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I. General properties of a linear ray congruence. 1

Jolles gave the focal theory of linear ray congrueraoes some theorems on the
principal axis cylindroid, which is closely connected with iit, volume 63 of the
Mathematischen Annalert)( His investigations are carried out in a purely syithet
way, and the proofs thus often present difficultieat tban be overcome only by
circumstantial, over-extended devices, especially whentoeats imaginary structures.
However, if we seek to present Jolles’s results bgmaef an analytical method then that
will show that not only is the transition to imagigastructures possible, with no further
assumptions, but that the proofs will assume a muchlsirand more intuitive form. In
what follows, we therefore must first seek an anedytrepresentation of a congruence
that will define the foundation for the simplest-possibtvelopment of focal theory.
However, whereas Jolles defined the focal parabololekta surface that is enveloped by
the so-called “middle planes” of the linear congruence will start from the rotational
ruled family that is contained in the congruence, wiuohsists of rotational axes that
determine the focal paraboloid and define it as the ge@metius of these rotational
axes. The polar properties of the focal paraboloid alldiw us to pursue some general
considerations about the polar systems for which on¢he@flinear congruences is
invariant, and we will, in turn, deal with the search &or analytical representation of
“primary” and “secondary” polar spaces, as Jolles dalese systems in another place
(®). All of the polar properties of the focal parabolo@hde easily verified as special
cases of this more general theorem. When we then s@tyeonsider the paraboloid
and the involutions of its ruling rays to be given, wdl Wwe led to the theory of
“confocal” linear ray congruences and to some theordmas are connected with the
principal axis cylindroid and the relationships between thendrpid and the focal
paraboloid. Finally, the results that were found waldarried over into the special case
of the “rotational” linear congruence.

|. General propertiesof alinear ray congruence.

We imagine that a linear ray congruence is given byntleesection of two conjugate
(null-invariant) ray complexes. Two complexésandB) are represented analytically by
the equations:

1 A (&, p) = agapi2+aaPar + a4 P23+ &3 Prat+ 831 Poat+ a12P3s =0,

(2) B: (b, p) =34 P12 + b2sa P31 + D14 P23 + 23 Pra + D31 P2s + D12 P3s = 0,

() Some important focal properties can also be found already. Sturm:Die Gebilde ersten und
zweiten Grades der Lineiengeomettieipzig, 1892, Part 1, § 121.

The main results of Jolles are cited in Rey&®metrie der Laget" ed., 2% section, page 287.

() st. Jolles, “Primére und Sekundare polare Raume éimearen Strahlenkongruenz,” Journal fiir
reine und angewandte Mathematik, Band 134, Heft 1.
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where the quantitieax = ay (bk = by, resp.) are constants and fhe= — px mean the
line coordinates of its rays. They will be callednjugate(*) when one of them is
associated with the other one, and we assert:

The necessary and sufficient analytical condition for the conjugate positibmo
linear ray complexes is:

3) (a,b)=3g,b,+ a,h,+ a,b;+ a,by a,bt a,bz0.

In order to prove this, we consider two lines tkall be given by their line
coordinategik andgyk . If we now assume that they are associated euatih other by the
complexA then we will get?):

4) PGk = (@ p) ax —a D,

wherep is a proportionality factor anal = a; ags + aps @14 + a1 a4 # 0. If we further
assume that the linm belongs to compleB, but not to compleA, then:

() b.p=0, @p#=#O0.

If we then multiply the six equations that are urt®d in (4) in sequence by, (wherel,
m are the variations of the numbers 1, 2, 3, 4 @hat‘complementary” to, k) and add
them then that will give:

(6) P (b, g) = (a p) Ob, &) —a (b, p),

where the last term will vanish, due to (5). If wew demand that the lingx must
likewise be contained in the complBxbut not inA, so:

(b,q) =0, @ g %0,

then it will follow from (6) that:
(a, b)=0.
Q. E.D.

A null correlationis defined by the two complexésandB whose null rays comprise
the rays of the complex in question:

A B
4 4

(7a) PX =D 3, o% = D by,
k=1 =1

() Reye,Geometrie der Lage IW" ed., lecture 18.
(®) StaudeAnalytische Geometrie 1910, pp. 46%t seq.
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4 4
(7b) pPU = zaikuk , | ou, = ZIBMU;( ,
k=1 =L

(012 = @ga, a3 = A4, €1C.) B2 = baa, oz = b4, €1C.)

For both correlations, a point will lie in its poldape, and any plane will go through
its pole. If we now seek the polar plar@o a pointP that is associated with lity the
correlation Aand then construct the pdk that corresponds to the plamaccording to
B then we will have defined eollineation(P — P). Two pointsP andP" will then
correspond to each other collinearly when they arecés®d with the same plameas
the polar plane under the two correlatiodsand B). We will obtain the analytical
expression for this collinear relationship whenwget u, in (7) and substitute the value

of u, from the right-hand side of equation (7b) in the keftrd side of equation (7a).
Thus:

4
(8a) AX = Zﬁm 3 ¥

k,I=1

and analogously, it will follow for the coordinates wbtcorresponding planes that:

4
(8b) Au = zamb.k u .

k,I=1

If we assume that the complex®@@ndB are conjugate then this collineation will be
an involution; i.e., each element will correspond to titker one in a double way.
Analytically, this can be show quite easily when emgtchesay with by (aik with Sy,
resp.) in (8) and considers the condition (3).

The double rays of an involutory collineatieni.e., the connecting lines of any two
corresponding points (lines of intersection of two cgpoeding planes, resp.)are the
rays that are common to the complexes A and B.y Wilé then define the linear ray
congruence that is represented by A and B.

However, we will arrive at far simpler equations, A (2
as will be shown, when we base our investigations

upon a congruenceC; that is defined by the
following two complexes:

a) | Petap,=0,| B|p;+Bp,=0, A,

Az (Y)
where a and fare constant quantities. With this

specialization of the complex equations, we hane, i

fact, arrived at the following result: We can assumy ()

that the coordinate tetrahedron to which the
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guantitiespi are referred is such that one of its faces (8a. As, when we denote the
vertices byA)) goes to infinity, and the remaining ones are perperati¢ol each other.
The edges of the tetrahedron that do not lie in theep&ninfinity will thus define a
rectangular coordinate crofs Ai. ; A4 Asw ; A1 Az , Whose axes we will refer to as the
X, ¥, andz axes, respectively, for the sake of convenience ineyarinology. Equations
(7) then immediately show that the pofatis associated with the plade Az A4 (X2 = 0)
through the complexa), while the planeA; Az As (X2 = 0) will correspond to it in the
complexp). It is known that one has:

Pos| Pt il Puad Pad Pay
AA1101010 00

AA T AT A T /AT AV AT A

AA|IO0 1 1 OJ 0 01 O

AA[0101110{0]0
AA|0;0,;0;,1, 0,0
— e - —

AA[0[01 00} 10

—— -t -t
AA[OTOI OO0l 051

for the coordinates of the edges of the tetrahedron.
The edgeguA; andAsA, are contained in the congruenCg, since their coordinates

satisfy equation®) andf). By contrast, it follows from equations (4) thag tinesAxAs
andA;A, are conjugate in complex), while AJAs andAA4 are conjugate in compled.
The coordinate axes are, moreover, the three symnseteg of the congruence.
Equationsa) andf), which we can also write in the form:

Q) X% = X%X%+a(x%— %% =0,
B X% = %X+ B(%%= %% =0,

will then remain valid when we first replace the quagis, x; andx;, X, and therx,
X, andxy, x , and finallyx,, X, andxs, X;, with their negative values.

