The focal theory of linear ray congruences

Inaugural dissertation

for the
mathematical and natural scientific faculty of
Kaiser Wilhelm University in Strassburg for the conferral of a doctorate

Submitted by

Hans Schlusser

at Karlsruhe, i. B.

Translated by D. H. Delphenich

Leipzig
Printed by August Hoffmann
Special printing works for dissertations
1912

Contents.

Page
Introduction 1
I. General properties of a linear ray congruence 1
II. The focal paraboloid 6
III. The second-degree ruled surface that is linked with a focal ruled family 16
IV. Polar systems of a linear ray congruence of the first and second kind 20
V. Confocal, linear ray congruences. (the principal axis cylindroid) 27
VI. The rotational, linear ray congruence. 34

Jolles gave the focal theory of linear ray congruences and some theorems on the principal axis cylindroid, which is closely connected with it, in volume 63 of the Mathematischen Annalen $\left({ }^{1}\right)$. His investigations are carried out in a purely synthetic way, and the proofs thus often present difficulties that can be overcome only by circumstantial, over-extended devices, especially when one treats imaginary structures. However, if we seek to present Jolles's results by means of an analytical method then that will show that not only is the transition to imaginary structures possible, with no further assumptions, but that the proofs will assume a much simpler and more intuitive form. In what follows, we therefore must first seek an analytical representation of a congruence that will define the foundation for the simplest-possible development of focal theory. However, whereas Jolles defined the focal paraboloid to be a surface that is enveloped by the so-called "middle planes" of the linear congruence, we will start from the rotational ruled family that is contained in the congruence, which consists of rotational axes that determine the focal paraboloid and define it as the geometric locus of these rotational axes. The polar properties of the focal paraboloid will allow us to pursue some general considerations about the polar systems for which one of the linear congruences is invariant, and we will, in turn, deal with the search for an analytical representation of "primary" and "secondary" polar spaces, as Jolles called these systems in another place $\left({ }^{2}\right)$. All of the polar properties of the focal paraboloid can be easily verified as special cases of this more general theorem. When we then conversely consider the paraboloid and the involutions of its ruling rays to be given, we will be led to the theory of "confocal" linear ray congruences and to some theorems that are connected with the principal axis cylindroid and the relationships between the cylindroid and the focal paraboloid. Finally, the results that were found will be carried over into the special case of the "rotational" linear congruence.

I. General properties of a linear ray congruence.

We imagine that a linear ray congruence is given by the intersection of two conjugate (null-invariant) ray complexes. Two complexes (A and B) are represented analytically by the equations:

$$
\begin{array}{ll}
A: & (a, p) \equiv a_{34} p_{12}+a_{24} p_{31}+a_{14} p_{23}+a_{23} p_{14}+a_{31} p_{24}+a_{12} p_{34}=0, \\
B: & (b, p) \equiv b_{34} p_{12}+b_{24} p_{31}+b_{14} p_{23}+b_{23} p_{14}+b_{31} p_{24}+b_{12} p_{34}=0, \tag{2}
\end{array}
$$

[^0]where the quantities $a_{i k}=a_{k i}\left(b_{i k}=b_{k i}\right.$, resp.) are constants and the $p_{i k}=-p_{k i}$ mean the line coordinates of its rays. They will be called conjugate (${ }^{1}$) when one of them is associated with the other one, and we assert:

The necessary and sufficient analytical condition for the conjugate position of two linear ray complexes is:

$$
\begin{equation*}
(a, b)=a_{12} b_{34}+a_{23} b_{14}+a_{31} b_{24}+a_{14} b_{23}+a_{24} b_{31}+a_{34} b_{12}=0 . \tag{3}
\end{equation*}
$$

In order to prove this, we consider two lines that will be given by their line coordinates $p_{i k}$ and $q_{i k}$. If we now assume that they are associated with each other by the complex A then we will get $\left({ }^{2}\right)$:

$$
\begin{equation*}
\rho q_{i k}=(a, p) a_{i k}-a \cdot p_{i k}, \tag{4}
\end{equation*}
$$

where ρ is a proportionality factor and $a=a_{12} a_{34}+a_{23} a_{14}+a_{31} a_{24} \neq 0$. If we further assume that the line $p_{i k}$ belongs to complex B, but not to complex A, then:

$$
\begin{equation*}
(b, p)=0 ; \quad(a, p) \neq 0 \tag{5}
\end{equation*}
$$

If we then multiply the six equations that are included in (4) in sequence by $b_{l, m}$ (where l, m are the variations of the numbers $1,2,3,4$ that are "complementary" to i, k) and add them then that will give:

$$
\begin{equation*}
\rho(b, q)=(a, p) \cdot(b, a)-a(b, p), \tag{6}
\end{equation*}
$$

where the last term will vanish, due to (5). If we now demand that the line $q_{i k}$ must likewise be contained in the complex B, but not in A, so:

$$
(b, q)=0, \quad(a, q) \neq 0
$$

then it will follow from (6) that:

$$
(a, b)=0 .
$$

Q. E. D.

A null correlation is defined by the two complexes A and B whose null rays comprise the rays of the complex in question:

$$
\begin{equation*}
\rho x_{i}=\sum_{k=1}^{4} a_{i k} u_{k}, \quad \mid \quad \sigma x_{k}^{\prime}=\sum_{l=1}^{4} b_{k l} u_{k}^{\prime}, \tag{7a}
\end{equation*}
$$

${ }_{\left({ }^{1}\right)}{ }^{2}$ Reye, Geometrie der Lage II, $4^{\text {th }}$ ed., lecture 18.
(${ }^{2}$) Staude, Analytische Geometrie I, 1910, pp. 469, et seq.

$$
\begin{gather*}
\rho u_{i}=\sum_{k=1}^{4} \alpha_{i k} u_{k}, \quad \sigma u_{k}^{\prime}=\sum_{l=1}^{4} \beta_{k l} u_{k}^{\prime}, \tag{7b}\\
\left(\alpha_{12}=a_{34}, \alpha_{23}=a_{14}, \text { etc. }\right) \quad\left(\beta_{12}=b_{34}, \beta_{23}=b_{14}, \text { etc. }\right)
\end{gather*}
$$

For both correlations, a point will lie in its polar plane, and any plane will go through its pole. If we now seek the polar plane π to a point P that is associated with it by the correlation A and then construct the pole P^{\prime} that corresponds to the plane π according to B then we will have defined a collineation $\left(P \rightarrow P^{\prime}\right)$. Two points P and P^{\prime} will then correspond to each other collinearly when they are associated with the same plane π as the polar plane under the two correlations $(A$ and $B)$. We will obtain the analytical expression for this collinear relationship when set $u_{k}=u_{k}^{\prime}$ in (7) and substitute the value of u_{k}^{\prime} from the right-hand side of equation (7b) in the left-hand side of equation (7a). Thus:

$$
\begin{equation*}
\lambda x_{i}=\sum_{k, l=1}^{4} \beta_{k l} a_{i k} x_{l}^{\prime} \tag{8a}
\end{equation*}
$$

and analogously, it will follow for the coordinates of two corresponding planes that:

$$
\begin{equation*}
\lambda u_{i}=\sum_{k, l=1}^{4} \alpha_{k l} b_{i k} u_{l}^{\prime} \tag{8b}
\end{equation*}
$$

If we assume that the complexes A and B are conjugate then this collineation will be an involution; i.e., each element will correspond to the other one in a double way. Analytically, this can be show quite easily when one switches $a_{i k}$ with $b_{i k}$ ($\alpha_{i k}$ with $\beta_{i k}$, resp.) in (8) and considers the condition (3).

The double rays of an involutory collineation - i.e., the connecting lines of any two corresponding points (lines of intersection of two corresponding planes, resp.) - are the rays that are common to the complexes A and B. They will then define the linear ray congruence that is represented by A and B.

However, we will arrive at far simpler equations, as will be shown, when we base our investigations upon a congruence C_{1}^{1} that is defined by the following two complexes:

$$
\left.\alpha) \begin{array}{|l|}
p_{23}+\alpha p_{14}=0,
\end{array} \beta\right) p_{13}+\beta p_{14}=0
$$

where α and β are constant quantities. With this specialization of the complex equations, we have, in fact, arrived at the following result: We can assume that the coordinate tetrahedron to which the

quantities $p_{i k}$ are referred is such that one of its faces (say, $A_{1} A_{2} A_{3}$, when we denote the vertices by A_{i}) goes to infinity, and the remaining ones are perpendicular to each other. The edges of the tetrahedron that do not lie in the plane at infinity will thus define a rectangular coordinate cross $A_{4} A_{1 \infty} ; A_{4} A_{2 \infty} ; A_{4} A_{3 \infty}$, whose axes we will refer to as the x, y, and z axes, respectively, for the sake of convenience in our terminology. Equations (7) then immediately show that the point A_{4} is associated with the plane $A_{2} A_{3} A_{4}\left(x_{1}=0\right)$ through the complex α), while the plane $A_{1} A_{3} A_{4}\left(x_{2}=0\right)$ will correspond to it in the complex β). It is known that one has:

	p_{23}	p_{31}	p_{12}	p_{14}	p_{24}	p_{34}
$A_{2} A_{3}$	1	0	0	0	0	0
$A_{1} A_{3}$	0	1	0	0	0	0
$A_{1} A_{2}$	0	0	1	0	0	0
$A_{1} A_{4}$	0	0	0	1	0	0
$A_{2} A_{4}$	0	0	0	0	1	0
$A_{3} A_{4}$	0	0	0	0	0	1

for the coordinates of the edges of the tetrahedron.
The edges $A_{1} A_{2}$ and $A_{3} A_{4}$ are contained in the congruence C_{1}^{1}, since their coordinates satisfy equations α) and β). By contrast, it follows from equations (4) that the lines $A_{2} A_{3}$ and $A_{1} A_{4}$ are conjugate in complex α), while $A_{1} A_{3}$ and $A_{2} A_{4}$ are conjugate in complex β). The coordinate axes are, moreover, the three symmetry axes of the congruence. Equations α) and β), which we can also write in the form:

$$
\beta \text {) }
$$

$$
\begin{align*}
& x_{2} x_{3}^{\prime}-x_{3} x_{2}^{\prime}+\alpha\left(x_{1} x_{4}^{\prime}-x_{4} x_{1}^{\prime}\right)=0 \\
& x_{1} x_{3}^{\prime}-x_{3} x_{1}^{\prime}+\beta\left(x_{2} x_{4}^{\prime}-x_{4} x_{2}^{\prime}\right)=0,
\end{align*}
$$

will then remain valid when we first replace the quantities x_{3}, x_{3}^{\prime} and x_{1}, x_{1}^{\prime}, and then x_{2}, x_{2}^{\prime} and x_{1}, x_{1}^{\prime}, and finally x_{2}, x_{2}^{\prime} and x_{3}, x_{3}^{\prime}, with their negative values.

With the choice of the complexes α) and β), equations (8) for the involutory collineation that is given by the congruence now go to:
when we omit an overall proportionality factor. The plane at infinity $\left(x_{4}=0\right)$ is, as is obvious, associated with the plane $x_{3}=0$, which is the "alignment plane" (Fluchtebene) of the congruence.

