y (7] So=—,
a
one will have:
Ug = 1 (29)
Ha
and
[U*, (22)] put=y#s, =d" (Sm- o) . (30)
Now set:
S'=S+C. (31)

C is a function that |s independentddf as isA”.
Using (31) and {27), equation (21) will reduce to the followingagbn betweerC
andA”
OA
WCuCu+2yS,C, =——. 32
vy eu Vo oul KA (32)

Introducing (31) and (28) in (24), we will get:
T,= KAy 2K NS, G S G G D2 MKy, . (39)

Upon taking (29) into account, we infer that:

() The numbers of the formulas that relate to this gtarare affected with an asterisk.
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Tmn - ZKZAZ/JZUmUn
Y [2KPRN S O+ g )2 DAy, Lo (34)
a'TOi :ZKZA'Z,Ulj +2K2A2VV CV.

Now, if we compare formulas34) to formulas (18) then we will see that we can
satisfy the correspondence principle by setting:

Py = 2KEAE, (35)
p(e) = 2K2A’2/j!
as well as:
H™=y™y*H |
IR (36)
N =aH,,
by means of:
Huw= 2 A2 (S, Cu+S,CutCuC) +2A, A~y L, (37)
in such a way that: _ _
/\I — Z<2 A/2 gIm C,n ’ (38)
or, in covariant components with respectih:
A =2K*A°C;. (38)
The functionC is therefore th@otential of the quantum curreny .
Equation (22) can now be put into the form:
(Ao u +N),i =0, (39)

thanks to (35), (30), (38), and (25): It expresses the conservation ofdta current.
That is a new aspect of one part of the compadiiltiieorem. We shall now pursue the
dynamical study of the system, and we will begithwihe aspect that is analogous to the
other part of the theorem.

We first address the calculation of ihéernal tensiong ):

n'=+*n'm; (40)

from (26) and (36), one will have:

() Of course, the internal tensions that will be anésom now on have nothing in common with the
ones in my not& 2, which would now be pointless to consider.
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n'=n'-n . (41)
On the other hand, due to (233%), (22), and"81), (37) will give:

n,, = {2K? A2y (SuCp+SpCpu +CLCpo)}v + 2N, VPR, + 2K, y" R,
- 2ALVPA - A OA-ADOA,,

={2K* A2y (Sp+C ) Cputv +{2KPA?y¥S,C 4 v- (%) ’
U

= XK*A? Y (S,+Cp) C o H2KPA2 Y C } v S = 2KP A2 P C pS
-KPA?{y"C,C,+2y” C,C 3 u,

=AY (S,4Cp) Cu H2KPAZ Y C ) LS~ 2K Ay C oS
—KEA“2y” CpoCw+2y™SuCpt —2K°A“ Yy C S,

:{ZKZA'Z vy C A vSu,
:_3/1{2K2A,2 prS’p}’V’

or finally, from (25), (28), and (35):
M, == U “(am u") n - (42)
By means of @2), (41) will become:
N=—u"%gmu).n— H A", (43)

Now, from the compatibility theorem [cfJ 2, no. 2], the dynamical equations that
we seek are written:
T™ =0,
or, by virtue of (26):
T +HTaT,"=0,
or rather, by virtue of (18):
4(Am) un)’n +4|—| n‘jz_i_ H mn (Am) un +/\n) — 0’
or finally:

¢(|:1)+¢(n;)+|—|m+um4(p(m) Un),n+Hmn/\n:0,

from ('40) and upon setting:
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i = P Yn (45)
¢(e) =P HU

Now, due to @3), (44) will reduce to:
Pm TP = 0. @6)

P Iis the generalized Einsteiforce of inertia ¢ is the generalized Lorentz

electromagnetic force One then recovers Einsteinian dynamics; it is theshaspect of
the second part of the compatibility theorem.
One deduces the equation of continuity frod4y:

Yo U n + Mpnu™ + Hpn A" U™ = 0, (47)
with
Mm = Ymn nm ,

that equation is satisfigdenticallythanks to @43).
5. Corresponding system with quantum mass- Recall equation (21). Since it has

the form of the Jacobi equation, we can construct ansecorresponding system that is
characterized by the Jacobi equation (21), which we write:

v ! V4 1
[U3 (6)] y“S,S =u’- % (27)
with the notation:

, OA
[U3 (5)] U 2:”2+K2A" (28)

and upon keeping the same value for the chargfgat will amount to the replacement of
the massn, with theL. de Broglie mass:

3 _ B h? A
(U2 (7)] Mo-anMzcz%. (29)

The velocity vector is presently defined by:
[U° 9] M uy=Sy; (30)

hence, in particular:
U= ——, (31)
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and
[U 3, (8)] pu =S, =g (S - P . (32)

Formula (24) now gives:

Tw=2K2AZm?u,u,+ 2A,A, = yuL; (33)
hence:
T™=2K? A%/ U™+ y My (28, A -y, L), (34)
aT,) =2K?A?u' d,
We see that we can satisfy the correspondence fasniii8) by setting:
[U®, (10) P = 2K AU, (35)
P = 2KEA
as well as:
I—I mn = mu m’I—I
by means of:
[U 3 (14)] MNw=2A,A - yuwlL. (37)

The corresponding system that we are studying sotdreforgoure Maxwellian. The
total current reduces to the convection currené.héfFhe conservation of that current is
once more expressed by equation (22), which corgaiomthe compatibility theorem;
indeed, thanks to (25), (32), and (35), that equas written:

“(o@m u),i =0. (38)

It now remains for us to study the dynamics of second model, in parallel with
what we did for the first system. From (26), (3283), we have immediately:

I—Ii = 4I—Iiyl:1 = 4I—Iiy:j,

vV — 12 . in DA" .
1=K (50
hence:

OA

I_li = _Alzgin (Tj ) (39)

or in covariant components with respectld:
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I:lA’j (39)

M, =—A’2(—, .
A p

The functiondA'/ A’ is then thegotential of the internal tensidn; .
The dynamics of the system can be condensed int@tfziens:

By +B5 N +u"d (o ,u") =0, (40)
with the notations:

(41)

m —_ 4 m n
Dy = Prm U U
m __ m n
¢(e) - p(e) H nu .

One deduces the continuity equation from (40):
Mo u™ +*(om U, n = 0. (42)

Upon introducing the values (39) and (35) far and o) , resp., into that equation, one
will get:

I

_AIZ (%j um + 4(p(m) un)ynﬂl+2 K2 Azﬂ' /«l_’n un: O,

or rather, from formula (28):
4(,O(m) Un), n=0,

which is nothing but the real equation of the qization (38). Hence, (42) will be true
identically by virtue of (38); one recognizes trempatibility theorem. Thanks to (42),
one can again put (40) into the form:

By + B +Mm=u"Miu = 0. (43)

One indeed recovers the various equations of @hafitof De Donder’sThéorie des
Champs gravifiques

We conclude with a remark that relates to theitengotential.

Set:

2
P, = [ﬁj Py (44)
U

or, by virtue of (35):
Po= 2K A 1%, (44)
In addition, set:
1 A

V:W@—'- (45)
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Formula (39, which gives us the tension vectar, is written:
M = —,O(En V,i ; (46)
on the other hand, formula (28) will givie,the first approximation:

H~ @l +V), (47)

Mo ¢ ~mp &2 (1 +V). (48)

or rather:

Formula (48) was pointed out by L. de Broglie in his cipagber inJournal de
Physique[formula (64)]. He remarked that “everything happens abafet exists...a
(supplementary) potential energy termg ¢ V. Our method gives us the interpretation
of that potential energy now: From (46), it is nothing theenergy of internal tensions.

6. Remark concerning the preceding two examples: The interest in the systems
with quantum current is found, above all, in the fact ihgreserved the completely
classical Einsteinian dynamics. One will then see a guamurrent appear that gets
added to the convection current. The total current iserwed, but not the convection
current. Charged moving bodies will not always keep théial personalities then, but
might possibly break up or coalesce into each other.

On the contrary, the second systeml.ode Broglie systems pure Maxwellian, but
its dynamics are somewhat complicated, due to the emé&on of internal tensions.
What is truly remarkable about such systems is the feignce that the complex
guantization equation takes on when it is put into the foirthe two real equations (27)
and (38): The first of those equations is the Jacobi equafithe system; it provides the
dynamics. The second one gives the conservatiorecirielty.

Il. - HOLONOMIC SYSTEMS.