With the choice of the complexes) and f), equations (8) for the involutory
collineation that is given by the congruence now go to:

9) X1 =%, Bre=ax, X=ax, [x=X,
(10) Bu=au, w=au, Lu=u, Us = a Uy,

when we omit an overall proportionality factor. Tharnd at infinity x4 = 0) is, as is
obvious, associated with the plaxe= 0, which is the “alignment planeFluchtebeng
of the congruence.

In order to find the guiding lines &}, we consider the pencil of complexes that is

defined by the complexe® andf), and whose common rays define the congruegjce
It is represented by the equation:
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P23+ a Pra+ A (Pr3+ Bpas) =0.

Two special complexes are included in this pencil whosanpatersi; andA; are the
roots of the quadratic equatidA= a/ B(%). It follows that these special complexes have
the equations:

Pyt Pyt %( Pt B P, =0,
(12)

p23+ap14—\/%( p13+,8 p24) =0,

and its guiding lines are the guiding lines@f, whose line coordinates can be obtained
immediately from (12):

O:a:+@:1:—\/§0,

O:a:—\/@:lﬁ %:O.

(13) P13 P23 P31 Pra Pos: Pas =

The equations of the two guiding lines will then read:

— xzj%xl

% =-Jap, %=- %xl-

(14)

They will then intersect the-axis at right angles, and the angle of their ortimado
projections onto th&y-plane will be bisected by the éndy) coordinate axes. They are

real
imaginary;: according to whether [Gis > 0, < 0, or = 0, respectively. Thus:
coinciden

The linear ray congruenc€; is elliptic or hyperbolic, according to whether the

guantitiesa and 8 have different or equal signs, respectively, and parabolic wheng
vanishes.

() Cf., Clebsch-LindemannVorlesungen iiber Geometrie 1I, page 58.
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II. Thefocal paraboloid.

In order to find the focal properties of our congruefige we now first ask what the

second-order ruled surfaces are that have one ruledyféimil consists of rays of the
congruence. A second-order ruled surface is generallpetkfoy three skew lines,
which will be given by their line coordinateg , rik, Sk - All of the points of a fourth line
(pi) will then belong to the surface when it simultandpuwesits the linegy, r, s. The
analytical conditions for that read:

O34 P12 + Q24 P31+ Qua P23 + Q12 Paa + Qa1 Poa + Gz Pra = O,
r3aPi2 +r2aP31+r1aPoz +r12P3a +r31P24 +r23P14a =0,
34 P12 + 4 P31+S1aP23 +S12P3a + Se1Pas + S3Pia = 0.

If we add the identities that the coordinatesf any point that belongs to a ling§
must satisfy, namely:
X2 P3a— X3 P2a + X4 P23 = 0,
X3 P14 — X1 Pas + X4 P31 =0,
X1 P24 —X2 P1a + X4 P12 =0,

to these then we will have six independent, homogeneous @ugidietween the six
quantitiespi. If we eliminate them then the desired ruled surfaitiebe represented by
an equation in running point coordinatesvhose coefficients will be composed from the
line coordinates of the three given lines. The resulhe elimination is the determinant
of the six equations, which, from a theorem of th@thef determinants, must vanish:

q23 q34 q24 q12 q31 q14
r23 r34 r24 r 12 r 31r 14
S % S 2 S % -0
0 0 0 x,—-% X
X 0 x,-x 0 O
%X, % 0 0 x O

We will obviously obtain a third-degree equation; one cam teliminatex, as a
factor, since it cannot actually be zero. If we depéle determinant and set:

q23 q34 q24
| o3 O34 024 |, etc. for Iy Ty Iy, €LC.,

S3 S S

to abbreviate, then the equation will reduce to:
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| Oy Oy Cog |+ | Oy Gy O [OR5H
+| Oy Oy Oy | D+ | Oy O, O OX,
| Uy, Ups Oal +1 Cag O G} X, X,

+{| q23 q24 q14| + | q34 q24 q12|} |:|Xl X3

+{| q31 q24 q14| + | q34 q12 ql4l} DXZ X3
+{| q23 q24 q31| + | q23 q34 q12|} |:|Xl X4

+{| q34 q12 q31| + |q23 q3l ql4 |}D(2 X4
H| Op5 O Qual | G2 Gy Qs } X X=0.

(1)

If we now assume that the rectilinear surface ihat¢presented in this way contains a
ruled family whose rays belong to the congrue@ie— e.g., the ruled family that is
determined by the lineg r, s— then one will have the equation:

U3 = ~ A Gy Qs = ﬁq247
(2) M3 =—0T 4 Fsi= Ji 4 20
S3="0a8S, %1:,3 Sy

However, one will then have:
| 024031014 | =8| 024 024 Q14 | = O,
since two columns of the determinant are equalatcheother. All of theunderlined

determinants in (1) will likewise vanish. Furthenm, as a result of (2), the following
relations will exist between the remaining coeéius:

a 1
| 023 Ofza Qs | =— E | 034 031 G4 |, | Q34 Q2a 12 | =— E | O34 Ol12 Oa1 |,
1
| 012 Oa Qua | =— 0’_,6’ | 023 Oh12 a1 |, |023 Q34 12 | == @' | O34 Q12 Q4 |

We then get the result:

A second-order rectilinear surface, one of whose ruled familiessterddi rays of the
linear congruenceC; , is represented by the equation:

(3) Yacx%=0

i k=1

where the following relations exist between thefaments & :



II. The focal paraboloid. 8

(4) { ,3811:—0'322, 0’,3833:—844, ,36\13:—0'34

Ay =~ a8y a,=0, ay,= 0.

If we demand, in addition, that this ruled surface th&included in the congruendg;”

must be a surface of rotatienand thus, a one-sheeted hyperboloid of rotatitimen we

will have two cases to distinguish: Namely, since omehzavea;» = 0 in equation (3)ys

andays cannot both be non-zero for the case of a surfaoetation ¢). If we then take:
l)ax=0

then we will havea’, = (a11 —az2) (ass —az2), in addition. As a result of (4), we will then
also havea;4 = 0, and with hindsight of (4) we will obtain the values

f:g:h:(all—agz):0:a13:(a+,[>):0:%

2

for the direction cosines for the rotational axis of eurface of rotation. Moreover, one
gets:

for the coordinates of the center of the surface. If:
2)a;3=0
then it will follow from (4) thata,, = 0, and one will have, in addition:
a;g = (a2 —a11) (Azz —au1).

In this case, the direction cosines of the rotatiame will read:

f:g:h:0:(a22—a11):a23:0:(a+,[>):h,

1

and the coordinates of the center of the surface will be

__ %

X
%,

() See: SchurAnalytische Geometri€™ ed., pp. 221.
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so the center of our surface of rotation will lie othei thex-axis or they-axis, and the
rotational axis will be perpendicular to the coordinatesai question. We have thus
found:

There are two families of surfaces of rotation such that one ruledyfaroludes the
linear congruenceC;. The rotational axis of the first family cuts the x-axis

perpendicularly, and that of the second family cuts the y-axis perpendyculdihe
equations of the rotational axis are:

D x=-p f:g:h=0:(@+L):p or ﬁ:c”’[’),

X3 P

() -
2)| X,=-0 f:g:h=@+p£):0:0 or %4 ’8.

X3 o

If we now eliminate the parametepsor o from this then we will obtain a second-
degree surface as the geometric locus of theseommahaxes:

(6) x 06 = —(a + f) %X,

and indeed, an equilateral, hyperbolic parabolbat will have thex andy axes as its
guiding lines. Following Jolles, we call it tiiecal paraboloidand its ruling rays, the
focal ruling raysof the congruence, and thus get the theorem:

The ruling rays of the focal paraboloid, and orfigse rays, are the rotational axes of
a second-degree surface of rotation, one of whasedrfamilies is included in the

congruenceC; .

