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 An m-direction field in an Xn (m  n) that that does not consist of the m-directions of nm m-
dimensional Xm is a non-holonomic structure that possesses properties relative to embedding and 
curvature that are analogous to those of an embedded Xm .  Structures of that type have been 
investigated from various angles (1).  In the present work, after a preparatory paragraph, we will 
next discuss what types of quantities arise in a complemented (eingespannte) m

nX  and what sort of 
identifications can be made for the sake of easing the calculations.  That will yield a treatment of 
the m

nX  and the complements that is completely dual and which leads, on the one hand, to the 

identification of contravariant quantities of the m
nX  with quantities of the Xn , and on the other, to 

the identification of covariant ones.  A general linear displacement will then be established in the 
Xn , and the various covariant differentials that arise in that way will be discussed.  However, the 
formulas remain endowed with many factors B and C that only serve as component structures.  
That inconvenience will then be eliminated by employing the D-symbolism, which is the extension 
of a method that goes back to van der Waerden and Bortolotti and which allows one to avoid the 
use of the factors B and C almost completely by the clever employment of the indices that belong 
to the local reference system.  The treatment of the theory of curvature will become especially 
simple with the help of that D-symbolism, as will be shown for the m

nV  in Vn (viz., Xn with the 

Riemannian metric), in particular.  In that way, four curvature quantities that belong to m
nV  will 

appear, and that will imply identities for them that are analogous to the usual four identities.  In 

 
 (1) G. Vranceanu, “Sur les espaces non-holonomes,” Comptes Rendus 183 (1926), 825-854.  “Sur le calcul 
différentiel absolu pour les variétés non-holonomes,” Comptes Rendus 183 (1926), 1083-1085.  Horak (Czech), “On 
a generalization of the notion of manifold,” Publ. de l’Univ. Masaryk, Brno (1927).  J. A. Schouten, “Über nicht-
holonome Überträgungen in einer Ln ,” Math. Zeit. 30 (1929), 149-172.  G. Vranceaunu, “Studio geometrico dei 
sistemi anholonomi,” Ann. di Mat. 6 (1929), 9-43.  “Les trois points de vue dans l’étude des espaces non-holonomes,” 
Comptes Rendus 188 (1929), 973-976.  One can also confer the literature that was given in these papers. – D. Sintzow, 
“Zur Krümmungstheorie der Integralkurven der Pfaffschen Gleichung,” Math. Ann. 101 (1929), 261-272, examined 
the curvature theory of a 2

3V  in R3 independently of the author. 
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conclusion, the m
nV  that are complemented in Xn will be treated, which will make it possible to 

establish a displacement using the curious metric and complement, even though no displacement 
exists in Xn . 
 
 

§ 1. – Preliminaries. 
 

Local reference system that depends upon the  . 
 

 We next understand an Xn to mean the totality of all values that the n-variables (viz., the Ur-
variables)  ,  = 1, …, n can assume, but in such a way that as long as functions of the   
appear, it is only a domain in which those functions are differentiable sufficiently often.  The 
running indices , …,  can be replaced by each symbol in a series of fixed indices.  We have 
chosen to write italic numbers 1, …, n for those fixed indices.  The kernel symbol  remains 
unchanged under transformations of the Ur-variables: 
 
(1)      N = N ( )  

while the running indices will take on a different series of symbols that is associated with a definite 
series of fixed indices.  In what follows, e.g., the running indices A, …,  shall always be assigned 
the fixed indices 1 , …, n  such that we can write N  for the new Ur-variables with the use of that 
series of symbols.  By contrast, if the Xn were subjected to a transformation then we would denote 
the new points with the same index, but with a different kernel symbol: 
 
(2)      N = N ( )  
 
 As is known, the equation: 
 
(3)     Nd = N( )d 

    /   


which is derivable from (1), serves as the starting point for the definition of quantities (which we 
understand to mean first-degree quantities) that are contravariant and covariant vectors: 
 
(4a)     Nv = N( )v

 


(4b)     w = ( ) w

  
 
secondly, the higher-degree quantities that are derivable from them in a known way, and thirdly, 
the scalars (or zero-degree quantities), which are characterized by the invariance of the numbers 
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that they determine under (1).  The kernel symbol also remains unchanged under transformations, 
and a change in the kernel symbol will always mean a change in the quantities themselves. 

 The unit affinor A
  and the basis vectors e


 that belong to the e



 , are defined by the equations: 

 

(5)      e e


 
 


 

  = 
0 ,
1 ,

 
 


 
 

 

(6)      A
  = e e


 

 




 , 

 

in which the symbol 


  means that the equation is true in only the reference system being employed 
and is not invariant under the transition to another system.  

  is the well-known Kronecker 
symbol, which can be used in all sequence of symbols that happen to be employed.  We shall 

suggest the system of basis vectors e


, e


  by () in the text.  Similarly, the defining numbers NA  

of the unit affinor and a system of basis vectors Ne


 and 
N
e  belong to the N : 

 

(7)      
N NN NA e e 

  

 
   , 

 
which will be suggested in the text by (N), and according to (3), one will have: 
 
 NA  = N( )( )A 

     = N( ) 
   , 

 

(8) Ne


 = N N( ) e
 
 



   , e


= N
N( )e  




   , 

 

 e


  = ( )e


 
 



    , 
N
e  = 

N
M N

M( ) e  


   . 
 
 The indices that appear above and below in the middle in (5) and (8) are called distinguishing 
indices, as opposed to the transformed indices.  Naturally, there are also running and fixed 
distinguishing indices, just as there are for the transformed indices.  By convention, distinguishing 
indices are always considered to belong to the kernel symbols under a change of kernel symbols.  
The distinguishing indices, as well as the running ones, do not transform, and will never be written 
above or below to the right, which will remain reserved for exclusively the transformed indices.  
On historical grounds, an exception will be made for only the two distinguishing indices of the 
Kronecker symbol 

 . 
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 Not all indices of a quantity need to be referred to the same local reference system.  Defining 
numbers with different types of indices are called linking.  If one goes over to the (N) for only the 
upper index in the unit affinor then that will yield: 
 

(9)     NA  = Ne e





= Ne e



 

  = N
 , 

 
and that underscores the fact that the N

  are nothing but the linking defining numbers of the 

unit affinor.  One now obtains the A
  in the same way, such that the defining equations (4) can 

now be written: 
 Nv  = NA v

 , 
(10) 
  w = A w

 . 
 
The linking defining numbers of all quantities can be derived with the help of NA  and A

 ; e.g.: 
 
(11) N

Mv
  = N

Mv A 
 
  = N

Mv A



 . 

  

 The different ways that the A
 , e


, e


 , and 
  transform under the transition from () to (N) 

are clearly represented in the following table: 
 

(12) 
N N

N N

Trans. of  the Trans. of  the
Combined

contra. index cov. index

e e e e

e e e e
A A A A

 

   

   

 

 
 
   
      

 

 

 

 
The necessary and sufficient condition for (N) and () to coincide reads: 
 

(13) N NA 


 , 
 
where N

  is an extension of the Kronecker symbol that means 1 or 0 according to whether the 
running indices N and  are replaced with fixed indices from the series of symbols that they are 
associated with whose locations do or do not correspond, respectively.  We will also employ this 
symbol for all sequences of symbols that will occur. 
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 Any point of Xn will be assigned a local manifold by (3) with a homogeneous linear group that 
is defined in it, or, what amounts to the same thing, an En (Xn with ordinary affine geometry).  The 
vectors and higher-degree quantities are systems of defining numbers that transform under just 
those local groups in ways that depend upon the transformation of the  .  If the defining numbers 
of a quantity – e.g., v  are defined over Xn (i.e., they are as functions of the  ) then one speaks 
of a field.  One considers the vN that are given by (4) to be new defining numbers of the same field 
under the transformation (1).  Hence, the transformation from v  to vN has nothing to do with how 
the v  depend upon the  .  By contrast, with the transformation (3), along with the v , one can 
consider a new field whose defining numbers 'v  are expressed in terms of the   in the same way 
that the v  are expressed in terms of  .  One easily proves that the 'v  transform under the 
transition from () to (N) like the defining numbers of a vector, and that the same thing is true for 
quantities of arbitrary degree.  That process, namely, which is called the dragging of the field under 
a transformation of type (2) and is used in variational problems especially, is basically different 
from the process that takes the v  to the vN. 
 

