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I. Introduction. — In this article, we shall discuss the infinitesingdubly-
homogeneous contact transformations and their applrsatiln the meantime, following
the publication of the first two articles in this ser{@ F. ENGEL kindly directed my
attention to the fact that F. J. DOHMEN had alreadgted doubly-homogeneous contact
transformations in his Greifswald dissertation inykar 1905 2() Curiously, neither the
results that he published in dissertation form nor ¢mearks of Lie that were inserted in
Bd. Ill of Transformationsgrupperunder “Kritik einiger neuerer Untersuchungen”
(“critique of some recent investigations”), and whichimed the starting point for that
examination were followed up on in the literature. Tfoee we shall briefly report
upon what was known before the publication of this seried.IE (%), one initially finds
a clear definition of the doubly-homogenealgect transformation. Naturally, he did
not arrive at doubly-homogeneocmordinatetransformations, which was consistent with
the spirit of the times. However, he did obtain mely the necessary and sufficient
conditions that correspond to conditions [I, (25), (280)) mutatis mutandis LIE’s
discussion did not actually go any further, and it repteseanly a critique of a false
Ansatz of LINDEMANN. In DOHMEN, the four coefficiest, b, c, d [I, pp. 103] were
left free, while they had the values 1, 0, O, 1 in LIErfrthe outset (which are the same
values that | inferred from the demand of the commutgbilith the grougs, which is a
demand that can arise only upon considering the coordimatsformations), and
DOHMEN arrived at the transition from ordinary to utidy-homogeneous contact
transformations and its inverse. Instead of [l, (14), (I®]started from equations that
corresponded to the coordinate equations:

p,(:d)((’= L p,(d)((+|\/| )(‘ dp,1 ,
X< dpe=N X' dpy + P pe dX-.

() “Zur Differentialgeometrie der Gruppe der Beriihrungstransitionen,” Proc. Roy. Acad.
Amsterdam40 (1937), 100-107, 236-245.

(® “Darstellung der Beriihrungstransformationen in Konnextioaten.”

() Transformationsgruppersd. Iil, pp. 530.
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Corresponding to his Ansatz, he dropped the conditiatpt X = 0 from the outset,
and accordingly found the transformation in a form thdtnot make any additional use
of that condition. He still did not find the main drem [II, pp. 242], which allows one
to represent any arbitrary doubly-homogeneous contacfdraretion with the help of
+ 1 functions ofx*, x* that are homogeneous of degree + 1, resp. By contrast, the
derivation of an infinitesimal doubly-homogeneous contaensformation from a
characteristic function was known to him, as well Bs telationship between that
function and the characteristic function of the responding ordinary contact
transformation.

2. Infinitesmal doubly-homogeneous contact transformations. — For LIE ¢), the
most general infinitesimal contact transformatioréth Z (h,i,j = 1, ...,n;a, b, c = 2
., N) had the form:

dé&t @ ow d oW o0 W
g Z __ ’ Ck( = ) Zb == _Zb (1)
dr Z dr o¢, dr 0&° a&
He transformed the differential fOI’K}hfl -, (ilfa as follows f):
d 1_ al|_ 1 a
Slae-cae)=-25(ae-c00) (2)
If we go over to the variableg by means of the equation:
1:-G: == ., (3)
and we add the extra condition that one should:have
d A
={mae) =0 )
then we will get:
dé"_ 9B dp __ 0B 5)
dr dn, dr o9&
uniquely, in which:
%:—mW[é“,_”aj. 6)
1

() Transformationsgruppen,|pp. 252.

() We writed, in order to distinguish it from the symkmbl
1
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The most general infinitesimal homogeneous contactstormation then has the
form (5), in which® is an arbitrary function of ", 77 that is homogeneous of degree one
in 7. (LIE, loc. cit, pp. 263).