However, before we go further into
M the consideration of this surface of
° rotation that is included in the
congruence, we would like to derive the
equation of the focal paraboloid in
another way that will lead us to more
E interesting focal properties.
~ Any ray of the linear congruendg’
™) is the carrier of a point involution and a
plane involution of the gathered
(geschart involutory space that is

M determined byC;. The latter contains
S two conjugate planesE and E', in

general, that are perpendicular to each
other and which we, following Jolles,

m
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call middle planes. Each of these middle planes intersects thenraf the congruence
that is perpendicular to it at the midpoMtof its point involution; i.e., the point that is
associated with the infinitely distant pot’ of the rayn. n is then parallel t&', and its
infinitely-distant intersection withE’ is the pointM’ that is conjugate tdM. The
midpoints of all rays of the congruence lie in the plég = 0) that is associated with the
plane at infinity, and thus in the alignment plane @& khear congruence. If we now

seek to determine the geometric locus of all middlegsasf C; then we will have to
subject the coordinatesand u’ of E andE’, first to equations (10), pp. 4, but then, since
E is perpendicular t&', also to the orthogonality condition:
uu+u b+ uh=0.

However, the latter goes to:
(7) (0'+,5)U1U2+U2U4:0
with the help of (10), pp. 4.

The coordinates of the middle plane then satisfycarsbdegree equation; we then
obtain a surface of class two that will be enveloped h®y middle planes of the
congruence. If we replace the plane coordinates in i{h) ppint coordinates then that

will show that this surface is identical with the #&gparaboloid that was found on pp. 9.
In fact, we get the equation:

(6) XX +(a+ L) %%,=0.
One then has the theorem:

The focal paraboloid is enveloped by the middlenetaof the congruence (i.e., the
middle planes of theiw? rays). Its vertex plane is the locus of midpoiftshe rays of
the congruence.

Conversely, one will have:

Each plane through a focal ruling ray is a middlane of the linear congruence; i.e.,
it is the perpendicular to the plane that is asat&i with it.

If we then draw an arbitrary plane through — dtge,focal ruling ray (see pp. 9):

(7) X1==p, pPe=(a+p) xs,
then its equation will read:
(8) Xi—pHpXe+tu(@+pPxs+pxa=0

From equation (10), pp. 4, we then get:

B, ., P

(9) —upxl+EXz+EXs+ﬂﬁ(a+mx4=0

for the plane that is conjugate to it, and see fitaimat orthogonality condition:

WU+ U, b+ Uty =0
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for the two planes will be fulfilled, so it is, in fache middle plane.

As a tangential plane to the focal paraboloid, any higdane of both focal ruled
families will contain one ray of each. If we noasaciate the two rays that will be cut
out of thesamefocal ruled family by two conjugate middle planes watdch other as
corresponding then we will obtain an involutory pairingeach focal ruled family and,
with Jolles, call these two involutions tliecal involutionsof the linear congruence.
Since all focal ruled families cut the(y, resp.) axis perpendicularly, we will find the
analytic expression for this involution when we look tlee point of intersection of two
conjugate middle planes with the(y, resp.) axis. The coordinates of that point will
follow immediately from the foregoing two equations:

, _ Bla+p)
X1 == ,01 - ,
1 X 0
or
X2 ==, X;:—,B(a+,[>’)’
o
resp.
By eliminating the parameter (g, resp.), one will obtain:
(10) x ¢ =-B(a + B), X, 06 =-a(a +p)

for the two focal involutions. The infinitely-destt ray of the one family will then
correspond to the-axis, while the infinitely-distant ray in the othé&mily will be

associated with the-axis. The (real or imaginary) double rays offingal involution are
called thefocal axesof the congruence. One then kass X (x2 = X,, resp.) for them.

As a result, they will have the parameter:

(11) p ==x\-pBa+p) (G=x-a(a+p),resp.),

and their equations will be:

x=7p, Je=:3*B
(12) e h
X, = 0, %:iaﬁ’g,resp

One can calculate their line coordinates from tiikey will be:

B
+B

t/-a(a+pf) :O:(a+,[>’):i‘/a_;’8:0:1.

0:(@+pB):+J-Bl@+p):0:1:% -
P23 P31 P12: P14 P24 P3a=
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From the foregoing, two associated planes, one ofhwdpes through the focal axis,
will intersect orthogonally in that focal axis. lact, for two such planes, one will fulfill
the orthogonality conditions:

Xi— UPX —(@+ P Uxe—pXx, =0
and

-
a+p . aarpu

al@+pP uxa+ pxe+

as one will verify immediately. With that, we hameved:

A linear ray congruence contains two pairs of (real or imaginary) focal.aXdwir
plane involutions are circular.

It still remains for us to decide when the focaks are real and when they are
imaginary. We found that the congruen€g is elliptic or hyperbolic according to

whethera and 8 have equal or different signs. Equations (11) @) will then yield
the following table:

Congruence Focal involutions
ct Focal axes aandf
Family1 Family 2
hyperbolic elliptic elliptic| 2 pairs, coni. equal signs
imaginary
elliptic hyperbolic| elliptic 1 pair real, | different signs
1 pair imaginary

that is:

In the case of the hyperbolic congruence, the focal involutions are bqiticellio the
focal axes are all imaginary, while in the case of the elliptic coegce, the one focal
ruled family is then hyperbolically-paired involutorily, so it withrtain two real focal
axes, while the involution of the other will be elliptic, so it aontain no real double
element.

If we return to the truncated examination on pihén we will next have to visualize
once more the equations of the surface of rotdtiahis contained in the congruencg.

We found two families of surfaces of rotation, sm tkinds of second-degree equations,
whose coefficients satisfied the following condiiso

1) PLau=—-aax, ap agz = — aua, Laiz = — ap, a2 =0,
azs =0, as=0, as=0, a’, = (1 —an2) (a3 —az2),
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(2) PLau=—-aax, ap agz = — aua, a4 =— O a3, a2 =0,
az =0, a3=0, au =0, &, = (qo2 —au1) (A3 —a2).

If we would now like to answer the question of wherséhsurfaces are real and when
they are imaginary then we can apply the theorem:

The second-order surface that is represented by the equgtjam X = 0 contains
ik

no real points if and only if:
1) The determinanf ax | and all sub-determinants of order twg a« — a. are

positive,
and
2) The diagonal termsjaand their sub-determinants Aave equal signs.

We next treat the first family of the surface ofatain, for which, conditions 1) are
valid. With the help of these conditions, the determiired theay can be represented as
follows:

a; 8, 83 8, a; 0 a; 0

0 0
B Ay By Ayl _ &, &4 = B (an aas - a4)% > 0.
Gy 8 Sy 8y 8; 0 a; 0

Ay Gy 843 8y 0 a, 0a,

It is positive, since one is dealing with rectilinearfates. In the examination of
second-order sub-determinamgsaw — a;, we distinguish the two cases of hyperbolic
and elliptic congruences:

l. If C is hyperbolic themr O3> 0, and these sub-determinants are not all positive.
For example:
ai ak — & ,

which will go to —a / B &, as a result of conditions 1) above, is then certaiblyative.

Our surfaces of rotation of the first family will alys be real then in the case of
hyperbolic congruences.

Il. If C/ is elliptic then the one focal ruled family will begerbolic, while the other
one will be elliptic and involutorily paired. We accomglyndistinguish two sub-cases:

a) Let the focal ruled family that the rotational axafsour first surface family
comprise (they are the ones that cut yfaxis orthogonally) be elliptic and involutorily
paired. One will then have (cf., pp. 11):

-a(a+p <0, -B(a+p >0,
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and one will obtain:

a _, Ba+p) 2
a =-—a,>0, a; =-"—_"a%+a.<0,
11 A2 ﬁagg 2o A3 (a'+,3)2 a,ta,
aszaus =— afai;> 0, 1863~ 35> 0,
since one has:
s == A= s
11 433 a’+ﬁ 3 ﬁ 21
one will then have:
a+
‘ aﬁailass_ai3>o

for the sub-determinants in question aadortiori, the foregoing inequality.

a1 =—afaass> 0,
ag28us— 85, = 5 (a1 383~ @) > 0.