In order to find the guiding lines of C_{1}^{1}, we consider the pencil of complexes that is defined by the complexes α) and β), and whose common rays define the congruence C_{1}^{1}. It is represented by the equation:

$$
\begin{align*}
& x_{1}=x_{2}^{\prime}, \quad \beta x_{2}=\alpha x_{1}^{\prime}, \quad x_{3}=\alpha x_{4}, \quad \beta x_{4}=x_{3}^{\prime}, \tag{9}\\
& \beta u_{1}=\alpha u_{2}^{\prime}, \quad u_{2}=\alpha u_{1}^{\prime}, \quad \beta u_{3}=u_{4}^{\prime}, \quad u_{4}=\alpha u_{3}^{\prime}, \tag{10}
\end{align*}
$$

$$
p_{23}+\alpha p_{14}+\lambda\left(p_{13}+\beta p_{24}\right)=0 .
$$

Two special complexes are included in this pencil whose parameters λ_{1} and λ_{2} are the roots of the quadratic equation $\lambda^{2}=\alpha / \beta\left({ }^{1}\right)$. It follows that these special complexes have the equations:

$$
\left\{\begin{array}{l}
p_{23}+\alpha p_{14}+\sqrt{\frac{\alpha}{\beta}}\left(p_{13}+\beta p_{24}\right)=0 \tag{12}\\
p_{23}+\alpha p_{14}-\sqrt{\frac{\alpha}{\beta}}\left(p_{13}+\beta p_{24}\right)=0
\end{array}\right.
$$

and its guiding lines are the guiding lines of C_{1}^{1}, whose line coordinates can be obtained immediately from (12):

$$
p_{13}: p_{23}: p_{31}: p_{14}: p_{24}: p_{34}=\left\{\begin{array}{l}
0: \alpha:+\sqrt{\alpha \beta}: 1:-\sqrt{\frac{\alpha}{\beta}}: 0, \tag{13}\\
0: \alpha:-\sqrt{\alpha \beta}: 1:+\sqrt{\frac{\alpha}{\beta}}: 0 .
\end{array}\right.
$$

The equations of the two guiding lines will then read:

$$
\begin{cases}x_{3}=+\sqrt{\alpha \beta}, & x_{2}=+\sqrt{\frac{\alpha}{\beta}} x_{1} \tag{14}\\ x_{3}=-\sqrt{\alpha \beta}, & x_{2}=-\sqrt{\frac{\alpha}{\beta}} x_{1} .\end{cases}
$$

They will then intersect the z-axis at right angles, and the angle of their orthogonal projections onto the $x y$-plane will be bisected by the (x and y) coordinate axes. They are $\left\{\begin{array}{l}\text { real } \\ \text { imaginary } \\ \text { coincident }\end{array}\right\}$ according to whether $\alpha \cdot \beta$ is $>0,<0$, or $=0$, respectively. Thus:

The linear ray congruence C_{1}^{1} is elliptic or hyperbolic, according to whether the quantities α and β have different or equal signs, respectively, and parabolic when α or β vanishes.

[^1]
II. The focal paraboloid.

In order to find the focal properties of our congruence C_{1}^{1}, we now first ask what the second-order ruled surfaces are that have one ruled family that consists of rays of the congruence. A second-order ruled surface is generally defined by three skew lines, which will be given by their line coordinates $q_{i k}, r_{i k}, s_{i k}$. All of the points of a fourth line ($p_{i k}$) will then belong to the surface when it simultaneously cuts the lines q, r, s. The analytical conditions for that read:

$$
\begin{aligned}
& q_{34} p_{12}+q_{24} p_{31}+q_{14} p_{23}+q_{12} p_{34}+q_{31} p_{24}+q_{23} p_{14}=0, \\
& r_{34} p_{12}+r_{24} p_{31}+r_{14} p_{23}+r_{12} p_{34}+r_{31} p_{24}+r_{23} p_{14}=0 \\
& s_{34} p_{12}+s_{24} p_{31}+s_{14} p_{23}+s_{12} p_{34}+s_{31} p_{24}+s_{23} p_{14}=0 .
\end{aligned}
$$

If we add the identities that the coordinates x_{i} of any point that belongs to a line $\left(p_{i k}\right)$ must satisfy, namely:

$$
\begin{aligned}
& x_{2} p_{34}-x_{3} p_{24}+x_{4} p_{23}=0, \\
& x_{3} p_{14}-x_{1} p_{34}+x_{4} p_{31}=0, \\
& x_{1} p_{24}-x_{2} p_{14}+x_{4} p_{12}=0,
\end{aligned}
$$

to these then we will have six independent, homogeneous equations between the six quantities $p_{i k}$. If we eliminate them then the desired ruled surface will be represented by an equation in running point coordinates x_{i} whose coefficients will be composed from the line coordinates of the three given lines. The result of the elimination is the determinant of the six equations, which, from a theorem of the theory of determinants, must vanish:

$$
\left|\begin{array}{rrrrrr}
q_{23} & q_{34} & q_{24} & q_{12} & q_{31} & q_{14} \\
r_{23} & r_{34} & r_{24} & r_{12} & r_{31} & r_{14} \\
s_{23} & s_{34} & s_{24} & s_{12} & s_{31} & s_{14} \\
0 & 0 & 0 & x_{2} & -x_{3} & x_{4} \\
x_{3} & 0 & x_{4} & -x_{1} & 0 & 0 \\
-x_{2} & x_{4} & 0 & 0 & x_{1} & 0
\end{array}\right|=0
$$

We will obviously obtain a third-degree equation; one can then eliminate x_{4} as a factor, since it cannot actually be zero. If we develop the determinant and set:

$$
\left|q_{23} q_{34} q_{24}\right| \text {, etc. for }\left|\begin{array}{lll}
q_{23} & q_{34} & q_{24} \\
r_{23} & r_{34} & r_{24} \\
s_{23} & s_{34} & s_{24}
\end{array}\right| \text {, etc., }
$$

to abbreviate, then the equation will reduce to:

$$
\begin{align*}
&\left|q_{23} q_{34} q_{24}\right| \cdot x_{1}^{2}+\left|q_{34} q_{31} q_{14}\right| \cdot x_{2}^{2}+ \\
&+\left|q_{12} q_{24} q_{14}\right| \cdot x_{3}^{2}+\left|q_{23} q_{12} q_{31}\right| \cdot x_{4}^{2} \\
&+\left\{\left|q_{34} q_{23} q_{14}\right|\right. \\
&\left.+\underline{\left|q_{34} q_{24} q_{31}\right|}\right\} \cdot x_{1} x_{2} \tag{1}\\
&+\left\{\underline{\left|q_{23} q_{24} q_{14}\right|}+\left|q_{34} q_{24} q_{12}\right|\right\} \cdot x_{1} x_{3} \\
&+\left\{\left|q_{31} q_{24} q_{14}\right|\right. \\
&+\left.+q_{34} q_{12} q_{14} \mid\right\} \cdot x_{2} x_{3} \\
&+\left.\underline{\left|q_{23} q_{24} q_{31}\right|}+\left|q_{23} q_{34} q_{12}\right|\right\} \cdot x_{1} x_{4} \\
&+\left\{\left|q_{34} q_{12} q_{31}\right|\right. \\
&+\left.\underline{\left|q_{23} q_{31} q_{14}\right|}\right\} \cdot x_{2} x_{4} \\
&+\left\{\underline{\left|q_{23} q_{12} q_{14}\right|}+\underline{\left|q_{12} q_{24} q_{31}\right|}\right\} \cdot x_{3} x_{4}=0 .
\end{align*}
$$

If we now assume that the rectilinear surface that is represented in this way contains a ruled family whose rays belong to the congruence $C_{1}^{1}-$ e.g., the ruled family that is determined by the lines q, r, s - then one will have the equation:

$$
\left\{\begin{array}{cc}
q_{23}=-\alpha q_{14}, & q_{31}=\beta q_{24}, \tag{2}\\
r_{23}=-\alpha r_{14}, & r_{31}=\beta r_{24}, \\
s_{23}=-\alpha s_{14}, & s_{31}=\beta s_{24} .
\end{array}\right.
$$

However, one will then have:

$$
\left|q_{24} q_{31} q_{14}\right|=\beta\left|q_{24} q_{24} q_{14}\right| \equiv 0,
$$

since two columns of the determinant are equal to each other. All of the underlined determinants in (1) will likewise vanish. Furthermore, as a result of (2), the following relations will exist between the remaining coefficients:

$$
\begin{array}{ll}
\left|q_{23} q_{34} q_{24}\right|=-\frac{\alpha}{\beta}\left|q_{34} q_{31} q_{14}\right|, & \left|q_{34} q_{24} q_{12}\right|=-\frac{1}{\beta}\left|q_{34} q_{12} q_{31}\right|, \\
\left|q_{12} q_{24} q_{14}\right|=-\frac{1}{\alpha \beta}\left|q_{23} q_{12} q_{31}\right|, & \left|q_{23} q_{34} q_{12}\right|=-\alpha\left|q_{34} q_{12} q_{14}\right| .
\end{array}
$$

We then get the result:
A second-order rectilinear surface, one of whose ruled families consists of rays of the linear congruence C_{1}^{1}, is represented by the equation:

$$
\begin{equation*}
\sum_{i, k=1}^{4} a_{i k} x_{i} x_{k}=0, \tag{3}
\end{equation*}
$$

where the following relations exist between the coefficients $a_{i k}$:

$$
\left\{\begin{array}{rlrlrl}
\beta a_{11} & =-\alpha a_{22}, & \alpha \beta a_{33} & =-a_{44}, & \beta a_{13} & =-\alpha_{34}, \tag{4}\\
a_{14} & =-\alpha a_{23}, & a_{12} & =0, & & a_{34}
\end{array}=0 . .\right.
$$

If we demand, in addition, that this ruled surface that is "included in the congruence C_{1}^{1} " must be a surface of rotation - and thus, a one-sheeted hyperboloid of rotation - then we will have two cases to distinguish: Namely, since one can have $a_{12}=0$ in equation (3), a_{23} and a_{13} cannot both be non-zero for the case of a surface of rotation $\left({ }^{1}\right)$. If we then take:

1) $a_{23}=0$
then we will have $a_{13}^{2}=\left(a_{11}-a_{22}\right)\left(a_{33}-a_{22}\right)$, in addition. As a result of (4), we will then also have $a_{14}=0$, and with hindsight of (4) we will obtain the values:

$$
f: g: h=\left(a_{11}-a_{22}\right): 0: a_{13}=(\alpha+\beta): 0: \frac{a_{24}}{a_{22}}
$$

for the direction cosines for the rotational axis of our surface of rotation. Moreover, one gets:

$$
x_{1}^{0}=0, \quad x_{2}^{0}=-\frac{a_{24}}{a_{22}}, \quad x_{3}^{0}=0, \quad x_{4}^{0}=1
$$

for the coordinates of the center of the surface. If:

$$
\text { 2) } a_{13}=0
$$

then it will follow from (4) that $a_{24}=0$, and one will have, in addition:

$$
a_{23}^{2}=\left(a_{22}-a_{11}\right)\left(a_{33}-a_{11}\right) .
$$

In this case, the direction cosines of the rotational axis will read:

$$
f: g: h=0:\left(a_{22}-a_{11}\right): a_{23}=0:(\alpha+\beta): \frac{a_{14}}{a_{11}}
$$

and the coordinates of the center of the surface will be:

$$
x_{1}^{0}=-\frac{a_{24}}{a_{22}}, \quad x_{2}^{0}=0, \quad x_{3}^{0}=0, \quad x_{4}^{0}=1
$$

[^2]so the center of our surface of rotation will lie on either the x-axis or the y-axis, and the rotational axis will be perpendicular to the coordinate axes in question. We have thus found:

There are two families of surfaces of rotation such that one ruled family includes the linear congruence C_{1}^{1}. The rotational axis of the first family cuts the x-axis perpendicularly, and that of the second family cuts the y-axis perpendicularly. The equations of the rotational axis are:

1) $\begin{array}{ll}x_{1}=-\rho & f: g: h=0:(\alpha+\beta): \rho \\ & \text { or } \frac{x_{2}}{x_{3}}=\frac{\alpha+\beta}{\rho}, \\ \text { 2) } x_{2}=-\sigma & f: g: h=(\alpha+\beta): 0: \sigma\end{array} \quad$ or $\frac{x_{1}}{x_{3}}=\frac{\alpha+\beta}{\sigma}$.

If we now eliminate the parameters ρ or σ from this then we will obtain a seconddegree surface as the geometric locus of these rotational axes:

$$
\begin{equation*}
x_{1} \cdot x_{2}=-(\alpha+\beta) x_{3} \cdot x_{4}, \tag{6}
\end{equation*}
$$

and indeed, an equilateral, hyperbolic paraboloid that will have the x and y axes as its guiding lines. Following Jolles, we call it the focal paraboloid and its ruling rays, the focal ruling rays of the congruence, and thus get the theorem:

The ruling rays of the focal paraboloid, and only these rays, are the rotational axes of a second-degree surface of rotation, one of whose ruled families is included in the congruence C_{1}^{1}.

However, before we go further into the consideration of this surface of rotation that is included in the congruence, we would like to derive the equation of the focal paraboloid in another way that will lead us to more interesting focal properties.