More general local reference systems. 
 

 The conceptual structures up to now allow a generalization that is completed in three steps: 
 
 1. Separating the local transformation from the transformation of the  . 
 
 The transformations of the local group that were uniquely associated with the transformations 
of the   in the example above can be made completely free of them.  That happens when one 

introduces a system (k) of n arbitrary linearly-independent contravariant vectors 
i
e  in place of the 

system (n) that belongs to the  , along with the vectors 
k
e  that are reciprocal to them, which 

transform into a system (K) that consists of the vectors  
I
e  and 

K
e  arbitrarily in a manner that is 

independent of the  .  If the defining numbers relative to (k) [(K), resp.] are provided with 
running indices h, …, m (H, …, M, resp.) then one will obviously have: 
 

 
kk k

i ii
e e 

 

  , 

(14) 

 
KK K

I II
e e 

 

  . 

 
We associate the running indices h, …, m with the fixed indices from the vertically-printed 
sequence of numbers 1, …, n, while the running indices H, …, M are associated with the fixed 
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indices from the sequence 1 , …, n .  The relationships between the defining numbers relative to 
() and relative to (k) are obtained from the equations: 
 

 vk = 
j kk

j
v e e v e 

 



 , 

(15) 

 wi = 
j

i i
j

w e e w e



 



 . 

 
 The system (k) cannot always be coupled with a system of Ur-variables k .  The necessary 
and sufficient condition for that is known to be: 
 

(16)     ][

k
e  = 0. 

 
In the other case, which we refer to as non-holonomic, the defining numbers of the d   relative 
to the (k) shall be described by the ( )kd , since the k  have no intrinsic meaning and play the 
same role as the non-holonomic parameters in mechanics. 
 
 2. Introduction of several local manifolds. – Each point of Xn will be assigned several local 
manifolds, each of which have their own affine group. 
 The simplest case of that kind appears when we do not replace () with (k), but introduce (k), 
along with ().  The two local manifolds then coincide in a single En , but two groups are now 
defined in En that belong to (), which depends upon the transformations of the  , and to (k), 
which are independent of those transformations.  Defining numbers that are linked with a quantity 
of higher degree also appear now; e.g., the unit affinor: 
 

 kA  = 
j kk

j
e e e 



 , 

(15) 

 iA  = 
j

i
j i

e e e 


 , 

 
with the aid of which, all other quantities can be derived, such as: 
 
(18)    k

jv
  = k

jv A 
 
  = k i

ijv A
 . 

 
 A more general case that will appear continually in this paper arises when each point of Xn is 
associated with not only the En with the group that is associated with (n), but also an Em (m  n) 
whose group is independent of the transformations of the  .  There will then exist three types of 
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quantities, namely, the ones that belong purely to En (Em , resp.) and then linking quantities, whose 
indices refer partly to () and partly to the reference system that lies in Em . 
 
 3. Transition to an arbitrary group in the local manifold. – Naturally, with the latter extension, 
no further homogeneous linear transformations can be gained from the systems of defining 
numbers considered.  The simplest (indeed, almost trivial) example is defined by the system of the 

  themselves, such that each point of Xn is now associated with Xn itself, and the local group is 
the group of all transformations (1).  We would like to call such systems that do not transform in 
a homogeneous linear way “geometric objects” (2).  By the way, they also already appear in the 
local En , and the best-known example is probably that of the parameters 

  of an affine 
displacement.  Everywhere that such geometric objects appear in differential geometry, one notices 
the ambition to reduce the treatment to systems with homogeneous linear transformations (3).  In 
affine geometry, that comes about by the introduction of covariant differentiation.  In the more 
general projective and conformal geometries, in which each point of Xn is associated with a local 
Xn with a projective (conformal, resp.) group, one will achieve the same objective by introducing 
superfluous coordinates that will replace the local Xn with an EN (N > n) with a group that is 
rigorously coupled with the transformation of the   and the subsequent introduction of a 
covariant differentiation.  For geometric objects, as well, we keep to the rule that the kernel symbol 
remains fixed under transformations, while the new running indices will assume a different 
sequence of symbols; e.g.: 
 
(19)    N

M  =  N N N
M M MA A A 
      . 

 
Throttling. 

 

 n scalar fields 

  can be constructed from the Ur-variables   that are numerically equal to the 

 .  Under the transition to new Ur-variables, the 

  then remain invariant (as scalars), while the 

  go to the N .  We express that by the equation: 
 

(20)      


 


 . 
 

The   are not be confused with the e



 , which are not scalars. 

 
 (2) Veblen, who was probably the first to refer to the meaning of those systems expressly, coined the expression 
“invariant,” which we prefer to replace with “geometric object,” primarily in view of the fact that the systems of that 
kind that appear in a differential-geometric examination always have a geometric meaning that is independent of any 
reference system, but also in order to avoid any false associations that might arise from the usual meaning of the word 
“invariant.” 
 (3) Along with quantities, quantity densities and pseudo-quantities also possess such a transformation.  Cf., J. A. 
Schouten and V. Hlavaty, “Zur Theorie der allgemeinen linearen Überträgung,” Math. Zeit. 30 (1929), 414-432. 
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 It is clear that the covariant basis vectors e


  arise from the 

  by the covariant operation of 

taking the gradient: 

(21)      e


  = 


  , 
 
and the fact that one gets the contravariant basis vectors e


 by dividing the vector d by the 

scalars d

 : 

(22)      e


 = 











. 

 

Finally, if one divides the scalars d

  by the d


  then what will arise are the n2 scalars of the 

Kronecker symbol: 

(23)      
  = 












. 

Equations (21) to (23), along with: 

(24)      A
  = 










, 

 
show the difference between the four symbols that appear in equations (5), (6), whose manners of 
transformations were clearly represented in Table (12). 

 We call the transition from   to 

  the throttling (Abdrosseln) of the index .  In the same 

way, we call the transition from a quantity or a geometric object with p indices to the n p scalars 
that are equal to the defining numbers relative to the reference system that belongs to those indices 
the throttling of the indices relative to that system and indicate that throttling by placing the indices 
in question above and below the kernel symbols; e.g.: 
 

 







  , 

(25) A



  A 

 


 , 

 e



  e e




 


 

  . 

 
It is clear that throttling the indices on a quantity (but not on a general geometric object) can be 
achieved by contracting over all possible combinations of suitably-chosen basis vectors, e.g.: 
 



Schouten and van Kampen – Non-holonomic structures. 9 
 

(26) v



 v e e e


 

  

 , 

 
and that can be reversed by multiplying the scalars obtained by suitable basis vectors and adding, 
e.g.: 

(27) v 

 = v e e e

 


 
 

. 

 
One can make use of that fact to define the throttling of one or more indices of a quantity.  That 
will then be understood to mean moving each throttled contravariant (covariant, resp.) index by 
means of the n covariant (contravariant, resp.) basis vectors that belong to the Ur-variable of the 
index; e.g.: 
 
(28) 

M
v 

    B
B M

v e e
 

 . 