Furthermore, the following expressions have eqigails:

a1 and  apy &gz &us —agss 854 =az3 (A &us — 354),
since one has:
a2 aus— a5,> 0 and ajiass >0,
and
az2 and a1 &3 aus—aus 6123 =ay4 (A11 883 3123),

also have equal signs, on analogous grounds, aasvel

aso and ai1 (B aus— 354),
s and  ap (a11as3— a%).

In case Il.a), all of the surfaces are then imaigin

b) However, if we assume that the focal ruled fantihat cuts they-axis is
hyperbolic and involutorily-paired, so we assurneg:th

a(a+ p <0, LBa+p >0,
then the sub-determinants:
_ A2 __ﬁ 2 A2 — _ 2
qidpe— a, =" —a, and Az ug— = aﬁa44

a
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will indeed always be positive, so the quantities:
di1dg3z— 6123 and aypaus-— 854

can also assume negative values. In fact, with the dfetonditions 1) on pp. 13, both
expressions go to:

1
a —a,=-————(a, ta(a+p)aj,),
11833~ a5 Ba+p) (g, +a(a+p)a,)
»
and this expression will b%ss;l\i/g according to whetheg’, +a(a + §) &, is less

imaginar

than O or greater than it, resp. Our surfacesmm{ |
rea

>} according to whether

a,la,<-a(a+pPor>-a(a+p,resp.,or:

%<i«/ -a(a+p), resp.

8y >

On the left-hand side of this inequality, howewamne finds precisely the value of te
coordinate of the surface midpoint (cf., pp. 8)jlevkhe root on the right-hand side gives
the distance to the coordinate origin, at whichtihe focal axes meet theaxis. (cf., pp.
11) Our surfaces of rotation are then real whenrgitational axis cuts theaxis outside

of the focal axis and imaginary when it cuts theafaaxis inside the focal axes, assuming
that the still-remaining demands of the theoremppn 13 can be likewise fulfilled.
However, this will actually lead to the same resiNamely, one will find that:

a1 aus > 0, axag3>0
if the surface is imaginary. However, this is tase a fortiori, as long as:
a1 as3— a5 >0, A aus— a5, >0, resp.
The remaining conditions, namely, that the follogvguantities have equal signs:

a1 and  agz(apaus— &),
&, and au(aurass— a5),
s and  ay (praus— &,),
au and  axp(a1dss— ay),

will lead to the same inequality that was posedvabo
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If we also perform the same investigations that weiezhwut for the first family of
surfaces of rotation with the second family then wiéwaw have to apply condition 2 on
pp. 13, instead of conditions 1), and in that way we getlthe corresponding results:

We can thus summarize all of this in the theorem:

Each generator of the focal paraboloid of a hyperbolic, linear ray congrudrate t
lies at finite points is the rotational axis of a real second-degrdaceiof rotation such
that one family of the congruence is contained in it. For ellipbogcuences, the
surfaces of rotation whose rotational axes belong to elliptic, involutimgal ruled
families will be imaginary, while the ones whose rotational axemealdfyperbolic,
involutory, focal ruled families will decompose into real and imagir@args. They are
real when their rotational axes cut outside the focal axes of the guitiag of the
paraboloid in question and imaginary when they cut inside the focal axes gidiitheg
lines.

II1. The second-degreeruled surfacethat islinked
with afocal ruled family.

We will obtain two further families of second-degreefaces whose generators are
most closely connected with the theory of the focalapaloid by the following
consideration: Any two mutually-associated rays of alfogled family are the axes of

two projective pencils of planes whose planes arecised with each other b§! and
intersect at right angles in each ray of the congrelethe two pencils thus generate an
orthogonal second-degree ruled surface, one of whose famnilies is contained i€} ;
with Jolles, it is said to benkedto the respective ruled family of the focal paraboloid.

If we would like to find its equation then we image that ave given two associated
rays of the focal ruling that, from pp. 9, will be renet®d by the equations:

1) x1—p=0, px+(@+pPx=0,

2) o+ BaB) o _PAB) s pxa=0.
/Y Y

Thus, if:

(1) Xi—f1pX—(a+P*X—px=0

is the equation of a plane that goes through thé yshen we will get:

) o+ 10B8 P o~ (a4 pxs + B9 By 2
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for the conjugate plane that includes the ray 2). Withhiflp of conditions (10) on pp. 4,
this will yield:
1

@+ P

4

/j:

for the parameter/’. If we now eliminate the quantify from (1) and (2) then we will
get:

apxt = Bo X +(a+p)pX-apa+pBpx
+[af(a+B-apxx+[p’-B@+Plxxs=0

as the equation of the desired orthogonal rulethser or:

(3) plax;t =B +(a+pB) x5 —apf(a+P) ]
+[p% =B (a+Pl(xe X~ ax ) = 0.
If we set:
@) =P -Ba+h)
0

to abbreviate, then equation (3) will go to:

(5) ax —Bx+@+ph)x-ap(a+ph) % +2A(xx%=-a %% =0.

We can conclude from this that:

, All of the orthogonal ruled surfaces that are linked with a focal ruledlyashefine an
F-pencil

In a completely analogous way, we will get theaimn of theF?-pencil that is linked
to the other focal ruled family:

(6) ax; - % —(a+B)x;+ap(a+B) % +2u(x%-B % %) =0.
Here, we have set:

_a@+p)-o°
(7) u= —

whereois deduced from (5).

For the derivation of equations (5) and (6), wartstvith two arbitrary focal ruling
rays that are characterized by the paramet@r, resp.), and define the quantitiégy,
resp.) by relations (4), [(7), resp.]. We can iciarbitrary values to them and thus
obtain thewo surfaces of the pencils (5) and (6). If we asletubr each value of (4,
resp.) also belongs toraal surface of the pencil then we must seek to aagan at the
generators above by projective pencils of planésichvcan indeed yield only real
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surfaces, from the given surface equation (5) [(6), reapd in fact, we will find the axes
of the pencils of planes when we obtain real valuesherparametep (g, resp.) from
equations (4) [(7), resp.] for giveA (u, resp.). Equation (4) will read somewhat
differently:

7 —22p-B(a+P=0.

This is quadratic inp, and thus yields{ _
imaginar

}} values forp according to whether the

discriminant:
D:=A+B(a+pHis >0or<0, resp.

Analogously, it will follow from (7) thatois { }} according to whether:

imaginar
D,=tF+a(a+pHis>0or<0,resp.