Any ray of the linear congruence C_{1}^{1} is the carrier of a point involution and a plane involution of the gathered (geschart) involutory space that is determined by C_{1}^{1}. The latter contains two conjugate planes E and E^{\prime}, in general, that are perpendicular to each other and which we, following Jolles,
call middle planes. Each of these middle planes intersects the ray n of the congruence that is perpendicular to it at the midpoint M of its point involution; i.e., the point that is associated with the infinitely distant point M^{\prime} of the ray $n . n$ is then parallel to E^{\prime}, and its infinitely-distant intersection with E^{\prime} is the point M^{\prime} that is conjugate to M. The midpoints of all rays of the congruence lie in the plane $\left(x_{3}=0\right)$ that is associated with the plane at infinity, and thus in the alignment plane of the linear congruence. If we now seek to determine the geometric locus of all middle planes of C_{1}^{1} then we will have to subject the coordinates u_{i} and u_{i}^{\prime} of E and E^{\prime}, first to equations (10), pp. 4, but then, since E is perpendicular to E^{\prime}, also to the orthogonality condition:

$$
u_{1} u_{1}^{\prime}+u_{2} u_{2}^{\prime}+u_{3} u_{3}^{\prime}=0 .
$$

However, the latter goes to:

$$
\begin{equation*}
(\alpha+\beta) u_{1} u_{2}+u_{2} u_{4}=0 \tag{7}
\end{equation*}
$$

with the help of (10), pp. 4.
The coordinates of the middle plane then satisfy a second-degree equation; we then obtain a surface of class two that will be enveloped by the middle planes of the congruence. If we replace the plane coordinates in (7) with point coordinates then that will show that this surface is identical with the focal paraboloid that was found on pp .9 . In fact, we get the equation:

$$
\begin{equation*}
x_{1} x_{2}+(\alpha+\beta) x_{3} x_{4}=0 \tag{6}
\end{equation*}
$$

One then has the theorem:
The focal paraboloid is enveloped by the middle planes of the congruence (i.e., the middle planes of their ∞^{2} rays). Its vertex plane is the locus of midpoints of the rays of the congruence.

Conversely, one will have:
Each plane through a focal ruling ray is a middle plane of the linear congruence; i.e., it is the perpendicular to the plane that is associated with it.

If we then draw an arbitrary plane through - e.g., the focal ruling ray (see pp. 9):

$$
\begin{equation*}
x_{1}=-\rho, \quad \rho x_{2}=(\alpha+\beta) x_{3}, \tag{7}
\end{equation*}
$$

then its equation will read:

$$
\begin{equation*}
x_{1}-\mu \rho x_{2}+\mu(\alpha+\beta) x_{3}+\rho x_{4}=0 \tag{8}
\end{equation*}
$$

From equation (10), pp. 4, we then get:

$$
\begin{equation*}
-\mu \rho x_{1}+\frac{\beta}{\alpha} x_{2}+\frac{\rho}{\alpha} x_{3}+\mu \beta(\alpha+\beta) x_{4}=0 \tag{9}
\end{equation*}
$$

for the plane that is conjugate to it, and see from it that orthogonality condition:

$$
u_{1} u_{1}^{\prime}+u_{2} u_{2}^{\prime}+u_{3} u_{3}^{\prime}=0
$$

for the two planes will be fulfilled, so it is, in fact, the middle plane.
As a tangential plane to the focal paraboloid, any middle plane of both focal ruled families will contain one ray of each. If we now associate the two rays that will be cut out of the same focal ruled family by two conjugate middle planes with each other as corresponding then we will obtain an involutory pairing in each focal ruled family and, with Jolles, call these two involutions the focal involutions of the linear congruence. Since all focal ruled families cut the x (y, resp.) axis perpendicularly, we will find the analytic expression for this involution when we look for the point of intersection of two conjugate middle planes with the $x(y$, resp.) axis. The coordinates of that point will follow immediately from the foregoing two equations:

$$
x_{1}=-\rho, \quad x_{1}^{\prime}=\frac{\beta(\alpha+\beta)}{\rho},
$$

or

$$
x_{2}=-\sigma, \quad x_{2}^{\prime}=\frac{\beta(\alpha+\beta)}{\sigma},
$$

resp.
By eliminating the parameter ρ (σ, resp.), one will obtain:

$$
\begin{equation*}
x_{1} \cdot x_{1}^{\prime}=-\beta(\alpha+\beta), \quad x_{2} \cdot x_{2}^{\prime}=-\alpha(\alpha+\beta) \tag{10}
\end{equation*}
$$

for the two focal involutions. The infinitely-distant ray of the one family will then correspond to the x-axis, while the infinitely-distant ray in the other family will be associated with the y-axis. The (real or imaginary) double rays of the focal involution are called the focal axes of the congruence. One then has $x_{1}=x_{1}^{\prime}\left(x_{2}=x_{2}^{\prime}\right.$, resp.) for them. As a result, they will have the parameter:

$$
\begin{equation*}
\bar{\rho}= \pm \sqrt{-\beta(\alpha+\beta)} \quad(\bar{\sigma}= \pm \sqrt{-\alpha(\alpha+\beta)}, \text { resp. }) \tag{11}
\end{equation*}
$$

and their equations will be:

$$
\begin{cases}x_{1}=\mp \bar{\rho}, & \frac{x_{2}}{x_{3}}= \pm \frac{\alpha+\beta}{\bar{\rho}}, \tag{12}\\ x_{2}=\mp \bar{\sigma}, & \frac{x_{1}}{x_{3}}= \pm \frac{\alpha+\beta}{\bar{\sigma}}, \text { resp. }\end{cases}
$$

One can calculate their line coordinates from this. They will be:

$$
p_{23}: p_{31}: p_{12}: p_{14}: p_{24}: p_{34}=\left\{\begin{array}{l}
0:(\alpha+\beta): \pm \sqrt{-\beta(\alpha+\beta)}: 0: 1: \pm \sqrt{\frac{\beta}{\alpha+\beta}} \\
\pm \sqrt{-\alpha(\alpha+\beta)}: 0:(\alpha+\beta): \pm \sqrt{\frac{\alpha+\beta}{-\alpha}: 0: 1}
\end{array}\right.
$$

From the foregoing, two associated planes, one of which goes through the focal axis, will intersect orthogonally in that focal axis. In fact, for two such planes, one will fulfill the orthogonality conditions:

$$
x_{1}-\mu \bar{\rho} x_{2}-(\alpha+\beta) \mu x_{3}-\bar{\rho} x_{4}=0
$$

and

$$
\alpha(\alpha+\beta) \mu x_{1}+\bar{\rho} x_{2}+\frac{1}{\alpha+\beta} x_{3}-\frac{\bar{\rho}}{\alpha(\alpha+\beta) \mu} x_{4}=0
$$

as one will verify immediately. With that, we have proved:
A linear ray congruence contains two pairs of (real or imaginary) focal axes. Their plane involutions are circular.

It still remains for us to decide when the focal axes are real and when they are imaginary. We found that the congruence C_{1}^{1} is elliptic or hyperbolic according to whether α and β have equal or different signs. Equations (11) and (12) will then yield the following table:

Congruence C_{1}^{1}	Focal involutions		Focal axes	α and β
hyperbolic	elliptic	elliptic	2 pairs, conj. imaginary	equal signs
elliptic	hyperbolic	elliptic	1 pair real, 1 pair imaginary	different signs

that is:

In the case of the hyperbolic congruence, the focal involutions are both elliptic, so the focal axes are all imaginary, while in the case of the elliptic congruence, the one focal ruled family is then hyperbolically-paired involutorily, so it will contain two real focal axes, while the involution of the other will be elliptic, so it will contain no real double element.

If we return to the truncated examination on pp 9 then we will next have to visualize once more the equations of the surface of rotation that is contained in the congruence C_{1}^{1}. We found two families of surfaces of rotation, so two kinds of second-degree equations, whose coefficients satisfied the following conditions:

$$
\begin{array}{ll}
\beta a_{11}=-\alpha a_{22}, & \alpha \beta a_{33}=-a_{44}, \quad \beta a_{13}=-a_{24}, \quad a_{12}=0, \\
a_{34}=0, & a_{14}=0, \quad a_{14}=0, \quad a_{13}^{2}=\left(a_{11}-a_{22}\right)\left(a_{33}-a_{22}\right), \tag{1}
\end{array}
$$

$$
\begin{array}{ll}
\beta a_{11}=-\alpha a_{22}, & \alpha \beta a_{33}=-a_{44}, \quad a_{14}=-\alpha a_{23}, \quad a_{12}=0, \tag{2}\\
a_{34}=0, & a_{13}=0, \quad a_{24}=0, \quad a_{23}^{2}=\left(a_{22}-a_{11}\right)\left(a_{33}-a_{22}\right) .
\end{array}
$$

If we would now like to answer the question of when these surfaces are real and when they are imaginary then we can apply the theorem:

The second-order surface that is represented by the equation $\sum_{i k} a_{i k} x_{i} x_{k}=0$ contains no real points if and only if:

1) The determinant $\left|a_{i k}\right|$ and all sub-determinants of order two $a_{i i} a_{k k}-a_{i k}^{2}$ are positive,
and
2) The diagonal terms $a_{i i}$ and their sub-determinants $A_{i i}$ have equal signs.

We next treat the first family of the surface of rotation, for which, conditions 1) are valid. With the help of these conditions, the determinant of the $a_{i k}$ can be represented as follows:

$$
\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & 0 & a_{13} & 0 \\
0 & a_{22} & 0 & a_{24} \\
a_{31} & 0 & a_{33} & 0 \\
0 & a_{42} & 0 & a_{44}
\end{array}\right|=\beta^{2}\left(a_{11} a_{33}-a_{13}^{2}\right)^{2}>0 .
$$

It is positive, since one is dealing with rectilinear surfaces. In the examination of second-order sub-determinants $a_{i i} a_{k k}-a_{i k}^{2}$, we distinguish the two cases of hyperbolic and elliptic congruences:
I. If C_{1}^{1} is hyperbolic then $\alpha \cdot \beta>0$, and these sub-determinants are not all positive. For example:

$$
a_{i i} a_{k k}-a_{i k}^{2},
$$

which will go to $-\alpha / \beta a_{22}^{2}$ as a result of conditions 1) above, is then certainly negative. Our surfaces of rotation of the first family will always be real then in the case of hyperbolic congruences.
II. If C_{1}^{1} is elliptic then the one focal ruled family will be hyperbolic, while the other one will be elliptic and involutorily paired. We accordingly distinguish two sub-cases:
a) Let the focal ruled family that the rotational axes of our first surface family comprise (they are the ones that cut the y-axis orthogonally) be elliptic and involutorily paired. One will then have (cf., pp. 11):

$$
-\alpha(\alpha+\beta)<0, \quad-\beta(\alpha+\beta)>0
$$

and one will obtain:

$$
\begin{gathered}
a_{11} a_{22}=-\frac{\alpha}{\beta} a_{22}^{2}>0, \quad a_{22} a_{33}=-\frac{\beta(\alpha+\beta)}{(\alpha+\beta)^{2}} a_{13}^{2}+a_{22}^{2}<0, \\
a_{33} a_{44}=-\alpha \beta a_{33}^{2}>0, \quad a_{11} a_{33}-a_{13}^{2}>0,
\end{gathered}
$$

since one has:

$$
a_{11} a_{33}=-\frac{\alpha}{\alpha+\beta} a_{13}^{2}=-\frac{\alpha}{\beta} a_{22}^{2} ;
$$

one will then have:

$$
\left|\frac{\alpha+\beta}{\alpha} a_{11} a_{33}\right|-a_{13}^{2}>0
$$

for the sub-determinants in question and, a fortiori, the foregoing inequality.

$$
\begin{gathered}
a_{11} a_{44}=-\alpha \beta a_{11} a_{33}>0, \\
a_{22} a_{44}-a_{24}^{2}=\beta^{2}\left(a_{11} a_{33}-a_{13}^{2}\right)>0 .
\end{gathered}
$$

Furthermore, the following expressions have equal signs:

$$
a_{11} \quad \text { and } \quad a_{22} a_{33} a_{44}-a_{33} a_{24}^{2}=a_{33}\left(a_{22} a_{44}-a_{24}^{2}\right),
$$

since one has:

$$
a_{22} a_{44}-a_{24}^{2}>0 \quad \text { and } \quad a_{11} a_{33}>0,
$$

and

$$
a_{22} \quad \text { and } \quad a_{11} a_{33} a_{44}-a_{44} a_{13}^{2}=a_{44}\left(a_{11} a_{33}-a_{13}^{2}\right),
$$

also have equal signs, on analogous grounds, as well as:

$$
\begin{array}{lll}
a_{22} & \text { and } & a_{11}\left(a_{22} a_{44}-a_{24}^{2}\right), \\
a_{44} & \text { and } & a_{22}\left(a_{11} a_{33}-a_{13}^{2}\right) .
\end{array}
$$