We now go over to the variablg§ p, by means of:

1:&:.. M=x2:x X
i - (7)
-nén ... n,=Py: Pyteent o}
and initially set:
XO — Xh :5h,
_ ,- _ (8)
Po = —77; ' R=7.
If we then set:
K Xh -P
T, pa) ==X plw(—o,—aj 9)
X B

then® will be homogeneous of degree oneinas well as ip,, and will not contairpy,
such that:

dx" _0% dxX _0%

dr op,  dr ap’

dp __ 0% dp__, 0%, 0%

ar o’ o Pap tax

5 5 (20)
< <
=FT+p —+T+xX =,
'%ap0 X
=_9%
ox°
Since:
d 0% 0%
—(pX)=p—-X—=0,
dr(pK ) IOKapK I
d dp, d¥ 9% o
—((p,dX)=—~£dX+ p d0—=-— d k- p—, 11
dr(p”l ) dr 1 50 = ax + pag (D
=—(il§+(il§=0,

the differential form p, (1:1 X‘will be invariant and will be, in factindependent of the

equation p x“=0.
We now go on to the arbitrary homogeneous cootekna

"X = kX "PA=A X, (12)



Schouten — On the differential geometry of the group ofamritansformations IIl.

in which the coefficients andA are arbitrary homogeneous functions of degree zero in

4

x“andp, . One will then have:
d'x :dlog/( oy E dpﬂzdlog)l,pK_)l dT. (13)
dr dr dp, ' dr dr dx‘
However, we can change that infinitesimal transfmion without altering its

geometric meaning when we add a teamix” (8 'pi,

resp.) on the right. (So the

transformation of— and—— L will not change as a result.) We would like t@ake that

Po

additional term in such a way thgi,'x*, as well as'p_d'x, are, in turn, invariant,
1

independently of the equatiépy'x* =

0. In view of the homogeneity @f we can write:

dd'x - dlggK|XK +az(lax' l'p/])+a,|XK,
T T o) (14)
d'p, _dlogA, o%('x,'p,) ,
= - + )
ar ~ar P ow PP
Since:
D,y = 89098 4 g op s+ D09, 1 e, (15)
dr dr dr
and
d , dlogA , w 0T(X“,'p,) ! ,
—(p, d'X) = —'pd¥-d¥——"A14 d'k
ar P =g TR XTI AR
+p. d[d'og’( o 4 92XP1) ’p”)+af')(j (16)
1\ dr o'p,
dlog/( dlogx , , dlogk K
(d 'BJ P g% ( +aj%99+9{[ dr mj”}’

those two expressions will be independent of theaggnp, X = 0, and will be zero for

each differentiakil when:

_dlogk

dr

p=-

dlogA

s a7

such that the desired infinitesimal transformatiothread:
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d')(K 1 ,K 1
ar ap (P
d ; (18)
p/‘ — K
=— T(x", )
ar - o TP

The function¥ does not contaip, . However, if we now define an arbitrary function
that can go t& by means ofp, 'x* = 0, so:

rz (IXK, rp/‘) — z (IXK, rp/‘) + (,XK, rp/‘) F (IXK, ’p/]), (19)
then
dx 0T _ 0% .. ... \OF
- = +XF+(X,'p,)—.
dT a'p/( alp/( alp/( (20)
dp, o 0T 9T b e 0T
dr  ax* 9% IR

will represent an infinitesimal transformation thashthe same meaning as (18), as a
result of' p, 'x' = 0. Since a function of that sort that does notainm, can be exhibited

in that way from an arbitrary homogeneous function gfee one irix“ and’p, with the
help of'p, 'x* = 0, we have then obtained the theorem:

M ain theorem:

The most general infinitesimal doubly-homogeneous contact transformation has the
form:
ax _ L2 dp, _ _ 6_% (21)
dr op, dr 0X

in which¥ represents an arbitrary homogeneous function ofekgne in Xandp, .

In addition, we have found the path that leads froenftinctionW (Eh, {a) to the
function®: T must be taken to be just that function that is hgeme@ous of degree one in

x“ andp, and that can go to:
h

-Xp w[i— ‘gaj (22)

by means op, x* =0 @).

() F.J. DOHMEN]joc. cit, pp. 40.
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3. Symmetrization of a mechanical problem in t, in particular (*). — Suppose that
a mechanical (or electrodynamical) problem has been poskd coordinateg® (p, g, r
=1, ...,n— 1) with a LAGRANGE functior that depends upoé®, ¢, and that and
does not vanish identically. The equations of motionbmwritten in LAGRANGIAN
form:
d 0 |- oL _

- — =0, 23
dt 0&° o0& (23)
as well as in HAMILTONIAN form:
) . 0 0
0’PH=¢P, o H=-¢_; 0°=—, 0 =—r0,
5 p ZP a(p p ag(p
oL (24)
HIprP—LJ Zq:a_ép'