If af> 0 —i.e., if we are dealing with a hyperbolic congruentieenD; andD, will
both be positive, so the roots of the quadratic equatirand (7) will always be real. In
the case of elliptic congruencesd < 0), we will have to imagine that the quantitieéa
+ p) andf (a + p) always have different signs. Thus, we will take,,& (a + ) > 0; by
contrast,B (a + p) < 0, sop will be real, whileog will assume real or imaginary values
according to whether:

(>or<|Ba+p|.
If then follows from this, with the help of the argurhenpp. 11, that:

In the case of hyperbolic congruences, the surfaces that are linkledhsi focal
ruled family will always be real. If the congruence is elliptien the pencil that is linked
with the hyperbolic, involutory, focal ruled family — and only thatqle— can contain
imaginary surfaces. Namely, its surfaces will real when:

A*>|Ba+p)| W >|a@+p)] resp]

and imaginary when:

A <|B@+p)| W >|a@+p)|resp]

The surfaces of each of the two pencils will degerenaice into a ray, namely, the
(real or imaginary) focal axes of the focal rulednily that the pencil in question is
linked to. The focal axes that belong to the first foaged family are contained in all
surfaces of the pencil that is linked to the other rudedilf/, so they will define a part of
the basic curve of this pencil. In addition, all surfaafloth pencils will go through the
guiding lines of the congruence, since one of their ruledlitss consists of rays of the
congruence. The basic curve of each ofEheencils that are linked to a focal ruled
family then decomposes into the (real or imaginary) iggidines of the congruence and
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the (real or imaginary) focal axes that belong todtieer focal ruled family. The ruled
rays of all surfaces of the pencil that are not coethiin C will then cut the two focal
axes that belong to the basic curve of this pencil, aildhuis define a linear congruence
F! that we can say is “linked” to the focal ruled famityquestion. Analogously, a
second linear congruencg will arise that is linked with the other focal ruleainfily,

and, following Jolles, both of them shall be called fibeal congruencesf C!. The

guiding lines of a focal congruence that is linked witfo@al ruled family are the two
focal axes that belong to the other focal ruled familihe focal congruence in question
will be hyperbolic or elliptic according to whether yrere real or imaginary, so:

Focal involutions F!, linked 3, linked
Congruence Frst focal | Second focu Mt the first| with the second
led family | ruled famil
ruled family  ruled family | - 1y | ruied tamily
hyperbolic elliptic elliptic elliptic elliptic
elliptic hyperbolic elliptic elliptic hyperbolic

Each of the two focal ruled families of a linear ray congruefgeis linked with a
linear ray congruencer! (3;, resp.). F' and 3 are called the focal congruences of

C,. If C; is hyperbolic then the two focal congruences will be elliptic;ifis elliptic

then the focal congruence that is linked with the hyperbolic, involutoay foled family
will be elliptic, and the one that is linked with the elliptic,alwory, focal ruled families
will be hyperbolic.

In order to represent the focal congruences analyjcale start with the line
coordinates of the focal axes that were found on pp. 11:

P23 P31 P12: Pra:Pesa:Paa=

{ 0:B8(a@+p):x(@+PBN-Bla+p):0:@+p)-Ba+pB)
—a(@+p):0:x(a+PB)J-a@+B):(@+L):0:\/-a@+ )

and the exhibit the equations for the four special coreglélkat have the focal axes for
their guiding lines. They read:

{ (@+ B)pyy+-B(a+ B p,+(a+ B-B@+ B) p, + Bla+p) p, =0,
(0’+,3) p31_\/_:8(a+,8) p12+(a+,[)’)\/—,[>’(a+,[>’) Q,,4+,3(O'+,3) Q4:O!
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{ @+ B)pys—J-a(a+ P p,+(a+B)-a(a+p) p,-a(@+p) p,=0,
(@+B) Py +J-a(a+ B)p,—(a+B)-ala+B) p,-al@+p) p,=0.

One of the two focal congruences will then be repteskby either of these two
complexes.

V. Polar systemsof alinear ray congruence
of thefirst and second kind. (%)

In order to obtain information about the polar propemiethe focal paraboloid and
the ruled surfaces that are linked to any focal ruled fa@@hap. Ill), we turn to the

consideration of second-degree surfaces in this chaptehéhbinear congruence; will

go to under their polar associations; i.e., we demaatdach ray of the congruence is
again assigned to a ray of the congruence as the reaippolar relative to such a
surface. To that end, we next prove a theorem thagive us the basis for a simpler
analytical association. Namely, we assert:

If the linear ray congruenc€; is taken to itself under the polar system of a second-
degree surface Fthen that surface will be invariant under the involutory collineation
that is defined byC!; i.e., a point of E will again be associated with a point of that

surface byC; .

In order to prove this, we write = §rands = §s, whensris the polar plane of the
point P (s is the reciprocal polar of resp.) relative t&% moreover, leP = ¢P', soP’
corresponds to the poift under the collineation that is defined B. Now, if this
involutory collineation¢ is characterized among all involutory collineations t@tvert
C, into itself by the fact that itakes each ray ofC; to itself (cf., pp. 3) then the
transformation3¢g will also be a collineation that is characterized tiat way.
However, if the congruence] is converted into itself by the polarity then the
transformatior§¢g will also be a collineation that is characterizedhat way. Sinces
= §sis again a ray of the congruence, one will then hagadentity:

(1) CFs=Fs.
Thus:

SCF =§8s=5s,
and it will follow from this that:

() Cf., pp. 1, rem.% and also:Kippels “Involutorische Regelscharen, etc.” Inaugural Dissenat
Strassburg, 1904.
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S$C§=¢ or $¢€ =C5.

If P andP' are henceforth the poles of two plarmeand 77 that are associated with
each other byC,, so in our notation:

(2), (3), (4) P=37 P =31, nt=Cr
then we will also have:
P =F7=FCm=<¢Fm=CP,

or
(5) P =¢P;
le.:

A pole and its polar plane under fare again associated with a pole and its polar
plane under the collineatio®.

The validity of our assertion above now followsnfrahis immediately. Namely, if
the pointP lies on the surfacE thenr=§P will be the tangential plane to it. However,

the same thing must also be true for the correspondimgeatsP’ = ¢P and 77 = €7z

since the planef contains the poir®®’, and in addition, from the foregoing’, and 77 will
be a pole and polar relative 0.
The converse of our theorem can be proved in an gnsirailar way:

If a second-degree surface” s invariant under the association of the linear
congruenceC; thenC; will go to itself under the polar system that is defined by F

We can now treat our original problem in a somewlfégrdnt way. Namely, instead
of looking for surfaces such that the congruence is imvatader their polar system,
using our theorem (pp. 20), we can now ask what the surdaedahat go to themselves

under the involutory collineation df; .

In order to express this latter demand, we replaceuhface pointx in the general
equation of a second-degree surface:

(6) iaikXX(:O

ik=1

with the pointx’ that is associated with bg; - i.e., by equations (9) on pp. 4 — whose
coordinates must therefore likewise satisfy equation (8)e thus gets:

™) Y a,%%=0,

ik=1

or, from (9), pp. 4:
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0'2
B

1 a?

+20'6|13X2 Xy + ZE a,% X3+ 2—

1 a
azlez + a11X22+F a44)§+az 833)84+2 aizﬁ X%
(8)

a a
B XX+ 2? &y X % 2; a,%% 0

By comparing the coefficients in equations (7) and (8),wile then obtain the
following conditions between the quantitegsthat determine the surface:

2

a 1
P a1 = — a2, 0 82 = a1, 0 833 = —5 &ua, 0 aus = o ags,
B B
2 a
P a3 =—an, pPaus=—ap3, pPas=0aas, Pz =— a4,
B B B
paz=" a pasi=" a
12 — - di12, 4 — —— 4.
B B

However, it follows from this that? = &* / B2 orp==+ a/ 3, such that we will then
get two different systems of conditions — and thus different systems of second-degree
surfaces — according to whetheis positive or negative. Namely, we will get:

I. For negative:

:8811 =—aay, 0’,3833: Ty Ay~ -3 a,
&, =08, a,= 0, A= 0.

II. For positiveo:

ﬁall = aa22’ aﬁa33 = a44’ a24: ﬁ a13 a14: a a‘23

In the first case, we have six conditions betwBanhomogeneous quantitiag, so
we will get a three-fold manifold of surfaces, aindthe second case, there are four
conditions, so there will be® surfaces. All of these surfaces will go to thelnes under
the collineationZ, and their polar systems will also transform itltemselves as a result

of C!. We thus have the theoreh (

There are two systems of second-degree surfaceghfoh a linear ray congruence is
apolar, and indeed there will be® surfaces of the one kind amd surfaces of the other
kind. The coefficients of their equations willisigtthe conditions (11, resp)

() Cf., v. StaudtBeitrage zur Geometrie der Lagsuremberg, 1856. 1. Heft, nos. 105 and 109.
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A comparison of this with the results on page 7 wédtteus that:

The surfaces of system | are ruled surfaces, one of whose ruldetgaronsists of
the rays of the congruence, while the rays of the guiding family walsbeciated pair-

wise with each other bg; .