In case II.a), all of the surfaces are then imaginary.
b) However, if we assume that the focal ruled family that cuts the y-axis is hyperbolic and involutorily-paired, so we assume that:

$$
\alpha(\alpha+\beta)<0, \quad \beta(\alpha+\beta)>0,
$$

then the sub-determinants:

$$
a_{11} a_{22}-a_{12}^{2}=-\frac{\beta}{\alpha} a_{22}^{2} \quad \text { and } \quad a_{33} a_{44}-a_{34}^{2}=-\alpha \beta a_{44}^{2}
$$

will indeed always be positive, so the quantities:

$$
a_{11} a_{33}-a_{13}^{2} \quad \text { and } \quad a_{22} a_{44}-a_{24}^{2}
$$

can also assume negative values. In fact, with the help of conditions 1) on pp .13 , both expressions go to:

$$
a_{11} a_{33}-a_{13}^{2}=-\frac{1}{\beta(\alpha+\beta)}\left(a_{24}^{2}+\alpha(\alpha+\beta) a_{22}^{2}\right)
$$

and this expression will be $\left\{\begin{array}{l}\text { positive } \\ \text { negative }\end{array}\right\}$ according to whether $a_{24}^{2}+\alpha(\alpha+\beta) a_{22}^{2}$ is less than 0 or greater than it, resp. Our surfaces are then $\left\{\begin{array}{c}\text { imaginary } \\ \text { real }\end{array}\right\}$ according to whether $a_{24}^{2} / a_{22}^{2}<-\alpha(\alpha+\beta)$ or $>-\alpha(\alpha+\beta)$, resp., or:

$$
\frac{a_{24}}{a_{22}}> \pm \sqrt{-\alpha(\alpha+\beta)}, \text { resp. }
$$

On the left-hand side of this inequality, however, one finds precisely the value of the y coordinate of the surface midpoint (cf., pp. 8), while the root on the right-hand side gives the distance to the coordinate origin, at which the two focal axes meet the y-axis. (cf., pp. 11) Our surfaces of rotation are then real when the rotational axis cuts the y-axis outside of the focal axis and imaginary when it cuts the focal axis inside the focal axes, assuming that the still-remaining demands of the theorem on pp. 13 can be likewise fulfilled. However, this will actually lead to the same result. Namely, one will find that:

$$
a_{11} a_{44}>0, \quad a_{22} a_{33}>0
$$

if the surface is imaginary. However, this is the case, a fortiori, as long as:

$$
a_{11} a_{33}-a_{31}^{2}>0, \quad a_{22} a_{44}-a_{24}^{2}>0, \text { resp. }
$$

The remaining conditions, namely, that the following quantities have equal signs:

$$
\begin{array}{lll}
a_{11} & \text { and } & a_{33}\left(a_{22} a_{44}-a_{24}^{2}\right), \\
a_{22} & \text { and } & a_{44}\left(a_{11} a_{33}-a_{31}^{2}\right), \\
a_{33} & \text { and } & a_{11}\left(a_{22} a_{44}-a_{24}^{2}\right), \\
a_{44} & \text { and } & a_{22}\left(a_{11} a_{33}-a_{31}^{2}\right),
\end{array}
$$

will lead to the same inequality that was posed above.

If we also perform the same investigations that we carried out for the first family of surfaces of rotation with the second family then we will now have to apply condition 2 on pp. 13 , instead of conditions 1), and in that way we will get the corresponding results:

We can thus summarize all of this in the theorem:

Each generator of the focal paraboloid of a hyperbolic, linear ray congruence that lies at finite points is the rotational axis of a real second-degree surface of rotation such that one family of the congruence is contained in it. For elliptic congruences, the surfaces of rotation whose rotational axes belong to elliptic, involutory, focal ruled families will be imaginary, while the ones whose rotational axes define hyperbolic, involutory, focal ruled families will decompose into real and imaginary ones. They are real when their rotational axes cut outside the focal axes of the guiding lines of the paraboloid in question and imaginary when they cut inside the focal axes of the guiding lines.

III. The second-degree ruled surface that is linked with a focal ruled family.

We will obtain two further families of second-degree surfaces whose generators are most closely connected with the theory of the focal paraboloid by the following consideration: Any two mutually-associated rays of a focal ruled family are the axes of two projective pencils of planes whose planes are associated with each other by C_{1}^{1} and intersect at right angles in each ray of the congruence. The two pencils thus generate an orthogonal second-degree ruled surface, one of whose ruled families is contained in C_{1}^{1}; with Jolles, it is said to be linked to the respective ruled family of the focal paraboloid.

If we would like to find its equation then we image that we are given two associated rays of the focal ruling that, from pp. 9 , will be represented by the equations:

$$
x_{1}-\rho=0, \quad \rho x_{2}+(\alpha+\beta) x_{3}=0
$$

$$
x_{1}+\frac{\beta(\alpha+\beta)}{\rho}=0, \quad-\frac{\beta(\alpha+\beta)}{\rho} x_{2}+(\alpha+\beta) x_{3}=0 .
$$

Thus, if:

$$
\begin{equation*}
x_{1}-\mu \rho x_{2}-(\alpha+\beta) x_{3}-\rho x_{4}=0 \tag{1}
\end{equation*}
$$

is the equation of a plane that goes through the ray 1) then we will get:

$$
\begin{equation*}
x_{1}+\mu^{\prime} \beta \frac{\alpha+\beta}{\rho} x_{2}-\mu^{\prime}(\alpha+\beta) x_{3}+\frac{\beta(\alpha+\beta)}{\rho} x_{4}=0 \tag{2}
\end{equation*}
$$

for the conjugate plane that includes the ray 2). With the help of conditions (10) on pp. 4, this will yield:

$$
\mu^{\prime}=-\frac{1}{\mu(\alpha+\beta) \cdot \alpha}
$$

for the parameter μ^{\prime}. If we now eliminate the quantity μ from (1) and (2) then we will get:

$$
\begin{gathered}
\alpha \rho x_{1}^{2}-\beta \rho x_{2}^{2}+(\alpha+\beta) \rho x_{3}^{2}-\alpha \beta(\alpha+\beta) \rho x_{4}^{2} \\
+\left[\alpha \beta(\alpha+\beta)-\alpha \rho^{2}\right] x_{1} x_{1}+\left[\rho^{2}-\beta(\alpha+\beta)\right] x_{2} x_{3}=0
\end{gathered}
$$

as the equation of the desired orthogonal ruled surface, or:

$$
\begin{align*}
& \rho\left[\alpha x_{1}^{2}-\beta x_{2}^{2}+(\alpha+\beta) x_{3}^{2}-\alpha \beta(\alpha+\beta) x_{4}^{2}\right] \tag{3}\\
& \quad+\left[\rho^{2}-\beta(\alpha+\beta)\right]\left(x_{2} x_{3}-\alpha x_{1} x_{4}\right)=0 .
\end{align*}
$$

If we set:

$$
\begin{equation*}
2 \lambda=\frac{\rho^{2}-\beta(\alpha+\beta)}{\rho}, \tag{4}
\end{equation*}
$$

to abbreviate, then equation (3) will go to:

$$
\begin{equation*}
\alpha x_{1}^{2}-\beta x_{2}^{2}+(\alpha+\beta) x_{3}^{2}-\alpha \beta(\alpha+\beta) x_{4}^{2}+2 \lambda\left(x_{2} x_{3}-\alpha x_{1} x_{4}\right)=0 \tag{5}
\end{equation*}
$$

We can conclude from this that:

All of the orthogonal ruled surfaces that are linked with a focal ruled family define an F^{2}-pencil.

In a completely analogous way, we will get the equation of the F^{2}-pencil that is linked to the other focal ruled family:

$$
\begin{equation*}
\alpha x_{1}^{2}-\beta x_{2}^{2}-(\alpha+\beta) x_{3}^{2}+\alpha \beta(\alpha+\beta) x_{4}^{2}+2 \mu\left(x_{1} x_{3}-\beta x_{2} x_{4}\right)=0 \tag{6}
\end{equation*}
$$

Here, we have set:

$$
\begin{equation*}
2 \mu=\frac{\alpha(\alpha+\beta)-\sigma^{2}}{\sigma} \tag{7}
\end{equation*}
$$

where σ is deduced from (5).
For the derivation of equations (5) and (6), we start with two arbitrary focal ruling rays that are characterized by the parameter ρ (σ, resp.), and define the quantities λ (μ, resp.) by relations (4), [(7), resp.]. We can ascribe arbitrary values to them and thus obtain the ∞ surfaces of the pencils (5) and (6). If we ask whether each value of λ (μ, resp.) also belongs to a real surface of the pencil then we must seek to arrive again at the generators above by projective pencils of planes, which can indeed yield only real
surfaces, from the given surface equation (5) [(6), resp.], and in fact, we will find the axes of the pencils of planes when we obtain real values for the parameter ρ (σ, resp.) from equations (4) [(7), resp.] for given λ (μ, resp.). Equation (4) will read somewhat differently:

$$
\rho^{2}-2 \lambda \rho-\beta(\alpha+\beta)=0
$$

This is quadratic in ρ, and thus yields $\left\{\begin{array}{c}\text { real } \\ \text { imaginary }\end{array}\right\}$ values for ρ according to whether the discriminant:

$$
D_{1}=\lambda^{2}+\beta(\alpha+\beta) \text { is }>0 \text { or }<0, \text { resp. }
$$

Analogously, it will follow from (7) that σ is $\left\{\begin{array}{c}\text { real } \\ \text { imaginary }\end{array}\right\}$ according to whether:

$$
D_{2}=\mu^{2}+\alpha(\alpha+\beta) \text { is }>0 \text { or }<0, \text { resp. }
$$

If $\alpha \beta>0$ - i.e., if we are dealing with a hyperbolic congruence - then D_{1} and D_{2} will both be positive, so the roots of the quadratic equations (4) and (7) will always be real. In the case of elliptic congruences ($\alpha \beta<0$), we will have to imagine that the quantities α (α $+\beta$) and $\beta(\alpha+\beta)$ always have different signs. Thus, we will take, e.g., $\alpha(\alpha+\beta)>0$; by contrast, $\beta(\alpha+\beta)<0$, so ρ will be real, while σ will assume real or imaginary values according to whether:

$$
\mu^{2}>\text { or }<|\beta(\alpha+\beta)|
$$

If then follows from this, with the help of the argument in pp. 11, that:
In the case of hyperbolic congruences, the surfaces that are linked with the focal ruled family will always be real. If the congruence is elliptic then the pencil that is linked with the hyperbolic, involutory, focal ruled family - and only that pencil - can contain imaginary surfaces. Namely, its surfaces will real when:

$$
\begin{array}{|l|}
\hline \lambda^{2}>|\beta(\alpha+\beta)| \quad\left[\mu^{2}>|\alpha(\alpha+\beta)|, \text { resp. }\right] \\
\hline
\end{array}
$$

and imaginary when:

$$
\begin{array}{|l|}
\hline \lambda^{2}<|\beta(\alpha+\beta)| \quad\left[\mu^{2}>|\alpha(\alpha+\beta)|, \text { resp. }\right] \\
\hline
\end{array}
$$

The surfaces of each of the two pencils will degenerate twice into a ray, namely, the (real or imaginary) focal axes of the focal ruled family that the pencil in question is linked to. The focal axes that belong to the first focal ruled family are contained in all surfaces of the pencil that is linked to the other ruled family, so they will define a part of the basic curve of this pencil. In addition, all surfaces of both pencils will go through the guiding lines of the congruence, since one of their ruled families consists of rays of the congruence. The basic curve of each of the F^{2} pencils that are linked to a focal ruled family then decomposes into the (real or imaginary) guiding lines of the congruence and
the (real or imaginary) focal axes that belong to the other focal ruled family. The ruled rays of all surfaces of the pencil that are not contained in C_{1}^{1} will then cut the two focal axes that belong to the basic curve of this pencil, and will thus define a linear congruence $F_{1}{ }^{1}$ that we can say is "linked" to the focal ruled family in question. Analogously, a second linear congruence \mathfrak{F}_{1}^{1} will arise that is linked with the other focal ruled family, and, following Jolles, both of them shall be called the focal congruences of C_{1}^{1}. The guiding lines of a focal congruence that is linked with a focal ruled family are the two focal axes that belong to the other focal ruled family. The focal congruence in question will be hyperbolic or elliptic according to whether they are real or imaginary, so:

Congruence	Focal involutions		F_{1}^{1}, linked with the first ruled family	\mathfrak{F}_{1}^{1}, linked with the second ruled family
	First focal ruled family	Second focal ruled family		
hyperbolic	elliptic	elliptic	elliptic	elliptic
elliptic	hyperbolic	elliptic	elliptic	hyperbolic

Each of the two focal ruled families of a linear ray congruence C_{1}^{1} is linked with a linear ray congruence $F_{1}^{1}\left(\mathfrak{F}_{1}^{1}\right.$, resp.). $\quad F_{1}^{1}$ and \mathfrak{F}_{1}^{1} are called the focal congruences of C_{1}^{1}. If C_{1}^{1} is hyperbolic then the two focal congruences will be elliptic; if C_{1}^{1} is elliptic then the focal congruence that is linked with the hyperbolic, involutory focal ruled family will be elliptic, and the one that is linked with the elliptic, involutory, focal ruled families will be hyperbolic.