 
That throttling can also be reversed; e.g.: 
 

(29) Bv 

  =

M

B
M
v e e





  


It is clear that a covariant equation will keep the property of covariance under throttling of one or 
more indices. 
 

Indices employed. 
 

 Finally, we shall give an overview of the sequences of symbols and numerals that will be 
employed for the running (fixed, resp.) indices: 
 
 Running indices Fixed indices 
 
 , …,  1, …, n 
 , …,  1 , …, n  
 h, …, m 1, …, n 
 H, …, M 1 , …, n  
(30) a, …, g 1, …, m 
 A, …, G 1 , …, m  
 p, …, w m + 1, …, n 
 P, …, W 1m  , …, n  
 
 Naturally, in theory, one is completely free to choose the running indices from within the 
assumed sequence of symbols.  However, the readability of the formulas and the likelihood of 
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avoiding errors (discovering them early on, resp.) will both be greatly increased when one restricts 
that freedom somewhat (which must naturally be maintained in each special case) for the cases 
that occur very often.  Therefore, in the Greek alphabet, it is advisable in general to prefer to use 
 for the contravariant index,  for the covariant one,  for the first covariant differentiation,  for 
the second, and  for the third.  One then writes, e.g.: 
 
(31)      v =  v + v 

 , 
and not, say: 
 
(32)      v =  v + v 

 , 
 
which would give rise to much confusion and printing errors.  The corresponding indices in the 
other series of symbols are implied by the following table: 
 
 Contra. Cov. 1. Diff. 2. Diff. 3. Diff. 
 
 ()      
 ()      
(33) (k) k i j l h 
 (K) K I J L H 
 (c) c a b d e 
 (C) C A B D E 
 
 

§ 2. – m
nX  that are embedded and complemented in Xn . 

 
 Let an Xm with the Ur-variables c, a, …, g = 1, …, m be “embedded” in Xn by means of the 
equation: 
 
(34)      = ( )c  , 
 
in which we recall the continuity conditions that were stated in the beginning of § 1.  Let some 
possibly-new Ur-variables in Xn (Xm , resp.) be N ( C , resp.).  Each point of Xm is then assigned 

a local En with the reference system () with basis vectors e


, e


 , and a local Em with the reference 

system (c) with basis vectors c

a
e , 

c
ae .  Correspondingly, there is a unit affinor A

  for Xn at that 

point, the unit affinor c
aB  for the Xm , and the coupling quantities: 
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(35)     aB  = a






, 

with the transformation law: 
 
(36)     N

AB  = N a
A aA B B

 . 
 
The m contravariant vectors in Xm : 
 

(37)     
a
e  =

a
B = b

b a
B e = a








 

 
then arise from those quantities by throttling, and at each point of Xn , they determine, on the one 
hand, an m-direction that we shall call the m-direction of the Xm , and on the other hand, an Em that 
lies in the local En that we shall denote by aB , in order to distinguish it from the local Em of the 

Xm .  It follows from (35) and (37) that aB  can be expressed in terms of the basis vectors 
c
e  and 

a
e  

as follows: 

(39)     .
b

aa b
B e e   

 
Each line element dc in the Xm of the local Em of Xm is assigned the line element: 
 
(40)     d  = a

aB d   
 
of the Xn in the local mE .  Now one can also choose the system (c) arbitrarily at each point and 
transform arbitrarily in a homogeneous linear way without referring to any sort of Ur-variables for 
the Xm .  One needs only to replace c with ()c and dc with (d)c in formulas (35) to (38), 
since the c will be non-holonomic parameters, in general.  However, one can go a step further 
and forgo an equation of the form (34) entirely, and instead of starting from it, one can start from 
equation (40) with (d)a in place of da, where the quantities aB , which shall have rank m, are 
now given over Xn , and the (d)c do not represent exact differentials, in general.  The arbitrary 
homogeneously-linear transforming (d)c can be regarded as the defining numbers of a vector in 
an Em , and the aB  will determine an Em in the local En , which might be denoted by mE .  That 
will change nothing in equations (35) to (40), except that the dc and c will be replaced with 
(d)c and ()c, resp., and it should be observed that the domain of definition of the aB  will now 
be n-dimensional, in general.  In that way, the Xm would be replaced at each point with an Xn that 
is provided with an m-direction and which shall be called the m

nX  that is embedded in Xn .  If the 

m-directions of Xm were defined then the m
nX  will reduce to a system of nm Xm , and if the domain 
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of definition of the m-directions were sufficiently restricted then the case of the individual Xm 
would then arise. 
 We consider the most general case of m

nX  in Xn .  The correspondence between the local Em 

and the local mE  that was already spoken of in the context of line elements can also be expressed 

by saying that every contravariant vector vc in m
nX  is always associated with a unique contravariant 

v  in Xn : 
 
(41)     v = b

bB v . 
 
From (37), the vectors c

a
e  will then correspond to the vectors 

a
e  .  Conversely, a single vector in 

m
nX  will correspond to a contravariant vector v  in Xn if and only if there is a vector vc that satisfies 

equation (41).  Since that equation can also be written as: 
 
(42)     v = b

b
v e   

 
as a result of (37), that will be the case if and only if v  belongs to mE .  The correspondence 
between contravariant vectors in Em and mE  is then one-to-one.  We would like to say that a vector 

v  that belongs to mE  lies in m
nX . 

 By contrast, any covariant vector w in Xn is always associated with a covariant vector wa in 
m
nX  in a single-valued way: 

(43)     wa = aB w
 . 

 
That vector will be zero if and only if the (n – 1)-direction of w contains the m-direction of m

nX .  
It follows from the equation: 

(44)     aB


 = aB e



  

that the aB


 correspond to the covariant basis vectors e


 .  Conversely, a covariant vector wa in 
m
nX  is not associated with a covariant in Xn . 

 We shall now make use of the one-to-one correspondence between the Em and the mE  by 

identifying the corresponding contravariant vectors and thus regarding the v  and vc as the 
defining numbers of one and the same quantity, which can be regarded as a vector in Xn , as well 
as a vector in m

nX .  Correspondingly, we ignore the difference between the kernel symbols and 

write v instead of v  from now on.  That identification is geometrically related to the fact that 
d and da in (40) can be regarded as the defining numbers of the same line element that lies in 
Xn as well as in m

nX .  After Em and mE  have been identified, (43) will now take on the following 
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geometric interpretation: The vector  wa , which can be represented by two parallel Em1 in Em , 
arises from the vector w, which can be represented by two parallel En1 in En , by intersecting 
with Em . 
 With an application of c

aB , it will follow from the former identification that: 
 
(45)     aB  = b

b aB B  = aB , 
 
which will identify B  and B, and with an application to c

a
e : 

 
(46)     

a
e   = 

a
e  , 

 
which will imply the identification of 

a
e  and 

a
e .  The kernel symbols B  and 

a
e  vanish from the 

calculations from here on out, so (41) will go to: 
 
(47)     b

bv B v   

and (43) will go to: 
(48)     ' .a aw B w

  

 
 Further simplifications can first be made when m

nX  is complemented; i.e., each point of Xn is 

associated with an (n – m)-direction that has no direction in common with the m-direction of m
nX

.  That can come about by establishing m independent covariant vectors 
c
e  at each point in Xn 

whose (n – 1)-directions do not include the m-direction of m
nX .  Those 

c
e  can be transformed 

arbitrarily in a homogeneous linear way in their own right.  The 
c
e  can then arise from a coupling 

quantity cB  of rank m by throttling, whose upper index lies in Xn , while the lower one lies in the 
Em that belongs to those transformations: 
 

(49)     
c
e = 

c
b

bB e      [cf., (37)] 
 

(50)     
b

cc

b
B e e       [cf., (39)]. 

