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|. Introduction. — Letx*, x = 0, 1, ...,n be homogeneous coordinates inran
dimensional space, and let , A = 0, 1, ...,n be homogeneous local facet coordinates.

| x| () represents point, while the combination x* |, | p, | represents aelementas

long asx’ p, = 0. The combinatior®, p, is called theanalytic elementhat is associated
with the element. The totality of all elements dedire(2 — 1)-dimensional manifold
with 2n + 2 homogeneous coordinates, between which, a relatists.e

Two neighboring eIementhxKJ, | p, | and Lx’( +d>(J, | p, +dp, | lie unitedwhen

one hasp, d¥’ = 0, and therefore” dp, = 0, as well. A set of elements, any two
neighboring ones of which lie united, is calledraon of elementsAny transformation

of elements that takes every union of elements to @nuoii elements and possesses a
unique inverse is called@ntact transformation.Analytically, such a transformation is
characterized by the invariance of the equapipx’ = 0 and the system of equatiqns<’
=0,p,d¥’ = 0. They ar@bject transformationg.e., coordinates are unchanged, but the
objects are transformed). We call theordinate transformationgi.e., objects are
unchanged, but the coordinates are transformed) thathanmacterized by the same
invariance “contact transformations.” I () (°), it was proved that any coordinate
transformation that is a contact transformation leamvritten in the following way:

() It was the paper “Invariant theory of homogeneous cbitansformations,” by L. P. EISENHART
and M. S. KNEBELMANN that gave rise to this investign, and it was in that paper that covariant
derivatives in the manifold of elements were consuiéoe the first time. Our treatment differs fronbig
the fact that we start with doubly-homogeneous contaostormations and proceed to the fundamental
theorem that allows one to establish any linear eotion with the help of certain contact affinors.

A | X | means “except for an arbitrary numerical factor.”

() J. A. SCHOUTEN, “Zur Differentialgeometrie der Grupger Beriihrungstransformationen, I.
Doppelthomogene Behandlung von BeriihrungstransformatioResg. Roy. Acad. Amsterdad0 (1937),
100-107.
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X' =¢° (%, B,), L
Ron+2 ; 6[// 65; z 0. (1)
Py :‘/’A'(Xp’ pp)’ a_xlj a_pﬁ
)

in which the¢ and ¢ are homogeneous functions of degree one (zero, rasy.pnd
degree zero (one, resp.)dn that satisfy the following conditions:

Vp’[ﬂTﬂ[])’ =0, T/[;/ UK]p’ =0, Vp[ﬂ’ 173 =0, EV' qu =0, (2)
LTV, U =4 T -V, U= 4
pA':-IT'pm Q:-l?' o1
X =TX X, ¥ =T,
“p, =0, oo (3)
U p/] _Ol U p/" —_ 0
V/1'KXK:Ol \//1/(')(’:01
T/]I,(:aﬁr)(l(:a/(pw, -I;K':a/‘ )(:akg, 6/1 :i’ 6/1 :i’
aXA ap/1 (4)

U =-U =9"x" ==0"%, V==V, =0, p =-0, p.

These transformations define a grotp.. . The expressiop, X’ remains invariant

under that group, and with the condition that’ = 0, the expressiox’dp,, as well as

pp X, are also invariant.
Along with them, we consider the transformatiohthe analytic elements:

S: :XK:pXK, 'pA :p—l i (5)

in which p is a homogeneous function of degree zeroxinand p, . Those
transformations leave every individual element it andp, x°, in addition, while
x”dp, andp, x° will also be invariant under the condition tipgtx’ = 0.

Those transformations define a gro@p The manifold of all elements, when

equipped with the group®:.2 andg, is calledKz,-; .

2. Thequantitiesin Kzn-1 . — In what follows, we shall also writé?, instead opj,
and let the indices, ..., g run through the 22 values 1, ...n + 1, (1), ..., (+1). We
then write:

ox"
ox°

= A, (6)
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such that:
K — A — T« == = U =-u’
AEARET =Ry =Utenut
A =KD =V, ==V, A)=R=T

and now define the following quantities:

1. Scalars:They have degreg are homogeneous of degréein x“ andp,, and are
invariant undei,n+2 andg.

2. Contravariant contact vector&hey have degreewith 2n + 2 components”, v,
= vy that are homogeneous of degréds + 1), 2 (v — 1) [2 (t — 1), 2 (v + 1), resp.] inX”,
ps, and the transformation equations:

, , VSTV + UM
Ronn V=AMV OF . L
V/Y _VK/Y \/( + -Iji \4’

S:{IVK':PVK,

' — A1
V, =0V,

(8)

3. Covariant contact vectorsthey have degreewith 2n + 2 componentsy,, — w*
= wy of degreesi(r — 1), 1(r + 1), andi(x + 1), 1(r — 1) in X, ps, and the
transformation equations:

— 74
W, =T W+, W
V\/( :U/ik \N/1+-|:(K V\f,

Sr IW/]:IO_lV\I/1’
W= pwS,

Roneo Wy = Ay W, OT {
(9)

Corollary (M):

a. If V¥, vy is a contravariant vector with degre¢henv;,, — v¥ will be a covariant
vector with the degree

b. As aresult of the facts thelf X* = 0, U™ p, = 0,x%, 0; 0,px; X*, ps , and =, p;
are contravariant vectors, andxd, p,, 0; ps, X, and— p,, x“ are covariant vectors with
degree 1.