In order to represent the focal congruences analytically, we start with the line coordinates of the focal axes that were found on pp .11 :

$$
\begin{gathered}
p_{23}: p_{31}: p_{12}: p_{14}: p_{24}: p_{34}= \\
\left\{\begin{array}{c}
0: \beta(\alpha+\beta): \pm(\alpha+\beta) \sqrt{-\beta(\alpha+\beta)}: 0:(\alpha+\beta): \sqrt{-\beta(\alpha+\beta)} \\
-\alpha(\alpha+\beta): 0: \pm(\alpha+\beta) \sqrt{-\alpha(\alpha+\beta)}:(\alpha+\beta): 0: \sqrt{-\alpha(\alpha+\beta)}
\end{array}\right.
\end{gathered}
$$

and the exhibit the equations for the four special complexes that have the focal axes for their guiding lines. They read:

$$
\left\{\begin{array}{l}
(\alpha+\beta) p_{31}+\sqrt{-\beta(\alpha+\beta)} p_{12}+(\alpha+\beta) \sqrt{-\beta(\alpha+\beta)} p_{34}+\beta(\alpha+\beta) p_{24}=0 \\
(\alpha+\beta) p_{31}-\sqrt{-\beta(\alpha+\beta)} p_{12}+(\alpha+\beta) \sqrt{-\beta(\alpha+\beta)} p_{34}+\beta(\alpha+\beta) p_{24}=0,
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
(\alpha+\beta) p_{23}-\sqrt{-\alpha(\alpha+\beta)} p_{12}+(\alpha+\beta) \sqrt{-\alpha(\alpha+\beta)} p_{34}-\alpha(\alpha+\beta) p_{24}=0 \\
(\alpha+\beta) p_{23}+\sqrt{-\alpha(\alpha+\beta)} p_{12}-(\alpha+\beta) \sqrt{-\alpha(\alpha+\beta)} p_{34}-\alpha(\alpha+\beta) p_{24}=0
\end{array}\right.
$$

One of the two focal congruences will then be represented by either of these two complexes.

IV. Polar systems of a linear ray congruence of the first and second kind. ${ }^{(1)}$

In order to obtain information about the polar properties of the focal paraboloid and the ruled surfaces that are linked to any focal ruled family (Chap. III), we turn to the consideration of second-degree surfaces in this chapter that the linear congruence C_{1}^{1} will go to under their polar associations; i.e., we demand that each ray of the congruence is again assigned to a ray of the congruence as the reciprocal polar relative to such a surface. To that end, we next prove a theorem that will give us the basis for a simpler analytical association. Namely, we assert:

If the linear ray congruence C_{1}^{1} is taken to itself under the polar system of a seconddegree surface F^{2} then that surface will be invariant under the involutory collineation that is defined by C_{1}^{1}; i.e., a point of F^{2} will again be associated with a point of that surface by C_{1}^{1}.

In order to prove this, we write $P=\mathfrak{F} \pi$ and $s^{\prime}=\mathfrak{F} s$, when π is the polar plane of the point P (s^{\prime} is the reciprocal polar of s, resp.) relative to F^{2}; moreover, let $P=\mathfrak{C} P^{\prime}$, so P^{\prime} corresponds to the point P under the collineation that is defined by C_{1}^{1}. Now, if this involutory collineation \mathfrak{C} is characterized among all involutory collineations that convert C_{1}^{1} into itself by the fact that it takes each ray of C_{1}^{1} to itself (cf., pp. 3) then the transformation $\mathfrak{F C F}$ will also be a collineation that is characterized in that way. However, if the congruence C_{1}^{1} is converted into itself by the polarity \mathfrak{F} then the transformation $\mathfrak{F C F}$ will also be a collineation that is characterized in that way. Since s^{\prime} $=\mathfrak{F} s$ is again a ray of the congruence, one will then have the identity:

$$
\begin{equation*}
\mathfrak{C} \mathfrak{F} s \equiv \mathfrak{F} s \tag{1}
\end{equation*}
$$

Thus:

$$
\mathfrak{F C F}=\mathfrak{F F} s=s,
$$

and it will follow from this that:

[^3]$$
\mathfrak{F C F}=\mathfrak{C} \quad \text { or } \quad \mathfrak{F} \mathfrak{C}=\mathfrak{C} \mathfrak{F}
$$

If P and P^{\prime} are henceforth the poles of two planes π and π^{\prime} that are associated with each other by C_{1}^{1}, so in our notation:

$$
\begin{equation*}
P=\mathfrak{F} \pi, \quad P^{\prime}=\mathfrak{F} \pi, \quad \pi^{\prime}=\mathfrak{C} \pi, \tag{2}
\end{equation*}
$$

then we will also have:

$$
P^{\prime}=\mathfrak{F} \boldsymbol{t}^{\prime}=\mathfrak{F} \mathfrak{C} \pi=\mathfrak{C} \mathfrak{F} \pi=\mathfrak{C} P,
$$

or

$$
\begin{equation*}
P^{\prime}=\mathfrak{C} P ; \tag{5}
\end{equation*}
$$

i.e.:

A pole and its polar plane under F^{2} are again associated with a pole and its polar plane under the collineation \mathfrak{C}.

The validity of our assertion above now follows from this immediately. Namely, if the point P lies on the surface F then $\pi=\mathfrak{F} P$ will be the tangential plane to it. However, the same thing must also be true for the corresponding elements $P^{\prime}=\mathfrak{C} P$ and $\pi^{\prime}=\mathfrak{C} \pi$, since the plane π^{\prime} contains the point P^{\prime}, and in addition, from the foregoing, P^{\prime} and π^{\prime} will be a pole and polar relative to F^{2}.

The converse of our theorem can be proved in an entirely similar way:
If a second-degree surface F^{2} is invariant under the association of the linear congruence C_{1}^{1} then C_{1}^{1} will go to itself under the polar system that is defined by F^{2}.

We can now treat our original problem in a somewhat different way. Namely, instead of looking for surfaces such that the congruence is invariant under their polar system, using our theorem (pp. 20), we can now ask what the surfaces are that go to themselves under the involutory collineation of C_{1}^{1}.

In order to express this latter demand, we replace the surface point x in the general equation of a second-degree surface:

$$
\begin{equation*}
\sum_{i, k=1}^{4} a_{i k} x_{i} x_{k}=0 \tag{6}
\end{equation*}
$$

with the point x^{\prime} that is associated with by $C_{1}^{1}-$ i.e., by equations (9) on $\mathrm{pp} .4-$ whose coordinates must therefore likewise satisfy equation (6). One thus gets:

$$
\begin{equation*}
\sum_{i, k=1}^{4} a_{i k} x_{i}^{\prime} x_{k}^{\prime}=0 \tag{7}
\end{equation*}
$$

or, from (9), pp. 4:

$$
\left\{\begin{array}{c}
\frac{\alpha^{2}}{\beta^{2}} a_{22} x_{1}^{2}+a_{11} x_{2}^{2}+\frac{1}{\beta^{2}} a_{44} x_{3}^{2}+\alpha^{2} a_{33} x_{4}^{2}+2 a_{12} \frac{\alpha}{\beta} x_{1} x_{2} \tag{8}\\
+2 \alpha a_{13} x_{2} x_{4}+2 \frac{1}{\beta} a_{14} x_{2} x_{3}+2 \frac{\alpha^{2}}{\beta} x_{1} x_{4}+2 \frac{\alpha}{\beta^{2}} a_{24} x_{1} x_{3}+2 \frac{\alpha}{\beta} a_{34} x_{3} x_{4}=0 .
\end{array}\right.
$$

By comparing the coefficients in equations (7) and (8), we will then obtain the following conditions between the quantities $a_{i k}$ that determine the surface:

$$
\begin{array}{ccc}
\rho a_{11}=\frac{\alpha^{2}}{\beta^{2}} a_{22}, & \rho a_{22}=a_{11}, & \rho a_{33}=\frac{1}{\beta^{2}} a_{44}, \\
\rho a_{23}=\frac{1}{\beta} a_{24}, & \rho a_{14}=\frac{\alpha^{2}}{\beta} a_{23}, & \rho a_{24}=\alpha a_{13}, \\
\rho a_{13}=\frac{\alpha}{\beta^{2}} a_{24}, \\
\rho a_{12}=\frac{\alpha}{\beta} a_{12}, & \rho a_{34}=\frac{\alpha}{\beta} a_{34} .
\end{array}
$$

However, it follows from this that $\rho^{2}=\alpha^{2} / \beta^{2}$, or $\rho= \pm \alpha / \beta$, such that we will then get two different systems of conditions - and thus two different systems of second-degree surfaces - according to whether ρ is positive or negative. Namely, we will get:
I. For negative ρ :

$$
\begin{gathered}
\beta a_{11}=-\alpha a_{22}, \quad \alpha \beta a_{33}=-a_{44}, \quad a_{24}=-\beta a_{13}, \\
a_{14}=-\alpha a_{23}, \quad a_{12}=0, \quad a_{34}=0 .
\end{gathered}
$$

II. For positive ρ :

$$
\beta a_{11}=\alpha a_{22}, \quad \alpha \beta a_{33}=a_{44}, \quad a_{24}=\beta a_{13}, \quad a_{14}=\alpha a_{23} .
$$

In the first case, we have six conditions between ten homogeneous quantities $a_{i k}$, so we will get a three-fold manifold of surfaces, and in the second case, there are four conditions, so there will be ∞^{5} surfaces. All of these surfaces will go to themselves under the collineation \mathfrak{C}, and their polar systems will also transform into themselves as a result of C_{1}^{1}. We thus have the theorem $\left({ }^{1}\right)$:

There are two systems of second-degree surfaces for which a linear ray congruence is apolar, and indeed there will be ∞^{3} surfaces of the one kind and ∞^{5} surfaces of the other kind. The coefficients of their equations will satisfy the conditions I (II, resp.)

[^4]A comparison of this with the results on page 7 will teach us that:
The surfaces of system I are ruled surfaces, one of whose ruled families consists of the rays of the congruence, while the rays of the guiding family will be associated pairwise with each other by C_{1}^{1}.

For the investigation of the surfaces of systems of type II, we consider the determination of the coefficients $a_{i k}$, which can be represented as follows with the help of the conditions II:

$$
\begin{gathered}
\left|a_{i k}\right|=\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| \\
=\left(\beta a_{11} a_{33}-\beta a_{12}^{2}-\alpha a_{23}^{2}-a_{12} a_{34}\right)^{2}-\alpha \beta\left(a_{12} a_{33}-\frac{1}{\alpha} a_{11} a_{34}-2 a_{13} a_{23}\right)^{2} .
\end{gathered}
$$

This be negative only when $\alpha \beta>0$; i.e., when C_{1}^{1} is hyperbolic. We conclude from this that:

In the case of an elliptic congruence, the surfaces of system II are second-order ruled surfaces, and in the case of a hyperbolic congruence they are then $\left\{\begin{array}{c}\text { rectilinear } \\ \text { not rectilinear }\end{array}\right\}$ according to whether:

$$
\left(\beta a_{11} a_{33}-\beta a_{12}^{2}-\alpha a_{21}^{2}-a_{12} a_{34}\right)^{2}{ }_{<}^{>} \alpha \beta \left\lvert\,\left(a_{12} a_{33}+\frac{1}{\alpha} a_{11} a_{34}-2 a_{13} a_{23}\right)^{2} .\right.
$$

If a surface of system II is rectilinear, and the points P_{1} and P_{2}, with the coordinates x_{i} and y_{i}, lie on a ruling ray then they will be associated with two points P_{1}^{\prime} and P_{2}^{\prime} (with coordinates x_{i}^{\prime} and y_{i}^{\prime}, resp.) by C_{1}^{1}, which, from the foregoing, must lie on the surface, and, as can be shown, whose connecting line will likewise belong to the surface. With the help of equations (9), pp. 4, in which x_{i} and x_{i}^{\prime} (y_{i} and y_{i}^{\prime}, resp.) must be the coordinates of associated points, the condition for that, viz.:

$$
\sum_{i=1}^{4}\left(a_{i 1} x_{1}^{\prime}+a_{i 2} x_{2}^{\prime}+a_{i 3} x_{3}^{\prime}+a_{i 3} x_{3}^{\prime}\right) y_{i}^{\prime}=0,
$$

will then go to:

$$
\sum_{i=1}^{4}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+a_{i 3} x_{3}\right) y_{i}=0
$$

which will then be fulfilled when, as we have assumed, the line $\overline{P_{1} P_{2}}$ is a ruling ray of the surface. Since two lines that are associated with each other by C_{1}^{1} do not intersect, in general $\left({ }^{1}\right), \overline{P_{1}^{\prime} P_{2}^{\prime}}$ will belong to the same ruled family as $\overline{P_{1} P_{2}}$. We thus obtain an involutory pairing in both ruled families of the surface. Thus:

The rectilinear surfaces of system II are involutory ruled surfaces.