 

Naturally, the basis vectors 
c

be  and c

b
e  of this Em are not generally identical to the basis vectors 

that appear in (37) and (39) for the Em that is introduced into them, but they will become identical, 
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and the two Em will then coincide, as soon as one couples the transformations of the 
c
e  with those 

of the 
a
e   by choosing the 

c
e  such that: 

(51)     
c

a
e e 
  = c

a . 

 

Geometrically, that means that the intersection of the 
c
e  with the local Em of the 

a
e  is the double 

Em1 of the parallelepiped of the 
a
e . 

 However, for the time being, we shall not make use of that coupling, but we will start from 
(50), and in that way completely overlook the fact that an m-direction is defined at each point in 
Xn , along with the (n – m)-direction.  That will then lead to a line of reasoning that is entirely dual 
to the one that starts from (39).  Along with the Em of the c

a
e  in (50), which now has nothing to do 

with the Em of the (d)c, there exists the m-dimensional set of vectors that are linearly derivable 

from the 
c
e , which are mapped in a one-to-one way to the covariant vectors of the Em that arise 

from the Em by laying them together along the (n – m)-direction of the complement.  The latter Em 
shall be denoted by mE  in order to distinguish it.  Any covariant vector wa in Em is always assigned 
a covariant vector w  in Xn in a single-valued way: 
 
(52)     w  = b

bB w      [cf., (41)]. 
 

From (49), the vectors 
c

ae  then correspond to the vectors 
c
e .  Conversely, a single vector in Em 

will correspond to a covariant vector w  in Xn if and only if there is a vector wc that satisfies 
equation (52).  Since that equation can also be written: 
 

(53)     w  = 
b

b
e w      [cf., (42)], 

 
that will be the case if and only if w  belongs to mE .  The correspondence between the covariant 
vectors in Em and the ones in mE  is then one-to-one.  We would like to say that a covariant vector 

w  that belongs to mE  lies in the m
nX . 

 By contrast, any contravariant vector v in Xn is always associated with a contravariant vector 
in Em in a one-to-one way: 
 
(54)     v c = cB v

      [cf., (43)]. 
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That vector will be zero if and only if v lies in the (n – m)-direction of the complement.  It follows 
from the equation: 
 
(55)     cB = cB e

 
     [cf., (44)] 

 
that the cB


 correspond to the contravariant basis vectors e


.  Conversely, a contravariant vector 

vc in Em is not associated with any contravariant vector in Xn .  We shall now make use of the one-
to-one correspondence between the Em and the mE  by identifying the corresponding covariant 
vectors, and thus regarding w , as well as wa , as the defining numbers of one and the same quantity 
that can be regarded as a vector in Xn , as well as a vector in Em .  Correspondingly, we shall now 
write w instead of w .  Once Em and mE  have been identified, (54) will now take on the following 
meaning: The vector vc that can be represented by two points in Em arises from the vector v that 
can be represented by two points in En because the latter two points, along with the (n – m)-
direction of the complement, determine two Enm that will become points of mE  when they are laid 
together. 
 It follows from this second identification by an application of c

aB  that: 
 
(56)     cB  = b c

bB B  = cB     [cf., (45)], 
 

which will identify B  and B, and when that is applied to 
c

ae : 
 

(57) 
c
e  = 

c
e      [cf., (46)], 

 

which will imply the identification of 
c
e  and 

c
e .  The kernel symbols B  and 

c
e  will vanish from 

the calculations from now on.  (52) will then go to: 
 
(58)     b

bw B w       [cf., (47)] 

and (54) will go to: 
(59)     c c'v B v

      [cf., (48)]. 

 
 Only now do we introduce the equation (51), which couples the two lines of reasoning that 
start from (39) [(50), resp.].  (51), (45), and (56) will then yield that: 
 
(60)     .e e

a aB B
   

(47) and (58) yield: 
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(61)     .b
bB B B 

   

 
It follows from (61) and (47) [(58), resp] that: 
 
(62)     ,c cv B v

  

 
(63)     a aw B w

      [cf., (62)]. 

 
Finally, it follows from (60) and (61) that: 
 
 a) B

  = B B 
  , 

(64) b) cB  = cB B
  , 

 c) aB  = aB B 
 . 

 
 The following diagram (*) gives an overview of how the equations relate to each other and 
shows how the various formulas follow from the three assumptions (39), (50), (51), and the two 
identifications I1 and I2 . 
 For the case in which v (w, resp.) lies in m

nX  (cf., pp. 12 and 14), and there must then exist 

a vector vc (wa , resp.) in m
nX  that satisfies equation (47) [(58), resp.], (62) [(63), resp.] will now 

give the means for expressing that vector in terms of v (w, resp.).  If v (w, resp.) does not lie 
in m

nX  then a vector v c (wa, resp.) can be constructed with the help of (59) [(48), resp.] whose 
defining numbers  v (w, resp.) will follow from (47) [(58), resp.].  An application of (62) [(63), 
resp.] will then yield: 
 
(65)     v c = cB v = cB 'v  
or 
 
(66)     wa= aB w

 = aB 'w
 , 

 
resp., from which it will emerge that v (w, resp.) cannot be decomposed into a component v  
(w, resp.) that lies in m

nX  and a component that lies in the (n – m)-direction of the complement 

(is contained in the m-direction of m
nX ).  From now on, we shall correspondingly call v = B v 

  

(w = B w
  , resp.) the m

nX -component of v (w, resp.).  In summary, we have now achieved the 
following: There exist arbitrary contravariant (covariant, resp.) vectors in Xn and ones that lie in 

 
 (*) In the diagram, the indices b in formulas (39) and (50) are plotted from left to far right, along with the indices 
a and c in (51). 
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m
nX .  Each vector that lies in m

nX  possesses defining numbers with indices , …, , as well as 
ones with the indices a, …, g .  We shall say that a quantity in Xn lies at the location of a certain 
index in m

nX  when it does not change when contracted with B
  at that location, so one will have 

the rule: 
 A quantity on Xn can have defining numbers that carry an index in the sequence a, …, h at a 
certain place when it lies in that place in the m

nX . 

 
 An example is given by the quantity B, which possesses four defining numbers: B

 , aB , cB , 
c
aB , whose relationships are expressed by (60), (61), and (64). 

 After complementation, each point will be assigned an m-direction and an (n – m)-direction, 
and the space that the latter spans can also be regarded as a complementary m

nX   that is embedded 
in Xn then, where m is written instead of n – m, for the sake of simplicity.  If one applies precisely 
the same considerations to that m

nX   and one denotes the unit affinor of m
nX   by r

pC , p, …, w = m 

+ 1, …, n then that will yield the following equations for pC   and rC : 
 

 a) pC  = 
q

p
q

e e ,  rC  = 
q

r

q
e e , 

(51)   

(39)   (60)   (50)   

(43)   (66)   (65)   (54)   

(48)   (59)   

(45)   (64)   (56)   

(41)   J1 

(47)   (61)   

J2 (52)   

(58)   

(62)   (63)   
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(67)    b) r
pC  = r

pC 
  = 

q
r

p
q
e e , 

     c) C
  = q

qC 
  = 

q

q
e e

 , 

 

in which the vectors 
q
e  and 

q
e , together with 

a
e  and 

c
e , define two reciprocal systems.  Vectors 

that lie in m
nX   have two types of defining numbers whose relationships read as follows: 

 
     a) v = r

rC v ,  v r = rC v , 
(68) 
     b) w = p

pC w ,  wp = pC w
 , 

 
and the connection between A, B, and C is given by the formula: 
 
(69)     A

  = B C 
  . 

 
Furthermore, one has the rule: 
 A quantity can have defining numbers that carry an index in the sequence p, …, w in a certain 
position if and only if they lie in that position in m

nX  . 
 Every point in Xn is now associated with an En , an Em , and an Em then, and there are: 
 
 1. Quantities in Xn with indices from the sequence , …,  . 
 
 2. Quantities in m

nX  with indices from the sequences , …,  and a, …, g . 
 