7. Continuous holonomic system with(f + 1) degrees of freedomncf., U, II]. —
The motion of such a system is determinedfby {) parameterg’, g, ..., g " that one
considered to be the coordinates of a configuration spabenveitricl”,, dxX dx’ (i, v =
0,1, ...0. If x’% x’? x’3 x’* denote the coordinates of a point of the system with
respect to a reference system that is linked with entbne will have a change of
variables or holonomic constraint for an arbitraryteysx’, x*, x4, x°, x* that takes the
form:

[U*, (87), (94)] (49)

{ D= (8, X3 8, X4 d., §) (FL2,3,4

0 0

More precisely, one supposes that there exist differdoris d and o that enjoy the
following properties: Whenls# 0, dd # 0, one hasix' = 0; whends = 0, &" = 0, one
hasox" # 0.
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Now, it is clear that all of the arguments of th&tR can be transposed to the new
configuration space with,, d¥' d¥. The constantsy ¢* ande will be replaced by the
constantsryy , ¢ , resp., which can be calculated as functions ofgikilen density
factors by the formulas:

Ty = [ Oy OXOREXSRY,

[U", (90)]
Tie) = j Oy OXOXIXO X",

(50)

In these formulas, the symbdhas the significance that was just recallgg:is the total
internal (rest) energy, ange is the total charge of the continuous system (charged
material particle). Apart from that, all of the fastas will remain the same: Of course,
the Latin indices vary from 1 tonow, while the Greek indices vary from 0fto

On the other hand, that extension of our principlesht® riew configuration is
natural, because if one abstracts those principles, fomthwent, then one can calculate,
just as one did in nd.0 of U*, thel ,,,, by starting with thgy,, (X', 3%, X°, X*) of the five-
dimensional universe, and one will effectively findagabi equation that will permit one
to generalize the quantization equation in the configurapaces thus-determined. Of
course, the field ., that is determined by starting from thg (the original field), as was
just said, does not rigorously coincide with fi¢lg, that is calculated from the method
that was developed in Part | (vithe corresponding fie)d the new element that wave
mechanics brings with it is precisely that differenc@he correspondence principle
asserts that in configuration space, the field thaahasephysicalsignificance is not the
original field, but, in fact, the corresponding field.

lll. - SYSTEMS OF N POINTS. STATISTICS.

8. System ofN points embedded in a given field— Consider a fieldj (X, 3, X,
XY, @1 (¢, %, %3, X*) that is known at each. Introdubkbodies {est bodieswith masses
and chargeg'™, 1 (v=1, 2, ...,N). We shall treat the dynamics and quantization of

that system by a method whose principle is due to Del&on
We first argue in space-time. The system hidsdégrees of freedom. Take the

parameters of motion to be the coordinates(i = 1, 2, 3, 4,v =1, 2, ...,N) of the
various points; leu) be the corresponding components of the velocitiasgeneral, let
f, denote the value of a functiéfior X = x', u' = u!,i=1, 2, 3, 4. Set:

U=ou,
{ Y=g ud. 1)

The fundamental theorem:(

() TH. DE DONDER,Théorie des Champs gravifiquem. 38, equation (100).
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G

is written:

a3

in the present case for each point of the system.
Set:

A= 7Y +719U,

we can write equations (53) in the Lagrangian form:

dfon) (o) _
ds\ oy | (a% )

=N _ 08

o ox

Upon setting:

one will deduce thé&l Jacobi equations:

ik as‘/ (e a$ C] (My2 —
gv(a)g T CD j(a)é T q)kvj (Tv ) O

from theN systems of equations (55), by the usual method.

15

(52)

(53)

(54)

(55)

(56)

(57)

In reality, the problem then splits inbbindependent equations. One can nonetheless
introduce aunique 4N-dimensional configuration space to represent the staHtébe

system. To that effect, set:

A=A,

ON_ON, 0N _ON,
ox ox ~ ou, ou

14

and observe that:

Moreover, equations (55) can be written:

sloa 330

Upon setting:

(58)

(59)

(60)

(61)
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one will deduce theingleJacobi equation from the system (60):

> {gv [ > rée@iyj[(,?—j—r‘e@kvj (rﬁ"’f} =0, (®

0x;
which is written:

7(m ,
ds’ = D G 0% df (63)
in configuration space, with:

r™=3"r",
v

Equation (62) is equivalent 8 equations (57), moreover. In order to see thas, i
sufficient to compare (56) and (61) using (59); basp; , = IO.V and:

95 98, (64)
X, X

S=2.5(%. %. %, ¥).

hence:

Thanks to (64), equation (62) can be written:

2w {9"5 (65” ‘e>¢i,vj(g—jk—rs%k,vj—(rs“’)z} =0. (65)

0x,

We shall construct the world-functidn that enters into the variation principle by
starting with that equation (65). It will dependam N complex functions¥, and their
conjugates¥, .