The double elements of these involutions are rays of C_{1}^{1}. Thus, at most four rays of the congruence belong to any surface of system II.

Since a ruled surface consists of rays of the congruence for the surfaces of system I, the guiding lines of C_{1}^{1} will be included in all of these surfaces. Each of the guiding lines is then polar to itself in a polar system of the first kind. Analytically, with the help of the equations that are true for the line coordinates ($p_{i k}$ and $p_{i k}^{\prime}$) of two polar reciprocals, this will also easily show that:

$$
\begin{equation*}
\rho p_{14}^{\prime}=\alpha_{11} p_{23}+\alpha_{12} p_{31}+\alpha_{13} p_{12}+\alpha_{14} p_{14}+\alpha_{15} p_{24}+\alpha_{16} p_{34}, \text { etc. } \tag{9}
\end{equation*}
$$

Here, the $\alpha_{i k}$ mean the second-degree sub-determinants of the quantities $a_{i k}$, which we have subjected to conditions I. If we then apply equations (9) to a polar system of the second kind, so we then require that the $a_{i k}$ must satisfy conditions II, then that will show that the guiding lines in the polar system of the second kind are reciprocal polars. We will then have:

In a polar system of the first kind, each of the guiding lines of C_{1}^{1} will be transformed into itself, while in a polar system of the second kind, they will then go to each other reciprocally.

If two points P and P^{\prime} are conjugate to each other relative to a second-degree surface then, as is known, their coordinates (viz., x_{i} and x_{i}^{\prime}) will fulfill the equation:

$$
\begin{equation*}
\sum_{i=1}^{4}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+a_{i 4} x_{4}\right) x_{i}^{\prime}=0 . \tag{10}
\end{equation*}
$$

Thus, if the x_{i}^{\prime} mean the coordinates of the point that is associated with the point P by the congruence C_{1}^{1} then we can substitute the values of x_{i}^{\prime} from eq. (9), pp. 4 , in it and get:

[^5]\[

$$
\begin{gathered}
a_{12} x_{1}^{2}+\frac{\beta}{\alpha} a_{12} x_{2}^{2}+\alpha a_{34} x_{3}^{2}+\beta a_{34} x_{4}^{2}+\left(a_{11}+\frac{\alpha}{\beta} a_{22}\right) x_{1} x_{2}+\left(\alpha a_{33}+\frac{1}{\beta} a_{44}\right) x_{3} x_{4} \\
+\left(a_{13}+\frac{1}{\beta} a_{24}\right) x_{2} x_{3}+\left(a_{14}+\alpha a_{23}\right) x_{2} x_{4}+\left(\frac{\alpha}{\beta} a_{23}+\frac{1}{\beta} a_{14}\right) x_{1} x_{3}+\left(\frac{\alpha}{\beta} a_{24}+\alpha a_{13}\right) x_{1} x_{4}=0 .
\end{gathered}
$$
\]

This equation is, however, fulfilled identically only when the $a_{i k}$ satisfy the conditions I; i.e., the points that are associated with each other by C_{1}^{1} are conjugate only in a polar system of the first kind. The proof for conjugate planes takes an analogous form, such that we have shown:

The polar systems of the first kind contain the point and plane involutions that are provoked by C_{1}^{1} among its rays, but the polar systems of the second kind do not contain these involutions.

If the two ruled families of a rectilinear surface of system II $\left(R_{2}\right)$ are paired involutorily then any two associated rays of one ruled family will be the axes of two projective pencils of planes whose homologous planes will be likewise associated with each other by C_{1}^{1}. If, for the sake of ease of representation, we draw the plane R_{2} in such a way that the edges of the coordinate tetrahedron are contained in it, which is indeed always possible by a coordinate transformation, then its equation will read:

$$
R_{2}: \quad a_{12} x_{1} x_{2}+a_{34} x_{3} x_{4}=0
$$

In fact, the coefficients fulfill conditions II. Since the vertices A_{1} and $A_{2}\left(A_{3}\right.$ and A_{4}, resp.) correspond to each other in C_{1}^{1}, the edges $A_{1} A_{3}$ and A_{2}
 A_{4} will lie on associated lines of the same ruled family, which we can thus choose to be the axes of the two projective pencils of planes. The equations of those pencils will then read:
(11), (11a) $\quad x_{1}+\lambda x_{3}=0, \quad x_{2}+\mu x_{4}=0$.

They will be projective when one has:

$$
\begin{equation*}
\alpha \lambda=\mu, \tag{12}
\end{equation*}
$$

and will then generate a second-order ruled surface $\left(R_{1}\right)$ whose equations we will obtain by eliminating λ and μ from (11), (11a), and (12):

$$
R_{1}: \quad x_{2} x_{3}-\alpha x_{1} x_{4}=0 .
$$

We can proceed with the lines $A_{2} A_{3}$ and $A_{1} A_{4}$, which belong to the other ruled family of our surface R_{2} and are likewise associated with each other by C_{1}^{1}, in a completely analogous way. We will then obtain the two projective pencils of planes:

$$
x_{1}+\beta \lambda x_{4}=0, \quad x_{2}+\lambda x_{3}=0,
$$

and what they will generate is the ruled surface:

$$
R_{1}^{\prime}: \quad x_{1} x_{4}-\beta x_{2} x_{4}=0
$$

However, what is true for the rays $A_{1} A_{3}$ and $A_{2} A_{4}\left(A_{2} A_{3}\right.$ and $A_{1} A_{4}$, resp.) will be true for any arbitrary pair of associated lines that belong to the same ruled family of R_{2}. For any two rays of a ruled family, we will obtain a surface R_{1} (R_{1}^{\prime}, resp.), and can thus say that the totality of these surfaces is linked with the ruled family of R_{2} in question. All surfaces that are linked with a ruled family will belong to the system of the first kind and consequently will have the (real or imaginary) guiding lines of C_{1}^{1} in common. Moreover, they will all go through the two rays of the congruence that are contained in the other ruled family. Therefore, all of them will have the faces of a skew tetrahedron in common and consequently will define a pencil in F^{2}. Briefly:

Any ruled family of a rectilinear surface R_{2} of system II is linked with a pencil of surfaces of system I that cuts R_{2} in two associated rays. Its basic curves consist of the guiding lines of C_{1}^{1} and the two rays of the congruence that belong to the guiding family of R_{2}.

If we consider the polar properties of R_{2} then that will lead us to further relationships between a surface R_{2} and the two pencils that are linked with it. A point $P^{0}\left(x_{i}^{0}\right)$ is associated with a plane π^{0} by the surface R_{2} that has the coordinates:

$$
\begin{equation*}
\rho u_{1}^{0}=a_{12} x_{2}^{0}, \quad \rho u_{2}^{0}=a_{12} x_{1}^{0}, \quad \rho u_{3}^{0}=a_{34} x_{4}^{0}, \quad \rho u_{4}^{0}=a_{34} x_{3}^{0} . \tag{13}
\end{equation*}
$$

Now, if the point P^{0} lies on one of the surfaces R_{1} or R_{1}^{\prime} that are linked with the ruled families of R_{2} then it can be shown that the plane π^{0} is the tangential plane to that surface. In fact, the equations of R_{1} (R_{1}^{\prime}, resp.) in plane coordinates read:

$$
\begin{aligned}
R_{1}: & \alpha u_{2} u_{3}-u_{1} u_{4}=0, \\
R_{1}^{\prime}: & \beta u_{1} u_{3}-u_{2} u_{4}=0 .
\end{aligned}
$$

If we substitute the values of u_{i}^{0} from (13) into this then it will follow that:

$$
x_{2}^{0} x_{3}^{0}-\alpha x_{1}^{0} x_{4}^{0}=0, \quad x_{1}^{0} x_{3}^{0}-\beta x_{2}^{0} x_{4}^{0}=0, \text { resp. },
$$

from which, the validity of the assertion above can be seen immediately. The surfaces R_{1} and R_{1}^{\prime} are then apolar for the polar system that is defined by R_{2}. One can likewise prove that R_{2} goes to itself under the polar systems of R_{1} and R_{1}^{\prime}, and that R_{1} does too under the polar system of R_{1}^{\prime}, and conversely, such that one has the theorem:

If two pencils of surfaces of the first kind are linked with a ruled surface of the second kind R_{2} then the surfaces of these pencils will be reciprocally polar-invariant to each other. Likewise, the polar system of the second kind that is defined by R_{2} will transform any surface of the two pencils into itself, and conversely.

All of the results of this chapter can now be carried over, with no further analysis, to the focal paraboloid and the orthogonal ruled surfaces that are linked to it:

The focal paraboloid of C_{1}^{1} is a rectilinear surface of the second system that is linked with the two pencils of surfaces of system I.

Each ruled surface that is linked with a focal ruled family is apolar in the polar system that is defined by the focal paraboloid, and conversely, the paraboloid will be transformed into itself by the polar system of that ruled surface.

The polar system of the first kind of any orthogonal ruled surface that is linked with a focal ruled family transforms every surface that is linked with the other focal ruled family into itself.

V. Confocal, linear ray congruences.

(The principal axis cylindroid)

Since we derived the equation of the focal paraboloid from the properties of a linear ray congruence in Chapter II and determined its focal involutions, we would now lie to address the converse problem and investigate whether a linear ray congruence is defined by an equilateral hyperbolic paraboloid and the two involutions of its ruling rays.

Therefore, let an equilateral hyperbolic paraboloid be given, whose equation we can assume has the form:

$$
\begin{equation*}
x_{1} \cdot x_{2}=-2 c x_{3} x_{4}, \tag{1}
\end{equation*}
$$

and, in addition, let the involutory pairing of the one ruled family be given by the equation:

$$
\begin{equation*}
x_{1} \cdot x_{1}^{\prime}=\rho, \tag{2}
\end{equation*}
$$

where the infinitely-distant ray of the family is associated with the guiding line of the paraboloid that belongs to the same ruled family, as it must be. However, from what was
done on pp. 11, et seq., the involution of the other ruled family will then be determined. We can then change these two involutions only by giving the quantity ρ different values, and there will be, accordingly, ∞^{1} linear ray cognruences with the same focal paraboloid. Following Jolles, we call them confocal. The middle planes of confocal linear congruences coincide; they are the tangential planes to their common focal paraboloid, and we will then obtain a ray of the congruence when we intersect two normal tangential planes. Analytically, we represent this as follows: We take two ruling rays that are conjugate under the involution $x_{1} x_{1}^{\prime}=\rho$:

1) $\quad x_{1}=x_{1}^{0}, \quad x_{2} x_{1}^{0}=-2 c x_{3}$,
2) $\quad x_{1}=\frac{\rho}{x_{1}^{0}}, \quad x_{2} \frac{\rho}{x_{1}^{0}}=-2 c x_{3}$,
and draw the plane through this:
3) $x_{1}-\mu x_{2}-\mu \frac{2 c}{x_{1}^{0}} x_{3}-x_{1}^{0} x_{4}=0$,
4)

$x_{1}-\mu^{\prime} x_{2}-\mu^{\prime} \frac{2 c x_{1}^{0}}{\rho} x_{3}-\frac{\rho}{x_{1}^{0}} x_{4}=0$.
Should these planes be perpendicular to each other then one would need to have:

$$
1+\mu \mu^{\prime}\left(1+\frac{4 c^{2}}{\rho}\right)=0 \quad \text { or } \quad \mu^{\prime}=-\frac{\rho}{\left(\rho+4 c^{2}\right) \mu}
$$