We now writet = &", H = — ¢, and introduce a new infinitesimal quantityin order
to avoid the use of differential®( Then let:

dt ., dt ., dt
g=—-H—+ P—= a—: abc=1,..,n, 25
dr o< dr s dr (29)

such that one will have:
£dr=Ldt (26)
and let:

dt : dé?
9 (G €)= (-L4g, &+ 8)=- 2+ ¢, 27)
dr dr
£ is the new LAGRANGIAN function that is homogeneoti®er one in the velocities,
and one works with the HAMILTONIAN equatioy = 0, instead of with a

HAMILTONIAN function.
As one easily verified, the equations of motion nead; in LAGRANGIAN form:

d 0£ 08

__'b__b:O’ (28)
dr o0& o0&

() In the article “Homogeneous variables in classicalamyics” by P. A. M. DIRAC [Proc. Camb.
Phil. Soc.29 (1933), 389-400], this symmetrization was applied to tist fiomogenization, which makes
the LAGRANGIAN function homogeneous of degree one inu#lecities. However, since the contact
transformation here is still not made homogeneoushaé prefer the expression “symmetrization.”

(® One can choos#r in a manner that is adapted to the problem, but onalsarwork purely with the
differentials without introducingr.
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in which the dot now represents differentiation withpees tor. £ is a function ofé?®
and dé? / dr that is homogeneous of degree one in the “velocitiéd” In

HAMILTONIAN form, the equations read:

TP .

O H=—— , , =2
G dr & .

(29)

The function$) is not the only function that satisfies the HAMILINCAN equations. If
T($) is a function of) that vanishes fofy = 0 then:

o de°
09 dr ’

_98d¢y

0% = ,
5 09 dr

Op§ = (30)

and the equatio = O will then be employed as the HAMILTON equation whane

replacesdr with dr’= dr/ag :
09

4. Thefirst homogenization (%). — Equations (29) represent an infinitesimal contact
transformation in the variableg™?!, £2 & , assuming that one extends it by an equation
in £™! that has the form:

dg(n-kl
dr

=6L0%H-9. (31)

n+l

They have the special property thatdoes not depend upof As a result,

(iIE”*l—Za 95” is invariant:

d(95n+l_za ggn) - 9(fn+1_ d,73 :Ei(a_za fjdrnf-l
={d(£7 -, +H(dEY 0,50, d0%} o (32)
={(dZ) 06— d6+(dE) 0,9+, 06—, dd°} o 0.

It follows from (31) that:
dg(n-kl dfa
= -H=2, 33
i ¢a a9 (33)

() The first homogenization appeared as the second hoimatien in DIRAC, loc. cit, namely,
homogenization of the momenta.
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and the differentiatlé ™* of the auxiliary variablef™* will then have the meaning &f

dr =L dt We now go on to the homogeneous momentén, i = 1, ...,n + 1) and
define:
fo=-a (34)
,7n+l
It will then emerge from (33) that:
§=-agaog=-"h g (35)
,7n+1 ,7n+l

If we then introduce the function:

H=- /a9 (5”,_,76‘}:/7;15“, (36)

n+l

which is homogeneous of degree ongiinthen [cf., (5)]:

oH . OH .
Top Doy, (37)
o7, 0¢

and those are the equations of motion in HAMILTONIAform after the first
homogenization. They represent a homogeneousitegimal contact transformation.
They are joined with the equation:

[H=0.] (38)

One can also succeed in writing down the equatidGRANGIAN form here §).

5. The second homogenization. — We now go on to the coordinate’s and the
momentgp, , which are defined by:

0 . +1 __q.c21. .on+l
X2 X =18 .i....E , } (39)
Po: Piiveel Ra ==& i s
and introduce the function:
0 X" -P,
H=-Xpm 9| 5. —|, (40)
X pn+l

() DIRAC, loc. cit, pp. 394.
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which is homogeneous of degree orxfrandp, , in place of). That will make [cf.,

(10)I:
oH_ . oH

——=x, =-p, 41
apK aX A p/] ( )

and these are the equations of motion in the HAMILTONIf&rm after the second
homogenization. They represent a doubly-homogeneous tdraasformation. They
are joined with the equation:

H=0, (42)
and one can also naturally find equations in LAGRANGI A here.
6. The electrodynamical equations of motion in the usual general theory of

relativity. — As is known, the symmetrization of the electrodyital equations of
motion lead to a functiofy that has the form:

k) :%mcz_zighi (”h _E¢hj(,7i__e¢ij’ (43)
m Cc C

when one choosely according to:

dr? =gy d&" d¢' (44)
(signature- — — +).
The first homogenization leads t: (

1 . .
H=-4mc”s +2—/75 g" [_ﬁ_gﬂqj(_i_f ij’ (45)
m s C ns ¢
and the second one leads to:
1 .
H= _%m52/75 +2_ ps X g" [_&_E¢hj[_ﬂ_f¢i j (46)
m R C R C

Hence, the homogenizations do not lead to formsahe symmetric id", 77 (X, pa,
resp.). However, we would now like to show thas tis related to only the particular
method that was employed here in order to compehdgenization, and that a
completely symmetric doubly-homogeneous representatan be found in a different
way.

() Cf., DIRAC, loc. cit, pp. 400.
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7. The electrodynamical equations of motion in projective field theory. — In
projective field theory'j, we have homogeneous coordinatégx, ..., 7= 0, 1, ..., 4)
from the outset.

Correspondingly, the local space is initially a pctje space. The metric will be
introduced by means of a quant@y, , for which one has:

G X' X =- x?, (47)

in which G, is homogeneous of degree — 2fnand x? is a positive constant that has
the dimensionl[?]. The relations between the usual fundamental tapsandG, read:

a& o0&
T —— = Gk, 48
g.haxﬂaxk a q ) (48)
in which:

B =Cud q=x"x" (49)

There is a (projective) displacement that lea@g invariant, and for whose

parameterd1), , one will have:

M ={ﬂ:}+(q—l)qmq”+(l— Pagd+A-9g¢,
XN5 ==-xpdy—Af, ¢,=0,9, (50)

X', ==y qd; — A,

in which the CHRISTOFFEL symbol { } refers 6,«, p andqg are constants, arg, is
connected with the bivectés; of the electromagnetic field as follows:

_1ko¢' o8
“o2caxt ax
p (51)
k= d \/j k = gravitational constant =1.87 TOM['L ].
q°-2pg+ pV 2
The vector of four-velocity is:
iK:E %.{. K % :iluayx’(, (52)
c\ dr dr

() J. A. SCHOUTEN, “La théorie projective de la relié,” Annales de I'Institut HENRI POINCARE
5 (1935), 51-88.
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and one will then havié g, =0 andi”i, =+ 1.
The total (potential + kinetic) impulse will then Epresented by a point in the local
projective space, namely, thapulse-energy point:

pP“=mcf +Eq’(. (53)

The demand that the auto-geodetic lines of the dispkaemwhich are defined by:
' 0.0 =0, (54)
should be the paths of charged particles will lead todhdition that:

p+qgq=2 (55)
and to the equation:

. 1 0
i“0 =—n2p’p, + . 56
u P2 me. PP, )(mckpﬂ (56)

It follows from (53) that:

G*p,p :+n126—e—2

Zy k2’
o (57)
paq/]:_Ea

from which, it will emerge that:
F(p,q):i G“pp—égx*ﬂ(‘2 é+rﬁ& G, % %:=0. (58)
2mc M yk K x

Now, if one considers (53) and the fact thatq = 2 then:

E:i( K—Eq"j:i":ﬂ i;iﬂa
op, mc k o S § -
oF 1 2e
X - 2 |ppo,c-= 59
aX/‘ 2mc( pp pg A )( k gj ( )
1 e d'p
=-_ _I_IU 4 —_ - _ /1,

such thafF will prove to be the HAMILTONIAN function. NowF is not homogeneous
in p; andx®. However, one now haxg X' = - xel k. Ifone sets:



Schouten — On the differential geometry of the group ofamritansformations IIl. 12

1| ye G e mé k
H=—/'-2- ——p,x'+ G XX pX 60
2mc{ k X x kp” Y oa B (60)

then it will follow by differentiation (and aftelosne reorganization of terms) that:

oH _ d'x" oH _ _dp,

OH_dx o | 61
op, dr ox’ dr (61)

in which the desired double homogenization is addevith a homogeneold.
One should note thdd does not vanish, and instead of that conditioe, will have
the equation:
H=mg (62)
which follows from (58) and (60).