 3. Quantities in m

nX   with indices from the sequences , …,  and p, …, w . 
 
 4. Coupling quantities that can carry indices from the sequence , …,  anywhere, and they 
can also carry indices from the sequences a, …, g (p, …, w, resp.) in the positions where they lie 
in m

nX  ( m
nX  , resp.). 

 
 We now consider the special case in which the complement comes about by way of a 
fundamental tensor a that is given in Xn .  The Xn will be orthogonal to Vn, and the (n – m)-
direction of the complement will be orthogonal to the m-direction in m

nX  relative to the 

fundamental tensor that was introduced.  It must then be possible to construct the cB  and B
  from  

aB  and a alone.  We next define the fundamental tensor on m
nV : 
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(70)     .ab abb B a
  

It follows from the equation: 
(71)     0,a pB C a 

   

 
which express the orthogonality of the complement, along with (69) and (70): 
 
(72)    aB A a 

  = aB B a 
  = b

abB b , 
from which it follows that: 
(73)     c cb

bB b B a   

and 
(74)     .ab

abB B b a 
   

 
 In the same way, one has: 
(75)     pq pqc C a

  

 
for the fundamental tensor cpq in m

nV  , as well as the equations: 
 
(76)     q

pqC c = pC a
 , 

 
(77)     ,r rq

qC c C a
   

 
(78)     ,rq

pqC C c a 
   

which follow from (71) and (75). 
 
 

§ 3. – Induced displacement in a m
nX  that is complemented in Ln . 

 
 Xn will become Ln with the introduction of a linear displacement with the parameters 

 : 
 
(79)     v = dv + v d  

  . 
The equation of translation reads: 
 
(80)     vk = dvk + ( )k i j

ij v d  
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relative to the non-holonomic reference system (k) of the previous paragraphs, which will have the 
transformation equation: 
 
(81)     k

ij  = k k
i j j iA A A   
     . 

 
If v and d lie in m

nX  then a translation in m
nX  will be given by the m

nX -components of v, 

namely, the so-called induced translation.  An m
nX  with a linear translation that is given in it is 

called an m
nL ; the same thing is true for the m

nX  .  We shall now go a step further by putting v in 
m
nX  and w in m

nX   and always considering only the components of the differential in the manifold 
that belongs to the field.  Two covariant differentials will then arise: 
 

 ) 
m

cv  = ( )c c a b
abdv v d , 

 ) 
m

rw  = ( )r r p b
pbdw w d  , 

(82) ) 
m

cv


 = ( )c c a q
aqdv v d  , 

 ) 
m

rw


 = ( )r r p q
pqdw w d  , 

 
and each of them will define a covariant differential quotient: 
 

 ) 
m

c
b v  = c

bB v 
   = c c a

b abv v  , 

 ) 
m

r
b w  = r

bB C w 
   = r r p

b pbw w   , 

(83) ) 
m

c
q v


  = c
qC B v 

   = c c a
q aqv v   , 

 ) 
m

r
q w


  = r
qC w 
   = r r p

q pqw w   . 
 
Both sets of equations can also be written with Greek indices (4): 
 

 ) 
m

v  = 
m

b c
bcB v

  , 

 ) 
m

w
  = 

m
b r

brB C w
  , 

(84) ) 
m

v



  = 
m

q c
qcC B v





 , 

 
 (4) It should be observed that with our assumptions on the use of indices, expressions such as vc or b vc are 
meaningless, since vand  v do not lie in m

nX .  It is on precisely those grounds that new differentiation symbols 
must be introduced here. 
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 ) 
m

w




  = 
m

q r
qrC w





 . 

(84) implies that: 

(85)    B v 
  = 

m m
v v H  

    , 
 
and likewise: 

(86)    B v
   = 

m m
v v L 

    

  , 

 
where 

 ) 
m
H 


  = B C 

    = B B 
    =  ( )

q

q
B e e

  , 

(87) 

 ) 
m
L 

 

  = B C 

    = B B 
    =  ( )

q

q
B e e

   

 
are the first and second curvature affinors of m

nL , for which  (, resp.) belong to m
nL  and  (, 

resp.) belong to m
nL .  In the same way, there are two curvature affinors 

m
H 




  and 

m
L 

 



  in m

nL  . 
 Since the new operators satisfy the usual rules in regard to sums and products, they can be 
applied to higher-degree quantities that have some indices that belong to m

nL , while the remaining 

ones belong to m
nL  ; e.g.: 

 

(88)   
m

r
b aT  = r r

baB C T
  

  = r r p c r
b a pb a ab cT T T      .  

 

However, each of the operators 
m
 , 

m



, 
m
 , 

m
  can generate only quantities that have indices that 

belong to m
nL , while the remaining ones belong to m

nL  , so it follows from this that any arbitrary 
sequence of those operators will always makes sense when it is applied to quantities of the given 
kind. 
 
 

§ 4. – The D-symbolism. 
 

 Let v 

  be a field whose index  belong to m

nL  and whose index  belong to m
nL  , while it can 

be regarded as a quantity in Ln relative to .  The usual covariant differential v 
   will then exist, 

for which all indices of v 

  are regarded as belonging to Ln .  Now, the expression: 

 
(89)     d B C v   

       
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is likewise a covariant differential of v 

 , and indeed it is one whose indices are in the same 

positions relative to m
nL , m

nL  , and Ln as the those of v 

 .  However, that differential cannot be 

constructed with the symbols , 
m
 , 

m



 that were introduced up to now without employing the 
factors B and C.  One must then introduce new differential symbols here and a corresponding 
differential operator, and that must be done anew for every field that can be regarded as having 
some indices that belongs to m

nL  and others that belongs to m
nL  , while the remaining ones are 

regarded as belonging to Ln .  Now the various operators obviously differ only by the number of 
factors B and C that one contracts with in formulas such as (89), and the places of application 
where the contraction takes place.  Different authors have almost simultaneously come to the 
conclusion that this troublesome introduction of new operators can be avoided in such a way that 
the number of factors B and C and the positions where they are applied can be given by the choice 
of indices from the sequences a, …, g, p, …, w, or , …, , instead of by any index that the 
operator is endowed with.  One could then get by with a single operator – say D, for example: 
 
(90)     b apD v   = ba pB C v  

  . 
  
However, there is one thing that must be observed: Up to now, the rule was true for all expressions 
that the indices a, …, g can appear only where the expression is contracted with B, but that indices 
, …,  can also appear in all positions, and correspondingly for the indices p, …, w, such that, 
e.g., v 

    has meaning, but not b apv   .  The second part of this rule will no longer be true for 

D-formulas; e.g., if a were replaced with  in (90) then that would mean that v 

  would have to 

be regarded as a quantity in Ln under differentiation, and also as far as the index  is concerned, 
and a completely new quantity would then arise: 
 
(91)     b pD v 


  = b pB C v  

   . 
 
D-formulas and -formulas or -formulas must never be confused or employed when mixed 
together, since indices in them have basically different meanings.  It is characteristic of -formulas 
and formulas without differentiation that their meaning depends upon only the skeleton (= totality 
of kernel symbols, positions of the indices, and positions of the contractions performed), but not 
upon which of the allowed types of indices are employed.  The D-formulas do not possess that 
property. 
 We now define the D-operators as follows: u is a field in Ln , vc lines in m

nL , and wr lies in m
nL 

. 
 ) D p  =  p, 
 ) D u  =  u, 
(92) ) D v c  = cB v  , 

 ) D w r  = rC w
  , 
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 ) Db p  = bB p
 , 

 ) Db u  = bB u 
 , 

(93) ) Db vc  = c
bB v 
  , 

 d) Db wr  = r
bB C w 

  , 
 
 ) Dq p  = qC p

 , 

 ) Dq u  = qC u 
 , 

(94) ) Dq vc  = c
bC B v 

  , 

 d) Dq wr  = r
qC w 
  . 