We then obtain a ray of the congruence as the intersection of the planes:
1)

$$
x_{1}-\mu x_{2}-\mu \frac{2 c}{x_{1}^{0}} x_{3}-x_{1}^{0} x_{4}=0
$$

$$
x_{1}+\frac{\rho}{\left(\rho+4 c^{2}\right) \mu} x_{2}+\frac{2 c x_{1}^{0}}{\left(\rho+4 c^{2}\right) \mu} x_{3}-\frac{\rho}{x_{1}^{0}} x_{4}=0
$$

The desired ray then has the line coordinates:

$$
\begin{array}{ll}
p_{14}=\left|\begin{array}{ll}
u_{2} & u_{2}^{\prime} \\
u_{3} & u_{3}^{\prime}
\end{array}\right|=\frac{2 c\left(\rho-x_{1}^{02}\right)}{x_{1}^{0}\left(\rho+4 c^{2}\right)}, & p_{34}=\frac{2 \rho+4 c^{2}}{\mu\left(\rho+4 c^{2}\right)}, \\
p_{31}=\frac{\mu \rho}{x_{1}^{0}}+\frac{\rho x_{1}^{0}}{\mu\left(\rho+4 c^{2}\right)}, & p_{12}=\frac{2 \mu c \rho}{x_{2}^{02}}+\frac{2 c x_{1}^{02}}{\mu\left(\rho+4 c^{2}\right)},
\end{array}
$$

$$
p_{24}=-\frac{2 \mu c}{x_{2}^{0}}+\frac{2 c x_{1}^{0}}{\mu\left(\rho+4 c^{2}\right)}, \quad p_{23}=\frac{x_{1}^{02}-\rho}{x_{1}^{0}} .
$$

However, the linear relations:

$$
\begin{equation*}
p_{23}+\frac{\rho+4 c^{2}}{2 c} p_{14}=0, \quad p_{31}+\frac{\rho}{2 c} p_{24}=0 \tag{3}
\end{equation*}
$$

exist between them, such that we then obtain each of the confocal ray congruences with the common focal paraboloid (1) as the intersection of two linear complexes that are represented by equations (3). Among these ∞^{1} linear ray congruences, one finds two parabolic ones; for them, the parameter ρ will assume the values:

1) $\quad \rho_{1}=0$,
2) $\quad \rho_{1}=-4 c^{2}$.

Their guiding lines will be the y and x axes, resp., in which the two focal axes of the focal ruled family in question will coincide.

The totality of all linear ray congruences with the same focal paraboloid (1) defines a quadratic complex whose equation arises by eliminating ρ from (3):

$$
\begin{equation*}
p_{23} p_{24}+p_{13} p_{14}+2 c p_{14} p_{24}=0 \tag{4}
\end{equation*}
$$

The complex sends a ray cone through each point $\left(y_{i}\right)$ whose equation in running coordinates reads:

$$
\begin{aligned}
x_{1}^{2} y_{3} y_{4} & +x_{2}^{2} y_{3} y_{4}+2 c x_{4}^{2} y_{1} y_{2}+2 c x_{1} x_{2} y_{4}^{2}-x_{1} x_{3} y_{1} y_{4}-x_{1} x_{4}\left(y_{1} y_{3}+2 c y_{2} y_{4}\right) \\
& -x_{2} x_{4}\left(2 c y_{1} y_{4}+y_{2} y_{3}\right)-x_{2} x_{3} y_{2} y_{4}+x_{3} x_{4}\left(y_{1}^{2}+y_{2}^{2}\right)=0 .
\end{aligned}
$$

If we now investigate when this cone decomposes into two planes - i.e., we ask what the Kummer singularity surface is - then we will obtain the following condition for the coordinates of the vertex of that cone:

$$
2 c y_{1} y_{2} y_{4}^{4}-\left(y_{2}^{2}+y_{1}^{2}\right) y_{3} y_{4}^{3}=0
$$

Here, one can omit y_{4} as a factor. The Kummer singularity surface will then consist of the infinitely-distant plane $y_{4}=0$ and a third-degree surface:

$$
\begin{equation*}
y_{3}=2 c \frac{y_{1} y_{2} y_{4}}{y_{1}^{2}+y_{2}^{2}} \tag{5}
\end{equation*}
$$

that is the principal axis cylindroid of our confocal ray congruences, which we would like to briefly go into.

As is known, one understands the principal axis cylindroid of a linear ray congruence $p_{23}+\alpha p_{14}=0, p_{13}+\beta p_{34}=0$, where $\alpha=\frac{\rho+4 c^{2}}{2 c}, \beta=-\frac{\rho}{2 c}, \rho=$ const., to mean the locus of the principal axes of the pencil of complexes that is given by the equation:

$$
\begin{equation*}
p_{23}+\alpha p_{14}+\lambda\left(p_{13}+\beta p_{34}\right)=0 . \tag{6}
\end{equation*}
$$

In this, the principal axis of a complex is defined to be the line that is conjugate to an infinitely-distant line that is orthogonal to it relative to the complex. If we would then like to derive the equation of the principal axis cylindroid from this definition then we would next have to present the orthogonality conditions between the line coordinates $q_{i k}$ of a principal axis and the coordinates $p_{12}, p_{23}, p_{31}, 0,0,0$ of an infinitely-distant line $\left(p_{i k}\right)$. Since the quantities p_{12}, p_{23}, p_{31} are the position cosines of the parallel planes that go through the line $p_{i k}$, these conditions will read:

$$
\begin{equation*}
p_{12}: p_{23}: p_{31}=q_{34}: q_{14}: q_{24} . \tag{7}
\end{equation*}
$$

The line that is conjugate to the line $p_{i k}$ relative to the pencil of complexes (6) will then have the coordinates (cf., (4), pp. 2):

$$
\begin{cases}\rho q_{12}=-\left(\alpha-\lambda^{2} \beta\right) p_{12}, & \rho q_{12}=p_{23}+\lambda p_{13}, \tag{8}\\ \rho q_{23}=\left(\alpha p_{13}+\lambda \beta p_{23}\right) \lambda, & \rho q_{24}=-\lambda\left(p_{23}+\lambda p_{13}\right), \\ \rho q_{31}=\alpha p_{13}+\lambda \beta p_{23}, & \rho q_{34}=0 .\end{cases}
$$

Should this cross the infinitely-distant line $p_{i k}$ at right angles then it would from (7) that:

$$
\begin{equation*}
q_{12}=p_{12}=0 \quad \text { and } \quad p_{23} q_{24}=p_{31} q_{14} \tag{9}
\end{equation*}
$$

or, when we express the $p_{i k}$ in terms of $q_{i k}$ using (8):

$$
\begin{equation*}
-\lambda q_{31} q_{24}+\alpha q_{14} q_{24}+q_{31} q_{14}-\lambda \beta q_{14}^{2}=0 \tag{10}
\end{equation*}
$$

This equation is then satisfied by the coordinates of all principal axes of the pencil (6). Now, if we would like to represent its geometric locus by an equation in point coordinates then we would have to eliminate the parameter λ by means of the relation:

$$
q_{23}=\lambda q_{31}
$$

which follows from (8) and then replace the line coordinates with point coordinates, in such a way that we let any principal axis go through two points (x_{i} and x_{i}^{\prime}) and write the determinant $\left|\begin{array}{ll}x_{i} & x_{i}^{\prime} \\ x_{k} & x_{k}^{\prime}\end{array}\right|$ for $q_{i k}$. However, since, from (8) and (9), the quantities q_{12} and q_{34} vanish, all of the principal axes will cut the z-axis perpendicularly, and we can thus
choose the two points $0,0, x_{3}, 1$ and $x_{1}, x_{2}, x_{3}, 1$ for its determination. If we substitute this into equation (10) then we will obtain:

$$
\begin{equation*}
x_{3}=(\alpha+\beta) \frac{x_{1} x_{2} x_{4}}{x_{1}^{2}+x_{2}^{2}}=2 c \frac{x_{1} x_{2} x_{4}}{x_{1}^{2}+x_{2}^{2}} \tag{11}
\end{equation*}
$$

for the desired equation of the cylindroid, as we found for a component of the Kummer singularity surface above.

Equation (11), which we have derived for the principal axis cylindroid of any arbitrary one of the confocal ray congruences (3), pp. 29, is independent of the parameter ρ, which is characteristic of each individual one of the confocal congruences. We can then say:

Confocal, linear ray congruences have the same principal axis cylindroid,

and conversely:

Linear ray congruences with the same principal axis cylindroid are confocal.

If the principal axis cylindroid is given then we can arrive at the associated focal paraboloid by the following construction:

We construct the normal plane to the line of intersection of a tangential plane to the cylindroid:

$$
\left(c x_{2}^{\prime} x_{4}^{\prime}-x_{1}^{\prime} x_{2}^{\prime}\right) x_{1}+\left(c x_{1}^{\prime} x_{4}^{\prime}-x_{2}^{\prime} x_{3}^{\prime}\right) x_{2}-\frac{x_{1}^{\prime 2}+x_{2}^{\prime 2}}{2} x_{3}+c x_{1}^{\prime} x_{2}^{\prime} x_{4}=0
$$

with the $x y$-plane. Its equation is:

$$
\left(c x_{2}^{\prime} x_{4}^{\prime}-x_{1}^{\prime} x_{2}^{\prime}\right) x_{1}+\left(c x_{1}^{\prime} x_{4}^{\prime}-x_{2}^{\prime} x_{3}^{\prime}\right) x_{2}-\mu x_{3}+c x_{1}^{\prime} x_{2}^{\prime} x_{4}=0,
$$

where

$$
\mu=-2 \frac{\left(c x_{2}^{\prime} x_{4}^{\prime}-x_{1}^{\prime} x_{2}^{\prime}\right)^{2}+\left(c x_{1}^{\prime} x_{4}^{\prime}-x_{2}^{\prime} x_{3}^{\prime}\right)^{2}}{x_{1}^{\prime 2}+x_{2}^{\prime 2}} \cdot x_{1}^{\prime} x_{2}^{\prime},
$$

and we assert that this plane is a tangential plane to the focal paraboloid, so its coordinates will satisfy the equation:

$$
u_{1} u_{2}=-\frac{1}{2 c} u_{3} u_{4} .
$$

However, this can, in fact, be easily verified when one considers only the fact that the quantities x_{i}^{\prime} represent a point of the cylindroid, so it will satisfy equation (11). One can likewise show that a plane that is erected perpendicular to a tangential plane to the paraboloid at its line of intersection with the $x y$-plane will contact the cylindroid (11). One then has the theorem:

If normal planes are erected on the lines of intersection of the tangential planes to a cylindroid (11) with the xy-plane then they will envelope an equilateral paraboloid (1).

If normal planes are erected on the line of intersection of tangential planes to an equilateral paraboloid (1) with its vertex planes then they will envelope a cylindroid.

Following Jolles, the equilateral paraboloid (1) and the cylindroid (11) are thus called orthogonally linked to each other. The vertex rays and the principal axis of the paraboloid are the symmetry axes of the cylindroid that is orthogonally linked with it. Both surfaces have the x and y axis in common; however, except for them, no ruling ray of the cylindroid will meet the paraboloid that is orthogonally linked with at real points. In fact, such a ruling ray will be represented by:

$$
\rho x_{1}=x_{2} \quad \text { and } \quad x_{3}=\frac{2 c \rho}{1+\rho^{2}} x_{4}
$$

so one must substitute x_{2} and x_{3} from this in equation (1) if one is to find its point of intersection with the paraboloid. One will then get:

$$
x_{1}^{2}=-\frac{4 c^{2}}{1+\rho^{2}},
$$

so one will get an imaginary value for x_{1}.
A further relation between the paraboloid (1) and the cylindroid (11) follows from the polar properties of paraboloids: Namely, if we seek to find the reciprocal polars of a ruling ray of the cylindroid relative to the paraboloid then we must first represent this ruling ray in line coordinates:

$$
x_{2}=\rho x_{1}, \quad x_{3}=\frac{2 c \rho}{1+\rho^{2}} x_{4},
$$

and obtain:

$$
p_{24}: p_{31}: p_{12}: p_{14}: p_{24}: p_{34}=2 c \rho^{2}:-2 c \rho: 0:\left(1+\rho^{2}\right) \rho: 0 .
$$

From equations (9), pp. 29, its polar reciprocal relative to the paraboloid (1) will then be:

$$
\begin{aligned}
& p_{23}^{\prime}: p_{31}^{\prime}: p_{12}^{\prime}: p_{14}^{\prime}: p_{24}^{\prime}: p_{34}^{\prime}=p_{14}:-p_{24}: 0: p_{23}:-p_{31}: 0 \\
&=\left(1+\rho^{2}\right):-\rho\left(1+\rho^{2}\right): 0: 2 c \rho^{2}: 2 c \rho: 0,
\end{aligned}
$$

or

$$
\rho x_{1}=-x_{2}, \quad x_{3}=-\frac{2 c \rho}{1+\rho^{2}} x_{4} .
$$

We thus once more obtain a ruling ray of the cylindroid, and indeed the one that arises from the first one by a reflection in the x or y axes. Thus:

The cylindroid will go to itself in the polar system of the paraboloid that is orthogonally linked to it in such a way that two of its ruling rays that are reflected into
each other in one of the symmetry axes (viz., x and y) will be polar reciprocal in this polar system.