For the investigation of the surfaces of systems ypketll, we consider the
determination of the coefficients , which can be represented as follows with the help
of the conditions II:

8, 8, a3 a,
Ay 8y 8y 8y

8y 83 85 Ay
a'41 a'42 a43 a44

| a | =

1
= (Baurags —f &%~ a a%—a1p a39)” — af (au2 a3 — - a11 g4 — 2 A13 a23)°

This be negative only whemgB > 0; i.e., whenC; is hyperbolic. We conclude from
this that:

In the case of an elliptic congruence, the surfaces of systema siemond-order ruled

. . rectilinear
surfaces, and in the case of a hyperbolic congruence they arejthen
not rectilinear

according to whether:

> 1
(ﬁanass_ﬁaiz_aél_ 81283)2 <|0’,3 | ( aizasé*'z aqagr 2 8138.;?.

If a surface of system Il is rectilinear, and geentsP; andP,, with the coordinates
andy;, lie on a ruling ray then they will be associateith two pointsB' and P, (with

coordinatesx and y', resp.) byC;, which, from the foregoing, must lie on the suefac

and, as can be shown, whose connecting line WélWwlise belong to the surface. With
the help of equations (9), pp. 4, in whighand X (y; and y', resp.) must be the
coordinates of associated points, the conditiortHat, viz.:

4
Z(ai1>(1+ a, %+ a; %+ g% y=0,
i=1
will then go to:

4
(@t a %t axt g% y=0,
i=1
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which will then be fulfilled when, as we have assunikd,line P,P, is a ruling ray of the
surface. Since two lines that are associated with etiwr by C! do not intersect, in

general 1), P'P. will belong to the same ruled family @&P,. We thus obtain an
involutory pairing in both ruled families of the surfacBaus:

The rectilinear surfaces of system Il are involutory ruled sudace

The double elements of these involutions are ray§ of Thus, at most four rays of

the congruence belong to any surface of system II.
Since a ruled surface consists of rays of the congeutemadhe surfaces of system |,

the guiding lines ofc] will be included in all of these surfaces. Each ofghiling lines

is then polar to itself in a polar system of the fiisid. Analytically, with the help of the
equations that are true for the line coordinapgsapd p; ) of two polar reciprocals, this
will also easily show that:

9) PP, = (1 P23+ G2 P31+ GizPr2 + QraPrat+ Qis Poa + Qe Paa, ELC.

Here, theay mean the second-degree sub-determinants of the quaaiitiehich
we have subjected to conditions I. If we then apply Bojs(9) to a polar system of the
second kind, so we then require that alRemust satisfy conditions II, then that will show
that the guiding lines in the polar system of the second &re reciprocal polars. We
will then have:

In a polar system of the first kind, each of the guiding lineS ofiill be transformed

into itself, while in a polar system of the second kind, theytmelh go to each other
reciprocally.

If two pointsP andP’ are conjugate to each other relative to a second-degrésee
then, as is known, their coordinates (vizand x ) will fulfill the equation:

4
(10) DA ta %t axt g, %) %=0.
i=1

Thus, if thex mean the coordinates of the point that is assetiaith the poinP by

the congruenceC; then we can substitute the valuesxpffrom eq. (9), pp. 4, in it and
get:

() In fact, they will intersect only when one of themand consequently, the other one, as wel
incident with one of the guiding lines dfll, and indeed, at the point of intersection of these guidieg.
However, the fact that a surface of system Il doesomtain the guiding lines will be proved below.
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1
aiz><f+£au>é+aa34>é+ﬁ a34>§+[ ars a% xlxz{a at— a4} X
a B B
a
— ara al} x.=0.

1 a 1
+[aig+za24j X%+ (@t a a, x2x4+(— Ayt — 61; xlxa{ﬁ

B =B
This equation is, however, fulfilled identically onlyhen theay satisfy the
conditions I; i.e., the points that are associateth each other byC; are conjugate only

in a polar system of the first kind. The proof for cgte planes takes an analogous
form, such that we have shown:

The polar systems of the first kind contain the point and plane involuhahsite
provoked byC] among its rays, but the polar systems of the second kind do not contain
these involutions.

If the two ruled families of a rectilinear surface ofstem Il ®;) are paired
involutorily then any two associated rays of one ruledilfamill be the axes of two
projective pencils of planes whose homologous plandsbeilikewise associated with
each other byC!. If, for the sake of ease of representation, we dh@planeR; in such
a way that the edges of the coordinate tetrahedron atairmeah in it, which is indeed
always possible by a coordinate transformation, tteeequation will read:

R a%%+ a,%%=0.

In fact, the coefficients fulfill conditions llSince the vertice8; andA; (As andAy,
resp.) correspond to each otherdp, the edge#\y As andA;

A A4 will lie on associated lines of the same ruledifgmvhich
we can thus choose to be the axes of the two pigec
pencils of planes. The equations of those penuilsthen
read:

(11), (11a) x1+Axs=0, Xo+ Uxq=0.
A A
' M ? They will be projective when one has:
A (12) ar=p

and will then generate a second-order ruled surf@gewhose equations we will obtain
by eliminatingA andy from (11), (11a), and (12):

R: %x%-axx=0.




IV. Polar systems of a linear congruence of the éinsl second kind. 26

We can proceed with the linés As and A; A, , which belong to the other ruled
family of our surfaceR, and are likewise associated with each otherQy in a
completely analogous way. We will then obtain the prajective pencils of planes:

X1+ A% =0, Xo+ A X3 =0,

and what they will generate is the ruled surface:

R: x%-B8%%=0.

However, what is true for the rags As andA; A4 (A2 As andAq A4, resp.) will be true
for any arbitrary pair of associated lines thabhglto the same ruled family & . For

any two rays of a ruled family, we will obtain arfaceR; (R, resp.), and can thus say

that the totality of these surfaceslirsked with the ruled family ofR, in question. All
surfaces that are linked with a ruled family willng to the system of the first kind and

consequently will have the (real or imaginary) gugd lines of C; in common.

Moreover, they will all go through the two raystbé congruence that are contained in
the other ruled family. Therefore, all of themviidve the faces of a skew tetrahedron in
common and consequently will define a penciFf Briefly:

Any ruled family of a rectilinear surface, Rf system Il is linked with a pencil of
surfaces of system | that cuts iR two associated rays. Its basic curves condighe

guiding lines ofC; and the two rays of the congruence that belonpéoguiding family
of R.

If we consider the polar propertiesRfthen that will lead us to further relationships
between a surfacB, and the two pencils that are linked with it. AinioP° (x°) is

associated with a plar by the surfac®, that has the coordinates:
(13) PU =awX, PU; =aX, PU; =X, PU, =a4X.

Now, if the pointP° lies on one of the surfac&s or R that are linked with the ruled
families ofR, then it can be shown that the plarfiés the tangential plane to that surface.

In fact, the equations & (R, resp.) in plane coordinates read:

Ri: awus—uius=0,
R: fuuz—uwpus=0.

If we substitute the values of from (13) into this then it will follow that:

XX =ax% =0, X =B%% =0,resp,
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from which, the validity of the assertion above cars&en immediately. The surfades
and R are then apolar for the polar system that is define& byOne can likewise prove

thatR, goes to itself under the polar system&pénd R, and thaR; does too under the
polar system oR', and conversely, such that one has the theorem:

If two pencils of surfaces of the first kind are linked with adgerface of the second
kind R then the surfaces of these pencils will be reciprocally polar-iamarto each
other. Likewise, the polar system of the second kind that is définB will transform
any surface of the two pencils into itself, and conversely.