 
The operations D, Db, Dq shall be called differentiation in Ln , m

nL , m
nL  , resp.; corresponding 

formulas are true for covariant vectors.  Therefore, B and C can be expressed as follows: 
 
(95) aB  = Da , pC  = Dp . 
 
The operators D satisfy the formal rules of differentiation of sums and products, and that will imply 
the rules for the differentiation of a higher-degree quantity with different types of indices, such as 
e.g., (90), (91).  It is very important that the formal rules for contraction are also true, and indeed 
for the three possible types of contractions that correspond to the three types of indices, e.g.: 
 
(96) a

b aD v w  = ( ) ( )a a
b a a bD v w v D w   . 

 
Formulas (92), (93), (94) are lacking precisely the structures that arise by contracting the v that 
belongs to differentiation in m

nL  with C and contracting the w that belongs to differentiation in m
nL   

with B.  However, those structures are not actual differential concomitants, since they depend upon 
only the local values of v (w, resp.) and the curvature affinors that were defined in the previous 
paragraphs.  However, if: 
 

  rC v   =  rC v C 
    =  

m m
r rH L v

  





  
 

 , 

(97) 

  cB w
   =  cB w B 

    =  
m m

c cH L v
  





  
 

 , 

 
then contracting with B (C, resp.) will yield: 
 

 ) r
bB C v 

   =  r
bB C v C  

     = 
m

r a
baH v , 
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 ) c
bB w 
   =  c

bB w B  
     = 

m
r p

b pL w
 , 

(98) ) r
qC v 
   =  r

qC v C  
     = 

m
r a

q aL v


 , 

 ) c
qC B w 

   =  r
qC B w B  

    = 
m

c p
qpH w


 . 

 
For the curvature affinors, it follows from (92), (94) that: 
 

 ) 
m

baH  = b aD B  = Db Da , 
(99) 

 ) 
m

r
b pL 
 = c

bD B , 
 

and corresponding formulas will be true for 
m
H


 and 
m
L


.  Of the differential quotients that were 
defined in (92), (93), (94) for a complement m

nL  in Ln , (92), (92), and (94) will lose their 
meanings when one goes to a complement Lm in Ln .  The same thing will be true of (92), (94), 
(93), and (93) when one drops the complement m

nL .  However, if a displacement exists in m
nL  

that is based on any grounds then the defining equation Db vc = 
m

c
b v  will remain, but the 

relationship to  will be lacking. 
 The D-symbolism was found by various authors independently.  A first attempt can be found 
in R. Lagrange (5), who wrote down the covariant differential of a quantity in Ln for the coupling 
defining numbers relative to the two systems of Ur-variables () and (N): 
 

v   = dv v d v d 
         

   . 
 
Naturally, there are no grounds for distinguishing between  and D here, since one is still dealing 
with two different systems of n coordinates in the same manifold (6).  It was Van der Waerden (7) 
who first considered quantities with some indices that belong to Vn , while the other belong to a 
Vm that is embedded in Vn , and the operators d D are defined to act upon the quantities in Vn , 
while db Db acts upon quantities in Vn and Vm (with the notation d).  Those operators were found 
by E. Bortolotti (8) in the same sphere of action independently of Van der Waerden.  Unfortunately, 
Boltolotti did not introduce any new differentiation symbols, but kept the symbol , which could 
lead to confusion and would unnecessarily make it impossible to use the old formulas in the course 

 
 (5) Calcul différentiel absolu, Mém. des Sciences Math. Fasc. 19 (1926), pp. 10.  
 (6) The index p on pp. 10, line 9, cf. supra, which suggests just the opposite, is obviously only a printing error. 
 (7) “Differentialkovarianten von n-dimensionalen Mannigfaltigkeiten in Riemannschen m-dimensional Räumen,” 
Abh. Math. Sem. Hamburg 5 (1927), 153-160. 
 (8) “Spazi subordinate: equazioni di Gauß e Codazzi,” Boll. Un. Matem. 6 (1927), 134-137. “Sulla varietà 
subordinate negli spazi a connessione affine e su di una espressione dei simboli di Riemann,” Boll. Un. Matem. 7, 2 
(1928), pp. 8. 
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of calculations, since only their skeleton is defined.  Finally, one also finds the same operator db 
Db (with the notation D) in Duschek-Mayer (9).  The operator Db , as it is applied to quantities in 
Vm , can be found in a later work of Bortolotti (10), and is denoted by * there (in his less-consistent 
system).  Furthermore, the decomposition of the differentials of v and w that is expressed in (82) 
was already found much earlier by Weyl (11) and Cartan (12). 
 
 

§ 5. – Curvature quantities for the m
nV  in Vn . 

 
 We consider the case of a m

nV  in Vn , whose metric is given by the fundamental tensor a in 
Vn (cf., pp. 18).  As a result of (93) and (94), the following is then true for the fundamental tensors 
bab and cpq : 
 
(100)    ) Db bac = 0, ) Dq bac = 0, 
 
(101)    ) Db cpr = 0, ) Dq cpr = 0, 
 
(102)   D a = 0, Db a = 0, Dq a = 0, 
 
and with consideration given to (99), it will follow from this that: 
 

(103)    
m

baL   = c
b acD b B a

 = b aD B  = 
m

baH  . 
 

The difference between 
m
L  and 

m
H  will then vanish, and the same thing will be true for 

m
L


 and 
m
H


, 
such that instead of (97), one will have: 
 

 ) cp  v =  
m m

p pH H v
 

  
 

, 

(104) 

 ) bp  w =  
m m

a aH H w
  

  
 

. 

 
Differentiating a scalar p twice with m

n  and alternating leads to: 

 
 (9) Lehrbuch der Differentialgeometrie, Teubner, 1930, pp. 156.  Mayer informed me in a letter on 21-1-1930 that 
the relevant work of the aforementioned authors was unknown to him and that he had already lectured about the 
operator D in the Winter semester of 1926/27 at the University of Vienna. 
 (10) “Scostamento geodetico e sue generalizzazioni,” Giorn. di Matem. di Battaglini 66 (1928), 153-191.  
 (11) “Zur Infinitesimalgeometrie: p-dimensionale Flächen im n-dimensional Raum,” Math. Zeit. 12 (1922), 154-
160, in particular, pp. 155.  
 (12) “La géometrie des espaces de Riemann,” Mém. des Sci. Math. 9 (1925), pp. 47.  
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(105)    D[b Da] p = [ ]b aD B D p
 = [ ]

m
r

ba rH D p . 
 
However, since, on the other hand: 
 
(106)    D[b Da] p = [b a] p + [ ]

c
ab c p  , 

 
it will follow that: 

(107)    [b a] p =  [ ] [ ]

m
c r
ab c ba rp H D p    . 

 

The left-hand sides (107) vanishes identically if and only if [ ]

m
r

baH  , as well as [ ]
c
ab , vanishes.  

Now, according to (87): 

(108)     [ ]

m
r

baH  =  [ ]

q
r

ba q
B e e

  
 
 

, 

 

and [ ]

m
r

baH   vanishes if and only if the m
nV  degenerates into a system of m Vn’s .  In that case, in 

addition, the [ ]
c
ab  will vanish if and only if the c are holonomic parameters in that Vm .  It follows 

from (108) for p = 

  when one contracts with ce


that: 

 

(109)    [ ]
c
ab  = [ ]

c
b ae e



 = [ ]

c
b aB B

  , 

 
and the [ ]

c
ab  then depend upon only the choice complement, and not the displacement in Vn .  