First, introduce the fifth dimensiodl, which takes the valug’ at the/"" point. Set:

S _9§_17°

= : 66
o o a (66)
and further define the*", ., by (4) and (5), resp. Equation (65) is written:
03,03 @)
s rm =0, 67
Zm{"aa o {( F =5 (67)

in the 9N-dimensional configuration space with:
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rm

Ao = D5 Vo X X (68)
From (67), one must take:
1 oy, ov 1 —
L= ik = W, W 69
; I.[Em) {VZ a)ﬂf a)q//j kv (ﬂv 2)(} v V} ( )

to be the world-functioi, upon setting:

h ¢’
(70)

In addition, one must observe that in the presertl@ng the Einstein and Maxwell
equations play a role ontyynamically since the fields are assumed to be given. Other

than the dynamical equations, which contain the teAgp(W¥, ,¥,), the variational

principle will then yield A quantization equations iK,, W . As one sees, the

corresponding system is no longer determined by just esert€& % but by a set oN
tensorsT  (or, if one prefers, by a tensor of rank Ehat has a very special form). In

particular, the “densities” of the corresponding systa® defined by two sets i
functions, that proportional to the squares of thplandesW, , W, , respectively.

9. Statistics.— Apply these results to a systemMfdentical points. In that case,
one will get thesameformal equations foall value of the index. One can then say
thatformally the problem is the same as the one that was treateari | in relation to a
single point. One can even dispense with teplicit consideration of the N
dimensional configuration space and say, more bridibtthe system that corresponds
to a single point(as described in Part Iy also the system that corresponds to an
arbitrary system of points of the same natthvat is embedded in the given field. The
latter restriction is obviously essential: When one saers just one point, the
corresponding system will permit one to calculateardy the motion of the point in the
field, but also the field at each point. When one ictems a “cloud” of points, the
corresponding system will give only the motion; one wil longer have anirf sich
geschlossene Feldthedtig).

Now, as L. de Broglie ingeniously remarked in his aforeroratl article, one can
interpret the motion of a cloud of points in a fistdtistically If one considers a particle
that arrives at an arbitrary (unknown) point in thedfialith a given velocity then the
density of the cloud at each point of the field will begmrtional to theprobability of

() “An intrinsically-closed field theory.” Cf., Schrédier, Ann. Phys. (Leipzigd2 (1927), pp. 265t
seq, to the end.
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presenceof the particle at that point. However, by virtue tbe correspondence
principle, the density that we must consider is thathefcorresponding system. Now,

that density is proportional t# . We thus arrive at thgtatistical interpretatiorof the

function W that Born had proposed. Born and his school placed thasstisal
interpretation at the basis of a remarkable theoryisheadically different from the one
that was presented in the present work. The considesatiat were just developed seem
to show that, given the present state of affairs amimg the question, the statistical
aspect of atomic phenomena, as interesting and fraifit is, does not necessarily lead
to the “indeterministic” attitude of the Gottingen schdawyvever.

The initial idea of my argument was that of L. de BeaglHowever, | arrived at the
same conclusion as he along a very different p@ie might say that whereas he sought
to superimposdhe individual waves in order to obtain the wave te& system, | have
simply juxtaposedhen. In that fashiorthanks to the correspondence princjpleould
avoid the hypothesis of the “double solution” that ongbigged to introduce.

10. Observations about non-holonomic systems bdfpoints that are embedded in
their field. — On first glance, it seems that can extend thsiderations of numbe3 to a
system ofN points that interact with each other, because, aémldeof the day, the field
of such a system is likewise finite and well-definedeath point. However, that
viewpoint is contrary to the spirit of the Lagrangraethod; that is why | resorted to the
mode of exposition that | adopted. If one would like ¢peat the considerations of
number8 for the present case then one will be stopped by equg@®nor (59) in the
application of that Lagrangian method.

In order to treat such systems, one mysinfroduce a M-dimensional configuration
spacea priori with a metric of the form:

g (@ g, ..., q™) dd ddf (,k=1,2, .., &N).
| hope to be able to return to the matters above i metalil.

Institut de physique mathématique de I'Université libre dex@les
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() Cf., TH. DE DONDER, Bull. Acad. roy. de Belg. (53, pp. 509, ().