() These properties will be partially lost when we replé&) with the more general transformatioxd's
= pX*, 'Px = TPk, as we did inK 1).
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4. Contact affinors and densitie&s usual, they are the sums of products of contact
vectors. The degree is the product of the degrees dathers. A component of an

affinor I%f_%’_'h'q“" with degreer, which hasp; unbracketed ang, = p — p. bracketed upper

indices andy; unbracketed and, = q — g bracketed lower indices, is homogeneous of
degreeir +1(p1 —p2 — 1 + @) in ps, sOF will then take on a factor gp™ > "%, The

degree is then the sum of the degrees of each comganérandp, . It will then follow

that:
Apeety a---a
X 0. R. = tRI,",

and that the degree of a displacement is the suneafdyrees of the factors. The degree
is then invariant under folding (“contraction”). The degof the unit affinorA; is zero.

Since the degree has nothing to do with the transtboms ofR.n.2, , its definition can
be generalized for geometric objects with upper and lomdices that are not affinors;
e.g., the degree of R,f_%’_;,’q“" is equal toc — 1.

5. The fundamental contravariant bivectd¥ f It has the components:
f* =0, frl=—fWr=ge 0D =, (10)

in particular, in any reference system, and as a rasudtny other reference system, as
well. Its degree is zero, and its components are anvaunders.

6. The fundamental covariant bivectqy fIt has the components:
fi=0, fiw=—Fwi=9y, fuw=0, (11)

in particular, in any reference system. Its degreers,zand these components are also
invariant undeg.

One has the equation:
foof, = A (12)

We employf *° andf,, for the raising and lowering of indices, and agree thatli
always be théirst index off * that acts and theecondndex off,,.
Hence:

v, =,V or { V=

Ve=y, fP=—y

(13)
V' = fh“\/h or { (@) - (1)’

VD =y 5O =y
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which agrees with the conditions that we posed in1(@)(8). It follows from (12) that:

=-f=A or (14)
b (K) — _ g T6) — ()
h f fuy’ =3

y =1/ =3, }
) =

In general, one has the rule that a change ofwilhappear under raising or lowering
of indices if and only if the upper index is notabketed and the lower one is bracketed
(*). Just as with the introduction of a fundamemeaisor, here, as well, the distinction
between covariant and contravariant quantities shees with the introduction of a
fundamental bivector, and only the distinction betw covariant, contravariant, and
mixed components will remain. Unlike the situatisnRIEMANNIAN geometry, the
various types of components will differ by at masdign, since their absolute values will
not change under raising and lowering of indices.

3. Connection in Kz-1 . — A linear connection irKyn-1 is established by the
equation:

O,V =0,V + M° (15)
cb

in which thelT}, define a geometric object of degree — 1 with thagformation rule:

oz My = ASL T + AYD, A (16)

c'b'a

"MK — ~-lpPFk _ k) — (x) —
M =p My, (=10), "M =pMem . 071,
(k) — A3 (k) _ N LS — A3 AK _
Mo =P T (220, My =p Moy, A7 2),

M = Al ) ‘K — Ak (160)
M =P Ny (CL0), Ty =My, (07 D),
Ty =P N0y, (F10), Mg, =pMg,,.  (0-1)

The degree will be reduced by 1 under covariafférdintiation. Sincealx' is not a

contact vector, there is, in general, no covardifierential. As in anH,,-1, one can
derive three affinors fromm’, (%):

h
Py =XM%+ A,
cL e A degree 0, (17)
Qi =N X + A,
h
s¢=ng: degree — 1. (18)

[cb] ?

() Observe that one therefore always ¥fag, = — v, W'
h
() = means “equality is valid only for holonomic referersystems.”
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If we write:
Dc fha = Fcba ’ Fc (ba) = 0 (19)
then it will follow that:
2”?[&1 fa]h = Fcba ) (20)
or
2 rlc[ba] = Fcba ’ rlcba = I_ISh fah' (21)
It follows that:
Seoal = Micoa = Freeal - (22)

If the connection is symmetric then it will followoim (21) thatll
all indices for the case in which,, vanishes:

IS symmetric in

cba

rlcba = rl(cba) . (23)
One can then derive from (21) that:

- rlshxa = ch _fbc + Fcba Xa’ (24)
such that a third quantity of valence two with degree Cbeaaterived fromi1;, here, and
which can, however, be expressed in term@gf, f,,, andF,, . Applyingf ™ to (20)
yields:

-N=Fu f"=F3. (25)

4. Establishing a connection with the help of a double plane (Doppelblatte). — An
affinor B} of rankpin anE,, n = 2p that satisfies the equation:

BsBy=B; (26)

determines a uniqudouble planein this E, — i.e., a system of twd, that have no
common directior and converselyB} is determined uniquely by the double plane. In

the same way, a contact affinor fieR} with degree zero and rank+ 1 that satisfies the
equation:
B'B,=B, (27)

will define a structure in every local space that wk Mdewise call adouble plane For
the affinorC;=A’ — B/, one obviously has:

C'Ci=Ct, BICi=0. (28)
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The double plane is call@dvolutory, in particular, irf,, when:

Bbt;c fhc = 0’ ChE:: fhc = 0’ (29)
or, when written otherwise:

f =BG+ G B {., (30)
it will emerge from this that:

wu=$qu,} (31)

Che feu = C; Bah feh'

Similar equations are true fbt’, since:
Bca f‘“ fha = Bca f“‘ Che %f fef = f“‘C; fec = _Cha ! (32)

such that (29) is equivalent to:
Clf*=0, BXf°=0. (33)
We say that a quantity with one indés in theB-domain(C-domain resp.) when it
does not change when one appBeC, resp.) to that index. Applying (B, resp.) to the
same index will then give zero.
We shall now prove the theorem:

Any linear connection in ¥ is determined uniquely by being given the following
guantities:

1. The covariant differential quotient qf f
O, f,, = Fuy, - (34)

2. The covariant differential quotient of the quant&ythat belongs to any arbitrary
double plane that is involutory relative tQ f

DCB:: _DCC; = ECEH (35)

3. The two following components qf,S

(36)

Se B G = T
Sfea c:cf 32 = Ucha'

Proof: Naturally, F,
domain witha andb and in theB-domain withc, and likewiseU

must satisfy the demand thag,,) = 0, T,,, must lie in theC-
must lie in theB-

cba
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domain witha andb and in theC-domain withc. Moreover, differentiation (29) will
yield the following relations betweé®,, andE," :

Fcea es = Echa B; - Eua 3’ (37)
Fcea C;Z = _Echa C; + Eua C:’

from which, it will follow that:

Ecea C:: Baa = 0’ Eeh 3 q = 0’ } (38)

Fcea (B:Z - C:Z) = 2 E[ha] '

If those requirements are satisfied tHgd ® —1 N ? free components\(= 2n + 2) will
remain forF, , 1N °+1N?for E,, (WhenF, is fixed already)iN* for E,,, andiN°

for U, , so there will beN ® in all, and there are al$¢® unknowns, namely, thel},. A
tensor:

cba cba 1

Gio = 24,19 By (39)

can be defined fron,, and B, whose rank is equal ton2+ 2, as a result of the
involutory position ofB; . Differentiating that equation yields:

0G =F B+
¢ “ba cbo aa Eha (40)
+ FcaDBh + Etah .
When (35) is written out, it will read:
ECEH_aCB: :_nShB:+nSDB:’ (41)
from which, it will emerge that:
C;(Ecgﬁ_acq]):nsa Be] q:ncafq Fe 5 (42)
=,,Cy ",
and
Cea(ﬁ?_ac 3): I_I;C: B:: ncagchafgffa’ (43)
such that:
e _— _ 0 m _
nceDCha - fae Ch (Ea ac 3)’ (44)
rlcea es = fah Cea(Eh _ac 3)

Only N, B;C’ and_, C:B’ are now left to be determined.
It follows from (36) that:
nfea BJC:Z - nefa Bcf qs = 2cha (45)
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or
rlfea C:cf B: c:aa == 2Tbca + rlfea Bgcceaa ' (46)
and with consideration given to (21):
rlfea Ccf: B: = rlfea C:cf B: c:aa + Ffea Ccf: 3 (47)

One can gefl,, B/ C; B and I, B} C’ from (36) and (21) in the same way, and one

will the get thell},, expressed in terms of known quantities, by addition.

5. Reinterpretation of the result for the linear displacementsin an X, with even
n. — In anX, (n = even) with a fundamental bivectigx of rankn and a double plane field
B} in involutory position, in particular, one can apply $amiconsiderations té,.. A

fundamental tensog,, of rank n can be derived froni,, and By. Every linear

displacement is established by, f,, O,By, S, B, G7, andS,,C, BY. For the case
in which all of those quantities vanish, one has teettm:

There exists one and only one linear displacement in,ahat leaves a fundamental
bivector and a double plane field that lies involutorily with respech#b bivector, and
in addition, admits infinitesimal parallelograms in any 2-direction that hascamemon
direction with every two p-directions of the double plane. That dispkEmkeleaves a
fundamental tensor invariant, and therefore a metric. It is not synumietgeneral, but
satisfies the equation,sq = 0.