However, the [ ]
c
ab  can be calculated in a known way from (109) and formula (100a), which is 

written out as: 
 
(110)    b bac  d d

ab dc cb adb b   = 0, 
 
and it will then follow that the displacement that is induced in m

nV  depends upon only bab and the 
complement, and as a result, it is invariant under changes of the fundamental tensor a that leave 
b and the complement unchanged. 
 Differentiating a vector u in Vn twice in Vn then yields the known equation: 
 
(111)    D[D] u =  1

2 K u 

 , 

 
in which K 


  is the curvature quantity in Vn . 
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 Differentiating a vector vc in m
nV  twice in Vn then yields: 

 

(112)   D[D] vc = D[ | |
cB D] vc =   1

[ | | [ | | ] 2

m m
c c cH H D v B K v  

      



   , 

 
and a corresponding formula exists for a vector wr in m

nV  .  As a result of (103) and (111), 

differentiating a vector u in Vn in m
nV  and alternating will yield: 

 

(113)   D[dDb] u = D[ ]bB D] u = 1
[ ] 2

m
q

db q d bH D u B K u    
  . 

 
As a result of (106), differentiating a vector vc in m

nV  in m
nV  and alternating yields: 

 

(114)   D[dDb] vc = D[dDb] 
a

c

a
v e  = [ ] [ ] [ ]

m m a
r c r c a c

db r db ar d b a
H D v H v v D D e     

 = 1
[ ] 2

m m
r c c a

db r dbaH D v K v  , 
in which: 

(115) 1
2

m
c

dbaK   =  [ ] [ ]

e m
c r c

a d b db a re
e D D e H   

  = [ ] [ | | ] [ | | ] [ ] |

m
r c c c c e c

db ar d a b e d a b db aeH        . 
 
It likewise follows that for a covariant vector va in m

nV : 
 

(116)    D[d Db] va = 1
[ ] 2

m m
r c

db r a dba cH D v K v  . 
 

Unlike the left-hand sides of (114) and (116), the quantity 
m
K  does not depend upon only b and 

the choice of complement and is therefore not a true curvature quantity in m
nV .  That is based upon 

the fact that the first terms on the right-hand sides of (114) and (116) depends upon the 
displacement in m

nV , as well as the choice of complement.  However, one has: 
 

(117)    Dr vc +
m

c a
a rH v = r vc + [ ]2 a c

a rv B C B 
  , 

 
and the expression on the left-hand side of this equation will then depend upon only the choice of 
complement, and not on the translation in Vn .  It is a type of derivative that we shall denote by the 



Schouten and van Kampen – Non-holonomic structures. 28 
 

symbol qD .  Since corresponding things are true for covariant vectors, the defining equations of 

qD  will read: 

 ) c
qD v  = Dq vc +

m
c a

a qH v = q vc + [ ]2 a c
a qv B C B 

  , 
(118) 

 ) q aD v  = Dq va 
m

c
a q cH v  = q va  [ ]2 c

c a qv B C B 
   

 = [ ]2 a qB C v 
  . 

(114) and (116) can then be written: 
 

(119)    D[d Db] vc = 1
[ ] 2

m m
q c c a

db q dbaH D v K v   , 

(120)  D[d Db] va = 1
[ ] 2

m m
q c

db q a dba cH D v K v   , 
in which 

(121)     
m

c
dbaK   = [ ]2

m m m
c r c

dba db a rK H H 
   

 
depends upon only bab and the choice of complement and is thus a proper curvature quantity in 

m
nV . 

 (118) gives one information about the geometric meaning of qD , since q aD v  is a component 

of 2 [ v] in m
nV   in its first index and a component in m

nV  in its second index.  Therefore, qD  
does not depend upon either the metric or any translation, and as a result, it will also exist for a 

m
nX  that is a complement in Xn .  One easily convinces oneself of the fact that the component in 
m

nV   or m
nV  does not lead to a linear translation in either index. 

 Differentiating a vector wr in m
nV   in m

nV  twice and alternating will give: 
 

(122)  D[d Db] wr = D[d Db] 
p

r

p
we  = [ ] [ ] [ ]

pm m
q r q p r

db q db d b p
H D w H w w D D e     

 = 1
[ ] 2

mmm
q r r p

db q dbpH D w K w


  , 
where 

(123)   1
2

mm
r

dbpK

  = [ ] [ | | ] [ | | ] [ ]

m
q r r r r e r

db pq d p q q d p b db p eH         . 
 

In the same way, when one starts with m
nV  , one can derive the curvature quantities 

m
r

sqpK

  and 

mm
r

sqpK

 , along with a differential operator bD  that acts upon quantities in m

nV  .  The translation that 

belongs to D has the property that there is a parallelogram with two sides in m
nV  and two in m

nV  , 
and as one easily sees by calculation, it is determined uniquely by that property. 
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 It emerges easily from (113), (114), and (122) that upon differentiating a quantity with three 
different types of indices in m

nV , a term with the corresponding curvature quantity will appear for 

each index, along with a single term with [ ]

m
q

dbH  ; e.g.: 
 

(124)  [ ]
r

d b aD D T
 = 1 1 1

[ ] 2 2 2

m m mm
q r r c r r p

db q a d b a dba c dbp aH D T B K T K T K T  
    



          . 
 
 

§ 6. – The generalized equations of Gauss, Codazzi, and Ricci for m
nV  in Vn , 

derived with the help of the D-symbolism. 
 

 Equation (124) leads us to the generalized equations of Gauss, Ricci, and Codazzi in the 
simplest way.  Upon applying aB , that will imply: 
 

(125)   [ ]

m

d b aD H  = 1 1
2 2

m m
q c

db q a dba c dbaH D B K B B K   
     

or 

(126)   dbaB K 

 = [ ] [ ]2 2

m m m
c

dba db q a d b aK H H D H  



     

 

  = [ ] [ ]2 2
m m m m

q
dba db a q q a d b aK H H H D H   


  

 
    
 

   , 

 
and that equation will yield the generalized Gauss equation when one contracts with cB  [cf., Der 
Ricci-Kalkül, Berlin, Julius Springer, 1923, which will be cited as R.K. from now on, pp. 198, 
formula (157)]: 

(127)   [ ] [ | | ]2 2 ,
m m m m m

c c q c c q
dba dba db a q d q b aB K K H H H H 

 
  

        

 
which will assume the form: 
 

(128) [ ] [ ]2 2
q qm

c c c c
dba dba db a d b cq q

B K K h l l h 
 

  
      

 
when one uses the indices q [cf., R.K. pp. 198, formula (158)], where: 
 

 
r

bah = 
m r

q
ba qH e  = ( )

r

b aD e B
 , 

(129) 
 c

bp
l 

 =  c q
b a p

H e
  = ( ) c

b p
D e B

 , 
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and contracting with rC  will give the generalized Codazzi equation: 
 

(130) [ ] [ ]2 2 ,
m m m

r q r r
dba db q a d b aB C K H H D H 

 



      

 
or, in another form, when one introduces the indices q and r [cf., R.K., pp. 200, formula (168b)]: 
 

(131) [ ] [ ] [ ]2 2 2 ,
q qr r r r

d b a dba db a d b aq q
D h B e K h u v h 

      

where 

 
r

dp
v  =  

r
q

d qp
e D e  = 

r
q r

q d pdp
e D e



 , 

(132) 

 
r

ap
u  = 

m r
s q

q a sp
H e e



 . 

Applying (124) to pC   will give: 
 

(133)    [ ]

m

d b rD H 
 =  [ ]d b pD D C   

 

 = 1 1
[ ] [ 2 2

mmm
q r

db d p dbp r db pH D C K C B K C    




     
or 

(134) db pB C K  

  = [ ] [ ]2 2

mm m m m
q

dbp db qp d b pK H H D H  
 


    . 