Moreover, if we start with the paraboloid then we can arrive at the cylindroid that is orthogonally linked with it by the following argument. Namely, we assert:

The focal axes of an equilateral paraboloid (which are incident with its principal axis) define the ruled family of the cylindroid that is orthogonally linked with it.

In order to prove this, we imagine that the coordinate system to which the paraboloid $x_{1} x_{2}=-2 c x_{3} x_{4}$ is related is rotated around the z-axis through the angle $\alpha=\varphi / 2$. Its equation will then go to:

$$
\begin{equation*}
x_{1}^{\prime 2} \sin \varphi+2 x_{1}^{\prime} x_{2}^{\prime} \cos \varphi-x_{2}^{\prime 2} \sin \varphi=-4 c x_{3}^{\prime} x_{4}^{\prime}, \tag{12}
\end{equation*}
$$

and a tangential plane will be represented by:

$$
\begin{equation*}
\left(\mathfrak{x}_{1} \sin \varphi+\mathfrak{x}_{2} \cos \varphi\right) x_{1}^{\prime}+\left(\mathfrak{x}_{1} \cos \varphi-\mathfrak{x}_{2} \sin \varphi\right) x_{2}^{\prime}+2 c \mathfrak{x}_{4} x_{3}^{\prime}+2 c \mathfrak{x}_{3} x_{4}^{\prime}=0, \tag{13}
\end{equation*}
$$

where the \mathfrak{x}_{i} mean the coordinates of the contact point relative to the rotated system. The plane (13) will be perpendicular to the coordinate plane ($y^{\prime} z^{\prime}$) when one has:

$$
\begin{equation*}
\mathfrak{x}_{1} \sin \varphi+\mathfrak{x}_{2} \cos \varphi=0 . \tag{14}
\end{equation*}
$$

Now, all of the tangential planes to the paraboloid that are perpendicular to the $y^{\prime} z^{\prime}$ plane will envelop the cylinder:

$$
\begin{equation*}
u_{2}^{\prime 2}=\frac{u_{3}^{\prime} u_{4}^{\prime}}{\sin \varphi} \quad \text { or } \quad x_{2}^{\prime 2}=4 c \sin \varphi x_{3}^{\prime} x_{4}^{\prime} \tag{15}
\end{equation*}
$$

the equation:

$$
\left(\mathfrak{x}_{1} \cos \varphi-\mathfrak{x}_{2} \sin \varphi\right)^{2}=\frac{4 c \mathfrak{x}_{3} \mathfrak{x}_{4}}{\sin \varphi}
$$

will then go to:

$$
\mathfrak{x}_{1}^{2} \sin \varphi+2 \mathfrak{x}_{1} \mathfrak{x}_{2} \cos \varphi-\mathfrak{x}_{2}^{2} \sin \varphi=-4 c \mathfrak{x}_{3} \mathfrak{x}_{4},
$$

with the help of the condition (14). It will then be true when the point with the coordinates \mathfrak{x}_{i} lies on the paraboloid. However, the focal axis of the cylinder (15) is incident with the principal axis (viz., the z-axis) of the paraboloid. Namely, its equations are:

$$
\begin{equation*}
x_{2}^{\prime}=0 \quad \text { and } \quad x_{3}^{\prime}=c \sin \varphi x_{4}^{\prime} \text {, } \tag{16}
\end{equation*}
$$

and we will thus obtain all of the focal axes of the paraboloid that are incident with the z axis when we give the angle φ all possible values. However, since $\varphi=2 \alpha$, equation (16) will go to:

$$
x_{2}^{\prime}=0, \quad x_{3}^{\prime}=c \sin 2 \alpha x_{4}^{\prime} .
$$

If we now once more return to our original coordinate system then that will give:

$$
\begin{equation*}
x_{1} \sin \alpha-x_{2} \cos \alpha=0, \quad x_{3}=2 c \sin \alpha \cos \alpha x_{4}, \tag{17}
\end{equation*}
$$

and we will obtain the geometric locus of all focal axes when we eliminate α from them; it will then follow that:

$$
x_{3}=2 c \frac{x_{1} x_{2} x_{4}}{x_{1}^{2}+x_{2}^{2}},
$$

so in fact, as we asserted in our theorem, this will be the equation of the cylindroid that is orthogonally linked with the given paraboloid.

VI. The rotational, linear ray congruence.

If we make the special assumption in the equations:

$$
p_{23}+\alpha p_{14}=0, \quad p_{13}+\beta p_{24}=0
$$

which define our linear congruences, that:

$$
\alpha+\beta=0
$$

then they will go to:

$$
\begin{equation*}
p_{23}+\alpha p_{14}=0, \quad p_{13}-\alpha p_{24}=0 \tag{1}
\end{equation*}
$$

and we will obtain the case of the rotational linear ray congruence R_{1}^{1}. Since α and $\beta=$ $-\alpha$ have different signs, R_{1}^{1} will be elliptic; the focal axes will coincide with the z-axis.

The rotational linear congruence goes to itself under a rotation around the z-axis; any ray in the xy-plane that cuts the z-axis will be a symmetry axis of R_{1}^{1}.

In fact, if we rotate the coordinate system around z through an angle α then we will get:

$$
x_{1}^{\prime}=b x_{1}+a x_{2}, \quad x_{2}^{\prime}=-a x_{1}+b x_{2}, \quad x_{3}^{\prime}=x_{3}, \quad x_{1}^{\prime}=x_{4}
$$

when we set $a=\sin \alpha$ and $b=\cos \alpha$. Equations (1):

$$
\begin{aligned}
& x_{2} x_{3}-x_{3} y_{2}+\alpha\left(x_{1} y_{4}-x_{4} y_{1}\right)=0 \\
& x_{1} x_{3}-x_{3} y_{1}-\alpha\left(x_{2} y_{4}-x_{4} y_{2}\right)=0
\end{aligned}
$$

will then go to:

$$
\begin{aligned}
& \left(-a x_{1}^{\prime}+b x_{2}^{\prime}\right) y_{3}^{\prime}-\left(-a y_{1}^{\prime}+b y_{2}^{\prime}\right) x_{3}^{\prime}+\left(b x_{1}^{\prime}+a x_{2}^{\prime}\right) y_{4}^{\prime}-\alpha\left(b y_{1}^{\prime}+a y_{2}^{\prime}\right) x_{4}^{\prime}=0 \\
& \left(b x_{1}+a x_{2}\right) y_{3}^{\prime}-\left(b y_{1}^{\prime}+a y_{2}^{\prime}\right) x_{3}^{\prime}-\alpha\left(-a x_{1}^{\prime}+b x_{2}^{\prime}\right) y_{4}^{\prime}-\alpha\left(-a y_{1}^{\prime}+b y_{2}^{\prime}\right) x_{4}^{\prime}=0
\end{aligned}
$$

If we multiply the first of these equations by a, the second one by b, and add (subtract, resp.) them then it will follow that:

$$
\begin{aligned}
& x_{2}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{2}^{\prime}+\alpha\left(x_{1}^{\prime} y_{4}^{\prime}-x_{4}^{\prime} y_{1}^{\prime}\right)=0 \\
& x_{1}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{1}^{\prime}-\alpha\left(x_{2}^{\prime} y_{4}^{\prime}-x_{4}^{\prime} y_{2}^{\prime}\right)=0
\end{aligned}
$$

or

$$
\begin{equation*}
p_{23}^{\prime}+\alpha p_{14}^{\prime}=0, \quad p_{13}^{\prime}-\alpha p_{24}^{\prime}=0 \tag{2}
\end{equation*}
$$

where the $p_{i k}^{\prime}$ are now referred to the rotated system. However, one concludes from (2), just as on pp. 4, that the x^{\prime}, y^{\prime}, and z^{\prime} axes will be symmetry axes for R_{1}^{1}, and since the equations prove to be independent of the angle α, this will be true for any line that is erected in the $x y$-plane perpendicular to z.

However, the rays of this pencil of rays also define the ruling rays of the principal axis cylindroid that belongs to R_{1}^{1}. In fact, the equations of the cylindroid, which can also be written in the form:

$$
\frac{x_{1}}{x_{2}}=\cot \varphi, \quad x_{3}=\frac{\alpha+\beta}{2} \sin \varphi \cos \varphi x_{4},
$$

will go to

$$
\frac{x_{2}}{x_{1}}=\tan \varphi, \quad x_{3}=0
$$

for $\alpha=-\beta$.
From the foregoing, the ruling rays of the principal axis cylindroid are all symmetry axes for R_{1}^{1} then, and any two that are mutually perpendicular will be the axes for two mutually null-invariant ray complexes.

The focal paraboloid of R_{1}^{1} :

$$
u_{1} u_{2}(\alpha+\beta)=u_{3} u_{4}=0
$$

decomposes into two pencils of planes:

$$
\text { 1) } \quad u_{4}=0, \quad \text { 2) } \quad u_{3}=0 \text {, }
$$

whose midpoints lie at the coordinate origin and at the infinitely-distant point on the z axis. They will be collinear when we assign planes and rays in the two pencils that
correspond to each other, which will correspond under the involutory collineation of R_{1}^{1}, and have the z-axis in common. Moreover, from what was done in Chapter II, the z-axis will be the single rotational axis of a surface of rotation, one of whose ruled families is contained in R_{1}^{1}, and indeed these surfaces will have the equation:

$$
a_{11}\left(x_{1}^{2}+x_{2}^{2}\right)+a_{33}\left(x_{3}^{2}+\alpha^{2} x_{4}^{2}\right)=0 .
$$

They define an F^{2}-pencil with z as its common rotational axis. The polar systems of these surfaces are the only rotational polar systems of the first kind of R_{1}^{1}.

In general, the following equation will be true for surfaces of system I (cf., chap. IV):

$$
a_{11}\left(x_{1}^{2}+x_{2}^{2}\right)+a_{33}\left(x_{3}^{2}+\alpha^{2} x_{4}^{2}\right)+2 a_{13}\left(x_{1} x_{3}-a^{2} x_{2} x_{4}\right)+2 a_{23}\left(x_{2} x_{3}-a^{2} x_{1} x_{4}\right)=0
$$

As a result, all of these surfaces will have circular sections that are parallel to the $x y$ plane.

[^0]: ${ }^{1}{ }^{1}$) Some important focal properties can also be found already in: R. Sturm: Die Gebilde ersten und zweiten Grades der Lineiengeometrie, Leipzig, 1892, Part 1, § 121.

 The main results of Jolles are cited in Reye's Geometrie der Lage, $4^{\text {th }}$ ed., ${ }^{\text {nd }}$ section, page 287.
 (${ }^{2}$) St. Jolles, "Primäre und Sekundäre polare Räume einer linearen Strahlenkongruenz," Journal für reine und angewandte Mathematik, Band 134, Heft 1.

[^1]: $\left.{ }^{1}{ }^{1}\right)$ Cf., Clebsch-Lindemann. Vorlesungen über Geometrie II, 1, page 58.

[^2]: $\left.{ }^{1}\right)$ See: Schur, Analytische Geometrie, 2 ${ }^{\text {nd }}$ ed., pp. 221.

[^3]: $\left.{ }^{1}{ }^{1}\right)$ Cf., pp. 1, rem. (${ }^{2}$) and also: Kippels, "Involutorische Regelscharen, etc." Inaugural Disseration, Strassburg, 1904.

[^4]: (${ }^{1}$) Cf., v. Staudt, Beiträge zur Geometrie der Lage, Nuremberg, 1856. 1. Heft, nos. 105 and 109.

[^5]: $\left.{ }^{1}{ }^{1}\right)$ In fact, they will intersect only when one of them - and consequently, the other one, as well - is incident with one of the guiding lines of C_{1}^{1}, and indeed, at the point of intersection of these guiding lines. However, the fact that a surface of system II does not contain the guiding lines will be proved below.