All of the results of this chapter can now be caroeer, with no further analysis, to
the focal paraboloid and the orthogonal ruled surfdeasare linked to it:

The focal paraboloid o€; is a rectilinear surface of the second system that is linked

with the two pencils of surfaces of system I.

Each ruled surface that is linked with a focal ruled family is apafathie polar
system that is defined by the focal paraboloid, and conversely, the parakdlom
transformed into itself by the polar system of that ruled surface.

The polar system of the first kind of any orthogonal ruled surfacedhiaked with a
focal ruled family transforms every surface that is linked viiéhdther focal ruled family
into itself.

V. Confocal, linear ray congruences.
(The principal axis cylindroid)

Since we derived the equation of the focal paraboloioh fifee properties of a linear
ray congruence in Chapter Il and determined its focallutims, we would now lie to
address the converse problem and investigate whether artiye@ongruence is defined
by an equilateral hyperbolic paraboloid and the two invahstiof its ruling rays.

Therefore, let an equilateral hyperbolic paraboloid iberg whose equation we can
assume has the form:

1) x [k, =-2cx X,

and, in addition, let the involutory pairing of tlwme ruled family be given by the
equation:

(2) x Ox =p,

where the infinitely-distant ray of the family issmciated with the guiding line of the
paraboloid that belongs to the same ruled fam#yit anust be. However, from what was
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done on pp. 1let seq. the involution of the other ruled family will then Hetermined.
We can then change these two involutions only by giving thetitpandifferent values,
and there will be, accordinglyw® linear ray cognruences with the same focal paraboloid.
Following Jolles, we call thentonfocal The middle planes of confocal linear
congruences coincide; they are the tangential plamndiseir common focal paraboloid,
and we will then obtain a ray of the congruence whemegsect two normal tangential
planes. Analytically, we represent this as followge take two ruling rays that are
conjugate under the involutioa x; = o

1) X1:Xf, szf:_zc:)%1
2) Xl:%’ x2£0:—20xo,,

and draw the plane through this:

2
1) xl—qu—qufxs - X% =0,
, 2
2) Xl—,U/XZ_,UC_XfXS_ﬁo)QZO-
1Y %

Should these planes be perpendicular to each thtberone would need to have:

Yo,

1+,u,u’[1+4—czj =0 or U==———,
Y (p+4c”)u

We then obtain a ray of the congruence as thesmtéion of the planes:

2
1) xl—ﬂXz—ﬂzgxs—XfXFO,

P 2cx P, _
2 X1 + Xo + - =x=0.
) Y v ac T (pr ey e R

The desired ray then has the line coordinates:

O = U, U| _ 2c(p-x%?) Dss = 2p+4c?
14 = B I e sl 34 = —
, Uyl X (p+4c?) U(p+4c?)
0 2 2cx?
o= MO PX: o1z = 24P, X

NPT 2y’
X p(p+4ac) X2 u(p+A4c?)
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2uc  2cx _X-p
o T 2y P23 = o
X, H(p+4ct)

P2sa =—

However, the linear relations:

2
+,0+4c

0
2c Pra

(3) P23 :O! p31+2_c P2, = 0’

exist between them, such that we then obtain eatheofonfocal ray congruences with
the common focal paraboloid (1) as the intersectibbwo linear complexes that are
represented by equations (3). Among theddinear ray congruences, one finds two
parabolic ones; for them, the paramegevill assume the values:

1) =0, 2)  p=-4c

Their guiding lines will be thg andx axes, resp., in which the two focal axes of the focal
ruled family in question will coincide.

The totality of all linear ray congruences with theneaocal paraboloid (1) defines a
guadratic complex whose equation arises by elimingtifigm (3):

4) Pys Pyt PisPut2C Py P,= 0.

The complex sends a ray cone through each pgihtwhose equation in running
coordinates reads:

XYYt XYY, t2CK yyt2 cxxy XXy —XaXa(yrys+ 2 Yo Ya)
—Xo X4 (2C Vi Ya+YaY3) =X Xa Vo Ya + X3 X4 (Y2 +Y2)=0.

If we now investigate when this cone decomposestinb planes — i.e., we ask what the

Kummer singularity surface is — then we will obtdive following condition for the
coordinates of the vertex of that cone:

2y Y, Yi—(%+ ¥) ¥ =0.

Here, one can omiy as a factor. The Kummer singularity surface wi#n consist of
the infinitely-distant plang, = 0 and a third-degree surface:

(5) ys = 202320
ity

that is theprincipal axis cylindroidof our confocal ray congruences, which we would
like to briefly go into.
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As is known, one understands the principal axis cylindvba linear ray congruence

+ 2
P 24C , B=~— Zﬁ p = const., to mean the
C C

locus of the principal axes of the pencil of complkethat is given by the equation:

P23 + @ Pra = 0, P13 + B pss = 0, wherea =

(6) P23+ @ Pua+ A (P13 + Bpss) = 0.

In this, the principal axis of a complex is defin®e be the line that is conjugate to an
infinitely-distant line that is orthogonal to itlagive to the complex. If we would then
like to derive the equation of the principal axigirdroid from this definition then we
would next have to present the orthogonality cood between the line coordinatgs
of a principal axis and the coordinates, p.3, ps1, 0, 0, 0 of an infinitely-distant line
(pi). Since the quantitigs2, p23, ps1 are the position cosines of the parallel planas th
go through the lin@i, these conditions will read:

(7) P12 i P23 P31 =034 - Q14 - Q24.

The line that is conjugate to the lipg relative to the pencil of complexes (6) will then
have the coordinates (cf., (4), pp. 2):

PO, =~ (0’ -A 2,8) Pros PU,= p23+ A P13
(8) POy = (A Pt ABPI)A, P O=—A( Pt A P,
PGy =a P+ AL Py P0,=0.

Should this cross the infinitely-distant lipg at right angles then it would from (7) that:

9) Ji2=p12=0 and P23 Opa = P31 Cha ,

or, when we express tipg in terms ofgi using (8):

(10) — A Gg1Opa + O 04 Goa + Qg1 Cpa— A8 0, = 0.

This equation is then satisfied by the coordinatieall principal axes of the pencil (6).
Now, if we would like to represent its geometriccus by an equation in point
coordinates then we would have to eliminate thameterd by means of the relation:

O23 = A Qs

which follows from (8) and then replace the lineox@inates with point coordinates, in
such a way that we let any principal axis go thtotwo points X and x ) and write the
determinant{ X ;i for gk . However, since, from (8) and (9), the quantitiesanddsa

vanish, all of the principal axes will cut tleaxis perpendicularly, and we can thus
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choose the two points 0, 8, 1 andxi, Xz, X3, 1 for its determination. If we substitute
this into equation (10) then we will obtain:

(11) X = (a+f) 22 = 2p 2

X% %

for the desired equation of the cylindroid, as we found fooraponent of the Kummer
singularity surface above.

Equation (11), which we have derived for the principal axiBndroid of any
arbitrary one of the confocal ray congruences (3), pp.sd@dependent of the parameter
£, which is characteristic of each individual one of tomfocal congruences. We can
then say:

Confocal, linear ray congruences have the samecjpai axis cylindroid,
and conversely:

Linear ray congruences with the same principal ayiéndroid are confocal.