 
Contracting this with rC  will imply the generalized Ricci equation: 
 

(135) [ | ]2 ,
mm m m

r r e
db p dbp d e b pB C K K H H   

 

 

     

 
while contracting with cB  will lead back to (130).  Throttling the indices p and r will yield: 
 

(136) 
r

db p
B e e K  

 
 = [ | | ]2

mm r r
e

db d e bp p
K e e h l 

 


 . 

However, since: 
 

(137)  
mm r

db p
K e e 

 


 =    [ ] [ ] [ ]| |

2 2 2
r r s r

q q t q
d b q d b q db t qp p s p

D e D e D e D e h e D e e       
   

 

 = [ ] [ ] [ ]2 2 2
qr r s r

d b d b db pp p q s
D v v v h u  , 
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where: 

(138)  
r

s p
u  = 

r
t q r

t q pss p
e e D e



 , 

 
the generalized Ricci equation can be written in the form [cf., R.K., pp. 200, formula (170b)]: 
 

(139)   [ ] [ ] [ ] [ | | ]2 2 2 2 .
qr r r s r s

m e
db d b d b d b d e bp p p q s p p

B K e e D v v v h u h l 
 

     

 
 Equations (130), (131), and (139) differ from the corresponding equations for Vm in Vn by the 

appearance of additional terms that contain 
m

r
dbH   ( [ ]

s

d bh , resp.).  By their definitions, the curvature 

quantities 
m
K ,

mm

K


, 
m m

K


, and 
m
K


 satisfy the first identity (cf., R.K., pp. 87): 
 

 ( )

m
c

db aK   = 0, ( )

mm
r

db pK

  = 0, 

(140) 

 ( )

m m
c

sq aK

  = 0, ( )

m
r

sq pK

  = 0. 

 
It follows from (101), (102), in a known way, that they also satisfy the third identity (cf., R.K., pp. 
88): 

 D[d Db] bac = ( )

m

db acK  = 0, ( )

mm

db p rK


 = 0, 
(141) 

 ( )

m m

sq acK


 = 0, ( )

m

sq p rK


 = 0. 
 

The curvature quantities 
mm

K


and 
m m

K


 collectively satisfy a type of fourth identity (cf., R.K., pp. 89), 

which is obtained by comparing (135) with an analogous formula for 
m m

K


: 
 

(142)   [ | | |2
mm m m

e
acp r a r c epK H H



  = [ | | |2

m m m m
e

dbpac p c r saK H H
  


 . 

 
If we compute D[d Db] va in two different ways: 
 

 D[d Db va] = 1
[ [ | ] [ ]2

m m
q c

db q a dba cH D v K v  , 
 

 D[d Db va] = [ ] |b baD B D v
   = [ [ | ] [ ]

m m m
q q c

db q a c db a qH D v v H H 
   
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then a second identity will arise (cf., R.K., pp. 88) for 
m
K : 

 

(143)   [ ]

m
c

dbaK   =  [ ]

m m
q c

db a qH H 


 ,  
 

and one will also have one for 
m
K   then: 

 

(144)  [ ]

m
c

dbaK  =  [ ]4
m

q c
db a qH H 


  

 
That formula can also be derived from (127) directly. 

 One will obtain a relation between 
m
H  and 

m
H


 from (130) by alternating d, b, and a : 
 

(145)    [ | | ] [ ]

m m m
q r r

db q a d baH H D H



 

  = 0 . 
 

The first, second, and third identity for 
m
K  imply the fourth identity: 

 

(146)  
m m

dbac acdbK K = [ ]12
m m

q
ac db qH H , 

 
and in another form: 
 

(147) 
m m

dbac acdbK K  = [ ] [ ] [ ]12 2 2
m m m m m m

q q q
ac db q db acq ac q dbH H H H H H     

 
 

§ 7. – Curvature theory of a m
nV  in Xn . 

 
 We shall now consider an m

nX  that is a complement Xn and couple it with a m
nV  by introducing 

a fundamental tensor bab (13).  The metric in m
nV , by itself, is not in a position to generate a 

translation, but if the choice of complement is also given then the c
ab  can be calculated from 

equations (109) and (110), and in that way a metric translation will be established in m
nV .  In 

general, the operator Db will take on meaning only by applying it quantities in m
nV : 

 
(148)     Db vc = b vc + c a

ab v , 
 

 
 (13) Cf., Vranceanu, C. R. 188 (1929), 973-975.  
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while the operators Dq and D do not exist at all.  Since there is no translation in Xn , 
m

baH   will 

not exist, but (107) says that the quantities [ ]

m

baH   do exist, which we would rather write as baM   

here, since 
m

bcH   do not exist [cf., (108)], and which will depend upon the choice of complement, 
and not upon the bab : 
 
(149)  baM   = [ ] [ ]

c
b a ab cB B    = [ ]b aC B 

   . 
 
The operator qD , which depends upon only the choice of complement, will become meaningful: 
 
(150)    c

qD v = q vc + [ ]2 a c
a qv B C B 

   , 
 

but will lose the relationship to the 
m

r
baH   that is expressed in (118).  Along with that operator, 

there exists bD  : 
 
(153)    r

bD w = b wr + [ ]2 p r
p bw C B C 

  , 
 
and, as before, one has: 
 
(152)      [ ]q bD D p   = 0 . 
 
As in (119), differentiating a vector vc in m

nV  twice in m
nV  and alternating will give: 

 

(153)    D[d Db] vc = 1
2

m
q c c a

db q dbaM D v K v   , 
 

in which 
m

c
dbaK   is no longer given by (121), but by: 

 

(154)  
m

c
dbaK  = [ ] [ | | ] [ | | ] [ ]4 2c c c e e c

db a d a b e d a b db aeM B B 
         . 

 

Naturally, a corresponding quantity 
m

r
sqpK


  does not exist here.  By contrast, a curvature quantity 

can be defined by applying the operator q b b qD D D D     to vc, where the operator D* has the 
following meaning: 
 c

bD v  = Db vc, 
(155) c

qD v   = c
qD v , 
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 r
bD w  = r

bD w . 
That will then yield: 
 

(156)    [ ]
c

q bD D v  = 
mm

c a
qbaM v


 , 

in which 
 

(157) 
mm

c
qbaM


  = [ ]2c c

q ab b q aC B B 
       

  [ ] [ ]{2 2 2 4 }e c c d c r
ae q b eb q a ab q be b qB C B C B C B B C C       

           

From (118), the quantities: 
 
(158)     q abD b = Nabq 
 
will be equal to: 

 ( )

m

ab qH , 
 

such that those quantities will also be independent of the translation in Xn .  If [ ]
cB   = 0 then, first 

of all, the choice of complement will tell us about Xm , and secondly, all vectors 
c
e   will tell us 

about Xn1 , from which it will follow that the basis vectors in m
nV  arise by intersecting m

nV  with 
the Xn1 of those vectors.  According to (118), the operator qD  will then go to the operator q , and 

the quantities 
mm

c
qbaM


  will go to c

q ab   (14). 
 
 

§ 8. – Concluding remarks. 
 
 The range of applications of the D-symbolism is in no way exhausted by the exposition above.  
In fact, we have established that the D-symbolism can be of great use in the theory of deformation 
and the treatment of higher curvatures of a Vm in Vn . 
 
 

(Received on 11 May 1930) 
 

__________ 
 

 
 (14) An analogous case comes about in, e.g., unitary geometry; cf., J. A. Schouten and D. v. Dantzig, “Unitäre 
Geometrie,” Math. Ann. 103 (1930), 319-346. 