If the principal axis cylindroid is given then we caniarat the associated focal
paraboloid by the following construction:

We construct the normal plane to the line of intetise of a tangential plane to the
cylindroid:

XF + ><22
(%%~ X%) x+( ey %%y ¥ ¢Xx =0

with thexy-plane. Its equation is:

(CxX—X%) x+(ck¥- X% x4 ¥ cXx =0,

where

L, XXX (o XY’

“ KTl e
and we assert that this plane is a tangential ptan¢he focal paraboloid, so its

Uy Up — U3 Uy

However, this can, in fact, be easily verified whare considers only the fact that the
quantitiesx’ represent a point of the cylindroid, so it wiltisey equation (11). One can
likewise show that a plane that is erected perpertali to a tangential plane to the
paraboloid at its line of intersection with tkgplane will contact the cylindroid (11).
One then has the theorem:
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If normal planes are erected on the lines of intersection of the taapplanes to a
cylindroid (11) with the xy-plane then they will envelope an equilateraljmdoid (1).

If normal planes are erected on the line of intersection of tangentaeplto an
equilateral paraboloid (1) with its vertex planes then they will envedopdindroid.

Following Jolles, the equilateral paraboloid (1) and thmdroid (11) are thus called
orthogonally linkedto each other. The vertex rays and the principal akishe
paraboloid are the symmetry axes of the cylindroid thatrtisogonally linked with it.
Both surfaces have theandy axis in common; however, except for them, no ruling ray
of the cylindroid will meet the paraboloid that is ogboally linked with at real points.

In fact, such a ruling ray will be represented by:

2cp

pxi=x  and X =Ty

X4 ,

SO one must substitute andxs from this in equation (1) if one is to find its ipb of
intersection with the paraboloid. One will then:ge

, __ Ac?
v~

so one will get an imaginary value for.

A further relation between the paraboloid (1) #melcylindroid (11) follows from the
polar properties of paraboloids: Namely, if we séekfiind the reciprocal polars of a
ruling ray of the cylindroid relative to the parddid then we must first represent this
ruling ray in line coordinates:

_ _ 2cp
X2_10X11 )%_14-,02

and obtain:
P24 i Pa1: P12 Pra’Poa:Pas =200 —2c0:0: (L +0) p: 0.

From equations (9), pp. 29, its polar reciprockitiee to the paraboloid (1) will then be:

Pas: Par: Prot Brg PBog Pa =P1a:—P2a:0:p23:—pa1: 0
=1+ :-pA+):0:Z0f:2p: 0,
or
2cp
1+ p?

PXx=—"X, X3=- Xa .

We thus once more obtain a ruling ray of the cylidi and indeed the one that arises
from the first one by a reflection in tlkeory axes. Thus:

The cylindroid will go to itself in the polar systeof the paraboloid that is
orthogonally linked to it in such a way that twoitsf ruling rays that are reflected into
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each other in one of the symmetry axes (viz., x and y) will [z pediprocal in this
polar system.

Moreover, if we start with the paraboloid then we earive at the cylindroid that is
orthogonally linked with it by the following argument. mNely, we assert:

The focal axes of an equilateral paraboloid (which are incident with iscipal
axis) define the ruled family of the cylindroid that is orthogonallyelthiith it.

In order to prove this, we imagine that the coordingséesn to which the paraboloid
X1 X2 = — 2C % X4 IS related is rotated around thaxis through the angle = ¢ / 2. Its
equation will then go to:

(12) x?sing + 2X X, cogp— X7 sigp =— 4cX, X,
and a tangential plane will be represented by:
(13) (r;sing +r,cosp )+ €, cop—r, sipp X,+ € X+ & ;X=0,

where the;; mean the coordinates of the contact point relatvdne rotated system. The
plane (13) will be perpendicular to the coordinate plgh#)when one has:

(14) r1sing +r,cosg =0.

Now, all of the tangential planes to the parabolbat are perpendicular to tlyez-
plane will envelop the cylinder:

I ul .

15 u? = st or X =4csing X X,;
(15) > = sing 8 P X
the equation:

. 4
(r1 cOSP — 12 Sin g)* = o121
sing

will then go to:
r;sing+ 2 x, cogp—r5 Sip = - 4cys s,

with the help of the condition (14). It will thebe true when the point with the
coordinates:; lies on the paraboloid. However, the focal axistled cylinder (15) is
incident with the principal axis (viz., tieaxis) of the paraboloid. Namely, its equations
are:

(16) x, =0 and X, =csing X,,
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and we will thus obtain all of the focal axes of ga¥aboloid that are incident with tke
axis when we give the anggeall possible values. However, singe= 2a, equation (16)
will go to:

X, =0, X, =Csin 2r x;.

If we now once more return to our original coordinatgesy then that will give:
a7) X1 Sina — X cosa =0, X3 = 2cSina cosa X ,

and we will obtain the geometric locus of all foeaks when we eliminate from them;
it will then follow that:

o = 20 00%%
X+

so in fact, as we asserted in our theorem, this withbeequation of the cylindroid that is
orthogonally linked with the given paraboloid.

VI. Therotational, linear ray congruence.

If we make the special assumption in the equations:

s+ apia=0, P13+ LB p2a=0,

which define our linear congruences, that:

a+ =0
then they will go to:
(1) P23+ a p1a= 0, Pi13— @ P4 =0,

and we will obtain the case of thetational linear ray congruenc®'. Sincea andf=
- a have different signsR' will be elliptic; the focal axes will coincide with theaxis.

The rotational linear congruence goes to itself @md rotation around the z-axis;
any ray in the xy-plane that cuts the z-axis wéllsosymmetry axis d¥ .

In fact, if we rotate the coordinate system arommldrough an angle then we will
get:

!

X =bx +ax, X, =—ax+bx, X =X, X =X

when we se& = sina andb = cosa . Equations (1):
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Xo X3 =Xz Y2 + 0 (X1 Ya—Xa Y1) =0,
X1 X3 =Xz Y1 — a (X Ya—XaYo) =0,
will then go to:

(-aX +b%) = (- ay+ by %+( b & ‘y-a( by ay'.=0,
(bx +ax) y—(by+ ay) ¥-a(- dx B} 'ya(- a by’ =0,

If we multiply the first of these equations lay the second one bly, and add
(subtract, resp.) them then it will follow that:

XY= X% +ta (XY= % 9=0,
xY;~ %h—a(% Y- % $)=0,
or
(2) p'23+a'p'14 = 0! pis_a p'24 = 0,

where thep, are now referred to the rotated system. Howeverconeludes from (2),
just as on pp. 4, that the, y’, andZ axes will be symmetry axes fd®, and since the

equations prove to be independent of the amgléhis will be true for any line that is
erected in thay-plane perpendicular o
However, the rays of this pencil of rays also deftmeeruling rays of the principal

axis cylindroid that belongs t&'. In fact, the equations of the cylindroid, which can
also be written in the form:

X =cotg, Xz= a+’gsin¢cos¢x4,
X, 2
will go to
ﬁ:tan¢, x3=0
X
fora=-p.

From the foregoing, the ruling rays of the principal axiBndroid are all symmetry
axes forR! then, and any two that are mutually perpendicular wiltHeeaxes for two
mutually null-invariant ray complexes.

The focal paraboloid oR':

wWw(a+pP=usus=0
decomposes into two pencils of planes:
1) U4 = 0, 2) u3 = 01

whose midpoints lie at the coordinate origin and atitfiaitely-distant point on the-
axis. They will be collinear when we assign planed eays in the two pencils that
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correspond to each other, which will correspond undemv@Litory collineation ofR!,

and have the-axis in common. Moreover, from what was done in Chdptéhe z-axis
will be the single rotational axis of a surface of ratatione of whose ruled families is
contained inR’, and indeed these surfaces will have the equation:

a,(% + %)+ ay( X+a®x) =0.

They define arF-pencil with z as its common rotational axis. The polar systems of
these surfaces are the only rotational polar systéhe dirst kind of R'.
In general, the following equation will be true for suesof system | (cf., chap. IV):

ail(xf+ )§)+ a33( )§+02)®+ 2313()(1)%—32)(2)(4) + 2&23(X2)('3—612X1X4) =0.

As a result, all of these surfaces will have circglactions that are parallel to the
plane.




